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Abstract: In this paper, we present a simple method to design a full-order observer for a class of
nonlinear port-Hamiltonian systems (PHSs). We provide a sufficient condition for the observer to
be globally exponentially convergent. This condition exploits the natural damping of the system.
The observer and its design are illustrated by means of an academic example system. Numerical
simulations verify the convergence of the reconstructions towards the unknown system variables.
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1. INTRODUCTION

Port-Hamiltonian systems (PHSs) have been identified
as a powerful framework for the treatment of complex
physical systems. PHSs have first been introduced for
real-valued, continuous-time, finite-dimensional systems,
see, e.g., Maschke and van der Schaft (1992). Mean-
while, the port-Hamiltonian framework has been ex-
tended to complex-valued systems (see, e.g., Mehl et al.
(2016)), discrete-time systems (see, e.g., Kotyczka and
Lefèvre (2018)), and infinite-dimensional systems (see,
e.g., Le Gorrec et al. (2005)).

The literature on PHSs contains numerous contributions
for the design of controllers, see, e.g., Ortega et al. (2008)
and van der Schaft (2016). In contrast, the design of ob-
servers for PHSs has received rather limited attention. The
available methods are presented in the sequel. Thereby,
we distinguish between observer designs for linear and
nonlinear PHSs.

Linear PHSs are a special class of linear state-space sys-
tems. Hence, for the state reconstruction of such sys-
tems it is natural to approach with a standard Lu-
enberger observer, see, e.g., Khalil et al. (2012). Car-
doso Ribeiro (2016) and Kotyczka et al. (2019) show
that the Luenberger observer is also a viable option if
the linear model arises from the structure-preserving dis-
cretization of an infinite-dimensional PHS. Toledo et al.
(2020) address the design of passive observers for infinite-
dimensional boundary-controlled PHSs. A compensator
for linear finite-dimensional PHSs based on a dual ob-
server has been proposed by Kotyczka and Wang (2015).
Atitallah et al. (2015) address the combined input-state
reconstruction for linear PHSs. Likewise, Pfeifer et al.
(2019) derive an interval input-state-output estimator for
linear PHSs.

For nonlinear PHSs, there exist also several observer
design methods. Regarding observers for nonlinear PHSs,
we differentiate between two kinds of nonlinearities, viz.
(a) nonlinearities in the interconnection structure and (b)
nonlinearities in the storages. The former are characterized
by state-dependent matrices of the PHSs; the latter are
characterized by possibly non-quadratic Hamiltonians.

Wang et al. (2005) were the first to address the design of
observers for nonlinear PHSs. The authors develop adap-
tive and non-adaptive state observers for a system with
nonlinear interconnection structure and nonlinear stor-
ages. However, the observers are only asymptotically con-
vergent if the system reaches a steady state.Venkatraman
and van der Schaft (2010) present a passivity-based, glob-
ally exponentially convergent observer for PHSs with non-
linear interconnection structure and nonlinear storages.
The proposed observer design requires the solution of a
set of algebraic equations and partial differential equa-
tions (PDEs). Vincent et al. (2016) present two nonlin-
ear, passivity-based observers for PHSs with nonlinear
interconnection structure: a proportional observer and a
proportional observer with integral action. Yaghmaei and
Yazdanpanah (2019b) propose an observer design for PHSs
with possibly nonlinear storages based on the principles of
the well-known interconnection and damping assignment
passivity-based control. The observer from Yaghmaei and
Yazdanpanah (2019b) allows for a separation principle
as known from linear systems theory, see Yaghmaei and
Yazdanpanah (2019a). However, as with the approach
from Venkatraman and van der Schaft (2010), the observer
design from Yaghmaei and Yazdanpanah (2019b) requires
the solution of a set of PDEs. Another notable publication
in this field stems from Biedermann et al. (2018). The
authors present a passivity-based observer design for a
class of state-affine systems which can also be applied to



a class of PHSs with nonlinear interconnection structure
and linear storages.

