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A SCATTERING PROBLEM FOR A LOCAL PERTURBATION OF AN
OPEN PERIODIC WAVEGUIDE

ANDREAS KIRSCH

Abstract. In this paper we consider the propagation of waves in an open waveguide in
R2 where the index of refraction is a local perturbation of a function which is periodic
along the axis of the waveguide (which we choose to be the x1−axis) and equal to
one for |x2| > h0 for some h0 > 0. Motivated by the limiting absorption principle
(proven in [17] for the case of an open waveguide in the half space R × (0,∞)) we
formulate a radiation condition which allows the existence of propagating modes and
prove uniqueness, existence, and stability of a solution under the assumption that no
bound states exist. In the second part we determine the order of decay of the radiating
part of the solution in the direction of the layer and in the direction orthogonal to it.
Finally, we show that it satisfies the classical Sommerfeld radiation condition and allows
the definition of a far field pattern.

1. Introduction

Let k > 0 be the wavenumber which is fixed throughout the paper and n ∈ L∞(R2) the
real valued index of refraction which is assumed to be 2π−periodic with respect to x1 and
equals to 1 for |x2| > h0 for some h0 > 0. Furthermore, let q ∈ L∞(R2) and f ∈ L2(R2)
have compact support in Q := (0, 2π)× (−h0, h0). It is the aim to solve

(1) ∆u+ k2(n+ q)u = −f in R2

subject to a suitable radiating condition stated below.

The solution of (1) is understood in the variational sense; that is,

(2)

∫
R2

[
∇u · ∇ψ − k2(n+ q)uψ

]
dx =

∫
Q

f ψ dx

for all ψ ∈ H1(R2) with compact support. By standard regularity theorems it is known
that for |x2| > h0 the solution u is a classical solution of the Helmholtz equation and thus
analytic.

As mentioned above, a further condition is needed to assure uniqueness (see Definition 2.5
below). In contrast to the closed waveguide; that is, where R2 is replaced by R× (a−, a+)
and where boundary conditions for x2 = a± are added, not only a radiation condition in
the direction of periodicity; that is, x1, is needed but also one in direction of x2. The
radiation condition should be in accordance with the limiting absorption principle; that
is, the solution u should be the limit (as ε > 0 tends to zero) of the solutions uε ∈ H1(R2)
corresponding to wave numbers k + iε instead of k.
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Candidates are the Sommerfeld radiation condition (see, e.g., [7] for bounded scatterers
in free space or [1] for periodic open waveguides) or the “upward propagating radiation
condition” which is popular for scattering problems by rough surfaces (see, e.g. [4]).
However, one of the basic differences between the scattering by bounded (penetrable or
impenetrable) obstacles in free space and (unbounded) layers is the existence of guided
(or propagating) modes in the latter case which don’t exist for the scattering by bounded
obstacles in free space. Therefore, Sommerfeld’s radiation condition is too restrictive
while the upward propagating radiation condition is not sufficient for uniqueness; that is,
not restrictive enough. The special case of layered media; that is, where n is constant
with respect to x1, is well studied in the literature, see, e.g. [21, 22, 8, 5, 6, 14] for differ-
ent types of radiation conditions based on spectral representations of the scattered field
(or the radiating part of the scattered field) with respect to the (point oder continuous)
spectrum of the transverse contribution of the Helmholtz operator. In any case, this leads
to a decomposition of the scattered field into a radiating part and a guided part. The
radiating part decays in all directions while the components of the guided part do not
decay with respect to x1. Since they decay exponentially with respect to x2 they are also
called surface waves.
In [17, 18, 15, 16] we introduced a new kind of radiation condition which has been derived
rigorously from the limiting absorption principle for unperturbed (i.e. q = 0) problems.
For closed waveguides this radiation condition is equivalent to the condition based on
the dispersion curves (see, e.g., [9] and also Remark 2.4 below). In Sections 3 and 5 we
investigate uniqueness, existence and continuous dependence on f of equation (1) com-
plemented by this radiation condition. This seems to be new for this kind of problems.
For the proof of uniqueness in Section 3 we were inspired by [10]. We had, however, to
modify his proof considerably because of the full-space waveguide instead of the half-space
waveguide considered in [10]. The Floquet-Bloch transform is a basic tool in the analysis
of periodic problems and replaces the role of the Fourier transform for layered media. It
transforms the problem in R2 into a class of quasi-periodic (with respect to x1) problems
in Q∞ := (0, 2π) × R. Section 4 is devoted to the analysis of quasi-periodic problems,
in particular smoothness with respect to the Floquet-parameter. The results obtained in
this section (Theorems 4.1, 4.2, and 4.3) are not surprising, and one can skip this section
if one is only interested in the main arguments.
In Section 6 we will investigate the asymptotic behavior of the radiating part of the solu-
tion in the direction of the waveguide and orthogonal to it. While for closed waveguides
the radiating part decays exponentially along the waveguide we will show that the radiat-
ing part for open waveguides behaves only as O(|x1|−3/2) in the direction of the waveguide
and as O(|x2|−1/2) orthogonal to it. We will show Sommerfeld’s radiation condition for
the radiating part and introduce its far field pattern. These results seem to be new as
well.

2. The Open Waveguide Radiation Condition And First Consequences

As mentioned above the field will have a decomposition into a propagating and a radiating
part. The loss of exponential decay of the radiating part is a consequence of the existence
of cut-off values while the propagative wave numbers determine the behavior of the guided
part along the waveguide. These quantities are defined as follows.
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Definition 2.1. α ∈ [−1/2, 1/2] is called a cut-off value if there exists ` ∈ Z such that
|α + `| = k.
α ∈ [−1/2, 1/2] is called a propagative wave number if there exists a non-trivial u ∈
H1
α,loc(R2) :=

{
u ∈ H1

loc(R2) : u(·, x2) is α−quasi-periodic
}

such that

(3a) ∆u+ k2nu = 0 in R2 ,

and u satisfies the Rayleigh expansion

(3b) u(x) =
∑
`∈Z

u±` e
i(`+α)x1 ei

√
k2−(`+α)2(±x2−h0) for ± x2 > h0

for some u±` ∈ C where the convergence is uniform for |x2| ≥ h0 + ε for every ε > 0.
Here, and in all of the paper, we choose the square root function to be holomorphic in the
cutted plane C \ (iR≤0). In particular,

√
t = i

√
|t| for t ∈ R<0. We recall that a function

u(·, x2) is α−quasi-periodic if u(x1 + 2π, x2) = e2παiu(x1, x2) for all x = (x1, x2) ∈ R2.
The functions u are called guided (or propagating or Floquet) modes.

Throughout this paper we make the following assumption.

Assumption 2.2. Let |` + α| 6= k for every propagative wave number α ∈ [−1/2, 1/2]
and every ` ∈ Z; that is, no cut-off value is a propagative wave number.

Under Assumption 2.2 it can be shown (see, e.g. [17]) that at most a finite number
of propagative wave numbers exists in the interval [−1/2, 1/2]. Furthermore, if α is a
propagative wave number with mode u then −α is a propagative wave number with mode
u. Therefore, we can number the propagative wave numbers in [−1/2, 1/2] such they
are given by {α̂j : j ∈ J} where J ⊂ Z is finite and symmetric with respect to 0 and
α̂−j = −α̂j for j ∈ J . Furthermore, it is known that (under Assumption 2.2) every
mode u is evanescent; that is, exponentially decaying as |x2| tends to infinity; that is,
satisfies |u(x)| ≤ c e−δ|x2| for |x2| ≥ h0 and some c, δ > 0 which are independent of x. The
corresponding space

(4) Xj :=
{
u ∈ H1

α̂j ,loc
(R2) : u satisfies (3a) and (3b) for α = α̂j

}
of modes is finite dimensional with some dimension mj > 0. We construct a special
orthonormal basis in Xj by considering the following finite dimensional self-adjoint eigen-
value problem in Xj.

Let j ∈ J be fixed. Determine λ`,j ∈ R, ` = 1, . . . ,mj, and non-trivial φ̂`,j ∈ Xj such that

(5a) −i
∫
Q∞

∂φ̂`,j
∂x1

ψ dx = λ`,j k

∫
Q∞

n φ̂`,j ψ dx for all ψ ∈ Xj ,

where Q∞ := (0, 2π)× R. Let the eigenfunctions be normalized such that

(5b) 2k

∫
Q∞

n(x) φ̂`,j(x) φ̂`′,j(x) dx = δ`,`′ , `, `′ = 1, . . . ,mj .

We note that φ̂`,j ∈ H2(Q∞) and even analytic for |x2| > h0. They decay exponentially
as |x2| tends to infinity. We make a further assumption.
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Assumption 2.3. Let α̂j be regular for all j ∈ J ; that is, let λ`,j 6= 0 for all ` = 1, . . . ,mj

and j ∈ J ; that is, for every j ∈ J there is no non-trivial φ ∈ Xj with
∫
Q∞

∂φ
∂x1

ψ dx = 0

for all ψ ∈ Xj.

Remark 2.4. This condition is equivalent to the requirement that the group velocity does
not vanish. Indeed, assume that for all α there exists eigenvalues µν(α) ∈ R and corre-
sponding eigenfunctions uν(α) ∈ H1

α(Q∞) that satisfy ∆uν(α)+µν(α)nuν(α) = 0 in Q∞.
Then α̂ is a propagative wave number if µν(α̂) = k2 for some ν. We transform uν to its
periodic form by setting ũν(x) := e−iαx1uν(x). Then ũν(α) is 2π−periodic with respect to
x1 and satisfies ∆ũν(α) + 2iα ∂ũν(α)/∂x1 + (µν(α)n − α2)ũν(α) = 0 in Q∞. Assuming
that ũν(α) is differentiable with respect to α we differentiate this equation and set α = α̂.
This yields

∆ũ′ν(α̂) + 2i α̂
∂ũ′ν(α̂)

∂x1

+ (k2 n− α̂2) ũ′ν(α̂) = −2i
∂ũν(α̂)

∂x1

+ [2α̂− µ′ν(α̂)n] ũν(α̂)

in Q∞. We multiply this equation by ũν(α̂), integrate over Q∞, and use Green’s second
theorem. This yields

2i

∫
Q∞

ũν(α̂)

[
∂ũν(α̂)

∂x1

+ iα̂ũν(α̂)

]
dx + µ′ν(α̂)

∫
Q∞

n |ũν(α̂)|2 dx = 0 .

Formulated with uν instead of ũν this reads as

2i

∫
Q∞

uν(α̂)
∂uν(α̂)

∂x1

dx + µ′ν(α̂)

∫
Q∞

n |uν(α̂)|2 dx = 0 .

Therefore, the condition of Assumption 2.3 (for mj = 1) is equivalent to µ′ν(α̂) 6= 0.

Now we are able to formulate the radiation condition. In all of the paper we make
Assumptions 2.2 and 2.3 without mentioning this always.

Definition 2.5. Let ψ+, ψ− ∈ C∞(R) be any functions with ψ±(x1) = 1 for ±x1 ≥ σ0

(for some σ0 > 2π + 1) and ψ±(x1) = 0 for ±x1 ≤ σ0 − 1.

A solution u ∈ H1
loc(R2) of (1); that is,

(6) ∆u+ k2(n+ q)u = −f in R2 ,

satisfies the open waveguide radiation condition if

(a) u has a decomposition into u = urad + uprop where the propagating part uprop has
the form

(7) uprop(x) =
∑
j∈J

[
ψ+(x1)

∑
`:λ`,j>0

a`,j φ̂`,j(x) + ψ−(x1)
∑

`:λ`,j<0

a`,j φ̂`,j(x)

]
for x ∈ R2 and some a`,j ∈ C, and where the radiating part urad ∈ H1(WH) for all
H > h0. Here, WH := R× (−H,H) ⊂ R2.

(b) The Fourier transform (Furad)(·, x2) of urad(·, x2) with respect to x1 satisfies the
generalized angular spectrum radiation condition

(8)

∞∫
−∞

∣∣∣∣(signx2)
∂(Furad)(ω, x2)

∂x2

− i
√
k2 − ω2 (Furad)(ω, x2)

∣∣∣∣2 dω −→ 0 , |x2| → ∞ .
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Here the Fourier transform is defined as

(Fφ)(ω) :=
1√
2π

∞∫
−∞

φ(s) e−isω ds , ω ∈ R ,

considered as an unitary operator from L2(R) onto itself.

This radiation condition has a natural extension to the scattering by an infinitely long
penetrable cylinder with periodic (with respect to the axis of the cylinder) refractive
index, see [15, 16]. In this case, the one-dimensional Fourier transform in the angular
spectrum radiation condition (8) has to be replaced by the cylindrical Fourier transform.

It has been shown in [17] for the case of a half plane problem that this open waveguide
radiation condition is a consequence of the limiting absorption principle. A second moti-
vation is the following result on the direction of the energy flow which will play a central
role in the proof of uniqueness.

Lemma 2.6. Let uprop be given by (7). With Ir := {r}×R and r+Q∞ := (r, r+ 2π)×R
for |r| ≥ σ0 we have

4π Im

∫
Ir

uprop
∂uprop
∂x1

ds = 2 Im

∫
r+Q∞

uprop
∂uprop
∂x1

dx =


∑
j∈J

∑
λ`,j>0

λ`,j |a`,j|2 , r > σ0 ,∑
j∈J

∑
λ`,j<0

λ`,j |a`,j|2 , r < −σ0 .

Proof: We only consider r > σ0. Then uprop(x) =
∑

j∈J
∑

λ`,j>0 a`,j φ̂`,j(x) for x1 > σ0.

First we fix j ∈ J and define u+
j (x) :=

∑
λ`,j>0 a`,j φ̂`,j. Since we fix j in the first part

we drop the index j and write u+ for u+
j . Furthermore, we define v(x) := (x1 − r)u+(x).

Then ∂v
∂x1

= u+ + (x1 − r) ∂u+

∂x1
and ∆v + k2nv = 2∂u

+

∂x1
. Therefore,

2

∫
Q∞

u+
∂u+

∂x1

dx = 2

∫
r+Q∞

u+
∂u+

∂x1

dx =

∫
r+Q∞

u+
(
∆v + k2nv

)
dx

=

∫
r+Q∞

v
(
∆u+ + k2nu+

)
dx +

∫
r+∂Q∞

(
u+

∂v

∂ν
− v ∂u

+

∂ν

)
ds

= −
∫
Ir

|u+|2ds+

∫
Ir+2π

[
u+

(
u+ + 2π

∂u+

∂x1

)
− 2πu+ ∂u+

∂x1

]
ds

= 2π

∫
Ir

(
u+

∂u+

∂x1

− u+ ∂u+

∂x1

)
ds = 4π i Im

∫
Ir

u+
∂u+

∂x1

ds

5



Furthermore, with L+
j := {` : λ`,j > 0},∫

Q∞

u+
∂u+

∂x1

dx =
∑

`,`′∈L+
j

a`,j a`′,j

∫
Q∞

φ̂`,j
∂φ̂`′,j
∂x1

dx

= ik
∑

`,`′∈L+
j

a`,j a`′,j λ`′,j

∫
Q∞

n φ̂`,j φ̂`′,j dx =
i

2

∑
`∈L+

j

λ`,j |a`,j|2

by the orthonormalization of φ̂`,j. Therefore, we have shown

4π Im

∫
Ir

u+
j

∂u+
j

∂x1

ds = 2 Im

∫
Q∞

u+
j

∂u+
j

∂x1

dx =
∑
`∈L+

j

λ`,j |a`,j|2

where we indicated the dependence on j. In the second part we take j, j′ ∈ J , apply
Green’s theorem in r +Q∞, and use the quasi-periodicities of u+

j and u+
j′ .

