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Although it has long been recognised that human activities affect fire regimes, the
interactions between humans and fire are complex, imperfectly understood, constantly
evolving, and lacking any kind of integrative global framework. Many different approaches
are used to study human-fire interactions, but in general they have arisen in different
disciplinary contexts to address highly specific questions. Models of human-fire
interactions range from conceptual local models to numerical global models. However,
given that each type of model is highly selective about which aspects of human-fire
interactions to include, the insights gained from these models are often limited and
contradictory, which can make them a poor basis for developing fire-related policy and
management practices. Here, we first review different approaches to modelling human-fire
interactions and then discuss ways in which these different approaches could be
synthesised to provide a more holistic approach to understanding human-fire
interactions. We argue that the theory underpinning many types of models was
developed using only limited amounts of data and that, in an increasingly data-rich
world, it is important to re-examine model assumptions in a more systematic way. All
of the models are designed to have practical outcomes but are necessarily simplifications
of reality and as a result of differences in focus, scale and complexity, frequently yield
radically different assessments of what might happen. We argue that it should be possible
to combine the strengths and benefits of different types of model through enchaining the
different models, for example from global down to local scales or vice versa. There are also
opportunities for explicit coupling of different kinds of model, for example including agent-
based representation of human actions in a global fire model. Finally, we stress the need for
co-production of models to ensure that the resulting products serve the widest possible
community.
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INTRODUCTION

Naturally occurring landscape fires, or wildfires, have been an
integral component of the Earth System for 350–400 million
years, since the development of vegetation on land (Scott, 2000;
Bowman et al., 2009). Humans have used fire for domestic
purposes for about one million years (e.g., Goren-Inbar et al.,
2004; Karkanas et al., 2007; Berna et al., 2012) and fire has been
used as a management tool to facilitate land clearance and pasture
improvement at least since the Neolithic (Piperno, 1994; Arroyo-
Kalin, 2012). Fire continues to be used today in subsistence
activities and for maintaining cultural identity, where
traditional fire knowledge governs burning (e.g., Mistry et al.,
2005; Eriksen, 2007). It has been estimated that about 280 million
hectares of land, mostly in the tropics and subtropics, are used for
swidden agriculture (Heinimann et al., 2017)—much of which is
facilitated by the use of fire for land clearance.

Fire is the most important cause of natural disturbance
(Pausas et al., 2017), influencing vegetation patterns and
biogeochemical cycles (Scott, 2000) and promoting biodiversity
in fire-prone ecosystems (He et al., 2019). Fires also provide
important ecosystem services, including helping to regulate the
occurrence of catastrophic fires (Pausas and Keeley, 2019).
However, alongside these benefits, there are considerable
negative impacts from wildfires on human safety and health
(e.g., Johnston et al., 2012; Liu et al., 2015; Yu et al., 2020),
economic costs from fire management, disaster relief, property
and forestry damage, tourism loss and health costs (Butry et al.,
2001), severe impacts on forest recovery (Stevens-Rumann et al.,
2018) and especially in ecosystems that are not well adapted to
fire (Whitman et al., 2019; Kelly et al., 2020), and significant
feedbacks from fires to climate (Liu et al., 2014; Harrison et al.,
2018; Walker et al., 2019). Human-induced deforestation fires in
tropical fire-resistant biomes also have noticeable and largely
negative effects on biodiversity, human health and climate (e.g.,
Van der Werf et al., 2009; Reddington et al., 2014; Spracklen and
Garcia-Carreras, 2015; Crippa et al., 2016; Exbrayat et al., 2017;
Ellwanger et al., 2020), although this is most characteristic of the
deforestation fires that are used to promote more intensive land-
use practices rather than facilitating swidden agriculture
(Murdiyarso and Adiningsih, 2007).

