
Dynamic Security Rules for Legacy Systems
Rima Al-Ali

Charles University
Prague, Czech Republic
alali@d3s.mff.cuni.cz

Petr Hnetynka
Charles University

Prague, Czech Republic
hnetynka@d3s.mff.cuni.cz

Jiri Havlik
Institut of Microelectronic

Applications
Prague, Czech Republic

havlik@ima.cz

Vlastimil Krivka
Institut of Microelectronic

Applications
Prague, Czech Republic

krivka@ima.cz

Robert Heinrich
Karlsruhe Institute of Technology

Karlsruhe, Germany
robert.heinrich@kit.edu

Stephan Seifermann
Karlsruhe Institute of Technology

Karlsruhe, Germany
stephan.seifermann@kit.edu

Maximilian Walter
Karlsruhe Institute of Technology

Karlsruhe, Germany
maximilian.walter@kit.edu

Adrian Juan-Verdejo
CAS Software

Karlsruhe, Germany
adrian.juan@cas.de

ABSTRACT
Industry 4.0 tries to digitalize the production process further. The
digitalization is achieved by connecting different entities (machines,
worker) to data-exchange, which needs to be dynamic and to adapt
to different changing situations and members in the process. How-
ever, just exchanging data might lead to confidentiality issues. The
data-exchange needs to be protected to secure the confidentiality
and trust in the system. Therefore, security rules need to adapt to
these dynamic situations. One part of a possible solution might
be dynamic access control rules. However in many cases, exist-
ing “legacy” systems are reused, which can in not handle dynamic
access control rules. Due to this gap between the required and
provided functionality, we propose an approach, which integrates
dynamic access control based on the system-context into legacy
systems. Our approach uses a security adaption controller, which
dynamically adapts the access control rules to a new situation and
integrates them into an existing legacy system. We discussed our
approach with industrial practitioners and related our approach to
their existing legacy system. In addition, we performed a scalabil-
ity analysis to demonstrate the applicability of our approach in a
realistic environment.

CCS CONCEPTS
• Security and privacy→ Domain-specific security and privacy ar-
chitectures; •Computer systems organization→ Self-organizing
autonomic computing.

KEYWORDS
autonomic systems, self-adaptive architecture, security rules, access
control, legacy systems, Industry 4.0

1 INTRODUCTION
Modern systems typically feature highly dynamic collaboration
involving a high number of interconnected devices and other au-
tonomous components. Such systems exhibit a high degree of dy-
namicity, meaning they constantly adjust their behavior and struc-
ture to the situation in their environment. Examples of such systems
include smart buildings and cities, smart traffic and similar ones.
Typically, these systems are composed of a number of sensors mon-
itoring environment (temperature, level of traffic,. . .) and actuators
(ventilation, traffic lights,. . .). Furthermore they typically encom-
pass multiple components running in cloud, thus forming complex
systems-of-systems that integrate cloud and edge-cloud services
and embedded devices.

Security plays a very important role in these systems – be it the
control of the physical access (e.g., monitoring position and control-
ling movement of persons by means of RFID readers and smart door
locks) or the control of access to information held by smart system
(e.g., regulating who has access to data about positions of other
persons). In many cases, smart systems (as for instance in Industry
4.0, which we target in our projects and also in this paper) are built
using of existing “legacy” systems which are extended and inte-
grated to address the smart collaboration. Though this works well
for the main business functionality, it fails to sufficiently address
security (meaning access control in this paper), which is an inher-
ently cross-cutting concern that a) spans through the integrated
systems, and b) needs to address dynamically evolving situations.

Based on our experience from cooperation within industrial
projects, the existing (legacy) systems mainly allow for static access
control rules. For instance, in the case of physical access control, the
doors are statically configured with a list of persons that may pass
through and at which time window. However, for scenarios like
Industry 4.0, this is not enough. Not only that the role of a company
in a product chain can easily change, even the roles of individual
persons can change during the day and thus different security rules
may apply. Additionally, to reflect cases that arise when multiple
teams are to work on a problem while at the same time there is a
need to protect the intellectual property, there emerge rules that
workers working on a product for one customer, may not be in the
same workplace with workers working for another customer; or
that workers of a third-party may get temporarily physical access
and access to data in case they respond to some incident.

To solve these issues, we propose a self-adaptive architecture,
where we introduce a dynamic security adaptation controller that
adapts static security rules of existing legacy systems in order to
adjust them to the current inter-system situation in hand. This con-
troller is configured by dynamic security rules that are defined in via
a DSL on the level of the whole smart system. This makes the rules
explicit and avoids ad-hoc interdependencies of constituent legacy
systems. The approach is based on our preliminary work [2, 3],
where we have defined security ensembles that describe permitted
interactions in the system and follow the system during its evolu-
tion. The approach presented in this paper brings it to the level of
a self-adaptive architecture, introduces the concepts of the security
adaptation controller and connects it to the legacy systems. Fur-
thermore, this paper extends the semantics of security ensembles to
allow fast evaluation of the dynamic security rules in order to make
the approach scale to controlling accesses of tens of thousands
of persons. We evaluate our approach on existing legacy systems,
which are currently in use within multiple organizations.

The paper is organized as follows. Sect. 2 shows a running ex-
ample and Sect. 3 presents our approach. In Sect. 4, the approach is
evaluated and related work is discussed in Sect. 5. Sect. 6 concludes
the paper.

2 RUNNING EXAMPLE
We model our running example to reflect real-life scenarios of our
industrial partners. In the running example, we focus on physical
access and access to personal data during a shift in a factory.

The factory has multiple working places (see the factory floor
plan in Fig. 1). In each room, there is a team of workers led by a
foreman. Each of these teams works on products for a different
customer and thus workers from one team are not allowed to enter
the room of another team. Plus, before the start of the shift, the
workers have to take a headgear from the dispenser – otherwise
they are not allowed to enter their workplace.

