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endeavor.[1,2] Experimental efforts to 
develop and design new materials are 
increasingly complemented by computa-
tional strategies. This mirrors the trend in 
many other application areas, where com-
puter-aided design has significantly acceler-
ated product development, often reducing 
the cost at the same time. Examples are 
the automotive, aerospace, and electronics 
industries, where the development of 
novel products are nowadays unthinkable 
without computer-aided design. A prereq-
uisite for the successful application of such 
a strategy is the availability of predictive 
simulation protocols, which can be used as 
digital twins[3,4] for devices in the context of 
development and design.

Materials design is still behind other 
fields in the application of computer-
aided design strategies, not for the lack 
of effort, but because of the complexity of 

the underlying task. The computational challenges for under-
standing the material properties encompass interdisciplinary 
research, where the comprehension of its nature runs through 
different scales of materials behavior, requiring multi-scale 
approaches. However, the field is lacking a monolithic compu-
tational framework to cover all of these scales, in both space 
and time, with the available computational resources.[5]

In recent years, modeling and simulation of materials have become 
indispensable to complement experiments in materials design.  
High-throughput simulations increasingly aid researchers in selecting the 
most promising materials for experimental studies or by providing insights 
inaccessible by experiment. However, this often requires multiple simulation 
tools to meet the modeling goal. As a result, methods and tools are needed to 
enable extensive-scale simulations with streamlined execution of all tasks within 
a complex simulation protocol, including the transfer and adaptation of data 
between calculations. These methods should allow rapid prototyping of new 
protocols and proper documentation of the process. Here an overview of the 
benefits and challenges of workflow engineering in virtual material design is 
presented. Furthermore, a selection of prominent scientific workflow frameworks 
used for the research in the BATTERY 2030+ project is presented. Their 
strengths and weaknesses as well as a selection of use cases in which workflow 
frameworks significantly contributed to the respective studies are discussed.
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1. Introduction

Materials with tailored properties are an essential basis for the 
development of new technological solutions in the fields of 
energy and environment, health, information and communica-
tion, manufacturing, or security and transport, but their devel-
opment and adaptation is often a time- and resource-intensive 
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Workflow engines are able to address various challenges in 
computational materials design, which is a nontrivial field. For 
example, choosing the correct calculation parameters is rather 
challenging even for experts. Validated workflows can provide a 
predefined set of computational parameters that allow scientists 
to focus on the underlying science and less on the mechanics 
of setting up and running a calculation. The status quo of 
computational materials science excludes users without an 
in-depth practical knowledge of methods and computer hard-
ware from running calculations. In consequence, many experts 
in associated fields are excluded from the benefits originating 
from theoretical insights. Validated computational workflows 
can act as a bridge enabling non experts to access information 
without the complication of selecting computing resources or 
numerical parameters.

Computational materials development requires several 
methods to generate a predictive materials model or a digital 
twin. There is an enormous literature on the development 
and application of the components, and their integration into 
complex protocols available.[6–9] Recently, there have been sev-
eral high-level initiatives, such as the Materials Genome Initia-
tive or the Materials Project,[10,11] the “Materials design at the 
Exascale” European Centre of Excellence (MaX, www.max-
centre.eu), or the Harvard clean energy initiative[12] that aim 
at the computational development of novel materials. To date, 
only a few reports about the tools that may be used to formalize 
the execution of the underlying protocols, named here as work-
flows, are available in the literature. In addition to the actual 
computation, various other complex steps, including retrieval, 
preprocessing, transformation, analysis, and deposition of data, 
are integral parts of the process and need to be addressed in 
a scientific workflow. This complexity illustrates the need for 
a systematic review of available workflow frameworks. Here, 
we present the major frameworks we consider relevant for the 
BATTERY 2030 + projects scope with their respective strengths 
and weaknesses, together with a selection of use cases.

2. Scientific Workflows

Scientific workflows can be viewed as an approach that models 
computational tasks in simulation and data analysis to under-
stand the physical nature of complex systems. A workflow rep-
resents the coordinated execution of repeatable computational 
steps while accounting for dependencies and concurrency of 
tasks. While, in computational science, the workflow approach 
has a long-established tradition,[13–15] it has only started to gain 
relevance in computational materials science, biology, chem-
istry, and physics within the last decade.[16–19] A workflow can 
formally be described by a directed acyclic graph in which the 
vertices denote the actions, and the edges indicate the execution 
order and data dependencies, known as control flow and data 
flow, respectively. A conceptual overview of the components of 
a workflow framework is given in Figure 1. Concrete workflow 
examples are presented below.

The design and study of digital twins does not necessarily 
require a workflow framework. However, there are important 
reasons for their utilization. By providing a layer of abstrac-
tion, workflows enable scientists to design and conduct studies 

without in-depth knowledge of the software deployment on 
computational resources. Furthermore, they improve the 
transfer of knowledge within groups, collaborators, or users 
by providing a concise description of the input data, utilized 
software and scripts, and the respective parameters and set-
tings used for a specific project. Consequently, applying the 
same methodology to a new system or extending the scale of 
a study only requires a conceptual understanding of the sub-
ject in order to properly adjust input data and run parameters. 
Especially with increasing efforts for scientific data to adhere to 
the FAIR guidelines,[20] which require the data to be Findable, 
Accessible, Interoperable, and Reusable, workflow frameworks 
provide an essential tool to improve the interoperability and 
reusability of published data.

The main benefits of using workflows in multi-scale and 
high-throughput simulations can be summarized as follows:

1. Automation: Workflow engines schedule the computational 
tasks according to their interdependencies, collect the output 
of preceding steps, and pass the input to subsequent steps. 
Some workflow systems support the execution of process 
steps on different computing resources.