From the above discussion, it can can be seen that the ob-
servers from Wang et al. (2005) and Venkatraman and van
der Schaft (2010) are the only two approaches which are
applicable to PHSs with both, a nonlinear interconnection
structure and nonlinear storages. However, the observer
of Wang et al. (2005) is in general not asymptotically
convergent and the observer design from Venkatraman and
van der Schaft (2010) is delicate as it requires the solution
of a set of algebraic equations and PDEs .

In this paper, we present a full-order observer with a simple
design scheme for a class of real-valued, continuous-time,
finite-dimensional PHSs with nonlinearities in both, the
storages and the interconnection structure. We provide
a sufficient condition for the observer to be globally
exponentially convergent. This condition is mild as it
makes use of the natural system damping.

Structure: The remainder of this paper is structured as
follows. Section 2 formally outlines the problem under
consideration. In Section 3, we propose an observer and
provide a sufficient condition for its global exponential
convergence. The results from Section 3 are discussed
in Section 4. Hereafter, the observer and its design are
illustrated for an academic example in Section 5. Section 6
summarizes the insights and concludes the paper.

Notation: Sets, groups, and spaces are written in black-
board bold. For the dimension of a vector space X, we
write dim (X). The symbol × denotes the Cartesian prod-
uct. Vectors and matrices are written in bold font. Let
A ∈ Rn×m be a matrix with n rows and m columns.
For the transposed of A we write A>. Now let n = m.
A � 0 and A � 0 mean that A is positive-definite
and positive semi-definite, respectively. With diag(·) we
denote a diagonal matrix; likewise, blkdiag(·) is a block
diagonal matrix of matrices. Now let x ∈ Rn be a (column)
vector. For the kernel of the linear map x 7→ Ax we write
ker(A). Throughout this paper, the time-dependence “(t)”
of vectors is omitted in the notation.

2. PROBLEM FORMULATION

Consider an explicit PHS of the form

d

dt

(
x′

x′′

)
= (J(x′)−R(x′))

∂H

∂x
(x) + G(x′)u, (1a)

y = G>(x′)
∂H

∂x
(x) , (1b)

with initial value x|t=0 = x0, x′ ∈ X′ ⊂ Rn1 , x′′ ∈ X′′ ⊂
Rn−n1 , u ∈ U ⊂ Rp, and y ∈ Y ⊂ Rp, where X′ and X′′ are
closed and bounded and therewith compact. The overall
state vector is defined as x := (x′> x′′>)> ∈ X = X′ ×
X′′, where X is then also compact. The matrices in (1)
are of proper sizes, continuously differentiable in x′, and
satisfy J(x′) = −J>(x′), R(x′) = R>(x′) � 0. Let the
Hamiltonian of (1) be of the form

H (x) =
1

2

(
x′> x′′>

)(Q′ 0
0 Q′′

)(
x′

x′′

)
+ N(x′), (2)

where Q := blkdiag (Q′,Q′′) = Q> � 0 and N : X′ → R,
x′ 7→N(x′). The function N may be any function that is
positive semi-definite and twice continuously differentiable

in x′. Suppose u is known but x and y are unknown.
Moreover, assume measurements m ∈ Rq with q ≥
n1 of the form m = C(x′)Qx where C(x′) depends
continuously on x′:(

m1

m2

)
=

(
Q′−1 0
C ′(x′) C ′′(x′)

)(
Q′ 0
0 Q′′

)(
x′

x′′

)
. (3)

Note that we have m1 = x′, i.e., x′ is the measured part
of the state vector x.

The problem addressed in this paper reads: What is an
asymptotic observer for (1) that produces reconstructions
of x and y based on knowledge on m? How can we design
such an observer in a simple manner?

Remark 1. At first glance, the addressed class of systems
may seem rather restrictive. However, as Venkatraman
and van der Schaft (2010) point out, this class covers a
considerable number of physical examples such as mechan-
ical and electromechanical PHSs, see, e.g., Yaghmaei and
Yazdanpanah (2019b, Eq. (23) and (27)). Moreover, note
that the measurement equation (3) can also be written in
the form 1 (

m1

m2

)
=

(
I 0

C̃ ′(x′) C̃ ′′(x′)

)(
x′

x′′

)
. (4)

In (4), we have m1 = x′ and m2 = C̃(x′)x which reveals
the generality of this formulation.