The work in the factory is organized to shifts, which are defined
in the Human Resource Management system (HRM system). Each
shift has assigned a workplace, time of start and end of the shift,
a list of workers and a foreman. In addition to the workers, there
is also a list of standby workers, which will be called in in case a
worker assigned to the shift does not appear in time.

The scenario of the example progresses as follows: 1) Workers
arrive at and pass through the main gate between 30-20 minutes
before the start of the shift. The system grants them access to pass
through the main gate. 2) Workers use the dispenser located at the
main gate to obtain a protective headgear. The system grants them
access to use the dispenser. 3) Then the workers proceed to the
work place. The system again grants access to enter the workplace
entrance to those workers who retrieved their protective gear from
the dispenser.

The scenario has several dynamic situations: 1) If a worker does
not arrive by 20 minutes before the start of the shift, the system
notifies the foreman that a worker is likely to be late and grants
the foreman temporary access to the worker’s phone number and
an estimate of distance to the factory. 2) If a worker does not arrive
by 15 minutes before the start of the shift, his/her access is revoked
and the system automatically selects a suitable stand-by worker
and notifies the stand-by worker about being assigned to the shift
and grants access to the stand-by worker to come to the shift.

The physical enforcement of access restrictions is performed by
RFID readers and smart door locks (i.e., the doors to the particu-
lar workplace allows only workers with a headgear and from the
particular shift).

This example is not a synthetic one but it is an actual situation
obtained from an industrial partner in our projects. There is a high
degree of dynamicity in the system; the doors in the factory cannot
be statically configured with allowed workers. Even more, time-
based configuration of the doors is not enough too, as the system
has to deal with standby workers, i.e., once a standby worker is
chosen for a shift, then the original replaced work must not be
allowed for entering the workplace (even if he/she later arrives).
Similar degree of dynamicity is present in the access to the personal
data of a worker that is late. Here the HRM system is supposed to
provide the data only if the worker does not pass through the main
gate within a particular interval (which is knowledge present in
the smart-lock system, not in the HRM system).

3 DYNAMIC SECURITY RULES
To allow for controlling security in a dynamic context of multi-
ple interconnected systems (primarily legacy ones), we propose
a variant of self-adaptive architecture. The main element of the
architecture is a dynamic security adaptation controller (DSAC). It
is responsible for dynamic adaptation of static security rules for
legacy systems in order to configure them and adjust them to the
current situation.

The whole approach employs the concept of autonomic ensem-
bles [7]. An ensemble is a dynamically formed group of components
that corresponds to a joint goal or a coordinated activity. Compo-
nents to be part of an ensemble are selected at run-time, based
on a membership condition of the ensemble. This condition is a
predicate expressed over component types and their data.

In the case of using ensembles to control security, an ensemble
determines a particular dynamically emerging situation, identifies
components that take part in the situation and specifies access rules
for the components. As the situation itself is dynamic, the access
rules are also dynamic, i.e., they change in time as the components
are admitted to and released from the ensemble and as the ensemble

comes to existence with the emergence of the situation and as the
ensemble is dissolved when the situation passes off.

In contrast to the traditional notion of components, we do not
control the components directly. The ensembles are used only to
determine the situations among components and to determine the
security rules. Since we do not assume the control of components,
our approach works equally well for determining access of pure
software components (e.g., HRM system), hardware devices (e.g.,
smart locks), places (e.g., factory hall) and even humans workers –
all of them are uniformly treated as components. We only assume
knowledge of some attributes of components (e.g., position, assign-
ment of a person to a shift), which can be obtained from the existing
legacy systems and can be attributed to a component.

In our approach, we distinguish between ensemble types and en-
semble instances. An ensemble type can be thought of as a security
rule describing how to identify a dynamic situation, components,
and how to assign the access grants to the components. An en-
semble instance is then created by DSAC for each instance of the
given situation. The ensemble instance then comprises particular
components instances. Naturally, as a similar situation may happen
simultaneously at multiple places (e.g., when multiple shifts run at
the same time), there may exist multiple simultaneous instances of
the same ensemble type.

For instance, in our running example, one type of situation is
when there is 30–20 minutes before the start of a shift (this is a
situation determined by the temporal and spatial context – spatial
because the shift takes place in a particular factory hall). The com-
ponents that take part in this situation (i.e., in the corresponding
security ensemble) are the workers assigned and the foreman to the
shift. Within this situation, the corresponding security ensemble
grants all workers access to pass through the factory gate (see the
left group in Fig. 1).

tory

Work place 2

Work place 3

G
a

te
 1

G

a
te

 3

Dispenser

Figure 1: Ensembles in the running example

Another example is an ensemble that grants access to the work
place to workers in the shift that retrieved their protective gear. This
ensemble comes to exist 30 minutes before the shift till 30 minutes
after the shift and it contains only workers with the protective gear
(i.e., Worker components for which the smart lock access (SLoA)
system registers that they have retrieved the gear). These workers
are given access to pass through the door of the workplace where
the shift takes place (the right group in Fig. 1).

In the rest of the section, we describe technical details of our
approach. We start with the description of DSAC in Sect. 3.1, which,

based on the knowledge of ensemble types, evaluates the situa-
tions and instantiates ensemble instances to determine the access
grants. Then we present the domain specific language we use to
describe ensembles and their semantics. We split the description
to two parts – (a) to ensembles that describe how to grant access
(Sect. 3.2), and (b) to ensembles that describe assertions about access
grants (Sect. 3.3). Last, in Sect. 3.4, we overview how the privacy
levels are composed when data are combined from different sources
with different privacy levels and when the data are sufficiently
minimized [19] (i.e., limiting data to achieve a required privacy
level). Determining the privacy level of derived data then allows
us to evaluate whether an assertion like “In no case, any ensemble
can give a foreman access to privacy sensitive information about a
worker” conflicts with giving a foreman ability to read an estimated
distance to factory of a worker that is late.

