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Abstract The objective of the current study is to utilize an innovative method called
“change probabilities” for describing fracture roughness. In order to detect and visual-
ize anisotropy of rock joint surfaces, the roughness of one-dimensional profiles taken
in different directions is quantified. The central quantifiers, change probabilities, are
based on counting monotonic changes in discretizations of a profile. These probabili-
ties, which usually vary with the scale, can be reinterpreted as scale-dependent Hurst
exponents. For a large class of Gaussian stochastic processes, change probabilities
are shown to be directly related to the classical Hurst exponent, which generalizes
a relationship known for fractional Brownian motion. While related to this classi-
cal roughness measure, the proposed method is more generally applicable, therefore
increasing the flexibility of modeling and investigating surface profiles. In particular,
it allows a quick and efficient visualization and detection of roughness anisotropy and
scale dependence of roughness.
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1 Introduction

Fracture roughness is an omnipresent and important property of natural rock joints.
It varies depending on rock type (e.g., Morgan et al. 2013) or formation mechanism
(e.g., Xie et al. 1999; Vogler et al. 2017) and essentially controls the mechanical and
hydraulic properties of discontinuities (Magsipoc et al. 2020). Contact areas between
two rough fracture surfaces influence fracture strength and deformation under nor-
mal or shear loadings (Bandis et al. 1983; Tsang and Witherspoon 1983; Power and
Durham 1997; Jiang et al. 2006; Brodsky et al. 2016). The effective hydraulic aperture
and related parameters such as permeability and flow, however, are determined by the
shape of the void space within the fracture, which is dependent both on the rough-
ness of the individual fracture surfaces and on the degree of mismatch between them
(Brown 1987; Roux et al. 1993; Zimmerman and Bodvarsson 1996; Boutt et al. 2006;
Zhao et al. 2014). Furthermore, a quantitative description of fracture roughness is a
prerequisite for creating synthetic input data sets for numerical fluid flow simulations,
which ideally match relevant surface characteristics of natural fractures (e.g., Vogler
et al. 2017; Magsipoc et al. 2020). In recent works, researchers often use synthetic
fractures with self-affine properties (e.g., Kottwitz et al. 2020; Dong and Ju 2020; Sey-
bold et al. 2020; Yu et al. 2020). For example, Liu et al. (2020) simulate anisotropic
flow during shearing by using a double-rough-walled fracture model, while others
examine the effects of roughness on fracture permeability or breakthrough curves for
conservative solutes (Zambrano et al. 2019; Dou et al. 2019). Fracture roughness is
therefore linked to rock mechanics and hydrogeology, and also to various geoscien-
tific fields of application, for example geothermal energy, reservoir engineering, or
geological disposal of radioactive waste (Li et al. 2019; Stigsson andMas Ivars 2019).

Numerous parameters and methods have been proposed to characterize fracture
roughness qualitatively and quantitatively (Magsipoc et al. 2020), such as the well-
known joint roughness coefficient, JRC (Barton 1973; Barton and Choubey 1977), or
various statistical roughness parameters such as Z2 (Myers 1962) and Rp (El-Soudani
1978). Today, fractal methods are receiving increasing attention for the quantita-
tive description of fracture roughness and are applied to various fracture types from
nanometer scale (e.g., Siman-Tov et al. 2013) to kilometer scale, including studies
on earthquake rupture traces (Candela et al. 2012) or coastlines (Renard et al. 2013).
The application of fractal methods is based on the general assumption that fracture
surfaces can be approximately described as self-affine fractals (e.g., Mandelbrot 1985;
Brown 1987; Thompson and Brown 1991; Power and Tullis 1991; Schmittbuhl et al.
1993; Odling 1994; Lee and Bruhn 1996).

Fractal theory allows for detailed analysis of fracture surface morphology and
enables upscaling of roughness and related fracture properties from experimental to
field scale. In this context, the Hurst exponent (or the related parameter, fractal dimen-
sion) represents a measure of roughness and characterizes its scaling behavior (Odling
1994; Issa et al. 2003). The Hurst exponent can also be used to investigate the rough-
ness anisotropy of shear fractures or exposed fault surfaces. Generally, different values
are obtained depending on the profile orientation with respect to the original direction
of movement of the surface. While Candela et al. (2012) and Corradetti et al. (2017)
determined Hurst exponents for natural fault surfaces by using two distinct profile
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directions oriented parallel and perpendicular to the slip, Xie et al. (1999) considered
different spatial directions and positions on the fracture surface for calculating fractal
dimensions.

In many studies, minimal values of the Hurst exponent were found parallel to the
slip direction, and increasing valueswere observedwith progressing angular deviation,
which implies a higher roughness along the slip direction (e.g., Renard et al. 2006;
Candela et al. 2012; Corradetti et al. 2017). In contrast, Xie et al. (1999) and Sagy
et al. (2007) observed that the studied fault surfaces were smoother in the slip-parallel
direction. In general, these contrasting observations with regard to the directionality
of surface roughness may be explained by the diversity of roughness measures used
and their interpretation in spite of model violations. In addition, Sagy et al. (2007)
showed that natural small-slip and large-slip fault surfaces are each characterized by
different geometric features and can therefore differ greatly in roughness along the
slip direction.

Various methods are applied for determining fractal parameters, including Fourier
power spectrum (e.g., Sagy et al. 2007; Bistacci et al. 2011; Candela et al. 2012; Renard
et al. 2013; Corradetti et al. 2017, 2020), variogram analysis (e.g., Huang et al. 1992;
McClean and Evans 2002), structure function (e.g., Poon et al. 1992; Odling 1994),
or the box counting method (e.g., Malinverno 1990). Regardless of the methodology
used, it should be noted that a correct interpretation of fractal parameters requires
self-affinity, or at least some kind of scale invariance.

In this study, an innovative roughness measure is proposed which is linked to
the order relation of value triples measured along directional fracture profiles. The
method is based on the identification of so-called change patterns and subsequent
determination of their relative frequency. This change probability serves as a simple
and generally scale-dependent roughnessmeasure. Under the assumption of some kind
of self-affinity, the method offers a simple way to determine the Hurst exponent. In
the classical setting of fractional Brownian motion, which is widely used in modeling
rock profiles (e.g., Brown 1987; Huang et al. 1992; Odling 1994; Hsiung et al. 1995),
the change probability is directly related to the Hurst exponent, hence also to the
autocorrelation function (Coeurjolly 2000). Evenbeyond this setting, themethodoffers
the possibility of visualizing, detecting, and specifying the morphological anisotropy
of shear fractures or fault planes.

The term “change probability” was first used in Sinn andKeller (2011a) in the given
context. The idea, however, is far from being new. When considering increments
between values instead of the values themselves, changes turn into so-called zero-
crossings. Given a sequence of data points, a zero-crossing occurs if two consecutive
data points differ in their sign. Indicators and probabilities of zero-crossings have been
applied in various fields, such as signal analysis (e.g., Chang et al. 1951; Ewing and
Taylor 1969). Further background on zero-crossings can be found in Sinn and Keller
(2011a).

It is important to note that change probabilities are invariant under monotonic
transformations of a stochastic process. This invariance is interesting from a theoretical
viewpoint, because it widens the class of mathematical models to which the proposed
methods apply. On the other hand, this invariance is useful from a practical point
of view. For example, differently calibrated measuring devices may map the same
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height information of a fracture surface to different values in the resulting data set
(e.g., gray-level image or surface profile). One device might also be more sensitive to
small differences than another one, so that the actual heights are mapped onto a larger
range of values in the resulting image. This makes it rather difficult to compare data.
However, since different mappings typically do not change the relative order of the
values, change probabilities are not affected by such effects.

The approach presented herein is simple and economical from a computational
point of view, as it is essentially based on comparing values at different locations. No
heavy computations, as in the estimation of the autocorrelation function or the Fourier
spectrum, are therefore needed. Furthermore, the approach is in line with a relatively
new general trend in time series analysis and signal processing aiming to avoid using
the exact metric values and to concentrate instead on the ordinal structure of the data
(e.g., Amigó 2010; Zanin et al. 2012; Amigó et al. 2014).

