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Systems of critical infrastructures are characterized by strong interdependencies and the developments of urban areas towards Smart Cities 
even increase the underlying complexity due to growing automation and interconnectedness. A system of highly cross-linked components 
is especially prone to systemic risks making concepts of resilience accordingly important. One way for being able to withstand in times 
of stress, maintain security of supply, and promote adaptive and anticipative capabilities, is to establish early warning capabilities. As 
cities are complex and rather chaotic socio-technical systems reigned by randomness, the caused parametric uncertainties challenge 
modeling approaches that are intended to support robust decision-making. Sophisticated methods based on artificial intelligence can play 
an essential role in this case, as they perform well on highly complex environments and large data set. To study resilience, the urban area 
is split into zones where the city’s state is determined by the states of these zones and the state of a zone is characterized by the criticalities 
of infrastructures accommodated there. Considering criticality as an atomic building block for urban performance assessments, this paper 
proposes a zone-based state forecast methodology by applying deep convolutional neural networks for learning state evolution that is 
influenced by non-linear demand dynamics. Furthermore, a case study is presented that applies agent-based simulations and underlines 
the relevance of deep learning approaches for Smart City early warning systems. 
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1. Introduction 

The functioning of critical infrastructures (CIs) is essential 
for the well-being of our modern society. In each of them, 
there are several processes that require in-flows of specific 
resources for performing tasks, for offering services, or 
producing new resources to be consumed by other entities. 
A high quality of service relies on a timely and 
comprehensive availability of specific resources. The direct 
and indirect consequences of the current Covid-19 
pandemic especially reveal the vulnerability of critical 
supply systems e.g. a sudden increase in purchasing 
behavior, triggered by political announcements such as 
movement restrictions, led to shortages of specific 
consumer items and consequently to uncertainties among 
the population (Keane & Neal, 2021). CI systems are 
systems of highly interconnected components and are 
especially prone to systemic risks and cascading failures 
(Buldyrev et al., 2010) making concepts of resilience 
accordingly important (Arafah et al., 2018; Hickford et al., 

2018). Developments towards Smart Cities (SCs) even 
increase their complexity due to growing automation and 
interconnectedness. Here, information and communication 
technology (ICT) plays an essential role to achieve a 
sustainable development pervading other CIs. One way for 
enhancing resilience is to strengthen crisis management. 
Especially, improved situational awareness and assessment 
on possible future developments and CI states certainly help 
decision-makers to identify appropriate management 
strategies. Whilst research on CI resilience is continuously 
growing, approaches taking into account different hazards, 
cascading effects, dynamics, or uncertain information need 
to be further elaborated (Curt & Tacnet, 2018). Especially, 
against the background of future digitalized infrastructures, 
combining continuous monitoring with learning techniques 
is promising for performance prognoses of critical entities. 
This paper presents a smart resilience engineering approach 
for measuring and forecasting the state of CI systems by 
means of deep learning. The focus is on short-term 
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forecasts. Urban areas are split into zones whose states are 
reflected by the criticalities of the CIs accommodated there. 
The forecast methodology is zone-based and applies a deep 
convolutional neural network (CNN) for learning state 
evolution that is influenced by demand dynamics. Learning 
particularly includes experiences made with deviations 
from usual states. The goal is to enhance crisis management 
and prevention capabilities and secure the supply of critical 
resources to the population in the face of occurring and 
impending shortage or bottleneck situations. 

This paper is structured as follows: Section 2 discusses 
the notion of resilience and presents related work. Section 3 
introduces our smart resilience engineering approach and 
clarifies technological requirements. Section 4 presents a 
case study applying agent-based simulations and 
emphasizing the relevance of deep learning approaches for 
SC early warning systems. The paper concludes with a 
discussion and directions for future work in Section 5. 
 