2. Complexity reduction: Prevalidated workflows allow experts 
and out-of-field users to generate production-quality results, 
thus optimally leveraging their respective training and focus 
on science and not on procedure.

3. Scalability and high performance computing (HPC) readi-
ness: Workflows automatically exploit concurrency of steps 
that do not exchange data, that is, that are not directly connect-
ed in the workflow graph. High workflow concurrency can be 
used to scale up the application on an HPC cluster or a large 
number of distributed resources (for example, in the cloud).

4. Data reusability: Workflows reuse data seamlessly in subse-
quent steps. Thus, a sub-workflow can often be nested with-
out modifications in a workflow for another application.

5. Provenance: Workflows are persistent objects providing 
metadata and methods to track the origin of data and code. A 
workflow can be automatically reproduced and thus be used 
for validation purposes. Therefore, a workflow documents a 
simulation or data analysis and consequently improves re-
producibility.

6. Reliability and resilience: Workflows provide mechanisms 
to authenticate users on the resources, track errors, and re-
cover from failure. Failures of single steps do not invalidate 
the whole workflow, but only the affected steps and their de-
scendants.

7. Rapid prototyping: Workflows enable multiscale modeling by 
reusing existing codes in a very flexible “drag-and-drop” fash-
ion using a specialized workflow editor and increase model 
development productivity.

To leverage these benefits, workflow frameworks need to 
store not only the relevant data but also capture and store the 
associated metadata that describe in detail how the data was 
generated. This includes, amongst others, an uncertainty quan-
tification of the data generated at each step, which is of par-
ticular relevance in multi-scale workflows where error propa-
gation can be a serious concern. Finally a deposition of the 
datasets in repositories satisfying FAIR data-sharing principles 
such as NOMAD (https://nomad-lab.eu/) or Materials cloud 
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(https://www.materialscloud.org/), should be considered. This 
significantly improves the usefulness of the data for down-
stream applications and analysis as it provides a standardized 
format and well defined means of access. The same philosophy 
also applies to commercial enterprises, with the additional 
requirement that most internally generated research results 
will likely be confidential and not for public consumption. Ulti-
mately, all data generated should be findable and accessible 
either in public or in closed corporate repositories following 
FAIR principles. This approach has the potential to enable the 
very efficient development of batteries and battery materials in 
a commercial setting.

3. Workflow Frameworks

Despite these significant advantages, many academic groups 
still rely on script-based approaches to implement increasingly 
complex computational protocols. This is partly due to the lack 
of information on existing workflow frameworks that have 
been specifically developed for application in the natural sci-
ences. Another possible reason might be the effort needed to 
migrate all software from existing script-based code to a given 
workflow framework. Regardless of the reason, the amount of 

data and complexity related to a published simulation protocol 
increase every day. We expect that most of the groups working 
in materials modeling, and in particular those in the multi-
scale domain, will have to move to the workflows framework 
world. To guide this transition, we present an overview of a few 
representative workflow environments.

3.1. AiiDA

AiiDA is an open-source high-throughput workflow framework 
for computational science with a strong focus on reproduc-
ibility.[21,22] Workflows that are run by AiiDA are automatically 
stored in a provenance graph[19] with rich metadata, including 
all workflow inputs and outputs. The provenance graph is 
stored in a high-performance relational database which makes 
it possible to perform powerful queries on all data stored. 
Since all workflows and their inputs are stored, AiiDA can 
reuse calculations that have been already run with the same 
input parameters, or users can rerun completed workflows and 
compare the results for verification purposes. The framework 
is tightly integrated with job schedulers for high-performance 
computational resources and can submit jobs remotely over 
secure shell connections. This allows AiiDA users to easily 

Figure 1. Schematic representation of the components of a workflow framework. A workflow consists of several interconnected data operations 
(center). Dependencies and data flow (indicated by arrows) between these operations are captured in the workflow and handled by the workflow 
framework. Furthermore, the workflow framework handles the interaction with various data sources and compute resources. The user interacts with 
the workflow framework via a user interface (UI), which enables the user to edit the workflow architecture, interact with data storage elements, target 
compute resources, as well as define and adjust parameters and settings of the individual workflow elements.
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and efficiently distribute the workflow load over multiple 
computational resources.

AiiDA is domain agnostic and any code that can be run over 
the command line can be integrated through AiiDA’s plugin 
system. An overview of existing public plugins is available on 
the plugin registry (https://aiidateam.github.io/aiida-registry/), 
with almost 100 different codes supported as of June 2021. 
Since AiiDA has its roots in computational materials science, 
a large number of plugins cover that domain, and in particular, 
many of the most popular density-functional theory (DFT) 
codes are interfaced to AiiDA. In addition, a recent collabora-
tion[23] defined and implemented a common workflow inter-
face for eleven of these plugins to automatically optimize the 
geometry of a crystalline or molecular structure, while at the 
same time automatically selecting all needed numerical param-
eters to ensure converged results: basis-set sizes, pseudopoten-
tials, choice of algorithms, numerical thresholds (for energy, 
forces, stresses, ...). This makes it easy also for nonexperts 
to use any of these quantum engines with a single interface, 
providing as input only the atomic coordinates and no other 
numerical parameters.