The present study is structured as follows: Section 2 introduces the concept of
change probabilities as the theoretical base for quantifying directional fracture rough-
ness. The relation between change probabilities and the Hurst exponent is also
discussed, firstly in the case of fractional Brownian motion, and secondly for a more
general class of Gaussian processes. In Sect. 3, a practical implementation of the pro-
posedmethods is described. In Sect. 4, the developed algorithm for roughness analysis
is applied to natural fracture surfaces. On this basis, the novel method and its perfor-
mance is compared to other methods. In Sect. 5, the results are discussed. Finally,
concluding remarks are provided in Sect. 6.

2 Methods

To provide a first insight into the concept of change probability, it is assumed for sim-
plicity that a profile curve—obtained as a linear section of some surface—is described
by a real function on some interval [0, T ]. For some positive τ being small relative to
T and some t such that 0 ≤ t and t + 2τ ≤ T , consider the consecutive values x(t),
x(t + τ), and x(t + 2τ). There are six possible ways to order these three values, as
depicted in Fig. 1. The idea behind the following method is that values on a smooth
curve are more likely to be ordered in such a way that the value in the middle is the
second largest out of the three, while for values on a rough curve it is more likely that
the value in the middle is the smallest or largest. Out of the six possible orders of the
three values, there are four for which the middle value is the largest or smallest one
(Fig. 1). These four order patterns will be called “change patterns” because in each of
them there is a change from an increasing to a decreasing direction or vice versa.

Although the overall aim is the analysis of rock joint surfaces, this section is devoted
entirely to the analysis of one-dimensional profiles. Later in Sect. 3, the introduced
method is used to study the anisotropy of surfaces. Throughout, one-dimensional
profiles of rock surfaces aremodeled as realizations of a stochastic process (Xt )t∈[0,∞[,
with values in R defined on some probability space with measure P, where the value
Xt represents the height of the profile above some reference line. In other words,
it is assumed that such profiles can be represented as graphs of functions, which is
debatable but seems to be common practice. It is to some extent justified by the fact
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Fig. 1 All possible orderings of values at three consecutive points on a profile

that rock surfaces are usually measured using methods such as laser profilometry or
white light interferometry, which produce such functional data and ignore the true
three-dimensional structure of the surface. It is convenient to assume that the location
variable t ∈ [0,∞[ has a continuous range. In practice, measurements will only be
available at a finite number of locations t , and then it is not a serious restriction to set
the range to t ∈ {0, 1, 2, . . . , n} for some n ∈ N, as one has the freedom to choose the
scale. Details on how to obtain values x0, x1, . . . , xn for those t from the rock surface
are provided in Sect. 3.

2.1 Roughness by Change Probabilities

For any stochastic process, a concept of roughness is provided by so-called change
probabilities.

Definition 1 Given a stochastic process (Xt )t∈[0,∞[ on some probability space with
measure P and some τ ∈ ]0,∞[, the change probability of delay τ is defined by

p(τ ) := P(X0 < Xτ , Xτ ≥ X2τ ) + P(X0 ≥ Xτ , Xτ < X2τ ).

p(τ ) describes how likely it is to observe one of the four change patterns from Fig. 1
at location 0. Although p(τ ) is defined for any process, in order to be a useful quantity
for the statistics of the process (in particular to become estimable from change counts),
it is reasonable to require the process to have some minimal stationarity, namely to
require that

P(Xt < Xt+τ , Xt+τ ≥ Xt+2τ ) + P(Xt ≥ Xt+τ ,Xt+τ < Xt+2τ )

does not depend on t (1)

at least for the locations t and delays τ of interest. This stationarity of pattern occur-
rences is a rather weak form of stationarity. It is for instance implied by the common
assumption of stationary increments and, in the case of a Gaussian process, in partic-
ular by the conditions (A2) and (A3) imposed later on in this section. For this and the
following, see for example Bandt and Shiha (2007).
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If (Xt )t∈[0,∞[ is a Gaussian process with zero mean, then p(τ ) is known to be given
by the formula

p(τ ) = 1 − 2

π
arcsin

(√
Cov(Xτ − X0, X2τ − Xτ )

2
√
Var(Xτ − X0)Var(X2τ − Xτ )

+ 1

2

)
, (2)

for all τ ∈ ]0,∞[.
Change probabilities are proposed here as a measure of roughness. Below it is

argued that they are more generally defined and easier to compute than the Hurst expo-
nent that is typically used. In certain situations there is a direct relation between these
two roughness measures. Via their dependence on the delay parameter τ , addressing
different scales, change probabilities are able to capture more roughness information
than the Hurst exponent.

2.2 Fractional Brownian Motion, Change Probabilities, and the Hurst Exponent

As alreadymentioned, fractional Brownianmotion (fBm) iswidely used as amodel for
rock profiles, and the main model parameter, the Hurst exponent H ∈ ]0, 1[, serves as
a quantifier of roughness (see, e.g., Hsiung et al. 1995). Recall that fBm is a Gaussian
stochastic process (Xt )t∈[0,∞[ satisfying

X0 = 0 P-almost surely, (A1)

E(Xt ) = 0 for all t ∈ [0,∞[, (A2)

and

Cov(Xs, Xt ) = 1

2

(
s2H + t2H − |t − s|2H

)
for all s, t ∈ [0,∞[.

It has two outstanding properties, the first one being its self-affinity, meaning that, for
any α > 0, the processes

(Xαt )t∈[0,∞[ and
(
αH Xt

)
t∈[0,∞[ have the same distribution.

This scaling invariance has the consequence that p(τ ) does not depend on τ > 0. The
second one is that, for any τ ∈ [0,∞[,

Cov(Xt+τ+1 − Xt+τ , Xt+1 − Xt ) does not depend on t ∈ [0,∞[. (A3)

Note that the properties (A2) and (A3) together mean that the increment process
(Xt+1 − Xt )t∈[0,∞[ of the stochastic process (Xt )t∈[0,∞[ is weakly stationary. In the
Gaussian case this implies its stationarity. For fBm, the increment process is also
known as fractional Brownian noise.
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In order to describe the announced relationship between change probabilities and
Hurst exponents, consider the function h : ]0, 1[→] − ∞, 1[ given by

h(x) = 1 + log2(sin(π(1 − x)/2)) (3)

for x ∈ ]0, 1[. The statement characterizing the Hurst exponent in terms of the change
probabilities is as follows: If (Xt )t∈[0,∞[ is a fBmwith Hurst exponent H ∈]0, 1[, then
h(p(τ )) = H for all τ ∈ ]0,∞[. This statement goes essentially back to Coeurjolly
(2000), who formulated it in terms of zero-crossings in the increment process of a
fBm.

It is easy to show that for any fBm, p(τ ) ≤ 2/3. Moreover, h
( 2
3

) = 0 and h maps
]0, 2

3 [ onto ]0, 1[ in a strictly decreasing way. In particular, the higher the change
probability, the lower the Hurst exponent (and thus the rougher the profile). So for the
class of fBms, the change probability p(τ ), which does not depend on the scale τ ,
and the Hurst exponent are equivalent quantifications of roughness. In order to treat
the more general situation of scale-dependent roughness, the following definition is
introduced.

Definition 2 Given a stochastic process (Xt )t∈[0,∞[ on some probability space with
measure P and some τ ∈ ]0,∞[, the Hurst exponent of delay τ is defined by H(τ ) =
h(p(τ )), where h is as in (3).

Again it is reasonable to assume at least stationarity of pattern occurrences here as
introduced in (1). Basically, the Hurst exponent of delay τ is nothing more than a
reinterpretation of the change probability of delay τ . However, it allows a unified
discussion of roughness for a large class of stochastic processes in the established
framework and an easier comparison with the commonly considered Hurst exponent
H (see (5)), whenever it is defined.

2.3 Generalizing Results to a Wider Class of Gaussian Processes

The self-affinity of fBm results in the same change probability p(τ ) (and thus in the
same Hurst exponent H(τ )) at all delays τ . This kind of scale invariance of roughness
is a relatively strong property. It is generally not completely compatible with real-
world surface profile data, but interesting from a modeling viewpoint. In order to
gain more flexibility on the modeling side, Gaussian processes with asymptotically
stabilizing roughness will be considered and investigated, for which the roughness (in
the sense of change probabilities) is allowed to vary with the scale. The relation to the
Hurst exponent, which ultimately is an asymptotic concept capturing the long-range
behavior of a process, will be preserved in the form of an asymptotic equality. This
relation is based on the following fundamental characterization of the Hurst exponent
of delay τ (and thus of the change probability p(τ )) in terms of variance scaling.
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Proposition 1 Let (Xt )t∈[0,∞[ be a Gaussian stochastic process satisfying (A1) and
(A2). If 0 < Var(Xτ ) = Var(X2τ − Xτ ) for some τ > 0, then

H(τ ) = 1

2
log2

(
Var(X2τ )

Var(Xτ )

)
.