0 =

∫
r+∂Q∞

(
u+
j

∂u+
j′

∂ν
− u+

j′

∂u+
j

∂ν

)
ds

= −
∫
Ir

(
u+
j

∂u+
j′

∂x1

− u+
j′

∂u+
j

∂x1

)
ds +

∫
Ir+2π

(
u+
j

∂u+
j′

∂x1

− u+
j′

∂u+
j

∂x1

)
ds

=
(
ei(α̂j′−α̂j)2π − 1

) ∫
Ir

(
u+
j

∂u+
j′

∂x1

− u+
j′

∂u+
j

∂x1

)
ds .

Therefore, the last integral vanishes for j 6= j′. Thus we have

4πi Im

∫
Ir

uprop
∂uprop
∂x1

ds

= 2π

∫
Ir

[
uprop

∂uprop
∂x1

− uprop
∂uprop
∂x1

]
ds = 2π

∑
j∈J

∫
Ir

[
u+
j

∂u+
j

∂x1

− u+
j

∂u+
j

∂x1

]
ds

= 4πi
∑
j∈J

Im

∫
Ir

u+
j

∂u+
j

∂x1

ds = i
∑
j∈J

∑
`∈L+

j

λ`,j |a`,j|2 .

�

As the next step we prove a first result on the asymptotic behavior of urad which will be
needed in the proof of uniqueness.

Because qψ± vanishes identically by our choice of ψ± we observe that the radiating part
urad satisfies

(9a) ∆urad + k2(n+ q)urad = −f −
∑
j∈J

mj∑
`=1

a`,jϕ`,j in R2
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where

(9b) ϕ`,j(x) =

{
2ψ′+(x1)

∂φ̂`,j(x)

∂x1
+ ψ′′+(x1) φ̂`,j(x) if λ`,j > 0 ,

2ψ′−(x1)
∂φ̂`,j(x)

∂x1
+ ψ′′−(x1) φ̂`,j(x) if λ`,j < 0 .

We note that f has compact support in Q and ϕ`,j vanish for |x1| ≥ σ0, and are evanescent;
that is, there exist ĉ, δ > 0 with |ϕ`,j(x)| ≤ ĉ exp(−δ|x2|) for all x ∈ R2.

Using the result of Lemma 7.1 of the Appendix we are able to show the following asymp-
totic behavior1 for urad. We set

ϕ :=
∑
j∈J

mj∑
`=1

a`,jϕ`,j and φ := urad|Γ ∈ H1/2(Γ)

for abbreviation where Γ := Γh0 ∪ Γ−h0 with Γ±h0 := R × {±h0} and note that urad ∈
H1(WH) for all H > h0 satisfies

(10) ∆urad + k2urad = −ϕ for |x2| > h0 , urad = φ on Γ ,

and the generalized angular spectrum radiation condition (8).

Lemma 2.7. Let Assumptions 2.2 and 2.3 hold, and let u ∈ H1
loc(R2) be a solution of (6)

satisfying the radiation condition of Definition 2.5. Then the radiating part urad has the
form

(11) urad(x) =

σ0∫
−σ0

∞∫
h0

ϕ(y)G+(x, y) dy2 dy1 +
i

2

∫
Γh0

φ(y)
∂

∂y2

H
(1)
0 (k|x− y|) ds(y)

for x2 > h0 where the Green’s function G+(x, y) is defined as G+(x, y) := i
4

[
H

(1)
0 (k|x −

y|)−H(1)
0 (k|x−y∗|)

]
for x, y ∈ R2 with x2, y2 > h0 and x 6= y. Here, y∗ := (y1, 2h0−y2)>

is the reflected point at the line Γh0 := R×{h0}, and H
(1)
0 denotes the Hankel function of

the first kind and order zero. An analogous representation holds for x2 < −h0.

urad satisfies a stronger form of the radiation condition (8), namely,

(12)

∣∣∣∣(signx2)
∂(Furad)(ω, x2)

∂x2

− i
√
k2 − ω2 (Furad)(ω, x2)

∣∣∣∣ ≤ c

δ +
√
|ω2 − k2|

e−δ|x2|

for almost all ω ∈ R and |x2| > h0 where c > 0 is independent of ω and x.

Furthermore, there exists c > 0 with

(13)
∣∣urad(x)

∣∣ +
∣∣∇urad(x)

∣∣ ≤ c (1 + |x2|) ρ(x1)

for all x ∈ R2 with |x2| ≥ h0 + 1, where ρ ∈ L2(R) ∩ L∞(R) is given by

(14) ρ(x1) :=
∑

σ∈{+,−}

∫
R

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1 +
1

1 + |x1|3/2
, x1 ∈ R .

1We will sharpen this result in Section 6.
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Proof: First we note that ρ ∈ L2(R) because the first term can be expressed as the
convolution of the L2−function |urad(·,±h0)| and the L1−function y1 7→ (1 + |y1|)−3/2. It
is also bounded by the inequality of Cauchy-Schwarz.

We restrict ourselves to the upper half plane R2
h0

:= {x ∈ R2 : x2 > h0}. In Lemma 7.1
of the Appendix uniqueness of (10), (8) has been shown and that the volume potential
in (11) satisfies (10) for φ = 0 and the estimates (12) and (13). It remains to study the
line integral in (11) which we denote by v(x). (Again, we consider only the upper half
plane.) The function v(·, x2) is a convolution of the L2−function φ(·, h0) and the function

χ(y1) = i
2
∂
∂y2
H

(1)
0 (k

√
y2

1 + (x2 − y2)2)
∣∣
y2=h0

(for fixed x2 > h0). It is χ ∈ W 1,1(R) by the

asymptotic behavior of the Hankel functions (see [23]). Indeed, for all a > 0 there exists
c = c(a) > 0 with

(15)

∣∣∣∣ ∂∂y2

H
(1)
0 (k|x− y|)

∣∣∣∣ +

∣∣∣∣∇x
∂

∂y2

H
(1)
0 (k|x− y|)

∣∣∣∣ ≤ c
|x2|+ |y2|+ 1

|x− y|3/2

for all x, y ∈ R2 with |x − y| ≥ a. Taking the Fourier transform with respect to x1 we
get first (Fv)(·, x2) =

√
2π(Fφ)(Fχ) by our normalization of the Fourier transform and

thus, using (Fχ)(ω) = 1√
2π
ei
√
k2−ω2(x2−h0) (differentiate the formulas 3. and 4. in [11],

Section 6.677, with respect to z), (Fv)(ω, x2) = (Fφ)(ω, h0) ei
√
k2−ω2(x2−h0) for x2 > h0

which satisfies the radiation condition (12) trivially. Furthermore, from Parseval’s identity
we get

H∫
h0

∞∫
−∞

[∣∣v(x)
∣∣2 +

∣∣∇v(x)
∣∣2]dx1 dx2 =

H∫
h0

∞∫
−∞

(1 + ω2 + |k2 − ω2|)
∣∣(Fv)(ω, x2)

∣∣2dω dx2

=

H∫
h0

∞∫
−∞

(1 + ω2 + |k2 − ω2|)
∣∣(Fφ)(ω, h0)

∣∣2e−2 Im
√
k2−ω2(x2−h0)dω dx2

≤ 2(1 + k2)

H∫
h0

∫
|ω|<k

(1 + ω2)
∣∣(Fφ)(ω, h0)

∣∣2dω dx2

+ 2(1 + k2)

∫
|ω|>k

(1 + ω2)
∣∣(Fφ)(ω, h0)

∣∣2 H∫
h0

e−2
√
ω2−k2(x2−h0)dx2 dω

≤ cH

∞∫
−∞

√
1 + ω2

∣∣(Fφ)(ω, h0)
∣∣2dω = cH‖φ‖2

H1/2(Γh0 ) .

This shows that v ∈ H1(W+
H ) for all H > h0 where W+

H := R× (h0, H).

Finally, using (15), v(x) is estimated by

|v(x)| ≤ c (x2 + h0 + 1)

∞∫
−∞

|urad(y1, h0)|
[(x1 − y1)2 + 1]3/4

dy1

for x2 > h0 + 1 which proves the desired estimate (13). �
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3. Uniqueness

In this section we follow the proof of uniqueness given by T. Furuya in [10] for the half-
plane case. We have to modify his approach, however, because the free space Green’s

function; that is, the fundamental solution i
4
H

(1)
0 (k|x− y|), does not decay as fast as the

Green’s function G+(x, y) for the half-plane as |x1| tends to infinity. Therefore, we can’t
use his integral representations.

We begin with the following technical result.

Lemma 3.1. Let Assumptions 2.2 and 2.3 hold, and let u ∈ H1
loc(R) be a solution of (1)

satisfying the open waveguide radiation condition of Definition 2.5. Analogously to ρ(x1)
of (14) (see Lemma 2.7) we define

(16) ρN(x1) :=
∑

σ∈{+,−}

N∫
−N

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1 +
1

1 + |x1|3/2
, x1 ∈ R , N ∈ N .

Then there exists c > 0 and a sequence (Nm) in N converging to infinity such that∫
|x1|>Nm

ρNm(x1)2 dx1 ≤
c√
Nm

,

∫
|x1|<Nm

|ρ(x1)− ρNm(x1)|2 dx1 ≤
c√
Nm

,

and

∫
Nm<|x1|<Nm+1

ρ(x1)2 dx1 ≤
c√
Nm

for all m ∈ N.

Proof: We define the sets JN := (−N −
√
N,−N +

√
N) ∪ (N −

√
N,N +

√
N). As

in [2] we first note that for every m ∈ N there exists Nm ≥ m with ‖urad(·, h0)‖L2(JNm ) +

‖urad(·,−h0)‖L2(JNm ) ≤ 1

N
1/4
m

. Indeed, otherwise there exists m ∈ N such that

‖urad(·, h0)‖L2(JN ) + ‖urad(·,−h0)‖L2(JN ) ≥ 1
N1/4 for all N ≥ m. Since JN2 ∩ JM2 = ∅ for

N 6= M we would have

∑
σ∈{−1,+1}

∫
|x1|>m2−m

|urad(x1, σh0)|2 dx1 ≥
∑

σ∈{−1,+1}

∞∑
N=m

∫
JN2

|urad(x1, σh0)|2 dx1

≥
∞∑

N=m

1

N
= ∞ ,

a contradiction to urad(·,±h0) ∈ L2(R).
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We set N−m := Nm −
√
Nm for abbreviation and estimate for |x1| > Nm:

∫
|y1|<Nm

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

=

∫
|y1|<N−m

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1 +

∫
N−m<|y1|<Nm

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

≤ ‖urad‖L2(R)

√√√√ ∫
|y1|<N−m

dy1

(1 + |x1| − |y1|)3
+ ‖urad‖L2(JNm )

√√√√ ∫
N−m<|y1|<Nm

dy1

(1 + |x1| − |y1|)3

≤ c

1 + |x1| −N−m
+

1

N
1/4
m

c

1 + |x1| −Nm

and thus

∫
|x1|>Nm

ρNm(x1)2 dx1 ≤
8

(1 +Nm)2
+ c

∫
|x1|>Nm

dx1

(1 + |x1| −N−m)2

+
c√
Nm

∫
|x1|>Nm

dx1

(1 + |x1| −Nm)2

≤ 8

(1 +Nm)2
+

c

1 +
√
Nm

+
c√
Nm

.

Analogously, with N+
m := Nm +

√
Nm, we estimate for |x1| < Nm:

ρ(x1)− ρNm(x1) =

∫
|y1|>Nm

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

=

∫
|y1|>N+

m

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1 +

∫
Nm<|y1|<N+

m

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

≤ ‖urad‖L2(R)

√√√√ ∫
|y1|>N+

m

dy1

(1 + |y1| − |x1|)3
+ ‖urad‖L2(JNm )

√√√√ ∫
Nm<|y1|<N+

m

dy1

(1 + |y1| − |x1|)3

≤ c

1 +N+
m − |x1|

+
1

N
1/4
m

c

1 +Nm − |x1|
10



and thus
∫
|x1|<Nm |ρ(x1) − ρNm(x1)|2dx1 ≤ c/

√
Nm as before. Finally, for Nm < |x1| <

Nm + 1 we estimate

ρ(x1) =

∫
JNm

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

+

∫
|y1|<N−m

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1 +

∫
|y1|>N+

m

|urad(y1, σh0)|
(1 + |x1 − y1|)3/2

dy1

≤ c ‖urad‖L2(JNm ) + ‖urad‖L2(R)

√√√√ ∫
|y1|<N−m

dy1

(1 + |x1| − |y1|)3

+ ‖urad‖L2(R)

√√√√ ∫
|y1|>N+

m

dy1

(1 + |y1| − |x1|)3

≤ c

N
1/4
m

+
c

1 + |x1| −N−m
+

c

1 +N+
m − |x1|

≤ c′

N
1/4
m

.

Integration with respect to x1 yields the last assertion. �

After these preparations we turn to the proof of uniqueness. From the following theorem
f = 0 implies that already the propagating part uprop has to vanish.

Theorem 3.2. Let again f ∈ L2(R2) and q ∈ L∞(R2) have support in Q := (0, 2π) ×
(−h0, h0) and u ∈ H1

loc(R2) a solution of ∆u+ k2(n+ q)u = −f in R2 satisfying the open
waveguide radiation condition of Definition 2.5. Then

(17) Im

∫
Q

f u dx ≤ − 1

4π

∑
j∈J

∑
`:λ`,j>0

λ`,j |a`,j|2 +
1

4π

∑
j∈J

∑
:`:λ`,j<0

λ`,j |a`,j|2 ≤ 0 .

Proof: Choose ψN ∈ C∞(R) with ψN(x1) = 1 for |x1| ≤ N and ψN(x1) = 0 for |x1| ≥
N +1. For N > σ0 +1 and H > h0 +1 we define the regions DN,H := (−N,N)× (−H,H)
and W−

N,H := (−N−1,−N)×(−H,H) and W+
N,H := (N,N+1)×(−H,H) and the vertical

and horizontal segments I±N,H := {±N}× (−H,H) and ΓN,±H := (−N,N)×{±H}. We
apply Green’s theorem in DN+1,H to v(x) := ψN(x1)u(x) (note that Q ⊂ DN,H):∑

σ∈{+,−}

σ

∫
ΓN+1,σH

ψ2
N u

∂u

∂x2

ds

=
∑

σ∈{+,−}

σ

∫
ΓN+1,σH

v
∂v

∂x2

ds =

∫
DN+1,H

[∣∣∇v∣∣2 + v∆v
]
dx

=

∫
DN,H

[∣∣∇u∣∣2 + u∆u
]
dx +

∫
W+
N,H

[∣∣∇v∣∣2 + v∆v
]
dx +

∫
W−N,H

[∣∣∇v∣∣2 + v∆v
]
dx ;

11



that is, with ∆u = −k2(n+ q)u− f ,

Im

∫
Q

f u dx = Im

∫
W+
N,H

[∣∣∇v∣∣2 + v∆v
]
dx + Im

∫
W−N,H

[∣∣∇v∣∣2 + v∆v
]
dx(18)

−
∑

σ∈{+,−}

σ Im

∫
ΓN+1,σH

ψ2
N u

∂u

∂x2

ds .