To streamline access to simulation and workflow capabili-
ties even more, also to users that are not familiar with Python, 
the AiiDAlab platform[24] leverages the Jupyter and JupyterHub 
technologies to provide an online graphical user interface 
(GUI) to AiiDA and existing workflows. In addition, a virtual 
machine called Quantum Mobile is available (https://quantum-
mobile.readthedocs.io/en/latest/index.html). It comes pre-
installed with AiiDA as well several simulation codes and 
their respective plugins. This makes it easy for new users to 
get started with AiiDA, in particular during schools and tuto-
rials, but also to reproduce the results of published papers.[25] 
Finally, data from AiiDA databases can be shared with others by 
exporting all or parts of it to archive files, by directly exposing 
it through the integrated REST API, or by uploading it to the 
Materials Cloud web platform[26] (https://www.materialscloud.
org/). Materials Cloud allows users to visually browse AiiDA 
provenance graphs, as well as explore many curated data sets 
(with full provenance metadata) via custom visualizations.

3.2. FireWorks

FireWorks (materialsproject.github.io/fireworks/)[18] is a 
Python-based generic workflow system that has been developed 
in the framework of the Materials Project[11] in the USA. Fire-
Works has been used extensively for high-throughput materials 
design, in particular via Atomate,[27] a specialized collection of 
FireWorks workflows covering the most common atomistic 
simulations in materials science. Workflows are composed of 
fireworks that appear as nodes in the workflow graph. Similar 
to AiiDA, rich provenance metadata is captured and persisted 
in a database, in this case MongoDB. FireWorks has two very 
powerful features: i) The FWAction object allows implementing 
dataflow when integrating Python functions as tasks, as well as 
dynamic workflows in which the workflow structure is modi-
fied during workflow execution. A workflow can be extended 
not only with single fireworks but also whole sub-workflows 
can be inserted or appended dynamically; ii) the DupeFinder 

object enables duplicates detection, that is, data from com-
pleted fireworks can be reused in other identical fireworks in 
the same or in other workflows to avoid repeated computations.

3.3. KNIME

The Konstanz Information Miner (KNIME - www.knime.com) is 
a java-based open-source modular environment, focused on the 
graphical assembly of a data pipeline and its interactive execu-
tion.[28] The data processing units in KNIME are referred to as 
nodes, and data is transferred between nodes in the form of class 
objects of a DataTable class, which includes meta-information 
about the represented data. KNIME offers an exhaustive spec-
trum of data analysis capabilities by integrating open source 
projects for statistics (R[29]), data mining and machine learning 
WEKA,[30] as well as data visualization JFreeChart.[31] Similar 
to AiiDA, external tools can be easily integrated using a plugin 
system that depends on subclasses of abstract classes for the 
node model, its dialog, and its view. A broad selection of KNIME 
nodes and workflows is publicly available at the online reposi-
tory NodePit www.nodepit.com. Due to the GUI and broad dis-
tribution, KNIME workflows can be easily composed and reused 
without programming expertise. However Java programming is 
required if no nodes for the desired task exist.[32]

3.4. Pipeline Pilot

Pipeline Pilot (https://www.3ds.com/products-services/biovia/
products/data-science/pipeline-pilot) is a chemically-aware 
commercial workflow engine developed and distributed by 
Dassault Systèmes BIOVIA.[32] It provides a graphical user 
interface in which a broad range of pre-defined components 
can be combined into protocols. Complete protocols can be 
incorporated as components into other protocols. The connec-
tions between components are referred to as pipes and repre-
sent the dataflow, which allows visual programming and rapid 
prototyping without requiring detailed knowledge of any spe-
cific programming language.

Pipeline Pilot components can represent simple actions 
such as loading, filtering, combination or manipulation of 
hierarchical data which can be in the form of molecules, reac-
tions, materials, images, or standard data types. Components 
are grouped in collections, which handle specific topics. For 
example the Materials Studio Collection (MSC) provides com-
ponents and protocols that utilize the functionality of BIOVIA 
Materials Studio, covering straight forward access to structure 
builders and symmetry functions, classical molecular dynamics 
(MD), mesoscale simulations, DFT calculations, as well as 
analysis components for all of these functions. Furthermore, 
MSC incorporates additional scientific functionality that builds 
on top of Materials Studio solvers to generate, for example, ther-
modynamic diagrams for metal alloys, protocols to determine 
glass transition temperature for polymers, and workflows to 
create crosslinked polymer structures. Available component col-
lections include access to extensive functionality in cheminfor-
matics, biomolecular modeling, and data science, as well as the 
automatic generation of static and interactive reports. Pipeline 
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Pilot also handles the high performance computing aspects of 
running simulations, including submission to queuing systems 
and parallelization over individual jobs as well as parallel execu-
tion of individual calculations where required.

3.5. SimStack

SimStack www.simstack.eu (https://simstack.readthedocs.io) is 
a graphical workflow editor based on Python. It allows the effi-
cient implementation, adoption, and execution of complex and 
extensive simulation workflows. SimStack hides the complexity 
of high-performance computing on remote resources and ena-
bles users in academia or industry to incorporate competitive 
edge models and scalable scientific simulations into their vir-
tual design process. Furthermore, it provides a highly flexible 
drag-and-drop environment that allows the quick adaptation 
of existing workflows to develop custom solutions fitting the 
user needs.

The Workflow elements are incorporated using Workflow 
Active Nodes (WaNos)—simple XML files defining the expected 
input and output and adjustable parameters. The WaNos act as 
a wrapper to call the respective program code and parameters 
are incorporated using a simple templating language. Thereby, 
incorporation of any arbitrary software into SimStack only 
requires knowledge of the XML syntax and elements and of the 
templating language. The end-user can then use the element 
by providing the required input and setting the parameters in a 
graphical user interface (GUI).

