
Karlsruhe Institute of Technology
Communications Engineering Lab
Prof. Dr.-Ing. Laurent Schmalen

CEL

Quantum Computing Assisted Speech Processing

Masterthesis

Melvin Strobl

Advisor : Prof. Dr.-Ing. Laurent Schmalen
Supervisors : Prof. Dr.-Ing. Achim Streit

Dr.-Ing. Eileen Kühn

Start date : 01.05.2021
End date : 02.11.2021

Declaration

With this statement I declare that I have independently completed the above master’s
thesis. The thoughts taken directly or indirectly from external sources are properly marked
as such. This thesis was not previously submitted to another academic institution and has
also not yet been published.

Karlsruhe, 02.11.2021

Melvin Strobl

iii

„Computer programming is an art form, like the creation of poetry or music.“

(Donald Knuth)

v

Abstract

Human-machine interaction in general and speech processing (SP) in particular are key-
disciplines in today’s consumer electronics. While the computational power of smart devices
heavily increased within the last couple of years, tasks such as speech recognition (SR)
still mainly rely on cloud based solutions. In such architectures, not only high accuracy,
but also quick response time and fast inference are essential for providing a pleasant user
experience. State of the art approaches use machine learning (ML) based solutions for
recognition of spoken words making use of high-performance hardware and huge datasets.
Besides the actual training and inference of such ML models, SR requires the extraction of
acoustic features from the recorded speech. Spectrograms have proven to be a well-suited
feature space and are broadly being used in many ML based frameworks.
An application of quantum computing (QC) in a SR pipeline was previously proposed

in [YQC+20b] where a neural network (NN) trained on quantum manipulated spectrogram
slightly surpassed the validation accuracy of the classical approach.

However, quantum computers are foremost known for their potential speedup in certain
applications and given that the quantum Fourier transform (QFT), the quantum equivalent
of the Fourier transform (FT), is just such an algorithm, the natural question and thus
topic of this thesis arises, if there are options or preferably advantages, utilizing the QFT
for spectrogram generation.
This requires construction of an adequate framework where a short time quantum

Fourier transform (STQFT) is developed, optimization of the STQFT and post processing
involving noise mitigation applied and finally evaluated based on the performance of the
NN. Since speech synthesis (SS), as another subcategory of SP, requires a completely
different framework and comes with another set of challenges, although many of the insights
of SR can be transferred, this thesis focuses exclusively on SR.
By using a modular approach, different signal types as well as transformations can be

quickly interchanged and tested either in simulation or on real quantum computers. For
evaluating the performance of the NN given features from variant STQFT configurations,
the architecture proposed in [YQC+20b] is used as a starting point and their accuracy of
95.12 % as a baseline value.
Experiments show that although quantum computers in the noisy intermediate scale

quantum (NISQ) era are capable of processing the QFT of band-limited harmonic oscil-
lations, waiting queues and the restricted access to complex quantum systems forbid an
application of more complex QFTs necessary to meet the requirements for the sampling
frequency of speech signals w.r.t. time and frequency resolution in a real SR application.

However, by using a simulation environment and the noise model of a real quantum device,
the spectrograms generated with the STQFT enables the NN to achieve a competitive
test accuracy of 89.92 %, whilst forfeit the speedup gained on real devices. Although
the accuracy did not surpass the baseline and noise and circuit capacity of NISQ devices
restricts the applicability of SR with quantum advantage, the results motivate further
investigations in practical applications of the QFT and STQFT for speech processing.

vii

Zusammenfassung

Mensch-Maschine-Interaktion im Allgemeinen und Sprachverarbeitung im Besonderen
sind Schlüsseldisziplinen in der heutigen Unterhaltungselektronik. Obwohl die Rechen-
leistung mobiler Geräte in den letzten Jahren stark zugenommen hat, sind Aufgaben wie
Spracherkennung immernoch hauptsächlich auf cloudbasierte Lösungen angewiesen. Bei
solchen Architekturen is nicht nur eine hohe Genauigkeit, sondern auch eine schnelle Reak-
tionszeit für eine reale und nutzerfreundliche Anwendung unerlässlich. Moderne Ansätze
verwenden maschinelles Lernen für die Erkennung der Sprache, die hoch performante
Hardware und umfassende Datensätze erfordert. Neben dem eigentlichen Training und
der Inferenz solcher Modelle für das maschinelle Lernen erfordert Spracherkennung die
Extraktion von akustischen Merkmalen aus der aufgenommenen Sprache. Spektrogramme
haben sich hierbei als gut geeigneter Merkmalsraum erwiesen und sich in heutigen Systemen
etabliert.
Eine Anwendung von Quantencomputern in der Spracherkennung wurde zuvor in der

Arbeit von [YQC+20b] vorgeschlagen, in welcher ein Neuronales Netzes, das auf mittels
von einem Quantencomputers manipulierten Spektrogrammen trainiert wurde, die Vali-
dierungsgenauigkeit des klassischen Ansatzes übertraf. Quantencomputer sind jedoch vor
allem für ihre Überlegenheit gegenüber klassischen Computern im Berechnen bestimmter
Algorithmen bekannt. Da die Quanten-Fourier-Transformation, das Äquivalent der klas-
sischen Fourier-Transformation auf einem Quantencomputer, ein solcher Algorithmus ist,
stellt sich die natürliche Frage und somit das Thema dieser Arbeit, ob es Möglichkeiten oder
sogar Vorteile gibt, die Quanten-Fourier-Transformation für die Spektrogrammerzeugung
zu nutzen.

Die Untersuchung dieser Frage erfordert den Aufbau eines geeigneten Frameworks, in dem
eine kurzzeit-Quanten-Fourier-Transformation entwickelt, optimiert und ggf. Rauschunter-
drückung angewandt wird. Anschließend wird die Genauigkeit eines Neuronalen Netzes,
trainiert auf den mittels der kurzzeit-Quanten-Fourier-Transformation erzeugten Merk-
malen, evaluiert und diskutiert. Da die Sprachsynthese, als eine weitere Unterkategorie der
Sprachverarbeitung, ein völlig anderes Framework erfordert und ein ganzes Set an weiteren
Herausfoderungen beherbergt, wenngleich viele aus der Spracherkennung gewonnenen
Erkenntnisse darin übertragen werden können, konzentriert sich diese Arbeit ausschließlich
auf die Spracherkennung.

Durch die Verwendung eines modularen Ansatzes können verschiedene Signaltypen sowie
Transformationen schnell ausgetauscht und entweder in der Simulation oder auf realen
Quantencomputern getestet werden. Für die Bewertung der Genauigkeit des Neuronalen
Netzwerks, gegebenen den Merkmale aus verschiedenen Konfigurationen der kurzzeit-
Quanten-Fourier-Transformation, wird die in [YQC+20b] vorgeschlagene Architektur als
Ausgangspunkt verwendet und mit ihrer Genauigkeit von 95.12 % als Referenzwert ver-
glichen.
Experimente zeigen, dass Quantencomputer der “Noisy Intermediate Scale Quantum”-

Ära zwar in der Lage sind, die Quanten-Fourier-Transformation von stark bandbegrenzten
harmonischen Schwingungen zu verarbeiten. Jedoch verbietet der beschränkte Zugang
zu komplexeren Quantencomputern, die notwendig sind um den Anforderungen an die
Abtastfrequenz von Sprachsignalen in Bezug auf Zeit- und Frequenzauflösung zu erfüllen,

ix

eine Anwendung in praktischen Spracherkennungsszenarien.
Durch die Verwendung einer Simulationsumgebung mit dem Rauschmodell eines Quan-

tencomputers in Kombination mit den in dieser Arbeit entwickelten Ansätze, ermöglicht das
mit dem kurzzeit-Quanten-Fourier-Transformation erzeugte Spektrogramm dem Neuronalen
Netzwerk eine Testgenauigkeit von 89.92 %, während jedoch die auf realen Geräten poten-
tielle Geschwindigkeitssteigerung verloren geht. Obwohl die Genauigkeit nicht über der Ref-
erenz liegt und das Rauschen und die Kapazität von “Noisy Intermediate Scale Quantum”-
Geräten die Anwendbarkeit von Spracherkennung mit Quantenvorteil einschränkt, mo-
tivieren die Ergebnisse zu weiteren Untersuchungen in praktischen Anwendungen der
Quanten-Fourier-Transformation für die Sprachverarbeitung.

x

Contents

1. Introduction 3

2. Foundations 5
2.1. Speech Recognition . 5

2.1.1. Signal Processing . 5
2.1.2. Speech Recognition Neural Networks 10

2.2. Quantum Computing . 14
2.2.1. Qubits and Qubit States . 14
2.2.2. Operations . 18
2.2.3. Measurement . 22
2.2.4. Entanglement . 23
2.2.5. Realization of Circuits . 25
2.2.6. Noise . 25
2.2.7. Encoding . 33
2.2.8. Quantum Fourier Transform . 33
2.2.9. Quantum Machine Learning . 39

2.3. Related Research . 39

3. Approach 43
3.1. Quantum Fourier Transform for Signal Processing 43

3.1.1. Encoding . 43
3.1.2. Transformation Accuracy . 43
3.1.3. Noise . 45

3.2. Short Time Quantum Fourier Transform . 47
3.3. Hybrid Quantum Speech Processing . 48

4. Validation 51
4.1. Signal Generation and Data Acquisition . 53
4.2. Transformations . 54

4.2.1. Discrete Fourier Transform . 55
4.2.2. Fast Fourier Transform . 55
4.2.3. Quantum Fourier Transform . 55

4.3. Short Time Quantum Fourier Transform . 62
4.3.1. Noise Mitigation . 63
4.3.2. Angular Filter . 65
4.3.3. Speech Signals . 66

4.4. Connection to the Neural Network . 71
4.5. Discussion . 77

5. Conclusion 81

List of Figures 83

Symbols 87

1

A. Additional Figures 89

B. Abbreviations 95

Bibliography 97

2

1. Introduction

Cloud-based speech processing solutions, incorporating speech recognition and speech
synthesis, have become an essential part of consumer goods and entertainment products
in recent years. This has been made possible by continuous improvements in processing
hardware, but also by advances in machine learning research. machine learning-based
systems require a significant amount of data to solve a given learning problem. In the case
of speech recognition, for example, a dataset contains speech samples and their associated
labels, which an ML model like a neural network is then supposed to classify correctly.
Choosing a characteristic data representation is crucial for the success of the machine

learning task. The frequency composition or more precisely, the spectrogram of a speech
signal has been shown to meet this requirement and can be obtained from the time domain
of the speech signal by a Fourier transform.

Driven by the importance of Fourier transform for feature generation in speech processing
tasks, this work investigates the applicability of the quantum equivalent, the quantum
Fourier transform, in this area. Quantum computing is a relatively new technology that
differs from classical computational hardware in that quantum mechanical effects are used
to build basic computational logic. More complex systems are then built by combining
these logic blocks. Furthermore, quantum algorithms can achieve a computational advan-
tage over classical equivalents, as they solve certain complex problems more efficiently.
In combination with machine learning-based approaches, quantum computing promises
attractive possibilities in terms of data processing and data generation.

The quantum Fourier transform, as an algorithm representative for the potential speedup
gained through appliance of quantum computing is evaluated as an option for speech
recognition within the scope of this thesis. While speech processing encompasses both
speech recognition and speech synthesis, this work focuses primarily on speech recognition,
as many of the lessons learned in this area can also be applied to speech synthesis, but
would require a completely different framework. This, in turn, is considered as a subject of
separate investigation.
Since quantum computing hardware is still in early development, noise and errors are

inherent with calculations on such machines. Furthermore, the number of quantum bits,
the quantum equivalent of classical bits, is not sufficiently large to allow for applications
of quantum computing comparable to those on classical systems. The small number
of available quantum bits and error prone computations led to the coining of the noisy
intermediate scale quantum term commonly used to describe nowadays quantum hardware.
These circumstances only allow the evaluation of the quantum Fourier transform for speech
recognition in simulation environments although less demanding type of signals will also
be processed on real quantum devices.

This thesis covers the implementation and integration of the quantum Fourier transform
in a common speech recognition architecture. Furthermore the option of noise mitigation,
as an important aspect of quantum computing in the noisy intermediate scale quantum era,
post processing and performance investigations in union with a neural network architecture
are evaluated.

3

The foundations of speech recognition including signal theory and neural network
architecture are covered in chapter 2. Furthermore, basic concepts of quantum computing
are introduced, advanced topics such as the quantum Fourier transform are presented and
potential advantages discussed. Finally, related research is presented in chapter 2.3.

The main concepts and ideas of this work are introduced in chapter 3, where short time
quantum Fourier transform is also introduced as an approach to generate spectrograms
with quantum computing. Since quantum computing is subject to noise in the noisy
intermediate scale quantum era, additional methods to reduce these noise effects on the
measurement results are explained in chapter 3 as well.
Chapter 4 then shows the suitability of such methods in combination with the neural

network architecture presented in 2.3. Furthermore, the framework used and proposed
in this thesis to evaluate the performance of quantum Fourier transform and short time
quantum Fourier transform is explained in detail and discussed at the end.

In the final chapter 5, the future perspectives of quantum computing in speech recognition
are discussed, important results summarized and possible research topics derived.

4

2. Foundations

In recent years, quantum computing (QC) evolved from a theoretical concept, introduced
by [Fey82], to a rapidly growing research field, sparking many new application ideas
and gaining broad interest. QC promises a potential computational speedup of certain
algorithms compared to their classical counterpart, but although Quantum supremacy
has been proven [AAB+19], nowadays noisy intermediate scale quantum (NISQ) hardware
limits the possibilities of bringing this advantage to application. Nevertheless hardware is
already capable of solving certain algorithms more efficiently than classical computers, but
noise and limited quantum resources restrict the exploitation of the theoretical potential of
QC.

As mentioned in the introduction 1, speech recognition (SR) will be the primary focus in
this thesis since many concepts can be applied on speech synthesis (SS) as well, but require
a different framework. This chapter covers common basics and approaches in SR tasks and
introduces target-oriented foundations of quantum computing and related research used
within this work.

2.1. Speech Recognition

SR describes the task of automatic conversion of speech into a sequence of words [HD10].
This field of research has gained enormous popularity in recent years and advances in
neural network (NN) gave rise to almost natural conversations between human beings and
computers [FTYA21]. Despite the increasing computing power of mobile devices, SR is
still mostly run in the cloud using machine learning (ML) techniques, enabling continuous
improvements and a consistent user experience across all devices. Fundamental to almost
all SR methods is the signal processing for input preparation and feature generation. The
following sections cover the foundations of signal processing required for appliance in SR
tasks.

2.1.1. Signal Processing

In this section, mathematical methods from the field of signal processing relevant to speech
recognition tasks are presented.

Sampling

Digital information processing of a continuous speech x(t) over time t, t ∈ R necessitates
sampling of the latter. Mathematically, this can be expressed by the convolution of a
continuous signal with a Dirac comb δ(t) [FPL19]

x∗ = x(t) ∗ δ(nts) =
∞∑

n=−∞
xnδ(t− nts) , n ∈ Z (2.1)

5

where x∗ is the sampled signal and xn describes a single sample with frequency fs = 1
ts

at index n. The signal is represented with 0 in between sampling points.
The minimum sampling frequency depends on the spectral components contained in the

signal by the definition of the sampling theorem [FPL19]:

Theorem 1 Let x(t) be a band-limited signal such that there is no frequency information
for |f | ≥ B and B ≥ 0, then the signal x(t) can be reconstructed from its sampled variant
xn = x(nts) without any loss in information if ts ≤ 1

2B and therefore fs ≥ 2B holds true.

As a consequence, if spectral information of a speech signal up to e.g. fmax = 8 kHz
should be extracted, then the signal needs to be band-limited to 8 kHz and the sampling
frequency must be fs ≥ 16 kHz. A signal is said to be within the Nyquist Band [Sha98] if
it fulfills above condition or in general:

fmax < B ≤ fs
2 → X(f) = 0 ∀ |f | ≥ B (2.2)

where B is called the bandwidth of a signal and X(f) the fourier transform of a signal
x(t) covered in the following section 2.1.1.

Fourier Transform

For applications in SR, the Fourier transform (FT) defined by [FPL19]

X(f) =
∫ ∞
−∞

x(t)e−ı2πftdt (2.3)

with X(f) being the spectrum of x(t) needs to be adapted to the discrete case such that

Xk = 1√
N

N−1∑
n=0

xne−ı2π
kn
N (2.4)

where N denotes the total number of samples and k ∈ [0 . . .K − 1] with K ∈ N indicates
the frequency bin resulting from the sampled signal xn. K indicates the number of
frequencies being considered and is conveniently chosen K = N [Mü21].

The equation above consists of N complex multiplications for each single frequency bin
out of K = N bins in total. Therefore the complexity of this algorithm is O(N2). By
substituting ωN := e−ı2π

1
N the formula becomes:

Xk = 1√
N

N−1∑
n=0

xnω
kn
N (2.5)

By using the vector representation of xn, Xk can be calculated using a matrix equivalent
to the discrete Fourier transform (DFT) as follows:

6

X1
X2
...
Xk

 = 1√
N

1 1 1 · · · 1
1 ω1

N ω2
N · · · ωN−1

N

1 ω2
N ω4

N · · · ω
2(N−1)
N

...
...

...
1 ωN−1

N ω
2(N−1)
N · · · ω

(N−1)(N−1)
N

x1
x2
...
xn

 (2.6)

where the DFT matrix F is ∈ CN×N and N = 2n, thus X = Fx in short.

Leakage Effect Theorem 1 inherently requires a band-limited signal to avoid leakage
effect. This effect arises from the fact that real signals are always time-finite thus never
band-limited due to the implicit filtering with a rectangular window function (rect) the time
domain. This in turn corresponds to a convolution with a sinc function in the frequency
domain [FPL19] as indicated in the following equation.

F(rectT (t)) = T sinc(fT) = T
sin(πfT)
πfT

, t, f ∈ R (2.7)

The rect function is defined by

rectT (t) =
{

1 ∀ |t| ≤ T
2

0 ∀ |t| > T
2

T ∈ R (2.8)

with T being the period length of a signal.
Due to the properties of the sinc function, this leads to an infinitely wide frequency

band. This disallows the Nyquist theorem 1 to be fulfilled and finally results in smearing
of the actual signal spectrum [FPL19]. Nonetheless, the leakage effect can be efficiently
suppressed even with a finite observation window, if the oscillating frequency of the signal
is an integer multiple of the frequency resolution ∆f = fs

N [FPL19].

Fast Fourier Transform [CT65] developed the fast Fourier transform (FFT) algorithm
enabling efficient application of the FT in digital devices. Their algorithm is based on the
idea that calculating half of the points of a DFT requires only a quarter of computations
since O((N2)2) = O(N2)/4.
Using the representation in equation (2.6), this idea comes clear when writing down a

8-point DFT matrix and omitting half of the values in each direction thus resulting in a
4-point DFT:

7

F = 1√
N

1 1 1 1 o o o o
1 ω ω2

N ω3
N o o o o

1 ω2
N ω4

N ω6
N o o o o

1 ω3
N ω6

N ω9
N o o o o

o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o

(2.9)

Therefore, the signal x(n) is being split up into odd and even parts recursively:

Xk =
N
2 −1∑
r=0

x2re−ı2π
k2r
N +

N
2 −1∑
r=0

x2r+1e−ı2π
k(2r+1)

N

Xk =
N
2 −1∑
r=0

x2re−ı2π
k2r
N + e

−ı2πk
N

N
2 −1∑
r=0

x2r+1e−ı2π
k2r
N

Xk =
N
2 −1∑
r=0

x2re−ı2π
kr
N/2 + e

−ı2πk
N

N
2 −1∑
r=0

x2r+1e−ı2π
kr
N/2

Xk = Xeven + e−i2π
kn
N Xodd

(2.10)

A single split therefore yields a remaining complexity of ON2

2 +N , consisting of 2 DFTs
on (N/2)2 elements and additional summation of N parts afterwards.

This iterative approach can be repeated p = log2N times (assuming N being a power of
2) and finally yielding

N

2p →
N2

2p +Np

= N2

N
+N log2N

= N +N log2N

(2.11)

which results in overall O(N log2N). The assumption that N is a power of 2, might not
always be fulfilled given a fixed signal. For this reason, Zero Padding is commonly used to
match the signal length.

Short Time Fourier Transform

In SR, one is usually interested in the frequency content of a signal over time. The Short
Time Fourier transform (STFT) is a common method for computing such a spectrogram,
approaching the frequency change in the input signal by multiple subsequent FT applied
to windowed cut-outs. Ideally, a rectangular window (filter) would be applied, such that

8

neighboring signal components cannot influence the transformation result. The definition
of the STFT using a filter γ applied on a continuous signal x(t) is defined by [FPL19]

F γx (τ, f) = F t {x(t)γ∗(t− τ)} =
∫ ∞
−∞

x(t)γ∗(t− τ)e−ı2πft dt (2.12)

whereas the spectrogram is calculated by the square of the absolute value of the STFT:

Sγx(τ, f) = |F γx (τ, f)|2 =
∣∣∣∣∫ ∞
−∞

x(t)γ∗(t− τ)e−ı2πft dt
∣∣∣∣2 (2.13)

In the case of discrete time and frequency, this becomes:

Sγx(m, k) =
∞∑

n=−∞
xnγn−me−ı2π

k
W
n (2.14)

where m ∈ [0 . . .M] with M :=
⌊
N−W
H

⌋
is the shift of the discrete window function

γ with length W ∈ N applied on x with length N ∈ N and k ∈ [0 . . . N2] indicates the
frequency bin of the m-th time frame. H refers to the hop size describing the distance by
which the window is shifted over x.

Windowing Functions The STFT comes with the issue of finding a trade-off between
time and frequency resolution. This can be seen by considering the edge cases of the
number of samples used in the FT:

• n → 1 (one sample of the signal): no frequency information, but maximum time
resolution
• n → N (all samples of the signal): maximum frequency resolution, but minimum
time resolution

Additionally, in case of the STFT, where time limited signals are explicitly desired, the
Nyquist theorem 1 can only be approximately fulfilled, thus leading to the leakage effect
as explained in paragraph 2.1.1
For this reason, windowing functions with a softer shape than the rectangular filter

to reduce the impact of the leakage effect. Some of these filters and their properties
from [GP21] are:

• Kaiser: lowest artefacts of filtering among all filters
• Blackman: slightly worse than a kaiser window
• Hamming: optimized to minimize the nearest side lobe
• Hanning: removes the discontinuities at the beginning and end of the sampled signal
• Bartlett: similar to triangular window, but with less ripple

Usually, the Hanning window provides a sufficient frequency resolution with small
computational effort. However, the exact differences are not relevant to the subject of this
thesis thus are not regarded any further.