3. NONLINEAR OBSERVER DESIGN

First, we provide three preliminary statements, viz.
Lemma 2, Lemma 3, and Lemma 4. Afterwards, the pro-
posed observer and its design are summarized in Theo-
rem 5. Finally, in Corollary 6 and Corollary 7, the result
from Theorem 5 are analyzed in more detail.

The state-output reconstruction problem described in the
previous section involves three equations, viz. a dynamics
equation (1a), an output equation (1b), and a measure-
ment equation (3). Note that the measurement equation
may be nonlinear in the states. In the following lemma, we
show that the state-output reconstruction problem can be
reduced to a state reconstruction problem which involves
only two equations.

Lemma 2. Consider the situation in Section 2. Let x̂ be
a reconstruction of x with ‖x − x̂‖ ≤ k1e

−k2t for t ≥ 0
and some positive constants k1, k2 ∈ R>0. Then, we can
calculate an output reconstruction

ŷ = G>(x̂′)
∂H

∂x
(x̂), (5)

with ‖y − ŷ‖ ≤ k3e
−k2t for all t ≥ 0 and some positive

constant k3 ∈ R>0.

Proof. Because X′ and X are compact, G> and ∂H
∂x

are bounded in x′ and x, respectively, i.e., there exist
constants kG, kH ∈ R>0 such that ‖G>(x′)‖ < kG and
‖∂H∂x (x)‖ < kH for all x′ ∈ X′ and x ∈ X.

Since G> is continuously differentiable and X′ is com-
pact, G> is Lipschitz continuous on X′ with constant
LG = supx′∈X′‖ ∂G∂x′ (x

′)‖ that is ‖G>(x′1) − G>(x′2)‖ ≤
1 To bring (4) to the form (3), we write m = C̃(x′)Q−1Qx =
C(x′)Qx with C(x′) = C̃(x′)Q−1.



LG‖x′1 − x′2‖ for all x′1,x
′
2 ∈ X′. Likewise ∂H

∂x is Lipschitz
continuous with a constant LH on X.

We now can conclude

‖y − ŷ‖ =
∥∥∥G>(x′)

∂H

∂x
(x)−G>(x̂′)

∂H

∂x
(x̂)
∥∥∥

≤
∥∥∥G>(x′)

∂H

∂x
(x)−G>(x′)

∂H

∂x
(x̂)
∥∥∥+∥∥∥G>(x′)

∂H

∂x
(x̂)−G>(x̂′)

∂H

∂x
(x̂)
∥∥∥

≤ ‖G>(x′)‖
∥∥∥∂H
∂x

(x)− ∂H

∂x
(x̂)
∥∥∥+

‖G>(x′)−G>(x̂′)‖
∥∥∥∂H
∂x

(x̂)
∥∥∥

≤ kGLH‖x− x̂‖+ LG‖x′ − x̂′‖kH
≤ (kGLH + LGkH)k1e

−k2t,

(6)

where in the last step we used ‖x′ − x̂′‖ ≤ ‖x − x̂‖ and
‖x− x̂‖ ≤ k1e−k2t. 2

Lemma 2 shows that an exponentially convergent recon-
struction of the output can always be obtained from an ex-
ponentially convergent reconstruction of the state. Hence,
the state-output reconstruction problem can be formulated
as an ordinary state reconstruction problem that involves
two equations, viz. (1a) and (3). This motivates to ap-
proach with a Luenberger-like observer consisting of an
internal model of the system dynamics and a measurement
error injection term. This is the approach we follow in the
subsequent lemma.