We note that ∆v = −ψNk2(n+ q)u+2ψ′N
∂u
∂x1

+ψ′′N u and ∇v = ψN∇u+uψ′Ne
(1) in W±

N,H

where e(1) := (1, 0)>. The decomposition u = urad + uprop yields 4 terms in each of the
three integrals on the right hand side of (18).
(a) First, we look at the first two integrals on the right hand side of (18). We define
v(1) := ψNurad and v(2) := ψNuprop and estimate the terms

a±N,H(j, `) :=

∫
W±N,H

[
∇v(j) · ∇v(`) + v(j) ∆v(`)

]
dx

for j, ` ∈ {1, 2}. Then, with (13),

|a+
N,H(1, 1)| ≤ c ‖urad‖2

H1(W+
N,h0+1)

+ c ‖urad‖2
H1(W+

N,H\W
+
N,h0+1)

≤ c‖urad‖2
H1(W+

N,h0+1)
+ c

N+1∫
N

∫
h0+1<|x2|<H

x2
2 ρ(x1)2 dx2 dx1

≤ c γN,H with(19)

γN,H := ‖urad‖2
H1(QN ) + H3

∫
N<|x1|<N+1

ρ(x1)2 dx1(20)

and QN := W+
N,h0+1∪W

−
N,h0+1 = {x ∈ R2 : N < |x1| < N+1, |x2| < h0 +1}. Analogously,

since ‖uprop‖H1(W+
N,H) and ‖∇uprop‖H1(W+

N,H) are bounded with respect to N and H,

|a+
N,H(1, 2)|+|a+

N,H(2, 1)| ≤ c
[
‖urad‖2

H1(W+
N,h0+1)

+ ‖urad‖2
H1(W+

N,H\W
+
N,h0+1)

]1/2 ≤ c
√
γN,H .

For a+
N,H(2, 2) we apply Green’s theorem:

a+
N,H(2, 2) = −

∫
IN,H

uprop
∂uprop
∂x1

ds +
∑

σ∈{+,−}

σ

∫
N<x1<N+1
x2=σH

ψ2
N uprop

∂uprop
∂x2

ds

= −
∫
IN

uprop
∂uprop
∂x1

ds + β+
N,H

with IN := {N} × R and

|β+
N,H | ≤

∑
σ∈{+,−}

∣∣∣∣ ∫
N<x1<N+1
x2=σH

ψ2
N uprop

∂uprop
∂x2

ds

∣∣∣∣ +

∣∣∣∣ ∫
IN\IN,H

uprop
∂uprop
∂x1

ds

∣∣∣∣ ≤ c e−2δH .
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The same estimates hold for a−N,H(j, `); that is, the integrals over W−
N,H . Therefore, using

Lemma 2.6 we have shown that

Im

∫
W+
N,H

[∣∣∇v∣∣2 + v∆v
]
dx + Im

∫
W−N,H

[∣∣∇v∣∣2 + v∆v
]
dx(21)

≤ − Im

∫
IN

uprop
∂uprop
∂x1

ds + Im

∫
I−N

uprop
∂uprop
∂x1

ds + c e−2δH + c [γN,H +
√
γN,H ]

≤ − 1

4π

∑
j∈J

∑
λ`,j>0

λ`,j |a`,j|2 +
1

4π

∑
j∈J

∑
λ`,j<0

λ`,j |a`,j|2 + c e−2δH + c [γN,H +
√
γN,H ] .

(b) Now we look at the third integral on the right hand side of (18), and decompose again
u into u = urad + uprop. Using Cauchy-Schwarz and (13) we estimate for σ ∈ {−1, 1}∫

ΓN+1,σH

ψ2
N

∣∣∣∣urad ∂uprop∂x2

+ uprop
∂urad
∂x2

+ uprop
∂uprop
∂x2

∣∣∣∣ ds
≤ c ‖urad‖L2(ΓN+1,σH)

∥∥∂uprop
∂x2

∥∥
L2(ΓN+1,σH)

+ c ‖uprop‖L2(ΓN+1,σH)

∥∥∂urad
∂x2

∥∥
L2(ΓN+1,σH)

+c ‖uprop‖L2(ΓN+1,σH)

∥∥∂uprop
∂x2

∥∥
L2(ΓN+1,σH)

≤ c
[
H ‖ρ‖L2(R)

√
N +N

]
e−δH .

Finally, we consider
∫

ΓN+1,±H
ψ2
N urad

∂urad
∂x2

ds. We approximate urad by functions uN,Hrad

which satisfy the homogeneous Helmholtz equation for |x2| > H. To do this we restrict

ourselves to the region x2 > h0 and set uN,Hrad := u+
N + w+

H for x2 > h0 where u+
N is the

unique radiating solution of ∆u+
N + k2u+

N = 0 for x2 > h0 and u+
N(x1, h0) = urad(x1, h0)

for |x1| < N and u+
N(x1, h0) = 0 for |x1| > N , while the function w+

H is defined as the
unique radiating solution of

∆w+
H + k2w+

H =

{
−
∑

j∈J
∑mj

`=1 a`,j ϕ`,j for h0 < x2 < H ,
0 for x2 > H ,

and w+
H = 0 for x2 = h0. Then u+

N and w+
H are given by (compare with (11))

u+
N(x) =

i

2

N∫
−N

urad(y1, h0)
∂

∂y2

H
(1)
0 (k

√
(x1 − y1)2 + (x2 − h0)2) dy1 , x2 > h0 ,

w+
H(x) =

∑
j∈J

mj∑
`=1

a`,j

H∫
h0

σ0∫
−σ0

G+(x, y)ϕ`,j(y) dy1dy2 , x2 > h0 ,

and it is easy to show by modifying the proof of Lemma 2.7 that∣∣uN,Hrad (x)
∣∣ +

∣∣∇uN,Hrad (x)
∣∣ ≤ c x2 ρN(x1) ,∣∣urad(x)− uN,Hrad (x)

∣∣+
∣∣∇(urad(x)− uN,Hrad (x)

)∣∣ ≤ c x2 [ρ(x1)− ρN(x1)] +
c x2

|x|3/2
e−δH ,

for all x ∈ R2 with x2 ≥ h0 + 1, where ρ, ρN ∈ L2(R) ∩ L∞(R) are given by (14) and

(16), respectively. The functions uN,Hrad for x2 < −h0 are defined analogously. With
13



Γ∞,±H := R× {±H} we decompose∫
ΓN+1,±H

ψ2
N urad

∂urad
∂x2

ds

=

∫
Γ∞,±H

uN,Hrad

∂uN,Hrad

∂x2

ds +

∫
ΓN+1,±H

ψ2
N

[
urad

∂urad
∂x2

− uN,Hrad

∂uN,Hrad

∂x2

]
ds

−
∫

Γ∞,±H\ΓN+1,±H

uN,Hrad

∂uN,Hrad

∂x2

ds +

∫
ΓN+1,±H\ΓN,±H

(ψ2
N − 1)uN,Hrad

∂uN,Hrad

∂x2

ds

=

∫
Γ∞,±H

uN,Hrad

∂uN,Hrad

∂x2

ds + ηN,±H

where

|ηN,±H | ≤ c ‖urad − uN,Hrad ‖L2(ΓN+1,±H)

∥∥∥∥∂urad∂x2

∥∥∥∥
L2(ΓN+1,±H)

+ c ‖uN,Hrad ‖L2(ΓN+1,±H)

∥∥∥∥∥∂urad∂x2

− ∂uN,Hrad

∂x2

∥∥∥∥∥
L2(ΓN+1,±H)

+ c ‖uN,Hrad ‖L2(Γ∞,±H\ΓN,±H)

∥∥∥∥∥∂uN,Hrad

∂x2

∥∥∥∥∥
L2(Γ∞,±H\ΓN,±H)

≤ cH2 ‖ρ‖L2(R)

√√√√ ∫
|x1|<N

|ρ(x1)− ρN(x1)|2 dx1 + cH2

∫
|x1|>N

ρN(x1)2 dx1 .(22)

Now we show that the imaginary part of σ
∫

Γ∞,σH
uN,Hrad

∂uN,Hrad

∂x2
ds is non-negative. Indeed,

we take the Fourier transform ûN,H(ω, x2) = (FuN,Hrad )(ω, x2) for σx2 > H. Then

(23)

∫
Γ∞,σH

uN,Hrad

∂uN,Hrad

∂x2

ds =

∞∫
−∞

ûN,H(ω, σH) û′N,H(ω, σH) dω .

Furthermore, û′′N,H(ω, x2) + (k2 − ω2) ûN,H = 0 for |x2| > H and satisfies the radiation
condition (12). Therefore, ûN,H has the form

ûN,H(ω, x2) =

{
ûN,H(ω,H) ei

√
k2−ω2(x2−H) for x2 > H ,

ûN,H(ω,−H) ei
√
k2−ω2(−x2−H) for x2 < −H ,

and thus σûN,H(ω, σH) û′N,H(ω, σH) = i |ûN,H(ω, σH)|2
√
k2 − ω2, and its imaginary part

is therefore non-negative.

At this point we set N := Nm where (Nm) is the sequence from Lemma 3.1. Then
from (20) and (22) in combination with the estimates of Lemma 3.1 we conclude that

γNm,H ≤ c ‖urad‖2
H1(QNm ) + c H3

√
Nm

and |ηNm,±H | ≤ c H2

N
1/4
m

. We choose H = Hm such that
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the reminders converge to zero, for example, Hm := N
1/10
m . Then∑

σ∈{−1,+1}

σ lim sup
m→∞

[
Im

∫
ΓNm+1,σHm

ψNm urad
∂urad
∂x2

ds

]
≥ 0

and, from (21),

lim inf
m→∞

[
Im

∫
W+
Nm,Hm

[∣∣∇v∣∣2 + v∆v
]
dx + Im

∫
W−Nm,Hm

[∣∣∇v∣∣2 + v∆v
]
dx

]

≤ − 1

4π

∑
j∈J

∑
λ`,j>0

λ`,j |a`,j|2 +
1

4π

∑
j∈J

∑
λ`,j<0

λ`,j |a`,j|2 .

Estimate (17) follows now from (18). �

We are now able to prove (partial) uniqueness.

Theorem 3.3. Let Assumptions 2.2 and 2.3 hold, and let u ∈ H1
loc(R2) solve the problem

(1) for f = 0 and the open waveguide radiation condition of Definition 2.5. Then u is a
bound state; that is, u ∈ H1(R2). In other words, k2 is in the point spectrum of − 1

n+q
∆.

In the unperturbed case q = 0 there are no bound states; that is, u = 0 follows.

Proof: From (17) of the previous theorem we conclude that the coefficients a`,j vanish.
Therefore, u = urad ∈ H1(WH) for all H > h0 where again WH := R × (−H,H). We
now show that u = urad is a bound state under a smoothness assumption on its Fourier
transform. The latter property is shown in Corollary 4.5 below.
From Green’s theorem applied in WH we conclude (compare with (18)) that

Im
∑

σ∈{+,−}

σ

∞∫
−∞

u(x1, σH)
∂u(x1, σH)

∂x2

dx1 = Im

∫
WH

[∣∣∇u∣∣2 − k2(n+ q) |u|2
]
dx = 0 .

Transforming this equation to the Fourier space we observe just as in (23) that (Fu)(ω,±H)
vanishes for all |ω| < k. For |ω| > k we conclude again that

(24) (Fu)(ω, x2) = (Fu)(ω,±H) e−
√
ω2−k2(±x2−H) for ± x2 > H ,

and thus for |ω| > k:
∞∫
H

|(Fu)(ω, x2)|2 dx2 = |(Fu)(ω,H)|2
∞∫
H

e−2
√
ω2−k2(x2−H) dx2 =

|(Fu)(ω,H)|2

2
√
ω2 − k2

.

The integrand vanishes for |ω| < k. The analogous formula holds for the integral∫ −H
−∞ |(Fu)(ω, x2)|2 dx2. Now we use the fact that (Fu)(·,±H) is continuous in a neigh-

borhood of ω = ±k which we will prove in Corollary 4.5 below (set g := k2qu in this
corollary). Therefore, the integral is integrable with respect to ω ∈ R and, by Parseval’s
theorem, u ∈ H1(R2). This implies that u is a bound state.

In the case q = 0 we recall that u satisfies the differential equation ∆u + k2nu = 0 in
R2 and, because of (24), the generalized angular spectral radiation condition (8). The-
orem 4.1 below implies that almost all α ∈ (−1/2, 1/2) are propagative wave numbers
which contradicts the fact that there exist only finitely many of them. �
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Remark 3.4. In the case of general q we call this a partial uniqueness result in contrast
to the complete uniqueness result where in addition the absence of bound states has to be
shown. For general q such a complete uniqueness result is not known to the author. For
the unperturbed case q = 0, however, we have shown above the absence of bound states
under Assumptions 2.2. However, this assumption is not needed as proven in [12].

4. The Floquet-Bloch Transform And Quasi-Periodic Problems

In this section we collect properties of the Floquet-Bloch transform and quasi-periodic
scattering problems. These results are essential for proving existence of a solution and
the asymptotics of the radiating part urad. As a standard reference for the Floquet-Bloch
transform we recommend Kuchment’s monograph [19]. For φ ∈ C∞0 (R) the Floquet-Bloch
transform F is defined by

(Fφ)(x1, α) :=
∑
`∈Z

φ(x1 + 2π`) e−i2π`α , x1, α ∈ R .

Then (Fφ)(·, α) is α−quasi-periodic and (Fφ)(x1, ·) is periodic with period 1. Therefore,
we can restrict ourselves to x1 ∈ [0, 2π] and α ∈ [−1/2, 1/2]. Setting R := (0, 2π) ×
(−1/2, 1/2) for abbreviation, F has an extension to an unitary operator from L2(R) into
L2(R); that is,

(25)

∞∫
−∞

v(x1)ψ(x1) dx1 =

1/2∫
−1/2

2π∫
0

(Fv)(x1, α) (Fψ)(x1, α) dx1 dα , v, ψ ∈ L2(R) .

The inverse transform is given by

(26) φ(x1) =

1/2∫
−1/2

(Fφ)(x1, α) dα , x1 ∈ R ,

where (Fφ)(·, α) has to be extended α−quasi-periodically into R. We note the following
connection between the Fourier transform Fφ of φ ∈ L2(R) and the Fourier coefficients

φ̃`(α) of the α−quasi-periodic function (Fφ)(·, α):

(27) (Fφ)(`+ α) =
1√
2π

2π∫
0

(Fφ)(x1, α) e−i(`+α)x1 dx1 = φ̃`(α) , ` ∈ Z ,

which is easily seen by decomposing R in the definition of the Fourier transform into
R =

⋃
`∈Z
(
2π`, 2π(`+ 1)

)
.

With a slight abuse of notation we use the symbol of F also for functions u of two variables.
Therefore, let

(28) (Fu)(x1, x2, α) :=
∑
`∈Z

u(x1 + 2π`, x2) e−i2π`α

for x ∈ R2 and α ∈ R denote the Floquet-Bloch transform of u(·, x2) with respect to x1.
Then it is well known (see, e.g., [20]) that F maps Hs(WH) onto

L2
(
(−1/2, 1/2), Hs

qp(Q
H)
)

:=

{
v ∈ L2 :

v(·, α) ∈ Hs
α(QH) for almost all α and

α 7→ ‖v(·, α)‖Hs(QH) is in L2(−1/2, 1/2)

}
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for all s ∈ R. Here, WH := R × (−H,H) and QH := (0, 2π) × (−H,H) and Hs
α(QH)

denotes the subspace of Hs(QH) consisting of α−quasi-periodic functions. It can be
characterized by the decay of the Fourier coefficients; that is, ψ ∈ Hs

α(R2) if, and only

if
∫∞
−∞
∑

`∈Z(1 + `2 + ω2)s|ψ̂`(ω)|2dω <∞ where ψ̂`(ω) are the Fourier coefficients of the

Fourier transform ψ̂(x1, ω) with respect to x2 which is itself α−quasi-periodic with respect
to x1.

