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Abstract. FlowExpansion is a network design problem, in which the
input consists of a flow network and a set of candidate edges, which may
be added to the network. Adding a candidate incurs given costs. The
goal is to determine the cheapest set of candidate edges that, if added,
allow the demands to be satisfied. FlowExpansion is a variant of the
Minimum-Cost Flow problem with non-linear edge costs.
We study FlowExpansion for both graph-theoretical and electrical flow
networks. In the latter case this problem is also known as the Trans-
mission Network Expansion Planning problem. We give a structured
view over the complexity of the variants of FlowExpansion that arise
from restricting, e.g., the graph classes, the capacities, or the number of
sources and sinks. Our goal is to determine which restrictions have a cru-
cial impact on the computational complexity. The results in this paper
range from polynomial-time algorithms for the more restricted variants
over NP-hardness proofs to proofs that certain variants are NP-hard to
approximate even within a logarithmic factor of the optimal solution.

Keywords: Flow Networks · Electrical Flows · Expansion Planning
· Minimum Cost Flow

1 Introduction

Expanding flow networks is a challenging task with a wide range of applications
such as deciding where to build new roads, which regions to connect by new rail
lines, or where to build new power lines for transmitting electrical power. The
latter problem is often called Transmission Network Expansion Planning
(TNEP or TEP), and a huge body of research on it exists in the electrical engi-
neering community; see for example [9] for a recent survey. What distinguishes
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TNEP from other flow expansion problems is the underlying flow model, which
needs to capture additional physical laws such as Kirchhoff’s Voltage Law.

In this work we take a more theoretical view on flow expansion problems and
TNEP in particular. An instance of FlowExpansion consists of an undirected
flow network and a set of candidate edges with given costs. The goal is to find
the cheapest subset of candidate edges to add to the network such that the re-
sulting network admits a flow satisfying all constraints. As outlined before, the
underlying flow model plays a crucial role. We consider two types of flow in this
work: (graph-theoretic) flows, which require flow conservation at the vertices and
impose a maximum flow on each edge, and electrical flows, where additional elec-
trical constraints need to be satisfied. We study the computational complexity
of FlowExpansion under various restrictions, e.g., restricting the networks to
certain graph classes or restricting the number of sources and sinks. Our goal is
to understand which restrictions have a crucial impact on the complexity.

The problem of expanding electrical networks (TNEP) is well-studied [9],
but the focus in most works lies on having more realistic models of the real-
world transmission system or finding more efficient solution methods. From a
more theoretical point of view, TNEP is known to be NP-hard [12]. The related
Maximum Transmission Switching Flow problem (MTSF), where edges
may be removed instead of added, is NP-hard as well even if the underlying
graph is series-parallel [6,4]. On general graphs there is no PTAS for MTSF
unless P = NP [8]. These results can easily be transferred to TNEP.

Expanding graph-theoretical (non-electrical) flow networks can be considered
as a minimum-cost flow problem with non-linear cost functions. We make this
connection more precise in Section 2. For the related problem of maximizing
the flow subject to a budget constraint heuristics exist [3]. A generalization of
FlowExpansion is the Fixed Charge Transportation Problem, where
the cost of each edge with non-zero flow is given by a fixed amount plus an
amount proportional to the flow on the edge. It is NP-hard as well, and there
are several exact algorithms based on integer linear programming [13,10].

Contribution and Outline. We give a fine-grained view on the complexity of
various variants of FlowExpansion. To this end we classify the variants of
FlowExpansion according to the graph classes, the number of sources and
sinks, variable vs. fixed production, unit vs. arbitrary capacities, unit vs. arbi-
trary candidate edge costs, graph-theoretic vs. electrical flow, and (for electrical
flows) unit vs. arbitrary resistances. We combine existing complexity results with
a variety of new results. These include proofs of the NP-hardness of FlowEx-
pansion in trees (Lemma 2) and the NP-hardness of approximating Flow-
Expansion with electrical flows better than within a logarithmic factor of the
optimal solution in general graphs (Theorem 4). For more restricted variants,
e.g., cacti with fixed production (Lemma 8), we give polynomial-time algorithms.