3.1 Dynamic Security Adaptation Controller
In our approach, we follow the traditional adaptive architecture,
which consists of a controller and the system(s) under control. The
legacy systems and entities to be managed (humans, doors, locks,
etc.) are systems under control and DSAC is their controller. Contrary
to the traditional use of adaptive architecture, we do not adapt the
functional aspects of the legacy systems under control, but rather
their set of security rules/permissions. Furthermore, we control
several systems at once, which allows us to reflect situations that
comprise multiple systems and thus cannot be well addressed on
the level of a single legacy system.

Within DSAC, we employ the standard MAPE-K loop [16] as
follows: (A) Monitoring: DSAC collects data about the current situa-
tion. In our running example, DSAC monitors position of all the
workers in the factory (obtained via the SLoA system) and obtains
data about the shifts and assignment of workers to shifts (retrieved
from the HRM system). (B) Analysis: DSAC instantiates ensembles
to reflect the situations. Internally, the ensemble instances are de-
termined by translating the specification of security ensembles to a
constraint satisfaction problem (CSP). A CSP solver is then applied
to find a model for the logical theory described by the CSP. (C) Plan-
ning: Each of the ensemble instances (created in the Analysis phase)
specifies particular access grants. These access grants are collected
and it is determined which permissions in the legacy systems (HRM,
SLoA) have to be updated and how. (D) Execution: DSAC applies
the permissions change set (determined in the Planning phase) to
the legacy systems. As a result, these systems are reconfigured to
comply with the current situation. Reconfiguration is performed
atomically, i.e., the whole system remains in a consistent state.

3.2 Specifying security rules via ensembles
For easiness in prototyping, we have developed our specification
as an internal DSL in Scala programming language1. Production
oriented version of our framework will likely require a more non-
expert friendly external DSL, however we take a liberty in this paper
to explain the concepts on the Scala-based internal DSL. Though
it is a bit more demanding for the reader, it allows us to showcase
a specification that we have implemented and validated using our

1https://docs.scala-lang.org/

https://docs.scala-lang.org/

prototype solver for security ensembles2). In order to not require
the reader to be familiar with Scala, we limited the use of Scala-
specific constructs to the minimal extent possible. Nevertheless,
we assume basic familiarity with modern object-oriented language
concepts and with basics of functional programming.

The following listing shows an excerpt of the specification of the
running example. The full version along with implementation of
the analysis and planning part of DSAC can be found at GitHub2.
1 class TestScenario(scenarioParams: TestScenarioSpec) extends Model with ModelGenerator {
2 ...
3 class Door(val id: String, val position: Position) extends Component
4 class Dispenser(val id: String, val position: Position) extends Component
5 class Worker(
6 val id: String, var position: Position,
7 val capabilities: Set[String], var hasHeadGear: Boolean
8) extends Component {
9 def isAt(room: Room) = room.positions.contains(position)

10 }
11 class WorkPlace(
12 id: String, positions: List[Position], entryDoor: Door
13) extends Room(id, positions, entryDoor) {
14 var factory: Factory = _
15 }
16 class Factory(
17 id: String, positions: List[Position], entryDoor: Door,
18 val dispenser: Dispenser, val workPlaces: List[WorkPlace]
19) extends Room(id, positions, entryDoor)
20 class Shift(
21 val id: String, val startTime: LocalDateTime,
22 val endTime: LocalDateTime, val workPlace: WorkPlace,
23 val foreman: Worker, val workers: List[Worker],
24 val standbys: List[Worker], val assignments: Map[Worker, String]
25) extends Component
26
27 class FactoryTeam(factory: Factory) extends RootEnsemble {
28 class ShiftTeam(shift: Shift) extends Ensemble {
29 val canceledWorkers = shift.workers.filter(wrk => wrk notified AssignmentCanceledNotification(shift))
30 val calledInStandbys = shift.standbys.filter(wrk => wrk notified CallStandbyNotification(shift))
31 val availableStandbys = shift.standbys diff calledInStandbys
32 val assignedWorkers = (shift.workers union calledInStandbys) diff canceledWorkers
33
34 object AccessToFactory extends Ensemble {
35 situation {
36 (now isAfter (shift.startTime minusMinutes 30)) &&
37 (now isBefore (shift.endTime plusMinutes 30))
38 }
39 allow(shift.foreman, "enter", shift.workPlace.factory)
40 allow(assignedWorkers, "enter", shift.workPlace.factory)
41 }
42
43 object AccessToDispenser extends Ensemble {
44 situation {
45 (now isAfter (shift.startTime minusMinutes 15)) &&
46 (now isBefore shift.endTime)
47 }
48 allow(assignedWorkers, "use", shift.workPlace.factory.dispenser)
49 }
50
51 object AccessToWorkplace extends Ensemble {
52 val workersWithHeadGear = (shift.foreman :: assignedWorkers).filter(wrk => wrk.hasHeadGear)
53 situation {
54 (now isAfter (shift.startTime minusMinutes 30)) &&
55 (now isBefore (shift.endTime plusMinutes 30))
56 }
57 allow(workersWithHeadGear, "enter", shift.workPlace)
58 }
59
60 object NotificationAboutWorkersThatArePotentiallyLate extends Ensemble {
61 val workersThatAreLate = assignedWorkers.filter(wrk => !(wrk isAt shift.workPlace.factory))
62 situation {
63 now isAfter (shift.startTime minusMinutes 20)
64 }
65 workersThatAreLate.foreach(wrk => notify(shift.foreman, WorkerPotentiallyLateNotification(shift,

wrk)))
66 allow(shift.foreman, "read.personalData.phoneNo", workersThatAreLate)
67 allow(shift.foreman, "read.distanceToWorkPlace", workersThatAreLate)
68 }
69
70 object CancellationOfWorkersThatAreLate extends Ensemble {
71 val workersThatAreLate = assignedWorkers.filter(wrk => !(wrk isAt shift.workPlace.factory))
72 situation {
73 now isAfter (shift.startTime minusMinutes 15)
74 }
75 notify(workersThatAreLate, AssignmentCanceledNotification(shift))
76 }
77
78 object AssignmentOfStandbys extends Ensemble {
79 class StandbyAssignment(canceledWorker: Worker) extends Ensemble {
80 val standby = oneOf(availableStandbys)
81 constraints {
82 standby.all(_.capabilities contains shift.assignments(canceledWorker))
83 }
84 }
85 val standbyAssignments = rules(canceledWorkersWithoutStandby.map(wrk => new