From (9a) we note that urad satisfies ∆urad+k2nurad = −g in R2 where g = f +k2qurad+∑
j∈J
∑mj

`=1 a`,jϕ`,j and thus ∆(Furad)(·, α) + k2n(Furad)(·, α) = −(Fg)(·, α) in Q∞ :=

(0, 2π)×R. The right hand side (Fg)(·, α) is not compactly supported with respect to x2.
Nevertheless, we can rewrite the problem as a variational equation in a bounded domain
by well known techniques using the Dirichlet-Neumann operator. This is done in the
following theorem where we write u for urad. In Theorem 4.2 we will prove existence and
in Theorem 4.3 smoothness of the solution with respect to the parameter α.

First, analogously to QH := (0, 2π)× (−H,H) define the regions QH
+ := (0, 2π)× (H,∞)

and QH
− := (0, 2π) × (−∞,−H), recall WH := R × (−H,H) and let ΓH := ((0, 2π) ×

{H}) ∪ ((0, 2π)× {−H}) denote the horizontal part of ∂QH .

Theorem 4.1. Let g ∈ L2(R2) with g(x) = 0 for |x1| > σ0 and |g(x)| ≤ ĉe−δ|x2| in R2 for
some σ0, ĉ, δ > 0.

(a) For every α ∈ [−1/2, 1/2] there exists a unique α−quasi-periodic solution w±α ∈
H1
α,loc(Q

H
± ) of ∆w±α + k2w±α = −(Fg)(·, α) in QH

± , w±α = 0 for x2 = ±H, which
satisfies the generalized Rayleigh condition∑
`∈Z

∣∣∣∣(signx2)
dw±α,`(x2)

dx2

− i
√
k2 − (`+ α)2w±α,`(x2)

∣∣∣∣2 −→ 0 , x2 → ±∞ ,

where w±α,`(x2) = 1√
2π

∫ 2π

0
w±α (x)e−i(`+α)x1dx1 are the Fourier coefficients of w±α (·, x2).

(b) Let u ∈ H1
loc(R2) with u ∈ H1(WH) for every H > h0 satisfy ∆u + k2nu = −g in

R2 and the generalized angular spectrum radiation condition (8). Then, for almost
all α ∈ (−1/2, 1/2), the transform ũα := (Fu)(·, α) ∈ H1

α,loc(Q
∞) satisfies

(29a) ∆ũα + k2nũα = −(Fg)(·, α) in Q∞

in the variational sense and the generalized Rayleigh condition; that is,

(29b)
∑
`∈Z

∣∣(signx2) ũ′α,`(x2)− i
√
k2 − (`+ α)2 ũα,`(x2)

∣∣2 −→ 0 , |x2| → ∞ .

(c) For fixed α ∈ [−1/2, 1/2] the problem (29a), (29b) is equivalent to the variational
equation

(30)

∫
QH

[∇ũα · ∇ψ − k2n ũα ψ] dx−
∫

ΓH

(Λαũα)ψ ds =

∫
QH

(Fg)(·, α)ψ dx+

∫
ΓH

∂wα
∂ν

ψ ds

for all ψ ∈ H1
α(QH) where Λα : H

1/2
α (ΓH) → H

−1/2
α (ΓH) is the α−quasi-periodic

Dirichlet-to-Neumann operator given by

(31) (Λαφ)(x1,±H) :=
i√
2π

∑
`∈Z

√
k2 − (`+ α)2 φ`(±H) ei(`+α)x1 , x1 ∈ (0, 2π) ,
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for φ ∈ H
1/2
α (ΓH), and where ∂wα/∂ν := ±∂w±α /∂x2 for x2 = ±H with the

solutions w±α from part (a).
(d) For fixed α ∈ [−1/2, 1/2] the variational equation (30) can be written as

(32) (I −Kα)ũα = rα in H1
α(QH)

where rα ∈ H1
α(QH) and Kα is a compact linear operator from H1

α(QH) into itself.
The operator I − Kα is invertible if, and only if, α is not a propagative wave
number.

Proof: (a) We show that w±α is given by w±α (x) =
∑

`∈Zw
±
α,`(x2) ei(`+α)x1 for x ∈ QH

±
where the Fourier coefficients are given by

w±α,`(x2) :=
i

2
√
k2 − (`+ α)2

∞∫
H

(Fg)`(±y2, α)

[
ei
√
k2−(`+α)2|x2∓y2|(33)

− ei
√
k2−(`+α)2(±(x2+y2)−2H)

]
dy2 , ±x2 > H , ` ∈ Z .

Indeed, to show the radiation condition for w+
α we split the integral from H to x2 and

from x2 to ∞ and compute

d

dx2

w+
α,`(x2)− i

√
k2 − (`+ α)2w+

α,`(x2) = −1

2

∞∫
x2

(Fg)`(y2, α) ei
√
k2−(`+α)2(y2−x2)dy2 .

For |`+ α| > k we use the Cauchy-Schwarz inequality and estimate∣∣∣∣ ddx2

w+
α,`(x2)− i

√
k2 − (`+ α)2w+

α,`(x2)

∣∣∣∣2
≤ 1

4

∞∫
x2

∣∣(Fg)`(y2, α)
∣∣2 dy2

∞∫
x2

e−2
√

(`+α)2−k2(y2−x2) dy2

=
1

8
√

(`+ α)2 − k2

∞∫
x2

∣∣(Fg)`(y2, α)
∣∣2 dy2

and thus

∑
|`+α|>k

∣∣∣∣ ddx2

w+
α,h,`(x2)− i

√
k2 − (`+ α)2w+

α,h,`(x2)

∣∣∣∣2

≤ c
∑
`∈Z

∞∫
x2

∣∣(Fg)`(y2, α)
∣∣2 dy2 = c

2π∫
0

∞∫
x2

∣∣(Fg)(y1, y2, α)
∣∣2 dy2 dy1 ,
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and this tends to zero as x2 tends to infinity. For |`+ α| ≤ k we estimate∣∣∣∣ ddx2

w+
α,`(x2)− i

√
k2 − (`+ α)2w+

α,`(x2)

∣∣∣∣
≤ 1

2

∞∫
x2

∣∣(Fg)`(y2, α)
∣∣ dy2 ≤

1

2
√

2π

∞∫
x2

2π∫
0

∣∣(Fg)(y1, y2, α)
∣∣ dy1 dy2

and this tends to zero as x2 tends to infinity because (Fg)(·, α) ∈ L1(QH
+ ). In the same

way it is shown that∑
`∈Z

[∣∣∣∣dw±α,`(x2)

dx2

∣∣∣∣+
√

1 + `2 |w±α,`(x2)|
]
≤ c

[
‖(Fg)(·, α)‖L2(QH± ) + ‖(Fg)(·, α)‖L1(QH± )

]
for ±x2 > H and thus w±α ∈ H1

α,loc(Q
H
± ) with

(34) ‖w±α ‖H1(QH±\QH
′
± ) ≤ cH,H′

[
‖(Fg)(·, α)‖L2(QH± ) + ‖(Fg)(·, α)‖L1(QH± )

]
for H ′ > H. We omit the proofs of uniqueness and the fact that w±α satisfies the differential
equation.

(b) The variational form of ∆u+ k2nu = −g is given by∫
R2

[∇u · ∇ψ − k2nuψ] dx =

∫
Q

g ψ dx

for all ψ ∈ H1(R2) which vanish for |x2| > H for some H > h0. From (25) and the fact
that F commutes with differentiation yields the equivalent form∫

Q∞

1/2∫
−1/2

[∇x(Fu)(x, α) · ∇xψ(x, α)− k2n(x) (Fu)(x, α)ψ(x, α)] dα dx

=

∫
Q

1/2∫
−1/2

(Fg)(x, α)ψ(x, α) dα dx

for all ψ ∈ L2
(
(−1/2, 1/2), H1

qp(Q
∞)
)

which vanish for |x2| > H for some H > h0. For any

ψ1 ∈ L2(−1/2, 1/2) and any ψ2 ∈ H1
per(Q

∞) :=
{
ψ ∈ H1(Q∞) : ψ(·, x2) is 2π−periodic

}
which vanishes for |x2| > H for some H > h0 we set ψ(x, α) := eiαx1ψ1(α)ψ2(x). Sub-
stituting this ψ ∈ L2

(
(−1/2, 1/2), H1

qp(Q
∞)
)

into the variational equation and the fact

that
∫ 1/2

−1/2
χ(α)ψ1(α)dα = 0 for all ψ1 ∈ L2(−1/2, 1/2) implies that χ vanishes almost

everywhere yields∫
Q∞

[∇x(Fu)(x, α) · ∇x(eiαx1ψ2(x))− k2n(x) (Fu)(x, α) (eiαx1ψ2(x))] dx

=

∫
Q

(Fg)(x, α) (eiαx1ψ2(x)) dx
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for almost all α and thus∫
Q∞

[∇x(Fu)(x, α) · ∇ψ(x)− k2n(x) (Fu)(x, α)ψ(x)] dx =

∫
Q

(Fg)(x, α)ψ(x) dx

for all ψ ∈ H1
α(Q∞) which vanish for |x2| > H for some H > h0. This is the variational

form of (29a). We leave it to the reader to show that the application of (27) to (8) implies
the generalized Rayleigh condition (29b).

(c) We define vα by vα := ũα in QH and vα := ũα + w±α in QH
± . Then vα solves (in a

variational form) ∆vα + k2vα = 0 in Q∞ \QH and ∆vα + k2nvα = −(Fg)(·, α) in QH and
vα|− = vα|+ on ΓH and ∂vα/∂ν|− = ∂vα/∂ν|+ − ∂wα/∂ν on ΓH . The reduction of this
problem to the variational equation (30) is standard and omitted.

(d) Using ∫
ΓH

(Λαũ)ψ ds = i
∑

σ∈{+,−}

∑
`∈Z

√
k2 − (`+ α)2 ũ`(σh0)ψ`(σh0)

we write (30) in the form∫
Q

[∇ũα · ∇ψ + ũα ψ] dx +
∑

σ∈{+,−}

∑
|`|≥k+1

|`| ũα,`(σh0)ψ`(σh0)

−
∫
Q

(k2n+ 1) ũα ψ] dx − i
∑

σ∈{+,−}

∑
|`|<k+1

√
k2 − (`+ α)2 ũα,`(σh0)ψ`(σh0)

−
∑

σ∈{+,−}

∑
|`|≥k+1

[
|`| −

√
(`+ α)2 − k2

]
ũα,`(σh0)ψ`(σh0)

=

∫
Q

(Fg)(·, α)ψ dx+

∫
ΓH

∂wα
∂ν

ψ ds for all ψ ∈ H1
α(Q) .

Since the two terms in the first line describe a coercive sesqui-linear form we can write these
two terms as (Aũα, ψ)H1(Q) for some isomorphism A from H1

α(Q) onto itself (Theorem of
Lax-Milgram). By the representation theorem of Riesz and the compact embedding of
H1(QH) in L2(QH) the remaining parts can be written as (Bαũα, ψ)H1(Q) for some compact

operator Bα. (Note that |`| −
√

(`+ α)2 − k2 is bounded!) Application of the theorem of
Riesz to the right hand side yields an equation of the type (A − Bα)ũα = Rα which has
the form (32) with Kα = A−1Bα and rα = A−1Rα. �

The following result answers the question of existence of solutions of quasi-periodic prob-
lems of the form (29a), (29b).

Theorem 4.2. Let Assumptions 2.2 and 2.3 hold and let gα ∈ L2(Q∞) such that there
exist ĉ, δ > 0 with |gα(x)| + |∂gα(x)/∂α| ≤ ĉe−δ|x2| for almost all x ∈ Q∞ and all α ∈
[−1/2, 1/2]. Furthermore, for any propagative wave number α̂j ∈ [−1/2, 1/2] let the
orthogonality condition

(35)

∫
Q∞

gα̂j(x) φ̂(x) dx = 0
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hold for all modes φ̂ ∈ Xj corresponding to the propagative wave number α̂j.

Then for every α ∈ [−1/2, 1/2] there exists a α−quasi-periodic solution vα ∈ H1
α,loc(Q

∞)
of the equation

(36) ∆vα + k2nvα = −gα in Q∞

satisfying the generalized Rayleigh radiation condition (29b)

Proof: From parts (c) and (d) of the previous theorem we know that (36) is equivalent
to the variational equation (30) (with gα replacing (Fg)(·, α)) and

(37) Lαvα = Rα in H1
α(QH) ,

where Rα ∈ H1
α(QH) and the linear and bounded operator Lα from H1

α(QH) into itself
are defined as(

Lαv, ψ
)
H1(QH)

=

∫
Q

[∇v · ∇ψ − k2n v ψ] dx −
∫

ΓH

(Λαv)ψ ds ,

(
Rα, ψ

)
H1(QH)

=

∫
Q

gα ψ dx +

∫
ΓH

∂wα
∂ν

ψ ds

for all v, ψ ∈ H1
α(QH). Then Lα is Fredholm with index zero and α is a propagative wave

number if, and only if, Lα fails to be invertible. For propagative wave numbers α this
form (37) allows the application of Fredholm’s theorem; that is, Lαvα = Rα is solvable if,
and only if Rα is orthogonal to the null space of the adjoint L∗α of Lα. This is indeed the
case for this particular form of the right hand side and follows directly from the following
properties of the operators Lα and the right hand side Rα. Let α = α̂ be a propagative
wave number.

(i) The null spaces N (Lα̂) and N (L∗α̂) of Lα̂ and L∗α̂, respectively, coincide and are
given by the restrictions to QH of the space of corresponding modes.

(ii) The Riesz number of Lα̂ is one; that is, the geometric and algebraic multiplicities
of the eigenvalue zero coincide.

(iii) For every mode φ̂ corresponding to α̂ we have(
Rα̂, φ̂

)
H1(QH)

=

∫
Q∞

gα̂(x) φ̂(x) dx

where gα̂ is again the right hand side of (36).

Proof of (i): L∗αφ = 0 is equivalent to (Lαψ, φ)H1(QH) = 0 for all ψ; that is,∫
QH

[∇ψ · ∇φ− k2nψ φ] dx −
∫

ΓH

(Λαψ)φ ds = 0 ; that is,

∫
QH

[∇ψ · ∇φ− k2nψ φ] dx − i
∑

σ∈{−1,+1}

∑
`∈Z

√
k2 − (`+ α)2 ψ`(σH)φ`(σH) = 0

for all ψ ∈ H1
α(QH). If α = α̂ this yields, by taking ψ = φ and the imaginary part, that

φ`(±H) = 0 for |`+ α̂| < k; that is, φ is evanescent and also Lαφ = 0.
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Proof of (ii): Let φ with L2
α̂φ = 0. Then w := Lα̂φ ∈ N (Lα̂) = N (L∗α̂) and thus

‖w‖2
H1(QH) =

(
w,Lα̂φ

)
H1(QH)

=
(
L∗α̂w, φ

)
H1(QH)

= 0; that is, w = 0.

Proof of (iii): We compute (note that wα̂ vanishes on ΓH):

(
Rα̂, φ̂

)
H1(QH)

=

∫
QH

gα̂ φ̂ dx +

∫
ΓH

[
∂wα̂
∂ν

φ̂− ∂φ̂

∂ν
wα̂

]
ds

=

∫
QH

gα̂ φ̂ dx −
∫

Q∞\QH

[
φ̂∆wα̂ − wα̂ ∆φ̂

]
dx

=

∫
QH

gα̂ φ̂ dx −
∫

Q∞\QH

φ̂
[
∆wα̂ + k2wα̂

]
dx =

∫
Q∞

gα̂ φ̂ dx .

This ends the proof of (i)–(iii) and, in particular, existence of a solution for every α ∈
[−1/2, 1/2] under the assumption (35). �

Smoothness with respect to α is shown in the following theorem.