We formally define FlowExpansion and relate it to the Minimum-Cost
Flow problem in Section 2. Section 3 contains the hardness proofs for FlowEx-
pansion with variable production. In contrast, having fixed productions makes
the problem easier as shown in Section 4. In Section 5 we consider the variants of
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FlowExpansion with only one source and one sink. We conclude with a short
summary of the results in Section 6.

2 Problem Definition

In this work we consider flows in undirected graphs. For notational convenience,
we assume that each edge has been given an arbitrary direction. We use uv
to denote the edge between u and v with direction towards v. Let G = (V,E)
be a graph where the edges are directed as described above. Throughout this
work we denote the number of vertices and edges by n and m, respectively. Let
cap: E → N be a function that describes the edge capacities. Moreover, there
are two disjoint vertex sets S and T , which represent sources and sinks in the
network. Each sink t ∈ T has a given demand d(t) ∈ N. For sources we distinguish
two cases. Either each source s ∈ S has a fixed production p(s) ∈ N or an upper
bound p(s) ∈ N is given. We call the tuple (G,S, T, cap, p, d) a flow network with
fixed productions or an F-network for short, and the tuple (G,S, T, cap, p, d) a
flow network with variable production or a V-network.

Note that in a flow network with fixed productions there is no flow if the sum
of the productions does not equal the sum of the demands. In the remainder of
this work we therefore only consider networks in which these two sums are equal.
Similarly, there is no flow in a flow network with variable demands if the total
maximum production is less than the total demand, and we only consider flow
networks where the total maximum production is at least the total demand.

A (network) flow in an F- or V-network is a function f : E → R such that

|f(vw)| ≤ cap(vw) ∀vw ∈ E, (1)∑
u:uv∈E

f(uv)−
∑

w:vw∈E

f(vw) = 0 ∀v ∈ V \ (S ∪ T ), (2)∑
u:ut∈E

f(ut)−
∑

w:tw∈E

f(tw) = d(t) ∀t ∈ T, (3)

and for F-networks, we have∑
u:us∈E

f(us)−
∑

w:sw∈E

f(sw) = −p(s) ∀s ∈ S, (4)

whereas for V-networks, we have∑
u:us∈E

f(us)−
∑

w:sw∈E

f(sw) ∈ [−p(s), 0] ∀s ∈ S. (5)

In the context of electrical flows every edge e is equipped with a positive re-
sistance r(e) in addition to its capacity. We then call a tuple (G,S, T, cap, r, p, d)
an electrical flow network with fixed productions (an EF-network). Similarly, a
tuple (G,S, T, cap, r, p, d) is an electrical flow network with variable productions
(an EV-network). A flow f is an electrical flow if there are vertex potentials
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ϕ : V → R such that for all uv ∈ E we have r(uv) · f(uv) = ϕ(v) − ϕ(u). In
flow networks with fixed production there is at most one electrical flow, and
if the capacities are sufficiently large, there is exactly one flow [1, Ch. II]. This
distinguishes electrical flows from network flows, which are not unique in general.

In the expansion problem, the edge set E is partitioned into existing edges E0

and candidate edges E1, and there is a cost c(e) ∈ R≥0 associated with every
candidate edge e ∈ E1. For E′ ⊆ E1 we call the flow network with underlying
graph H = (V,E0 ∪ E′) an expansion if there is a flow in H. The sum of all
candidate edge costs in an expansion H is the total cost of H and denoted by
cost(H). The objective of FlowExpansion is to find an expansion of minimum
total cost. We specify the type of the flow (e.g., electrical flow with fixed pro-
ductions) by prefixing FlowExpansion with the abbreviation for the flow type
(e.g., EF-FlowExpansion). If we do not explicitly prefix FlowExpansion in
a statement, the statement is applicable to all four variants. Note that while we
consider simple graphs only, parallel edges can be modeled by parallel paths.