9

Mel-Spectrogram

For the reason that human beings do not perceive a linear distance between distinct
frequencies [SVN37], it is worth reconsidering the suitability of the signal representation
introduced with the STFT from section 2.1.1.
[Sha87] therefore proposes the Mel-scale which represents the frequencies on a quasi-

logarithmic scale defined by

fmel = 2595 log10

(
1 + f

700

)
(2.15)

where the constants in this term are given by definition and result from evaluations of
the perceptual distance between tones perceived by human hearings. Equation (2.15) then
maps a frequency f to its corresponding Mel-frequency fmel.
The Mel-scale is usually applied after calculating the spectrogram using a filterbank

(matrix) mapping parameterized by the number of desired Mel-bins and the sampling rate
given a specific spectrogram. Example 2.1.1 provides such an calculation on the basis of
typical values of a speech signal.

Example 2.1.1 Converting a 1024-point STFT with a matrix size of e.g. (512 × 1024)
into a 60-bin Mel-spectrogram, would yield a (512× 60) matrix.

2.1.2. Speech Recognition Neural Networks

While the field of research around NNs has gained enormous popularity within the last
several decades, this section aims to cover only the necessary basics and specific advanced
topics mandatory for the application of NNs within this thesis.

Convolutional Neural Networks

In a convolutional neural network (CNN), instead of matrix multiplications, convolutions
are applied at least once per layer on (n× n× c) -dimensional input data [GBC16] with
n, c ∈ Z. The following discussion will focus on the case of one channel c = 1 for simplicity,
thus (n× n× 1) is abbreviated with (n× n).
This works by shifting a (k × k), k ∈ Z matrix (filter) W consisting of k2 weights

(w0 . . . wk, wi ∈ R) over an input matrix of size (n × n), summing up the pointwise
multiplied entries and thus retrieving the value oi of the output matrix. Naturally, this
resulting matrix size would decrease, if n ≥ 1 which is usually addressed by introducing
zero-padding around the border of the input matrix. Furthermore, the distance, by which
the filter matrix shifts over the input can be controlled by the stride [DV16].
A general expression for the resulting matrix size (o× o) after applying a filter of size

(k × k) on an input of size (n× n) is stated in the following equation derived from [DV16]:

o =
⌊
n+ 2 ∗ p− k

s

⌋
+ 1 (2.16)

10

0 1 2 3 Figure 2.1: Convolution of a (k × k)
(k = 3) filter kernel over
a (n × 5) (n = 5) input
padded with p = 1 border
of zeros padded around
the image and unit stride
s = 1 resulting in an out-
put image of size o × o
(o = 4)

where p denotes the padding, s the stride and k the filter size as illustrated in figure 2.1.
Applying c′ filters with distinct weights but equal shape will yield a resulting output

depth of c′, also referred to as channels. In conjunction with equation (2.16) the overall
output then becomes (o× o× c′). The filter values (weights) stay constant within a single
channel thus enable location invariance of a CNN but can vary across different channels.
This yields the more general dimensionality of the filter (k × k × c).

Optimizers In general, stochastic gradient descent (SGD) is used in a backpropaga-
tion [GBC16] manner to update the weights. However, evaluating a single training example
and then updating all weights accordingly is computationally very expensive and only gives
a stochastic approximation of the true gradient.

The batch gradient descent (BGD) approach, often just referred to as gradient descent
(GD), is on the other side of the extreme were all training samples are evaluated and the
mean gradient is then used to update the parameters of the network. It is conceivable
that although this method results in a smooth loss curve, it is not suited well for large
datasets since one single gradient step would require the NN output calculation of all
samples [GBC16]. Furthermore BGD could converge in local minimums which is less likely
to happen with the high frequent and stochastic gradient updates in SGD [Sra12].
For this reason, mini batch GD is commonly used, where multiple training samples

(mini batch) specified by the batch size, are passed through the NN and contribute to the
loss together. Afterwards, backpropagation is applied once for those samples [GBC16].
This approach requires less memory than BGD while resulting in a smoother loss curve
compared to SGD. Increasing the batch size is therefore an approach to address strong
fluctuations in the training history [Sra12]. A full iteration of all samples, independently
of the number of batches required, is referred to as an epoch. Both, the batch size and the
number of epochs are hyperparameters whose typical values vary depending on the NN
architecture and the learning problem (LP).
The Adam [KB17] optimizer provides an additional approach to tackle the problem

of noisy or sparse gradients by considering the first and second order moments of the
gradient. This stochastic gradient-based optimization can stabilize convergence and also
improves speed and memory consumption compared to BGD [KB17]. Despite the learning
rate is being adapted based on the first and second order moments of the gradient, Adam
requires a step-size hyperparameter α as well as exponential decay rates β1 and β2 for
both moment estimates. Decreasing the learning rate also reduces the gradients and can

11

therefore, depending on the learning problem, help to reduce fluctuations in the loss curve.
However, a reduction of the learning rate also reduces the overall training progress per
epoch which is why usually the number of epochs need to be increased simultaneously.

Dataset Splitting Commonly, a given dataset for a ML task is split into three sub-
sets [Rus15]. The training-dataset is used in the learning process to fit a model (i.e. adjust
weights and biases in case of a NN). Hyperparameters of the network are then adjusted
based on the performance of the model on the validation set. With each adjustment of the
hyperparameters, the validation-dataset weakens the unbiased evaluation property. There-
fore, after the training and validation accuracy is sufficient, a final completely unbiased
evaluation of the network on the unseen test-dataset is conducted. Splitting the dataset
into these three subsets (70 %→ training-, 20 %→ validation- and 10 %→ test-dataset)
is a common approach in ML to ensure realistic final performance measurement [Rus15].

Over- and Underfitting Given a dataset with weak expressiveness and a network archi-
tecture with high capacity, the NN would likely tends to overfit. This negative example
describes a common issue in ML where the network does not solve the LP by gaining
assumptions necessary for generalization. Instead of learning this inductive bias [Mit07], it
memorizes the dataset which leads to a weak performance on previously unseen data as in
the validation- or test-dataset. Besides architectural changes, regularization techniques such
as dropout [SHK+14] or batch normalization [IS15] can be applied. Contrary, underfitting
occurs, when the capacity of a NN is not sufficiently large to capture the complexity of a
LP.

Recurrent Neural Networks

If the input matrix contains temporal information, plain CNNs cannot always meet the
requirements, though exceptions exist [Wai89]. This problem can be solved by using
recurrent neural networks (RNNs) as they are specialized for processing sequential data
x = [x(1) . . . x(n)] [GBC16], about which a CNN can hardly generalize.

Figure 2.2 shows the basic structure of a vanilla RNN. The input data, denoted by x is
fed into the network using a weight matrix U . The hidden layer then stores the state across
several iterations while learning the inherent structure of x in W which in turn are updated
using backpropagation. The output vector o is attained by applying a third matrix V on
the hidden state. This result, together with the label vector y then contributes to the loss.

From the figure 2.2 it is conceivable, that with increasing length of the sequential data,
number of matrix multiplications also increase. This in turn often leads to the vanishing
gradient problem where updates of the weight matrices are effectively prevented by small
gradients. In such a case, the network is unable to continue learning [KK01]. Similar can
happen, if the gradients become very large, thus causing heavy fluctuations weights as
well as in the learning curve and therefore preventing the network from learning. This
effect is referred to as exploding gradients. These effects particularly occur in large RNN
architectures, which however are required to model long-term dependencies in the input
data [KK01].

12

Unroll

Figure 2.2: Schematic of a vanillaRNNarchitecture derived from [GBC16]. Input data x is
learned across several iterations in W , resulting in a time dependent output vector o.
Comparison with the label vector y then contributes to the loss function L.

Long Short-Term Memory Networks The authors [HS97] addressed these effects by
introducing the long short-term memory (LSTM), specifically designed to avoid problems
of RNNs regarding long-term dependencies. LSTMs have, similar to RNNs, a chain-like
structure but a different setup in each cell. Such a LSTM is showed in figure 2.3. The dashed
lines on the left and right of the indicate previous and following cells respectively. Circular
shaped blocks depict matrix operations and rectangular shaped blocks the activation
function applied on the sum of a weighted input and bias.

The exact internal structure is not explained in detail here. In difference to the RNN, the
LSTM uses a cell state Ct and a hidden state ht for storing information over time. Based on
the last hidden state and current input, the LSTM decides in ft = σ(Wf [ht−1, xt] + bf) if
information is added updated to the cell state or discarded. Hereby the sigmoid activation
function is defined by σ = 1

1+e−x . The actual adding of information is then done in
Ct = ft ∗ Ct−1 + it ∗ C̃t where it and C̃t are calculated it = σ (Wi · [ht−1, xt] + bi) and
C̃t = tanh (WC · [ht−1, xt] + bC) respectively. The summation instead of multiplication of
the cell state is essential for the ability of the LSTM to store information over time without
the problem of vanishing or exploding gradients as in RNNs. Finally, the hidden state,
acting as output of the LSTM, is calculated based on the cell state with ht = ot ∗ tanh (Ct)
and ot = σ (Wo [ht−1, xt] + bo).

13

Figure 2.3: Schematic of a LSTM cell architecture derived from [HS97]. Enabled by additive
processing of cell states C this architecture does not have the problem of vanishing or
exploding gradients as in casae of the vanilla RNN in figure 2.2.

2.2. Quantum Computing

The following section introduces the fundamental terms and tools of QC required in the
context of this thesis. In general quantum algorithms are build by the structure shown in
figure 2.4 derived from [LB20].

After a preprocessing (e.g. normalization) of the input data, quantum states are prepared
(encoding circuit) and the data then manipulated by unitary transformations (‘functional’
circuit). The result is measured and then passed on to the classical environment, where the
output is evaluated and, if necessary, post-processed. The components of this structure are
explained in detail in the following sections, but the figure 2.4 may be useful as a general
roadmap.

2.2.1. Qubits and Qubit States

In classical computing, we represent the smallest unit of information by a bit, the quantum
equivalent is called quantum bit (qubit).
The evolution of a quantum state ψ in time is, according to the Time Evolution

Postulate [Sch19], described by Schrödingers equation i~d|ψ〉dt = H |ψ〉 where H is a fixed
Hamiltonian and ~ = h

2π with h being the Planck’s constant commonly absorbed in
H [IH06].

The Hamiltonian has the spectral decomposition H =
∑
E E|E〉〈E| with |E〉 being the

discrete energy eigenstates and the state with lowest energy being referred to as ground
state [IH06]. In contrast, the excited state, represents a qubit with a higher energy level.
Naturally, systems tend towards a state with the lowest possible energy, which holds true
for qubits as well.

14

State Preparation Unitary
Transformation Measurement

PostprocessingPreprocessing

C
la

ss
ic

al
En

vi
ro

nm
en

t
Q

ua
nt

um
En

vi
ro

nm
en

t

Result

Figure 2.4: Quantum Algorithms structure derived from [LB20]. Input data is preprocessed
classically and then encoded into quantum states (state preparation). These states
are then manipulated by unitary transformations (‘functional’ circuit) and the result
is measured. In the classical environment, this output is evaluated and, if necessary,
post-processed.

Just like classical bits, qubits are described by their state, which, in contrast to classical
bits, is not limited to 1 and 0. The representation of such a qubit can be derived by first
introducing a vector notation of a classical bit and its equivalent in Dirac notation:

0→
(

1
0

)
= |0〉 and 1→

(
0
1

)
= |1〉 (2.17)

The state of a qubit can be described by equation (2.18), thus allowing qubits to take
any state in a two-dimensional complex vector space.

|ψ〉 = α|0〉+ β|1〉 =
(
α
β

)
α, β ∈ C (2.18)

More precisely this space is called a Hilbert Space H and implies the definition of an
hermitian inner product [IH06]

〈, 〉 : H×H −→ C (2.19)

and a norm [IH06]

‖u‖ = 〈u, u〉
1
2 , u ∈ H. (2.20)

For a qubit’s state in Dirac notation, the inner product is defined as

〈ψ|φ〉 := 〈ψ, φ〉 = (〈ψ|) · (|φ〉) (2.21)

where 〈ψ| is the complex conjugate transpose of |ψ〉 (dual to |ψ〉), so that |ψ〉† =
〈ψ| [JJS20]. Furthermore it is 〈ψ|φ〉 = 〈φ|ψ〉†.

15

In addition to the representation in equation (2.18), qubits can form a superposition
(linear combination) of the |0〉- and |1〉-states, resulting in the general representation of
a qubit’s state as depicted in (2.18). If not stated otherwise, the qubit is always initially
in the |0〉 state. To introduce some more language, an exactly known state ψ of a qubit
is called a pure state [IH06]. Contrastingly, a mixed state is the mixture of different pure
states [IH06].
Nevertheless, if we measure a qubit we will never measure a superposition, but either
|0〉 or |1〉 with a certain probability |α|2 or |β|2 respectively instead. This means that
although it is possible to create an infinite amount of possible states, at the time a qubit is
measured, its superposition collapses into a final value, either 0 or 1.

For this reason, QC only allows statistical reasoning about a qubit’s state by evaluating
several thousand measurements. Therefore for any state vector ψ it is required that

‖ψ‖2 = 1 (2.22)

must hold true [Sch19].
A superposition of multiple states obtained in a single qubit in state |ψ〉 is commonly

visualized by the so called Bloch sphere [Blo46]:

| +
x

|

|
y

| +

|0 z

|1

|

Figure 2.5: Bloch sphere displaying a state |ψ〉,
generated with [JNN13]. |0〉 and |1〉
state along the Z-axis, |+〉 and |−〉
state along the Z-axis and |− ı〉 and
|+ ı〉 state along the Y -axis.

The z axis, in figure 2.5 represents the ground (|0〉) and excited (|1〉) state. Furthermore,
states along the y axis are referred to as | − ı〉 and |+ ı〉 and along the x axis as |+〉 and
|−〉. At this point it should be noted that the naming of the states in this thesis may differ
from the ones in the literature in some cases.
Utilizing the geometric representation of states within the Bloch sphere, we can derive

another notation of the quantum state in equation (2.18) as an expression of the angles θ
(between and z axis and the state) and φ (between the x axis and the state in the XY
plane).
If we rewrite a qubit’s state using Euler’s form, we obtain

|ψ〉 = α|0〉+ β|1〉 = r0eıγ0 + r1eıγ1 = eıγ0(r0|0〉+ r1eı(γ1−γ0)|1〉) (2.23)

Measurement of a quantum state gives the amplitude of the latter, which will be discussed

16

in 2.2.3. However, calculating the amplitude of the term in equation (2.23) will eliminate
the first factor exp(ıγ0) [Wil11]. This term also referred to as the global phase of a quantum
state and is a non-measurable value as shown in the following equation (2.24).

〈ψ|ψ〉 = e−ıγ0〈φ|eıγ0 |φ〉 = 〈φ|φ〉, |ψ〉 = eıγ0 |φ〉 (2.24)

where it has been used that e−ıγ+ıγ = 1. Contrary, the relative phase γ1 − γ0 in
equation (2.23) is an observable quantity.

Equation (2.23) and the fact that it is not possible to measure the global phase, allows
to confine α and β to real numbers ∈ R and add a relative phase term [ACB+20]:

|ψ〉 = α|0〉+ eıφβ|1〉 (2.25)

The normalization introduced in (2.22) can be written as

√
α2 + β2 = 1 (2.26)

Furthermore the trigonometric identity can be used to rewrite α and β as an expression
of the a single variable θ:

√
sin2 x+ cos2 x = 1 x ∈ R

⇒ α = cos θ2 β = sin θ2 α,β ∈ R
(2.27)

This yields the equation of a qubit’s state expressed by the angles θ and φ:

|ψ〉 = cos θ2 |0〉+ eıφ sin θ2 |1〉 θ ∈ [0, π], φ ∈ [0, 2π] (2.28)

where θ and φ rotate around the x and y axis respectively.
The two computational basis states introduced in equation (2.17) for a single qubit

extend to N = 2n computational basis states (superposition of theses states) in the n-qubit
case. Therefore, a quantum state consisting of e.g. 2 qubits can be written as:

|ψ〉 = α00|00〉+α01|01〉+α10|10〉+α11|11〉 (2.29)

Where e.g. |00〉 denotes the tensor product |0〉⊗|0〉 as defined in equation (2.31). It is
important to note that the normalization introduced in equation (2.22) also needs to hold
for the n-qubit case:

∑
ι∈{0,1}n

|αι|2 = 1 (2.30)

where the notation in [IH06] was extended to the n-qubit case, such that the set {0, 1}n
represents an arbitrary string of 0s and 1s indicating the computational basis.

17

Referring to the vector notation in equation (2.17) it is useful to note that a quantum
state composed of n qubits is a N = 2n dimensional vector, calculated by the Tensor
product [Sch19]:

|ψ〉 =
N⊗
i

|ψi〉 =

ψ1
ψ2
...
ψn

 |ψ〉 ∈ CN (2.31)

where |ψi〉 =
(
αxi
βxi

)
refers to the ith qubits state.

Furthermore the tensor product between a |ψ〉 and 〈φ| is denoted by

|ψ〉〈φ| (2.32)
from [JJS20].

The Kronecker product as a special case of the tensor product for matrices is defined as
in [IH06] by:

A⊗B ≡

=nq︷ ︸︸ ︷
A11B A12B . . . A1nB
A21B A22B . . . A2nB

...
...

...
...

Am1B Am2B . . . AmnB

 = mp (2.33)

where the matrices A and B can have different dimensions such that A ∈ Cm×n and
B ∈ Cp×q.

2.2.2. Operations

Given a set of qubits, their state can be changed by applying quantum gates which are
further referred to as "operations". These operations are represented by their matrix, which
must be unitary due to the Time Evolution Postulate [Sch19]. It describes, assuming
measurements are deferred, the evolution of a state |ψ(t0)〉 in a Hilbert Space H, to another
state |ψ(t)〉. This transition can be described by the time evolution operator U (t, t0) using
the matrix-vector product:

|ψ(t)〉 = U (t, t0)|ψ(t0)〉 |ψ(t)〉, |ψ(t0)〉 ∈ CN U ∈ CN×N (2.34)

where U (t, t0) is the solution of the following initial value problem, namely the operator
equivalent of the Schrödinger equation [Sch19]:

i
d

dt
U (t, t0) = H (t)U (t, t0)

U (t0, t0) = 1
(2.35)

18

and U must hold U †U = 1
Constrained by equation (2.22), operations on a qubit will always move on the surface of

the Bloch sphere. In Dirac notation, subsequent operations can be expressed as following:

|ψ(t)〉 = Uk ·Uk−1 · . . . ·U0|0〉 k ∈ N (2.36)

An illustrative representation of this expression can be obtained by the Circuit Notation
where subsequent gates applied on qubit(s) are written on horizontal lines.

H

X

q0

q1

Figure 2.6: Quantum circuit showing a Hadamard (H) and Negation
(X) gate applied on two separate qubits in the |0〉 state.

The exemplary circuit in figure 2.6 contains a Hadamard gate H applied on the first
and a negation gate (X gate) applied on the second qubit. The matrix representation of
these gates are stated in the following equations (2.37) and (2.38) respectively. It should
be noted, that H denotes the Hadamard gate and is not to be confused with the Hilbert
Space H or hamiltonian operator H .

H = 1√
2

[
1 1
1 −1

]
(2.37)

X =
[

0 1
1 0

]
(2.38)

Applying these gates on the |0〉 state (left side in (2.17)), yields the following qubit’s
state in case of the Hadamard gate applied on the initial state |ψ0〉 of the first qubit q0:

H|ψ0〉 = H|0〉 = 1√
2

[
1 1
1 −1

](
1
0

)
= 1√

2

(
1
1

)
= |0〉+ |1〉√

2
= |+〉 (2.39)

and in case of the negation gate applied on the initial state |ψ1〉 of the second qubit q1:

X|ψ1〉 = X|0〉 =
[

0 1
1 0

](
1
0

)
=
(

0
1

)
= |1〉 (2.40)

These states can be visualized using Bloch spheres shown in 2.7 where the first one
depicts the |0〉 state of a qubit followed by the representation of the |1〉 and |+〉 state.

As the X gate rotates the qubit’s state by 180 deg around the x axis, other gates such as
the Y and Z gate have equivalent effect on the y and z axis respectively. The Hadamard
gate creates a superposition of the |0〉 and |1〉 state such that H|0〉 = |+〉 and H|1〉 = |−〉.

19

| +

|

|0

(a)

| +

|

|0

(b)

| +

|

|0

(c)

Figure 2.7: Bloch spheres describing the states in the circuit from figure 2.6 consisting of an X
resulting in the |1〉 state (Figure 2.7c) and H resulting in the |+〉 state (Figure 2.7b)
gate applied to the |0〉 state (Figure 2.7a).

Pauli Gates The X gate is one of the well-known Pauli matrices. The remaining ones are
Y and Z gates and defined as follows:

X =
[

0 1
1 0

]
Y =

[
0 −ı
ı 0

]
Z =

[
1 0
0 −1

]
(2.41)

The purpose of these matrices is similar to the discussed X gate, as Y and Z gates perform
rotations by π rad around the y and z axis respectively. However, these rotations of Φ can
also be precisely controlled by the RX, RY and RZ gates as follows [IH06]:

RX(Φ) =
[

cos(Φ
2) −i sin(Φ

2)
−i sin(Φ

2) cos(Φ
2)

]

RY(Φ) =
[

cos(Φ
2) − sin(Φ

2)
− sin(Φ

2) cos(Φ
2)

]

RZ(Φ) =
[

e−i
Φ
2 0

0 ei
Φ
2

]
·ei

Φ
2−→
[

1 0
0 eiΦ

]
= P(Φ)

(2.42)

The RZ is often also referred to as phase gate P.

CX Gate The CX gate, often referred as CX gate, extends the X by a control input. Depending
on the state of the control qubit, the negation operation is applied on the target qubit.
Equation (2.43) shows both cases of a CX matrix, with the first qubit acting as the control-
and the second qubit as the target input (C = 0, T = 1) and vice-versa (C = 1, T = 0).

CX
C=0,T=1 =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 CX
C=1,T=0 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.43)

20

Assuming |0〉 and |1〉 as the only values on the control qubit, the truth table of the CX
would be identical to a classical exclusive or-gate:

Input Output
Control Target Control Target
|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

Table 2.1: Truth table of the CX gate

Further more quantum mechanical effects of the CX gate will be discussed in section 2.2.4.

q0

q1

Figure 2.8: CX gate with q0 as the control qubit applied on the target
qubit q1

SWAP Gate Certain applications, e.g. the quantum Fourier transform (QFT), require to
swap the state of two qubits within a circuit. This operation can be accomplished by
the Swap Gate shown in figure 2.9. While the representation on the left of this figure is
commonly used, it can be decomposed into three single CX gates.

q0

q1

(a)

q0

q1

(b)

Figure 2.9: Swap gate in circuit notation
(Figure 2.9a) and its decompo-
sition into three CX gates (Fig-
ure 2.9b)

The matrix representation of the swap gate is given by equation (2.44).

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.44)

CP(Φ) Gate In context of the QFT, another important gate is the controlled-phase gate
CP(Φ) parameterized by the rotation angle Φ. This gate induces a predefined phase Φ in
the state of the target qubit depending on the state of the control qubit [AAA+21]. Its

21

matrix representation can be derived from the CX and the P as stated in equation (2.45).
In contrast to the CX gate, there is no difference between the control and target qubit.