SimStack splits the whole virtual design process into client 
and server modes. The client, executed on the laptop, is dedi-
cated to modeling workflows. In this framework, several mod-
ules are connected into complex workflows using drag and 
drop features. The most relevant parameters are set using the 
automatically generated GUI. The SimStack client automati-
cally connects to the SimStack server installed on computa-
tional resources and handles the execution of the simulations, 
managing file transfer, submission, monitoring of workflows, 
and downloads the results files to the client user.

3.6. Pyiron

Pyiron is an integrated development environment (IDE) for 
computational materials science www.pyiron.org. While this 
workflow framework also has the goal to connect different tools 
in a single platform, it is particularly designed to interactively 
develop simulation workflows and upscale them for high-
throughput simulations on available computing resources. 
Therefore, the pyiron IDE employs Jupyter notebooks as web-
based source code editors, combining the advantages of a 
flexible programming environment with documentation, visu-
alization and auto completion. The environment is further con-
nected with a job queue system for building automation and a 
hierarchical data management solution. The elementary units 
of this interactive environment are pyiron objects based on an 
abstract class, which links application structures such as atom-
istic structures, projects, jobs, simulation workflows, and com-
puting resources with persistent storage.

In general, the whole process in any simulation problem con-
sists of model input, output generation (running simulation), 
and output analysis. However, between model input and output 
analysis, there are several issues to manage. All these issues are 
addressed by the pyiron framework, which orchestrates them in 
twelve generic steps, termed as 1) model, 2) project, 3) generic 
input, 4)  code input, 5)  simulation, 6)  code output, 7)  generic 
output, 8) job validation, 9) collect data, 10) analysis, 11) visuali-
zation, and 12) validation. Out of all these steps, only three of 
them (1, 2, 12) require mandatory inputs from the user, while 
the rest is automatically managed by the pyiron IDE.[33]

The use of the features of the Jupyter notebooks platform 
(www.github.com/jupyterhub/jupyterhub) has the additional 
advantage that it provides a powerful server–client system, 
where the user works with a default browser on the local com-
pute resource to develop, run and analyze workflows that run 
on remote HPC resources, including binder instances for 
cloud computing.

3.7. MyQueue

MyQueue[34] is a task and workflow scheduling system which 
acts as a front-end for schedulers (SLURM/PBS/LSF). The main 
scope/function is to facilitate the submission of several thou-
sands of tasks submitted to a cluster. One of the main advan-
tages is the low entry barrier and its simplicity: Existing Python 
scripts containing the simulation steps can be composed into 
a workflow by setting up the dependencies using MyQueue. 
Each script is then submitted as a job to the scheduler and 
monitored by MyQueue. In principle, MyQueue can work with 
any simulation code and has recently been used together with 
the atomistic simulation environment (ASE).[35] ASE has been 
developed for supporting computational scientists in running, 
visualizing, and analyzing atomistic simulations through pro-
viding Python tools and modules. By supporting 44 simulation 
codes (version 3.21.1, June 2021), such as GPAW,[36] VASP,[37] 
Quantum ESPRESSO,[38] or FHI-Aims,[39] ASE can be easily 
used to bridge results from different simulation engines as well 
as from different time and length scales. At the core is the cal-
culator object, providing a unified interface for the supported 
simulation packages. In essence, researchers can build complex 
simulation protocols consisting of generating the input script, 
managing and performing the calculation and postprocessing 
the results in a few lines of code. MyQueue does not need 
any database server to run the tools, while ASE supports dif-
ferent database back-ends if needed. For instance, this allows 
researchers to perform rapid prototyping of new workflows for 
which the exact dependency graph is not known upfront, while 
it can also be used for large scale high-throughput studies.

The ASE/MyQueue framework was first applied to create the 
computational 2D materials database (C2DB).[40] Although ASE 
and MyQueue do not incorporate the handling of data prov-
enance or the robustness of simulation tasks, the developers 
have recently implemented an additional package called the 
atomic simulation recipes (ASR).[41] These recipes include data 
provenance and have the main advantage of dividing a complex 
workflow into simple tasks that can run both as a single calcu-
lation or together to form a full workflow.
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3.8. Workflow Frameworks Summary

Table  1 summarizes the main differences among the workflow 
frameworks. This table presents some aspects, such as interface, 
workflow language, license, and required computational expertise 
levels of users to execute workflows. We believe that these fea-
tures and advantages may guide researchers in choosing a specific 
framework for targeting a particular scientific community.

4. Use Cases

In the following we illustrate the application of workflow 
engines with some examples.

4.1. High-Throughput Screening for Solid-State  
Li-Ion Conductors

Introducing solid-state Li-ion conductors as Li-ion battery electro-
lytes has the potential to greatly improve battery safety and per-
formance.[42] Besides mechanical and electrochemical stability, 
battery electrolytes must be electronically insulating but highly 
conducting for Li ions. The large number of potential candi-
date materials motivates an automated high-throughput com-
putational screening. Kahle  et  al.[43] used the AiiDA framework 
for such a screening, starting from 1362 unique experimentally 
known Li-containing crystal structures with acceptable elemental 
composition. A first workflow was used to eliminate crystal struc-
tures that are electronic conductors at the PBE-DFT level. At the 
second stage, 971 crystal structures were successfully relaxed at 
the PBE-DFT level via AiiDA workflows.[22,44] At the third stage, 
a custom charge-density based force field[45] developed for molec-
ular-dynamics simulations of Li-ion diffusion in solids was fitted 
for every material, requiring tens to hundreds of single-point 
SCF calculations per candidate. Molecular dynamics simula-
tions were performed in a highly parallelized manner for 796 
crystal structures, requiring an iterative procedure of restarts and 
checks for convergence of the dynamical property of interest (the 
diffusion coefficient of Li ions). For 132 highly diffusive mate-
rials, extensive Born–Oppenheimer first-principles molecular 
dynamics (FPMD) simulations were performed. In total, 2503 
SCF calculations, 5214 variable-cell relaxations, 171  370 classical 
molecular dynamics simulations, and 11 525 FPMD simulations 
were performed on four different clusters, all managed via AiiDA 
workflows storing the provenance of every result. We show the 
directed acyclic graph for one candidate structure in Figure  2. 