StandbyAssignment(wrk)))

2https://github.com/d3scomp/tcoof-security-ecsa

86 val selectedStandbys = unionOf(standbyAssignments.map(_.standby))
87 situation {
88 (now isAfter (shift.startTime minusMinutes 15)) && (now isBefore shift.endTime)
89 }
90 constraints {
91 standbyAssignments.map(_.standby).allDisjoint
92 }
93 notify(selectedStandbys.selectedMembers, StandbyNotification(shift))
94 canceledWorkersWithoutStandby.foreach(wrk => notify(shift.foreman,

WorkerReplacedNotification(shift, wrk)))
95 }
96
97 object NoAccessToPersonalDataExceptForLateWorkers extends Ensemble {
98 val workersPotentiallyLate =
99 if ((now isAfter (shift.startTime minusMinutes 20)) && (now isBefore shift.startTime))

100 assignedWorkers.filter(wrk => !(wrk isAt shift.workPlace.factory))
101 else Nil
102 val workers = shift.workers diff workersPotentiallyLate
103 deny(shift.foreman, "read.personalData", workers, PrivacyLevel.ANY)
104 deny(shift.foreman, "read.personalData", workersPotentiallyLate, PrivacyLevel.SENSITIVE)
105 }
106 rules(
107 // Grants
108 AccessToFactory, AccessToDispenser, AccessToWorkplace,
109 NotificationAboutWorkersThatArePotentiallyLate,
110 CancellationOfWorkersThatAreLate, AssignmentOfStandbys,
111 // Assertions
112 NoAccessToPersonalDataExceptForLateWorkers
113)
114 }
115
116 val shiftTeams = rules(shiftsMap.values.filter(shift => shift.workPlace.factory == factory).map(shift => new

ShiftTeam(shift)))
117 constraints {
118 shiftTeams.map(shift => shift.AssignmentOfStandbys
119 .selectedStandbys).allDisjoint
120 }
121 }
122 val factoryTeams = factoriesMap.values.map(factory => root(new FactoryTeam(factory)))
123 }

Both the components and ensembles are modeled as classes,
i.e., they are types and can be instantiated multiple times. In our
example, there are six components (lines 3–25), which represent the
physical domain objects doors, dispensers, workers, work places
and factories. All the components define their observable attributes
(termed knowledge).

The security rules over these entities are represented as en-
sembles. A simple example of such a security ensemble is the
AccessToFactory (starting at line 34). It states that the ensemble
(meaning ensemble type) should be instantiated for every shift
during the time interval 30 minutes before the shift till 30 minutes
after the shift (line 35). This is the definition of a situation, which
defines a spatial and temporal condition under which the ensemble
is instantiated. The ensemble instance then grants the shift foreman
and the workers assigned to the shift an “enter” access grant to the
factory hall.

Technically, ensembles are represented as classes (i.e., denoted
by the Scala keyword class and further instantiated by the keyword
new) or as singleton objects (i.e., the keyword object). The ensembles
can be hierarchically nested, i.e., an ensemble can contain other
ensembles. This means that components, which are members of
an ensemble, have to be also members of the parent ensemble.
Thus, a top-level ensemble describes a goal of the system as a
whole while the sub-ensembles decompose the system into sub-
goals, which are easily manageable. A component can be a member
of many ensemble instances at the same time (even of directly
unrelated ensembles) reflecting a common requirement that a single
component can be simultaneously in different situations.

In the running example, there is a top-level ensemble – FactoryTeam
(starting at line 27). Inside it, there is the ShiftTeam ensemble nested
(lines 28–114), which represents the security rules for the shift. In-
side the ShiftTeam ensemble, there are ensembles defined that deal
with particular situations in the shift. The FactoryTeam ensemble
instantiates (line 116) all the individual ShiftTeam ensembles and

https://github.com/d3scomp/tcoof-security-ecsa

declares the global constraint for the system, i.e., that standby work-
ers to be assigned to the shifts where required cannot be shared
among several shifts (lines 117–120). The FactoryTeam ensemble is
then instantiated for every factory in the scenario (line 122). The
subensembles are registered to be part of the parent ensemble using
the DSL’s rules construct (lines 106–113).

The exact semantics is that an ensemble instance is only ac-
tive if the condition defined in the situation block is true (if no
situation condition is present, it is treated as implicitly true). When
the ensemble instance is active, it tries to determine which com-
ponent instances take part in the ensemble instance such that the
constraints condition is true. After determining the component in-
stances, it grants them permissions as per the allow statements and
issues notifications (showcased later in the text) using the notify
statements.

As multiple shifts are running simultaneously within a factory,
the ShiftTeam ensemble is parameterized by the Shift component
instance (which defines the shift). The ShiftTeam ensemble deter-
mines 5 groups of components (lines 29–32) to which the workers
are stored during selection by sub-ensembles.

In general, the ShiftTeam’s sub-ensembles can be divided into (i)
ensembles, which assign permission to individual workers and (ii)
which notifies workers about selection for or removal from a shift.
The former ones are the ensemblesAccessToFactory,AccessToDispenser,
AccessToWorkplace, while the latter ones are CancellationOfWorker-
sThatAreLate and AssignmentOfStandbys, and the NotificationAbout-
WorkersThatArePotentiallyLate ensemble performs both functions. As
already outlined above, all of them has the same structure which is
as follows.