CP(Φ) = |0〉〈0|⊗I + |1〉〈1|⊗P = I⊗|0〉〈0|+ P⊗|1〉〈1| =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiΦ

 (2.45)

Figure 2.10 shows the representation of this gate in circuit notation with an exemplary
rotation of Φ = π

4 .

P (/4)
q0

q1

Figure 2.10: Phase gate CP(Φ) with Φ = π
4 . Depending on the

state of the control qubit this phase is induced in
the state of the target.

2.2.3. Measurement

The probability of measuring a state |ψ〉 in any arbitrary state |φ〉 is the absolute squared
of the inner product between theses states |〈φ|ψ〉|2 as explained for example in [ACB+20].

Measuring in different states allows to measure along various axes as represented by the
Bloch sphere. If not stated otherwise, measurements will always be applied along the z
axis, thus either in |0〉 or |1〉 state in case of a single qubit.
To see this in an example, the Hadamard gate from circuit 2.6 shall now be regarded

isolated as shown in figure 2.11. The measurement of a qubit within a quantum circuit is
depicted by the measurement block on the very right in figure 2.11. This block usually
represents the end of a circuit since applying the measurement operation collapses a
quantum state into a final value.

H

0

q

meas
Figure 2.11: Circuit containing a single Hadamard Gate

H and a measurement operator.

Applying the Hadamard gate on a qubit |q〉 in the |0〉 state results in a superposition
state |+〉 = 1√

2 |0〉+ 1√
2 |1〉 as shown in equation (2.39) The measurement of a qubit in this

state leads to the final probability of 1/2 as shown in equation (2.46) [ACB+20].

22

〈0|q〉 = 〈0|+〉 = 1√
2
〈0|0〉+ 1√

2
〈0|1〉

= 1√
2

1 + 1√
2

0

= 1√
2

|〈0|q〉|2 = 1
2

(2.46)

Ideally, the measurement results for the |0〉 and |1〉 state would be identical in this
specific example. However, as discussed in 2.2.1, real measurement in QC only allows for
statistical reasoning. This means, that the ideal probability of 1/2 in both states would
only be obtained approximately by running a few thousand measurements, also referred to
as shots.
The resulting probabilities of a quantum circuit are usually visualized in a histogram.

This histogram results by counting the number of times, a specific state is measured in a
series of shots. It should be noted that for obtaining the probabilities from a histogram, a
normalization is implicitly carried out. For aboves example, the corresponding histogram
is given in figure 2.12. As expected, small fluctuations around the ideal values are visible.

0 1

0.00

0.15

0.30

0.45

0.60

Pr
ob

ab
ilit

ie
s

0.502 0.498

Figure 2.12: Histogram of a
H gate applied
on a qubit in the
|0〉 state as in
the circuit from
figure 2.11. Small
fluctuations around
the ideal value (0.5)
are visible.

2.2.4. Entanglement

Entanglement is a unique property of QC and is fundamental for computational advantages
compared to classical computing [ACB+20]. It describes the effect, that two qubits can
share a state of superposition [Zic21]. This „spooky-action-at-a-distance“, as Albert
Einstein described it, also affects measurement in a way, that if one of two entangled qubits
is measured, the other one will automatically collapse as well.
This section shows the effect of entanglement using an example depicted in figure 2.13.

In this circuit, a Hadamard gate is applied on the first qubit whose output is the control

23

input for the Controlled-Not gate or CX gate for short, applied on the second qubit. An
additional 2-bit register is used to store the measurement results of both qubits.

H

1 0

q0

q1

2meas

Figure 2.13: Circuit containing a Hadamard (H)
and a Controlled-Not Gate (CX) as
well as measurements on both qubits.

On a classical system, a set control bit will cause the target bit to be flipped as discussed
while introducing the CX gate in section 2.2.2. However, in this case as well as in QC in
general, it is more convenient to say that the value of the control bit qubit controls the
amount of probabilities at which the target qubit is flipped.

The Hadamard gate in figure 2.13 causes the control qubit to be in a superposition of
|0〉 and |1〉 which is then directly transferred to the target qubit. Measurements of this
circuit yield the histogram presented in figure 2.14 which shows two important effects;
First, the probabilities for |01〉 and |10〉 are exactly zero (in case of simulation without
noise) since two entangled qubits will never distinguish in their final state [Zic21]. Second,
the effect of entanglement becomes visible, when considering that the measurement on the
target qubit q1 is evaluated before the measurement on the control qubit q0. Classically
this would mean, that the effect is seen before the cause. In QC the CX gate is therefore
said to entangle two qubits with each other [Zic21].

00 01 10 11

0.00

0.15

0.30

0.45

0.60

Pr
ob

ab
ilit

ie
s

0.473

0 0

0.527

Figure 2.14: Histogram of a CX
gate applied on a
target qubit in the
|+〉 state yielding
a Bell state as in
the circuit from fig-
ure 2.13. The states
|01〉 and |10〉 have
zero probability.

The resulting state (one of four possible so called Bell states [IH06]) can also be obtained
analytically, by evaluating the matrix operations applied on the initial state |00〉 of both
qubits as depicted in equation (2.48). Since the Hadamard gate is a 1-qubit operator only
applied on the first qubit, but needs to match the size of the 2-qubit CX matrix, it needs to
be tensored with the identity operator I yielding equation (2.47).

24

H⊗I = 1√
2

[
I I
I −I

]
= 1√

2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 (2.47)

CX(H⊗I)|00〉 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · 1√
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

1
0
0
0

=

1√
2 0 1√

2 0
0 1√

2 0 1√
2

0 1√
2 0 − 1√

2
1√
2 0 − 1√

2 0

 ·

1
0
0
0

 =

1√
2

0
0
1√
2

(2.48)

It should be noticed, that the state of the overall system of qubits, the Bell state, is
well known and thus a pure state, although the first qubit is in a mixed state because it is
entangled with the second qubit [IH06]. This finding can be derived from the trace of the
density operator introduced in equation (2.53).

2.2.5. Realization of Circuits

In QC the topology of the device plays an important role. Connections between qubits
(e.g. as required in the CX gate) must be realized on the actual qubit layout of the specific
device chosen. However, in the NISQ era, not all qubits are necessarily connected with all
others which requires a transpiler to find the most optimal realization of a given circuit
such that the least amount of additional gates is required to swap qubits state across the
quantum computer [Pre18]. There exist techniques which are able to tackle this problem
but are not regarded in detail within this thesis.
It should be noted, that these transpilers are not always deterministic due to the high-

dimensional optimization problem that must be solved on complex circuits. Furthermore,
transpilers generally also try to implement the circuit on a quantum device such that noisy
qubits or their interconnections are omitted. Therefore, resulting circuit layouts may vary
between identical experiments and which is why transpilers are regarded as another source
of stochasticity to be accounted in the results. For the reason that the QFT, discussed in
section 2.2.8 in particular requires a connection between every qubit, causing additional
SWAP operations during transpilation, resulting circuits can become very large which in
turn increases the overall noisiness.

2.2.6. Noise

In section 2.2.3 it was already mentioned, that real measurement results cannot be expected
to be equal to the expectation value obtained from solving the circuit’s matrices. In addition
to that, QC especially in the NISQ era is always noisy, whereby this noise can be separated

25

into coherent and incoherent noise [Min21]. These types of noise are discussed in the
upcoming sections and finally lead to the conclusion that noisy quantum systems (gates
and measurement devices) actually cause a shrinkage of the applicable space within the
Bloch sphere.

Coherent Noise

Coherent noise comes from systematic errors and „differ from the desired operation by
a unitary expression“ [BEH+04] in gate operators. These are caused by e.g. inaccurate
rotations of a RX gate which cause a qubit’s state to be rotated by φ − τ instead of φ.
Coherent errors can also be caused by faulty measurement devices which will be covered
later in this section.

Gate Errors For the following explanation of the effect of coherent noise, a circuit with
d subsequent X gates as depicted in figure 2.15 is being regarded. One would expect a
toggling behavior when increasing the number d of X gates applied and tracking the qubit’s
state over the number of theses gates as shown on the left in figure 2.16. It should be
noted, that such a measurement procedure would require evaluations of d different circuits.
This is due to the fact that a single measurement in between a quantum circuit would
cause subsequent states to collapse thus making it impossible to observe the desired effect
as discussed in section 2.2.3.

X dq Figure 2.15: Circuit consisting of d subsequent X gates.

However, it turns out that even for a very small error, the actual output shows an
oscillating behavior as shown on the right in figure 2.16 for increasing circuit depth d.

It should be noted, that the the errors being discussed are iteratively added to the graphs
in following related figures. These figures also show the previous graph as a grey hull for
reference.
This oscillating behavior can be explained by considering the noisy X̃ gate being a

parameterized rotation gate combined with an ideal X gate:

X̃ = R̃X(τ)RX(π) with RX(π) = X (2.49)

which yields the overall unitary of the circuit:

Ũ = X̃ = [R̃X(τ)RX(π)]d = RX(dτ)RX(dπ) = RX(dτ)U (2.50)

Measurement Errors Measurement errors are due to imperfect measurement devices,
which, with a probability ν and ε return 0 instead of 1 and 1 instead of 0 respectively. This
yields the transition graph shown in figure 2.17a.

26

0 5 10 15 20 25 30
d - Number of X gates

|0

|1
|

 -
Qu

an
tu

m
 S

ta
te

(a)

0 5 10 15 20 25 30
d - Number of X gates

|0

|1

|
 -

Qu
an

tu
m

 S
ta

te

(b)

Figure 2.16: 2.16a: Measurement of circuit 2.15 with ideal gates
2.16b: Measurement of circuit 2.15 with gates errors τ = 0.1 rad resulting in an
oscillating behavior. Figure 2.16a is shown as a grey hull for reference

Such a noisy measurement can be modeled by introducing a stochastic measurement
variable:

P(M̃ = 0) = P(M̃ = 0|M = 0)P(M = 0) + P(M̃ = 0|M = 1)P(M = 1)
P(M̃ = 1) = P(M̃ = 1|M = 1)P(M = 1) + P(M̃ = 1|M = 0)P(M = 0)

(2.51)

where M̃ depicts a noisy measurement device M. This equation can also be interpreted
as a mapping of the ideally expected probability p of a measurement M onto the noisy
probability p̃ of a measurement M̃ which is shown in figure 2.17b.
In the ideal case ε = 0 and ν = 0 holds true, thus results in an identity between p and

p̃ depicted by the green line. The other line represents the case of a noisy measurement,
where the probability of the measurement M = 1 will neither be fully 0 or 1 but 0.08 and
0.8 instead.

Applying this behavior in addition to the results from the right graph in figure 2.16 leads
to a shift towards the |0〉 state which is shown in figure 2.18a. Again, the hull from the
right graph in figure 2.16 is added as reference.

Besides the gate error and the measurement error, the underlying stochastic evaluation
method of the whole system introduced in 2.2.3 needs to be considered This in turn makes
an evaluation of values besides 0 and 1 possible in the first place.
The graph in figure 2.18b shows this property using a binomial distribution B(n =

100, p = 0.5), resulting in small fluctuations. These become visible when being compared
with the gray hull representing the graph in figure 2.18a.

27

(a)
0.0 0.2 0.4 0.6 0.8 1.0

Probability p for M= 1

0.00
0.08

0.80

1.00

Pr
ob

ab
ilit

y
p

fo
r M

=
1

= 0.08 = 0.2
= 0 = 0

(b)

Figure 2.17: 2.17b: Measurement state transition graph modeling the ideal and noisy behavior
with a transition probability of ε and ν respectively.
2.17a: Resulting probability mapping between the expected measurement of M = 1
and the noisy result for M̃ = 1. The green represents the ideal and the other line
the noisy case.

Incoherent Noise

This section covers aspects of incoherent noise on quantum gates and how this affects the
stochastic measurement results. First a more general approach is considered, where the
behavior of a noisy gate is replaced by an ideal gate G cascaded with either an identity I
or a X gate as depicted in figure 2.19. Here, the identity gate represents the ideal case, the
X gate models a bit flip. This case decision is just another way of modeling a noisy gate
chosen for the discussion in the remainder of this section.
If we assume G being a X gate as in the example from the previous section, the total

unitary become

Ideal case (A) : UA = GI = X

Flipped case (B) : UB = GX = XX = I
(2.52)

where case A and case B occur with the probability 1 − p and p respectively. These
probabilities are at the same time the expectation values for the case the circuit was
stochastically evaluated as discussed in section 2.2.3.
Further discussions require the introduction of the density operator ρ defined in equa-

tion (2.53) as another approach for describing quantum systems. This operator, or matrix
in general, comes useful if the state of a system is not completely known [IH06].

ρ =
∑
i

pi|ψi〉〈ψi| (2.53)

where pi describes the probability of a system being in the state |ψ〉. A state ψ which

28

0 5 10 15 20 25 30
d - Number of X gates

|0

|1
|

 -
Qu

an
tu

m
 S

ta
te

(a)

0 5 10 15 20 25 30
d - Number of X gates

|0

|1

|
 -

Qu
an

tu
m

 S
ta

te

(b)

Figure 2.18: 2.18a: Measurement of circuit 2.15 with gates errors τ = 0.1 rad and additional
measurement error as depicted in figure 2.17b resulting in a shift towards |0〉.
Gray hull indicates results from figure 2.16b
2.18b: Measurement of circuit 2.15 with gates errors τ = 0.1 rad, measurement
errors and general stochastic properties of quantum measurement modeled as a
binomial distribution with B(n = 100, p = 0.5) resulting in fluctuations around the
grey hull from figure 2.18a.

Gq =⇒

I Gcase_a

X Gcase_b

Figure 2.19: Noisy gate G̃ on the left and its decomposition on the right after introducing a case
decision where a bit flip occurs in case_b indicated by the X gate.

density matrix has a trace Tr (ρ) ≤ 1 is said to be in a mixed state. Contrastingly, density
matrix with a trace Tr (ρ) = 1 indicates a pure state [IH06]. If we track multiple states of
a system each with different density matrices, the overall density matrix can be calculated
by [IH06]:

ρ =
∑
i

piρi (2.54)

Using equation (2.54), the mixture of circuits on the right in figure 2.19 can be used to
describe the density matrix as follows:

ρ = pAρA + pBρB = (1− p)
[

0 0
0 1

]
+ p

[
1 0
0 0

]
=
[
p 0
0 1− p

]
(2.55)

where the density operators for each case can be calculated using the unitary matrices

29

UA and UB as defined in equation (2.52) for the ideal and flipped case respectively:

Case A |ψA〉 = UA|1〉 = |1〉 → ρA = |ψA〉〈ψA| =
[

0 0
0 1

]

Case B |ψB〉 = UB|0〉 = |0〉 → ρB = |ψB〉〈ψB| =
[

1 0
0 0

] (2.56)

This means that the representation using the density matrix is ambiguous as shown
in [IH06], so that a pair of quantum states |ψ〉 and |φ〉 will result in the same density
matrix if |ψi〉 =

∑
j uij |φj〉 holds true. It should be noted, that ambiguous refers to the

ensemble of operations that led to a specific density matrix and should not be confused
with the description of a system by its density matrix, which in turn is unique [IH06].

The resulting value corresponding to a measurement along one of the three axes within
the Bloch sphere of a particular state can be obtained from the product of Pauli matrices
and the density matrix using the Trace operator Tr ():

x̂ = Tr (Xρ) = 0
ŷ = Tr (Yρ) = 0

ẑ = Tr (Zρ) = Tr
([

1 0
0 −1

] [
p 0
0 1− p

])
= 2p− 1

(2.57)

The values along the x and y dimensions are trivial since this particular density matrix is
orthogonal to these axis. Using the geometric representation introduced in equation (2.27)
it is possible to derive a general expression for the density matrix described by the angles
φ and θ:

ρ = |ψ〉〈ψ| =
(

cos θ2
sin θ

2eıφ

)(
cos θ2 sin θ

2eıφ
)

=
[

cos2 θ
2 cos θ2 sin θ

2e−ıφ
cos θ2 sin θ

2e+ıφ sin2 θ
2

]

=
[

cos2 θ
2

1
2 sin θ(cosφ− ı sinφ)

1
2 sin θ(cosφ+ ı sinφ) sin2 θ

2

]

= 1
2(I + xX + yY + zZ)

(2.58)

The identity gate is hereby denoted by I =
[

1 0
0 1

]
. Assuming ρin being a quantum

state as defined in (2.58) and G̃ a noisy quantum gate as shown in figure 2.19, the resulting
density matrix can then be calculated as follows:

30

ρout = G̃(ρin) = (1− p)IρinI + pXρinX

= (1− p)

 +xin
+yin
+zin

+ p

 +xin
−yin
−zin

 (2.59)

where XρX = 1
2(Î + xX− yY− zZ) has been used resulting from the definition of the X

Pauli matrix. This then results in

ρout = (1− 2p)

 +xin
(1− 2p)yin
(1− 2p)zin

 (2.60)

which finally leads to the conclusion that the applicable space has been shrunk from the
full Bloch sphere to an elliptical sphere as shown in figure 2.20. This can be interpreted as
the reachable space retained after applying a noisy gate.

Figure 2.20: In y and z dimension shrunk
applicable Bloch sphere space
(green) resulting from bit flip
errors by measuring a noisy
gate G̃ gate based on the equa-
tion (2.61).

| +

|

|0

For deep circuits, this turns out to have an enormous effect on the measured amplitudes,
as any subsequent noisy gate will have multiplicative cause on the reduction of the overall
Bloch sphere, thus decreasing the measured amplitudes. This effect can be seen in the
following equation:

ρtotal = G̃d(ρin) =

 xin
(2p− 1)dyin
(2p− 1)dzin

 (2.61)

where d depicts the circuit depth. Applying equation (2.61) with p < 0.5 on the initial
problem from section 2.2.6, leads to the graph shown in figure 2.21. This also represents the
overall result after applying all previously discussed noise effects (coherent and incoherent).
To summarize, the following derivations compared to the ideal case on the left in

figure 2.16 are found:
• Rotation error ε leads to oscillation

31

0 5 10 15 20 25 30
d - Number of G gates

|0

|1

|
 -

Qu
an

tu
m

 S
ta

te

Figure 2.21: Decay of the measurable am-
plitude over the number of
gates d, resulting from bit flip
errors by measuring a noisy
gate G̃ based on the equa-
tion (2.61).

• Measurement error yields a shift towards the |0〉 state
• Stochastic nature of QC adds fluctuations modelled by a binomial distribution
• Bit flip error (Incoherent noise) results in decaying amplitude over d

Noise Mitigation

Since QC in the NISQ era is dominated by noise as discussed in previous chapters, there
are noise mitigation techniques which can either be integrated directly into the circuit
or classically applied in post-processing. Noise mitigation techniques (also referred as
quantum error correction) which involves changes in the circuit often comes at the cost of
additional gates and qubits, required for the correction algorithm.
The width (number of qubits) and depth (longest path of gates in a circuit between

the data input and the output) [SP18] of a QFT circuit grows rapidly with increasing
sampling rate as discussed in section 2.2.8. Exactly this problem needs to be faced in
the application of the QFT algorithm in SR tasks, thus applying error correction using
additional gates is considered to be not practical in this thesis, as each additional gate and
qubit would increase the resulting noise. Therefore, the following section is restricted to
noise mitigation using classical computation.
The most intuitive and yet effective approach is to measure a circuit’s output for all

possible input combinations and then mitigate noise by multiplying the inverse of the
recorded matrix on the circuit output [ACB+20]:

|ψ〉noisy = M |ψ〉ideal
mitigate−→ |ψ〉ideal = M−1|ψ〉noisy (2.62)

where M is the recorded matrix. Besides this linear mitigation approach, there also
exist more advanced mitigation methods using e.g. ML methods as done in [LMK+21].
However, such methods require a more computing time and therefore are less suitable for
an application in SR.

32

2.2.7. Encoding

An important component in QC represents the information encoding into the quantum
computer. In the context of this thesis this includes the encoding of the speech signals to
corresponding qubits in the QFT circuit. The encoding often trades robustness against
noise and performance regarding the information density. The following three encoding
approaches are commonly used:

• Basis (Binary) Encoding,
• Amplitude Encoding and
• Angle Encoding.

By using only the |0〉 and |1〉 state of a qubit, binary encoding is very robust against
noise, but also provides the lowest information density equal to information encoding
in classical computers (n qubits are required to encode n bits of information). Given a
feature vector x ∈ RN , angle encoding one can express feature xi in a quantum state by
|ψ〉 = cos(xi)|0〉 + sin(xi)|1〉. This yields a (nonlinear) cosine kernel [SP18] which can
be useful for quantum machine learning (QML) tasks but is also computationally very
expensive [LB20] In context of the QFT discussed in section 2.2.8, amplitude encoding as
explained in the remainder of this section, is commonly used [Zam20]. This approach does
not require nonlinear encoding and implementation in quantum hardware is more efficient
compared to angle encoding [LB20].
The Amplitude encoding of a normalized vector x ∈ RN , |x|2 = 1 describes, according

to [LB20] the quantum state of n = log2(N) qubits

|ψ〉 =
N∑
i

xi|ιi〉 ι ∈ {0, 1}n (2.63)

where x must be normalized such that [SP18] and |ι〉 indicates the computational
basis states in similar notation as introduced in equation (2.30). The implementation of
amplitude encoding is well explained in [PB11] and should not be described in detail here.

2.2.8. Quantum Fourier Transform

The QFT algorithm describes a set of gates forming the quantum equivalent to the classical
FT. It finds application in many popular algorithms, including Shor’s Algorithm [Sho97].
This section derives the QFT algorithm from its classical counterpart and proofs the
speedup gained in the context of QC even against the FFT algorithm using the concept
proposed in [CBY20]. For this purpose, the FFT algorithm is derived from the DFT matrix.
Afterwards it will be showed, that essential steps of this transformation can be realized on
a quantum computer very efficiently.

Following examples are restricted to input vectors of size 2n, n ∈ N due to the constraints
of the encoding discussed in section 2.2.7. Starting from the matrix notation of the DFT
introduced in equation (2.6) it is useful to analyze the examples for N = 1, 2, 4:

33

F1 = 1
[

1
]

F2 = 1√
2

[
1 1
1 −1

]
= H F4 = 1√

4

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 (2.64)

where one might note that the case N = 2 is equivalent to the definition of the Hadamard
gate introduced in equation (2.37). For simplicity, it is useful to consider the exponents of
the DFT matrix. Matrices using this representation are donated by tilde operator, e.g. M̃ ,
in following equations. The examples in the remainder of this section cover the case of
N = 3, starting with the exponent representation of a 23 = 8-point DFT:

F̃8 =

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 2 4 6 8 10 12 14
0 3 6 9 12 15 18 21
0 4 8 12 16 20 24 28
0 5 10 15 20 25 30 35
0 6 12 18 24 30 36 42
0 7 14 21 28 35 42 49

(2.65)

Next, we apply mod N with N = 8 on each of the entries, write the remainder in
the matrix and introduce binary enumerated rows. The latter will become important in
following steps.