Proof Recall formula (2) for the change probability of a Gaussian process. Applying
the transformation h to p(τ ) yields

H(τ ) = h(p(τ )) = 1 + 1

2
log2

(
Cov(Xτ − X0, X2τ − Xτ )

2
√
Var(Xτ − X0)Var(X2τ − Xτ )

+ 1

2

)

= 1

2
+ 1

2
log2

(
Cov(Xτ − X0, X2τ − Xτ )√
Var(Xτ − X0)Var(X2τ − Xτ )

+ 1

)

= 1

2
+ 1

2
log2

(
Cov(Xτ , X2τ − Xτ )

Var(Xτ )
+ 1

)

= 1

2
+ 1

2
log2

(
Cov(Xτ , X2τ ) − Cov(Xτ , Xτ )

Var(Xτ )
+ 1

)

= 1

2
+ 1

2
log2

(
Cov(Xτ , X2τ )

Var(Xτ )

)
.

By the assumptions, one has

Var(Xτ ) = Var(X2τ − Xτ ) = Var(X2τ ) − 2Cov(X2τ , Xτ ) + Var(Xτ ),

which is equivalent to

Cov(Xτ , X2τ ) = 1

2
Var(X2τ ). (4)

Hence

H(τ ) = 1

2
+ 1

2
log2

(
Var(X2τ )

2Var(Xτ )

)
= 1

2
log2

(
Var(X2τ )

Var(Xτ )

)
.

�	
Note that if the process (Xt ) satisfies condition (A3), then the assumption Var(Xτ ) =
Var(X2τ − Xτ ) in Proposition 1 is satisfied for all τ ∈ N.

The above proposition shows that the change probabilities (and thus the scale-
dependent Hurst exponents) of a Gaussian process are, under some stationarity
conditions, related to its variance, which in turn is related to the covariance, as can be
seen from (4). In the following the classical Hurst exponent will be discussed, which
is based on the autocorrelation and therefore also on the covariance of the process. In
particular, a relationship between scale-dependent Hurst exponents and their classical
counterpart will be established.
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For a stochastic process (Xt )t∈[0,∞] satisfying (A1), (A2), (A3) and

0 < Var(Xt ) < ∞ for all t ∈ ]0,∞[, (A4)

consider the autocorrelation function c : [0,∞[→ R of the increment process
(Xt+1 − Xt )t∈[0,∞[ which is defined by

c(τ ) := Cov(Xτ+1 − Xτ , X1)/Var(X1),

for τ ∈ [0,∞[. (In case Var(X1) = 0, not relevant at this point, one defines c(τ ) = 0.)
Recall that for fBm with Hurst exponent H it holds that

c(τ ) = 1

2

(
|τ + 1|2H − 2|τ |2H + |τ − 1|2H

)
,

for all τ ∈ [0,∞[ and

lim
τ→∞

c(τ )

τ 2H−2 = H(2H − 1),

(e.g., Gneiting and Schlather (2004)). The latter formula describes the asymptotic
behavior of c for large τ and gives rise to a general definition of the Hurst exponent
H of (Xt )t∈N0 as the number

H := 1 + 1

2
lim

τ→∞
log(|c(τ )|)
log(τ )

, (5)

provided this limit exists (see, e.g., Gneiting and Schlather (2004)). To see that this
definition is consistent with the role of the Hurst parameter for fBm, assume that the
limit

lim
τ→∞

c(τ )

τ 2H−2 exists for some H and differs from 0. (A5)

Then H is necessarily the Hurst exponent of (Xt )t∈[0,∞[ as defined by (5), which is
easily deduced from (A5), see Lemma 3 in the Appendix. Moreover, if H ≥ 0.5,
then the limit in (A5) is necessarily positive, see Lemma 2 in the Appendix. (The
last assumption in (A5) implies in particular that the quotient c(τ )/τ 2H−2 is bounded
away from zero for large τ : there exist some constant C, τ0 > 0 such that either
c(τ )τ 2−2H > C for all τ ≥ τ0 or −c(τ )τ 2−2H > C for all τ ≥ τ0. This means that c
will not change its sign for τ ≥ τ0.)

In the sequel, all considerations will be restricted to Gaussian processes (Xt )t∈[0,∞[
satisfying the conditions (A1)–(A5). By the above, this implies in particular that the
Hurst exponent of (Xt ) exists. Note that if (Xt ) is not a fBm, then the values of p(τ )

may vary with τ ∈ ]0,∞[, and therefore H(τ ) = h(p(τ )) can be different from the
Hurst exponent for some τ ∈ ]0,∞[. However, the above conditions ensure that the
Hurst exponent H(τ ) of delay τ converges to the Hurst exponent H as τ → ∞.

123



Math Geosci

Theorem 1 Let (Xt )t∈[0,∞[ be a Gaussian process satisfying the conditions (A1)–
(A4). Assume that condition (A5) is satisfied for some constant H such that 0.5 ≤
H < 1. Then the Hurst exponent (as defined in (5)) exists and equals H, and

lim inf
τ→∞ H(τ ) ≤ H ≤ lim sup

τ→∞
H(τ ).

holds true. Thus, if the limit

lim
τ→∞ H(τ ) (6)

exists, then it necessarily equals H.

Theorem 1 establishes an asymptotic relation between change probabilities and the
Hurst exponent, which is the best one can hope for in a situation when there is no
self-affinity present. As the assumptions in Theorem 1 are rather mild, one can expect
them to be satisfied by many stochastic processes. Examples covered by Theorem 1
that are not fBm include those provided by the processes discussed in Gneiting and
Schlather (2004): if (Xt ) is a Gaussian process satisfying (A1) such that its increment
process is stationary and has a correlation function from the Cauchy class (or any
of the other classes discussed in Gneiting and Schlather (2004)), then the conditions
(A2)–(A5) are satisfied. The proof of Theorem 1 can be found in the Appendix.

Note that for data of rock surfaces, the Hurst exponent is typically larger than 0.5
(see, e.g., Candela et al. 2012). Therefore, the condition H ≥ 0.5 is not a serious
restriction from the practical viewpoint.

Compared to the classical setting of fBm, themore general class of processes behind
Theorem 1 increases flexibility when working with Hurst exponents as a roughness
measure. Now roughness is allowed to vary with the delay. Only some stabilization for
increasing delays is assumed, allowing one to still consider a single Hurst exponent.
This provides a theoretical framework for the case that some stabilizationof (estimated)
Hurst exponents is observed for real data.

2.4 Estimating Roughness

Given a stochastic process (Xt )t∈ [0,∞[ satisfying (1) for t ∈ N0, a natural estimator
of p(τ ) for some τ ∈ ]0,∞[ and N ∈ N is given by

p̂(N )(τ ) := 1

N

N∑
t=0

(
1{Xt<Xt+τ ,Xt+τ ≥Xt+2τ } + 1{Xt≥Xt+τ ,Xt+τ <Xt+2τ }

)
.

The following considerations are restricted to the case τ ∈ N. Principally, it is enough
to start with a process (Xt )t∈N0 . Assume that for such a process, the increment process
(Xt+1 − Xt )t∈N0 is a non-degenerated zero-mean stationary Gaussian process. Non-
degenerated means that each of the finite distributions of the process is absolutely
continuous with respect to the Lebesgue measure.
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If c(τ ) → 0 as τ → ∞, then p̂(N )(τ ) is a strongly consistent and asymptotically
unbiased estimator (N → ∞) of p(τ ) for τ ∈ N. If, moreover,

|c(τ )| · τβ → 0 as τ → ∞ for some β < 0.5, (7)

then the estimator is asymptotically normally distributed as N → ∞. This was shown
in Sinn and Keller (2011b) in the general context of ordinal pattern probabilities for
τ = 1 using an asymptotic result of Arcones (1994); the generalization to τ 
= 1
is straightforward. The idea goes back to the work of Ho and Sun (1987), where
zero-crossings in a process are discussed. Note that a change in the original process
corresponds to a zero-crossing in the associated increment process. Note also that (7)
is satisfied if condition (A5) holds with 0 < H < 0.75.