Lemma 3. Consider a system with dynamics (1a) and
measurements (3). Suppose there exists a matrix L ∈
Rn×q depending continuously on x′ such that

R(x′) +
1

2
L(x′)C(x′) +

1

2
C>(x′)L>(x′) � 0, (7)

for all x′ ∈ X′. Then, there exists a globally exponentially
convergent state observer of the form

˙̂x = (J(x′)−R(x′))
∂H

∂x
(x̂)

+ G(x′)u + L(x′) (m−C(x′)Qx̂), (8)

with initial value x̂|t=0 = x̂0. The vectors x̂′ ∈ X′ and
x̂′′ ∈ X′′ of the splitting x̂ = (x̂′> x̂′′>)> are mimicking
the splitting of x = (x′> x′′>)>.

Proof. Let us define the reconstruction error as ε := x−
x̂. With (1a), (2), (3), and (8), the error dynamics can be
expressed as

ε̇ = (J(x′)−R(x′)−L(x′)C(x′))Qε, (9)

with initial value ε0 = x0 − x̂0. Obviously, ε ≡ 0 is an
equilibrium of (9). Next, we analyze the stability of this
equilibrium by using Lyapunov’s direct method. Consider
the Lyapunov candidate

V (ε) =
1

2
ε>Qε. (10)

As shown in Proposition 8 in the appendix, for a system
and a Lyapunov candidate of the form (9) and (10),

respectively, we obtain V̇ (ε) = −ε>QΓQε where

Γ = R(x′) +
1

2
L(x′)C(x′) +

1

2
C>(x′)L>(x′). (11)

It is noteworthy that (11) is independent of the matrix
J(x′). Now let (7) hold. We then have Γ = Γ> � 0 which

is equivalent to QΓQ = (QΓQ)
> � 0. From this follows

that V̇ (ε) is negative-definite and thus ε ≡ 0 an asymp-
totically stable equilibrium of (9). Moreover, as shown in
Proposition 9 in the appendix, the positive definiteness of
Q and QΓQ implies the existence of positive constants
k1, k2, k3 ∈ R>0 such that

k1‖ε‖2 ≤ V (ε) ≤ k2‖ε‖2 (12a)

and

V̇ (ε) ≤ −k3‖ε‖2 (12b)

hold for all x ∈ X. Hence, ε ≡ 0 is a globally exponentially
stable equilibrium of (9) (Khalil, 2002, Theorem 4.10).
This implies (8) to be an exponentially convergent observer
for the system consisting of (1) and (3). 2

Equation (7) is a sufficient condition for the existence of an
exponentially convergent observer of the form (8). Thus,
the observer design problem is to find a matrix L(x′) such
that (7) is fulfilled. In the sequel, we present an approach
for finding a matrix L(x′) such that (7) is satisfied.

Recall that R(x′) � 0 for all x′ ∈ X′. For (7) to hold,
we need to find a matrix L(x′) which “moves the zero
eigenvalues of −R(x′) to the left”. In the following lemma,
we propose a choice of L(x′) which has the best chances
to accomplish this:

Lemma 4. Consider two matrices R(s) ∈ Rn×n and
C(s) ∈ Rq×n depending on some parameter s ∈ S. Let
R(s) = R>(s) � 0 for all s ∈ S. There exists a matrix
L(s) ∈ Rn×q which satisfies

R(s) +
1

2
L(s)C(s) +

1

2
C>(s)L>(s) � 0, ∀s ∈ S, (13)

if and only if (13) is satisfied for L(s) = C>(s).

Proof. We show that the following two statements are
equivalent:

(i) ∀s ∈ S : ∃L(s) ∈ Rn×q s.t.