2. Resilient Smart Cities 

Enhancing the resilience of urban areas has become of 
major interest in the last years, both for academics and 
practitioners (Meerow et al., 2016). Managing 
infrastructure dependencies and hence preventing and 
preparing for failures is regarded as a basic requirement for 
resilient societies (Monstadt & Schmidt, 2019). 

2.1. The notion of resilience 
Resilience is defined in terms of three stages: the ability of 
a system to reduce the probability of an adverse event, to 
absorb the shock if the adverse event occurs, and to quickly 
re-establish normal operating conditions. Thus, resilience 
encompasses the four following characteristics: robustness, 
redundancy, resourcefulness, and rapidity (Bruneau et al., 
2003). It is the intrinsic ability of an organization (system) 
to maintain or regain a dynamically stable state allowing to 
continue operations after a major mishap and/or in the 
presence of a continuous stress (Hollnagel, 2006). In 
particular, SC developments need to address resilient city 
concepts (Arafah et al., 2018). Cities in general are 
examples of complex systems and are extremely vulnerable 
to diverse threats making initiatives for enhancing resilience 
of utmost importance (Godschalk, 2003). Building resilient 
cities requires flexible planning to keep up with changing 
dynamics in the environment, designing adaptable artefacts 
being able to withstand and reconfigure in times of stress, 
and agile managing to sense changes in the environment and 
act anticipatively and proactively (Desouza & Flanery, 
2013). Hence, SC developments must include and 
strengthen smart crisis management, which is seriously 
challenged by possible new and unforeseen disruptions and 
the range and severity of their cascading effects. Improved 
anticipation capabilities of CI states through, e.g., early 
warnings surely contribute to maintain the functioning of 
critical urban services and hence enhanced crisis 
management capabilities (Woods, 2006). Here, the less the 
performance of critical services drops and the faster it 
returns to one hundred percent, the better resilience is. SCs 

open up advanced data collection capabilities that could 
support performance forecasts.  

2.2. Related work 
Research in the field of resilient SCs is broad comprising 
different frameworks helping to understand, assess, and 
improve resilience of urban areas (Dhar & Khirfan, 2017) 
or advanced IoT architectures (Abreu et al., 2017). SCs are 
equipped with a dense network of smart devices and 
sensors, where massive amounts of data are produced 
constantly. Key areas of research are dedicated to 
collecting, managing, and evaluating this data for providing 
decision support in various often critical segments. 
Predicting traffic flow, air quality, power generation, or 
electricity consumption are some important research fields, 
e.g. with the help of machine learning (Bomfim, 2020). 
Disaster management especially benefits from smart 
technological solutions (Ragia & Antoniou, 2020) 
providing decision-makers with condensed information 
from different data sources. Here, Big Data analytics plays 
a leading role (Shah et al., 2019) being highly important for 
e.g. improving situation awareness or developing predictive 
capabilities in the framework of crowd management and 
evacuation plans (Yang et al., 2017). Real-time data can 
also be combined with simulations for identifying the 
occurrence of an emergency, mapping the current state, and 
simulating its progress in real-time (Lacinák & Ristvej, 
2017). Furthermore, the ICT infrastructure of SCs and 
advanced analysis techniques can be used to improve the 
information exchange between first responders, public 
authorities, and citizens (Bartoli et al., 2015). Sensors are 
also combined with social networks where e.g. people have 
the role of sensing and event detection (Crooks et al., 2013).  

SC developments pave the way for handling growing 
urbanization issues. However, to best of the authors’ 
knowledge, there is a lack of supporting solutions for crisis 
management that help decision-makers to maintain critical 
urban services and especially the supply of important 
resources in times of occurring and impending bottleneck 
situations. To fill this gap, this paper proposes a forecasting 
methodology that focuses on the performance of critical 
entities, which is co-determined by corresponding service 
demands and coping capacities of the according entities. 
The forecasted performance values enhance early warning 
capabilities and can serve as basis to e.g. potentially initiate 
a re-allocation of critical resources. 
 