The frequency and severity of wildfires are heterogenous over
space and time, influenced by interactions between climatic
conditions, ignitions and available fuel (Moritz et al., 2005;
Krawchuck et al., 2009; Harrison et al., 2010). It is becoming
increasing evident that anthropogenic climate warming promotes
the conditions for wildfire, through extending the periods of fire
weather, which occurs through a combination of high
temperatures, low humidity and rainfall, and often high winds
(Jolly et al., 2015; Jones et al., 2020). Future climate projections
indicate that there will be an increase in the likelihood of fire
weather and this has been seen as another motivation for political
action to limit climate change to below 2°C (e.g., Burton et al.,
2018; Turco et al., 2018). However, despite the increased
prevalence of fire weather, satellite datasets show a decrease in
burned area in recent years (Van Lierop et al., 2015; Doerr and
Santín, 2016; Andela et al., 2017; Lizundia-Loiola et al., 2020a;

Lizundia-Loiola et al., 2020b). This trend is not statistically
significant at the global scale (Forkel et al., 2019a) but is
important in certain regions, most noticeably in sub-Saharan
Africa. The causes of this decline remain uncertain: Andela et al.
(2017) argued that the decline was a reflection of human-induced
land-use changes but more recent analyses suggest that changes
in climate and natural vegetation cover also play a role, leading to
both increased and decreased fire, and can offset the carbon losses
from land-use change at a regional scale (Forkel et al., 2019a).
Whatever the cause of the recent decline in burnt area, the
implications for environmental policy and fire management
are far different from those that would emerge from a
consideration of fire weather trends alone.

Predictions of the future trajectory of wildfires are required in
order to predict the consequences of these changes for the Earth
System (e.g., Kloster et al., 2010; Kloster and Lasslop, 2017), and
these models must necessarily include some consideration of the
role of anthropogenic fires and the complex role of humans in fire
management (Lavorel et al., 2007; Knorr et al., 2016; Rabin et al.,
2017). Projections are also required of how changes in wildfires
might impact human activities and, in turn, how human activities
might be modified in the light of these impacts and how political,
economic, social or cultural factors might affect these responses.
Models of human-fire relationships can also illuminate our
understanding of the potential for human fire practices to
have positive ecological outcomes, and of the role that fire
plays in sustaining cultures and livelihoods.

Many different types of models have been employed to
examine human-fire interactions, ranging from informal or
conceptual models to formal or mathematical models
(Edmonds, 2018), on scales ranging from local to global.
These models have generally been developed and deployed to
answer specific questions, and thus are rooted within disciplinary
perspectives and understanding. Despite the recognition that
integration of these different perspectives and approaches
would be beneficial, and promote a better understanding of
pyrogeography (Bowman et al., 2009), little progress has been
made towards such an integration. This is a serious concern
because, as the differences in the trends in fire weather versus
burnt area amply illustrate, consideration of limited aspects of the
climate-fire-human nexus could lead to radically different
approaches to fire management and the development of
policies for adaptation/mitigation actions. As in many areas of
global change science, policy and management choices will need
to reflect trade-offs between costs and benefits and this will
require integrating the different perspectives gained by
deploying multiple kinds of models.

In this paper, we address the following questions: i) what kinds
of models are currently being used to address human-fire
interactions? ii) what can we learn from each of the different
kinds of models?; and iii) can we reconcile the different modelling
perspectives and build more comprehensive fire-system models?
To answer these questions, we first describe a number of different
types of models that have been used to describe the interactions
between humans and fire, encompassing both formal and
informal models that operate at different spatial scales and
emerge from different disciplinary or social perspectives. We
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describe what they are designed to do, their key characteristics,
the assumptions that underpin them, how the models are
currently implemented and their data requirements, and
explicitly examine their current uncertainties and
simplifications. We then explore commonalities between these
models, if and how different approaches can be reconciled or
integrated, and if and when it is helpful to do so. Finally, we
outline the major challenges and provide a basic roadmap for
integrating insights from different types and scales of models.
Through doing so, we propose a way forward for improving our
understanding of human-fire interactions, providing a more solid
foundation for predicting future fire regimes and a more
comprehensive basis for building fire management plans and
policies.