The resulting calculations were uploaded to the Materials Cloud 
Archive,[46] and several Li-ion conductors studied or discovered in 
the computational screening were subsequently analyzed further 
in experiments.[47,48]

4.2. Multiscale Modeling of Organic Semiconductors

SimStack rapid prototyping was used mainly in the domain of 
multi-scale materials modeling, including the development of 
novel materials and elucidation of their characteristics.[49] Based 
on a widely used electron conducting material, Alq3, novel sem-
iconductors were designed and tested virtually for tailored elec-
tronic properties as illustrated in Figure 3.

The prediction process covers multiple scales from the 
atomic to the meso-scale:

1. The morphology structure is based on molecule-specific force 
fields parametrized by DFT calculations. A forcefield is gener-
ated containing partial charges and dihedral energy profiles.

2. A thin film of the parametrized material is deposited on a 
substrate in a Monte-Carlo simulated annealing approach.[50]

3. Frontier orbital energy levels are calculated in the environ-
ment by a self-consistent DFT-based approach[51,52]

4. Based on a macroscopic expansion of the morphology, trans-
port properties are calculated using either a generalized effec-
tive medium model[53] for single layers or a KMC solution.

Most of these steps generated large amounts of data in their 
foreign data types, which had to be transferred, managed, 
and converted by the module’s respective expert, making the 
individual execution of each module slow and unwieldy. The 
necessary complex modeling solutions were rendered into an 
easy-to-use, market-ready workflow for SimStack. Thus a novel 
organic semiconductor with a predicted three orders of mag-
nitude improvement in electron mobility could be designed by 
systematically screening potential candidates, and the predic-
tion was subsequently experimentally confirmed.[52]

4.3. High-Throughput Screening of ORR  
and OER Electrocatalysts

FireWorks workflows[18] have been employed to model elec-
trocatalysts for the oxygen reduction reaction (ORR) in alka-
line fuel cells[54–56] and the oxygen evolution reaction (OER) in 
alkaline electrolyzers for water splitting.[56,57] As a descriptor 
of the thermodynamic efficiency of the electrocatalyst, the 

Table 1. Interface: Jupyter (Jupyter notebook), API (application programming interface), and GUI (Graphical user interface). Workflow Language: 
languages used to build the workflows. License: types of software licenses, (Comm.: commercial). Expected user level for execution: expected level of 
computational expertise to execute workflows for typical users addressed by the frameworks (Adv.: advanced, Non-exp.: non-expert.).

Features and advantages AiiDA FireWorks KNIME Pipeline Pilot SimStack PyIron MyQueue

Interface API Jupyter API GUI API GUI API GUI Jupyter API

Workflow anguage Python Fireworks schema GUI Java GUI, Pilotscript, Perl Java, 
Python, Jupyter

GUI Python Python

License MIT BSD-like GPL Comm. Comm. BSD GPL V3

Expected user level for execution Adv. Adv. Medium Non-exp. Non-exp. Adv. Adv.
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critical potential has been computed and directly compared 
to experimentally measured ORR and OER onset potentials. 
The ORR (OER) critical potential Umax (Umin) is the thermody-
namic upper (lower) bound of the electrode potential for which 
all ORR (OER) reactions are spontaneous. Thus Umax (Umin) 
defines a thermodynamic lower bound of the electrochemical 
overpotential that in turn determines the efficiency and the 
activity of the catalyst. In order to compute the critical poten-
tials, the free energies of all species involved in the ORR/OER 
catalytic cycles have been computed using DFT. Therefore, the 
calculation for one specific case (active surface, active site, pres-
ence and position of dopants, presence of solvent molecules, 
etc.) requires several DFT calculations with inter-dependencies. 
A virtual screening of a large number of candidate structures 
requires running a workflow for every specific case.

The workflow, shown in Figure 4, includes a repeating pat-
tern (a sub-workflow) which is executed for each species. Iden-
tical workflow steps and whole sub-workflows are automati-
cally identified by FireWorks and reused in other workflows 
without the need to recompute the same results. This particu-
larly occurs for the gaseous species and for structures that are 
common for two or more structural models or reaction path-
ways. The integration of atomic structures and of the VASP 
code, used to perform the DFT calculations, into the workflow 
has been implemented in Python using the ASE[35] and the 
PyTask class in FireWorks. The output of every sub-workflow 
is the free energy of the input atomic structure. In a recent 
work,[56] the workflow used previously[54,55] has been extended 
with a step for automated determination of the magnetic state 
of the species. Then the structure is relaxed within the selected 

Figure 2. Schema of the screening workflow for Li-ion conductors as a sequence of calculations, resulting in a directed acyclic graph in the AiiDA 
database. We use black lines to draw the edges corresponding to inputs/outputs of a calculation; workflows calling other workflows or calculations (cf., 
Figure 1) are given by red lines, whereas workflows returning data are denoted by green lines. The workflow receives as input A) a structure, given by 
the x-, y-, and z-coordinates of atoms, and B) parameters for the calculations (B, C). Intermediate results such as D) the electronic band structure and 
E) molecular dynamics trajectories, as well as the final result, F) the diffusion of each species, are stored with their provenance.