Theorem 4.3. Let all of the assumptions of the previous theorem hold and, in addition,
let, for some open bounded neighborhood U ⊂ C of [−1/2, 1/2], the mapping α 7→ gα
be holomorphic from U into L2(Q), thus analytic (see [7]). Furthermore, let there exist
ĉ, δ > 0 with |gα(x)| + |∂gα(x)/∂α| ≤ ĉe−δ|x2| for almost all x ∈ Q∞ and all α ∈ U .
Furthermore, for any propagative wave number α̂j ∈ [−1/2, 1/2] let the orthogonality
condition (35) hold. Then we have:

(a) The solution vα of (36), (29b) (which exists by the previous theorem) can be chosen
such that the mapping α 7→ vα is continuous as a mapping from [−1/2, 1/2] into
H1(QH) for every H > h0. Again, QH := (0, 2π)× (−H,H).

(b) Let α̂ be no cut-off value. Then the mapping α 7→ vα has an extension to an
analytic mapping from a neighborhood W ⊂ C of α̂ to H1(QH) for every H > h0.

(c) In a neighborhood (α̂−δ, α̂+δ) ⊂ R of a cut-off value α̂ ∈ [−1/2, 1/2] the function
vα has the form

(38) vα = v(1)
α +

√
α̂− α v(2)

α +
√
α− α̂ v(3)

α + |α− α̂| v(4)
α

with analytic functions α 7→ v
(j)
α , j = 1, 2, 3, 4, from a neighborhood W ⊂ C of α̂

into H1(QH).

Proof: We transform the equation Lαvα = Rα into the 2π−periodic form and define the
operator Jα : H1

per(Q
H) → H1

α(QH) by (Jαv)(x) := eiαx1v(x) and set L̃α := J−1
α Lα Jα :

H1
per(Q

H) → H1
per(Q

H) and r̃α := J−1
α Rα ∈ H1

per(Q
H) where H1

per(Q
H) denotes again

the space of periodic (with respect to x1) functions. Then Lαvα = Rα is equivalent to
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L̃αṽα = r̃α where L̃α and r̃α are given by the forms

(
L̃αv, ψ

)
H1(QH)

=

∫
QH

[
∇v · ∇ψ − 2iα

∂v

∂x1

ψ − (k2n− α2) v ψ
]
dx

− i
∑

σ∈{−1,+1}

∑
`∈Z

√
k2 − (`+ α)2 v`(σH)ψ`(σH) ,(39a)

(
r̃α, ψ

)
H1(QH)

=

∫
QH

e−iαx1gα(x)ψ(x) dx +

∫
ΓH

e−iαx1
∂wα(x)

∂ν
ψ(x) ds

=

∫
QH

e−iαx1gα(x)ψ(x) dx(39b)

+
∑

σ∈{−1,+1}

∑
`∈Z

∞∫
H

gα,`(σy2) ei
√
k2−(`+α)2(y2−H)dy2 ψ`(σH)

for v, ψ ∈ H1
per(Q

H) where we used the form (33) of the Fourier coefficients of wα. Then

L̃α and r̃α depend continuously on real α ∈ [−1/2, 1/2] and, for any α̂ ∈ [−1/2, 1/2]
which is not a cut-off value, analytically on α in some neighborhood W1 ⊂ U of α̂. We
prove only the latter property. First we note that the integral terms in the definitions of
L̃α and r̃α are analytic with respect to α. Furthermore, there exist c+ > c− > 0 and a
neighborhood V ⊂ U of [−1/2, 1/2] with

(40) c+|`| ≥ |
√
k2 − (`+ α)2| ≥ Im

√
k2 − (`+ α)2 ≥ c−|`|

for all α ∈ V and |`| ≥ k + 1 and thus
∣∣ d
dα

√
k2 − (`+ α)2

∣∣ = |`+α|
|
√
k2−(`+α)2|

≤ c for all

α ∈ V and |`| ≥ k + 1. From this we observe that the operator Ã+
α corresponding to

the series
∑
|`|≥k+1

√
k2 − (`+ α)2 v`(σH)ψ`(σH) is analytic as a mapping from V into

L(H1
per(Q

H)). The remaining part corresponding to the finite sum∑
|`|<k+1

√
k2 − (`+ α)2 v`(σH)ψ`(σH) is obviously continuous for α ∈ V ∩ [−1/2, 1/2].

If α̂ is not a cut-off value then k2 − (`+ α)2 /∈ iR≤0 for α in some neighborhood W2 ⊂ V

of α̂ and thus the remaining parts – and thus also L̃α – depend analytically on α in W2.
Next, we look at the right hand side r̃α and use similar arguments. With the product rule

applied to ∂
∂α

[
gα,`(σy2) ei

√
k2−(`+α)2(y2−H)

]
we have to estimate the series

∑
`∈Z

∞∫
H

[
|φα,`(y2)|

∣∣ei√k2−(`+α)2(y2−H)
∣∣ dy2 |ψ`(σH)|

for φα,`(y2) := gα,`(σy2), φα,`(y2) := gα,`(σy2) (y2−H) i d
dα

√
k2 − (`+ α)2, and φα,`(y2) :=

∂
∂α
gα,`(σy2). We restrict ourselves to φα,`(y2) := gα,`(σy2) (y2 − H) i d

dα

√
k2 − (`+ α)2.
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Using the estimate
∣∣ d
dα

√
k2 − (`+ α)2

∣∣ ≤ c for |`| ≥ k + 1 it remains to estimate[ ∑
|`|≥k+1

∞∫
H

[
(y2 −H)|gα,`(σy2)|

∣∣ei√k2−(`+α)2(y2−H)
∣∣ dy2 |ψ`(σH)|

]2

≤
∑
|`|≥k+1

∣∣∣∣
∞∫
H

(y2 −H)|gα,`(σy2)|
∣∣ei√k2−(`+α)2(y2−H)

∣∣ dy2

∣∣∣∣2 ∑
|`|≥k+1

|ψ`(σH)|2

≤
∑
|`|≥k+1

∞∫
H

|gα,`(σy2)|2 dy2

∞∫
H

(y2 −H)2 e−2c−|`|(y2−H)dy2

∑
|`|≥k+1

|ψ`(σH)|2

≤ c ‖ψ‖2
H1(QH)

∑
|`|≥k+1

∞∫
H

|gα,`(σy2)|2 dy2 ≤ c ‖ψ‖2
H1(QH)

∫
QHσ

|gα(y)|2dy

where again QH
+ := (0, 2π)× (H,∞) and QH

− := (0, 2π)× (−∞,−H). For the finite series

over |`| < k + 1 we use that |gα,`(σy2)| ≤ ĉe−δy2 and |ei
√
k2−(`+α)2(y2−H)| ≤ 1 for real

values of α which shows continuity of α 7→ r̃α. In the case that α̂ is not a cut-off value
we use for complex values α that there exists a neighborhood W3 ⊂ W2 of α̂ such that
Im
√
k2 − (`+ α)2 ≥ − δ

2
for all |`| ≤ k + 1 and all α ∈ W . Then

∞∫
H

(y2 −H)|gα,`(σy2)|
∣∣ei√k2−(`+α)2(y2−H)

∣∣ dy2 ≤ c

∞∫
H

(y2 −H)e−δ(y2+H)/2 dy2 .

This shows the desired smoothness properties of Ãα and r̃α.

Standard arguments on the perturbation of an invertible operator imply the continuous
dependence of the solution ṽα of L̃αṽα = r̃α on α in a neighborhood of α̂ provided α̂ is not
a propagative wave number and analytic dependence provided α̂ is neither a propagative
wave number nor a cut-off value. It remains to study the case where α̂ is a propagative
wave number. Note that in this case α̂ is not a cut-off value by assumption. Therefore,
Ãα and r̃α depend analytically on α in a neighborhood of α̂. In this case L̃α̂ fails to be
invertible but (by the analytic Fredholm theory, see [7]) L̃α is invertible in a neighborhood
of α̂.
Let P be the projection from H1

per(Q
H) into the null space N := N (L̃α̂) along the direct

decomposition H1
per(Q

H) = N ⊕ R with range space R := R(L̃α̂) (note that the Riesz

number of L̃α̂ is one) and set Q := I − P . Then we project the equation L̃αṽα = r̃α
onto the subspaces. With the ansatz ṽα = vNα + vRα ∈ N +R we arrive at the equivalent
equations

PL̃α(vNα + vRα ) = P r̃α , QL̃α(vNα + vRα ) = Qr̃α .

Since QL̃α̂|R = L̃α̂|R is an isomorphism fromR onto itself the operators Bα :=
[
QL̃α|R

]−1

exist for all α in a neighborhood W ⊂ W3 of α̂ by a perturbation argument. Solving for
vRα from the second equation and substituting this into the first equation yields

PL̃α(I −BαQL̃α)vNα = P r̃α − PL̃αBαQr̃α in N
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which we write as Cαv
N
α = sα. We note that Cα̂ = 0 and also sα̂ = 0. Therefore,

Cαv
N
α = sα is equivalent to 1

α−α̂ [Cα−Cα̂]vNα = 1
α−α̂ [sα− sα̂]. Also, Cα and sα are analytic

in the neighborhood W of α̂ with derivatives C ′α and s′α, respectively. We will show below
that C ′α̂ is invertible in the finite dimensional space N . Then elementary arguments yield
that α 7→ vNα has an extension to an analytic function in all of W and vNα̂ is the unique
solution of C ′α̂v

N
α̂ = s′α̂. This implies that also ṽα depends analytically on α.

It remains to show that C ′α̂ is one-to-one. By the chain rule (note that PL̃α̂ = L̃α̂P = 0)

we compute C ′α̂v = PL̃′α̂v for v ∈ N . Therefore, C ′α̂v = 0 is equivalent to

(41)

∫
QH

[
−2i

∂v

∂x1

ψ + 2α̂ v ψ
]
dx +

∑
σ∈{−1,+1}

∑
|`+α|>k

`+ α√
(`+ α)2 − k2

v`(σH)ψ`(σH) = 0

for all ψ ∈ N . We extend v by

v(x) :=
1√
2π

∑
|`+α|>k

v`(±H) e−
√

(`+α)2−k2(|x2|−H)ei`x1 , ±x2 > H ,

and analogously ψ. Then we observe that the second term on the left hand side of (41)
is just

∫
Q∞\QH

[
−2i ∂v

∂x1
ψ + 2α̂ v ψ

]
dx. Therefore, C ′α̂v = 0 is equivalent to

∫
Q∞

[
−2i

∂v

∂x1

ψ + 2α̂ v ψ
]
dx = 0

for all modes ψ corresponding to α̂. In terms of the quasi-periodic modes φ := Jα̂v and
ψ̂ := Jα̂ψ this is written as ∫

Q∞

∂φ

∂x1

ψ̂ dx = 0

for all modes ψ̂. Therefore, φ vanishes because α̂ is regular. This ends the proof of
parts (a) and (b).

(c) We go back to the periodic equation L̃αṽα = r̃α where L̃α and r̃α are given by (39a),

(39b), respectively. The decomposition k = ˆ̀+ κ with ˆ̀∈ N ∪ {0} and κ ∈ (−1/2, 1/2]
shows that the propagative wave numbers in [−1/2, 1/2] are given by α̂ = κ or α̂ = −κ.
We consider first the case α̂ = κ and assume first that κ < 1/2.

We look again at the second term in the definition (39a) of L̃α which contains the square

roots
√
k2 − (`+ α)2. We split the series into the series over ` 6= ˆ̀ and the term with

` = ˆ̀. This term defines the two-dimensional operator E(α) from H1
per(Q

H) into itself by(
E(α)φ, ψ

)
H1(QH)

:= i

√
k + ˆ̀+ α

[
φˆ̀(H)ψˆ̀(H) + φˆ̀(−H)ψˆ̀(−H)

]
, φ, ψ ∈ H1

per(Q
H) ,

and the operator L̃α has a decomposition in the form

L̃α = B(α) −
√
κ− αE(α)

where E and B depend analytically on α in a neighborhood of α = κ.
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Now we look at the right hand r̃α, given by (39b). We split the series again as above and

decompose ei
√
k2−(ˆ̀+α)2(y2−H) into

ei
√
k2−(ˆ̀+α)2(y2−H) = cos

[√
k2 − (ˆ̀+ α)2(y2 −H)

]
+ i
√
κ− α

√
k + ˆ̀+ α

sin
[√

k2 − (ˆ̀+ α)2(y2 −H)
]√

k2 − (ˆ̀+ α)2

= a1(y2, α) +
√
κ− α a2(y2, α)

with analytic functions a1, a2 in a neighborhood of α = κ which satisfy

|aj(y2, α)| ≤ c e− Im
√
k2−(ˆ̀+α)2(y2−H) ≤ c eδ(y2−H)/2

for j = 1, 2 and y2 > H and α in a neighborhood W1 ⊂ U of κ. From this we observe

that
∫∞
H
|gα,`(σy2)| |aj(y2, α)| dy2 exist and r̃α = r̃

(1)
α +

√
κ− α r̃(2)

α where r̃
(j)
α is analytic

with respect to α ∈ W1 for j = 1, 2.

Therefore, L̃αṽα = r̃α is equivalent to

(42) [B(α)−
√
κ− αE(α)] ṽα = r̃(1)

α +
√
κ− α r̃(2)

α .

Since the cut-off value α̂ = κ is not a propagative wave number by Assumption 2.2 we
conclude that L̃κ = B(κ) is invertible and thus also B(α) in a neighborhood W ⊂ W1 of
κ. Since the operator on the left hand side of (42) is a small perturbation of B(κ) = L̃κ
the solution is given by the Neumann series as

ṽα =
∞∑
m=0

[
√
κ− αB(α)−1E(α)]mB(α)−1[r̃(1)

α +
√
κ− α r̃(2)

α ] .

Therefore, sorting this series with respect to even and odd powers of
√
κ− α =

√
α̂− α,

we conclude the form ṽα = ṽ
(1)
α +

√
α̂− α ṽ(2)

α and ṽ
(j)
α depend analytically on α in a

neighborhood of α = κ = α̂.

The case α̂ = −κ > −1/2 is treated in the same way and leads to the singularity
√
κ+ α =√

α− α̂ in a neighborhood of α̂ = −κ.

The cases κ = 0 or κ = 1/2 are more complicated. For example, if κ = 0 then k = ˆ̀∈ N
and one has to split the series in L̃α into the series over ` /∈ {+ˆ̀,−ˆ̀} and into the terms

with ±ˆ̀. This leads to the splittings

L̃α = B(α)−
√
−αE+(α)−

√
αE−(α) , r̃α = r̃(1)

α +
√
−α r̃(2)

α +
√
α r̃(3)

α .

In the Neumann series also powers of
√
α
√
−α = i|α| appear which gives the forth term

in (38). The case κ = 1/2 and α̂ = ±1/2 is treated analogously. �

By the proof we observe that all of the four terms in (38) appear only in the cases κ = 0
or κ = 1/2; that is, if k ∈ 1

2
N.
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Remark 4.4. During the proof we have shown the existence of δH , cH , c
′
H > 0 (indepen-

dent of gα) such that

‖vα‖H1(QH) ≤ cH
[
sup
β∈I
‖r̃β‖H1(QH) + sup

β∈I
‖∂r̃β/∂β‖H1(QH)

]
≤ c′H

[
sup
β∈I
‖gβ‖L(1,2)(Q∞) + sup

β∈I
‖∂gβ/∂β‖L(1,2)(Q∞)

]
(43a)

for all α ∈ I :=
⋃
j∈J [α̂j − δH , α̂j + δH ] ⊂ R and

(43b) ‖vα‖H1(QH) ≤ cH‖r̃α‖H1(QH) ≤ c′H‖gα‖L(1,2)(Q∞)

for all α ∈ [−1/2, 1/2] \ I where r̃α is defined in (39b). For the second estimates we use
(39b) and (34). Here, ‖g‖L(1,2)(Q∞) = ‖g‖L1(Q∞) + ‖g‖L2(Q∞).

