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Abstract. In terms of simulation and control holonomic constraints are well documented and thus termed
standard. As non-standard constraints, we understand non-holonomic and unilateral constraints. We limit
this survey to mechanical systems with a finite number of degrees of freedom. The long-term behavior of non-
holonomic integrators as compared to structure-preserving integrators for holonomically constrained systems
is briefly discussed. Some recent research regarding the treatment of unilaterally constrained systems by event-
driven or time-stepping schemes for time integration and in the context of optimal control problems is outlined.

1 Introduction

Many technical systems are modeled as multibody systems which are comprised of rigid or elastic bodies,
joints, and force elements or forcing. We restrict the discussion to discrete systems, meaning elastic bodies
are presumed to be discretized by shape functions or finite elements and the system is represented by a
finite number of degrees of freedom. Joints are the typical pictorialization of constraints; for example they
constrain a body to move only along or around a certain axis. Generally, constraints may either account
for kinematic restrictions of a body, such as with redundant coordinates, or for interactions between
bodies and the environment. Such interactions may be described by an equation, such as a pivot, or by
an inequation, such as a non-penetration condition.

Without any claim for completeness, we report about some active research related to simulation and
control. We adopt the common classification of constraints into: holonomic or non-holonomic (e. g.
massless rigid connectors or rolling without sliding), scleronomic or rheonomic (e. g. static or moving
environment), and unilateral or bilateral (e. g. limiters or bearings). Bilateral holonomic, particularly
holonomic-scleronomic, constraints are the simplest type of constraints and their treatment has been well
studied and is covered in many textbooks [12, 32]. Therefore, we refer to them as standard. There are
some ongoing discussions regarding the remaining constraint types, non-holonomic and unilateral, which
is why we refer to them as non-standard.

2 Non-holonomic constraints

We need to recall the definition of a holonomic constraint to give meaning to the term non-holonomic.
Having a multibody system with generalized coordinates q in mind, a holonomic-scleronomic constraint
is given by an algebraic equation Ψ(q) = 0 on position level, whereas a holonomic-rheonomic constraint
would explicitly depend on time t. For further details on non-holonomic systems we refer to the classical
textbook of Neimark & Fufaev [25] and more recently Rabier & Rheinboldt and Bloch [5, 26]. A popular
formulation for the numerical solution of holonomically constrained systems was proposed by Gear, Gupta
and Leimkuhler [11]
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q̇ = v − GT(q)η , (1a)

M(q)v̇ = f(q,v) − GT(q)λ , (1b)
Ψ(q) = 0 , (1c)

G(q)v = 0 , (1d)

with mass matrix M(q), generalized forces f , Lagrange multipliers λ and η, and G = ∂Ψ/∂q. It
enforces the constraints on both, position and velocity level, and is also referred to as stabilized index-2
formulation. A combination of differential and algebraic equations like in the example given by eq. (1) is
called differential algebraic equation (DAE) or descriptor system.

Non-holonomic constraints are usually understood as equations between differentials of dq that cannot be
integrated to an equation on position level. A general criteria for non-integrability gives the Frobenius-
Theorem [14]. In mechanical systems, where most constraints appear as linear forms A(q)q̇ = 0, there
is a simple necessary condition. For a non-holonomic constraint the derivative of the corresponding row
in A must be a non-symmetric matrix.

From the point of view of numerics, the inclusion of non-holonomic constraints into eq. (1) is straight-
forward: they are added to the holonomic constraints on velocity level. This formulation works well
for moderate time spans. The robustness and the excellent long-time behavior of structure-preserving
integrators for unconstrained and holonomically constrained systems [13] suggest taking advantage of the
geometrical properties of non-holonomic systems. However, non-holonomic systems do not, in general,
preserve a symplectic structure. There is the open question whether energy conservation is the only
geometric property of non-holonomic systems. Consequently, an energy-consistent scheme has already
been proposed [4] to include both, holonomic and non-holonomic constraints. Recent research indicates
that the good long-term behavior of current non-holonomic integrators is due to the special properties of
popular benchmark systems and does not hold in general [22].

Lie-group methods [8, 24] and their successful application for the description of large rotations are not
considered further, since there is no hope to identify a Lie-group for any possible constraint.

The consideration of non-holonomic constraints in optimal control problems is also more challenging than
for holonomic ones. We restrict the discussion to feed-forward control, meaning we calculate a nominal
trajectory that is optimal in the sense of a given cost functional. These are constrained optimizations,
because the equations of motion, or more generally the system dynamics, are imposed as constraints on
the optimal control problem. For a general discussion, we refer to the comprehensive textbook [12] and
take a glance at concepts motivated by structure preservation. Both, the discretization-based approach
Discrete Mechanics and Optimal Control of Constrained systems (DMOCC) [19] and the functional-
based approach [15], are designed for holonomic constraints. Nevertheless, both allow different time
discretizations than variational integrators. Consequently, it will be interesting to find out how an
energy-consistent time discretization like the one proposed by Betsch [4] performs in this context.