3. Forecasting States of Critical Infrastructure Systems 

For studying capabilities and potentials of learning 
mechanisms for SC early warning systems, some 
assumptions on the technological reality are made. 
Furthermore, an agent-based simulation framework that 
integrates a deep learning module is set up to conduct 
corresponding investigations. 
 
3.1. Technological framework 
We assume that a city can be divided into zones, with each 
zone accommodating different CI entities. The city’s state 
is then determined by the states of these zones. Motivated 
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by the current Covid-19 pandemic, the concept of the 15-
Minute City (de Valderrama, N. M. F. Luque-Valdivia, J. 
Aseguinolaza-Braga, 2020) is highlighted enabling all 
citizens an immediate and safe access to all essential i.e. 
critical urban services within a 15-minute walk or bike trip. 
One can consider this as an innovative and sustainable 
approach for increasing the resilience of urban societies. 
Cities as Paris or Melbourne are pioneers in elaborating the 
operationalization of this concept of self-sufficient walk- 
and bikeable neighborhoods. In the spirit of this concept and 
in the context of SCs, we assume the existence of such or 
similar supply zones and consider them as smart 
environments forming a basis for assessing the performance 
of a city, thereby referring to critical services. An ICT 
infrastructure containing neighborhood- and wide area 
networks (NAN, WAN) enable CI entities to transfer their 
state data and possibly further relevant information to a SC 
crisis management unit (SC-CMU), where the states of the 
various zones are calculated. The internal state of a service 
provider can be expressed by a dynamic criticality value 
reflecting the current quality of service in view of current 
and expected demands and is further enriched by 
information on current and anticipated states of up-stream 
supply chains. Additionally, an SC-CMU can collect 
information describing current boundary conditions with 
regard to, e.g. climate or politics, which may influence the 
demand dynamics. Forecasts are possible by an accordingly 
integrated module.  
 
3.2. Research methodology 
The critical facilities under investigation are represented in 
an agent-based framework for capturing the relevant 
processes as well as the required and offered resources for 
running their services. The term resource is used as a 
placeholder for anything that can be spatially shifted, 
including materials, power, and water as well as information 
bits and human beings. Zone agents mark specific areas of 
a city and collect the performance values of the CIs they 
enclose. Furthermore, the entities that demand the resources 
offered by the CI agents are modeled as agents as well. Each 
entity has several processes requiring an in-flow of specific 
resources to be consumed when performing its tasks. The 
entity possibly might produce new resources consumed by 
other agents. Initial configuration values are stored in a 
database. These concern the processes of the CIs, polygon 
shapes of city zones as well as a basic demand behavior that 
is varied for each entity and during the simulation to ensure 
diversity.  

In view of the huge complexity of SCs and the 
stochastic nature of cascading effects or feed-back loops 
caused by certain triggering events and possibly amplified 
by autonomous decision-making through a vast number of 
components or individuals, learning components need to 
play an integral part in smart crisis management solutions. 
In the proposed framework, a specific learning agent 
governs the transfer of appropriate zone state data to the 
learning module. Table 1 illustrates the type of agents 
modeled and the ordered tasks of the regarded processes 
within a given time step. For convenience only, demands 
are generated zone-wise by the corresponding zone agents 

and the CI agents update the status of the demand agents 
based on whether their demands are met or not. In case the 
demand is met, the corresponding agent is deleted. 
Otherwise, alternative options are determined which e.g. 
may lead to accumulated demands. The tasks repeat 
according to defined time steps and during the simulation 
run. 

Table 1. Tasks of the regarded processes of the modeled agents 
within a time step. 