R(s) +
1

2
L(s)C(s) +

1

2
C>(s)L>(s) � 0, (14a)

(ii) ∀s ∈ S : R(s) + C>(s)C(s) � 0. (14b)

By setting L(s) = C>(s) it is easy to see that that (ii)
implies (i). We now show that (i) also implies (ii). To
this end, we show the contraposition, i.e., that if R(s) +
C>(s)C(s) is not positive-definite, then the matrix in (i)
is not positive-definite for all L(s).
Let (ii) be violated. The matrix R(s) + C>(s)C(s) is
positive semi-definite, i.e.,

R(s) + C>(s)C(s) � 0, ∀s ∈ S, (15)

as R(s) � 0 and

v>C>(s)C(s)v = ‖C(s)v‖ ≥ 0, ∀s ∈ S,∀v ∈ Rn,
(16)

i.e., C>(s)C(s) � 0 for all s ∈ S. From (15) and the
negation of (ii) follows, that there exists a non-zero vector
v ∈ Rn and a value s0 ∈ S such that

v>
(
R(s0) + C>(s0)C(s0)

)
v = 0. (17)

For this v and s0 we have

v>R(s0)v + v>C>(s0)C(s0)v = 0,

⇔ v>R(s0)v = 0 ∧ v>C>(s0)C(s0)v = 0,

⇔ v>R(s0)v = 0 ∧ v ∈ ker (C(s0)) . (18)



For the left hand side of (14a) we obtain

v>R(s0)v︸ ︷︷ ︸
=0

+
1

2
v>L(s0)C(s0)v︸ ︷︷ ︸

=0

+
1

2
v>C>(s0)︸ ︷︷ ︸

=0

L>(s0)v,

(19)
i.e., zero. Hence, for s0 ∈ S and for all L(s) the matrix

R(s0) +
1

2
L(s0)C(s0) +

1

2
C>(s0)L>(s0) (20)

is not positive-definite. This is the contraposition of state-
ment (i). 2

In Lemma 3, we propose a state observer for the PHS (1).
Lemma 4 provides a simple design for such an observer.
From Lemma 2 we know, that a state observer can be
easily extended to a state-output observer. In the following
theorem, we summarize these insights to formulate a
globally exponentially convergent state-output observer
for the PHS (1):

Theorem 5. Consider a nonlinear PHS (1) with Hamilto-
nian (2) and measurements (3). Let

R(x′) + C>(x′)C(x′) � 0, ∀x′ ∈ X′. (21)

hold. A globally exponentially convergent full-order state-
output observer for the system is given by

˙̂x = (J(x′)−R(x′))
∂H

∂x
(x̂)

+ G(x′)u + C>(x′) (m−C(x′)Qx̂) , (22a)

ŷ = G>(x′)
∂H

∂x
(x̂), (22b)

with initial value x̂|t=0 = x̂0.

Proof. The proof follows directly from Lemma 2, Lemma 3,
and Lemma 4. In the latter we substitute s ∈ S with
x′ ∈ X′. 2

It is important to note that the observer from Theorem 5
is directly obtained from the system model. In particular,
there are no free observer parameters which makes its
design very simple.

In the following two corollaries, we analyze the results
obtained so far in more detail. First, we consider the case
of linear measurements, i.e., the case where in (3) we have
C(x′) = C = const.

Corollary 6. Given a system with dynamics (1a) and mea-
surements (3) where the measurement matrix is a constant
matrix C(x′) = C. The existence condition (7) for an
observer of the form (8) is satisfied if and only if it is
satisfied for the constant matrix L = C>.

Proof. The claim follows directly from Lemma 3 and
Lemma 4 under C(x′) = C. 2

The main point from Corollary 6 is as follows. Despite
the fact that the matrix R(x′) is parametrized over x′,
a constant observer gain L is sufficient to evaluate if
the existence condition (7) is solvable or not. In other
words, for C(x′) = C = const., there is no benefit in
approaching with a parametrized observer gain L(x′). In
this context, Corollary 6 reflects the idea behind Lemma 4.
Loosely speaking, if the output error injection allows to
access those parts of −R(x′) which corresponds to zero
eigenvalues, we can shift them to the left. In the case of
linear measurements, a constant observer gain which is

independent of x′ is sufficient towards this endeavor. On
the other hand, if R(x′) is already positive-definite, the
observer (8) is globally exponentially convergent without
any error injection. This is addressed in the last corollary
of this subsection.