For the proof of Theorem 3.3 we needed the following implication of Theorem 4.3.

Corollary 4.5. Let Assumptions 2.2 and 2.3 hold and let u ∈ H1
loc(R2) with u ∈ H1(WH)

for all H > h0 satisfy ∆u + k2nu = −g in R2 where g ∈ L2(Q). Then the Fourier
transform (Fu)(·, x2) of u(·, x2) with respect to x1 is continuous in a neighborhood of
ω = ±k for all |x2| > h0 and, even more, (Fu)(·, x2) ∈ W 1,1(−R,R) for all R > 0.

Proof: We decompose k again as k = ˆ̀+ κ with ˆ̀∈ N ∪ {0} and κ ∈ (−1/2, 1/2]. Then
±κ are the cut-off values and, by (27),

(Fu)(±k, x2) = (Fu)(±(ˆ̀+ κ), x2) =
1√
2π

2π∫
0

(Fu)(x1, x2,±κ) e∓i(
ˆ̀+κ)x1 dx1

where Fu denotes the Floquet-Bloch transform, defined in (28). Therefore, it suffices
to prove continuity of α 7→ (Fu)(·, α) in a neighborhood of ±κ. By Theorem 4.1 Fu
satisfies (36) with gα = (Fg)(·, α). Furthermore, ±κ are no propagative wave numbers by
Assumption 2.2. Application of Theorem 4.3 yields the desired continuity. Differentiation
of the decomposition (38) yields that ∂(Fu)(·, α)/∂α is integrable. �

5. Existence

In this section we will prove existence of a solution under the Assumptions 2.2, 2.3, and,
in the case that q does not vanish identically, under the additional assumption that no
bound states exist. The main part deals with the unperturbed case q = 0 in which
complete uniqueness has been shown in Theorem 3.3. The general case will follow by a
compactness argument. Therefore, for given f ∈ L2(Q) we consider first the problem to
determine u ∈ H1

loc(R2) which satisfies

(44) ∆u+ k2nu = −f in R2

and the open waveguide radiation condition of Definition 2.5. We note that existence has
been shown (for the half-plane problem or the case of scattering by an inhomogeneous
cylinder in R3) in [17, 15] by the limiting absorption principle. In this section we will
give a direct proof, see also [16]. With the propagative wave numbers α̂j for j ∈ J and

their modes φ̂`,j, ` = 1, . . . ,mj, j ∈ J , determined in (5a), (5b), we define the coefficients
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a`,j ∈ C as

(45) a`,j :=
2π i

|λ`,j|

∫
Q

f(x) φ̂`,j(x) dx , ` = 1, . . . ,mj, j ∈ J .

Therefore, we have to solve the equation (9a) for q = 0; that is,

(46) ∆urad + k2nurad = −g in R2 with g := f +
∑
j∈J

mj∑
`=1

a`,jϕ`,j ,

where ϕ`,j are given by (9b). Furthermore, urad has to satisfy the generalized angular
spectrum radiation condition (8). The plan is to take the Floquet-Bloch transform of this
equation, show solvability for all α ∈ [−1/2, 1/2] (without exception) with Theorem 4.2
and continuity with respect to α with Theorem 4.3 and apply the inverse transform.

We note that the right hand side g of (46) is in L2(R2) ∩ L1(R2) (and has even compact
support with respect to x1). Therefore, for every α ∈ [−1/2, 1/2] we try to solve the
Floquet-Bloch transformed equation; that is, find vα ∈ H1

α,loc(Q
∞) with

(47) ∆vα + k2n vα = −(Fg)(·, α) in Q∞ = (0, 2π)× R
satisfying the radiating condition (29b). Here, Fg denotes the Flochet-Bloch transform of
g, defined in (28). The right hand side Fg has no compact support but decays exponen-
tially to zero as |x2| tends to infinity. Furthermore, Fg is analytic with respect to α ∈ C
(because the right hand side g of (46) vanishes for |x1| ≥ σ0), and there exists ĉ, δ > 0
such that |(Fg)(x, α)|+ |∂(Fg)(x, α)/∂α| ≤ ĉe−δ|x2| for almost all x ∈ Q∞ and all α ∈ C
with |α| ≤ 1. Therefore, to apply Theorem 4.2 of the previous section we only have to
show the orthogonality condition (35). This holds for the particular choice (45) of a`,j as
we show now.

Lemma 5.1. For every propagative wave number α̂j the right hand side gα̂j := (Fg)(·, α̂j)
of (47) is orthogonal to the eigenspace Xj (see (4)) in L2(Q∞). Therefore, by Theo-
rem 4.2 the problems (47), (29b) are solvable for all α ∈ [−1/2, 1/2] without exception.
Furthermore, by Theorem 4.3 for every H > h0 the mapping α 7→ vα is continuous from
[−1/2, 1/2] into H1(QH), and there exists cH > 0 which is independent of f such that
‖vα‖H1(QH) ≤ cH‖f‖L2(Q) for all α ∈ [−1/2, 1/2].

Proof: Recall the definition of g and thus Fg = Ff +
∑

j∈J
∑mj

`=1 a`,jFϕ`,j where ϕ`j are

defined in (9b). Since φ̂`,j is α̂j−quasi-periodic it follows easily from the properties of the
Floquet-Bloch transform that

(Fϕ`,j)(x, α) = 2 (Fψ′±)(x1, α− α̂j)
∂φ̂`,j(x)

∂x1

+ (Fψ′′±)(x1, α− α̂j) φ̂`,j(x)

for ` with λ`,j ≷ 0. (Note that ψ′± ∈ L2(R) in contrast to ψ± itself.) Since (Fψ′±)(·, β) is
β−quasi-periodic its Fourier series is given by

(Fψ′±)(x1, β) =
1√
2π

∑
`∈Z

(Fψ′±)(`+ β) ei(`+β)x1

where we used (27) for the relationship between the Fourier transform Fψ′± and the
Fourier coefficients of the Floquet-Bloch transform (Fψ′±)(·, β).
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With (Fψ′±)(0) = 1√
2π

∫∞
−∞ ψ

′
±(t) dt = ± 1√

2π
we can write

(Fψ′±)(x1, β) =


1√
2π

∂
∂x1

∑̀
∈Z

(Fψ′±)(`+β)

i(`+β)
ei(`+β)x1 , β /∈ Z ,

± 1
2π

+ 1√
2π

∂
∂x1

∑̀
6=0

(Fψ′±)(`)

i`
ei`x1 , β ∈ Z ,

which we abbreviate as (Fψ′±)(x1, β) = ± 1
2π
δβ + ∂

∂x1
ρ±(x1, β) where δβ := 0 for β 6∈ Z

and δβ := 1 for β ∈ Z and obvious meaning of ρ±. This allows us to write

(Fϕ`,j)(x, α) = ± 1

π

∂φ̂`,j(x)

∂x1

δα−α̂j

+ 2
∂

∂x1

ρ±(x1, α− α̂j)
∂φ̂`,j(x)

∂x1

+
∂2

∂x2
1

ρ±(x1, α− α̂j) φ̂`,j(x)

= ± 1

π

∂φ̂`,j(x)

∂x1

δα−α̂j + ∆xṽ
±
`,j(x, α) + k2n(x)ṽ±`,j(x, α)

for ` with λ`,j ≷ 0 where ṽ±`,j(x, α) := ρ±(x1, α− α̂j)φ̂`,j(x) is α−quasi-periodic.

Now the proof of orthogonality is not difficult anymore. Let α = α̂j0 for some j0 ∈ J and

φ̂`0,j0 ∈ Xj0 . Then
∫
Q∞

[
∆ṽ±`,j(·, α̂j0) + k2n ṽ±`,j(·, α̂j0)

]
φ̂`0,j0 dx vanishes by Green’s second

theorem and therefore∫
Q∞

(Fg)(x, α̂j0) φ̂`0,j0(x) dx

=

∫
Q∞

(Ff)(x, α̂j0) φ̂`0,j0(x) dx +
∑
j∈J

mj∑
`=1

a`,j

∫
Q∞

(Fϕ`,j)(x, α̂j0) φ̂`0,j0(x) dx

=

∫
Q∞

(Ff)(x, α̂j0) φ̂`0,j0(x) dx +
∑
j∈J

mj∑
`=1

a`,j signλ`,j
1

π
δα̂j0−α̂j

∫
Q∞

∂φ̂`,j(x)

∂x1

φ̂`0,j0(x) dx

=

∫
Q∞

(Ff)(x, α̂j0) φ̂`0,j0(x) dx +

mj0∑
`=1

a`,j0 signλ`,j0
1

π

∫
Q∞

∂φ̂`,j0(x)

∂x1

φ̂`0,j0(x) dx

=

∫
Q∞

(Ff)(x, α̂j0) φ̂`0,j0(x) dx + a`0,j0 signλ`0,j0
1

π

∫
Q∞

∂φ̂`0,j0(x)

∂x1

φ̂`0,j0(x) dx = 0

by the properties of φ̂`,j from (5a), (5b), the definition (45) of a`,j and the fact that
Ff = f because f has support in Q. Application of Theorem 4.2 yields existence. In
(43a), (43b) of Remark 4.4 the norm ‖vα‖H1(QH) is estimated by ‖gα‖L1(Q∞) + ‖gα‖L2(Q∞)

and its derivative with respect to α. We observe that gα = (Fg)(·, α), defined in (46),
depends linearly on (Ff)(·, α) = f and (Fϕ`,j)(·, α). Therefore,

‖gα‖Lp(Q∞) ≤ c

[
‖f‖Lp(Q) +

∑
j∈J

mj∑
`=1

|a`,j|
]
≤ c′‖f‖L2(Q)
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for all α where p = 1 or p = 2. The same estimate holds also for the derivative with
respect to α. This proves boundedness of f 7→ vα from L2(Q) into H1(QH) uniformly
with respect to α ∈ [−1/2, 1/2]. �

Now we are able to prove the main result of this section.

Theorem 5.2. Let Assumptions 2.2 and 2.3 hold. Furthermore, in the case q 6= 0, we
assume that no bound states exist, that is, there is no non-trivial solution u ∈ H1(R2) of
∆u+k2(n+q)u = 0 in R2. Then there exists a unique solution u ∈ H1

loc(R2) of the source
problem (6) satisfying the open waveguide radiation condition of Definition 2.5 for every
f ∈ L2(Q). Furthermore, for every H > h0 the mapping f 7→ u is bounded from L2(Q)
into H1(WH).

Proof: For q = 0 the solution u is given by the inverse Floquet-Bloch transform

u(x) =

1/2∫
−1/2

vα(x) dα , x ∈ R2 ,

where vα denotes the solution of (47), (29b) which depends continuously on α and is
extended as an α−quasi-periodic function into R2. By the uniform boundedness of f 7→ vα
from L2(Q) into H1(QH) we conclude that (x, α) 7→ vα(x) belongs to
L2
(
(−1/2, 1/2), H1

qp(Q
H)
)

and thus u ∈ H1(WH) with ‖u‖H1(WH) ≤ cH‖f‖L2(Q) by the
mapping property of the inverse Floquet-Bloch transform.

It remains to study the case of a general q. Let S : L2(Q) → H1(Q) be the linear and
bounded operator which maps f ∈ L2(Q) into u|Q where where u solves (6) for q = 0 and
the radiation condition. For arbitrary q the solution of (6) is equivalent to the fixpoint
equation u = S(f + k2qu) for u ∈ L2(Q). Since S is compact from L2(Q) into itself
uniqueness implies existence. �

6. The Asymptotic Behavior of the Radiating Part

It is well known (see, e.g. [9]) that for closed waveguides the radiating part of the solution
decays exponentially as |x1| tends to infinity. This follows also from the analog of Theo-
rem 4.3. Indeed, in this case no cut-off values exist and Theorem 4.3 implies analyticity
of α 7→ (Furad)(·, α) in a neighborhood W ⊂ C of [−1/2, 1/2]. Then we can modify the
path [−1/2, 1/2] of integration for the inverse transform

urad(x1 + 2π`, x2) =

1/2∫
−1/2

(Furad)(x1, x2, α) ei2π`α dα , x ∈ Q∞ , ` ∈ Z ,

depending on the sign of `. We choose the path to be α = t+(sign `)τi for t ∈ [−1/2, 1/2]
where τ > 0 is chosen such that Furad is analytic in the strip | Imα| ≤ τ . Then it follows
that |urad(x1 + 2π`, x2)| ≤ c e−2πτ |`| for |`| ≥ 1; that is, urad decays exponentially with
respect to x1.2

The situation is different in the case of an open waveguide because of the existence of
cut-off values.

2Actually, such an estimate holds only in the H1−norm and not pointwise, see below.
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Theorem 6.1. Let Assumptions 2.2 and 2.3 hold. For all H > h0 there exists c > 0 such
that ‖urad‖H1(QH` ) ≤ c

|`|3/2 for all ` 6= 0. Here, QH
` := (2π`, 2π(`+1))× (−H,H) for ` ∈ Z.

In particular, urad ∈ W 1,1(WH) for all H > h0 and x 7→ (1 + x2
1)ρ/2urad(x) is in H1(WH)

for all ρ < 1 and H > h0 where again WH := R× (−H,H).

Proof: Let again k = ˆ̀+ κ with ˆ̀∈ N∪{0} and κ ∈ (−1/2, 1/2]. For the different cases
of κ we define open sets I1, I2, and/or I3 and corresponding functions ψ1, ψ2, ψ3 ∈ C∞(R)
with suppψj ⊂ Ij as follows.
Case I: If |κ| < 1

2
we define I := [−1/2, 1/2], I1 := (−1/2 − ε, 1/2 + ε) \ {±κ}, I2 :=

(κ− ε, κ+ ε), and I3 := (−κ− ε,−κ+ ε) for some small ε > 0. (The latter only if κ 6= 0.)
The functions ψj are chosen such that

∑
j ψj(α) = 1 for all α ∈ I (partition of unity).

Case II: If κ = 1/2 we define I := [0, 1], I1 := (−ε, 1+ε)\{1/2}, and I2 := (1/2−ε, 1/2+ε).
The functions ψ1, ψ2 are chosen such that ψ1(α) + ψ2(α) = 1 for all α ∈ I. In any case
the inverse Floquet-Bloch transform is given by

urad(x1 + 2π`, x2) =

∫
I

(Furad)(x, α) ei2π`αdα =
∑
j

∫
I

ψj(α) (Furad)(x, α) ei2π`αdα

for x ∈ QH and ` ∈ Z. (Note that we can choose any interval of length one as domain
of integration because of the periodicity of (Furad)(x, ·).) In the following we restrict
ourselves to the first case. The second case is treated as the case κ = 0.
The integrand of the term containing ψ1 vanishes in a neighborhood of the cut-off values
±κ and is therefore smooth by Theorem 4.3, part (b). Furthermore, since ψ1 = 1 in
neighborhoods of ±1/2 and since (Furad)(x, ·) is 1−periodic, partial integration (two
times) yields ∥∥∥∥

1/2∫
−1/2

ψ1(α) (Furad)(·, α) ei2π`α dα

∥∥∥∥
H1(QH)

≤ c

`2
.