When passing from p̂(N )(τ ) to Ĥ (N )(τ ) := h( p̂(N )(τ )) and from p(τ ) to H(τ ) =
h(p(τ )), all described estimation properties remain true, which follows by applying
the delta method (see, e.g., Doob 1935). In particular, for each τ ∈ N, Ĥ (N )(τ ) is an
estimator of the Hurst exponent H(τ ) with the described properties. It is interesting
to note that the estimators p̂(N )(τ ) and Ĥ (N )(τ ), which are based only on the ordinal
structure of a time series, show a good performance, and in particular have a low bias
(see Sinn and Keller 2011b).

In the situation of Theorem 1, the Hurst exponent H can still be estimated by
Ĥ (N )(2n) with sufficiently large n and N .

3 An Algorithm for Visualizing and Detecting Fracture Roughness
Anisotropy

In this section, an algorithm is described that takes a two-dimensional gray-level
image as input and returns an array of estimates of the Hurst exponents H(τ ) for a
number of directions φ and delays τ . The algorithm may be viewed as an application
of Theorem 1. In this theorem, the data are modeled by a stochastic process Xt with
t ∈ R, while in practice one is dealing with discrete data, i.e., Xt with t ∈ N0. Here it
is necessary to determine what t = 1 should mean, i.e., to fix a minimal spatial scale.
Since pixel images are considered here, it makes sense to set the width of one pixel
to 1, which is the smallest meaningful distance between two points in these images.
However, when comparing images of different resolutions, the size of a pixel might
correspond to different physical distances, and then one has to be careful to compare
quantities of physically matching delays.

3.1 Input

The input of the algorithm is a two-dimensional matrix A = (ai, j ) ∈ R
wx×wy of width

wx ∈ N and height wy ∈ N, where the entry ai, j corresponds to the relative height of
the two-dimensional rock surface at the position (i, j). This matrix can be represented
as a gray-level image, where the brightness of the pixel at position (i, j) is equal to
the value of ai, j .
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Fig. 2 Exemplary input matrix of a natural sandstone fracture surface. The value of 1 corresponds to the
maximum height of the fracture surface; the value zero corresponds to the minimum height. In step 2 of the
algorithm, parallel one-dimensional profiles Xi

φ are extracted for a given angle φ

Additional inputs are nφ ∈ N, a parameter of the algorithm fixing the number of
angular directions φ for which profile lines are considered, and a vector −→τ of length
nτ containing the delays τ at which the one-dimensional profiles will be scanned. The
algorithm will choose nφ angles equally spaced between 0◦ and 180◦, and the delays
contained in −→τ are positive integers. Optional input is a parameter Δ which fixes the
distance between neighboring parallel profile lines (Fig. 2). The default value of Δ is
1. Recall that value 1 for the delay τ or the parameter Δ corresponds to a length equal
to the width of a pixel.

3.2 Algorithm

1. Preparation of the data: A possible two-dimensional linear trend is removed from
the input matrix A by performing a linear regression and subtracting the resulting
regression plane from A.

2. Extraction of one-dimensional profiles: For each of the nφ angles φ, create one-
dimensional profiles in direction φ with delay 1. To achieve this, consider first a
line in the image through the origin in direction φ, i.e., having angle φ with the
vertical axis (see Fig. 2). Take a sequence of equally spaced points on that line
which are a pixel width apart from each other.
For each of these points, calculate the height value at the corresponding position
using linear interpolation of the given data A. Repeat this procedure for all lines
intersecting the image that are parallel to the first line and an integer multiple of
Δ apart from it. Each of the one-dimensional profiles extracted in this way will be
saved in a vector xiφ = (xiφ,t )

mφ,i
t=0 where i = 1, 2, . . . , kφ,Δ. Here, kφ,Δ denotes

the number of parallel lines intersecting the image for the given φ and Δ, and mφ,i

+1 is the number of data points in the i-th profile.
3. Calculation of change probabilities: For each angle φ and each delay τ , do the

following calculations: For each profile i ∈ {1, 2, . . . , kφ,Δ} with mφ,i ≥ 2τ ,
compute the number of changes
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Fig. 3 Diagram illustrating the different steps of the algorithm described in Sect. 3.2. The polar plots that
are created in steps 3 and 4, respectively, show the computed change probability and Hurst exponent as a
function of the angle φ for different delays τ (represented by different colors)

numChangesφ,τ,i :=
mφ,i−2τ∑

j=0

δ
(
xiφ, j < xiφ, j+τ and xiφ, j+τ ≥ xiφ, j+2τ

)
+ δ

(
xiφ, j ≥ xiφ, j+τ and xiφ, j+τ < xiφ, j+2τ

)
, (8)

where δ(B) = 1 if the assertion B is true and δ(B) = 0 otherwise. (Formφ,i < 2τ ,
numChangesφ,τ,i is set to 0.) The estimator p̂φ(τ ) for the change probability is
then calculated by

p̂φ(τ ) =
∑kφ,Δ

i=1 numChangesφ,τ,i∑kφ,Δ

i=1 (mφ,i − 2τ + 1)
.

4. Estimation of roughness: For each angle φ and each delay τ , estimate the rough-
ness Hφ(τ ) of delay τ in direction φ by

Ĥφ(τ ) = h( p̂φ(τ )), (9)
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where h is defined as in (3).

3.3 Output

The output of the algorithm is a nφ × nτ matrix p̂ = ( p̂φ(τ )) containing the estimates
for the change probabilities for each angle–delay pair (φ, τ ). Optional output is a
nφ × nτ matrix Ĥ = (Ĥφ(τ )) containing estimates for the Hurst exponents for each
pair (φ, τ ). Based on this output, the program creates a polar plot of the estimated
Hurst exponents Ĥφ(τ ) as a function of the angle φ for different delays τ (see the last
step in Fig. 3) and a plot of the estimated Hurst exponents Ĥφ(τ ) as a function of the
delay τ for different angles φ (see Fig. 5).

3.4 Implementation

The delay τ ∈ N should be chosen to be larger than 2. If the considered angle φ

is not a multiple of 90◦, then the values for the one-dimensional profiles need to be
extracted using interpolation. For τ ≤ 2, the values of two consecutive points xiφ,t

and xiφ,t+τ on the profile are so close together that they partially depend on the same
values of the original input data. As a result, the interpolated one-dimensional profile
will be smoother than the original rock fracture. Hence, the actual roughness will be
underestimated. For angles φ close to a multiple of 90◦, this effect is less prominent.

As an alternative to using linear interpolation for determining intermediate values,
one could, for example, use nearest-neighbor interpolation. But experiments have
shown that the type of interpolation does not have a significant effect on the outcome.

Additionally, note that the calculations of change probabilities for different angles
do not depend on each other and can therefore be processed in parallel. For the source
code for this algorithm see Gutjahr (2021).

3.5 Estimating a Scale-Independent Hurst Exponent

Given the estimators Ĥφ(τ ) for the scale-dependent Hurst exponents, it is generally
not clear what the best way would be to derive from them a single estimator for the
(scale-independent) Hurst exponent in a given direction. Considering such a single
estimator would, of course, only be justified in the presence of at least some self-
affinity. The observation of some range of delays, for which the Hurst exponents do
not change significantly, may give rise to the hypothesis that the underlying structure
is self-affine for this range of delays. It is then reasonable to expect that the Hurst
exponents for such delays best describe the given data. In this situation, the median
value of the estimators Ĥφ(τ ) of the scale-dependent Hurst exponents, where τ varies
in the specified range of delays, may be a good estimator for the scale-independent
Hurst exponent Hφ (for profiles in direction φ). The median as an estimator of the
Hurst exponent has the additional advantage of being insensitive to outliers, as can
be seen in Fig. 7. The outcome of this method when applied to two different natural
fracture surfaces is depicted in Fig. 8.
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The median is taken over the values Ĥφ(τ ) for τ ∈ {3, 4, . . . , τmax}, where one
needs to specify how to choose τmax. As explained in Sect. 3.4, the value of Ĥφ(τ ) for
τ ∈ {1, 2} is not taken into account.