Task Demand 
agent 

CI agent Zone 
agent 

Learning 
agent 

1   Generate 
demand 

Check 
current 
time 

2 Move 
towards 
the next 
CI agent 

Update 
resource 
container 

  

3  Update data 
container of 
zone agent 

  

4   Transfer 
data to 
learning 
agent 

 

5  Update 
demand 
agent’s 
status & own 
resource 
container 

  

6    Generate 
data for 
learning 
module 

 
Agent-based modeling distinguishes from other modeling 
approaches by its scalability and simple adaptability of 
specific models and parameters (Wooldridge, 2009). 
Besides a flexible integration of new agents, further 
preferences can be included on an agent-specific level and 
calibrated depending on the agent’s main state variables, 
which are determined by environmental and internal 
conditions, but also on forecasts in conjunction with the 
agent’s targets and the associated resource requirements. 
These possibilities are comfortable for studying the 
consequences of disruptions that may concern the offering 
as well as demanding agents. A way of characterizing 
resilience is to analyze the supply performance or quality 
before and after some disruptions have occurred, where the 
driving factor for this are current and expected demands for 
critical services. Understanding the dynamics of demands 
for various urban services, which themselves may be 
interdependent, is quite difficult in general, all the more 
during exceptional phases. However, indicators in terms of 
varying state variables such as criticality of CI entities, can 
be applied as building blocks for both, measuring the 
current states of the supply zones and the state of the overall 
performance of the city. Criticality is a time-dependent 
measurement, reflecting the severity of the consequences a 
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failure of a CI has to the overall security of supply. 
Criticality is a demand-driven concept and result from 
socio-political processes (Ottenburger et al., 2018). Zone 
agents aggregate the corresponding criticality values of the 
CIs. The underlying performance metrics can be 
constructed as weighted sums of critical services’ 
criticalities, where the weighing factor is specified by the 
SC-CMU. Knowing state changes in advance enables an 
SC-CMU to make decisions to mitigate supply shortages. 
 
3.2.1. Forecast model for zone supply states via 
Convolutional Neural Networks 
The aforementioned indicators and the knowledge on 
boundary conditions being continuously collected by the 
SC-CMU form a basis for the forecast model for future 
supply states of the zones, which can be considered as a 
grid-like parquetting of the urban area. Depending on urban 
planning issues, this zone segmentation might be quite 
regular containing rectangular geometries but it is not 
limited to it and could be more complicated. However, 
knowing all neighboring zones of any given zone, gives rise 
to a matrix-like cluster model using the proximity between 
zones, i.e. adjacent zones correspond to adjacent matrix 
elements, which themselves characterize a state. For the 
sake of simplicity, in this paper, we neglect the inclusion of 
boundary conditions into the prediction model and rather 
focus on the very basic criticality-based state model, where 
adding boundary conditions to this basic model can be 
considered as some sort of matrix extension (current and on-
going research). Empirically, proximity plays a crucial role 
to understand how demands evolve, shift, and accumulate 
within an urban system. The matrix representation of the 
zones naturally invites to consider the matrix and its 
elements as a first structured layer of a deep CNN (Simard 
et al., 2003) to apply ‘Tensor Flow’ (Zaccone, 2016), by 
making use of the spatial structure of the input data. Besides 
the input and output layers, the topology of such deep CNNs 
is basically determined by hidden convolutional and fully 
connected dense layers. Convolutional layers emerge from 
so called filters of kernel size such as , which shift 
across the input matrix by given step sizes, e.g. one. 
Furthermore, we chose the sigmoid function as activation 
function. As explained in Section 3.1, criticality values of 
various critical service providers are transferred to a SC-
CMU, where they are assigned to the corresponding zones. 
After having specified the prediction horizon, the output of 
the input/output-tuple for training the CNN for zone states 
is again a matrix, containing the future states associated to 
the states of the input measurement. 
 
4. Case Study  

For studying deep learning approaches for SC early warning 
systems, we have implemented a set of according agents 
exemplarily for the city of Karlsruhe in Germany. For the 
sake of simplicity, we have considered a single CI to rather 
focus on the capabilities of learning. Nevertheless, the 
approach is not limited to a specific CI and the framework 
enables to make corresponding extensions. Measuring 

states of all urban supply systems similar to the approach 
we describe here has the potential to implicitly detect 
interdependent phenomena.  
 