APPROACHES TO MODELLING FIRE

Interest in human-fire relationships spans many disciplines, each
asking very different types of questions, grounded in different
philosophical approaches and drawing on a different knowledge
base. The tools used to address these questions, and specifically
the informal or formal models developed within different
research domains, can therefore be expected to be different
from one another. Here, as a basis for exploring
commonalities across models, we describe some of the types of
models that are currently being used to examine human-fire
interactions. These models differ in the spatial and temporal scale
at which they operate, and the resolution and complexity that bio-
physical processes and humans are represented (Figure 1). We
structure this discussion moving from the most people-centric
models (place-based models of fire knowledge, agent-based
models, economic models), which are differentiated to some
extent by the spatial scale at which they are developed and
used, to the physics-centric models that incorporate human-

fire interactions to some extent (wildfire spread models, global
fire models). In the last subsection, we look at how policies are
developed and implemented in the context of modelling human-
fire interactions.

People-Centric Models
Place-Based Models of Fire Knowledge
Place-based models of fire knowledge represent the relationships
between people, fire and the landscape in a local context in verbal,
visual, written, or numerical form. Humans may be represented
in such models as i) users of fire for specific subsistence activities
such as farming or pastoralism, ii) fire managers, controlling fire
in the landscape, often within non-governmental or
governmental institutions, or iii) holistic fire users, embedded
within social-ecological systems in which fire is understood to
have agency. Place-based models of fire knowledge can be used to
understand historical and current patterns of fire use, the status of
fire knowledge, the influence of social, environmental, economic
and political factors on fire use, fire cosmologies and fire
governance.

The methodologies by which place-based models of fire
knowledge are constructed and documented vary in the
extent of involvement by local people in the research process.
At one end of the spectrum, there are models constructed by
researchers without involving local people, where the human
influence on fire regimes is inferred from collated datasets. For
example, Van Wilgen et al. (2004) combined a 45 years spatial
dataset of fire occurrence in the Kruger National Park with
climate data and information about management policies in
different time periods to model the fire-return time and
variability resulting from different management approaches.
Models may be constructed by researchers using data about
local people through ethnographic observation, interviews,
questionnaires or participatory research methodologies. For
example, Sorrensen (2004) used data from interviews with
swidden farmers in the Brazilian Amazon to develop a model
linking the calendar week when farmers chose to burn an area to
the length of the preceding fallow period. Where local people are
involved, the research process attempts to elicit the mental
models that fire users and other stakeholders have of their
external reality and their place within it (Jones et al., 2011).
Models co-produced by researchers with local people may
involve amalgamation of models constructed by individuals
or involve a group modelling process.

Modelling processes also vary greatly in the extent to which
they are structured around model production and the particular
form of model envisaged. To model fire use in Bolivia, for
example, Devisscher et al. (2016) followed a structured process
of fuzzy cognitive mapping, involving focus group discussions to
identify model variables and quantify the strength of relationships
between them. Conceptual models may emerge post-hoc,
drawing upon data from several sources. Monzón-Alvarado
et al. (2014), for example, used insights from research
interviews and participatory mapping with swidden farmers in
Mexico to develop a qualitative model of the cascading effects of
early rains on agricultural burn outcomes across ecological,
economic and cultural domains.

FIGURE 1 | Graphical illustration of the relationships between scale
(spatial and temporal) and comprehensiveness (number of components in a
model), with bio-physical resolution and complexity, and with the resolution
and complexity of the representation of humans and human activities, for
different fire models.
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There are many participatory modelling techniques that
explicitly aim to co-produce a model with local people, many
of which produce qualitative models (Voinov et al., 2018). A
number of these techniques have been used to develop place-
based models of fire knowledge. Seasonal calendars, for example,
have been constructed to understand different fire practices in the
context of annual ecological and social cycles (e.g., Rodríguez
et al., 2011; McKemey et al., 2020). Rich pictures, artistic
impressions that can include pictures, text, and symbols
representing particular situations or issues from the
viewpoint(s) of the person or people who create them (Bell
et al., 2016), have been used to develop shared understanding
of fire management between Indigenous community members
and representatives of governmental and non-governmental
organisations (Bilbao et al., 2019, Figure 2). Causal loop
diagrams, that depict causal or correlative relationships
between different variables in a system (Lane, 2000), have
been used to model responses of swidden agriculture to
climate and social change in Panama (Li and Ford, 2019) and
the role of fire use in land cover change in Indonesia (Medrilzam
et al., 2014). Quantitative or semi-quantitative approaches have
also been used to co-produce models. In fuzzy cognitive mapping,
participants construct a diagram showing the direction and
strength of relationships between variables, where the variables
are defined by the participants (Özesmi and Özesmi, 2004). This
methodology has been used, for example, to model fire use and
wildfire risk in Bolivia (Devisscher et al., 2019). Constructing
Bayesian belief networks, participants relate elements with