Next, we consider the case containing ψj for j ∈ {2, 3}; that is by part (c) of Theorem 4.3
for vα = (Furad)(·, α),

1/2∫
−1/2

ψj(α) (Furad)(·, α) ei2π`αdα

=

1/2∫
−1/2

ψj(α) v(1)
α ei2π`αdα +

1/2∫
−1/2

ψj(α) |α− α̂| v(4)
α ei2π`αdα

+

1/2∫
−1/2

ψj(α)
[√
α̂− α v(2)

α +
√
α− α̂ v(3)

α

]
ei2π`αdα

where α̂ = κ or α̂ = −κ if j = 2 or j = 3, respectively. Two times partial integration
of the first term gives O(1/`2) (note that ψj vanishes near ±1/2). Also the second term
can be partially integrated twice and gives O(1/`2). Partial integration of the third term
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yields

1/2∫
−1/2

ψj(α)
[√
α̂− α v(2)

α +
√
α− α̂ v(3)

α

]
ei2π`αdα

= − 1

i2π`

1/2∫
−1/2

∂

∂α

[√
α̂− αψj(α) v(2)

α +
√
α− α̂ ψj(α) v(3)

α

]
ei2π`αdα

=
1

i4π`

α̂+ε∫
α̂−ε

(
1√
α̂− α

ψj(α) v(2)
α −

1√
α− α̂

ψj(α) v(3)
α

)
ei2π`αdα

− 1

i2π`

α̂+ε∫
α̂−ε

(√
α̂− α ∂

∂α

[
ψj(α) v(2)

α

]
+
√
α− α̂ ∂

∂α

[
ψj(α) v(3)

α

])
ei2π`αdα .

The second term on the right hand side is again of order O(1/`2). For the first integral
we write

α̂+ε∫
α̂−ε

(
1√
α̂− α

ψj(α) v(2)
α −

1√
α− α̂

ψj(α) v(3)
α

)
ei2π`αdα

= v
(2)
α̂

α̂+ε∫
α̂−ε

1√
α̂− α

ei2π`αdα − v
(3)
α̂

α̂+ε∫
α̂−ε

1√
α− α̂

ei2π`αdα +

α̂+ε∫
α̂−ε

ṽ(α) ei2π`αdα

with

ṽ(α) :=
1√
α̂− α

[
ψj(α) v(2)

α − v
(2)
α̂

]
− 1√

α− α̂
[
ψj(α) v(3)

α − v
(3)
α̂

]
.

We show that ṽ ∈ W 1,1
(
(−1/2, 1/2), H1(QH)

)
. Indeed, for the first term, which we denote

by v1(α) we compute

∂v1(α)

∂α
=

1

2(α̂− α)3/2

[
ψj(α) v(2)

α − v
(2)
α̂

]
+

1√
α̂− α

∂

∂α

[
ψj(α) v(2)

α

]
.

We estimate (note that ψj(α̂) = 1)

1

|α− α̂|
∥∥ψj(α) v(2)

α − v
(2)
α̂

∥∥
H1(QH)

=
1

|α− α̂|

∥∥∥∥
α∫
α̂

∂

∂β

[
ψj(β) v

(2)
β

]
dβ

∥∥∥∥
H1(QH)

≤ max
β

∥∥∥∥ ∂∂β [ψj(β) v
(2)
β

]∥∥∥∥
H1(QH)

.

This shows that ∂v1/∂α satisfies an estimate of the form ‖∂v1(α)/∂α‖H1(QH) ≤ c/
√
|α− α̂|.

The second integral is estimated in the same way. Therefore, the integral
∫ 1/2

−1/2
ṽ(α) ei2π`αdα
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is of order O(1/|`|) by partial integration. Finally, we compute

e−i2π`α̂
√

2π|`|
α̂+ε∫
α̂−ε

1√
α̂− α

ei2π`αdα

=
√

2π|`|
ε∫

−ε

1√
α
e−i2π`αdα −→

{
(1− i)

√
2π , `→∞ ,

0 , `→ −∞ ,

by Lemma 7.3 of the Appendix, and analogously

e−i2π`α̂
√

2π|`|
α̂+ε∫
α̂−ε

1√
α− α̂

ei2π`αdα −→
{

0 , `→∞ ,

(1− i)
√

2π , `→ −∞ .

Therefore, we conclude that

lim
`→±∞

[
|`|3/2e−i2π`α̂

1/2∫
−1/2

(Furad)(·, α) ei2π`αdα

]
= −1 + i

4π

{
ṽ

(2)
α̂ , `→∞ ,

ṽ
(2)
α̂ , `→ −∞ ,

in H1(QH), and thus ‖urad‖H1(QH` ) ≤
∥∥∫ 1/2

−1/2
(Furad)(·, α) ei2π`αdα‖H1(QH) ≤ c/|`|3/2.

To show that urad ∈ W 1,1(WH) we estimate∫
WH

[
|urad|+ |∇urad|

]
dx =

∑
`∈Z

∫
QH`

[
|urad|+ |∇urad|

]
dx

≤
√

4πH
∑
`∈Z

(
‖urad‖L2(QH` ) + ‖∇urad‖L2(QH` )

)
≤ c

∑
`∈Z

‖urad‖H1(QH` ) ≤ c′
[
‖urad‖H1(QH) +

∑
|`|≥1

1

|`|3/2

]
< ∞ .

Analogously, for ρ ∈ [0, 1),∫
WH

(1 + x2
1)ρ |urad|2 dx =

∑
`∈Z

∫
QH`

(1 + x2
1)ρ |urad|2 dx

≤
∑
`∈Z

[1 + (|`|+ 1)24π2]ρ ‖urad‖2
L2(QH` )

≤ c

[
(1 + 4π2)ρ ‖urad‖2

L2(QH) +
∑
|`|≥1

[1 + (|`|+ 1)24π2]ρ|`|−3

]

≤ c′
[
1 +

∑
|`|≥1

|`|2ρ−3

]
< ∞

because ρ < 1. The proof for the derivative follows the same lines. �
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We note that by the trace theorem urad|Γh0 ∈ L
2
ρ(Γh0) for all ρ < 1 where Γh0 := R×{h0}

and

(48) L2
ρ(Γh0) :=

{
φ ∈ L2(Γh0) :

∫ ∞
−∞

(1 + |t|2)ρ|φ(t, h0)|2dt <∞
}
,

equipped with its canonical norm ‖ · ‖L2
ρ(Γh0 ).

After the investigation of the asymptotic behavior in x1−direction we turn to the study of
the behavior in x2−direction. We will prove the Sommerfeld radiation condition for urad
in the upper and lower half planes {x ∈ R2 : x2 > h0 + τ} and {x ∈ R2 : x2 < −h0 − τ},
respectively, for every τ > 0. We note again that in R2 \Wh0 = {x ∈ R2 : |x2| > h0} the
part urad satisfies the inhomogeneous Helmholtz equation

∆urad + k2urad = −
∑
j∈J

mj∑
`=1

a`,jϕ`,j for |x2| > h0 ,

where ϕ`,j are given by (9b), and the radiation condition (8).

Theorem 6.2. Let Assumptions 2.2 and 2.3 hold. Furthermore, in the case q 6= 0, we
assume that no bound states exist. Let u ∈ H1

loc(R2) be the unique solution of the source
problem (6) satisfying the open waveguide radiation condition of Definition 2.5.

(a) Then urad satisfies the Sommerfeld radiation condition

(49a) sup
x∈R2, |x2|≥h0+τ

√
|x||urad(x)| + sup

x∈R2, |x2|≥h0+τ

√
|x|
∣∣∣∣∂urad(x)

∂r

∣∣∣∣ < ∞ ,

for all τ > 0, and

(49b)
√
r sup
x∈Sτr

∣∣∣∣∂urad(x)

∂r
− ik urad(x)

∣∣∣∣ −→ 0 , r →∞ ,

for all τ > 0 where Sτr := {x ∈ R2 : |x2| ≥ h0 + τ, |x| = r}.
(b) There exists a unique function u∞ ∈ C(S ′) with

(50) sup
x∈Sτr

∣∣e−ikr√r urad(x)− u∞(x/r)
∣∣ −→ 0 , r →∞ ,

for all τ > 0 where S ′ = {x ∈ R2 : |x| = 1, x2 6= 0}.

Proof: We restrict ourselves to the upper half plane {x ∈ R2 : x2 > h0}. Recall from (11)
that urad(x) is explicitly given as the sum of a volume potential v1(x) on (−σ0, σ0)×(h0,∞)
and a double layer potential v2(x) on Γh0 := R×{h0}. We show the assertions separately
for v1 and v2. Estimate (49a) for v1(x) follows directly from (54) of Lemma 7.1 of the
Appendix for h = h0. To show (49b) let ε > 0 be arbitrary. (54) implies the existence of
h > h0 with

k
√
|x||ṽh(x)| +

√
|x|
∣∣∣∣∂ṽh(x)

∂r

∣∣∣∣ ≤ ε

2
for all x ∈ R2

h0
,

where ṽh is defined in (53) of Lemma 7.1 of the Appendix. The function v1 − ṽh is a
volume potential on the compact rectangle (−σ0, σ0)× (h0, h) and therefore satisfies the
classical Sommerfeld radiation condition (49b); that is, there exists R > 0 with√

|x|
∣∣∣∣∂[v1(x)− ṽh(x)]

∂r
− ik [v1(x)− ṽh(x)]

∣∣∣∣ ≤ ε

2
for all x ∈ R2

h0
, |x| ≥ R .
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The triangle inequality yields√
|x|
∣∣∣∣∂v1(x)

∂r
− ik v1(x)

∣∣∣∣ ≤ ε for all x ∈ R2
h0
, |x| ≥ R ,

which shows that v1 satisfies (49b) even for τ = 0.

Defining v∞1 (x̂) by

v∞1 (x̂) := γ

σ0∫
−σ0

∞∫
h0

ϕ(y)
[
e−ikx̂·y − e−ikx̂·y∗

]
dy2 dy1 , |x̂| = 1 ,

with γ := eiπ/4√
8πk

, one shows estimate (50) in exactly the same way using the asymptotics

i

4
H

(1)
0 (k|x− y|) = γ

eik|x|√
|x|

e−iky·x̂ + O
(
|x|−3/2

)
, |x| → ∞ ,

uniformly with respect to x̂ = x/|x| and y from compact sets (see [7]), and the obvious
estimate

sup
|x̂|=1

∣∣∣∣v∞1 (x̂)− γ
σ0∫

−σ0

h∫
h0

ϕ(y)
[
e−ikx̂·y − e−ikx̂·y∗

]
dy2 dy1

∣∣∣∣ ≤ c e−δh .

Now we turn to the double layer potential v2(x). This function has been investigated
in [13]. We recall and simplify their arguments for the convenience of the reader. First

we recall the asymptotic behavior (15) of the Hankel function H
(1)
0 (k|x − y|) and their

derivatives. Let φ ∈ L2
ρ(Γh0) be any function for some ρ < 1 where L2

ρ(Γh0) is the weighted
space from (48). We obtain for x2 ≥ h0 + τ :∫

y∈Γh0
|y1|>1

|φ(y)|
∣∣∣∣ ∂∂y2

H
(1)
0 (k|x− y|)

∣∣∣∣ ds(y)

≤ c (x2 + 1)

∫
|y1|>1

|φ(y1, h0)| 1

[(x1 − y1)2 + (x2 − h0)2]3/4
dy1

= c (x2 + 1)

∫
|y1|>1

(1 + y2
1)ρ/2|φ(y1, h0)| 1

(1 + y2
1)ρ/2 [(x1 − y1)2 + (x2 − h0)2]3/4

dy1

≤ c (x2 + 1) ‖φ‖L2
ρ(Γh0 )

√√√√ ∫
|y1|>1

1

|y1|2ρ [(x1 − y1)2 + (x2 − h0)2]3/2
dy1 .

Now we apply Lemma 7.2 from the Appendix with q = 3/2. Let first |x1| ≤ x2 − h0. By
the first estimate of Lemma 7.2 we have∫
y∈Γh0
|y1|>1

|φ(y)|
∣∣∣∣ ∂∂y2

H
(1)
0 (k|x− y|)

∣∣∣∣ ds(y) ≤ c ‖φ‖L2
ρ(Γh0 )

1 + x2

(x2 − h0)3/2
≤ c′ ‖φ‖L2

ρ(Γh0 )

1√
|x|

,
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where we used x2 − h0 ≥ τ
h0+τ

x2 and thus (x2 − h0)2 ≥ 1
2
(x2

1 + (x2 − h0)2) ≥ 1
2

τ2

(h0+τ)2
|x|2

in the last estimate.
Second, let |x1| ≥ x2 − h0. Then by the second estimate of Lemma 7.2 (note that x1 6= 0
because x2 ≥ h0 + τ)∫

y∈Γh0
|y1|>1

|φ(y)|
∣∣∣∣ ∂∂y2

H
(1)
0 (k|x− y|)

∣∣∣∣ ds(y)

≤ c ‖φ‖L2
ρ(R) (1 + x2)

√
|x1|−3 + |x2 − h0|−2|x1|−2ρ ≤ c′ ‖φ‖L2

ρ(R)

√
|x|−1 + |x|−2ρ .

because x2
1 ≥ 1

2
(x2

1 +(x2−h0)2) ≥ 1
2
( τ2

(h0+τ)2
|x|2. Since 2ρ > 1 we have shown the existence

of a constant ĉ which is independent of φ (but depends on τ > 0) such that

(51)
√
|x|

∫
y∈Γh0
|y1|>1

|φ(y)|
∣∣∣∣ ∂∂y2

H
(1)
0 (k|x− y|)

∣∣∣∣ ds(y) ≤ ĉ ‖φ‖L2
ρ(Γh0 )

for all x ∈ R2 with x2 ≥ h0 + τ . The same estimate holds also for the gradient

∇x
∂
∂y2
H

(1)
0 (k|x− y|) by the same arguments.

Now we specify the function φ. First we set φ = urad. The estimate (51) and the bound-

edness of supx2≥h0+τ

√
|x|
∫
|y1|<1

|urad(y)|
∣∣ ∂
∂y2
H

(1)
0 (k|x− y|)

∣∣ ds(y) for the double layer po-

tential on the compact line segment {y ∈ Γh0 : |y1| < 1} implies the first estimate of
(49a). The same argument holds also for the derivative.
Second, for any a > 1 we set φa(y) = urad(y) for y ∈ Γh0 , |y1| > a, and φa(y) = 0 for
y ∈ Γh0 , |y1| < a, and define va by

va(x) =
i

2

∫
y∈Γh0
|y1|<a

urad(y)
∂

∂y2

H
(1)
0 (k|x− y|) ds(y) , x ∈ R2

h0
.

Then, by (51),√
|x|
∣∣ ∂v2(x)

∂r
− ik v2(x)

∣∣ ≤ √
|x|
∣∣ ∂va(x)

∂r
− ik va(x)

∣∣ +

+
√
|x|

∫
y∈Γh0
|y1|>1

|φa(y)|
[∣∣∇x

∂

∂y2

H
(1)
0 (k|x− y|)

∣∣+ k
∣∣ ∂
∂y2

H
(1)
0 (k|x− y|)

∣∣] ds(y)

≤
√
|x|
∣∣∣∣∂va(x)

∂r
− ik va(x)

∣∣∣∣ + (1 + k)ĉ ‖φa‖L2
ρ(Γh0 )(52)

for all x ∈ R2 with x2 ≥ h0 + τ . Let now ε > 0 be arbitrary. We choose a > 1 such that

(1 + k)ĉ ‖φa‖L2
ρ(Γh0 ) = (1 + k)ĉ

√√√√ ∫
|y1|>a

|urad(y)|2(1 + y2
1)ρ ds(y) ≤ ε

2
.