4.1 General framework 
The city area was segmented into a grid of 25 zones. 
Supermarkets constitute CI agents and the resources 
investigated are two basic foodstuffs that in principal can be 
substituted by each other. Each supermarket has food stocks 
that are filled each morning. Agents are generated in each 
zone during the day demanding a certain amount of these 
foodstuffs. For demand generation, we distinguish between 
three population groups with different purchasing behavior 
– according to purchasing time and quantities. The first 
group concentrates their purchasing to the morning hours, 
the second to the evening hours, and the third group 
distributes their purchases flexibly over the day. We further 
assume criticality factors that reflect the willingness to seek 
further supermarkets if the demand is not met. In addition, 
there is a specific substitution factor per population category 
and foodstuff that reflects preferences for a specific item. 
Values for purchasing behavior, criticality, and substitution 
are stored per population group in a database. For 
generating a concrete demand agent, these values are 
uniformly randomized within the given parameters. 
Furthermore, the demand agents are randomly distributed in 
each zone. Also, as the simulation progresses, the criticality 
increases if the demand is not satisfied and the agent has to 
look for an alternative supermarket. With regard to shortage 
scenarios, this may be interpreted as growing panic if the 
demand agent finds itself in front of empty shelves. 
Furthermore, in this initial approach we assume that the 
demand agent looks for the nearest supermarket based on its 
current location. We further assume a certain speed of 
movement, which is set individually for each demand agent 
and which is based on a random transport mean (vehicle, 
foot, bicycle, or public transport). Depending on the current 
food stock and the demands, a supermarket calculates its 
criticality and forwards it to the corresponding zone agent. 
In our simulation, these criticality values are determined 
once per time step, per supermarket, and per foodstuff 
according to function  with 

 (1) 

where for a specific foodstuff,  denotes the critical 
amount of storage,  the current amount available, and  the 
current demand. For this case study, we have chosen 

 (2) 

with  denoting the remaining time steps until closure time 
and  the minimum criticality value for the case that the 
current available stock is smaller than the critical amount of 
storage but the demand can be fulfilled by the stock 
available. Emptying stocks may be regarded as less critical 
towards the end of the day. For the case study, we 
exemplarily set . In general, the bigger the criticality 
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value is, the more critical the state is. Furthermore, we have 
set 

 (3) 

as a first approach. The zone agent can be interpreted as a 
data collector or technical component within the NAN or 
WAN of that respective zone, relaying the collected data to 
the SC-CMU. For the sake of simplicity, we have chosen a 
very strict zone performance metric, namely the maximum 
of all criticalities of supermarkets lying in the respective 
zone, which is used by the learning component of the SC-
CMU as the input. The output is determined according to 
the prediction horizon for the corresponding time step in a 
same way but with the following difference: instead of 
applying the original range of values from the state 
assessment, we map these to three states respectively colors 
– 5, 10, 15 respectively green, yellow, and red indicating the 
state of the zone in a simplistic way. Green corresponds to 
the value sub-range [0,0.3), yellow to the value sub-range 
[0.3,0.6), and red to the value sub-range [0.6,1.0]. The 
reasons for this mapping are twofold: Firstly, decision 
makers in the SC-CMU need clear and unambiguous 
information on state changes. Secondly, training is expected 
to be more successful the less classification clusters there 
are. In our case study, the prediction horizon and the 
simulation time step were chosen to be 30 minutes. The 
scenarios on which this case study focuses are disrupted 
supply chains affecting the daily stock replenishment of 
selected supermarkets according to an increasing disruption 
rate in the following sense: Every fifth working day some 
randomly selected supermarkets are affected by a failure of 
a daily delivery of goods. The number of these supermarkets 
is determined by a failure rate, starting at 6%, which 
increases by 3% every 250th day. This means that within 
the first 250th simulated working days, on every fifth day, 
6% of all supermarkets are impaired by a one-day lasting 
delivery disruption. Within the 251st and 500th simulated 
working day such disruptions occur with a disruption rate 
of 9% and so on. Based on the agent simulation framework 
described above, a training data set consisting of 115.000 
input/output tuples corresponding to 5000 working days, 
was generated in a single simulation run. 
 