discrete possible states to one another in a hierarchy, such that
the state of elements higher up the hierarchy probabilistically
influences the state of those lower down (Düspohl et al., 2012).
This approach has been used to understand adaptive fire
management in conservation areas in Australia (Smith et al.,
2007). Different methodologies are appropriate in different social
contexts. Barber and Jackson (2015), for example, argue that, to
Aboriginal Australians, visual and relational modelling
approaches make better intuitive sense than quantitative
approaches, because these societies have both strong traditions
of using artwork to represent relationships between people and
the wider cosmological landscape and also keep track of elaborate
kinship systems.

Some forms of local knowledge, and some socio-ecological
entities, relationships and processes, cannot be represented using
participatory research frameworks. The biophysical elements of
socio-ecological systems are generally more easily represented
than socially-constructed elements (Crane, 2010; Jones et al.,
2011). Models may also not account for the multiple ways in
which people understand causality simultaneously: offered
explanations for using fire might be proximate, functional,
ontogenetic, evolutionary, or all four simultaneously (see
Bliege et al. commentary in Scherjon et al., 2015, p. 315).
Participatory modelling processes are affected by the power
relations inherent in any local context, and between
researchers and local people (Cooke and Kothari, 2001). Trust
is important, particularly in cases where fire use has been
delegitimised by the state and local fire users may therefore be

FIGURE 2 | Rich picture exploring fire management in the Canaima National Park, Venezuela, made by Indigenous participants of a climate change workshop in
2017 (Source: Jay Mistry).
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wary of discussing the issue. The generalisation and simplification
involved in model creation may impede consensus when people
in a community have different understandings and practices. It is
important to understand whether participating individuals have
the right to share collective knowledge or speak on behalf of a
group (Davis and Wagner, 2003).

Constructing place-based models of fire knowledge can benefit
local fire users. While modelling codifies what is already known, it
can also be a creative process of knowledge making (Barber and
Jackson, 2015).Workshops to elicit understandings of fire and socio-
ecological change among the Pemón in Venezuela, for example,
exposed conflicting perspectives among elders and young people and
allowed communities to develop new shared understandings
(Rodríguez et al., 2018). Formalising knowledge and practices in
model form can also give local people credibility and visibility. In the
case of the Pemón, articulation of local knowledge in this way
promoted dialogue with resource managers, shifting official
narratives away from fire suppression towards management
(Bilbao et al., 2019). However, there is considerable debate about
whether rules derived from locally-specific knowledge can be applied
in other places or at broader scales. When rules derived from
Aboriginal fire knowledge were applied to institutional fire
management in Australia, for example, they were criticised as
prescriptive and ecologically detrimental (Wohling, 2009). Using
place-based models of fire knowledge outside of their context also
carries ethical implications because local peoplemay not understand,
and may therefore not be able to give informed consent to, the way
their knowledge, in model form, is used.