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 2 4 6 0 2 4 6
0 3 6 1 4 7 2 5
0 4 0 4 0 4 0 4
0 5 2 7 4 1 6 3
0 6 4 2 0 6 4 2
0 7 6 5 4 3 2 1

‖

000
001
010
011
100
101
110
111

(2.66)

As mentioned in the beginning of this section, the first goal is to derive concept of the FFT
from aboves DFT matrix. Therefore an inherent structure must be found, that represents
the divide-and-conquer approach, discussed in section 2.1.1. Next, the enumerating bits on
the right are resorted in such a way, that they are counted from left to right. Matrices on
which this operation is applied, will be denoted with M ′ in the following equations. The
Fourier matrix for N = 8 then becomes:

34

F̃ ′8 =

0 0 0 0 0 0 0 0
0 4 0 4 0 4 0 4
0 2 4 6 0 2 4 6
0 6 4 2 0 6 4 2
0 1 2 3 4 5 6 7
0 5 2 7 4 1 6 3
0 3 6 1 4 7 2 5
0 7 6 5 4 3 2 1

‖

000
100
010
110
001
101
011
111

(2.67)

Each quadrant of the matrix can be rewritten using the 2-pointDFT matrix in exponent
notation and a new matrix Ω̃.

[
F̃ ′4 F̃ ′4

F̃ ′4 + Ω̃4 F̃ ′4 + Ω̃4 + 4

]
(2.68)

with

F̃ ′4 =

0 0 0 0
0 2 0 2
0 1 2 3
0 3 2 1

 Ω̃4 =

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

 (2.69)

where it must be noted, that the top left quadrant in F̃ ′8 differs from F̃ ′4 by twice of their
values due to the normalization by 1/

√
N. The ability to represent a DFT matrix by smaller

DFT matrices with exactly half of the original size is essential for the FFT algorithm. This
allows the original DFT matrix being reformulated as

F ′8 = 1√
2

[
F ′4 F ′4
F ′4Ω4 −F ′4Ω4

]
Ω4 = diag

(
1, ω1

8, ω
2
8, ω

3
8

)
(2.70)

after applying the exponents accordingly. In the following equations, bold matrices M
will indicate, similar to the notation in [CBY20], matrices with exponential dimension 2n,
meaning that Mn = M2n would denote a (2n × 2n) matrix.
This allows to generalize the DFT matrix:

F′n = 1√
2

[
F′n−1 F′n−1

F′n−1Ωn−1 −F′n−1Ωn−1

]
= PnFn (2.71)

where Pn is called the bit reversal permutation matrix and Ωn in the general form of the
diagonal matrix:

Ωn = Ω2n :=

ω0

2n+1 0 . . . 0
0 ω1

2n+1 . . . 0
...

...
0 0 . . . ω2n−1

2n+1

 (2.72)

35

with ω2n+1 := exp
(
−2πi
2n+1

)
.

The equation (2.71) is basically the FFT introduced in section 2.1.1 written in matrix
form, where the iterative split is hidden in F′n−1 since 2n−1 = 2n 1

2 .
The authors in [CBY20] proof that Fn can be factored as:

Fn = PnF′n = PnA(0)
n A(1)

n · · ·A(n−1)
n (2.73)

where for k ∈ [0 . . . n − 1], A(k)
n = In−k−1⊗Bk+1 and Bk+1 = 1√

2

[
Ik Ik
Ωk −Ωk

]
An

only consists of two non-zero elements per row, so that its matrix-vector product can be
computed on O(2n) = O(N).
Combined with the permutations introduced in equation (2.67), the overall complexity

becomes O(N logN), which corresponds to the complexity of the FFT. Nevertheless the
matrix

Bk+1 = 1√
2

[
Ik Ik
Ωk −Ωk

]
= (Ik⊕Ωk) (H⊗Ik) (2.74)

hides a complexity of O(N) in the direct sum Ik⊕Ωk ∈ C2k+1×2k+1 since „the multiplica-
tions of a diagonal matrix with a vector has to be performed in O(N) operations“ [CBY20].
The direct sum between two matrices A ∈ Cn×n and B ∈ Cm×m is defined as the following
(n+m)× (n+m) diagonal block matrix [CBY20]:

A⊕B :=
[
A

B

]
(2.75)

It turns out that Ik⊕Ωk can be written as the Kronecker product of k simpler matrices.
For that reason, another matrix is introduced

Rn :=
[
ω0

2n 0
0 ω1

2n

]
=
[

1 0
0 ω2n

]
(2.76)

which can be used to decompose Ω2n such that with

(Rn)2j =
[

1 0
0 ω2

2n

]
=
[

1 0
0 ω2n−j

]
= Rn−j (2.77)

we get

Ωn = R2⊗R3⊗ · · ·⊗Rn⊗Rn+1 (2.78)

Inserting this into Ik⊕Ωk yields

Ik⊕Ωk =
k∏
i=1

[E1⊗Ii−1⊗I2⊗Ik−i + E2⊗Ii−1⊗Ri+1⊗Ik−i] (2.79)

36

where

E1 := e1e
>
1 =

[
1 0
0 0

]
E2 := e2e

>
2 =

[
0 0
0 1

]
(2.80)

While the initial idea behind this decomposition was, to improve the complexity of O(n)
from Ik⊕Ωk, equation (2.79) increased the computational effort. This can be seen by
taking a rank-1 tensor xn = x1⊗x2⊗ . . .⊗xn with xi ∈ C2 and multiplying it with each
entry in equation (2.79), requiring O(n) operations. However, the product of this tensor
with a diagonal matrix Ik⊕Ωk would require O(2n) operations.

Nonetheless, the authors in [CBY20] show that the expression in equation (2.79) enables
an efficient implementation on quantum computers by utilizing fundamental operations
although being computationally more expensive due to redundant terms on a classical
computer. To see this we rewrite equation (2.79) into

Ik⊕Ωk =
k∏
i=1

I2⊗Ii−1⊗E1⊗Ik−i +Ri+1⊗Ii−1⊗E2⊗Ik−i (2.81)

where it is conceivable that every matrix except Rn is trivial. However, Rn as stated
in equation (2.77) is a well known operation on quantum computers, namely the RZ gate
introduced in equation (2.42):

RZ(Φ) =
[

1 0
0 eiΦ

]
= P(Φ) (2.82)

where ω2n = e
−2πi
2n has been used. This allows Ik⊕Ωk with k ∈ [0 . . . N −1] to be written

as a circuit consisting of exactly O(N) = O(n2) rotation gates. For this purpose, Ik⊕Ωk is
expressed by a controlled Ωk gate, which further decomposes into k controlled phase gates
CP(φ) introduced in equation (2.45). The last step results from the combination of the RZ
gate included in Ωk with a control operation. For simplicity, this gate will be displayed
without its parametrization angle Φ but only indexed as Rk in subsequent circuit diagrams.
This result can be seen in figure 2.22.

q1 • q1 • q1 • • · · · •

q2 q2

Ω k

q2 R 2 q2 · · · R 2

... = ... = ...
... = ...

...

qk qk qk R k qk R k · · ·

qk+ 1 qk+ 1 qk+ 1 R k+ 1 qk+ 1 R k+ 1 · · ·

Figure 2.22: Decomposition of Ik⊕Ωk first into a controlled Ωk gate, which equals k controlled
phase gates CP(φ). For simplicity, the parametrization angle Φ is omitted and
replaced by the index k, yielding Rk.

We further see that Ik⊕Ωk came from the matrix Bk+1 in equation (2.74). Thus, the
equations (2.73) and A(k)

n = In−k−1⊗Bk+1 can be written as a general circuit shown on

37

the left in figure 2.23.
The permutation matrix Pn in Fn = PnF′n is equivalent to a composition of swap gates

introduced in section 2.2.2. The right circuit in figure 2.23 shows the swap gate as equality
to the permutation matrix Pn.

q1

B n

· · ·

P n

q2

B n− 1

· · ·

qn− 1 · · ·
B 2

qn · · · B 1

q1 × · · ·
q2 ×

qn− 1 × · · ·
qn × · · ·

Figure 2.23: Permutation matrix Pn written in circuit notation from [CBY20].

The gate Bk+1 in the left circuit in figure 2.23 can be resolved by the circuit in figure 2.22
and a single Hadamard gate, according to equation (2.74).
Combining the previous steps and circuits, the overall QFT results in a circuit as

visualized in figure 2.24.

q1 H R n R n− 1 · · · R 2 · · · ×

q2 · · · • H R n− 1 R n− 2 · · · ×
...

...
...

qn− 1 • · · · • · · · H R 2 ×

qn • · · · • · · · • H ×

Figure 2.24: Overall QFT circuit from [CBY20]

The complexity of the QFT circuit depends on its overall depth, given by the number of
qubits, which in turn constrains the required number of gates for each operation (matrix).
This depicted in table 2.2.8 which shows the count of each type of matrix in the QFT. It
should be noted that on common NISQ devices, the number of qubits is typically in the
order of 1 . . . 65 [Qua21].

Matrix Gate Count
Pn CNOT b3n/2c

A(0)
n · · ·A(n−1)

n Hadamard n

A(0)
n · · ·A(n−1)

n CP(Φ) n(n− 1)/2

This shows that the prevailing complexity is hidden in the controlled CP gates with
O(n2) = O(logN2) which is better than O(N logN) of the FFT. The QFT applied on an
input signal x will be represented by FQFT in following equation, similar to the classical
FT. It should be noted, that in contrast to the classical equivalent, the QFT inherently
requires the adequate encoding.

38

2.2.9. Quantum Machine Learning

„Quantum machine learning summarizes approaches that use synergies between machine
learning and quantum information“ [SP18]. QML as a relatively new discipline is, according
to [Hid19], characterized by the type of data and the type of algorithm utilized in a specific
scenario. These types are either of classical (C) or quantum (Q) nature and lead to four
possible approaches of how to combine QC and ML as depicted in figure 2.25.
The topic of this thesis can, on the one hand be categorized as a Quantum-Classical

approach where quantum systems are utilized to generate data and processed and interpreted
by classical algorithms afterwards. On the other hand, the data origin is classical and
processing it with QFT would rather fall into the area of Classical-Quantum, leading to a
mixture of CQ and QC. An example for pure Classical-Quantum, would be the generation
of quantum circuits using machine learning algorithms running on classical systems. In the
case of CC, classical data is being processed classically, whereas QQ „looks at quantum
data being processed by a quantum computer“ [SP18].

CC CQ

QC QQ

Type of Algorithm

Ty
pe

 o
f D

at
a Figure 2.25: QML approaches characterized by the type

of data and type of algorithm each ei-
ther Classical or Quantum. Image derived
from [SKX+19]. Approaches which match
the topic of this thesis are highlighted with
a bold border.

Developing algorithms in the field of QC also yields two strategies. The translational
approach aims to „reproduce the results of a given model [. . .] but to outsource the
computation to a quantum device“ [SP18]. However, the exploratory approach rather
exploits the processing on quantum devices in general striving for innovative methods. In
this work, an existing approach, namely speech recognition based on spectrograms of a
signal, is partially outsourced to a quantum computer. Therefore, this thesis investigates a
translational approach.

2.3. Related Research

In [YQC+20b], the authors propose a "novel decentralized feature extraction approach [. . .]
to address privacy preservation issues for speech recognition" [YQC+20b]. Utilizing Google’s
speech commands dataset [Tea17] consisting of "65.000 one-second long utterances of 30
short words" [Tea17], [YQC+20b] first generate a 60-band Mel-Spectrogram using a classical
1024-point STFT and afterwards process the data using a quantum convolutional (quanv)
layer as shown in figure 2.26.

The results are fed into a local Attention-RCNN model, for classification in a supervised
learning setup [YQC+20b]. Figure 2.26 shows the overall system.

These authors also introduce the self-attention U-Net architecture [YQC+20a] which is

39

Quantum Convolution Layer

(a) NISQ Servers
or Cloud API

(b) Local
Model

Spoken Term Recognition “forward”

(3) Encoded Features: Fi

Attention Recurrent
Neural Networks Model

(2) Extra Mel-Spectrogram: Ui

(1) Upload Input
Speech: Xi

: QCNNs

Figure 2.26: “QML-AM” architecture from [YQC+20b]. The Mel-spectrogram of a speech signal
is classically generated and afterwards post-processed by a NISQ device. The result
is then classified by a local ML model.

applied prior to the RCNN and is shown in figure 2.27.

Figure 2.27: Self-attention
U-Net architecture
from [YQC+20a]

Adversarial Speech Example

1D Conv. Layer

Downsampling

Attention Gate (Query)

1D Conv. Layer

Enhanced Speech (to ASR) Adversarial Noise

1D Conv. Layer

Upsampling

1D Conv. Layer

Downsampling Block L

Crop & Concatenate

Crop & Concatenate

Crop & Concatenate

Downsampling Block 1 Upsampling Block 1

…

Downsampling Block L

…

The quantum convolution neural network (QCNN) architecture used in [YQC+20b],
including the U-Net and quanv layer, is shown in figure 2.28. After these blocks, a 2-D
convolutional layer followed by a two-layered LSTM attached to an attention mechanism
perform the location invariant classification in the spectrogram input. The final prediction
is processed by two dense layers and assessed by a categorical cross-entropy loss. However,
since this work does not seek to make significant improvements to the above architecture,
the individual layers are not discussed in detail here.
Quantum convolutional (quanv) filters have a similar functionality to classical con-

volutional filters, in the sense that they are also shifting over the input data. While classical
filters usually map a region of (n× n) pixels to a single value by a calculating a weighted
sum of theses pixels, the circuit in [YQC+20b] returns c channels ((2× 2) proofed as the
best choice out of c ∈ [1, 2, 3]) with the input data processed by a random constitution of
quantum gates. This filtering process is depicted in figure 2.29.

40

Input Conv2DQuanv U-Net bi-lstm

self-attentionDense64Dense32Loss LayerOutput

Figure 2.28: Original QCNN structure proposed in [YQC+20b]. The input is processed by a
quanv layer and then passed to a U-Net from figure 2.27 and 2-D convolutional
layer. A two-layered LSTM in conjunction with an attention mechanism and two
final dense layers performs the location invariant classification.

Encoding Quantum
Circuit

Decoding

ix= e(ux) ox= q(ix) fx= d(ox)

u1 u2

u3 u4

Mel-Spectrogram

f1

Quanv-encoded
ch.1

2
3 4

Figure 2.29: Quantum convolutional (quanv)
layer from [YQC+20b]. A 2 × 2
region of a spectrogram is encoded
and processed by a random quan-
tum circuit. The output is then
distributed over 4 channels.

Their quantum algorithm is small enough to fulfill the restrictions of nowadays NISQ
devices while enhancing the NN accuracy by 0.4 % compared to the plain UNet-Attention-
RCNN (94.72 %) as shown in table 2.2.

RNNUAtt 94.72± 0.23 176, 535 (32-bits)
Conv + RNNUAtt 94.74± 0.25 180, 595 (32-bits)

Quanv + RNNUAtt 95.12± 0.18 180, 575 (32-bits + 4-qubits)

Table 2.2: Benchmark results of the SR pipeline from [YQC+20b] (Quanv + RNNUAtt) in com-
parison with classical architectures.

Reducing the number of gates, more specifically the number of CP gates of the QFT
is a common approach to alleviate the effects of noise on measurement results, compare
section 2.2.6. In [NB13] the authors examine the minimum number of rotation gates
needed, to achieve similar performance with a banded n-qubit N -QFT compared to a
streamlined version as used in Shor’s algorithm. The results found in their work showed
that a bandlimited QFT can perform well in this specific application which motivates
further investigations of their approach in the context of SR tasks.

41

3. Approach

This chapter presents the main idea of the thesis, the application of the quantum Fourier
transform (QFT) in a speech recognition (SR) pipeline, and explains the chosen architecture
in detail.
In section 3.1, the application of the QFT algorithm on classical data is discussed and

potential problems are pointed out. Section 3.2 introduces the short time quantum Fourier
transform (STQFT), the quantum equivalent of the Short Time Fourier transform (STFT)
necessary for generating spectrograms. These spectrograms are then used as features for a
neural network in a SR pipeline presented in section 3.3.

3.1. Quantum Fourier Transform for Signal Processing

This section describes the application of the QFT, introduced in section 2.2.8. From a
classical perspective, the Fourier transform (FT) is expected to not only represent the
frequencies of a signal (assuming an infinite observation window), but also to correlate
directly with its energy. However, in quantum computing (QC) these assumptions can not
always be taken as granted as discussed in the following sections.

3.1.1. Encoding

Starting from the very beginning of constructing a quantum circuit, the first task is to
convert classical data into quantum states. In section 2.2.7, amplitude encoding is presented
as a suitable encoding scheme in conjunction with the QFT. This encoding approach, as
well as others, requires the normalization of the input data to fulfill the property from
equation (2.22) of a quantum state which in turn vanishes information regarding the
signals absolute energy. Additionally a second normalization is required for obtaining the
probabilities from the histogram as discussed in section 2.2.3.

Another point of consideration is that, similar to the fast Fourier transform (FFT), the
QFT requires the number of samples to match 2n, where n depicts the number of quantum
bits (qubits). In general it cannot be expected that the speech samples fulfill this criterion,
thus zero-padding as introduced in paragraph 2.1.1 is required.

3.1.2. Transformation Accuracy

Amplitude Accuracy The nature of QC only allows stochastic reasoning about the
measurement amplitudes as discussed in section 2.2.1. This holds true as well for the
case of the QFT, thus accurate frequency amplitudes as achievable with the FT will not
be possible. In addition to the stochasticity, gate- and measurement errors explained in
section 2.2.3 will distort the frequency amplitudes even further.

43

Frequency Accuracy In contrast to the amplitude accuracy, the QFT can achieve the
same frequency accuracy as the FFT if noise is neglected. This means, that if sampling
rate and frequency resolution fulfill the requirements stated in section 2.1.1, a signal could
be fully reconstructed from a spectrum generated by the QFT. This is conceivable, since
the calculations in the QFT are identical to the FFT as shown in section 2.2.8 and only
differ in the realization on the device itself. However, actually running the QFT on a
quantum device, would inevitably lead to noise influences in the measurement results. As
discussed in section 2.2.6, this noise, either caused by the measurement device or quantum
gates, could lead to states which deviate from the expected ones and in case of the QFT
this would then result in an inaccurate spectrum.

Low-Frequency Tendency The quantum systems used within this thesis map the ground-
and excited state on the |0〉 and |1〉 state respectively 1. As stated in section 2.2.1, a qubit
always tends towards its ground state. In the QFT case where each qubit is measured to
have the |0〉 state corresponds to the 0 Hz frequency. The mapping between frequency and
a qubit’s index correlates in such a way that qubits with high indices are mapped to high
frequencies. Measuring a qubit accidentally to be in the |0〉 state therefore results in a much
lower frequency since the overall state has a completely different binary representation.
This yields the effect, that the frequency spectrum measured, has a general tendency
towards low frequencies. Due to the nonlinear mapping between an index in the binary
state representation and a frequency, higher frequencies are less likely to be measured,
compared to lower frequencies. This behavior enhances the low frequency tendency and is
demonstrated in example 3.1.1.

Example 3.1.1 Case A depicts the ideal measurement, where q1 and q3 of a 16-QFT
(4-qubits in total) are measured to be in the |1〉 state. This results in the overall state
|1010〉=̂

int
10 = fk where the binary representation of the state has been transferred to an

integer index. Assuming a sampling rate fs, the actual frequency can be obtained from the
frequency index fk by f = fk

fs
24

Case A: q0 = |0〉 q1 = |1〉 q2 = |0〉 q3 = |1〉 −→ |1010〉 −→ fk = 10
Case B: q0 = |0〉 q1 = |1〉 q2 = |0〉 q3 = |0〉 −→ |0010〉 −→ fk = 2

In case B, qubit q3 has been erroneously measured to in the |0〉 state. Although only a
single bit has flipped, the resulting frequency index fk = 2 is completely different from case
A.

On real quantum hardware, each qubit has an individual error rate, thus above effects
on the spectrogram might not fully follow the expected behavior. However, the mitigation
approach discussed in the following section 3.1.3 is well suited to address the low-frequency
tendency problem.

1The mapping of the ground- and excited state to the |0〉 and |1〉 state respectively must not necessarily
be the case for all quantum systems. The relation can also be inverted.

44

3.1.3. Noise

The following section describes two approaches to reduce noise in the measurement results.
While the angular filter method achieves this by reducing the overall gate count of the
QFT, the noise subtraction approach aims to reduce the noise from the histogram output
directly.

Angular Filter Section 2.2.6 clearly shows that gate errors and noise in general increases
consistently with the number of gates and qubits involved in a circuit. Considering the
QFT the number of rotation gates CP is directly constrained by the number of qubits
involved following n(n− 1)/2 as stated in table 2.2.8.
However, the number of rotation gates is defined by the size of the transformation

matrix (N ×N = 2n × 2n) which is derived from the number of samples n. Taking e.g.
a n = 10-qubit QFT, thus N = 2n = 1024 samples, then the number of rotation gates is
10(10− 1)/2 = 45. From the discussion in section 2.2.6 it is conceivable that gates with
small angles of rotation φ in particular are prone to error.

The authors in [NB13] therefore investigated a minimum angle for rotation gates used in
QFT. Omitting certain rotation gates implies a banding on the QFT, since each rotation
gate represents a sinusoidal function of a certain frequency which is being controlled by
b neighboring qubits. Naturally, b is limited by the number of neighboring qubits of the
specific gate and the number of qubits in the QFT as an upper bound. However, if b is
restricted to a fixed number ≤ n, high frequencies are considered in the transformation
anymore, thus resulting in a bandlimited QFT.

While the research in [NB13] focuses on the performance of the QFT in Shor’s Algorithm,
it motivates similar investigations in case of SR. Therefore an angular filter is introduced
and parameterized by an minimum rotation angle allowed for the qubits.

Example 3.1.2 Figure 3.1 shows a 16-QFT as full implementation with b = 1 and as
bandlimited variant with b = 3. In the latter case, 3 rotation gates with an angle smaller
than π/4 were omitted which reduced the overall rotation gate count by 50 %.

Instead of a bandwidth parameter as introduced in [NB13], a minimum rotation angle
mr as mentioned above is used to parameterize the filter instead. The rotation angle
can be obtained from the bandwidth b by mr = π/2n−b where n depicts the number of
qubits in the 2n-QFT. This approach was chosen, since the bandwidth parameter directly
constraints the number of rotation gates omitted, whereas a specific minimum rotation
angle is invariant in regards of the size of the QFT. Therefore, the resulting impact of the
angular filter on the spectrum is expected to be independent from the chosen window size,
i.e. the size of the QFT.

Noise Subtraction The noise mitigation approach mentioned in section 2.2.6 can also
be extended, such that instead of all possible input combinations on an empty circuit, a
constant signal x̄ is fed into the QFT. The transformation of a constant signal ideally
results in a single peak at f = 0 thus any deviation can be regarded as background noise.