Adv. Energy Mater. 2021, 2102638



www.advenergymat.dewww.advancedsciencenews.com

2102638 (8 of 14) © 2021 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH

magnetic state and used in a harmonic normal-mode analysis 
to confirm the energy minima and to calculate the zero-point 
energy and entropy contributions to the free energies. Finally, 
using the thus computed free energies of all species, the elec-
trochemical potentials Umax and Umin are calculated. The pri-
mary benefit of using FireWorks for this study has been the 
automation of computing the activity descriptors for a large set 
of surface structures taking advantage of the concurrency of the 
most time-consuming steps, as depicted in Figure 4.

4.4. Automated Calculation of Electrolyte Transport Properties

The precise composition of a battery electrolyte is an essential 
contributor that governs the long-term behavior of the battery 
cell, specifically with respect to degradation. At the same time, 
all individual components and their overall combination will 

influence the battery performance via their effect on the elec-
trolyte transport properties. The goal of this particular workflow 
is to obtain these transport properties from the exact chemical 
formulation of an electrolyte candidate. This example is imple-
mented using BIOVIA Pipeline Pilot[58] and is largely based on 
functionality also found in BIOVIA Materials Studio.[59]

We briefly outline the method, corresponding to the visuali-
zation in Figure 5a. We begin with a list of molecules that make 
up the electrolyte, along with the respective amounts that are 
going to be used in the simulation cell. This list is used as the 
input for an amorphous cell calculation,[60] which provides an 
energetically favorable approximation for the liquid electrolyte 
and which serves as the input for molecular dynamics simu-
lations using the COMPASS force fields specifically designed 
for organic liquids and solids in the condensed phase.[61] The 
MD simulation is done in two stages with the initialization 
phase using variable cell dynamics to establish the density for 

Figure 4. Schematic representation of a high-throughput screening workflow for ORR/OER electrocatalysts.

Figure 3. Screening of the charge carrier mobility of derivatives of the Alq3 material. A) Using a multi-scale workflow a novel material (green) could be devel-
oped exhibiting a two orders of magnitude higher mobility than the original material (red), reproduced with permission.[52] Copyright 2021, John Wiley and 
Sons. B) The workflow consists of a parametrization stage based on single molecule DFT. A forcefield is generated, which is then used to generate thin-film 
morphology using simulated PVD.[50] For each pair in this morphology the electronic structure is relaxed in a self-consistent way.[51] Finally the mobility is 
calculated using a generalized effective medium model.[53] C) Implementation of the workflow in the SimStack workflow application. The complexity of the 
multiscale problem is hidden from the user by automatically interfacing the required applications for each scale. After the initial workflow assembly, the only 
significant remaining input is the structure of the initial molecule.
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this particular formulation and the sampling phase providing 
the trajectories from which transport properties are calculated 
using standard analysis functions from Materials Studio and 
the Materials Studio Collection. These calculations are repeated 
automatically for a specified number of independent samples. 
Moreover, the workflow allows restarts to either add more 
samples or to extend existing trajectories when the results are 
not sufficiently well converged. A report for each of the runs 
returns information on the overall statistics and each individual 
molecular dynamics calculation, see Figure 5b.

Figure  5c shows the conductivity summary based on dif-
ferent runs at different temperatures and lithium salt concen-
trations, which can be used to fit the overall conductivity as a 
function of these two variables. This information, along with 
similar results for the Li diffusion coefficient and transference 
number, can be used to quantitatively reproduce measured dis-
charge curves for battery cells.[62]

4.5. Automated Discovery of Materials for Intercalation Electrodes

Examples in materials science using ASE and MyQueue for fully 
automated and reproducible workflows include applications of 
solely ASE,[63,64] or the combination of ASE and MyQueue.[40,41,65,66]

With respect to battery materials, an automated work-
flow for calculating crucial ion-insertion battery properties in 

the framework of DFT has been established using ASE and 
MyQueue.[65] In detail, the stability is estimated through volume 
changes and the convex hull energy, open-circuit voltages (OCVs) 
are predicted using vacancy defect calculations and finally the 
kinetics are estimated through calculating migration barriers 
employing the nudged elastic band (NEB) method (Figure  6). 
The estimation of the migration barrier is further accelerated 
through exploiting reflection symmetries if present in the path 
(step 7a/b in Figure  6).[67] Automating the calculation of kinetic 
barriers using DFT+NEB is beneficial due the calculations being 
computationally expensive, prone to convergence problems as 
well as time-consuming to set up manually. One of the main 
achievements of the workflow, are the insights on automating 
calculations across different chemical structures through making 
them robust against possible failures. Due to the large amount of 
data generated using consistent parameters, a subsequent study 
explored data-driven methods to more efficiently guide the search 
toward new cathode materials.[68]

4.6. Automated Analysis of Interatomic Potentials Close  
to the Melting Point

The thermal tolerance of Li-ion batteries is a topic of major 
concern for many applications, including the performance at 
extreme temperatures[69] and the exothermic reactions known as 

Figure 5. Workflow execution and reporting using Pipeline Pilot. a) visual form of the executed workflow in ref. [62] describing how to calculate the 
transport properties of a battery electrolyte. The green numbers denote the number of records passed, either four molecules or five samples b) report 
summary for a single protocol run describing the calculated properties and their statistical uncertainties for a single Li salt concentration and at a single 
temperature. c) Data from multiple runs for different temperatures and salt concentrations.
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“thermal runaway.” Simulation workflows for high-temperature 
conditions typically rely on the availability of interatomic poten-
tials, since these calculations are often too expensive for DFT. 
However, the performance of these potentials at temperatures 
that have not been part of the fitting strategy is often unclear. 
We discuss in the following a pyiron workflow for the auto-
matic determination of the melting point of potentials, since 
these values can be easily bench-marked against experiments.