FlowExpansion for network flows can be interpreted as a minimum-cost
flow problem with a step cost function. The cost for a candidate edge e ∈ E1 is 0
if the flow on e is 0, and c(e) otherwise. All existing edges have costs 0. Note that
to any flow f in this resulting network there is a flow f ′ with only integral flow
values costing at most as much as f since all edge capacities, productions, and
demands are integral. The special case that all candidate edges have capacity 1
is therefore equivalent to a minimum-cost flow with linear edge costs. Hence, it
can be solved in Õ(m

√
n) time [7]. Note that in simple graph classes, e.g., trees,

faster algorithms exist. However, our focus in this work lies on distinguishing
NP-hard cases from cases solvable in polynomial time.

Lemma 1. Finding an optimal solution for F- or V-FlowExpansion with unit
capacities is equivalent to solving a minimum-cost flow with linear costs.

3 Networks with Variable Production

First, we consider FlowExpansion with variable productions. We show that it
is NP-hard even in the simple case that the input network is a tree. Moreover,
for general graphs, we prove that EV-FlowExpansion cannot be approximated
within a logarithmic factor of the optimal solution unless P = NP.

3.1 NP-Hardness on Trees

We reduce the problem SubsetSum to FlowExpansion with variable produc-
tion. An instance (A, k) of SubsetSum consists of a finite set A ⊆ N and some
k ∈ N. The goal is to find a subset of A with sum k.

Lemma 2. Finding an optimal solution to FlowExpansion with variable pro-
duction is NP-hard even if the graph is a star.
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(c) A flow for the dominating set {v, x}.

Fig. 1: An example of the network constructed in the reduction from Minimum
Dominating Set in the proof of Theorem 4. The candidate edges are dashed,
the intermediate layer is a clique, and n = 4.

Proof. Let (A, k) be an instance of SubsetSum. We construct a star graph
K1,|A|, where the center u is a sink with demand k. Each leaf va corresponds
to an element a ∈ A and is a source with maximum production p(va) = a. All
edges are candidate edges, and the edge uva has capacity a and cost a.

As every leaf and consequently every edge corresponds to one element of A,
there is a one-to-one correspondence between subsets of A and subsets of the
edges. A subset E′ of edges, which corresponds to A′ ⊆ A, is the edge set of
an expansion if and only if the sum of the edge capacities is at least k, which
means

∑
a′∈A′ a′ ≥ k, because then the demand of the source can be satisfied.

As the cost of E′ is
∑

a′∈A′ a′ ≥ k as well, any expansion costs at least k and
an expansion costing exactly k corresponds to a solution of the SubsetSum-
instance. Hence, the SubsetSum-instance has a solution if and only if there is
an expansion costing exactly k.

3.2 Approximation Hardness on General Graphs

For electrical flows, the expansion problems are NP-hard by a reduction from
SteinerTree [12, Prop. 1]. This reduction is applicable to all variants of Flow-
Expansion. Thus, we can transfer the inapproximability of SteinerTree [2].

Lemma 3. FlowExpansion is NP-hard on planar graphs, and on general
graphs it is NP-hard to approximate FlowExpansion within a factor of 96/95
even if there is only one source or only one sink.

But for EV-flows we can give a logarithmic lower bound on the approximation
factor by a reduction from MinimumDominatingSet.

Theorem 4. For every ε > 0 EV-FlowExpansion with unit resistances can-
not be approximated within a factor of (1/2−ε) · ln(|V |/3)+1/2 unless P = NP.

Proof. An instance of the MinimumDominatingSet problem consists of an
undirected graph H = (VH , EH). The goal is to find a minimum size vertex set
D ⊆ VH such that every vertex in H belongs to D or is adjacent to a vertex
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in D. Any set with these properties is called a dominating set. Given H we
build an instance G of EV-FlowExpansion such that expansions correspond to
dominating sets in H; see Fig. 1 for an example. All edges in G have resistance 1.
The graph G is organized in three layers: the source layer with vertex set V1,
the intermediate layer (V2), and the sink layer (V3). Each layer contains a copy
of all vertices of H. For v ∈ VH we denote its copy in the source, intermediate,
and sink layers by v1, v2, and v3, respectively. The vertex v1 is a source with a
maximum production of p(v1) = (deg(v)+1)·n2, where deg(v) denotes the degree
of v in H and n = |VH |. The vertex v3 is a sink with demand d(v3) = n2. The
vertices in the intermediate layer form a clique of existing edges with capacity 1.
Each vertex v1 ∈ V1 is connected to the corresponding vertex v2 by a candidate
edge with capacity (deg(v) + 1) · n2 and cost n. Finally, for v, w ∈ VH there is
the candidate edge v2w3 if and only if v = w or v and w are adjacent in H. The
capacity of these edges is n2 and their cost is 1.