3 Unilateral constraints

While bilateral constraints describe relationships between some or all state variables via equations, unilat-
eral constraints introduce one-sided limits on the admissible domain which result in inequations φ(q) ≥ 0
or inclusions. Consequently, solutions may be non-smooth or even discontinuous. In mechanics, typical
origins of unilateral constraints are collisions and friction. Several approaches exist to describe such sys-
tems, we refer to [6, 17] for further details. Numerical methods for approximate solutions have to deal
with the (piecewise) non-smooth dynamics and follow one of two basic philosophies: event-driven or time-
stepping, cf. figure 1. Event-driven schemes rely on algorithms for ODEs or DAEs to solve the smooth

Figure 1. Numerical approximation of time behavior of state qj : left smooth solution (variable time step); middle
non-smooth solution with event-driven approach (variable time step); right non-smooth solution with
time-stepping scheme (fixed time step).
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parts of the solution trajectory [3], discrete events where inequalities become active are determined itera-
tively [29], a discrete state update is evaluated and the smooth solver is restarted. Time-stepping schemes
approximate the solution trajectory at fixed time steps where constraints are satisfied exactly (subject
only to numerical precision), but might be (slightly) violated in between [1, 6]. Event-driven schemes are
standard in most commercial software tools, since high-order methods can be used for the smooth parts
of the solution and good performance is achieved if there is a moderate number of events. They perform
badly if there is a high number of events or even accumulation points (Zeno behavior), since this leads to
very small time steps and the algorithm gets stuck. Furthermore, existence and uniqueness of a solution
of the ODE or DAE after an event is not guaranteed (cf. the Painlevé paradox) [31]. Time-stepping
schemes overcome these problems by “averaging” over the influence of all events during fixed time steps
[23]. Velocity jumps due to collisions are treated by a coefficient of restitution which acts as though all
collisions within a time step occur simultaneously [30]. They can be formulated as implicit time integra-
tion methods which require the solution of a linear or nonlinear complementary problem at every time
step [2].

In terms of structure-preservation, event-driven collision integrators follow naturally from Hamilton’s
principle, when the collision time is an additional variable [9]. Note, that this use of Hamilton’s principle
in equality form [9] does not allow trajectories to approach or to exit motions along the admissible
set boundary, i.e. contacts being opened or closed. In addition, the adjusted time steps may slightly
violate the conservation properties of variational integrators and thus accumulate errors. The extension of
classical analytical mechanics to perfect unilateral constraints, with possible persistent contact, requires a
reformulation of the variational principles of mechanics in terms of variational inequalities [18]. It is thus
natural to consider a nonsmooth, discrete Variational Principle for inequality constrained systems [16].
Since variational integrators are formulated in terms of momenta and avoid direct computation of forces
they are a convenient choice for time-stepping schemes. There is ongoing research in the development
of higher order methods to increase time step size and performance [28]. In the context of transient
simulations, the competition between event-driven and time-stepping schemes is not decided yet and
maybe never will.

For the optimal control problem (feed-forward), we distinguish two cases: firstly one only requires com-
pliance with the unilateral constraints, secondly there are collisions with the admissible boundary set.
The first case, pure compliance with unilateral constraints such as actuator saturation, is comparatively
simple and commonly accounted for by the Karush-Kuhn-Tucker conditions [7]. The second case, when
the events of interaction with the boundary of the admissible domain become subject of the optimization,
requires more sophistication since then the related dynamics are non-smooth and the events, their number
and their states, are additional unknown variables. As an example, consider a pendulum-on-cart-system
where the cart moves between two limiters and the collisions with these boundaries are to be utilized
for a swing-up of the pendulum. Since classical control theory presumes smooth dynamics, the direct
approach, not to say brute-force, splits this problem into two layers. The inner layer finds the optimal
solution between two collisions. The earlier collision is given by a fixed post-collision state and the later
one by a fixed pre-collision state, defining already the subsequent post-collision state. The outer layer is
used to find the optimal collision times and states [10]. A further outer layer may optimize the contact
mode sequence, which is an integer programming problem growing exponentially with the number of
contact constraints. Alternatively, time transformations [27] or contact-implicit trajectory optimization
[21] can be used to avoid this mixed integer optimal control problem. We further mention that there is
a close relation to the theory of switched systems [20].
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