Corollary 7. Consider a strictly passive PHS (1) with
measurements (3), i.e., the case where R(x′) � 0 for
all x′ ∈ X′. A globally exponentially convergent state
observer for the system is given by (8) with L = 0.

Proof. The statement follows from Lemma 3 under
R(x′) � 0 for all x′ ∈ X′. 2

4. DISCUSSION

Theorem 5 is the main theoretical result of this paper.
The theorem provides a sufficient condition and a design
scheme for a state-output observer applicable to a class of
nonlinear PHSs. This class allows for state-dependent ma-
trices and a possibly non-quadratic Hamiltonian. Venka-
traman and van der Schaft (2010) consider an almost
identical class of systems. A limitation of this class of PHSs
is the assumption that those states which are responsible
for the state-dependence of the PHS matrices and which
constitute the non-quadratic part of the Hamiltonian are
measured. On the other hand, in practical systems this as-
sumption may be satisfied by a sensible sensor placement.

The observer from Theorem 5 obviates a dedicated “de-
sign” as it can be derived directly from the system model.
This is in contrast to the observer design from Venkatra-
man and van der Schaft (2010) which requires the closed-
form solution of a set of PDEs and algebraic equations.

The existence condition (21) of the observer requires
the error system to be sufficiently damped. Thereby, the
damping consists of two parts, viz. the natural damping
of the system and a virtual damping arising from the
error injection. To ensure a fast convergence of all observer
states, the error injection must access those states subject
to no or weak natural dissipation. On the other hand, if
the natural damping is sufficiently strong on all states (i.e.,
the system is strictly passive), we can completely omit
the error injection in the observer (cf. Corollary 7). This
damping interpretation is closely related to well-known
insights for the control of PHSs, see, e.g., van der Schaft
(2016, Sec. 7.1).

5. EXAMPLE

In this section, we illustrate the nonlinear observer from
Theorem 5 by means of an academic example.

Consider the following PHS(
ẋ1
ẋ2
ẋ3

)
= (

(
0 0 0
0 0 −1
0 1 0

)
−

 d deκx1 0
deκx1 de2κx1 0

0 0 0

)
∂H

∂x

+

(
0 d
1 deκx1

0 0

)(
u1
u2

)
, (23a)(

y1
y2

)
=

(
0 1 0
−d −deκx1 0

)
∂H

∂x
+

(
0 0
0 d

)(
u1
u2

)
, (23b)



with d > 0, κ > 0 and the non-quadratic Hamiltonian

H(x) =
1

2
x>

(
q1 0 0
0 q2 0
0 0 q3

)
x +

1

4
x41, (24)

where q1, q2, q3 > 0. For the system, consider two mea-
surements m1 = x1 and m2 = eκx1x3. The corresponding
measurement equation reads

m =

(
q−11 0 0
0 0 q−13 eκx1

)
︸ ︷︷ ︸

=C(x1)

(
q1 0 0
0 q2 0
0 0 q3

)(
x1
x2
x3

)
. (25)

Following the notation from Section 2, we have x′ = x1
and x′′ = (x2 x3)>. For the observer, we have

R(x1)+C>(x1)C(x1)=

 d+ q−21 deκx1 0
deκx1 de2κx1 0

0 0 q−23 e2κx1

� 0,

(26)
for all x ∈ X. Thus, the observer existence condition (21)
is satisfied and a globally exponentially convergent state-
output observer is given by (22).

We illustrate the results obtained from numerical simula-
tion of the system (23) and the observer (22). The system
parameters are chosen to d = 1, q1 = 1

2 , q2 = 1
3 , q3 = 1

4 ,
and κ = 0.1. The initial values of the system and the
observer are given by x0 = (0 0 0)> and x̂0 = (1 1 1)>,
respectively. The input signals are specified to u1 = σ(t−
10 s) and u2 = sin(0.1 s−1 t), where σ(·) is the unit step
function.

Figure 1 depicts the states xi (solid, blue) and the recon-
structions x̂i (dashed, red) for i = 1, 2, 3. As can be seen,
the state reconstructions reach the true states in less than
ten seconds. The reconstructions of the system output are
given in Figure 2. The figure shows that the reconstructed
outputs also converge to the true outputs as described by
Lemma 2.