First, there is a situation definition. For the AccessToFactory, the
current time has to be in the interval of start of the shift minus
30 minutes and end of the shift plus 30 minutes. Similarly, it is for
AccessToDispenser but with a different time interval. In the case of
the AccessToWorkplace, there is an extra condition that the workers
must have a headgear from the dispenser expressed as a selection
of the shift workers with the headgear (line 52). All these three
ensembles assign (lines 39, 48 and 57) the particular permissions
(to enter the factory, use the dispenser, enter the workplace) to the
workers selected by the conditions.

The NotificationAboutWorkersThatArePotentiallyLate ensemble de-
tects workers assigned to the shift but not present in the factory
(line 61) 20 minutes before start of the shift (line 63). For these
workers, the ensemble notifies the particular foreman that they are
late and allows the foreman to see the workers’ phone numbers
(the foreman can call them to “hurry up” – line 65) and their dis-
tance from the factory (to see whether there is a chance to come in
time yet – line 66). The CancellationOfWorkersThatAreLate ensemble
is similar to the previous one, but it detects workers, which are late
even 15 minutes before start of the shift (line 73), and notifies them
that they are canceled from the shift (line 75).

Generally, the idea about combining allow grants and notifica-
tions is that if an entity received an access grant or the access grant
has been revoked, the entity should learn about the fact. As such,
we follow the design rule that changes in the access grants which
cannot be anticipated, e.g., from the time schedule (as it is in the
case of the AccessToFactory), need to be accompanied by the noti-
fications. DSAC keeps a history of the notifications and makes it

possible to use them in determining components of an ensemble.
E.g., on line 29, where the list of workers canceled from the shift
because they did not arrive on time is determined by checking
whether the worker has been notified about being canceled.

The AssignmentOfStandbys ensemble is responsible for selecting
and notifying the standby workers that replace the canceled ones.
It has a bit special position with respect to the other ensembles
in the specification in the sense that it defines a constraint op-
timization problem – namely the problem of assigning suitable
replacements to workers that have been canceled from the shift.
A suitable replacement here means that for each worker canceled
from the shift, there is another worker from the list of standbys,
such that a standby has capabilities to perform the work of the
canceled worker. Furthermore, as the list of standbys is shared for
all shifts within the same factory, the assignment has to be done in
such a way that the same standby is not assigned to two positions
simultaneously.

This constraint problem is defined by the sub-ensemble Stand-
byAssignment (line 79), which selects a suitable standby worker for
a particular canceled worker. The fact that one standby worker is
to be assigned is specified using the oneOf statement (line 80). The
sub-ensemble is instantiated for each canceled worker (lines 85 and
86). The constraint (line 91) requires that a single standby worker
is not used as a replacement for several workers. Within the given
time interval (the situation at line 88), the ensemble notifies the
selected workers to come (line 93) and notifies the foreman (line
94) of the particular shift about the replacement.

3.3 Security Assertions
Security assertions ensure that dynamic security policies do not
violate fundamental security policies. The structure of the assertion
is the same as for dynamic security rules but access can only be
denied instead of granted. The assertion always overrides the deci-
sion of a policy in case of conflicting decisions. The conflict also
denotes inconsistency of the specification, which is reported back
to the designer of the specification. Because assertions are simpler
than policies, they are less error prone. As such, they provide a
safety net for users when formulating dynamic policies.

An example of a particular assertion in the running example
is represented by the NoAccessToPersonalDataExceptForLateWorkers
ensemble. It selects the potentially late workers (i.e., those that do
not appear in time interval between 20 minutes till start of the shift
and start of the shift – line 98) and other workers (line 102). For
the potentially late workers, the ensemble states that the foreman
cannot access the sensitive information (line 104) but can access
the phone number. For all the other workers, the foreman cannot
access any information (line 103).

3.4 Derivation of Privacy Levels
Security assertions (as shown in the previous section) include rea-
soning about privacy levels. In order to interpret such statements,
DSAC requires the knowledge of a privacy level of a given piece
of data. Often such data come from computations (such as the
distanceToWorkplace, as used in the NotificationAboutWorkersThatAre-
PotentiallyLate ensemble). In those cases, a reasoning mechanism
is needed that determines the privacy level of the result given the

privacy levels of the inputs of the computation. For instance in the
case of the distanceToWorkplace, the input needed to compute this
value is the location, which itself is privacy sensitive. However, by
transforming it to a Euclidean distance and minimizing it by value
“too far” if more than 1 kilometer, the distanceToWorkplace becomes
less privacy sensitive and can be shared with the foreman of the
shift.

We shift the derivation of privacy levels to design time to speed
up runtime analyses and free ensembles specifications from com-
putation descriptions. The derivation takes place on a data-driven
software architecture [23]. In this architecture, we annotate existing
artifacts describing the software design on a high level with data
flows. In our approach, we annotate design models formulated in
the Palladio Component Model (PCM) [20] architectural description
language (ADL). A detailed description of derivation is available in
our previous work [23]

4 EVALUATION
The evaluation of our approach is twofold. First, we relate the
approach to the state-of-the-art systems that are currently in use
and second, we analyze scalability of the approach implementation
on a realistic deployment.

Relation to state-of-the-art systems:To position our approach
in the real industrial settings, we performed discussions with indus-
trial practitioners that are responsible for deploying the smart-lock
system (called IMAporter) in the production environments of big
manufacturers. Here, we present the main points that we derived
from the discussions. These points summarize the current state of
the art without our approach and the benefits of introducing our
approach.

Dynamicity: An essential difference between our approach and
legacy system is the enormous dynamicity of changes of the security
rules. The legacy systems typically consider only access rights
linked to particular job position, which are usually unchanging for
a long time period (e.g., until the job position expires). Exceptions
are not frequent and manually managed on request by a personal
department or in urgent cases (e.g., an access card lost) by a security
department. As a partial dynamicity, most of the legacy systems
allow for static rules “driven by a calendar” resulting in week-based
or month-based rules scheduling. Integration with other third-party
system (e.g., HRM or ERP ones) is either a manual or in some cases,
semi-automatic that is controlled by a software service (a batch
code) but still requiring manual intervention.