Clearly, τmax should depend on the size of the image and is determined by

τmax = ⌈
4
√

wX · wY
⌉

, (10)

where wX and wY are the widths of the image in the X - and Y -direction measured in
pixels. It is motivated by the need to find a compromise between the pattern length
(2τ + 1) and the number of patterns. Increasing the length decreases the number and
vice versa. Choosing for a profile of length L a delay of order

√
L results roughly

in a number of
√
L non-overlapping patterns. Here, non-overlapping means that the

intervals spanned by the pattern locations are disjoint for different patterns. Since in a
rectangular image the length L of the profiles changes with the direction, the geometric
mean of the profile lengths in the X - and Y -direction is chosen as a compromise,
resulting in the value τmax = ⌈√√

wX · wY
⌉
.

4 Application to Natural Fracture Surfaces

In this section, the algorithm introduced above is applied to gray-level images of two
natural fractures, namely a tensile and a shear fracture. The analyzed tensile fracture is
a bedding-parallel joint in a carbonate-cemented aeolian sandstone, which opened up
within a block specimen sampled from the Schwentesius outcrop in northern Germany
(Fischer et al. 2007; Heidsiek et al. 2020). Since it can be described as an opening-
mode fracture, the surface was not exposed to shear stress. A handheld laser scanner
was used to produce a three-dimensional image of the rough fracture surface (Fig. 4b).
It is represented by a point cloud, corresponding to a set of data points where the spatial
position of each point is uniquely defined by X , Y , and Z coordinates. The average
point spacing is 0.157 mm. Further information on the specifications of the laser
scanner, as well as a photo of the bedding-parallel tensile fracture, is provided by Hale
et al. (2020). The fracture surface does not show a discernible roughness anisotropy
except for a barite vein, which cuts through the bedding plane and is noticeable as an
elevated ridge-like structure. To make sure that this vein does not skew the result when
estimating the roughness of this fracture, the right part of this surface, beginning at
350 mm, is cut off before applying any methods to it (Fig. 2).

Furthermore, a fresh fault slip surface in limestone was used as additional input
data for the subsequent roughness analysis (Fig. 4a). It is part of the Bolu outcrop in
Turkey, which is appendant to the North Anatolian Fault zone (Candela et al. 2012;
Renard et al. 2013). The raw data can be found at ISTerre (2021). In contrast to the
tensile fracture (Fig. 4b), the sampled fault surface was exposed to shear stress and
has experienced a minimum movement of approximately 20 m (Candela et al. 2012).
The fault slip surface shows characteristic features such as elongated lenses and linear
striae which are also evident from Fig. 3 in Candela et al. (2012) and Fig. 1 in Renard
et al. (2013). For fault slip surfaces, a distinct roughness anisotropy was observed on
various length scales, evident from deviating Hurst exponents or fractal dimensions
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Fig. 4 Point cloud data of a a natural shear plane from a limestone outcrop (“Bolu-1”, Candela et al.
2012) and b a natural bedding-parallel tensile fracture in sandstone. The X - and Y -axis correspond to the
length and width of the captured surface segment, respectively; the Z -coordinate, indicated by the color
bars, specifies the surface height (all units are in mm). For the tensile fracture, the Z -coordinate (surface
height) varies between 0 and 10.53 mm (b), while the surface height variation of the fault plane segment
(a) is below 500 µm

parallel and perpendicular to the slip direction (e.g., Candela et al. 2012; Renard et al.
2006; Lee and Bruhn 1996). The point cloud was produced by a laboratory laser
profilometer (Fig. 4a) and shows a regular point spacing of 20 µm (Candela et al.
2012).

Based on the three-dimensional point cloud data of the fracture surfaces, two-
dimensional gray-level images are created which are required as input data for the
algorithm presented in Sect. 3.2. First, a surface is fitted to the scattered point data
by nearest-neighbor interpolation employing the standard MATLAB routine. In this
context, a mesh grid has to be specified for evaluating the created interpolant at des-
ignated locations. The resolution of the mesh grid should ideally match the resolution
or the average point spacing of the point cloud in order to prevent a loss of roughness
information. Here, the mesh resolution was set to 0.15 mm for the tensile fracture and
to 0.02 mm for the fault slip surface. If necessary, the resulting matrix is cropped to
remove less dense areas at the edges of the original point cloud. To export the matrix
in binary pgm format, the surface height information (i.e., matrix values) is rescaled
to fit into the interval [0, 255], where 0 corresponds to the minimum and 255 to the
maximum surface height of the fracture surface.
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4.1 Dependence on the Delay

Figure 5 visualizes how the estimates Ĥφ(τ ) of the Hurst exponent change with the
delay τ for fixed angles φ. Figure 5a indicates that, independent of the angle φ, the
values of Ĥφ(τ ) increase with τ until a maximum is reached at around τ = 19, and
then decrease until around τ = 80. In Fig. 5b, the values of Ĥφ(τ ) decrease with τ

until a minimum is reached near τ = 40. The values then increase slightly, and the
average over all angles stabilizes near 0.4.

For comparison, scale-dependentHurst exponents are also estimated for simulations
of fBm, using the same estimator based on change probabilities as for the rock profiles.
The results are plotted as a red line in Fig. 5. The line is derived from 100 stochastically
independent simulations of fBm,whose length equals the geometricmean ofwidth and
height (in pixels) of the corresponding rock surface. The τ -dependent Hurst exponents
(see Eq. (9)) are computed for each simulation and then the average is taken. The
Hurst exponent for the simulations was chosen as 0.46 for the shear plane (left) and
0.51 for the tensile fracture (right) so that they roughly correspond to the mean of
the estimated Hurst exponents for the individual rock surfaces. Since the simulations
of fBm are one-dimensional, this estimation does not depend on the angle φ. The
observations indicate that for both fracture types the scale-dependent Hurst exponents
indeed depend to some extent on the delay.

4.2 Comparison to a Standard Method

Figure 6 compares the results of the estimator Ĥφ(τ ) for τ = 3, 5, and 25 with
the results provided by a standard method. The standard estimator Ĥwavelet is based
on a method which is already implemented in the MATLAB Wavelet Toolbox. This
method estimates the variances of wavelets at different detail levels and performs
a regression of those variances versus the detail level in a log–log plot (see, e.g.,
Flandrin 1992; Abry et al. 2000 for details). Technically, the wavelet-based estimator
provides an estimate for the Hurst exponent only if the underlying process is a fBm.
For more general Gaussian processes, one can still calculate the value of Ĥwavelet, and
it is reasonable to assume that it still represents some measure of roughness, but it
is not necessarily equal to the Hurst exponent as defined in (5). It might be possible
to interpret Ĥwavelet roughly as some weighted average of the scale-dependent Hurst
exponents over the available scales, but this is not obvious. Certainly its computation
involves information from many delays.

Figure 6a shows that the estimates of the Hurst exponent based on Ĥφ(3) and
Ĥwavelet are very close to each other for all angles φ, whereas the one based on Ĥφ(25)
yields generally larger values than these two. Moreover, the values of Ĥφ(25) vary
more smoothly with φ than the values of Ĥφ(3) and Ĥwavelet. All curves have in
common that they attain their minimum value for angles around 50◦ and a maximum
near 140◦.

In Fig. 6b, the values of Ĥwavelet are close to those of Ĥφ(5) for most φ. The curves
for Ĥφ(3), Ĥφ(5), and Ĥwavelet are more circular in shape than those obtained for the
other fracture in Fig. 6a.