4.2 CNN: Topology and results 
The input and output neurons are given by  matrices, 
where the input matrix contains values lying in the interval 
[0,1] and an element of the output matrix is either 5 (green), 
10 (yellow), or 15 (red) – the bigger these values are the 
more critical the state is. The CNN design approach we 
chose uses the Keras-Phython-librariesa for TensorFlow: 
The first and only convolutional layer is determined by one 

-filter with step-size 1. A further hidden layer is a 
dense layer with 300 neurons, followed by a further dense 
layer with 100 neurons and a dense layer with 25 neurons 
for the output. The error function for applying gradient 
descent in the back propagation is simply the mean absolute 

                                                           
a https://keras.io/ 

percentage error. The metric for assessing the quality of the 
classification results is as follows: 

 (4) 

The aforementioned set of training data consisting of 
115.000 input/output tuples was subdivided into 75% 
training data and 25 % validation data and after 1000 
iterations steps the state forecasting accuracy lies above 
99,5%. In the following, we give a description of a short but 
representative extract of our results: Nine supermarkets 
located in zones B2, C1, C2, C5, and D2, are affected by 
supply chains interruptions. Two supermarkets lie in zone 
C1 and four supermarkets in zone C2. The other mentioned 
zones accommodate one supermarket, respectively. 
Changes according to the generated demand agents during 
the day are illustrated in Fig. 1 comprising newly generated 
agents as well as agents whose demands are not met. 

 

Fig. 1 Generated demand agents for different time slots. Zones 
C1 and C2 experience state deteriorations during the day. 

Table 2 shows the observed and predicted state values for 
different time slots. Although several supermarkets are 
affected by supply disruptions, demands can be met in the 
morning, which can be explained as follows: (i) demand 
agents potentially change the zone and search for other 
supermarkets, such as in zone B2 and zone D2. These zones 
are neighboring zones of zones with a high density of 
supermarkets; (ii) the supermarket density in a zone is per 
se high, such as in zone C1 and C2. The stocks of basic 
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goods are sufficient to satisfy the demands in the morning; 
(iii) the number of demanding agents is low due to a smaller 
population density, such as in zone C5. During the day the 
situations gets tenser. Again, observed and predicted state 
values are compared. Zone C1 and C2 experience 
deteriorating states. Increasing demands in the zone during 
the day as well as additional agents from the neighboring 
zones potentially contribute to the deteriorating situation 
(Fig. 1). States for zone C1 are not correctly predicted as 
can also be seen in Fig. 2. However, the tendencies 
predicted are correct. The state of zone C1 improves 
between 4:00 and 4:30 pm, which is potentially owed to a 
relaxed demand situation. This excerpt further shows how 
the functions (1), (2) and (3) work. In addition, critical 
amounts of storage are not fallen below and the criticality is 
mainly determined by the quantity of demand and current 
amount of foodstuff available. 

The study emphasizes the added value of this 
forecasting approach: improved situational awareness also 
with regard to future states, especially with the possibilities 
to consider diverse drivers of state changes and to learn 
from deviations. Conceivable scenarios are manifold 
ranging from service disruptions to sudden increase in 
demands, where particularly patterns of demand flows can 
be learned. It is important to note that detailed person-
specific data on consumer behavior or data of service 
providers are not required. For conducting this study, 
demand is generated under certain assumptions. However, 
the learning module does not depend on these 
configurations. Our implementation further shows 
possibilities of visual support helping to interpret the 
forecasted values, which is certainly subject of further 
improvements as well.