Agent-Based Models
Agent-based models (ABMs) belong to a class of computational
models that represent individual, heterogeneous, and often

interacting, entities using sets of computational rules or
relationships (e.g., Grimm et al., 2005; Bithell et al., 2008). The
individual entities or agents in an ABM represent individual
humans or groups of humans (i.e., institutions) and their
activities in the social and physical worlds (Figure 3). Agents
have the ability to make decisions about future actions based on
their state, the state of other agents, and/or the state of the
simulated environment (O’Sullivan et al., 2012). Decision-
making is represented using explicit rules or decision-trees.
Actions that result from specific decisions may modify the
state of the decision-making agent, other agents, or the
environment.

ABMs provide considerable flexibility in the representation of
decision making. For example, they can represent decision-
making i) with multiple alternative rules or strategies; ii) that
are imperfectly rational, for example because of incomplete
availability of information; iii) that pursue non-economically
advantageous goals, for example because of cultural norms; or
iv) are adaptive through time, simulating learning processes.
Furthermore, different decision-making rules can be used for
different members of a heterogeneous agent population. This
flexibility has promoted the use of ABMs in studies of socio-
ecological systems, in which interactions between agents and
individual and environmental heterogeneity are understood to be
essential features (Levin et al., 2013). For example, ABMs have
been used widely to examine land use and cover (e.g., Parker et al.,
2003; Groeneveld et al., 2017), with specific consideration of land
management systems including agriculture, (e.g., Huber et al.,
2018), rangelands (Walker and Janssen, 2002) and forests (e.g.,
Rammer and Seidl, 2015). Most of these studies have been
conducted at the human landscape-scale
(i.e., 100–10,000 km2), and combine qualitative and

FIGURE 3 | Elements of a possible agent-based model at the landscape-scale. Agents make decisions about future actions based on their state (including their
goals and available resources), their interactions with other agents, constraints or incentives due to laws, policies and markets. and/or their perceived state of the
simulated environment. As in the real world, agents often have a limited sphere of influence over the environment (e.g., which they own and/or manage).

Frontiers in Environmental Science | www.frontiersin.org September 2021 | Volume 9 | Article 6498355

Ford et al. Modelling Human-Fire Interactions

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


quantitative data to structure and parameterise the models.
Brändle et al. (2015), for example, examined processes of land
abandonment and re-forestation in the Visp area of the Central
Valais of Switzerland, developing an agent decision-making
typology via a farm household survey in conjunction with the
national agricultural census.

In the context of fire, an ABMoffers the potential to represent the
decision-making in anthropogenic fire use and management as a
process explicitly. However, so far, they have only been deployed to
investigate the management and use of fire in land systems at a
landscape-scale in the global north (e.g., Spain, United States;
Wainwright and Millington, 2010; Hulse et al., 2016; Spies et al.,
2017). Although these studies demonstrate the utility of ABMs for
examining landscape-scale processes and locally-relevant policies
and management strategies, the transferability of fire ABMs to other
locations or their application beyond the landscape scale has yet to be
demonstrated. Agent-based approaches to represent human
behaviour have been used, however, to examine land-systems at a
continental scale through defining Agent Functional Types (AFTs)
(Brown et al., 2019). AFTs build on theoretically-informed
typologies to create generalisations about human–environment
interactions through two essential human characteristics: roles
(e.g., forester, farmer) and behaviours (e.g., imitation,
conservatism). They therefore allow representation not only of
direct human impacts on the environment, but also
behaviourally-mediated responses people might make to
consequent environmental change.

The advantages that ABMs provide for representing
heterogeneous individual agents and their interactions have high
data costs for both model parameterisation and evaluation. Data
concerning the beliefs, values and/or objectives that shape human
decision-making, for example, are needed to construct ABMs
(Robinson et al., 2007; Smajgl et al., 2011) but are difficult to
collect even at local scales. Most land-system ABMs have been
placed-based and landscape-scale because the empirical data
required to construct and use these models are difficult to obtain
at broader scales (Verburg et al., 2019). Furthermore, the inherent
complexity of dynamics resulting from multiple interacting,
heterogeneous individuals can make identifying the causes of
emergent patterns and outcomes challenging. It can be difficult
to establish which features are common to the system of study and
which are contingent on particular boundary conditions or
structures in a case study (Millington et al., 2012; Manson et al.,
2020). In the face of limited data for parameterisation and the high
degrees of freedom in model structure, there may be considerable
subjectivity involved in ABM development (Lee et al., 2015) and
robust empirical verification or validation of a model is challenging
(Schulze et al., 2017). As with all models, the quality of
representation is dependent on the quality of data and theory
available; in the case of ABMs for agency of individual humans
these can be both lacking and contested.