Privacy: A high risk of legacy systems is that everyone charged
to enter security rules can access all the rules including personal
data, suppliers’ data, etc. With our approach, the legacy systems
are not controlled directly but through our security controller and
thus the risk is removed (or at least significantly reduced).

Trust:Arrival of Industry 4.0 completely changes processeswithin
manufacturing companies. Individual workers within a company
may not know, how the overall work is organized, what is produced
in different workplaces or even allowed to talk with workers from
a different team. Our approach allows for expressing such rules
(which are with legacy system unreachable).

Effectiveness: Another advantage of Industry 4.0 is effectiveness
of manufacturing, i.e., products are manufactures only if they are

required and in the exactly required amount. Thus the company
has to optimize manufacturing and dynamically increase/decrease
amount of workers for particular jobs, even several times during a
day. Such a process cannot be done manually. At least, it requires
non-trivial integration of legacy systems, where the security rules
are implicitly embedded in connectors between the legacy systems.
This creates an architecture where security rules are not explicit
and very difficult to maintain when the system evolves over time
and grows. It is no exceptional that the system has to deal with
10000+ persons and 1000+ smart locks (doors/gates).

Our approach on the other hand deals with the security rules as
first-class concepts and makes it easy to modify and evolve them
as the whole system grows.

Scalability: To test the scalability of our approach, we have im-
plemented the analysis and planning phase of the Dynamic Security
Adaptation Controller (DSAC) and used it to interpret the specifica-
tion shown in the paper. (Full sources are available at GitHub3.) We
have measured how long it takes to determine access rules for the
scenario at different sizes and at two points of time: (1) 17 minutes
before the shift and (2) 13 minutes before the shift.

We vary the number of workers in a shift (from 50 to 500) and the
percentage of late workers that are canceled from the shift (from
5% to 20%). There are 3 shifts running at the same time. These shifts
share a common pool of standby workers. The amount of these
standbyworkers available is determined as𝑛𝑜_𝑜 𝑓 _𝑤𝑜𝑟𝑘𝑒𝑟𝑠_𝑖𝑛_𝑠ℎ𝑖 𝑓 𝑡∗
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑜 𝑓 _𝑙𝑎𝑡𝑒_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 ∗ 5.

These two time points were chosen because they represent two
major cases in the scenario. #1 represents the timewhenmultiple en-
sembles are instantiated, but they do not require complex constraint
optimization. #2 represents the time when complex constraint opti-
mization is needed to determine suitable standby workers to replace
the workers that have been canceled from the shift.

DSAC deals with both the time points uniformly – it translates
the specification to the constraint solving problem (CSP) and uses
a CSP solver to determine the assignment of components to en-
semble instances and from them, it determines the access grants.
The construction of CSP is however optimized in such a way that
in case #1, the search space is significantly constrained and the
solving process becomes linear in time complexity. In case #2, the
exponential complexity of the solving process is unavoidable, nev-
ertheless the search space grows only with the number of workers
that have been canceled (and thus with the number of standby
workers shared between the three shifts).

The results were computed on an Intel(R) Xeon(R) CPU E5-2660,
running on 2.20GHz. In the case of #1, we performed a warmup of
1000 computations and collected 10000 measurements for each size
of the scenario. In the case of #2, we performed a warmup of 10
computations and collected 100 measurements for each scenario
size. We excluded computations which exceeded 60 seconds. The
results are shown in Fig. 2a and Fig. 2b.

In case #1, the computation time scales linearily with the num-
ber of workers in a shift. Given the fact that 3 shifts are evaluated
together, we can easily determine the access grants for 1500 work-
ers in approx. 3.5 milliseconds. Case #2 scales exponentially with

3https://github.com/d3scomp/tcoof-security-ecsa

https://github.com/d3scomp/tcoof-security-ecsa

(a) 17 minutes to the shift

(b) 13 minutes to the shift

Figure 2: Evaluation results

the percentage of late workers. Nevertheless, even for 10% of late
workers, we can assign access grants to 1500 persons in 15 seconds.

The same assignment of access grants happens in our scenario
for each factory. As each factory has its own pool of shared standby
workers, the access rules can be evaluated independently (as it is
so in our test case) and in parallel. As such, the number of factories
does not significantly influence the computation time and makes it
possible to scale our use-case to arbitrarily large instance, provided
that the size of a shift remains below 500workers and the percentage
of workers that do not come to the shift is below 10% (which is a
realistic assumption).

5 RELATEDWORK
Dealing with context is one of the most important aspects of our
approach. The survey in [18] discusses context-based middlewares
targeting systems like IoT. Security and privacy is dealt only by
three middlewares out of eleven. E.g., in [21], the ontology models
are employed but security aspects are handled only for user identifi-
cation and authorization. From the security point of view, the most

advanced is FlexRFID [10], which uses Role-Based Access Control
(RBAC) model for security aspects.

Access Control: RBAC [11] is a classical access control approach
that employs groups to gather access rights for similar users. Through
this abstraction, the rules are comprehensible. However, the rela-
tionship from groups to rules is strictly static and does not fit
dynamic situations.

Therefore dynamic access system like the Dynamic Role Based
Access Control (DRABC) [28] or in [17] are introduced. The first
one, DRAB, is an extension for RBAC and is used in the grid environ-
ments to assign dynamically resources. There are already dynamic
parts included, but no horizontal integration of different companies,
like it may happen in Industry 4.0. Another access control system
is the Organisational Based Access Control (OrBAC) [15]. Here,
contexts [8] describe the access to files. Initially it does not support
horizontal integration, however lately there is research into this
area [6]. However, it does not support the inclusion of architectural
confidentiality analysis like in our approach.