The workflow makes in five major steps use of the coexist-
ence method,[71,72] in which the melting temperature is defined 
as the equilibrium of the solid and the liquid phase (upper part 
of Figure  7). This approach has conceptional advantages as 
compared to other criteria for melting, such as those of Linde-
mann[73] or Born.[74] The challenge for an automation is, how-
ever, that usually the expertise of the experienced scientist is 
required to supervise the MD simulation. An IDE as provided 

by pyiron[33] allows the user to visualize, analyze, modify, and 
test the individual steps of the workflow, until they are ready 
for automation.

The need for interactive development strategy already starts 
with setting up the interface structure (Step 2 in Figure  7). 
Here, overlapping atoms and void formation have to be avoided 
and a proper relaxation has to be ensured. Heating up only 
the liquid part of the supercell with selective dynamics turned 
out to be the method of choice. Another typical challenge is 
the formation of voids in the liquid that arise as an artifact for 
certain strain values (Step 4 in Figure  7). While such artifacts 
can be easily recognized by human inspection, for the automa-
tion a detection scheme based on Voronoi volumes had to be 
developed. A third example is the identification of atomic con-
figurations to distinguish solid from liquid phases (first if state-
ment in Figure 7). While this is usually done with a common 

Figure 6. Simplified schematic representation of an ASE+MyQueue workflow for calculating properties of ion insertion materials. Each step represents 
a task in the workflow separating between optimization (red), preparation (green—structure generation and symmetry analysis) and decision tasks 
(yellow). The two structures show an example input structure (top left) as well as a relaxed NEB path structure generated by the workflow (bottom). 
The initial and final state (green spheres) are connected by the black dashed line and the transition state is visualized as a grey sphere.

Figure 7. Calculation of the melting point of three diffeent interatomic potentials for fcc Al, as well as of potentials for fcc Ni, bcc Ti, and hcp Mg. The 
automated workflow as implemented in pyiron is schematically presented in the upper part with red boxes for the major steps and orange boxes for 
subroutines required for automation. For each potential the workflow is executed several times and the distribution of predicted results is plotted, for 
which three times the standard deviation is given as error in the parentheses. Figure adapted under the terms of the CC-BY licence.[70] Copyright 2021, 
The Authors.
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neighbor analysis,[75] the detection rate turned out to be insuffi-
cient in the present context. Making use of the geometry of the 
supercell, a more efficient scheme based on a kernel density 
analysis was, therefore, developed.

Only with such a combination of scientific insights and a 
computational development environment was it possible to 
design a fully automated workflow for the melting point that 
robustly handles all the particularities of various potentials.[70] 
The lower part of Figure 7 shows examples for a variety of dif-
ferent potentials, including EAM potentials taken from the lit-
erature, on-the-fly developed potentials using the TOR-TILD 
methodology (Two-Optimized Reference Thermodynamic Inte-
gration using Langevin Dynamics),[72,76] and machine-learning 
potentials such as moment tensor potentials.[77] This gives 
access to a statistical analysis of confidence intervals and 
a comparison of the performance of these potentials. The 
Jupyter notebook for the automized workflow is publically 
available and can be downloaded at [www.mpie.de/4008196/
Software] and [github.com/pyiron/pyiron_meltingpoint]. It 
can be executed after the desired element and potential have 
been selected. The application with Snakemake is explained in 
ref. [70].

5. Challenges of Workflow Frameworks

Workflows help construct the process topology, execute simu-
lations, and include generic mechanisms to pass data from 
step to step. However, the data flow might not provide specific 
methods to transform the data so that it becomes usable in the 
next steps. The first issue that had to be solved was to ensure 
syntactic interoperability, that is, standard data formats, and 
data transfer protocols.

Several groups have developed solutions for this issue that 
are already available: In the ASE,[35] the simulation codes are 
wrapped by objects called calculators. The ASE Calculators pro-
cess their input and produce outputs using Python data struc-
tures such as dictionaries and lists, which can be serialized in 
the standard JSON data format for dataflow transfers within a 
workflow. Besides, atomic structure data in ASE are captured 
and processed with Atoms objects that can be JSON serialized 
and passed to the next workflow steps or stored in databases for 
later reuse by other steps in the workflow.

A similar approach is adopted in Pymatgen,[78] the main 
package used in the Materials Project.[11] Notably, the REST 
(rpresentational state transfer) interface, implemented using 
the HTTP standard for data transfer and JSON standard for 
data encoding, has been employed for seamless data exchange 
between different Pymatgen components and users in a distrib-
uted fashion.[78] The framework developed in ref.  [79] provides 
a graphical model editor allowing domain-specific data design 
based on a special meta-model for scientific data and automati-
cally generates a REST interface to diverse data stores, such as 
SQL and NoSQL databases, and Amazon S3.

AiiDA instead addresses this issue with the concept of cal-
cfunctions: any Python function that performs data opera-
tions and manipulations can be wrapped with the AiiDA 
@calcfunction decorator. Each execution of a calcfunction 
will be automatically stored by AiiDA and represented with 

interconnected nodes in the AiiDA graph, ensuring that the 
provenance describing how the outputs were generated is auto-
matically tracked and stored.