The adoption of more general assumptions, such as the use of
AFTs, may facilitate the application of ABMs to understand human-
fire interactions at a global scale. However, this will require a
substantial improvement in the availability of data on human
activities in relation to fire. Information about fire use in the
context of agriculture, hunting and pastoralism is widespread in

the literature, but fragmented across numerous academic disciplines
including anthropology, sociology, development studies, ecology,
and agronomy (Coughlan and Petty, 2012). Synthesising such data
into a global dataset to provide the empirical basis for improved
modelling of anthropogenic fire is an important research priority.
However, such synthesis could be used with tools such as cluster
analysis to define AFT roles (Malek et al., 2019); this would be
equivalent to gathering primary data e.g., through social surveys for
using ABMs at finer spatial scales (Smajgl et al., 2011). Determining
the global spatial distribution and variation of AFTs defined through
a series of small-scale case studies represents a further challenge, but
could be solved through comparison with secondary data sets and
previous attempts to map land use and land use intensity at the
global scale (e.g., Haberl et al., 2007; Malek and Verburg, 2020).

Representation of the policy development process (see Fire
and Policy) is a major challenge in computational modelling of
socio-ecological systems (Brown et al., 2019). Whilst agent-based
modelling of policy outcomes and their (un-)intended
consequences is comparatively widespread, few models include
an explicit representation of the policymaking process itself
(Castro et al., 2020). Policy is generally represented, at the
regional to global scale, as a weighting towards a given
outcome or ecosystem service provision within land user
calculations (e.g., Holzhauer et al., 2018). One important
shortcoming of this approach for wildfire models is the
inability to account for abrupt policy changes in response to
catastrophic fire regime shocks. Even when representing policy
simply through input parameters, combining consideration of
local, national, and global policy influences with land user
preferences in a model could lead to highly complex emergent
phenomena, with consequences for model interpretation and
utility (Caillault et al., 2013).

Economic Models of Wildfire
Economic analysis examines the human drivers of wildfire
occurrence, its effects on economic activity, and quantifies

FIGURE 4 | External costs of wildfires. Note: The horizontal axis
measures wildfire incidents or area burned. The vertical axis measures costs
and benefits in £. The marginal benefit line shows the additional benefit from
one extra wildfire. Marginal Social and Marginal Private cost lines show
the additional private and social costs from an extra wildfire. FS and FP
represent the social and private optimal wildfire occurrence. Area E shows the
external costs from oversupplying wildfires.
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wildfire costs and benefits in terms of changes in human welfare
(Figure 4). Economic models of wildfire are largely empirical and
aim to establish relationships between variables describing
human behaviour and wildfire, estimate marginal effects, or
monetise impacts. Modelling can be at the micro-level of
individual agents including persons and firms, or at the
aggregate macro-level of jurisdictions, states or countries.

Wildfire can be the intended outcome of the behaviour of
economic agents, where its timing and frequency is determined to
optimise an objective function (Varma, 2003; Yoder, 2004;
Prestemon and Butry, 2005; Purnomo et al., 2017). Economic
models can be used to assess the efficiency of wildfire use, the
extent to which its occurrence aligns with its socially desirable
level. Many wildfire costs are not borne by the agents enjoying the
benefits, and compensation mechanisms are not in place. These
external costs are ignored by fire users, leading to overutilization
of wildfire. At the same time, failure to acknowledge external
benefits can lead to oversupply of suppression and under-
provision of wildfire. Wildfires can occur as a result of
seemingly unrelated economic activity and distorted incentives
(Warziniack et al., 2019; Champ et al., 2020; Kountouris, 2020).
Economic models characterise the wildfire-human interaction,
highlight the presence of external costs and study agents’
incentives, to assist in the development of effective wildfire policy.