45

H
P (/8) P (/4) P (/2)

H
P (/4) P (/2)

H
P (/2)

Hq0

q1

q2

q3

(a)

H
P (/2)

H
P (/2)

H
P (/2)

Hq0

q1

q2

q3

(b)

Figure 3.1: 3.1a: 16-QFT Circuit, full implementation (b = 1)
3.1b: 16-QFT Circuit, bandlimited (b = 3)
Controlled phase gates displayed by CP(Φ.)

This background noise X̄ is then subtracted from the noisy measurement counts X̃ which
is depicted in equation (3.2):

X = FQFT(x)
X̄ = FQFT(x̄)

(3.1)

where FQFT describes the QFT introduced in section 2.2.8, applied on the input signal
x and a constant signal x̄ = [1, ..., 1] matching the length of x.

Xk =
{
X̃k − X̄k ∀ X̃k ≥ X̄k

0 else , k ∈ [1 . . .K] (3.2)

The noise mitigated output is then obtained in X where negative values are discarded
and set to zero for each frequency bin X̃k.
It should be noted, that due to the normalization requirement, a zero signal is not a

valid choice for a constant signal. The QFT of x̄ FQFT(x̄) is then expected to return the
deviation from an all-zero frequency domain signal except for a single peak at f = 0. These
deviations can result from gate- or measurement errors which have a unique probability on
each quantum device. By using the same circuit for the measurement of the background
noise and the computation of the actual signal’s spectrum, this Noise Subtraction approach
can therefore tackle device specific noise characteristic.

46

This mitigation strategy simultaneously counteracts the effect of the low-frequency
tendency as mentioned in the previous section in paragraph 3.1.2, as it efficiently mitigates
the 0 hertz frequency.

3.2. Short Time Quantum Fourier Transform

Similar to the classical case, the processing of time-variant signals requires subsequent
application of the FT. While approaches such as the wavelet transform (WT) or wigner
ville distribution (WVD) would be conceivable (see discussion in chapter 5), the STFT
is well-established in the SR domain, fulfills the required time-frequency resolution, and
enables an efficient implementation at the same time. Therefore, by investigating similar
options on a quantum computer, this thesis introduces the quantum equivalent of the
STFT, the STQFT.
Similar to the classical case, the STQFT consists of multiple QFTs, each of which is

applied to a windowed signal. Windowing however can be done classically using common
filter methods as mentioned in section 4.3. Besides this additional step, application of the
QFT does not differ from 3.1.

Signal Threshold Filter The noise, which is introduced in section 2.2.6, also exists when
the QFT is applied on a constant signal, as discussed in the previous chapter. Since the
length of each sample of the dataset used within this thesis and presented in section 4.1
lasts for exactly 1 second and most utterances are significantly shorter, some QFTs within
the STQFT will transform zero-like parts of the speech signal.
The normalization, inherent with the amplitude encoding as discussed in section 2.2.7

used in the QFT, will, applied on a zero-like signal, result in very large values. This
extremely noisy signal is then fed into the QFT whose output in turn is normalized again
before being handed over to the neural network (NN). While noisy input data can improve
the generalization capability of a NN [Bis95], this only holds true for a certain amount of
noise, applied homogeneously on the whole signal. However, it is to be expected that the
artifacts mentioned above occur only in parts of the signal that are normally also zero
in the spectrum. Therefore, the NN would be forced to learn a separation between the
actual relevant signal and the noise which might be challenging in regards of the given
architecture from [YQC+20b].
This problem can be addressed by introducing a signal threshold filter described in

equation (3.3). If a signal’s maximum amplitude is below a fixed threshold, the a zero
spectrum is returned instead of the actual QFT output. It is conceivable that this may
not only improve the overall speed of STQFT, since many QFTs can simply be omitted,
but also effectively suppress the spectral artifacts mentioned above.

X =
{
FQFT(x) if max(x) ≥ sr
0 else (3.3)

Normalization As discussed in section 3.1.1, the QFT requires normalization of the signal.
In context of the STQFT, where multiple QFTs are used to build up a spectrogram, this

47

results in the effect, that e.g. raising or lowering voice in a speech signal is not reflected by
the STQFT. This in turn could yield an issue in the classification task with a NN where
changes in the amplitude between neighboring QFT windows might be missing features.

3.3. Hybrid Quantum Speech Processing

The approach of a quantum-enhanced SR framework is visualized in figure 3.2. Typical
building blocks fundamental for SR, the speech signal, STFT and Mel-spectrogram, are
depicted by grey blocks with a dashed border. The authors from [YQC+20b], whose
approach is explained in section 2.3, extended this pipeline by a quantum convolutional
(quanv) layer and a modified attention recurrent neural network (RNN), displayed as grey
blocks with solid border. Furthermore, they also tested a learnable convolutional layer
as comparison to the quanv layer. Last but not least, the approaches developed in this
thesis are visualized by the green blocks. These include the STQFT involving the angular
filter and noise subtraction method and the Pixel-Channel-Mapping as replacement for
the quanv layer. Vertically lined up blocks represent interchangeable components of the
pipeline. This means that the existing STFT can be replaced by the STQFT independent
from the methods applied after the Mel-Spectrogram. This also shows that the STQFT
presented in this thesis and methods optimized specifically for speech recognition can also
be used flexibly in other frameworks.

Speech
Signal

STFT

Learnable
Convolutional

Layer

Attention Recurrent
NN Model

Pixel-Channel
Mapping

Quantum
Convolutional

Layer

STQFT

Mel-Spectrogram

Figure 3.2: Approach to integrate the STQFT in an existing SR pipeline. Typical blocks for such
a pipeline are depicted by a dashed border and blocks which are extended or modified
by the authors in [YQC+20b] by a solid border. The STQFT, as a replacement for
the STFT and the Pixel-Channel-Mapping developed in this work are displayed with
a green background.

Quantum Convolutional Alternatives The approach of using a quanv layer directly
after the Mel-spectrogram as depicted in figure 3.2 improved the STFT based feature
recognition compared to a classical convolutional layer in [YQC+20b]. They found that
their network learned „much more correlated and richer acoustic features“ [YQC+20b] by
using a randomized quantum circuit as filter. However, it is conceivable, that this finding
might not hold true in case where the spectrogram is generated using the STQFT, since
the spectrogram obtained from this transformation was already computed by a quantum
processing algorithm.

48

The most intuitive way to test this assumption is by using an identity circuit (1:1
mapping between input and output) represented by the Pixel-Channel-Mapping component
in figure 3.2. This Pixel-Channel-Mapping is then used as a replacement for the random
circuit from [YQC+20b]. For the sake of simplicity the identity circuit can be realized by
a classical mapping of a (k × k) image (spectrogram) region directly onto c = kk channels.
Figure 3.3 shows this filter approach. By using a stride of s = 2, as in [YQC+20b], the

output size results in (n/s× n/s× c).

Figure 3.3: Pixel-Channel-
Mapping Filter as
replacement for the
quanv layer. The
values of an area
(k × k) inside the
(n × n) spectrogram
X are directly copied
into separate channels
c = k of size (n/s× n/s)
with s = 2.

Another conceivable approach, is to implement the quanv layer as a classical convolutional
layer with learnable weights stored in a matrix W as in figure 2.1. This matrix will then
map the image region highlighted on the left in figure 3.3 to the channel values on the
right. This layer is then integrated into the NN as suggested in [YQC+20b]. However,
this might not yield better results, since the perceptive field of this layer (a 2× 2 kernel
required to match the output shape to the quanv layer) is relatively small, thus no obvious
feature extraction is expected.

49

4. Validation

This chapter presents the implementation results and evaluations of the quantum Fourier
transform (QFT) and short time quantum Fourier transform (STQFT) in comparison with
the fast Fourier transform (FFT) and Short Time Fourier transform (STFT) for reference.
Furthermore, performance evaluations of the speech recognition (SR) pipeline including the
STQFT for spectrogram generation are shown and parameters of the neural network (NN)
as well as the STQFT adapted. Finally, the resulting test-accuracy of the NN is presented
and the findings from this section are discussed.
The generation of test signals as well as the data for training the NN are described

in section 4.1. Afterwards, section 4.2 describes the implementation of discrete Fourier
transform (DFT), FFT and QFT followed by the two short time transformations (STTs),
the STFT and the STQFT in section 4.3. The final connection to the NN and corresponding
test results are presented in section 4.4.

Test Framework Besides the implementation of the QFT in a SR pipeline, this thesis also
evaluates the performance of the NN based on certain configurations of hyperparameters.
These hyperparameters involve for example the minimum rotation angle mr of the angular
filter, the signal threshold st and general parameters of the NN such as the batch size
or epochs described in paragraph 2.1.2. Consistent and comprehensible test results are
crucial for further investigations. To ensure this, a flexible test framework was designed
and implemented in which various signals can be applied to either the DFT, FFT, QFT,
STFT or STQFT.
For the purpose of archiving and reproducibility, a versioning mechanism has been

designed which, together with the source control management (SCM) software Git, allows
the experimental results and generating code to be restored retrospectively. Exported
results of experiments can then be viewed afterwards via a viewer. An objective comparison
between the results of e.g. the FFT and QFT is mandatory, however, there were no suitable
comparative methods for achieving this, which is why a grader was designed and developed.
This test framework is shown in figure 4.1, where in the most abstract form, a signal x
is fed into a transformation F and the result is evaluated by a grader L. This signal can
either be synthetic (harmonic or chirp) or real speech sample. The DFT, FFT and QFT
can then be applied on the harmonic signal, or are provided to the STT framework if a
time-variant signal (chirp or speech sample) should be transformed. In case of the QFT,
noise mitigation can be applied. The STFT and STQFT are optionally post processed to
yield e.g. the Mel-spectrogram. If the transformation was time-invariant, the spectrum
can be evaluated with the Grader by comparison with a reference spectrum. Certain
manifestations of these signals and transformations are discussed in following sections.

Simulation Variations Key component of running any quantum circuit is the choice of
either simulating the circuit or evaluating it on a real device. However, in case of simulation,
either mock backends (including the approximated noise and structure of the real device),
noise models (only gate and readout errors of a specific device but with ideal qubit layout),

51

Signal Transformation Grader

DFT

FFT

QFT

STT Framework

STFT

STQFT

Post-ProcessingNoise Mitigation

Harrmonic

Chirp

Speech Signal

Export / Versioning / Viewer

Figure 4.1: Framework for validation of individual transformations. In the most general form, a
transformation F is applied on a signal x and the result is evaluated by a grader L.
The signal can either be synthetic (harmonic or chirp) or a real speech sample. If
the signal is harmonic, then a DFT, FFT or QFT can be applied. In case of a time
variant signal, these transformations are carried out as STFT or STQFT and yield a
spectrogram. In case of the QFT and STQFT noise mitigation can be applied.

or plain simulation (no noise, ideal qubit layout) can be used.
In many cases, results obtained from the simulated devices are sufficient and using

them instead of the real devices is more convenient since the latter has a very limited
number of publicly available quantum bits (qubits) and often also involve long waiting
times. Especially in the context of the STQFT, where several computations of the QFT
are required for a single signal, this can become an issue. The chosen backend device
(either simulated or real) is then used to perform the QFT and also serves for the noise
mitigation approach as discussed in section 3.1.3. The usage of the exact device either
in simulation or as a real quantum device will be stated and justified together with the
experiments in later sections.

Tools All quantum specific implementations were done using the python 3.8 [VRD09]
framework qiskit [AAA+21], except for the existing implementations from [YQC+20b]
using pennylane [BIS+20].
For numerical methods, numpy [HMvdW+20] and scipy [VGO+20] were used in addi-

tion to python’s built-in math library. Plotting was done with mathplotlib [Hun07] and
qutip [JNN13].

IBM Quantum [Qua21] devices were used to perform experiments on real quantum

52

computers which are accessed via IBM’s Python application program interface (API).
These devices include:

• ibmq_quito
• ibmq_guadalupe

• ibmq_melbourne
• ibmq_casablanca

The specific device properties are stated together with the experiments later in this
chapter. However, the views expressed are my personal ones and do not reflect the official
policy or position of IBM or the IBM Quantum team.
Simulation of quantum circuits was performed in a multiprocessing manner on two

“Intel(R) Xeon(R) Gold 5118” central processing units (CPUs) at 2.30 GHz with 376 GB
RAM while training tasks of the NN were executed on “NVIDIA V100” graphic processing
units (GPUs).

Source Code The code for the experiments as well as their results is available on Github
and is split into the following repositories:

• Main Repository [Str21a]: Code for section 4.4.
• STQFT Repository [Str21c]: Code for transformations in section 4.2 and explicitly
section 4.3 as well as for the synthetic signals in section 4.1.
• STQFT-Data Repository [Str21d]: Experiment results including plots and parame-
ters.
• QCNN Repository [Str21b]: Original QCNN repository from [YQC+20b] with the
modifications discussed in this section and abstracting layers.

4.1. Signal Generation and Data Acquisition

At the very beginning of the pipeline shown in figure 4.1 a general signal component must
be instantiated. For flexibility, such a signal can be instantiated either as a harmonic
oscillation, chirp signal, or directly from an audio file. Choosing an appropriate signal type
is not only required, for example, to investigate the QFT separately from the STQFT, but
also useful to investigate properties of each transformation based on simple signals instead
of e.g. complex speech signals.
In each case, a specific sampling rate has to be specified unless provided from the a

speech file directly. Furthermore, the signal duration can be specified by the number of
samples or the time in seconds. Reducing or zero-padding the signal to a specific length is
particularly important in the context of the STQFT, since the encoding scheme requires
the number of samples (window length) processed by each QFT to match 2n with n being
the number of qubits as discussed in section 3.1.1. This in turn requires the overall number
samples in the speech signal to be an integer multiple of the window length.
The remainder of this section will describe the types of signals used for evaluation of

the QFT and STQFT including their properties. These signals, which consist of synthetic
data such as Harmonic Oscillations and Chirps, as well as real data such as Speech Signals,
are shown on the left in figure 4.1

53

Harmonic Oscillation A harmonic signal as shown in figure 4.1 can be composed of
multiple harmonic oscillations, each with a amplitude, phase shift and frequency:

x =
∑
i

ai ∗ sin(2πfi ∗ (t− pi)), ai, fi, pi ∈ R, i ∈ Z (4.1)

where ai, fi and pi are the i-th amplitude, frequency and phase, respectively, that make
up the total harmonic signal. The signal x is represented as a continuos signal for simplicity,
although the sampled variant is used in the actual time invariant transformation.

Chirp A linear chirp signal is used to validate the functionality of time-variant transfor-
mation methods. The framework provides parameters for start and stop frequency, as well
as a time offset and utilizes Scipy’s built-in chirp method.

Speech Signal The NN of [YQC+20b] is trained on the Google’s speech command dataset.
In order to ensure the comparability of the results, this dataset is also used in the present
thesis. It contains 65000 one-second long utterances of 30 short words provided by many
different people [Tea17]. The following labels are selected from the dataset following the
setup in [YQC+20b]:

• left
• go
• yes
• down
• up

• on
• right
• no
• off
• stop

This subset of labels poses significant challenges for SR in general while representing a
realistic problem [FTYA21]. It consists of 23682 speech samples which are further divided
into training, validation and test sets as discussed in paragraph 2.1.2. For the latter, 10 %
of the dataset were extracted and the training-test-split of 1/5 from [YQC+20b] has been
carried over. Thus, the sets include the following number of samples such that:

• Training set: 17048
• Validation set: 4262
• Test set: 2372

The test set was separated from the dataset before any experiments were conducted
and only used for the final performance evaluation. In each experiment with the NN, the
training and validation sets are drawn randomly from the remainder of the dataset.

4.2. Transformations

Transformations such as the QFT and STQFT can within the presented framework be
carried out on the data presented in the previous chapter. According to the framework

54

in figure 4.1, these transformations are interchangeable thus no additional preparation
is necessary for applying e.g. a QFT instead of a FFT on a given signal. In general
and for the remainder of this chapter, the DFT, FFT and QFT are referred to as time
invariant transformations since the resulting spectrum contains no temporal information.
In contrast, the STFT and STQFT are referred to as STTs and provide time variant
spectral information.
The initial parametrization, which is only necessary in case of the QFT, is achieved by

the instantiation of these transformations as objects. This abstraction seems to be complex
on first sight compared to directly setting up the transformation at the time of applying
it on the signal, but enables efficient utilization of the QFT within the STQFT later.
Furthermore, the interchangeability between the transformations allows for an efficient
setup of experiments. In the remainder of this section, the time invariant transformations
are presented.

4.2.1. Discrete Fourier Transform

For the sake of completeness, a DFT was implemented. However, due to the high computa-
tional complexity of this transformation, see discussion in paragraph 2.1.1, it is not used in
further experiments. Nonetheless the DFT has been implemented to prove the correctness
of the initial FFT implementation.

4.2.2. Fast Fourier Transform

The FFT was implemented to provide a reference against the QFT. Implementation was
adapted to the approach from Cooley and Tukey in [CT65]. No further parameters are
required for instantiation. Therefore, the FFT smoothly integrates within the presented
framework.

4.2.3. Quantum Fourier Transform

The QFT was implemented following the theoretical derivations from section 2.2.8 and the
work in [Zam20] was used as a starting point. Compared to the DFT and FFT, the QFT
requires a more complex implementation. A schematic representation of necessary parts
for the computation of the QFT is depicted in the diagram 4.2.

To carry out a QFT, three essential tasks must be fulfilled:

• Load Backend: Every quantum circuit requires a backend for its execution. This
can either be the (qiskit) Simulator (optionally parameterized by a mock backend or
noise model) or a real (IBM) quantum device accessed through a provider.
• Instantiate: Instantiation of a QFT requires the encoding of (classical) information
into quantum states. This encoding is stored in an encoding circuit after the signal
was checked to not be a zero signal as explained in section 3.1.1 and optionally a
signal threshold is applied. In addition to the encoding circuit, the actual QFT
circuit is generated and the angular filter as discussed in paragraph 3.1.3 is optionally
applied. Since the encoding- and QFT circuit can be transpiled separately, a QFT

55

Mitigate
Noise

QFT

Noise
Subtraction

Instantiate

Load
Backend

Mock
Backends

Qiskit
Simulator

Reuse
Transpiled
QFT Circuit

Generate
QFT Circuit

Angular
Filter

IBM Quantum
Device

Apply Signal
Threshold

Zero Signal
Fix

Transpilation

Generate
Encoding

Circuit
Transpilation

Transform

Figure 4.2: Implementation of the QFT with an abstract representation of available methods. The
requirements for computing an QFT include loading a desired backend, instantiating
the encoding- and QFT-circuit and finally the actual execution of the transformation
with optional noise reduction. Details explained in listing 4.2.3.

circuit can be loaded, if existent, to reduce computational overhead. At execution
time both, the encoding and actual QFT circuit, will be treated as a single circuit.

• Transform: After generating the overall circuit, the execution can be carried out on
a previously loaded backend. This is referred to as the actual Transformation. After
obtaining the measurement results, the noise subtraction approach can optionally be
applied.

Separating the transpilation of the encoding and QFT circuit yields the advantage that
in case of the STQFT where multiple QFTs executions are necessary, only the encoding
circuit has to be transpiled several times whereas the QFT circuit can be reused once it is
transpiled.

Angular Filter With growing width of the QFT the rotations applied by the CP gates
become smaller. Taking a 16-QFT as an example, the CP gates would rotate by π, π/2, π/4
and π/8, respectively. This QFT would then have maximally 3 subsequent rotation gates
which can be seen in figure 3.1. Compared with a 1024-QFT this number seems relatively
small. However, it turns out that running even a 16-QFT on a real quantum device results
in severe noise resulting from gate and measurement errors as discussed in section 2.2.6.
This issue motivated the idea of the angular filter approach as introduced in paragraph
3.1.3.

To investigate the effect of this approach, experiments with the QFT applied on a
harmonic signal are conducted. This harmonic signal, shown in figure 4.3a, is composed of
two harmonic functions with 125 and 250 Hz, respectively. These frequencies are chosen
because they are not susceptible to the leakage effect described in section 2.1.1 at a sampling
rate of 1000 Hz used within this experiment. The number of samples in the signal was,
according to the restrictions of a QFT mentioned in section 3.1, set to 24 = 16 derived
from n = 4 qubits. For reference, the same signal was transformed with a classical FFT

56

yielding the spectrum shown on the right in figure 4.3b

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Am
pl

itu
de

Harmonic Signal

(a)

0 100 200 300 400
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

 (a
bs

)

FFT

(b)

Figure 4.3: 4.3a: Harmonic signal with 125 and 250 Hz sampled at 1000 Hz
4.3b: Spectrum of this harmonic signal with two distinct peaks at 125 and 250 Hz.
Amplitudes normalized to 1.

Due to the fact that gates and measurements are subject to noise as discussed in
section 2.2.6 strong fluctuations in the histogram are expected. Thus each experiment
associated with a plot was performed five times and the corresponding deviation and
mean value were plotted using box-plots [Kro21]. These visualization method is commonly
used to graphically depict groups of numerical data. Hereby, a box spans across the lower
and upper quartiles of the data. The median is represented by a line inside this box and
whiskers visually extend the box to indicate the variability outside the lower and upper
quartiles. Outliers are represented by individual points above and below the boxes.
“QFT_sim, mr: mr” indicates that rotation gates smaller than mr were omitted. All

amplitudes plotted on the y axis are normalized to the maximum peak. The x axis indicates
the frequency bins as follows:

• 1→ 0 Hz
• 2→ 62.5 Hz
• 3→ 125 Hz
• 4→ 187.5 Hz

• 5→ 250 Hz
• 6→ 312.5 Hz
• 7→ 375 Hz
• 8→ 437.5 Hz

The results achieved by utilizing the QFT with different values mr for the angular filter,
are discussed in the following and presented in figure 4.4.

In this experiment, an increasing number of CP gates are omitted. This can be seen in the
plots from left to right indicated by the angular filter parameter mr. The first and second
row show the simulation without (QFT_sim) and with a noise model (QFT_sim_n),

57

respectively. It should be noted, that the simulation with a noise model, does assume and
ideal layout of the device as explained in paragraph 4, although respecting its inherent
noise and errors. In the third row (QFT_real) the real quantum device “ibmq_quito” was
used to carry out the QFT.
In comparison with the reference spectrum in figure 4.3b, the simulations with and

without the noise model achieve generally good results. However, for mr = 0.79 and
mr = 1.57 an additional peak at frequency index 7→ 375 Hz occurs and the amplitude of
frequency index 3 and 5 drops respectively. This effect can be explained by the reduced
bandwidth, inherent with an increasing value mr of the angular filter as discussed in
paragraph 3.1.3.
Nevertheless, the spectra obtained from the QFT performed on the real device hardly

allow the identification of the signal spectrum. The low frequency tendency as discussed in
paragraph 3.1.2 is clearly visible and yields a significant peak at frequency index 1→ 0 Hz.
If this peak is disregarded, one can argue, that for mr = 0.39 and especially mr = 0.79, the
desired frequencies are at least above the median of the noise.
To achieve an objective comparison between the results within each row and thus to

allow for statements regarding the performance of the angular filter approach, a grader
was introduced as mentioned in figure 4.1. The grader’s output is calculated as follows:

g = 1− 1
N

N∑
i

|Y 2
i − Ŷ 2

i | (4.2)

where Ŷi and Yi denote the i-th frequency bin of the reference signal (FFT) and the
QFT result, respectively. A comparison between these two transformations is possible,
since the FFT is just like the QFT output, normalized to 1. In the ideal case, the grader
result would yield 1 for two identical spectra.