Consider any expansion of G and let ϕ be a potential function of an electrical
flow in the expansion. Let v2 ∈ V2 and w3 ∈ V3. We show that ϕ(v2) < ϕ(w3).
The vertex w3 is a sink with demand n2 and incident to at most n edges. Hence,
one of these edges has a flow of at least n; say the edge to x2 ∈ V2. This implies
ϕ(w3)−ϕ(x2) ≥ n. If v2 = x2, we are done. Otherwise, we note that the capacity
of the edge x2v2 is 1, and therefore, we have ϕ(x2)− ϕ(v2) ≥ −1. Adding these
two inequalities gives ϕ(w3)− ϕ(v2) ≥ n− 1 > 0, since v2 6= x2 and thus n ≥ 2.
Hence, there is no positive flow from the sink layer to the intermediate layer.

Similarly, there is no positive flow from the intermediate layer to the source
layer as there are no sinks in the source layer and all sources have degree 1. We
claim that in every expansion every sink is connected to a source by a path of
length 2. Let G′ = (V,E′) be an expansion of G and let v3 ∈ V3 be a sink. As
the demand of v3 is n2 and v3 has at most n neighbors, there is an edge w2v3
with f(w2v3) ≥ n. But there is no positive flow to w2 from the sink layer, and
the flow from other intermediate layer vertices is bounded by∑

x∈V2\{w2}

f(xw2) ≤
∑

x∈V2\{w2}

cap(xw2) = n− 1 < n.

Hence, there must be positive flow from the source w1 to w2. Thus, the expansion
contains the path w1w2v3. As there is such a path for every v ∈ VH , we can
transform any expansion G′ = (V,E′) to a dominating set D by setting D =
{u ∈ VH | u1u2 ∈ E′}. The existence of length-2 paths to all sinks guarantees
that D dominates all vertices of H.

Conversely, from any dominating set D we can construct an expansion of G
of cost (|D|+ 1) · n as follows. The additional edges are the edge u1u2 for each
u ∈ D and for every v ∈ VH the edge w2v3, where w ∈ D is an arbitrarily chosen
vertex that dominates v. To see that there is a flow in the expansion, we assign
ϕ(v2) = 0 and ϕ(v3) = n2 for all v ∈ VH , i.e., vertices in the intermediate layer
have a potential of 0 and sinks have a potential of n2. The production p(v1) of
each source is set to n2 times the number of neighbors of v2 in the sink layer,
and we set ϕ(v1) = −p(v1). Note that for w 6∈ D we have p(w1) = 0. It is easy
to verify that this is indeed an expansion with cost (|D|+ 1) · n.
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The transformation presented above can be performed in polynomial time. It
remains to show a relation between approximate solutions of FlowExpansion
and the transformed dominating set.

Claim. Let c? be the cost of a cost-minimal expansion, and let d? be the size
of a minimum dominating set. If cost(H) ≤ (1 + α)c? for some α > 0, then
|D| ≤ (1 + 2α) · d?.

Proof. We first note that in any expansion each sink is incident to at least one
edge, each costing 1. In total the edges between the intermediate and the sink
layer cost at least n. Since each edge between the source and the intermediate
layer costs n and corresponds to one vertex in the dominating set D, we have
|D| ≤ (cost(H)− n)/n = cost(H)/n− 1.