Econometric models of wildfire combine variables on natural
and human systems. Models may use time series data, samples of
a population at a given time (cross-sections) or repeated sampling
of the population through time (panel) data. Wildfire occurrence
and burned area information typically come from earth
observation or international, national and local incident
databases. There are multiple sources of economic variables.
Macroeconomic models to assess the relationship between
wildfire and the aggregate economy usually employ data on
national or subnational income, employment, land use, or
other economy-wide metrics (Wibbenmeyer et al., 2019;
Boustan et al., 2020; Liao and Kousky, 2020).
Microeconometric models examining the relationship between
individual agent behaviour and wildfire use consumer,
household, firm or farm level survey, census and
administrative data, and contrast the behaviour of units that
do, or do not experience wildfire and its consequences.

Models assessing either wildfire impacts on economic
outcomes or economic impacts on wildfires typically control
for factors affecting both human behaviour and wildfire.
Unobserved confounders simultaneously determining wildfire
and economic outcomes introduce biases in the estimation of
causal relationships. Researchers utilize variation in space and
time for estimation (Jayachandran, 2009; Moeltner et al., 2013).
Biases due to individual (agent or jurisdiction) specific, time-
invariant unobserved characteristics can be addressed through
differencing or fixed effects estimators, which utilize the time
dimension to remove both observed and unobserved constant-
over-time characteristics, and employ within variation to estimate
coefficients of interest (Michetti and Pinar, 2019; Bayham and
Yoder, 2020).

Endogeneity concerns remain from individual-specific time-
varying unobserved variables, while panel data are not always

available. Assessing the effect of wildfire smoke on health and
behaviour, for example, is challenging as agents can self-select
their degree of exposure. To address this type of problem,
researchers leverage plausibly exogenous variation in agents’
exposure (Angrist et al., 1996). Zivin et al. (2019), for
example, used variation in wind direction to compare
examination performance in schools located upwind and
downwind of a wildfire.

Estimates of the economic value of wildfire impacts can be
used for developing wildfire management policy, and for
comparing different mitigation and adaptation interventions in
a cost-benefit analysis framework. A good or service is considered
to have economic value to the extent it contributes to human
welfare. Economic valuation techniques are used to estimate the
change in human welfare resulting from experiencing wildfire or
its aftermath, and translate this into monetary units. Valuation
assumes substitutability: consumers are willing to sacrifice
income to avoid the negative consequences of wildfire, or are
willing to accept compensation for wildfire damages. The
economic value of some impacts can be inferred directly using
market prices and estimations of the cost of replacing lost
infrastructure and production (Butry et al., 2001; Richardson
et al., 2012; Stephenson et al., 2013). It is harder to capture the
total economic value of wildfire, however, either because there are
no markets and prices for some ecosystem goods and services, or
because observed prices are inaccurate signals of the true
marginal social costs and benefits (Freeman et al., 2014).
Ignoring the value of non-marketed goods and services, and
pricing distortions, reduces the estimated cost of wildfire leading
to its overuse.