For this fixed a we note that va is a double layer potential on a compact line segment.
Therefore, va satisfies the classical Sommerfeld radiation condition, and we can find R > 0
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such that √
|x|
∣∣∣∣∂va(x)

∂r
− ik va(x)

∣∣∣∣ ≤ ε

2
for all |x| ≥ R .

By (52) this proves that v2 satisfies Sommerfelds’s radiation condition.

In the same way ones proves (50) for v2 with

v∞2 (x̂) := γ

∫
Γh0

urad(y)
∂

∂y2

e−ikx̂·y ds(y) , |x̂| = 1 ,

(see also [13]). We omit this part. �

Remark 6.3. Finally we note that we can weaken the assumption with respect to the
source f . Indeed, a careful inspection shows that we can take f ∈ H−1(R2) with support
in K (as a distribution) where K is any compact subset of Q. For example, we can
think of f = ∂χ/∂xj for some χ ∈ L2(R2) with support in Q. We sketch the necessary

modifications. In (2) the right hand side has to be replaced by the dual form 〈f, ψ〉.
The Floquet-Bloch transform of f still coincides with f . In Theorems 4.1, 4.2, 4.3 the
functions g and gα have to be replaced by f + g̃ and f + g̃α, respectively, where g̃ ∈ L2(R2)
and g̃α ∈ L2(Q∞) decay exponentially with respect to x2. The orthogonality condition

(35) and the form (45) of a`,j have to be replaced by 〈f, φ̂〉 +
∫
Q∞

g̃α̂j(x) φ̂(x) dx = 0

and a`,j = 2πi
|λ`,j |
〈f, φ̂`,j〉, respectively. Then Theorem 5.2 holds and the mapping f 7→ u

is bounded as a mapping from the closed subspace {f ∈ H−1(R2) : supp f ⊂ K} into
H1(WH) for all H > h0.

7. Appendix

In the first lemma properties of the volume potential with certain non-compactly sup-
ported densities are shown. We set again R2

h0
= {x ∈ R2 : x2 > h0} andW+

H = R×(h0, H).

Lemma 7.1. Let ϕ ∈ L2(R2
h0

) with ϕ(x) = 0 for |x1| > σ0 and |ϕ(x)| ≤ ĉ e−δx2 for
x2 ≥ h0 for some σ0, ĉ, δ > 0 (independent of x). Define

(53) vh(x) =

σ0∫
−σ0

∞∫
h

ϕ(y)G+(x, y) dy2 dy1 , x ∈ R2
h0
,

for h ≥ h0, with the Green’s function G+(x, y) := i
4

[
H

(1)
0 (k|x− y|)−H(1)

0 (k|x− y∗|)
]

for

x, y ∈ R2
h0

with x 6= y. Here, y∗ := (y1, 2h0−y2)> is the reflected point at the line x2 = h0.
Then vh and it gradient satisfy the estimate

(54) |vh(x)| + |∇vh(x)| ≤ c
1 + x2

1 + |x|3/2
(1 + h) e−δh/2 , x2 > h0 ,

where c is independent of x ∈ R2
h0

and h ≥ h0. In particular, vh ∈ H1(W+
H ) for all H > h0

and h ≥ h0. Furthermore, vh ∈ H1
loc(R2

h0
) is the unique solution of the boundary value

problem

∆vh + k2vh =

{
0 for h0 < x2 < h ,
−ϕ for x2 > h ,

vh = 0 for x2 = h0 ,

satisfying the generalized angular spectrum radiation condition (8).
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Proof: First we show (54). We know from [3] that for all a > 0 there exists c > 0 with

∣∣G+(x, y)
∣∣ ≤ c

(1 + x2) (1 + y2)

|x− y|3/2
for all x, y ∈ R2

h0
with |x− y| ≥ a ,(55a)

∣∣∇xG
+(x, y)

∣∣ ≤ c
(1 + x2) (1 + y2)

|x− y|3/2
for all x, y ∈ R2

h0
with |x− y| ≥ a ,(55b) ∣∣G+(x, y)

∣∣ ≤ c
∣∣ln |x− y|∣∣ for all x, y ∈ R2

h0
with 0 < |x− y| ≤ a ,(55c) ∣∣∇xG

+(x, y)
∣∣ ≤ c

|x− y|
for all x, y ∈ R2

h0
with 0 < |x− y| ≤ a .(55d)

First we consider |x1| ≤ 2σ0 and x2 ≤ 2 (if h0 < 2, otherwise drop this case). In the
definition of vh we split the region of integration with respect to y2 into {y2 > h : |y2−x2| <
1} ∪ {y2 > h : |y2 − x2| > 1} and use the estimates of G+ is each of the regions. (Note
that |y1| ≤ σ0.) Therefore,

|vh(x)| ≤ c

∫
y2>h

|x2−y2|<1

σ0∫
−σ0

e−δy2
∣∣ln |x− y|∣∣ dy1 dy2

+ c (1 + x2)

∫
y2>h

|x2−y2|>1

σ0∫
−σ0

e−δy2
1 + y2

|x2 − y2|3/2
dy1 dy2

≤ c e−δh
1∫

−1

3σ0∫
−3σ0

∣∣ln |z|∣∣ dz1 dz2 + 6σ0 c

∞∫
h

e−δy2 (1 + y2) dy2 ≤ c′ (1 + h) e−δh .

Let now |x1| ≤ 2σ0 and x2 > 2. We split {y2 > h : |y2 − x2| > 1} = {y2 > h : 1 <
|y2 − x2| < x2/2} ∪ {y2 > h : |y2 − x2| > x2/2}. Then

|vh(x)| ≤ c

∫
y2>h

|x2−y2|<1

σ0∫
−σ0

e−δy2
∣∣ln |x− y|∣∣ dy1 dy2

+ c (1 + x2)

∫
y2>h

1<|x2−y2|<x2/2

σ0∫
−σ0

e−δy2
1 + y2

|x2 − y2|3/2
dy1 dy2

+ c (1 + x2)

∫
y2>h

|x2−y2|>x2/2

σ0∫
−σ0

e−δy2
1 + y2

|x2 − y2|3/2
dy1 dy2
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≤ c e−δh/2 e−δ(x2−1)/2

1∫
−1

3σ0∫
−3σ0

∣∣ln |z|∣∣ dz1 dz2

+ c (1 + x2) e−δx2/4
∞∫
h

(1 + y2) e−δy2/2dy2 + c
1 + x2

(x2/2)3/2

∞∫
h

(1 + y2) e−δy2 dy2

where we used the estimate y2 = y2/2 + y2/2 ≥ h/2 + (x2 − 1)/2 in the first integral and
y2 ≥ y2/2 + x2/4 in the second integral. Combining this with the estimate for x2 ≤ 2
implies

(56a) |vh(x)| ≤ c
1 + x2

1 + |x|3/2
(1 + h) e−δh/2

for all x2 ≥ h0 and |x1| ≤ 2σ0 and h ≥ h0.
Now we consider |x1| > 2σ0. Then |y1 − x1| ≥ |x1| − σ0 > |x1|/2 ≥ σ0 and thus

|vh(x)| ≤ c (1 + x2)

∞∫
h

σ0∫
−σ0

e−δy2
1 + y2

|x− y|3/2
dy1 dy2 .

We split the integral with respect to y2 into {y2 > h : |y2 − x2| > x2/2} ∪ {y2 > h :
|y2 − x2| < x2/2}. For |y2 − x2| > x2/2 we have |x− y|2 ≥ 1

4
|x|2 and thus∫

y2>h
|x2−y2|>x2/2

σ0∫
−σ0

e−δy2
1 + y2

|x− y|3/2
dy1 dy2 ≤

∫
y2>h

|x2−y2|>x2/2

(1 + y2) e−δy2 dy2
2σ0

(|x|/2)3/2

(56b) ≤ c

|x|3/2

∞∫
h

(1 + y2) e−δy2 dy2 ≤
c′

1 + |x|3/2
(1 + h) e−δh .

Finally, since |y2| ≥ |x2| − |y2 − x2| ≥ x2/2 for |y2 − x2| < x2/2 we have by estimating
y2 ≥ y2/2 + x2/4∫

y2>h
|x2−y2|<x2/2

σ0∫
−σ0

e−δy2
1 + y2

|x− y|3/2
dy1 dy2 ≤ e−δx2/4

∞∫
h

(1 + y2) e−δy2/2 dy2

σ0∫
−σ0

dy1

|x1 − y1|3/2

≤ c e−δx2/4
1

|x1|3/2

∞∫
h

(1 + y2) e−δy2/2 dy2 ≤
c′

1 + |x|3/2
(1 + h) e−δh/2(56c)

(note that |x1| > 2σ0 and x2 ≥ h0).

The proofs for the derivatives follow exactly the same lines. (Only the integral over
ln |x− y| has to be replaced by the integral over 1/|x− y|.) Combining (56a), (56b), and
(56c) yields (54).

From this estimates it follows directly that vh ∈ H1(W+
H ) for all H > h0. By truncating

the domain with respect to y2 and using classical results on volume integrals on bounded
domains it is easily seen that vh satisfies the differential equation.
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To show the radiation condition (8) we take the Fourier transform with respect to x1 and
note that the integral with respect to y1 is a convolution. By our normalization of the
Fourier transform and the formulas 3. and 4. in [11], Section 6.677, this yields

(Fvh)(ω, x2) =
i

2
√
k2 − ω2

∞∫
h

(Fϕ)(ω, y2)
[
ei
√
k2−ω2|x2−y2| − ei

√
k2−ω2(x2+y2−2h0)

]
dy2

and thus for x2 > h

∂(Fvh)(ω, x2)

∂x2

− i
√
k2 − ω2 (Fvh)(ω, x2) =

∞∫
x2

(Fϕ)(ω, y2) ei
√
k2−ω2(y2−x2) dy2 .

For |ω| < k we just estimate∣∣∣∣∂(Fvh)(ω, x2)

∂x2

− i
√
k2 − ω2 (Fvh)(ω, x2)

∣∣∣∣ ≤ c

∞∫
x2

e−δy2 dy2 =
c

δ
e−δx2 .

For |ω| > k we estimate∣∣∣∣∂(Fvh)(ω, x2)

∂x2

− i
√
k2 − ω2 (Fvh)(ω, x2)

∣∣∣∣
≤ c

∞∫
x2

e−δy2−
√
ω2−k2(y2−x2) dy2 =

c

δ +
√
ω2 − k2

e−δx2 .

Together we have shown

(57)

∣∣∣∣∂(Fvh)(ω, x2)

∂x2

− i
√
k2 − ω2 (Fvh)(ω, x2)

∣∣∣∣ ≤ c

δ +
√
|ω2 − k2|

e−δx2

for almost all ω ∈ R and x2 > h where c > 0 is independent of ω and x. Squaring and
integrating with respect to ω yields the generalized angular spectrum radiation condi-
tion (8).
Finally, we show uniqueness of the boundary value problem. Therefore, let v ∈ H1

loc(R2
h0

)

with v ∈ H1(W+
H ) for all H > h0 be a solution for ϕ = 0 and φ = 0. The Fourier

transform v̂(ω, x2) := (Fv)(ω, x2) satisfies

v̂′′(ω, x2) + (k2 − ω2)v̂(ω, x2) = 0 , x2 > h0 , v̂(ω, h0) = 0 ,

for almost all ω and the radiation condition (8). The general solution of the differential
equation and the initial condition is given by

v̂(ω, x2) = a(ω)

[
ei
√
k2−ω2(x2−h0) − e−i

√
k2−ω2(x2−h0)

]
, x2 > h0 ,

for some a(ω) ∈ C and thus v̂′(ω, x2)−i
√
k2 − ω2 v̂(ω, x2) = 2a(ω)i

√
k2 − ω2e−i

√
k2−ω2(x2−h0).

Therefore,∣∣v̂′(ω, x2)− i
√
k2 − ω2 v̂(ω, x2)

∣∣2 =

{
4|a(ω)|2

√
k2 − ω2 , |ω| < k ,

4|a(ω)|2
√
ω2 − k2 e

√
ω2−k2(x2−h0) , |ω| > k .
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The radiation condition (8) implies a(ω) = 0 for almost all ω; that is, v vanishes identically
which proves uniqueness. �

We recall the following auxiliary result from [13].

Lemma 7.2. For given 1/2 < ρ < 1 and q > 1/2 define I(x) by

I(x) :=

∫
|y1|>1

1

[(x1 − y1)2 + x2
2]q|y1|2ρ

dy1 , x ∈ R2 , x2 6= 0 .

Then there exists c > 0 with I(x) ≤ c|x2|−2q for all x ∈ R2 with x2 6= 0 and also
I(x) ≤ c

[
|x1|−2q + |x2|−2q+1|x1|−2ρ

]
for x ∈ R2 with x2 6= 0 and x1 6= 0.

Proof: (a) Obviously, for all x ∈ R2 with x2 6= 0 we have

I(x) ≤
∫

|y1|>1

1

|x2|2q |y1|2ρ
dy1 =

1

|x2|2q

∫
|y1|>1

dy1

|y1|2ρ
=

2

2ρ− 1

1

|x2|2q
.

(b) We split the region of integration into y1 with |y1−x1| > |x1|/2 and |y1−x1| < |x1|/2.
For x1 6= 0 we have∫

|y1|>1
|y1−x1|>|x1|/2

1

[(y1 − x1)2 + x2
2]q |y1|2ρ

dy1 ≤
∫

|y1|>1

1

(|x1|/2)2q |y1|2ρ
dy1 =

22q+1

2ρ− 1

1

|x1|2q
.

For y1 with |y1 − x1| < |x1|/2 we conclude that |y1| ≥ |x1|/2, thus∫
|y1|>1

|y1−x1|<x1/2

1

[(y1 − x1)2 + x2
2]q |y1|2ρ

dy1

≤
∫

|y1|>1

1

[(y1 − x1)2 + x2
2]q

1

(|x1|/2)2ρ
dy1 =

4ρ

|x2|2q|x1|2ρ

∫
|y1|>1

1[(
y1−x1
|x2|

)2
+ 1
]q dy1

≤ 4ρ |x2|
|x2|2q|x1|2ρ

∞∫
−∞

1

(t2 + 1)q
dt =

c

|x2|2q−1|x1|2ρ
.

where we have used the substitution t = y1−x1
|x2| . Therefore,

I(x) ≤ c
[
|x1|−2q + |x2|−2q+1 |x1|−2ρ

]
which ends the proof. �

The following lemma is a simple consequence of the improper integrals
∫∞

0
cos t√
t
dt =∫∞

0
sin t√
t
dt =

√
π
2
.
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Lemma 7.3. For every a > 0 and σ ∈ {+1,−1}

lim
σT→∞

[√
|T |

a∫
0

1√
α
e−iTα dα

]
= (1− iσ)

√
π

2
,

lim
σT→∞

[√
|T |

a∫
−a

1√
α
e−iTα dα

]
=

{
(1− i)

√
2π , σ = 1 ,

0 , σ = −1 .

Proof: Using the substitution t = |T |α = σTα the first formula follows from

a∫
0

1√
α
e−iTα dα =

1√
|T |

a|T |∫
0

1√
t
e−iσt dt =

1√
|T |

a|T |∫
0

cos t√
t
dt − iσ

1√
|T |

a|T |∫
0

sin t√
t
dt

and

lim
T→∞

T∫
0

cos t√
t
dt = lim

T→∞

T∫
0

sin t√
t
dt =

√
π

2
.

For the second formula we note that
a∫

−a

1√
α
e−iTα dα =

a∫
0

1√
α
e−iTα dα +

1

i

a∫
0

1√
α
eiTα dα

= (1− i) Re

a∫
0

1√
α
e−iTα dα − (1− i) Im

a∫
0

1√
α
e−iTα dα

which yields the second assertion. �
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