6. CONCLUSION

In this paper, we presented a simple design scheme for a
globally exponentially convergent full-order state-output
observer for a class of PHSs with nonlinearities in both,
the interconnection structure and storages. In contrast to
existing approaches, our observer does not require the
solution of PDEs but can directly be obtained from the
system model (Theorem 5). This makes the approach
simple and appealing for a practical application. For the
observer, we provide a sufficient existence condition which
exploits the natural damping contained in the system.
Future work will focus on the extension of the observer
to systems with unknown inputs.
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APPENDIX

In the proof of Lemma 3, we applied Lyapunov’s direct
method to prove 0 to be a globally exponentially stable

equilibrium point of an error system. In this proof, we
made use of the following two propositions:

Proposition 8. Consider the autonomous system

ẋ = A(s)Qx, (27)

where x ∈ Rn, A(s) ∈ Rn×n, and Q ∈ Rn×n with
Q = Q> � 0 for some parameter s ∈ S. In order to
analyze the stability of the equilibrium x ≡ 0 suppose
the Lyapunov function candidate V (x) = 1

2x
>Qx. The

derivative of V (x) with respect to time can be expressed
as

V̇ (x) = x>Q
(
1
2

(
A(s) + A>(s)

))
Qx. (28)

Equation (28) depends only on the symmetric part of the

matrix A(s), i.e., V̇ (x) it is independent of the skew-
symmetric part of A(s).

Proof. The derivative of V (x) reads

V̇ (x) =
1

2
ẋ>Qx +

1

2
x>Qẋ

(27)
=

1

2
(A(s)Qx)

>
Qx +

1

2
x>QA(s)Qx

=
1

2
x>QA>(s)Qx +

1

2
x>QA(s)Qx

= x>Q
(
1
2

(
A(s) + A>(s)

))
Qx. (29)

Proposition 9. Given a vector x ∈ Rn and a family
of symmetric, positive-definite matricies D(s) ∈ Rn×n
depending continuously on some parameter s ∈ S with S
compact. Then, there exist positive constants k1, k2 ∈ R>0

such that

k1‖x‖2 ≤ x>D(s)x ≤ k2‖x‖2, ∀s ∈ S,∀x ∈ Rn. (30)

Proof. We first show that, without loss of generality,
D(s) can be assumed to be diagonal.

As D(s) is symmetric there exists a continuous family of
orthogonal matrices T (s) such that

x>D(s)x = x>T>(s)T (s)D(s)T>(s)︸ ︷︷ ︸
=:D̃(s)

T (s)x, (31)

for all s ∈ S and for all x ∈ Rn where D̃(s) is a
diagonal matrix with the (positive) eigenvalues of D(s)
on its diagonal. By defining y := T (s)x we may rewrite
(30) as

k1‖y‖2 ≤ y>D̃(s)y ≤ k2‖y‖2, ∀s ∈ S,∀y ∈ Rn. (32)

In (32), we use that ‖y‖2 = ‖x‖2 for all s ∈ S which
follows from the invariance of the Euclidean norm under
orthogonal transformations. Equation (32) shows that,
without loss of generality, we may assume D(s) to be
diagonal.

Now for the claim from the proposition. Let D(s) be
a positive-definite and diagonal matrix for all s ∈ S.
Recall that D(s) depends continuously on s. Hence, the
eigenvalues λi(s) of D(s) are also continuous in s for
i = 1, . . . , n. From the positive definiteness of D(s) and
the compactness of S we conclude that all eigenvalues λi(s)
are contained in a compact subset of R>0. Thus, there exist
positive constants k1, k2 ∈ R>0 with k1 ≤ λi(s) ≤ k2 for
all s ∈ S and i = 1, . . . , n. Such constants then fulfill (30)
as

k1x
>Ix ≤ x>D(s)x ≤ k2x>Ix, ∀s ∈ S,∀x ∈ Rn.

(33)