Beyond converting between data formats, there are efforts 
to address semantic interoperability, for example, linking data 
entities with different names and the same meaning. An even 
more difficult problem is to map relationships between data 
entities into different representations. It remains an open 
challenge for the materials modeling domain due to the high 
heterogeneity, variety, complexity, and dynamics of mate-
rials.[80] Currently, the EMMC (European Materials Modeling 
Council - www.emmc.info) makes efforts to develop a materials 
ontology that can help different programs to “understand” the 
data scheme of input data from a large variety of sources, both 
simulation and experimental characterization of materials.[9] In 
the future, such an ontology can give rise to domain-specific 
languages for data in materials science, similar to, for instance, 
the chemical markup language developed in the past.[81]

In this context, a notable standardization effort that is worth 
mentioning is the OPTIMADE consortium (www.optimade.
org). OPTIMADE involves more than ten of the major mate-
rials databases worldwide and is open to further participants. 
The consortium has developed a standard REST API speci-
fication[82] to allow to query and extract crystal structures and 
related metadata from any server using the same syntax, and 
is actively working to further extend the specifications to more 
data types that are relevant in materials science (like molecular-
dynamics trajectories and computer simulations, for instance).

The preservation of input data, custom parameters, and 
order of workflow components is a feature of most workflow 
frameworks. However, the level of detail at which this informa-
tion is captured varies significantly between the various work-
flow frameworks, and as a consequence, also the reproducibility 
level that the framework can actually guarantee. A crucial ele-
ment in capturing the complete workflow is the proper descrip-
tion of the utilized software. Separating the standalone software 
packages wrapped in the framework still is a challenge due to 
the software version, the underlying platform, compiler set-
tings, and other factors that might influence the computation 
result and compatibility with the workflow framework itself. 
In KNIME, for instance, workflow templates link to a specific 
version of a node. If newer versions for a node are available, 
the old nodes will be marked as deprecated but still part of the 
workflow template, and the user has to decide whether to use 
the newer version of the node. Similarly, calculation nodes in 
AiiDA always have an input node in the provenance graph, 
representing the actual executable and machine where the 
code was run and thus allowing to trace back the code that was 
used and its run environment. Another solution to the issue 
is to use software encapsulated in a virtual machine or Docker 
containers, which make execution independent of the platform 
where it is run. We expect that a broader support for efficient 
code containerization also in the context of HPC simulations, 
and their adoption in major HPC centers, will help to effec-
tively address this issue in the next few years. However, most 
workflow frameworks also provide the option to incorporate 
web services or are entirely based on connecting web services 
like MDStudio (www.github.com/MD-Studio/MDStudio). In 
this case, the workflow framework cannot preserve the state of 
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this workflow element and changes to it. Its discontinuation 
can either lead to unexpected results or failure of the workflow.

The primary purpose of workflows is to limit the required 
user input. Nevertheless, it is not always possible or feasible to 
completely automate all required decisions. Thus, many work-
flow frameworks provide the capabilities to insert breakpoints 
and user decisions into the workflow. Generally speaking, the 
availability of a GUI, specifically a workflow editor, significantly 
enhances the clarity and, most importantly, makes workflows 
easier to implement and more transferable. An alternative 
approach to improve transferability has been recently imple-
mented in the wfGenes tool[83] that automatically generates 
workflows for different workflow management systems from 
a simple workflow description language, abstracting from the 
details of the target platforms. Aspects of maintenance and 
transferability are notoriously overlooked in academic soft-
ware development projects, where usually individual students/
postdocs or small groups develop software with their specific 
application in mind. Lack of documentation and clarity often 
limits the reuse of the software even within the same group.

Encapsulating software complexity into a workflow with 
a clear GUI comes at the cost of the creation of it. The crea-
tion of the graphical user interface for modules and work-
flows requires an in-depth knowledge of the workflow engine 
for many available systems. Often this creates a barrier to the 
use of GUIs, in particular in academic development projects 
where rapid prototyping is required. Within state-of-the-art 
software, it is necessary to incorporate new modules and pro-
tocols within the workflow framework quickly. Few systems 
available have paid attention to this bottleneck. One example is 
the SimStack framework. The client mode generates GUIs for a 
set of exposed parameters from an XML file. This concept ena-
bles the nonexpert developer to build a simple GUI, exposing 
the parameters required for a particular application of any 
code without spending much time. At a later stage, when the 
workflow is mature, the GUI can be enhanced to meet more 
complex needs.

The capability to document and describe a complex simu-
lation is one of the most compelling arguments for workflow 
frameworks. The distribution of workflows to colleagues, the 
community, or customers is of central importance. While 
simulations can also be described informally and shared on 
a platform like protocols.io, distribution of formalized work-
flows improves reusability due to the reasons mentioned above. 
For this purpose, either dedicated repositories such as www.
nodepit.com/product/nodepit, but also workflow framework-
agnostic platforms such as www.myexperiment.org[84,85] are 
available. In the case of Python frameworks such as AiiDA, 
Pyiron or FireWorks, Jupyter notebooks can enrich the work-
flow Python code with interspersed documentation.

6. Summary

In the past few years, workflow frameworks have increased their 
importance as mandatory tools to perform complex computa-
tional studies: they automate large high-throughput simulation 
projects and capture and formalize all tasks, thereby dramati-
cally improving reproducibility and reusability of the study and, 

thus, its impact. Many workflow frameworks are already avail-
able and used for simulations in materials science. However, 
it is crucial to keep in mind the benefits and shortcomings of 
each of them. The best workflow framework for any given pro-
ject may depend on the user expertise, availability of tools and 
plugins for the desired task, capability to connect to computa-
tional resources, as well as the possibility to adjust, reuse and 
share workflows and their results within a group, with collabo-
rators or with the whole scientific community. In addition, the 
specific requirements of the application use cases can strongly 
influence the choice of a workflow framework. While workflow 
frameworks have started to gain relevance in virtual materials 
design, efforts to make the adoption of scientific workflow 
frameworks more widespread in the field are still required.
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