The grader results for all three cases (QFT_sim), simulation with noise (QFT_sim_n)
and real device experiments (QFT_real) are shown in figure 4.5. The value of the grader g
is denoted on the y axis while the x axis ticks indicate the corresponding parameter mr
of the angular filter. This correspondence, depicted in the following listing. For instance
mr = 0.76 means that all angles smaller than mr are omitted, which corresponds to 2 out
of 4 possible kind of rotation gates in this specific example.

• 1→ mr = 0.00rad
• 2→ mr = 0.40rad

• 3→ mr = 0.76rad
• 4→ mr = 1.57rad

The grader results presented in figure 4.5 show that in both simulation variants (with
and without noise) no improvement was achieved. Quite the opposite was the case since
for increasing values of mr, the grader values even decrease. However, one could argue
that since the results are already close to optimal (all grader values are above 0.92),
omitting rotation gates does not decrease the QFT accuracy significantly. Contrary to the
simulation variants, the grader results of the real device show a significant improvement
for an increasing value mr. With regard to the scaling of the y axis, this improvement was
even greater than the deterioration in the cases of simulation.

58

1 2 3 4 5 6 7 8
Freq (Hz)

0.4

0.6

0.8

1.0

Am
pl

itu
de

QFT_real, mr:0.00

1 2 3 4 5 6 7 8
Freq (Hz)

0.4

0.6

0.8

1.0

QFT_real, mr:0.39

1 2 3 4 5 6 7 8
Freq (Hz)

0.4

0.6

0.8

1.0

QFT_real, mr:0.79

1 2 3 4 5 6 7 8
Freq (Hz)

0.4

0.6

0.8

1.0

QFT_real, mr:1.57

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

QFT_sim, mr:0.00

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

QFT_sim, mr:0.39

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

QFT_sim, mr:0.79

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

QFT_sim, mr:1.57

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

QFT_sim_n, mr:0.00

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

QFT_sim_n, mr:0.39

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

QFT_sim_n, mr:0.79

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

QFT_sim_n, mr:1.57

Figure 4.4: Spectra of the harmonic signal in figure 4.3a generated with the QFT and varying
parameter mr of the angular filter. The experiments were conducted in simulation, both
with a noise model from “ibmq_quito” (QFT_sim_n) and without noise (QFT_sim).
The last row shows experiments conducted on the device “ibmq_quito” directly. The
frequency indexes on the y are according in listing 4.2.3

59

1 2 3 4
Tick

0.92

0.94

0.96

0.98

1.00

g

Grader QFT_sim

(a)

1 2 3 4
Tick

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

g

Grader QFT_sim_n

(b)

1 2 3 4
Tick

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

g

Grader QFT_real

(c)

Figure 4.5: Grader results over the num-
ber of omitted rotation gates
as indicated in list 4.2.3 for the
QFTs showed in figure 4.4.
The FFT on the right in fig-
ure 4.3b was used for compar-
ison. Each plot indicates the
grader results in
4.5a: simulation (QFT_sim),
4.5b: simulation with noise
(QFT_sim_n) and
4.5c: real device experiments
(QFT_real).

60

The 4-qubit quantum device “ibmq_quito” with the device layout visualized in figure 4.6
has been used in this experiment. Knowledge about the device structure and error rates of
single qubits is useful for assessing which device is suitable for a specific application since
not all noisy intermediate scale quantum (NISQ) devices are equally suitable as discussed
in section 2.2.5. Useful properties of a device are in general the readout assignment- and the
CX-error of individual qubits. In case of “ibmq_quito”, the average readout assignment error
is 2.998e−2 and the average CX-error is 1.027e−2 based on the calibrations from [Qua21] on
30.10.2021. This specific device was chosen in favour of the other publicly available 5-qubit
devices for further experiments, since it provides the lowest average readout assignment-
and CX-error rate. Each circle in figure 4.6 represents a single qubit with its individual
readout assignment error corresponding to the line thickness. The CX-error is displayed by
the line thickness of the connections between each qubit. In case of interest, the absolute
values of the errors can be found in the appendix in table A.1.

0 1 2

3

3

Figure 4.6: Map view of “ibmq_quito” with “IBM Quan-
tum Falcon r4T processor”. The Readout as-
signment error is indicated by the qubit’s line
thickness (the thicker the smaller the error)
and the CX-error is indicated by the connec-
tions (the thicker the smaller the error)

Noise Mitigation Taking a closer look at the results in figure 4.4, one can see that there
is a significant peek at 0 Hz in measurements from the real device which results from the
qubits striving to the ground state as explained in section 3.1.2.

This observation led to the noise subtraction approach presented in section 3.1.3 where it
was suggested to subtract the counts of a constant signal’s QFT from the noisy measurement
results. The results of applying the proposed noise mitigation are shown in figure 4.7. The
peak at 0 Hz was successfully removed and the noise floor especially for mr = 0.20rad
was reduced significantly. However, for large mr results become worse, although they stay
competitive against the non-mitigated variant.
Figure 4.8 shows the corresponding grader results from this experiment. The grader

values improved significantly by up to 1.51 for a single value of mr compared to the case
where no noise subtraction was applied, shown in figure 4.5. All ratios of the grader values
between these two experiments are listed in the following:

• ∆g1 = 0.675
0.54 = 1.25

• ∆g2 = 0.89
0.59 = 1.51

• ∆g3 = 0.86
0.625 = 1.38

• ∆g4 = 0.74
0.64 = 1.16

However, the grader values also indicate a decreasing performance for mr ≥ 0.4 rad of
the angular filter, although even in the worst case, the improvement still obtains a ratio of
1.16. This indicates two contradicting effects: On the one hand, by reducing the rotation
gate count, the noise, inherent with these gates, also decreases, thus improving the QFT

61

1 2 3 4 5 6 7 8
Freq (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

QFT_real, mr:0.00

1 2 3 4 5 6 7 8
Freq (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

QFT_real, mr:0.20

1 2 3 4 5 6 7 8
Freq (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

QFT_real, mr:0.79

1 2 3 4 5 6 7 8
Freq (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

QFT_real, mr:1.57

Figure 4.7: QFT on real device “ibmq_quito” with noise mitigation technique explained in
section 3.1. Angular filter applied, indicated by the minimum rotation angle (mr).
Compared to the corresponding spectrograms on the real device showed in figure 4.4,
the noise subtraction method significantly improved the results, which is especially
visible for mr = 0.2

accuracy. On the other hand, omitting too many rotation gates, also severely limits the
QFT bandwidth and thus deteriorates the grader values.

1 2 3 4
Tick

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

g

QFT_real, grader

Figure 4.8: Grader results from noise miti-
gated QFT on the real device
“ibmq_quito” plotted over angular
filter indices declared in listing 4.2.3.
Compared to the first tick, where no
angular filter is applied, a significant
improvement in tick 2 (mr = 0.40) is
visible which decays for the remain-
ing ticks (mr = [0.76, 1.57])

Noise mitigation based on the evaluation of all possible input combinations, as explained
in section 2.2.6, was also tested using noise mitigation tools provided by the qiskit framework.
However, it turned out to be not as effective as above results while being computationally
more complex for a large number of QFTs as it is required for the STQFT.

4.3. Short Time Quantum Fourier Transform

As shown already in figure 4.1, a STT framework is used as an abstraction layer covering
both the STFT and the STQFT.

62

To obtain a sufficiently good time and frequency resolution, at least a 7-qubit QFTs has
to be used for the following experiments. However, the publicly available devices at IBM
Quantum currently cover at most 5-qubit devices thus following experiments are restricted
to the noise model of more complex quantum computers and experiments on real devices
are not included.

Initial experiments are performed with a chirp, since this is a relatively simple signal and
thus the results can be compared well with those to be expected. In the following experi-
ments, two chirps, starting at 500 and 1000 Hz and ending at 2000 and 3000 Hz,respectively,
are presented. These signals were chosen because they cover most of the Nyquist band
([0 . . . 4000] Hz at 8 kHz sampling frequency) while having different slopes so that eventual
artefacts can easily be associated. To perform experiments as realistic as possible, a
relatively high sampling frequency is chosen as it would be conceivable in SR.
During experiments the Hanning window 2.1.1 was used since it preserves the signal

energy at a window overlap of 0.5. Different windows were tried as well, but did not yield
significantly different results, which is why the mentioned window overlap is acceptable as
a default.
In contrast to the experiments from previous section, there is no repeated execution of

the STQFT: a single STQFT contains a sufficient number of QFTs to reach a low variance
thus providing a solid foundation.

4.3.1. Noise Mitigation

The first graph in figure 4.9 shows the STFT as a reference, followed by the STQFT,
simulated without any additional noise information STQFT_sim. STQFT_sim_n adds
the noise model from the 7-qubit device “ibmq_casablanca” while the rightmost graph
STQFT_sim_n, mitigated adds the mitigation technique evaluated in the previous experi-
ment with the QFT in paragraph 4.2.3.
The thickness of the lines in these figures indicating the chirp signals spectrogram is

the result of the restricted time-frequency resolution inherent with STFT as discussed in
paragraph 2.1.1. This restriction leads to the leakage effect described in paragraph 2.1.1
and is visible as two additional stripes on upper and lower side of each chirp in the STFT
spectrogram. In case of the STQFT, these three stripes in the resulting chirps are more
blurred. This can be explained by the amplitude inaccuracy inherent with the QFT even
in the simulated case as discussed in paragraph 3.1.2.
The results of the STQFT_sim_n show additional artefacts (crossing chirps with the

same inverse slope but lower amplitude) in the plot. Since these additional chirps are not
well visible in this experiment, they will be discussed in one of the following experiments.
However, it can be noticed that in case of the STQFT_sim_n, mitigated, these artefacts
are not visible anymore.

For later reference, figure 4.10 shows the architecture of “ibmq_casablanca”, from which
it is conceivable that the all 7 qubits are required in context of this experiment with a
128-QFT. The average readout assignment error on “ibmq_casablanca” is 2.300e−2 and
the average CX-error is 1.035e−2 based on the calibrations from [Qua21] on 30.10.2021. In
case of interest, the absolute values of the errors for individual qubits and connections can

63

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

Fr
eq

ue
nc

y
(H

z)

STFT

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_sim_n, mitigated

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_sim_n

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_sim

Figure 4.9: STQFTs of a synthetic chirp signal in simulation (STQFT_sim), simulation with
noise model (STQFT_sim_n) from “ibmq_casablanca” and applied noise mitigation
on the latter (STQFT_sim_n, mitigated) besides the STFT as reference. Despite
a slightly different amplitude, the results of in STQFT_sim appear very similar to
the reference. The noise model in STQFT_sim_n resulted in artefacts of the chirp
signal. However, these are successfully removed by applying the noise subtraction
method in STQFT_sim_n, mitigated.

be found in the appendix in table A.2.

0 1 2

3

54 6

Figure 4.10: Map view of “ibmq_casablanca” with “IBM
Quantum Falcon r4H processor”. Readout
assignment error indicated by the qubit’s line
thickness (the thicker the smaller the error)
and CX-error indicated by the connections in
the same manner.

To draw a conclusion, the results from figure 4.9 give a first indication that STQFT can
be successfully applied to synthetic signals on real NISQ devices. In the remainder of this
subsection, the STQFT will be tested on another quantum device to show the relevance of
the device layout. Finally, the aforementioned artefacts in the STQFT_sim_n are further
investigated.

STQFT on “ibmq_guadalupe” Additional experiments were performed using the noise
model from the 16-qubit device “ibmq_guadalupe”. The architecture of this device is not
shown here due to its high complexity, but can be in the appendix in figure A.1. The device
average readout assignment error is 3.165e−2 and the average CX-error is 1.825e−2 measured
on 30.10.2021. In case of interest, the readout assignment- and CX-errors of individual qubits
and connections can be found in the appendix in table A.3. The reason for this additional
investigations is the motivation to address the artefacts in the previous experiment without
mitigation but with a more complex quantum device having a higher number of qubits
available from which the transpiler can choose. As explained in section 2.2.5, the transpiler
tries to find an optimal realization of the circuit given the device specific layout [Pre18].

64

Redundant qubits allow the transpiler to choose the qubits with the lowest readout and CX
error.
The experiments results with this 16-qubit device are shown in figure 4.11. Although

still present, the aforementioned artefacts are greatly reduced compared to the spectrogram
STQFT_sim_n in figure 4.9. The remaining artefacts and their source are subject of the
following discussion.

0.0 0.1 0.2 0.3 0.4 0.5
Time (s)

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y
(H

z)

STQFT_sim_n

Figure 4.11: STQFT of a chirp signal in simulation with
noise model from “ibmq_guadalupe”. No
noise mitigation applied. Compared to the
spectrogram STQFT_sim_n in figure 4.9,
the artefacts of the chirp signal decreased

STQFT artefacts While the noisiness of a quantum device obviously correlates with
the quality of obtained spectrograms, additional experiments were conducted examining
the exact source of the geometrically similar artefacts mentioned at the beginning of this
section in context of STQFT_sim_n in figure 4.9. It turned out that coherent errors as
discussed in section 2.2.6, more precisely CP gate rotation errors, are mainly influencing
the intensity of such artefacts. This is shown in figure 4.12 where the angular offset is
indicated by er stated above the figures and iteratively increased from er = [0.12 . . . 0.21].
Although for er = 0.12 barely any artefacts are visible, this suddenly changes with

er = 0.15 and even more artefacts become visible for increasing er. This finding is
confirmed by experiments with the classical STFT, where an identical behavior can be
observed for offsets ε ≥ 0 with ε ∈ R in the exponent of exp(−ı2π(k

W n+ ε)) from the
equation of the STFT in equation (2.14).

4.3.2. Angular Filter

In paragraph 4.2.3 the angular filter approach based on the results of the QFT of an
harmonic signal carried out on “ibmq_quito” was evaluated. Figure 4.13 shows this
experiment setup with the STQFT applied on the chirp signal and executed on the
“ibmq_casablanca” device. This device was chosen in favour of “ibmq_guadalupe”, evaluated
section 4.3.1, for this experiment, since noise reduction was expected to have a more distinct
effect on noisier devices.

It turns out that for mr ≤ 0.20 (the upper four plots) there are only slight artefacts. This
suddenly changes for mr = 0.39 and get worse up to mr = 1.57 where only one rotation
gate per qubit is left and thus no meaningful transformation possible. In general it can be
said that at a certain point, increasing the mr parameter further will reduce the accuracy of

65

0 2 4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

Fr
eq

ue
nc

y
(H

z)

STQFT_sim, er:0.12

0 2 4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_sim, er:0.15

0 2 4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_sim, er:0.18

0 2 4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_sim, er:0.21

Figure 4.12: STQFTs of a chirp signal in simulation without noise model but with varying
rotation gate error er. The artefacts of the chirp signal increase significantly for
er ≥ 0.15.

the QFT drastically, such that the benefits of reducing noisy rotation gates are negligible
compared to the resulting overall noise in the spectrogram. This leads to the suspicion, that
an optimal value of this parameter exists and must be evaluated in further experiments.

According to the findings from section 4.3.1, to evaluate the noise subtraction approach
in conjunction with the angular filter. Therefore, an experiment was conducted where the
results were mitigated and different values for the angular filter evaluated. It turned out
that even for the case of mr = 0.39 where severe artefacts were visible in the spectrum
in figure 4.13, these significantly reduced after the application of the noise subtraction
approach. This allows for the conclusion, that the mentioned mitigation approach is not
only capable of reducing device specific noise produced by gate and measurement errors, but
also efficiently mitigates artefacts caused by the angular filter approach. Another advantage
of omitting CP gates as done with the angular filter, is the decreasing computational effort,
not only for simulation on classical machines, but also for quantum computers. Therefore,
a combination of both approaches, noise subtraction and angular filter methods seems
reasonable for application in SR tasks as they are able to reduce the overall gate count
while simultaneously mitigating noise and accompanying artefacts.

4.3.3. Speech Signals

After these experiments the gained knowledge is tested on experiments on the speech
signals from the dataset introduced in section 4.1. As in the previous section, experiments
have not been performed on real quantum hardware, because of the lack of publicly
available and sufficiently large quantum computers. The noise model of the quantum
device “ibmq_guadalupe” is used instead. This sections aims to find an upper bound for
parameters of the signal threshold filter (st) and angular filter (mr). Furthermore the
impact of the noise subtraction approach introduced in section 3.1.3 is investigated.
At first an experiment was conducted for reference without any of the aforementioned

approaches. This result of the STQFT applied on the spoken sample for the word “left”
is shown in figure 4.15b. The STFT generated spectrogram is shown in figure 4.15a for

66

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

Fr
eq

ue
nc

y
(H

z)
STQFT_real, mr:0.00

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_real, mr:0.05

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_real, mr:0.10

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_real, mr:0.20

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

Fr
eq

ue
nc

y
(H

z)

STQFT_real, mr:0.39

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_real, mr:0.79

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_real, mr:1.57

Figure 4.13: STQFTs of a chirp signal in simulation with noise model from “ibmq_casablanca”.
Noise subtraction is not applied. Each spectrogram corresponds to a STQFT
with iteratively increased value of the angular filter mr = [0.006 . . . 1.571] where
each increment corresponds to an rotation angle of a set of CP gates. For mr =
[0.00 . . . 0.20], there are no visible changes in the spectrogram, which suddenly
changes and increases for mr = [0.39 . . . 1.57]. Artefacts of the chirp signal are
present even with a disabled angular filter (mr = 0.00) and heavily increase for
mr ≥ 0.39.

comparison. A 1024 samples Blackman window (see common options in section 2.1.1)
with an overlap of 0.875 was used in conjunction with a 1024-QFT and 16 kHz sampling
rate. These values were chosen according to the STFT of the librosa framework [MRL+15]
properties used in [YQC+20b]. Other types of windows were evaluated, but did not yield
significantly different results, thus are not presented.

Signal Threshold Filter Compared to the reference STFT in figure 4.15a, the output
visually appears weaker and artefacts are visible in areas, where no signal is indicated by
the STFT. This can be explained by the fact that the QFT output is normalized, thus
segments in the STQFT, which are almost zero in the STFT, are forced to sum up to one
as explained. To address this issue a signal threshold filter was introduced in section 3.2
such that segments in which the input signal is smaller than a predefined threshold are not
computed with the QFT, but instead directly set to zero.

Figure 4.16 shows the spectrograms with increasing parameter st of the signal threshold
filter. As can be seen in figure 4.16a a threshold of st = 0.02 can effectively suppress

67

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

Fr
eq

ue
nc

y
(H

z)

STQFT_real, mr:0.00

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_real, mr:0.05

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_real, mr:0.10

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_real, mr:0.20

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

Fr
eq

ue
nc

y
(H

z)

STQFT_real, mr:0.39

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_real, mr:0.79

0.0 0.2 0.4
Time (s)

0
500

1000
1500
2000
2500
3000
3500

STQFT_real, mr:1.57

Figure 4.14: STQFTs of a chirp signal in simulation with noise model from “ibmq_casablanca”.
Noise subtraction is applied. Each spectrogram corresponds to a STQFT with itera-
tively increased value of the angular filter mr = [0.006 . . . 1.571] where each increment
corresponds to an rotation angle of a set of CP gates. For mr = [0.00 . . . 0.20], there
are no visible changes in the spectrogram, which suddenly changes and increases
for mr = [0.39 . . . 1.57]. Artefacts of the chirp signal are significantly reduced by the
noise subtraction method compared to the spectrograms in figure 4.13, but increase
as well for mr ≥ 0.39.

artifacts at the beginning and end of the signal. Increasing this threshold further, however,
yields to a lack of spectrogram parts which are visible in case of the STFT. This in
turn removes potentially relevant features for classification with the NN discussed later.
Comparison with this reference suggests to choose st = 0.06 as in the spectrogram shown in
figure 4.16b for further investigations. Besides the suppression of normalization artefacts,
this approach also significantly reduces computational effort and decreases the number
of processed QFTs from 127 for st = 0 down to 32 for st = 0.06 in this particular speech
sample.
Comparing the spectrograms in figure 4.16 with the reference in figure 4.15a, it can be

noticed, that e.g. the spectral components between [̃500 . . . 2000] Hz for the time period
[̃0.6 . . . 1.5] s appear wider in the STQFT as in the reference. This effect can be explained
by the normalization inherent to the QFT discarding information about the absolute
amplitude as discussed in paragraph 3.1.2. Without this information, raising or lowering
amplitudes in the voice are not displayed correctly as neighboring QFTs within a single
STQFT will normalize each spectral window. In a classification task with a NN, this

68

information could be considered as a feature and missing it would thus reduce the accuracy
as discussed in paragraph 3.2.

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y
(H

z)

STFT_sim

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

+1 dB

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y
(H

z)

STQFT_sim

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

(b)

Figure 4.15: 4.15a: STFTs of a speech signal (“left”). 16 kHz sampling rate, Blackman win-
dow 2.1.1 with overlap of 0.875
4.15b: STQFTs of a speech signal (“left”) in simulation with noise model from
“ibmq_guadalupe”. Compared to spectrogram 4.15a, severe artefacts are visible and
relevant spectral areas lack of detail.

Noise Mitigation Section 4.3.1 shows promising opportunities for the noise subtraction
approach introduced in section 3.1.3 also for applying the STQFT. To validate this on
speech signals experiments were conducted with the noise model of the “ibmq_melbourne”
quantum device and applied noise subtraction. The 16-qubit device “ibmq_melbourne”
with “Falcon r4P Processor” was chosen since it is noisier compared to “ibmq_guadalupe”
thus mitigation results are expected to be more visible in this case. The device average
readout assignment error is 5.814e−2 and the average CX-error is 3.169e−2 measured on
30.10.2021.

The results of this experiment are shown in figure 4.17 where a signal threshold of
st = 0.06 is applied in both cases. In the spectrogram shown in figure 4.17b many artefacts
that can be seen in the unmitigated spectrogram displayed in figure 4.17a were successfully
removed. A comparison with the case of st = 0.06 in figure 4.16 confirms that the
application of the noise subtraction method on “ibmq_melbourne” led to a spectrogram
more similar to the less noisier device “ibmq_guadalupe”. However, one might argue that
the additional spectrogram components in figure 4.17b at around [5 . . . 6.5] kHz which are
not visible in the spectrogram from “ibmq_guadalupe”, might also be beneficial for the NN
in later experiments. Therefore the performance with the noise models of both devices,
“ibmq_guadalupe” and “ibmq_melbourne”, will be investigated.