From any minimum dominating set of size d? we can construct an expansion
of cost (d? + 1) · n. By the inequality above this is a cost-minimal expansion
as otherwise we could construct a smaller dominating set. Hence, we have d? =
c?/n− 1. Together with d? ≥ 1 and cost(H) ≤ (1 + α) · c?, we obtain

|D| ≤ cost(H)

n
− 1 ≤ (1 + α) · c

?

n
− 1 = (1 + α) · (d? + 1)− 1 ≤ (1 + 2α) · d?. C

Unless P = NP, MinimumDominatingSet cannot be approximated within
a factor of (1− δ) ln|VH | for δ ∈ (0, 1) in polynomial time [11]. Hence, it follows
from the claim that EV-FlowExpansion cannot be approximated within a
factor of (1/2− ε) ln|VH |+ 1/2 = (1/2− ε) ln(|V |/3) + 1/2 for ε ∈ (0, 1/2).

4 Networks with Fixed Production

Consider an F- or EF-network N . We construct an equivalent network N ′ with
variable production. Recall that we assume that the sum of all productions equals
the sum of all demands. We use the production in N as an upper bound for the
production in N ′, i.e., we set p = p. As all demands have to be satisfied, all
possible production needs to be used. Hence, any flow in N ′ is a flow in N .
Clearly, any flow in N is a flow in N ′ as well. Thus, N and N ′ are equivalent.

Observation 5. For any F-network (EF-network), there is an equivalent V-
network (EV-network) on the same graph.

In the other direction, a V-network N can be transformed into an equivalent
F-network N ′. We add a super source s∗ and connect it to all original sources.
We set the capacity of each such edge s∗s to p(s). The capacities of the other
edges stay the same. We define the new set of sources S′ = {s∗} and set p(s∗) =∑

t∈T d(t). Restricting any flow f ′ in N ′ to the original edges yields a flow in N .
Conversely, any flow in N can be extended to a flow in N ′.

Observation 6. For any V-network there is an equivalent F-network with one
additional vertex that is connected to all sources in the original network.
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Note that adding the super source to a graph in a certain graph class C may
create a graph that does not belong to C anymore, e.g., a planar graph may
become non-planar. Further, the construction does not work for electrical flow
networks because it is not clear how to set the resistances of the new edges.

Applying the construction that leads to Observation 6 to the one in Lemma 2,
we obtain that F-FlowExpansion is NP-hard on parallel paths. By setting the
resistances of the edges such that a all paths induce the same angle difference
when their edges are saturated, we further see that EF-FlowExpansion is NP-
hard as well. By Observation 5 the same holds if the production is variable.
Lemma 7. FlowExpansion is NP-hard on graphs formed by parallel paths
between the only source and the only sink.

In the remainder of this section, we make some observations that lead to
an O(n2) time algorithm for F- and EF-FlowExpansion on cacti, which are
graphs in which two simple cycles do not share any edges. This contrasts with
V- and EV-FlowExpansion, which are NP-hard on trees by Lemma 2.

Suppose e is a candidate edge and a bridge, i.e., G − e contains two com-
ponents. If the generation equals the demand in both components, there is a
cost-minimal expansion without e. Otherwise, any expansion contains e.

Let v be a cut-vertex, i.e., the graph G − v consists of k ≥ 2 connected
components G1, . . . , Gk. There is a unique way of distributing the demand or
production of v to demands or productions of Hi := Gi + v such that the total
demand in Hi equals the total production. The graphs H1, . . . , Hk can then be
considered independently. Repeating this process, G can be split into its blocks
(maximal biconnected subgraphs). With these observations we obtain quadratic
time algorithms for FlowExpansion with fixed productions on cacti.

Lemma 8. F- and EF-FlowExpansion on cacti can be solved in O(n2) time.

Proof. All blocks can be handled independently, and blocks containing bridges
can be handled as described above. All other blocks are cycles. Let C be a cycle
with ` edges. In a cost-minimal expansion either all edges are included or at least
one of the edges is missing. We check for all `+ 1 cases whether there is a flow
in the resulting subgraph of C and, if so, we compute the cost of the expansion
ignoring the candidate edges with flow 0. The computation for C takes O(`2)
time, and hence O(n2) time for the whole network.

5 Single Source, Single Sink

In this section we consider the special case that there is only one source and one
sink in the network. Since there is only one source, its production is determined
by the demand. We may therefore consider the production as fixed.