123



Math Geosci

Fig. 5 Estimates Ĥφ(τ) of the Hurst exponent (vertical axis) are plotted versus the delay τ (horizontal
axis) for different angles φ for (left) the shear plane from the Bolu outcrop (Fig. 4a) and (right) the tensile
fracture from the Schwentesius outcrop (Fig. 4b). Each of the different gray lines corresponds to one of
30 angles equally spaced between 0◦ and 180◦. The red line ĤfBm(τ ) shows estimates of the τ -dependent
Hurst exponents for fBm based on 100 simulations of fBm

(a) (b)

Fig. 6 Radial plots of estimated Hurst exponents as functions of the angle φ for a the shear plane (Fig. 4a)
and b the tensile fracture (Fig. 4b). The solid, dotted, and dashed lines correspond to the estimates based
on Ĥφ(τ) for the delays τ = 3, 5, and 25, respectively. The dash–dotted line shows the estimated Hurst
exponent Ĥwavelet using the wavelet-based method implemented in MATLAB
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4.3 Noise Effects

Figure 7 shows the effect of noise on the estimators for the Hurst exponent. To simulate
this effect, white noise with mean zero and variance σ 2 was added to each pixel of the
image. The Hurst exponent was then estimated for the noisy image using, on the one
hand, the method implemented in MATLAB and on the other hand the new proposed
estimators Ĥφ(τ ) for different values of τ . The squares of the differences between the
resulting estimates Ĥσ

φ and the estimates Ĥφ for the undisturbed image were summed
over all considered angles φ. The error is then defined as the square root of this sum
divided by the number nφ of different angles

error = 1

nφ

√√√√∑
φ

(
Ĥσ

φ − Ĥφ

)2
. (11)

As a reference for the scale of the image values, the square root of the squared average
deviation of the pixel values from the mean image value is considered, which is given
by

σimg =

√√√√√ 1

wx · wy − 1

wx∑
i=1

wy∑
j=1

⎛
⎝ai, j − 1

wx · wy

wx∑
i ′=1

wy∑
j ′=1

ai ′, j ′

⎞
⎠

2

, (12)

where (ai, j )
wx ,wy
i, j=1 are the pixel values of the image.

In Fig. 7, the effect of noise on different estimators is studied for the shear plane
(Fig. 4a). For this purpose, white noise with standard deviation σ was added to the
surface for different values of σ ranging from 10−1 to 10−4. For comparison, the
standard deviation over the image as defined in (12) is approximately equal to σimg ≈
0.064. For the computation of the error, the profiles in nφ = 20 different directions φ

(chosen equally spaced between 0 and π ) are taken into account.

5 Discussion

5.1 Computational Advantages

From the computational point of view, the estimator Ĥφ(τ ) has some advantages
compared to alternative methods. Firstly, no linear regression of some logarithmic
property is needed to determine Ĥφ(τ ). In case the data can be modeled by fBm, the
value of Ĥφ(τ ) for just one delay τ is a sufficient estimator for the Hurst exponent.
In contrast, for other variance-based methods, some property of the data needs to be
estimated over many different scales τ , and the Hurst exponent is then obtained as
the slope of some linear function of (the logarithm of) τ determined by this property.
Thus, repeated calculations for multiple delays are necessary in this case.

Further, the calculations needed to determine p̂φ(τ ) (and thus Ĥφ(τ )) via the num-
ber of changes as given by (8) are mathematically very elementary. One only needs to
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Fig. 7 The effect of adding white noise of standard deviation σ to the shear plane (Fig. 4a) is presented for
different roughness estimators. The plots show the error (as defined in (11) with nφ = 20 equally spaced
angles) as a function of σ . The dashed line corresponds to the estimator based on wavelets mentioned in
Sect. 4.2, the dash–dotted line to the median estimator proposed in Sect. 4.1, and the solid lines to the
estimators based on change probabilities for different delays

compare pairs of values, apply someBoolean operations, and then count the number of
true results. Essentially no costly multiplications are necessary. Hence, the necessary
calculations can be done very quickly and, moreover, they can easily be parallelized.

5.2 Detection of Anisotropy

Comparing Fig. 6a and b, one can observe that the closed lines in the polar plots
describing the angle-dependent roughness are much more circular in Fig. 6b than in
Fig. 6a. The same can be observed when comparing the median roughness in Fig. 8b
with the one in Fig. 8a. Therefore, one can conclude that the tensile fracture exhibits
less roughness anisotropy than the shear plane. This is in line with the fact that the
tensile fracture showsnovisible anisotropy,which canbe expected due to the formation
mechanism.

In contrast, the existing roughness anisotropy of the shear plane was detected with
the methods introduced here.

5.3 Dependence on the Delay

Figure 5 shows that the value of the Ĥφ(τ ) is not constant over all delays τ . One could
ask whether this is merely a statistical phenomenon caused by fluctuating estimates.
However, the clear monotonic behavior of the estimates as a function of τ contradicts
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(a) (b)

Fig. 8 Polar plots showing for the two natural fracture surfaces (Fig. 4) the median Hurst exponent on the
radial axis in dependence of the angle φ. It was calculated by taking for each angle φ the median value
of the change probabilities for integer delays τ between 3 and τmax and then applying formula (3) to this
median. τmax was determined according to Eq. (10)

such a hypothesis. Comparing the fluctuations of Ĥφ(τ ) to the fluctuations of corre-
sponding estimates ĤfBm(τ ) of fBm (see the red line in Fig. 5) further contradicts this
hypothesis. Already a rough visual comparison shows that the behavior of ĤfBm(τ )

and Ĥφ(τ ) differs significantly. Additionally, the relatively small fluctuations of the
red line confirm that for fBm, the τ -dependent Hurst exponents do not depend on the
delay τ , as explained in Sect. 2.2. The dependence of the estimated Hurst exponents
Ĥφ(τ ) on the delay indicates that modeling of the considered data by fBm only makes
sense to a limited extent.

The delays τ = 19 in Fig. 5a and τ = 40 in Fig. 5b, for which Ĥφ(τ ) is maximal or
minimal, respectively, might correspond to the length of some characteristic structure
on the fracture surface. The clear maximum visible in Fig. 5 could, potentially, be
used to identify such characteristic lengths.

For larger delays τ , the value of Ĥφ(τ ) seems to fluctuate less and stabilize around
some constant value depending on the angle φ. This observation is consistent with the
theoretical results in Sect. 2.3.

Additionally, note that Ĥφ(τ ) is, on average, tending towards values around 0.5 for
large τ in Fig. 5a and b. Recall that data with independent increments can be modeled
by a fBm with Hurst exponent H = 0.5. The above observation could therefore be
explained by the fact that the stochastic dependence between points on the fracture
surface, which are separated by a large distance τ , decreases faster than predicted by
the mathematical model for the fracture surface.
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5.4 Noise Effects

Figure 7 shows that the larger the sampling rate τ , the less the estimator Ĥφ(τ ) is
affected by noise. This is not surprising. Since the difference between values xt and
xt+τ is typically smaller on average the smaller the τ , small random perturbations are
more likely to cause a change in the pattern of some (xt , xt+τ , xt+2τ ) for smaller τ .
Furthermore, one can see that the estimator Ĥφ(τ ) is less affected by noise than the
wavelet-based estimator Ĥwavelet, provided that the strength of the noise is not too
large. The reason for this is that small random perturbations of given data (xt )nt=1 will
significantly affect the estimator Ĥφ(τ ) only if the randomness changes the ordering
of xt , xt+τ , xt+2τ for sufficiently many t .

5.5 Comparison to Standard Method

In Fig. 6, one can see that for specific sampling rates τ , the estimator Ĥφ(τ ) yields
results that are comparable to those with standard methods. Figure 6a shows that,
even though the value of Ĥφ(τ ) is different for larger delays τ , the angles that yield
the minimal and maximal Hurst exponent remain unchanged. This indicates that the
structure of the rock surface that is causing the anisotropy is invariant over a specific
range of scales.

One can additionally observe the greater smoothness of Ĥφ(25) compared to Ĥφ(3),
which is in line with the effects described in Sect. 5.4. For the same reason, the angle
at which the minimum of Ĥφ(25) over all angles is found, is more pronounced. Hence,
the delay τ should not be chosen too small in general.

For the exemplary fractures considered here, τ = 5 is considered reasonable. Since
it is difficult to know in advance which value for τ is a good choice, calculating the
median fracture roughness over many delays τ as shown in Fig. 8 is appropriate in
these cases.

6 Conclusions

The proposed concept of scale-dependent Hurst exponents based on change probabili-
ties provides scale- and direction-dependent roughness information for rough surfaces
beyond the summary information provided by classical (single-valued) roughness
measures. Aside from some stationarity, the new method does not require any addi-
tional assumption on the studied surface or its directional profiles such as self-affinity
or scale-invariance and may therefore be applied in situations when, strictly speaking,
existing methods are not applicable because they are based on such assumptions.