Table 2. Observed (obs.) and predicted (pred.) state values. Green (g) corresponds to [0,0.3), yellow (y) to [0.3,0.6), and red (r) to [0.6,1.0]. 
The cells highlighted in grey show status deteriorations during the day. 

 
8:00-8:30 am 8:30-9:00 am 3:00-3:30 pm 3:30-4:00 pm 4:00-4:30 pm  4:30-5:00 pm  

Zone Obs. Obs. Pre. Obs. Obs. Pre. Obs. Pre. Obs. Pre. 

A1 0.025 0.0 g 0.004 0.014 g 0.017 g 0.019 g 

A2 0.003 0.003 g 0.004 0.011 g 0.021 g 0.023 g 

A3 0.0 0.0 g 0.0 0.0 g 0.0 g 0.0 g 

A4 0.003 0.003 g 0.02 0.041 g 0.03 g 0.038 g 

A5 0.0 0.0 g 0.0 0.0 g 0.0 g 0.0 g 

B1 0.002 0.003 g 0.006 0.014 g 0.014 g 0.014 g 

B2 0.002 0.005 g 0.014 0.039 g 0.038 g 0.041 g 

B3 0.004 0.004 g 0.016 0.035 g 0.039 g 0.045 g 

B4 0.033 0.003 g 0.006 0.006 g 0.013 g 0.017 g 

B5 0.0 0.0 g 0.0 0.0 g 0.0 g 0.0 g 

C1 0.002 0.033 g 0.532 0.547 r 0.035 g 0.53 r 

C2 0.011 0.023 g 0.05 0.188 g 0.5 y 0.5 y 

C3 0.001 0.008 g 0.031 0.017 g 0.027 g 0.037 g 

C4 0.005 0.002 g 0.008 0.013 g 0.013 g 0.03 g 

C5 0.002 0.005 g 0.006 0.011 g 0.015 g 0.022 g 

D1 0.0 0.0 g 0.0 0.0 g 0.0 g 0.0 g 

D2 0.004 0.004 g 0.018 0.02 g 0.045 g 0.059 g 

D3 0.001 0.003 g 0.001 0.009 g 0.011 g 0.012 g 

D4 0.005 0.008 g 0.013 0.008 g 0.015 g 0.031 g 

D5 0.0 0.0 g 0.0 0.0 g 0.0 g 0.0 g 

E1 0.0 0.0 g 0.0 0.0 g 0.0 g 0.0 g 

E2 0.0 0.0 g 0.0 0.0 g 0.0 g 0.0 g 

E3 0.007 0.003 g 0.021 0.034 g 0.033 g 0.055 g 

E4 0.002 0.004 g 0.006 0.014 g 0.015 g 0.018 g 
E5 0.0 0.0 g 0.0 0.0 g 0.0 g 0.0 g  
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Fig. 2. Observed vs. predicted states. The triangles illustrate 
disrupted service providers, the circles non-disrupted providers. 

5. Discussion and Future Research  

Driven by growing urbanization issues, SC developments 
mainly settle around sustainability and digitalization for 
improving comfort and quality of life for the city’s citizens. 
Yet, urban resilience considerations are often not 
adequately addressed. Enhancing urban resilience means to 
target at concrete improvement aspects, such as to consider 
building redundancies, to strengthen organizational and 
management units, and to harden infrastructure. This 
research emphasizes the need for integrating urban 
resilience into SCs in terms of smart crisis management 
capabilities and is motivated by the fact of increasing 
interconnectedness and automation of various critical 
segments. A single failure (accident, component failure, 
intended harm) can potentially lead to adverse cascading 
effects deteriorating security of supply or the city’s 
performance. The complexity of SCs, their different states, 
the innumerous amount of crisis scenarios are hard to be 
described in terms of models alone. A big advantage of 
continuously collecting and evaluating data of all entities 
and system states, where the latter is expressed by certain 
performance indicators, is to improve forecasting these 
states, through machine learning techniques as e.g. neural 
networks or predictive analytics. This becomes in particular 
interesting for decision-making in the context of 
unprecedented disruptions. The presented approach can be 
tailored to strategic and city specific configurations 
respecting preferences of the decision-makers concerned. 