FlowExpansion is NP-hard on graphs where the source and the sink
are connected by parallel paths by Lemma 7. But for series-parallel graphs a
straightforward dynamic programming on the graph structure yields a pseudo-
polynomial time algorithm for F-FlowExpansion, where one terminal of the
graph is the only source and the other one is the only sink.
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Lemma 9. On series-parallel graphs with one source and one sink, the problem
F-FlowExpansion can be solved in O(n3 ·min{C2, U2}) time, where C and U
are upper bounds for the edge costs and capacities, respectively.

The analogous problem for electrical flows, EF-FlowExpansion, however,
is NP-hard even if all capacities are 1 and edge costs are ignored [4]. Hence,
there is no pseudo-polynomial time algorithm for this problem unless P = NP.

But we prove that there is a pseudo-polynomial time algorithm for Flow-
Expansion on a subclass of the series-parallel graph, namely those graphs that
are formed by a series composition of blocks consisting of parallel paths. We call
such graphs sps-graphs (for series–parallel–series).

Lemma 10. In sps-graphs with one source and one sink, FlowExpansion can
be solved in pseudo-polynomial time.

Proof. We note that in sps-graphs each block, which consists of parallel paths,
can be considered independently. We reduce finding an optimal solution for
FlowExpansion on parallel paths to solving a linear number of MinKnap-
sack instances. An instance of MinKnapsack consists of a set of objects A,
some k ∈ R>0, as well as a cost c(a) and a value v(a) for each a ∈ A. The
goal is to find a subset A′ ⊆ A with minimum cost such that the sum of the
values is at least k. A straightforward dynamic programming approach yields a
pseudo-polynomial time algorithm for MinKnapsack [5, Sec. 13.3.3].

We only present the reduction for EF-FlowExpansion; similar approaches
work for all other variants. Let P1, . . . , Pk be the paths between the source s
and the sink t, each associated with its costs c(Pi), resistance r(Pi), and capac-
ity cap(Pi). Let further be Φ(Pi) = cap(Pi)·r(Pi), which describes the maximum
potential difference induced by Pi. We assume that the paths are ordered such
that Φ(Pi) ≤ Φ(Pj) for i ≤ j. We call the paths with candidate edges candidate
paths and the others existing paths.

In any expansion there is a path Pj with minimum index that is completely
contained in the expansion. This path Pj restricts the potential difference be-
tween s and t to (at most) Φ(Pj). For each choice of Pj , we reduce the search
for a cost-minimal expansion to an instance of MinKnapsack. For each path Pi

with i ≥ j we define F (Pi) = Φ(Pj)/r(Pi). This describes the flow along Pi if the
potential difference is exactly Φ(Pj). With the fixed potential difference of Φ(Pj),
the remaining demand d′ is the original demand d(t) minus the flows F (Pi) along
all existing paths Pi. The goal is then to find a subset Π ′ of the candidate paths
Pi with i ≥ j such that

∑
P∈Π′ F (P ) ≥ d′ and

∑
P∈Π′ c(P ) is minimal. This

is exactly an instance of the MinKnapsack problem, which can be solved in
pseudo-polynomial time. The cost-minimal expansion then corresponds to the
cheapest solution of one of the MinKnapsack instances for j ∈ {1, . . . , k}.

6 Conclusion

FlowExpansion is an optimization problem that can be seen as a variant of the
Minimum-Cost Flow problem. It is NP-hard even in very simple cases, e.g.,
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if the network is a star (Lemma 2) or if there are only parallel paths between the
only source and the only sink (Lemma 7). The more general variants even prove
to be hard to approximate (Theorem 4). For some restricted cases, there are
(pseudo-)polynomial time algorithms. Our results show that for all parameters
(number of sources and sinks, capacities, edge costs, resistances, fixed vs. variable
production, and the flow model) there are cases where the complexity differs.
One of the most notable cases is the restriction of the capacities to 1, which
reduces F- and V-FlowExpansion to a standard minimum-cost flow.

This work studies the complexity of the main variants of FlowExpansion,
but the complexity of some special cases is still open. It may also be possible to
extend the results for series-parallel graphs to graphs of bounded treewidth.
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