A more generic access control approach than RBAC is Attribute
Based Access Control (ABAC) [13] that manages access over at-
tributes, which need to be satisfied for accessing data. In [4], an
approach based on ABAC is described, which deals with dynamic
situations but only abnormal behavior of users (that might represent
an attack on a system) is targeted. Detection of abnormal user be-
havior is also targeted in [9], where a self-adaptive RBAC (saRBAC)
is presented. This saRBAC method models a system via Markov
chains and employs probabilistic model checking to discover abnor-
mal behavior of a user (and if discovered, access permissions are
modified to mitigate potential attack). Compared to our approach,
only single source of dynamism is targeted. Plus, there is no global
architecture of a system considered and rules are not hierarchical.
Another approach for dynamic adaptation of access permission
to mitigate potential attacks of users is presented in [26]. The ap-
proach works with design time specifications and updates them
based on the runtime behavior of the system. For evaluation of
potentially dangerous situations, a statistical approach is used.

An approach partially similar to our one is in [27], which targets
policies generation primarily for dynamically established coalitions.
Nevertheless, the coalitions are meant only as groups of people
with the same goal but by itself are not dynamically described.

An approach very similar to our one is described in [5]. Here,
the MAPE-K loop is used for the dynamicity management and the
approach allows for optimizations, i.e., it can generate multiple
solutions and based on their utility, the optimal one is chosen.
Compared to our approach, we allow for unified modeling of both
components under direct control and also beyond direct control
ones (humans, etc.). Also, as ensembles are hierarchical, the security
rules are hierarchical and thus, optimization might not be for a
single rule only but it can reflect the overall goal of the system.

Privacy and Confidentiality Analysis The confidentiality analy-
sis checks either whether a system or architecture complies with
specific confidentiality rules or if there is a data-leak. One coarse-
grained approach for checking security flaws (here for confidential-
ity) is Threat modelling [25]. However, changes which can happen
often in a dynamic environment like in Industry 4.0 are difficult to
model, because the security analysis and the system architecture
use different models. One way to archive confidentiality is to secure

all transmission by encryption. This is shown in Hoisl et al. [12].
However, the approach does not support access control. Another
similar approach is UMLsec [14]. It does support access control,
however, the rules specification happens on the control flow, which
is more complicated than on the dataflow. R-PRIS [22] is an ap-
proach, which investigates changes during runtime, that might lead
to privacy issues. Therefore a runtime model is used, which is then
checked against the privacy rules. In contrast to our approach, R-
PRIS [22] only considers the location for privacy checks. There are
approaches, which analyses directly the dataflow, like Joana [24] or
code verification approaches like KeY [1]. Both support the detec-
tion of information leaks, however both approaches are restricted
to a certain programming language (here Java). Our confidentiality
approach, however, does not depend on one programming language,
as it is based on the system architecture rather on the source code
level.

6 CONCLUSION
In this paper, we have proposed a self-adaptive architecture with
the Dynamic Security Adaptation Controller (DSAC), which adapts
static rules for existing legacy systems. Thus, these legacy sys-
tem can be still used in the dynamically changing context like
in the domain of Industry 4.0 or smart manufacturing in gen-
eral. For configuration of the dynamic security adaptation con-
troller, we have defined an Scala-based internal DSL (available at
https://github.com/d3scomp/tcoof-security-ecsa), which can ex-
press dynamic security rules that depend on spatial and temporal
context. Thanks to the use of ensembles, the approach is able to
describe complex dynamic situations with interdependencies across
multiple legacy systems. The approach further provides means of
runtime validation via assertions that additionally allow incorporat-
ing privacy constraints, which we determine based on specifications
of data flows in Palladio.

The proposed approach has been discussed with industrial prac-
titioners that are responsible for deploying a smart-lock system
in real applications. The evaluation of scalability of the approach
suggests that it is applicable for real-life size systems with several
thousands of workers.

As an ongoing work, we further improve the performance and
scalability of the approach (via optimization of constraints, which
are prepared for internally used constraint solver). Also, we con-
tinue with cooperation with our industrial partners and are prepar-
ing an actual deployment of the proposed system.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Edu-
cation and Research (grant numbers 01IS17106A and 01IS17106B),
the Technological Agency of the Czech Republic (project no.
2017TF04000064) and by Charles University institutional funding
SVV 260451.

REFERENCES
[1] W. Ahrendt, B. Beckert, R. Bubel, R Hahnle, P. H. Schmitt, and M. Ulbrich. 2016.

Deductive Software Verification – The KeY Book. Springer.
[2] R. Al Ali, T. Bures, P. Hnetynka, F. Krijt, F. Plasil, and J. Vinarek. 2018. Dynamic

Security Specification through Autonomic Component Ensemble. In Proceedings
of ISoLA 2018, Limassol, Cyprus. Springer.

[3] R. Al-Ali, R. Heinrich, P. Hnetynka, A. Juan-Verdejo, S. Seifermann, and M.Walter.
2018. Modeling of dynamic trust contracts for Industry 4.0 systems. In Companion
Proceedings of ECSA 2018, Madrid, Spain. ACM Press.

[4] L. Argento, A. Margheri, F. Paci, V. Sassone, and N. Zannone. 2018. Towards
Adaptive Access Control. In Data and Applications Security and Privacy XXXII.
Springer.

[5] C. Bailey, D. W. Chadwick, and R. de Lemos. 2014. Self-adaptive federated
authorization infrastructures. J. Comput. System Sci. 80, 5 (2014), 935–952.

[6] I. Ben Abdelkrim, A. Baina, C. Feltus, J. Aubert, M. Bellafkih, and D. Khadraoui.
2018. Coalition-OrBAC: An Agent-Based Access Control Model for Dynamic
Coalitions. In Trends and Advances in Information Systems and Technologies.
Springer, 1060–1070.