The following aspects need to be examined in more 
detail in future research: (i) The agent-based model provides 
means to generate data that is assumed to be available in the 
context of a SC – criticality values of entities that are based 

on e.g. current demand and available stocks. The SC-CMU 
and forecasting module, respectively, would process 
criticality values solely and directly. Hence, the 
technological innovation is only dependent on a city-based 
zone model, a learning component, and ICT for transferring 
criticality values. However, since disruptions normally 
occur infrequently, generating synthetic data, e.g. for 
different types of disruption scenarios, via multi agent-
based simulation models is a promising approach. For the 
purpose of this research, we made assumptions on citizens’ 
demand and the replenishment of stocks. Realistic data 
would certainly improve the agent-based based models as 
well as the insights on actual demand dynamics.  In turn this 
requires consequent updating of models and parameters as 
well as deep understanding of behavioral aspects. We have 
chosen a microscopic demand model since macroscopic 
models covering various boundary conditions, socio-
economic factors, and randomness in individual decision-
making do not exist a priori and if so, adapting them to 
specific urban environments would be too complicated. 
Hence, a first approach for uncovering the dynamics in 
demands is to analyze variations of certain demand related 
state variables on a semi-aggregated and zone-based level, 
respectively. Future work particularly aims at extending the 
deep learning mechanism by considering various boundary 
or environmental conditions for implicitly revealing 
spatially and temporally ‘moving’ demands on an urban 
scale in a semi-aggregated sense. Especially, if the 
prediction horizon is larger than chosen in this paper, 
certainly more information has to be included in the 
prediction model. Furthermore, the deep learning 
mechanism must be able to continuously learn and future 
research is dedicated to building a kind of memory as well; 
(ii) In real world environments, the time horizon for 
collecting training data needs to be reduced. The learning 
component as part of an early warning system should be 
able to give valuable information within a much smaller 
training time frame than 5000 days as well as evaluation 
time-steps and should be continuously improved through 
further learning. Since disruptions occur infrequently, small 
time horizons would probably not be sufficient. In this 
context, it is important to cover a sufficient amount of 
diverse disruptions scenarios and the SC-CMU conducting 
SC crisis exercises as well as improving the agent-based 
approach to generate synthetic data may help to overcome 
this issue. Improving models of urban demands w.r.t. 
certain goods can be based on studies and continuous 
surveys – understanding generation patterns, which 
normally, as we assume, reveal some regular structures, 
depending e.g. on socio-economic factors.  Furthermore, the 
proposed technological innovation can also be used to 
measure fine temporal resolved customer flows at 
individual service providers, creating a base for further 
model improvements. (iii) This approach assumes CIs to 
share their criticality values with the SC-CMU. These 
values aggregate information on demand and internal 
processes. Hence, this approach tries to strike a balance 
between processing very sensitive information that 
potentially would yield to more precise forecasting results 
and non-sensitive information limiting the predictive value. 
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Criticality associated with a resource transferred to a crisis 
management in a secure way would be a minimum 
consensus of sharing data – sharing not with potential 
competitors but with an authority, which e.g. would be in 
line with the German fundamental obligations for CI 
operators. (iv) For applying this approach to multiple CIs, 
the entries of the matrices for training the CNN could be 
accordingly enhanced comprising current and future states 
for diverse CIs and different zones. Interdependent 
phenomena may be implicitly detected as current 
combinations of CI criticalities may yield to specific 
forecasted zone states. Although working with this zone 
abstraction, computational complexity and dimensionality 
can get very large, therefore designing feasible deep 
learning models is subject of current research. 
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