Angular Filter As final part of this section, all suitable values for the angular filter
mr = [0.006 . . . 1.571] are evaluated in figure 4.18 where mr = 0 was omitted for the sake of
clarity. These experiments were conducted, in addition to the evaluation in section 4.3.2
since a different behavior for synthetic and real speech signals is expected. Since the

69

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y
(H

z)

STQFT_sim, st:0.02

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y
(H

z)

STQFT_sim, st:0.06

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y
(H

z)

STQFT_sim, st:0.1

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

(c)

Figure 4.16: STQFTs of a speech signal
(“left”) with signal threshold
filter as introduced in 3.2 ap-
plied. Various signal thresh-
olds (st) have been evaluated.
Experiments ran with noise
model “ibmq_guadalupe”.

sampling rate of the speech signal requires a 1024-QFT, the granularity of the angular
filter increased, which is why its parameter mr is provided with a higher precision in this
experiment. The noise model of “ibmq_guadalupe” has been used in this experiment since
noise should not be subject to investigations in this case. Based on the evaluations in
paragraph 4.3.3, a signal threshold of st = 0.06 was chosen. The noise subtraction method
was not applied according to the findings in section 4.3.2, since this would disallow for any
conclusion on the effects of the angular filter.

For values of the angular filter of mr < 0.2 there are no visible changes in the spectrograms.
However, this changes at values mr ≥ 0.2 where artefacts, especially in high frequent parts
of the spectrogram become increasingly visible. Due to the applied signal threshold, blank
parts of the spectrogram where the maximum amplitude of the signal for a single QFT
window is < 0.06, remain unchanged. It should be noted, that the angular filter, removes
all rotation gates smaller than the given parameter. Therefore, setting this parameter to
mr = 0.2 is equivalent to the resulting spectrogram with mr = 0.196 in figure 4.18 and
therefore a valid option. The results of this experiment encourage an optimal value of
mr = 0.2 (6 out of 10 possible CP gates in a 1024-STQFT) since this provides the QFT
with the lowest number of CP gates, while resulting spectrograms are well comparable with
those including a full QFT as in figure 4.17a.

70

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000
Fr

eq
ue

nc
y

(H
z)

STQFT_sim_n, st:0.06

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y
(H

z)

STQFT_sim_n_mitig, st:0.06

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

(b)

Figure 4.17: 4.17a: STQFTs of a speech signal (“left”) with st = 0.06 and noise model of
“ibmq_melbourne” applied.
4.17b: Mitigated variant with applied noise subtraction approach from section 3.1.3.

4.4. Connection to the Neural Network

This section describes the evaluation of the STQFT as feature generating component in a
SR pipeline based on the performance of a NN. The training-, validation-set presented
in paragraph 4.1 are used in following experiments. Additionally, the test set is used for
a final performance measure of the model at the end of this section. This final model is
chosen based on the validation accuracy in subsequent experiments. From the experiments
in previous sections, the following properties of the STQFT are found to be well suited for
the given setup and also indicate and upper bound:

• mr = 0.2
• st = 0.06
• Include noise mitigation

From the discussion in paragraph 4.3.3 both noise models “ibmq_guadalupe” and
“ibmq_melbourne” will be evaluated to confirm if these will have an impact on the NN
learning performance.
Typical learning hyperparameters of the NN model, the Batch Size and the number of

Epochs described in paragraph 2.1.2, have been carried over from [YQC+20b] as follows:
• Batch Size: 16
• Epochs: 30

Figure 4.19 shows the loss (solid line) and accuracy (dashed line) history for the training
and validation set, respectively. Three training procedures were performed, yielding a
validation accuracy of 0.820± 0.003. The resulting history plot shows strong fluctuations
in the accuracy, indicating repetitive finding of local minima.

71

0 1 2 3 4

0

2000

4000

6000

8000

Fr
eq

ue
nc

y
(H

z)

STQFT_sim_n, mr:0.006

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

0 1 2 3 4

0

2000

4000

6000

8000

STQFT_sim_n, mr:0.012

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

0 1 2 3 4

0

2000

4000

6000

8000

STQFT_sim_n, mr:0.025

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

0 1 2 3 4

0

2000

4000

6000

8000

Fr
eq

ue
nc

y
(H

z)

STQFT_sim_n, mr:0.049

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

0 1 2 3 4

0

2000

4000

6000

8000

STQFT_sim_n, mr:0.098

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

0 1 2 3 4

0

2000

4000

6000

8000

STQFT_sim_n, mr:0.196

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

0 1 2 3 4
Time (s)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y
(H

z)

STQFT_sim_n, mr:0.393

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

0 1 2 3 4
Time (s)

0

2000

4000

6000

8000

STQFT_sim_n, mr:0.785

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

0 1 2 3 4
Time (s)

0

2000

4000

6000

8000

STQFT_sim_n, mr:1.571

+0 dB

+0 dB

+0 dB

+1 dB

+1 dB

+1 dB

Figure 4.18: STQFTs of a speech signal (“left”) with st = 0.06 and noise model of
“ibmq_guadalupe” applied. Each spectrogram corresponds to a STQFT with itera-
tively increased value of the angular filter mr = [0.006 . . . 1.571] where each increment
corresponds to an rotation angle of a set of CP gates. For mr = [0.006 . . . 0.196],
there are no visible artefacts, which suddenly changes and increases for mr =
[0.393 . . . 1.571].

Adaptation of NN Hyperparameters As discussed in paragraph 2.1.2, these fluctuation
can indicate large gradients. Using the ADAM optimizer instead of SGD is expected to
reduce the fluctuations since learning steps are adapted based on the gradients history.
Increasing the batch size is also considered appropriate to prevent the above effects, as
also shown in paragraph 2.1.2. The increasing validation loss in contrast to the decreasing
training loss indicates overfitting which can be addressed by the introduction of dropout
as discussed in paragraph 2.1.2. In summary, the following modifications are applied:
• Increase batch size up to 30 (expected to reduce fluctuations)
• Apply dropout as regularization method after each long short-term memory (LSTM)

and after the Dense64 layer
• Use ADAM Optimizer instead of SGD (expected steadier convergence)

These modifications lead to the history plot in figure 4.20. A clear improvement regarding
the fluctuations of the validation loss is visible. Although the validation accuracy improves
to 0.832± 0.003, overfitting is still present despite the applied dropout. This can indicate

72

0 5 10 15 20 25 30
Epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

 /
Ac

cu
ra

cy
Training / Validation History

train_loss
val_loss
train_acc
val_acc

Figure 4.19: Loss & Accuracy plot over epochs for the initial experiment including STQFT in the
SR pipeline from [YQC+20b]. Parameters for the STQFT with noise mitigation set
to mr = 0.2 and st = 0.06. Strong fluctuations and overfitting is visible. Validation
accuracies: 0.820± 0.003

a lack of features compared to the original training data in [YQC+20b] on which the NN
originally achieved a validation accuracy of 0.9512. In paragraph 4.3.3 a potential reason
was given by the fact, that in contrast to the STFT, the STQFT cannot display raising or
lowering voices in a speech signal due to the normalization required in every single QFT. In
addition, the resulting spectrogram is usually not as detailed as for STFT, further reducing
the relevant information for NN in the spectrogram.

Pixel-Channel-Mapping It is suspected that the quantum convolutional (quanv) layer
makes the spectrograms of the STQFT unnecessarily noisy. Therefore, a Pixel-Channel-
Mapping as suggested in paragraph 3.3 was applied which leads to the training results
depicted in figure 4.21. By applying this approach, the accuracy increases to 0.845± 0.003.

Although still present, overfitting is further reduced. This can be explained by the reduced
decoherence inherent with the second quantum circuit (quanv layer from [YQC+20b])
in the processing pipeline. In a further experiment a convolutional layer as suggested
in [YQC+20b] and discussed in paragraph 3.3 is used as a replacement for the Pixel-
Channel-Mapping. However, this leads to a drop in validation accuracy to 0.824± 0.003.
Therefore, this approach is not regarded any further.

Noise model of “ibmq_melbourne” The findings in section 4.3.3 left the choice of the
noise model open to “ibmq_guadalupe” and “ibmq_melbourne”. While the latter was

73

0 5 10 15 20 25 30
Epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

 /
Ac

cu
ra

cy

Training / Validation History

train_loss
val_loss
train_acc
val_acc

Figure 4.20: Loss & Accuracy plot over epochs after adapting NNhyperparameters. Fluctuations
decreased, but severe overfitting still visible. Validation accuracy: 0.832± 0.003

found to be noisier, it might also yield additional features needed to address the problem
of overfitting. The history plot of the experiment with the noise model “ibmq_melbourne”
remains similar to the previous ones and is therefore omitted here. In case of interest, the
plot can be found in the appendix in figure A.2. With a resulting validation accuracy of
0.825± 0.001, the additional noise inherent with the device model do not lead to a better
generalization of the NN although the fluctuations decreased. Due to the reduction by
2 % compared to the validation accuracy of 0.845± 0.003 achieved with the noise model
“ibmq_guadalupe”, the latter will be used in further experiments.

Adaptation of STQFT parameters By now, the parameters from listing 4.4 were used
for the angular filter (mr = 0.2) and signal threshold (st = 0.06). These parameters were
chosen based on previous experiments and can be regarded as an upper bound. Therefore it
is reasonable to investigate if a reduction of these parameters would yield an improvement
in the NN validation accuracy. These adaptations are made as depicted in the following
listing:
• mr = 0.1
• st = 0.02

Figure 4.22 shows the resulting training and validation history. The validation accuracy
significantly improved to 0.914± 0.002 which is an improvement of 6.9 % compared to the
result achieved after applying the Pixel-Channel-Mapping from paragraph 4.4.

Compared to the plot in figure 4.21, the overfitting reduced in this experiment. However,

74

0 5 10 15 20 25 30
Epochs

0.4

0.6

0.8

1.0

1.2

Lo
ss

 /
Ac

cu
ra

cy
Training / Validation History

train_loss
val_loss
train_acc
val_acc

Figure 4.21: Loss & Accuracy plot over epochs after introducing the Pixel-Channel-Mapping from
paragraph 3.3. Overfitting reduced and accuracy improved. Validation accuracy:
0.845± 0.003

the distinct spikes in the plot in figure 4.22 indicate large gradients. According to the
discussion in paragraph 2.1.2, reducing the learning rate can address this problem. In the
experiment which generated the plot in figure 4.23 the step size of the ADAM optimizer is
as a consequence reduced from 0.001 to 0.0001 At the same time, the number of epochs was
increased to 40 to account for the slower training speed as also explained in paragraph 2.1.2.

The resulting plot shows a clearly improved learning curve without spikes and reduced
overfitting. However, the validation accuracy reduced to 0.903±0.001. Since the number of
epochs is already increased to address the slower training speed and overfitting still remains,
training for an even longer period of time is not expected to yield a better validation
accuracy.

For the reason that, the adaptation of the hyperparameters in listing 4.4 made up most of
the performance improvement, following experiments investigate which parameter exactly
achieved this improvement. It showed, that reverting mr = 0.2 as in the initial setup in
listing 4.4 yields a similar validation accuracy of 0.902±0.001. Besides this mostly identical
validation accuracy, the history plot remained similar to the previous experiment and is
therefore omitted here, but included in the appendix in figure A.3. This allows for the
conclusion that reducing the signal threshold mainly improved the validation accuracy.
Since it can be assumed that the angular filter parameterized with mr = 0.2 does not

cause a relevant reduction in validation accuracy, it is preferable to mr = 0.1 since a larger
value results in a smaller circuit and therefore the reduction of possible noise sources. In
this respect, it remains to be tested whether a further reduction of the signal threshold

75

0 5 10 15 20 25 30
Epochs

0.2

0.4

0.6

0.8

1.0
Lo

ss
 /

Ac
cu

ra
cy

Training / Validation History

train_loss
val_loss
train_acc
val_acc

Figure 4.22: Loss & Accuracy plot over epochs after changing QFT parameters to mr = 0.1 and
st = 0.02. Accuracy improved, but severe spikes in the validation loss become visible.
Validation accuracy: 0.914± 0.002

is accompanied by an improvement of the validation accuracy. Figure 4.24 shows the
resulting plot for a signal threshold of st = 0.01.

The validation accuracy of this experiment reached 0.916±0.001 which is an improvement
of 1.4 /sipercent compared to the previous experiment. This once more motivated further
reduction of the signal threshold down to st = 0.001 which in turn decreased the validation
accuracy to 0.914± 0.004. The plot of this experiment is not shown here, since no relevant
change in the training history occurred, but is included in the appendix in figure A.4. It
should also be noted that, the variance in the validation accuracy increased compared to
the previous experiment. For this reason and because the reduced signal threshold resulted
in an overall longer execution time as more QFTs were performed, the most appropriate
parameters for this setup regarding the angular filter and signal threshold can be noted as
follows:
• mr = 0.2
• st = 0.01

Further properties of this setup include the noise model “ibmq_guadalupe”, applied noise
subtraction method and the Pixel-Channel-Mapping.
A final performance evaluation of the NN on the test-dataset was conducted which

resulted in a test-accuracy of 89.92 %. In comparison with validation accuracy of 0.916±
0.001, this result is well acceptable and a minor performance drop was expected due to the
still persistent overfitting indicated by the slightly increasing validation loss in figure 4.24.

76

0 5 10 15 20 25 30 35 40
Epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Lo

ss
 /

Ac
cu

ra
cy

Training / Validation History

train_loss
val_loss
train_acc
val_acc

Figure 4.23: Loss & Accuracy plot over epochs after reducing stepsize of the ADAM optimizer.
Spikes from the previous experiment vanished and overfitting reduced as well.
Validation accuracy: 0.903± 0.001

4.5. Discussion

This section summarizes and discusses the findings of preceding experiments.
At first, the angular filter with increasing parameter mr in a QFT applied to a harmonic

signal was tested. It turned out that on a real device no significant improvement was
noticeable and in simulation with and without noise, the accuracy of the QFT only
decreased with increasing mr. However, by combining the angular filter with the noise
subtraction approach, it was found that there is an ideal value for the former at which the
result of the grader improved by a factor of 1.51.
Subsequently, the STQFT was evaluated using a synthetic chirp signal. Experiments

were carried out in the simulator with the noise model from “ibmq_guadalupe”. The initial
experiment revealed artefacts in the spectrograms which could be attributed to faulty
rotation gates. This was confirmed by the manipulation of the classic FFT where similar
artefacts were observed. However, these artefacts could be almost completely suppressed
by the noise subtraction method. Using the noise model of a larger quantum device with
lower qubit error rates was also examined which indeed reduced the artefacts visible in the
spectrogram.

The STQFT and aforementioned approaches were then evaluated on speech signals from
the dataset used within this thesis. It was shown that due to the low amplitude of the signal
and the normalization inherent with the QFT, spectral components appeared in regions
which do not exist in the reference spectrogram obtained from the STFT. Therefore, a

77

0 5 10 15 20 25 30 35 40
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Lo

ss
 /

Ac
cu

ra
cy

Training / Validation History

train_loss
val_loss
train_acc
val_acc

Figure 4.24: Loss & Accuracy plot over epochs after reducing signal threshold further to st = 0.01.
Accuracy improved. Validation accuracy: 0.916± 0.001

signal threshold filter was introduced which returns an empty spectrum if the amplitude of
the signal is smaller than a fixed value within the particular QFT window. This not only
reduced the number of QFTs and therefore increased execution speed, but also resulted
in a spectrogram similar to that of the STFT. In comparison with this reference, it was
found that raising and lowering amplitudes in the voice as at the beginning and end of
a speech signal cannot be processed by the STQFT as well as with the STFT due to
the normalization of the QFT. Additionally, an evaluation of the angular filter based on
the spectrogram of the speech signal was conducted to find an appropriate value for its
parameter.
Next, using the previously evaluated signal threshold of st = 0.06 and an angular filter

parameter of mr = 0.2, STQFT-based spectrograms of the training and validation set
were generated and the NN was trained. Since heavy fluctuations and overfitting was
visible in the resulting history plot, the hyperparameters of the NN were adapted. This
reduced the overall fluctuations in the training history, although overfitting was still present.
By applying a Pixel-Channel-Mapping as a replacement for the quanv layer, the overall
validation accuracy improved by over 2.45 % compared to the initial training. A learnable
convolution layer was tested but decreased the validation accuracy. Using a the noise
model from “ibmq_melbourne” decreased the validation accuracy as well, which is why the
noise model was reverted to “ibmq_guadalupe” in further experiments.
Since the initially chosen parameters for the signal threshold and angular filter can

be considered as upper limits, their values were reduced. It turned out that decreasing
the signal threshold improved validation accuracy significantly to 0.916 ± 0.001, while

78

decreasing the parameter of the angular filter did not yield further improvements. Another
experiment revealed an appropriate value for the signal threshold such that the STQFT
parameters were fixed to st = 0.002 and mr = 0.2.
With this setup, an overall performance measure of the NN on the test-dataset was

conducted yielding the final test-accuracy of 89.92 %. Given the still persistent overfitting
indicated by the training history, this result is well acceptable and provides a solid
baseline for further improvements. It is conceivable that adjustments to the NN could
reduce overfitting, but in this work the architecture was explicitly fixed except for the
hyperparameters to allow direct comparison with the baseline from [YQC+20b].

79

5. Conclusion

This thesis aims to evaluate the possibility of implementing a quantum Fourier transform
(QFT) in a speech processing (SP) pipeline, motivated by the potential speedup of this
algorithm compared to its classical counterpart, the fast Fourier transform (FFT). The
focus was on speech recognition (SR), as many of the basic insights gained in this topic
can also be applied to speech synthesis (SS) as well, but the latter would have required the
development of a completely new framework.
Since one of the biggest challenges of quantum computing today is hardware-induced

noise, mitigation approaches were developed to deal with this issue. These approaches
include the noise subtraction method described in section 3.1.3 where the spectrum of a
constant signal, obtained from the QFT, is used to address the low-frequency tendency
effect discussed in section 3.1.2 and to mitigate noise resulting from gate and measurement
errors on the quantum bits (qubits) themselves. Furthermore, an angular filter presented
in paragraph 3.1.3 was implemented to reduce the overall gate count of the QFT and
therefore remove their intrinsic noise from the quantum circuit.

The aforementioned approaches were first evaluated using a synthetic harmonic signal. To
obtain consistent and traceable measurement results, a test framework was developed which,
in addition to evaluation, also enables versioning and identification with the generating
source code. Spectra generated by the QFT were objectively measured by a grader against
the FFT as a reference. The evaluation of these grader results confirmed the hypothesized
improvement obtained from the noise subtraction method and angular filter approach.
Depending on the application constraints it is necessary to find a suitable limit for the
angular filter, otherwise the bandwidth of the QFT might be too narrow, which in turn
could degrade the resulting spectrogram.

Since speech processing is the main focus of this thesis and requires time-variant trans-
formation methods, the short time quantum Fourier transform (STQFT) was derived as a
quantum equivalent of the Short Time Fourier transform (STFT) and, similar to the QFT,
first evaluated on a synthetic chirp signal. It showed that noise from real devices leads to
artefacts in the spectrogram similar to those resulting from violating the Nyquist theorem
which, however, was fulfilled. Further investigation revealed that noisy rotation gates were
the cause of these artifacts and the noise subtraction approach was found to be able to
effectively mitigate them. Increasing the degree of the angular filter also led to an increase
in the artifacts, but only above a certain threshold value, which allowed an optimal value
for this methods to be derived.
After evaluating synthetic signals, a real speech sample was tested on this setting to

validate if the observed effects persisted. For this application, simulated quantum devices
with noise models had to be used, since the amount of qubits on publicly available noisy
intermediate scale quantum (NISQ) devices is not sufficient. It turned out that, compared
to the STFT, the spectrogram from the STQFT contained spectral components (artefacts)
in time periods where they should not exist. This effect, discussed in section 3.2, was
successfully removed by introducing a signal threshold which disables the QFT in time
periods during which the amplitude of the signal is lower than a fixed threshold which in
turn was subject of evaluation in subsequent experiments.

81

Finally, the STQFT was applied together with the noise and artifact suppression methods
to a voice command dataset. The spectrograms generated were fed into an existing
neural network and the performance on the training and validation data was logged and
evaluated. Since the accuracy results clearly indicated overfitting, it was found that
further modifications to the network might improve the generalization. Although these
modifications improved the generalization to a certain degree, slightly reducing the angular
filter and signal threshold finally led to a model which was found to be optimal given the
adjustable parameters. The resulting accuracy on the test dataset of 89.92 % motivates
further research within this area and although the baseline of 95.12 % is not surpassed,
the results obtained in this work suggest that an application of QFT in an SR framework
is conceivable, even in the presence of noise. Although the publicly restricted access to
quantum computers and the relatively long waiting queues currently forbid an application
in scenarios where a quick response time of such a system is required, according to the
findings of this thesis, an application even on NISQ devices is generally possible. All source
code used in this work is publicly available on Github [Str21a].
For the reason that any quantum circuit is unitary by definition and thus invertible,

findings of this thesis may also apply on the inverse quantum Fourier transform (IQFT)
necessary for the SS. However, as stated at the beginning of this section, SS requires
a different framework and the noise impact on the synthesized signal might be more
problematic for consumer applications than it is for speech recognition with a neural
network (NN). Therefore, these investigations should be subject of future work where
aforementioned framework is implemented and the applicability of the QFT in SS evaluated.
While the QFT was chosen because of its good algorithmic properties regarding its

complexity on quantum computers and its direct connection to the FFT used in SR, other
transformations such as the wigner ville distribution (WVD) or wavelet transform (WT)
are also conceivable. Classically, these transformations can address the time-frequency
resolution tradeoff but are due to their additional computational complexity not commonly
used in SP where an increased resolution is not required. Nonetheless, it might be worth
to investigate in applying these transformations on quantum systems as to the best of my
knowledge, there are no approaches in the literature yet.

In this work, in order to improve the results obtained from QFT, different approaches were
introduced and their parameters were manually optimized for application in SR. However,
training these parameters in an end-to-end architecture, where the NN is supposed to
find an optimal configuration for a given dataset, can be another topic of further research.
Finally, the encoding of classical information into quantum states is a bottleneck for
a potential speedup gained through the QFT and therefore point of consideration for
improvement.

Summarizing, quantum computing (QC) is a promising opportunity and although noisy
hardware and the relatively small number of qubits currently limit the practical employment
of SR or SS applications, a general confirmation of the applicability of the QFT is shown
within this thesis and therefore motivates further investigations in this area of research.