[7] T. Bures, F. Plasil, M. Kit, P. Tuma, and N. Hoch. 2016. Software Abstractions for
Component Interaction in the Internet of Things. Computer 49, 12 (2016), 50–59.

[8] F. Cuppens and A. Miège. 2003. Modelling contexts in the Or-BAC model. In
Proceedings of ACSAC 2003, Las Vegas, USA. IEEE, 416–425.

[9] C. E. da Silva, J. D. S. da Silva, C. Paterson, and R. Calinescu. 2017. Self-Adaptive
Role-Based Access Control for Business Processes. In Proceedings of SEAMS 2017,
Buenos Aires, Argentina. 193–203.

[10] M. A. El Khaddar, M. Chraibi, H. Harroud, M. Boulmalf, M. Elkoutbi, and A.
Maach. 2015. A policy-based middleware for context-aware pervasive computing.
International Journal of Pervasive Computing and Communications 11, 1 (2015),
43–68.

[11] D. Ferraiolo, J. Cugini, and D. Kuhn. 1995. Role-based access control (RBAC):
Features and motivations. In Proceedings of ACSAC 1995, New Orleans, USA.
241–248.

[12] B. Hoisl, S. Sobernig, and M. Strembeck. 2014. Modeling and enforcing secure ob-
ject flows in process-driven SOAs: an integrated model-driven approach. Software
& Systems Modeling 13, 2 (2014), 513–548.

[13] V. Hu, D. Kuhn, and D. Ferraiolo. 2015. Attribute-Based Access Control. Computer
48, 2 (2015), 85–88.

[14] J. Jürjens. 2002. UMLsec: Extending UML for secure systems development. In
UML’02. Springer, 412–425.

[15] A.A.E. Kalam, R.E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A.
Miege, C. Saurel, and G. Trouessin. 2003. Organization based access control. In
Proceedings POLICY 2003.

[16] J. Kephart and D. Chess. 2003. The Vision of Autonomic Computing. Computer
36, 1 (2003), 41–50.

[17] K. Knorr. 2000. Dynamic access control through Petri net workflows. In Proceed-
ings of ACSAC 2000, New Orleans, USA. 159–167.

[18] X. Li, M. Eckert, J.-F. Martínez, and G. Rubio. 2015. Context Aware Middleware
Architectures: Survey and Challenges. Sensors 15, 8 (2015), 20570–20607.

[19] A. Pfitzmann and M. Hansen. 2010. A terminology for talking about pri-
vacy by data minimization: Anonymity, Unlinkability, Undetectability, Unob-
servability, Pseudonymity, and Identity Management. https://dud.inf.tu-
dresden.de/literatur/Anon_Terminology_v0.34.pdf

[20] R. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Koziolek, M. Kramer,
and K. Krogmann. 2016. Modeling and simulating software architectures: the
Palladio approach. MIT Press.

[21] N. D. Rodriguez. 2011. A Framework for Context-Aware Applications for Smart
Spaces. In Proceedings of SAINT 2011, Munich, Germany. 218–221.

[22] E. Schmieders, A. Metzger, and K. Pohl. 2015. Runtime Model-Based Privacy
Checks of Big Data Cloud Services. In Proceedings of ICSOC 2015, Goa, India.
71–86.

[23] S. Seifermann, R. Heinrich, and R. Reussner. 2019. Data-Driven Software Ar-
chitecture for Analyzing Confidentiality. In Proceedings of ICSA 2019, Hamburg,
Germany.

[24] G. Snelting, D. Giffhorn, J. Graf, C. Hammer, M. Hecker, M. Mohr, and D.
Wasserrab. 2014. Checking probabilistic noninterference using JOANA. it-
Information Technology 56, 6 (2014), 280–287.

[25] F. Swiderski and W. Snyder. 2004. Threat Modeling. Microsoft Press.
[26] T. T. Tun, M. Yang, A. K. Bandara, Y. Yu, A. Nhlabatsi, N. Khan, K. M. Khan, and B.

Nuseibeh. 2018. Requirements and specifications for adaptive security: concepts
and analysis. In Proceedings of SEAMS 2018, Gothenburg, Sweden. 161–171.

[27] D. Verma, S. Calo, S. Chakraborty, E. Bertino, C. Williams, J. Tucker, and B. Rivera.
2017. Generative policy model for autonomic management. In Proceedings of
IEEE SmartWorld 2017, San Francisco, USA. IEEE.

[28] G. Zhang and M. Parashar. 2003. Dynamic Context-aware Access Control for
Grid Applications. In Proceedings of GRID 2003, Phoenix, USA. 101–108.

https://github.com/d3scomp/tcoof-security-ecsa
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Al-Ali, R.; Hnetynka, P.; Havlik, J.; Krivka, V.; Heinrich, R.; Seifermann, S.; Walter, M.; Juan-
Verdejo, A.
Dynamic security rules for legacy systems.
2019. Proceedings of the 13th European Conference on Software Architecture - ECSA ’19.
Vol. 2, ACM Digital Library.
doi: 10.5445/IR/1000139243

Zitierung der Originalveröffentlichung:

Al-Ali, R.; Hnetynka, P.; Havlik, J.; Krivka, V.; Heinrich, R.; Seifermann, S.; Walter, M.; Juan-
Verdejo, A.
Dynamic security rules for legacy systems.
2019. Proceedings of the 13th European Conference on Software Architecture - ECSA ’19.
Vol. 2, 277–284, ACM Digital Library.
doi: 10.1145/3344948.3344974

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000139243
https://publikationen.bibliothek.kit.edu/1000139243
https://publikationen.bibliothek.kit.edu/1000139243
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

	Abstract
	1 Introduction
	2 Running Example
	3 Dynamic security rules
	3.1 Dynamic Security Adaptation Controller
	3.2 Specifying security rules via ensembles
	3.3 Security Assertions
	3.4 Derivation of Privacy Levels

	4 Evaluation
	6 Conclusion
	Acknowledgments
	References