In the presence of self-affinity, there is a direct relation to the classical Hurst expo-
nent. As is discussed in Theorem 1, an asymptotic relation between scale-dependent
and classical Hurst exponents can even be established for a much wider class of pro-
cesses than just fBm. This suggests the use of change probabilities (if not as a new
independent roughness measure) as ameans of estimating the classical Hurst exponent
in such situations.
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It was demonstrated that estimators for roughness based on change probabilities
yield results similar to those with alternative methods, while having computational
advantages and being less sensitive to noise.

On the practical side, by exploring two natural fracture surfaces, it was illustrated
how the methods proposed here can be used to quantify fracture roughness and to
identify roughness anisotropy. In particular, these methods allow one to investigate
how fracture roughness varies across different scales. This is useful, for example, for
checking the hypothesis of self-affinity.

In the self-affine case, all estimated scale-dependent Hurst exponents defined on
the basis of change probabilities are expected to be close to the true Hurst exponent of
the structure. Otherwise, in the absence of self-affinity or milder adequate premises,
estimators of a possibly undefined Hurst exponent can yield diverse values that are
difficult to interpret. This may even result in conflicting statements about the direction
of maximum roughness for anisotropic rock surfaces (i.e., shear or fault surfaces). In
this case, the use of the scale-dependent Hurst exponents could possibly help to find
anisotropies, while their detection by only one (averaging) quantifier is impossible.

The proposed method may also be useful for extracting additional scale-dependent
information about the structure of a fracture surface such as the characteristic size of
building blocks of a material.
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Appendix: Proof of Theorem 1

For simplicity, it is assumed throughout in the sequel (and without further mention)
that (Xt )t∈[0,∞[ is a Gaussian stochastic process satisfying conditions (A1)–(A4). In
some of the statements below, these assumptions could be weakened insignificantly,
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but this is not relevant for proving Theorem 1. Further assumptions will be mentioned
explicitly where they are needed.

In the following, the lower and upper Hurst exponents of (Xt )t∈[0,∞[ are defined
by

H := inf

{
s ∈ R : lim inf

τ→∞
|c(τ )|
τ 2s−2 = 0

}
and

H := inf

{
s ∈ R : lim sup

τ→∞
|c(τ )|
τ 2s−2 = 0

}
, (13)

respectively. In general, the (upper) Hurst exponent provides an upper bound for the
asymptotic behavior of the variance Var(Xτ ), and an assumption like the existence of
the limit in (A5) implies that the Hurst exponent determines the asymptotic behavior
of Var(Xτ ) completely. This is a consequence of the fact that Var(Xτ ) can be written
in terms of the autocorrelation function c. For any n ∈ N, one has

Var(Xn) = Cov

⎛
⎝n−1∑

i=0

(Xi+1 − Xi ) ,

n−1∑
j=0

(
X j+1 − X j

)⎞⎠

=
n−1∑
i=0

n−1∑
j=0

Cov(Xi+1 − Xi , X j+1 − X j )

= Var(X1)

(
nc(0) + 2

n−1∑
k=1

(n − k)c(k)

)

= Var(X1)

(
n + 2

n−1∑
k=1

(n − k)c(k)

)
. (14)

Although the values of Var(Xτ ) are of interest for any τ ∈ R with τ > 0 [see, e.g.,
(2)], the above relation (14) for integer delays n ∈ N will be essential for proving
Theorem 1.

The following observation will be useful in the sequel.

Lemma 1 Let β ≥ −1, τ0 ∈ N and C > 0. Then there exists some τ1 > τ0 such that,
for any n ≥ τ1,

C · n <

n−1∑
k=τ0

(n − k)kβ. (15)

Moreover,

lim
n→∞

log
(∑n−1

k=τ0
(n − k)kβ

)
log(n)

= β + 2. (16)
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Proof To verify inequality (15) for n large enough, it is shown that 1/n times the
right-hand side tends to +∞, as n → ∞. For β > −1, it holds that

1

n

n−1∑
k=τ0

(n − k)kβ =
n−1∑
k=τ0

kβ − 1

n

n−1∑
k=τ0

kβ+1 ≥
∫ n−1

τ0

kβ dk − 1

n

∫ n

τ0

kβ+1 dk

= (n − 1)β+1 − τ
β+1
0

β + 1
− nβ+1 − n−1τ

β+2
0

β + 2

= (β + 2)
( n−1

n

)β+1 − (β + 1)

(β + 1)(β + 2)
nβ+1 − τ

β+1
0

β + 1
+ 1

n

τ
β+2
0

β + 2
.

The first term in this last expression tends to +∞, as n → ∞, while the other two
summands stay bounded. This shows that the right-hand side of (15) grows faster
than n as n → ∞ such that the inequality (15) must be valid for n large enough.
For β = −1, it holds that 1

n

∑n−1
k=τ0

(n − k)kβ = ∑n−1
k=τ0

k−1 − 1 + τ0
n → +∞,

as n → ∞. Thus, inequality (15) is also valid in this case for large enough
n. Recalling that the harmonic series grows like log(n), it is easily seen that

limn→∞ log
(∑n−1

k=τ0
(n − k)kβ

)
/ log(n) = limn→∞ log (n log(n)) /log(n) = 1 =

β + 2 for β = −1 and thus (16) holds.
To see that (16) holds for β > −1 as well, multiply n in the above estimate and

observe that there is some constant C̃ > 0 such that, for all n sufficiently large,

n−1∑
k=τ0

(n − k)kβ ≥ C̃nβ+2.

This clearly implies that lim infn→∞ log
(∑n−1

k=τ0
(n − k)kβ

)
/ log(n) ≥ β + 2. For

the opposite inequality, observe that, for β > −1,

1

n

n−1∑
k=τ0

(n − k)kβ ≤
n−1∑
k=τ0

kβ ≤
∫ n

τ0−1
kβ dk ≤ (β + 1)−1nβ+1,

which implies that lim supn→∞ log
(∑n−1

k=τ0
(n − k)kβ

)
/ log(n) ≤ β + 2. �	

A first consequence of Lemma 1 is the following observation regarding the asymp-
totic behavior of the autocorrelation.

Lemma 2 Given (Xt )t∈[0,∞[, for any s ≥ 1
2 , it holds that

lim sup
τ→∞

c(τ )

τ 2s−2 ≥ 0.
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Proof Assume that the left-hand side of the inequality above is strictly less than 0 for
some s ≥ 1

2 . Then there exists some constant C > 0 and some τ0 ∈ N such that

c(τ ) ≤ −Cτ 2s−2

holds for all τ ≥ τ0. From (14) it is inferred that, for any n ≥ τ0,

0 ≤ Var(Xn)

Var(X1)
= n + 2

n−1∑
k=1

(n − k)c(k)

= n + 2 ·
⎛
⎝τ0−1∑

k=1

(n − k)c(k) +
n−1∑
k=τ0

(n − k)c(k)

⎞
⎠

≤
(
1 + 2

τ0−1∑
k=1

|c(k)|
)

· n − 2C
n−1∑
k=τ0

(n − k)k2s−2.

Noting that the term in parentheses is a constant, Lemma 1 implies that the second
summand in this expression dominates the first one, provided n is large enough. Hence
for large n the last expression is negative, a contradiction. �	

Under the stated assumptions, Lemma 2 shows in particular that, if the limit in (A5)
is assumed to exist (for some H ≥ 0.5), then it cannot be negative. The next statement
clarifies that assuming the existence of the limit (A5) for some H ∈ R implies that H
is the Hurst exponent of the process.

Lemma 3 Assume for (Xt )t∈[0,∞[ that the limit in (A5) exists and equals C for
some constants H ∈ R and C 
= 0. Then for any s > H , limτ→∞ c(τ )

τ 2s−2 = 0,

and, limτ→∞ c(τ )

τ 2s−2 ∈ {+∞,−∞}, for any s < H , where the sign corresponds to the
sign of C . In particular, the Hurst exponent of (Xt )t∈[0,∞[ (as defined in (5)) exists
and equals H . Consequently, the constant C is positive.

Proof Observe that, for any s ∈ R,

c(τ )

τ 2s−2 = c(τ )

τ 2H−2 · τ 2(H−s).