82

List of Figures

2.1. Convolution operation and parameters. 11

2.2. Vanilla recurrent neural network (RNN) schematic. 13

2.3. long short-term memory (LSTM) schematic. 14

2.4. General quantum algorithm structure. 15

2.5. Exemplary bloch sphere . 16

2.6. Quantum circuit with a Hadamard gate on the first and X on the second qubit. 19

2.7. Bloch spheres of the |0〉, |+〉 and |1〉 states. 20

2.8. Circuit representation of the CX. 21

2.9. Swap gate SWAP and its decomposition in circuit notation 21

2.10. Phase gate P in circuit notation. 22

2.11. Circuit containing a single Hadamard Gate H and a measurement operator. 22

2.12. Histogram of a H gate applied on a qubit in the |0〉 state. 23

2.13. Circuit containing a Hadamard (H) and a Controlled-Not Gate (CX) as well
as measurements on both qubits. 24

2.14. Histogram of a CX gate applied on a target qubit in the |+〉 state yielding a
Bell state. 24

2.15. Circuit consisting of d subsequent X gates. 26

2.16. Measurement of a circuit with ideal and noisy rotation gates. 27

2.17. State transition and probability mapping modelling a noisy rotation gate. . 28

2.18. Measurements of a circuit with gate errors, measurement errors and addi-
tional stochastic fluctuations. 29

2.19. Decomposition of a noisy gate by modeling as a case decision. 29

2.20. Shrunk applicable Bloch sphere . 31

2.21. Decay of measurable amplitudes of subsequent noisy gates. 32

2.22. Decomposition of Ik⊕Ωk into k controlled phase gates CP(φ). 37

2.23. Permutation matrix Pn written in circuit notation. 38

2.24. General QFT circuit. 38

2.25. quantum machine learning (QML) approaches. 39

2.26. “QML-AM” architecture from [YQC+20b]. 40

2.27. Self-attention U-Net architecture from [YQC+20a]. 40

2.28. Original quantum convolution neural network (QCNN) structure proposed
in [YQC+20b]. 41

83

2.29. Quantum convolutional (quantum convolutional (quanv)) layer from [YQC+20b]. 41

3.1. Full banded and bandlimited 16-QFT. 46

3.2. Approach to integrate the STQFT in an existing SR pipeline. 48

3.3. Pixel-Channel-Mapping Filter as replacement for the quanv layer. 49

4.1. Framework for validation of individual transformations. 52

4.2. Implementation of the QFT with an abstract representation of available
methods. 56

4.3. Harmonic signal and its spectrum with peaks at 125 and 250 Hz. 57

4.4. QFT generated spectra of a harmonic signal and varying parameter mr. . . 59

4.5. Grader results of the angular filter approach 60

4.6. Map view of “ibmq_quito”. 61

4.7. QFT on real device “ibmq_quito” with noise subtraction. 62

4.8. Grader results from noise mitigated QFT on the real device “ibmq_quito”. . 62

4.9. STQFTs of a synthetic chirp signal with noise mitigation. 64

4.10. Map view of “ibmq_casablanca”. 64

4.11. STQFT of a chirp signal in simulation with noise model from “ibmq_guadalupe”. 65

4.12. STQFTs of a chirp signal with varying rotation gate error er. 66

4.13. STQFTs of a chirp signal in simulation with noise model from “ibmq_casablanca”
and varying mr. 67

4.14. STQFTs of a chirp signal in simulation with noise model from “ibmq_casablanca”
and varying mr and noise mitigation. 68

4.15. STFT and STQFT of a speech signal. 69

4.16. STQFTs of a speech signal (“left”) with varying signal threshold filter. . . . 70

4.17. STQFTs of a speech signal with and without noise mitigation. 71

4.18. STQFT of a speech signal with varying mr parameter. 72

4.19. Loss & Accuracy plot over epochs for the initial experiment. 73

4.20. Loss & Accuracy plot over epochs after adapting NN hyperparameters. . . . 74

4.21. Loss & Accuracy plot over epochs after introducing the Pixel-Channel-Mapping. 75

4.22. Loss & Accuracy plot over epochs after adapting QFT parameters to mr = 0.1
and st = 0.02. 76

4.23. Loss & Accuracy plot over epochs after reducing stepsize of the ADAM
optimizer. 77

4.24. Loss & Accuracy plot over epochs after reducing signal threshold to st = 0.01 78

A.1. Map view of „ibmq_guadalupe“. 90

84

A.2. Loss & Accuracy plot over epochs with noise model from „ibmq_melbourne“. 92
A.3. Loss & Accuracy plot over epochs after setting mr = 0.2 and st = 0.02. . . . 92
A.4. Loss & Accuracy plot over epochs after further reducing the signal threshold

st = 0.001. 93

85

Symbols

ı Imaginary Unit
ψ Quantum State
φ Alternate Quantum State
Φ Gate Parametrization Angle
mr Minimum Rotation
er Rotation Error
st Signal Threshold
δ Dirac Impulse
rect Rectangular Function
sinc Sinc Function
t Time
f Frequency
x Signal (continous or discrete)
X Signal’s spectrum
H Hamilton Operator
H Hilbert Space
R Complex Numbers
C Complex Numbers
N Natural Numbers
Z Integer Numbers
H Hadamard Operator
X Pauli X Operator
Y Pauli Y Operator
Z Pauli Z Operator
I Identity Operator
CX Controlled-Not Operator
RX RX Gate
RY RY Gate
RZ RZ Gate
P Phase Gate (= RZ)
CP Controlled Phase Gate
SWAP SWAP Gate
O O-Notation
† Complex Conjugate Transpose
⊗ Tensorproduct
⊕ Direct sum
F Fourier Transform
FQFT Quantum Fourier Transform
M̃ Matrix consisting of entries exponents only
M ′ Matrix with permutated rows
M Matrix with exponential dimension 2n, n ∈ N

87

A. Additional Figures

Qubit Readout assignment error CX-error (control_target)

q0 4.000e−2 0_1 : 6.062e−3

q1 2.640e−2
1_3 : 1.557e−2
1_2 : 5.816e−3
1_0 : 6.062e−3

q2 2.020e−2 2_1 : 5.816e−3

q3 3.240e−2 3_4 : 1.590e−2
3_1 : 1.557e−2

q4 2.150e−2 4_3 : 1.590e−2

Table A.1: Absolute values of the readout assignment- and CX error from the 5-qubit quantum
device “ibmq_quito” from [Qua21]. The average readout assignment error is 2.998e−2
and the average CX-error is 1.027e−2. Calibration date: 30.10.2021

89

Qubit Readout assignment error CX-error (control_target)

q0 4.320e−2 0_1 : 1.484e−2

q1 2.220e−2
1_3 : 6.713e−3
1_2 : 9.569e−3
1_0 : 1.484e−2

q2 2.940e−2 2_1 : 9.569e−3

q3 1.980e−2 3_5 : 1.168e−2
3_1 : 6.713e−3

q4 3.070e−2 4_5 : 1.091e−2

q5 1.160e−2
5_6 : 9.475e−3
5_4 : 1.091e−2
5_3 : 1.168e−2

q6 2.360e−2 6_5 : 9.475e−3

Table A.2: Absolute values of the readout assignment- and CX error from the 7-qubit quantum
device “ibmq_casablanca” from [Qua21] from [Qua21]. The average readout assign-
ment error on “ibmq_casablanca” is 2.300e−2 and the average CX-error is 1.035e−2.
Calibration date: 30.10.2021

0 1 4

2

3 5 8 11 14

13

1210 157

6

9

Figure A.1: Map view of „ibmq_guadalupe“ with „IBM Quantum Falcon r4P processor“. Readout
assignment error indicated by the qubit’s line thickness (the thicker the smaller the
error) and CX-error indicated by the connections (the thicker the smaller the error)

90

Qubit Readout assignment error CX-error (control_target)

q0 1.140e−2 0_1 : 9.788e−3

q1 1.630e−2
1_0 : 9.788e−3
1_4 : 6.241e−3
1_2 : 2.266e−2

q2 1.860e−2 2_3 : 4.723e−2
2_1 : 2.266e−2

q3 1.254e−1 3_2 : 4.723e−2
3_5 : 7.773e−2

q4 1.840e−2 4_7 : 1.228e−2
4_1 : 6.241e−3

q5 1.640e−2 5_3 : 7.773e−2
5_8 : 7.222e−3

q6 1.026e−1 6_7 : 4.265e−2

q7 1.670e−2
7_4 : 1.228e−2
7_6 : 4.265e−2
7_10 : 6.175e−3

q8 2.520e−2
8_9 : 7.206e−3
8_11 : 7.140e−3
8_5 : 7.222e−3

q9 1.150e−2 9_8 : 7.206e−3

q10 1.230e−2 10_12 : 1.399e−2
10_7 : 6.175e−3

q11 6.110e−2 11_8 : 7.140e−3
11_14 : 6.742e−3

q12 1.410e−2
12_15 : 8.269e−3
12_10 : 1.399e−2
12_13 : 8.399e−3

q13 1.320e−2 13_14 : 8.324e−3
13_12 : 8.399e−3

q14 1.900e−2 14_13 : 8.324e−3
14_11 : 6.742e−3

q15 2.420e−2 15_12 : 8.269e−3

Table A.3: Absolute values of the readout assignment- and CX error from the 16-qubit quantum
device “ibmq_guadalupe” from [Qua21]. The average readout assignment error is
3.165e−2 and the average CX-error is 1.825e−2. Calibration date: 30.10.2021

91

0 5 10 15 20 25 30
Epochs

0.4

0.6

0.8

1.0

1.2

1.4
Lo

ss
 /

Ac
cu

ra
cy

Training / Validation History

train_loss
val_loss
train_acc
val_acc

Figure A.2: Loss & Accuracy plot over epochs with noise model from „ibmq_melbourne“. Vali-
dation accuracy: 0.825± 0.001

0 5 10 15 20 25 30 35 40
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

 /
Ac

cu
ra

cy

Training / Validation History

train_loss
val_loss
train_acc
val_acc

Figure A.3: Loss & Accuracy plot over epochs after setting mr = 0.2 and st = 0.02. Validation
accuracy: 0.902± 0.001

92

0 5 10 15 20 25 30 35 40
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

 /
Ac

cu
ra

cy

Training / Validation History

train_loss
val_loss
train_acc
val_acc

Figure A.4: Loss & Accuracy plot over epochs after further reducing the signal threshold st = 0.001.
Angular filter set to mr = 0.2. Validation accuracy: 0.914± 0.004

93

B. Abbreviations

API application program interface
SR speech recognition
SP speech processing
SS speech synthesis
QC quantum computing
qubit quantum bit
quanv quantum convolutional
QCNN quantum convolution neural network
NISQ noisy intermediate scale quantum
QML quantum machine learning
NN neural network
ML machine learning
LP learning problem
GD gradient descent
BGD batch gradient descent
SGD stochastic gradient descent
LSTM long short-term memory
RNN recurrent neural network
CNN convolutional neural network
FT Fourier transform
DFT discrete Fourier transform
FFT fast Fourier transform
STT short time transformation
STFT Short Time Fourier transform
WVD wigner ville distribution
WT wavelet transform
QFT quantum Fourier transform
IQFT inverse quantum Fourier transform
STQFT short time quantum Fourier transform
SCM source control management
CPU central processing unit
GPU graphic processing unit

95

Bibliography

[AAA+21] M. S. ANIS, H. Abraham, AduOffei, R. Agarwal, G. Agliardi, M. Aharoni,
I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, M. Amy et al., “Qiskit:
An open-source framework for quantum computing,” 2021.

[AAB+19] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell et al.,
“Quantum supremacy using a programmable superconducting processor,”
Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019. [Online]. Available:
https://doi.org/10.1038/s41586-019-1666-5

[ACB+20] A. Asfaw, A. Corcoles, L. Bello, Y. Ben-Haim, M. Bozzo-Rey,
S. Bravyi, N. Bronn, L. Capelluto, A. C. Vazquez, J. Ceroni et al.
(2020) Learn quantum computation using qiskit. [Online]. Available:
http://community.qiskit.org/textbook

[BEH+04] N. Boulant, J. Emerson, T. F. Havel, D. G. Cory, and S. Furuta,
“Incoherent noise and quantum information processing,” The Journal of
Chemical Physics, vol. 121, no. 7, p. 2955–2961, Aug 2004. [Online].
Available: http://dx.doi.org/10.1063/1.1773161

[Bis95] C. M. Bishop, “Training with Noise is Equivalent to Tikhonov
Regularization,” Neural Computation, vol. 7, no. 1, pp. 108–116, 01 1995.
[Online]. Available: https://doi.org/10.1162/neco.1995.7.1.108

[BIS+20] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed, J. M.
Arrazola, C. Blank, A. Delgado, S. Jahangiri et al., “Pennylane: Automatic
differentiation of hybrid quantum-classical computations,” 2020.

[Blo46] F. Bloch, “Nuclear induction,” Physical Review, vol. 70, no. 7-8, pp. 460–474,
oct 1946.

[CBY20] D. Camps, R. V. Beeumen, and C. Yang, “Quantum fourier transform
revisited,” Numerical Linear Algebra with Applications, vol. 28, no. 1, sep
2020.

[CT65] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of Computation, vol. 19, no. 90, pp.
297–297, may 1965.

[DV16] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” Mar. 2016.

[Fey82] R. P. Feynman, “Simulating physics with computers,” International Journal
of Theoretical Physics, vol. 21, no. 6-7, pp. 467–488, jun 1982. [Online].
Available: https://doi.org/10.1007/BF02650179

[FPL19] H. J. Fernando Puente León, Signale und Systeme. Muenchen:
Gruyter, Walter de GmbH, Sep. 2019. [Online]. Avail-
able: https://www.ebook.de/de/product/36259584/fernando_puente_
leon_holger_jaekel_signale_und_systeme.html

97

https://doi.org/10.1038/s41586-019-1666-5
http://community.qiskit.org/textbook
http://dx.doi.org/10.1063/1.1773161
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1007/BF02650179
https://www.ebook.de/de/product/36259584/fernando_puente_leon_holger_jaekel_signale_und_systeme.html
https://www.ebook.de/de/product/36259584/fernando_puente_leon_holger_jaekel_signale_und_systeme.html

[FTYA21] J. L. E. K. Fendji, D. M. Tala, B. O. Yenke, and M. Atemkeng, “Automatic
speech recognition using limited vocabulary: A survey,” CoRR, vol.
abs/2108.10254, 2021. [Online]. Available: https://arxiv.org/abs/2108.10254

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[GP21] S. Gupta and A. Panghal, “Performance analysis of fir filter design by using
rectangular, hanning and hamming windows methods,” 10 2021.

[HD10] X. Huang and L. Deng, An Overview of Modern Speech Recognition,
handbook of natural language processing, second edition, chapter
15 ed. Chapman & Hall/CRC, Jan. 2010, pp. 339–366. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
an-overview-of-modern-speech-recognition/

[Hid19] J. D. Hidary, Quantum Computing: An Applied Approach. Springer
International Publishing, 2019.

[HMvdW+20] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith et al., “Array
programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep.
2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

[HS97] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[Hun07] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[IH06] H. Imai and M. Hayashi, Quantum Computation and Information, H. Imai
and M. Hayashi, Eds. Springer Berlin Heidelberg, 2006.

[IS15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167,
2015. [Online]. Available: http://arxiv.org/abs/1502.03167

[JJS20] J. N. J. J. Sakurai, Modern Quantum Mechanics.
Cambridge University Pr., Oct. 2020. [Online]. Avail-
able: https://www.ebook.de/de/product/39228511/j_j_sakurai_jim_
napolitano_modern_quantum_mechanics.html

[JNN13] J. Johansson, P. Nation, and F. Nori, “QuTiP 2: A python framework for the
dynamics of open quantum systems,” Computer Physics Communications,
vol. 184, no. 4, pp. 1234–1240, Apr. 2013.

[KB17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[KK01] J. F. Kolen and S. C. Kremer, Gradient Flow in Recurrent Nets: The
Difficulty of Learning LongTerm Dependencies, 2001, pp. 237–243.

[Kro21] F. Kronthaler, Statistik angewandt mit Excel. Springer Berlin Heidelberg,
2021.

[LB20] F. Leymann and J. Barzen, “The bitter truth about gate-based

98

https://arxiv.org/abs/2108.10254
http://www.deeplearningbook.org
https://www.microsoft.com/en-us/research/publication/an-overview-of-modern-speech-recognition/
https://www.microsoft.com/en-us/research/publication/an-overview-of-modern-speech-recognition/
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/1502.03167
https://www.ebook.de/de/product/39228511/j_j_sakurai_jim_napolitano_modern_quantum_mechanics.html
https://www.ebook.de/de/product/39228511/j_j_sakurai_jim_napolitano_modern_quantum_mechanics.html

quantum algorithms in the NISQ era,” Quantum Science and
Technology, vol. 5, no. 4, p. 044007, Sep. 2020. [Online]. Available:
https://doi.org/10.1088/2058-9565/abae7d

[LMK+21] R. LaRose, A. Mari, S. Kaiser, P. J. Karalekas, A. A. Alves, P. Czarnik,
M. E. Mandouh, M. H. Gordon, Y. Hindy, A. Robertson et al., “Mitiq: A
software package for error mitigation on noisy quantum computers,” 2021.

[Min21] Z. K. Minev, “Introduction to quantum noise - qiskit summer school ’21,”
2021, qiskit Summer School ’21 - Introduction To Quantum Noise.

[Mit07] T. M. Mitchell, “The need for biases in learning generalizations,” 2007.
[MRL+15] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,

and O. Nieto, “librosa: Audio and music signal analysis in python,” in
Proceedings of the 14th python in science conference, vol. 8, 2015.

[Mü21] M. Müller, Fundamentals of Music Processing. Springer International
Publishing, 2021.

[NB13] Y. S. Nam and R. Blümel, “Scaling laws for shors algorithm with a banded
quantum fourier transform,” Physical Review A, vol. 87, no. 3, p. 032333,
mar 2013.

[PB11] M. Plesch and Č. Brukner, “Quantum-state preparation with universal gate
decompositions,” Physical Review A, vol. 83, no. 3, p. 032302, Mar. 2011.

[Pre18] J. Preskill, “Quantum computing in the NISQ era and beyond,” p. 79, Aug.
2018.

[Qua21] I. Quantum, “Ibm quantum,” 2021. [Online]. Available: https:
//quantum-computing.ibm.com/

[Rus15] S. Russell, Artificial intelligence : a modern approach. Pearson India
Education Services Pvt. Ltd, 2015.

[Sch19] W. Scherer, “Mathematics of quantum computing.” Springer International
Publishing, 2019.

[Sha87] D. Shaughnessy, Speech communication : human and machine. Reading,
Mass: Addison-Wesley Pub. Co, 1987.

[Sha98] C. E. Shannon, “Communication in the presence of noise,” Proceedings of
the IEEE, vol. 86, no. 2, pp. 447–457, Feb. 1998.

[SHK+14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” J.
Mach. Learn. Res., vol. 15, no. 1, p. 1929–1958, Jan. 2014.

[Sho97] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” vol. 26, no. 5, pp. 1484–1509, 1997.

[SKX+19] M. Schuld, N. Killoran, Xanadu, . R. S. W, Toronto, M. 2L, and Canada,
“Quantum machine learning in feature hilbert spaces,” Physical Review
Letters, vol. 122, no. 4, p. 040504, feb 2019.

[SP18] M. Schuld and F. Petruccione, Supervised Learning with Quantum
Computers. Springer International Publishing, 2018, no. summarising,.

99

https://doi.org/10.1088/2058-9565/abae7d
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/

[Sra12] S. Sra, Optimization for machine learning. Cambridge, Mass: MIT Press,
2012.

[Str21a] M. Strobl, “Hybrid Quantum Speech Processing - Main Repository,” 11
2021. [Online]. Available: https://github.com/stroblme/hqsp-main

[Str21b] ——, “Hybrid Quantum Speech Processing - QCNN Repository,” 11 2021.
[Online]. Available: https://github.com/stroblme/hqsp-qcnn

[Str21c] ——, “Hybrid Quantum Speech Processing - STQFT Repository,” 11 2021.
[Online]. Available: https://github.com/stroblme/hqsp-stqft

[Str21d] ——, “Hybrid Quantum Speech Processing - STQFT Repository,” 11 2021.
[Online]. Available: https://github.com/stroblme/hqsp-stqft-data

[SVN37] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurement
of the psychological magnitude pitch,” The Journal of the Acoustical Society
of America, vol. 8, no. 3, pp. 185–190, Jan. 1937.

[Tea17] G. B. Team, “Speech commands dataset,” Aug.
2017. [Online]. Available: https://ai.googleblog.com/2017/08/
launching-speech-commands-dataset.html

[VGO+20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al., “SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[VRD09] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

[Wai89] A. Waibel, “Modular construction of time-delay neural networks for speech
recognition,” Neural Computation, vol. 1, no. 1, pp. 39–46, mar 1989.

[Wil11] M. M. Wilde, “From classical to quantum shannontheory.” Cambridge
University Press, 2011, pp. xi–xii. [Online]. Available: https://arxiv.org/
pdf/1106.1445.pdf

[YQC+20a] C.-H. Yang, J. Qi, P.-Y. Chen, X. Ma, and C.-H. Lee, “Characterizing
speech adversarial examples using self-attention u-net enhancement,” in
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, May 2020.

[YQC+20b] C.-H. H. Yang, J. Qi, S. Y.-C. Chen, P.-Y. Chen, S. M. Siniscalchi,
X. Ma, and C.-H. Lee, “Decentralizing feature extraction with quantum
convolutional neural network for automatic speech recognition,” 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Oct. 2020. [Online]. Available: https://arxiv.org/abs/2010.13309

[Zam20] S. Zambare, “Quantum computing to find frequencies in an audio file,” Jul.
2020. [Online]. Available: https://sarangzambare.github.io/jekyll/update/
2020/06/13/quantum-frequencies.html

[Zic21] F. Zickert, Hands-On Quantum Machine Learning With Python : Volume
1: Get Started. City: PyQML, 2021.

100

https://github.com/stroblme/hqsp-main
https://github.com/stroblme/hqsp-qcnn
https://github.com/stroblme/hqsp-stqft
https://github.com/stroblme/hqsp-stqft-data
https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://arxiv.org/pdf/1106.1445.pdf
https://arxiv.org/pdf/1106.1445.pdf
https://arxiv.org/abs/2010.13309
https://sarangzambare.github.io/jekyll/update/2020/06/13/quantum-frequencies.html
https://sarangzambare.github.io/jekyll/update/2020/06/13/quantum-frequencies.html

	Introduction
	Foundations
	Speech Recognition
	Signal Processing
	Speech Recognition Neural Networks

	Quantum Computing
	Qubits and Qubit States
	Operations
	Measurement
	Entanglement
	Realization of Circuits
	Noise
	Encoding
	Quantum Fourier Transform
	Quantum Machine Learning

	Related Research

	Approach
	Quantum Fourier Transform for Signal Processing
	Encoding
	Transformation Accuracy
	Noise

	Short Time Quantum Fourier Transform
	Hybrid Quantum Speech Processing

	Validation
	Signal Generation and Data Acquisition
	Transformations
	Discrete Fourier Transform
	Fast Fourier Transform
	Quantum Fourier Transform

	Short Time Quantum Fourier Transform
	Noise Mitigation
	Angular Filter
	Speech Signals

	Connection to the Neural Network
	Discussion

	Conclusion
	List of Figures
	Symbols
	Additional Figures
	Abbreviations
	Bibliography