Now the assumptions imply that the first factor on the right converges (to the constant
C 
= 0), as τ → ∞, while the second factor tends to zero for s > H and to +∞ for
s < H . From this the first assertion is obvious. It is an immediate consequence that the
number H is the common value of the lower and upper Hurst exponents of (Xt )t∈[0,∞[
as defined in (13), i.e., H = H = H . Moreover, the Hurst exponent in the sense of (5)
also exists and equals H . (The existence of the limit in (A5) implies that for any δ such
that 0 < δ < C , there is some τ0 such that (|C |−δ)·τ 2H−2 ≤ |c(τ )| ≤ (|C |+δ)·τ 2H−2

for all τ ≥ τ0. Taking logarithms in this inequality and dividing by log(τ ) yields

2H − 2 + log(|C | − δ)

log(τ )
≤ log(|c(τ )|)

log(τ )
≤ 2H − 2 + log(|C | + δ)|)

log(τ )
.
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Letting τ → ∞, the expressions on the left and on the right converge to 2H −2, from
which the existence of the limit in (5) is clear.) �	

The next statement gives a general upper bound for the asymptotics of the variance
Var(Xτ ) as τ → ∞ of a process (Xt )t∈[0,∞[ in terms of its upper Hurst exponent.

Proposition 2 If H is the upper Hurst exponent of (Xt )t∈[0,∞[ (as defined in (13)),
then

lim sup
n→∞

log(Var(Xn))

log(n)
≤ max{1, 2H}.

Proof Observe that due to the relation (14), it is enough to show that

lim sup
n→∞

log
(
n + 2

∑n−1
k=1(n − k)c(k)

)
log(n)

≤ max{1, 2H}. (17)

Let ε > 0. The definition of the upper Hurst exponent (13) implies that there exists
some τ0 ∈ N such that

|c(τ )| ≤ τ 2H−2+ε

holds for all τ ≥ τ0. It is inferred that, for n > τ0,

n + 2
n−1∑
k=1

(n − k)c(k) ≤ n + 2
τ0−1∑
k=1

(n − k)|c(k)| + 2
n−1∑
k=τ0

(n − k)|c(k)|

≤ n

(
1 + 2

τ0−1∑
k=1

|c(k)|
)

+ 2
n−1∑
k=τ0

(n − k)k2H−2+ε,

where the expression in parentheses is a constant independent of n. Let us denote it by
E . Applying the formula log(a+b) ≤ b/a+ log(a) (which is valid for a, a+b > 0),
with a := 2

∑n−1
k=τ0

(n − k)k2H−2+ε and b := n · E it is inferred that

lim sup
n→∞

log
(
n + 2

∑n−1
k=1(n − k)c(k)

)
log(n)

≤ lim sup
n→∞

log
(
n · E + 2

∑n−1
k=τ0

(n − k)k2H−2+ε
)

log(n)

≤ lim sup
n→∞

⎛
⎝ n · E
log(n) · 2∑n−1

k=τ0
(n − k)k2H−2+ε

+
log

(
2

∑n−1
k=τ0

(n − k)k2H−2+ε
)

log(n)

⎞
⎠ .
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Nowobserve that for H ≥ 0.5, by the inequality inLemma1, the first quotient vanishes
as n → ∞, and by (16) in Lemma 1, the second quotient converges to 2H + ε. Since
this estimate holds for any ε > 0, the assertion follows for any H ≥ 0.5 by letting
ε ↘ 0.

For H < 0.5, the summand a from above can be bounded as follows

a ≤ 2n1+ε
n−1∑
k=τ0

k2H−2 ≤ 2n1+ε

∫ n

τ0−1
k2H−2 dk ≤ n1+ε 2(τ0 − 1)2H−1

1 − 2H
.

Since this holds for any ε > 0 (and since the summand b grows like n, as n → ∞),
one concludes that 1 is an upper bound for the limes superior in (17), as asserted for
H < 0.5. This completes the proof. �	
Proposition 3 Let H ≥ 0.5 and C > 0. Assume that for (Xt )t∈[0,∞[ the limit in (A5)
exists and equals C . Then H is the Hurst exponent of (Xt )t∈[0,∞[ (as defined in (5))
and

lim
n→∞

log(Var(Xn))

log(n)
= 2H.

Proof By Lemma 3, H is indeed the Hurst exponent of (Xt )t∈[0,∞[. In view of Propo-
sition 2 and the relation (14), the only thing that remains to be shown is that

L := lim inf
n→∞

log
(
n + 2

∑n−1
k=1(n − k)c(k)

)
log(n)

≥ 2H.

Since the limit in (A5) is assumed to equal C > 0, there exists τ0 ∈ N such that

C

2
τ 2H−2 ≤ c(τ )

holds for all τ ≥ τ0. In particular, c(τ ) will be positive for τ > τ0.
This relation implies that, for any n ∈ N,

n + 2
n−1∑
k=1

(n − k)c(k) = n + 2
τ0−1∑
k=1

(n − k)c(k) + 2
n−1∑
k=τ0

(n − k)c(k)

≥ −
∣∣∣∣∣n + 2

τ0−1∑
k=1

(n − k)c(k)

∣∣∣∣∣ + C
n−1∑
k=τ0

(n − k)k2H−2

≥ −n ·
(
1 + 2

τ0−1∑
k=1

|c(k)|
)

+ C
n−1∑
k=τ0

(n − k)k2H−2.

Now Lemma 1 ensures that there exists a τ1 such that the last expression is positive
for all n ≥ τ1. Employing the formula log(a + b) ≥ b/a − (b/a)2/2+ log(a), which
is valid for a, a + b > 0, allows one to conclude that
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L ≥ lim inf
n→∞

log
(
C

∑n−1
k=τ0

(n − k)k2H−2 − En
)

log(n)

≥ lim inf
n→∞

1

log(n)

⎛
⎜⎝ −E · n
C

∑n−1
k=τ0

(n − k)k2H−2
− E2 · n2

2
(
C

∑n−1
k=τ0

(n − k)k2H−2
)2

+ log

⎛
⎝C

n−1∑
k=τ0

(n − k) · k2H−2

⎞
⎠

⎞
⎠ .

By the inequality in Lemma1, the first two summands are bounded and therefore,when
divided by log(n), they vanish as n → ∞. Furthermore, by (16), the third summand
divided by log(n) converges to 2H . Note that for the application of Lemma 1 the
assumption H ≥ 0.5 was used. �	

After these preparations a proof of Theorem 1 can be provided.

Proof of Theorem 1 Under the assumptions of the theorem, Proposition 3 applies.
Thus, limn→∞ log2(Var(Xn))

log2(n)
exists and equals 2H . One can compute this limit by pass-

ing to any subsequence (τn)n∈N ⊆ N diverging to ∞. Choose τn = 2n . Then

H = 1

2
lim
n→∞

log2(Var(X2n ))

log2(2n)

= 1

2
lim
n→∞

1

n
log2(Var(X2n ))

= 1

2
lim
n→∞

1

n

[
log2(Var(X2n )) − log2(Var(X1))

]

= 1

2
lim
n→∞

1

n

n−1∑
i=0

log2

(
Var(X2i+1)

Var(X2i )

)
.

Together with Proposition 1 and the Stolz-Cesáro theorem, this implies that

lim inf
τ→∞ h(p(τ )) ≤ lim inf

n→∞ h(p(2n)) = 1

2
lim inf
n→∞ log2

(
Var(X2n+1)

Var(X2n )

)

≤ 1

2
lim inf
n→∞

1

n

n−1∑
i=0

log2

(
Var(X2i+1)

Var(X2i )

)
= H

= 1

2
lim sup
n→∞

1

n

n−1∑
i=0

log2

(
Var(X2i+1)

Var(X2i )

)

≤ 1

2
lim sup
n→∞

log2

(
Var(X2n+1)

Var(X2n )

)
= lim sup

n→∞
h(p(2n)) ≤ lim sup

τ→∞
h(p(τ )).
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So, in particular, if the limit limτ→∞ h(p(τ )) exists, it must be equal to H , which
completes the proof of the theorem. �	

Recall that it was assumed in Theorem 1 that the limit limτ→∞ h(p(τ )) exists
in order to conclude that it must be equal to H . The last sequence of inequalities
in the above proof shows that, alternatively, one can impose the weaker assumption
that limn→∞ h(p(2n)) exists in order to prove the (slightly weaker) statement that
limn→∞ h(p(2n)) = H holds.
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