The non-marketed impacts of wildfire can be monetised using
revealed and stated preference valuation methods (Freeman et al.,
2014). Revealed preference methods use information from
transactions in related markets to infer the value of an
ecosystem good or service. The travel cost method is used to
monetise the loss in recreational value from wildfire by modelling
demand for recreation activities as a function of burned areas
(Nobel et al., 2020) or wildfire risk (Hesseln et al., 2003). Hedonic
pricing approaches typically use data from property market
transactions to infer the influence of wildfire risk (Donovan
et al., 2007; McCoy and Walsh, 2018) or the proximity to
burned area (Stetler et al., 2010) on property prices. Stated
preference valuation asks consumers to participate in
hypothetical markets and declare their preference for a non-
marketed good or service. In contingent valuation studies
consumers state whether they are willing to pay (accept) some
price to avoid (as compensation for incurring) the effects or risk
of wildfire (Loomis et al., 2005; Loomis et al., 2009; Molina et al.,
2019). In choice experiments, consumers make a series of choices
among hypothetical good profiles comprising a series of attributes
at different levels. When one of the attributes is monetary, the
willingness to pay for each characteristic can be estimated
(Remoundou et al., 2012; Campbell and Anderson, 2019;
Mueller et al., 2019; Alló and Loureiro, 2020). Both stated
preference approaches directly model consumers’ utility to
explain stated choices. Whereas revealed preference methods
only capture the effect of wildfire on use values (recreation,
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amenity etc), stated preference approaches also capture non-use
values (existence, bequest etc.). However, values estimated from
stated preference studies could over- or underestimate the true
costs and benefits of wildfire since they are hypothetical by design
and, although careful design of the hypothetical market may go
some way to reducing the biases (Carson and Groves, 2007;
Vossler et al., 2012), the validity and usefulness of stated
preference value estimates for policy making is highly debated
(Diamond and Hausman, 1994; Hanemann, 1994; Carson, 2012;
Hausman, 2012).

Physics-Centric Models
Wildfire Spread Models
Spread models predict the position and intensity of the wildfire as
a fuction of time and explain how it will evolves over a given
landscape. They are widely used as tools for wildfire preparedness
(e.g., for prescribed burn planning, fuel management, evaluating
threats to values-at-risk, ecological applications, and training
tools) and for operational firefighting (supporting incident
management). They have also been used for post-wildfire
investigations into suppression effectiveness and forensic
support (Pearce, 2009). Additionally, the outputs of wildfire
spread models are also being integrated with fire evacuation
models such as EXODUS (Veeraswamy et al., 2018) and open
source platforms (Ronchi et al., 2019). However, in contrast to the
other types of models described here, wildfire spread models do
not seek to address the two-way interactions between humans
and fire explicitly.

It was understood more than half a century ago that the
principle of energy conservation could provide the basis for
simulating the rate at which a fire front spreads across a
landscape (Rothermel, 1972; Weber, 1991). In fire spread
models, the spread of fire from one grid cell to the next may
be based on the physical conservation of energy principle.
Physics-centric fire models include models of fuel-flame-plume
interactions, such as Wildland Fire Dynamics Simulator (WFDS)
(Mell et al., 2009). These models include physical processes such

as fluid dynamics, combustion, heat transfer, pyrolysis,
microphysics and turbulence, which are generally resolved at a
high spatial resolution (cm-scale). Other physics-centric models
are concerned with plume-atmosphere interactions, which
usually involve coupling relatively simple fire models within a
high resolution mesoscale atmospheric model such as the
Weather Research and Forecasting model (WRF-FIRE)
(Mandel et al., 2011).

Physics-centric models are computationally demanding and
are not able to simulate fire spread in real-time (Figure 5). Semi-
empirical fire spread models were developed in response to
operational needs to simulate the spread of fire across
landscapes in real-time, or ideally faster than real-time. Such
fire spread or fire growth models use spatial data on fuel
characteristics (e.g., vegetation type, loading, moisture
content), topography (elevation, slope, aspect), and weather
(temperature, relative humidity, wind speed, wind direction).
Model outputs (e.g., fire perimeter, fuel consumption) are
determined by empirical fire behaviour sub-models, termed
fuel models – a suite of empirically-derived fuel-specific
equations that describe the relationship between the fuel,
topography and weather inputs, and the fire rate-of-spread
and/or intensity. The spatially-explicit simulation of a fire
spread across a landscape uses Huygens’ physical principle of
elliptical wave propagation (Richards, 1990; Finney, 1998).
Examples of semi-empirical fire spread models include the
Fire Area Simulator (FARSITE: Finney 1998) and Prometheus
(Tymstra et al., 2010). FARSITE was developed by the U.S. Forest
Service (USFS) as a National System for predicting wildland fire
behaviour and spread in areas of the United States and is widely
used by federal/state land management agencies as an operational
tool for planning land management fires, responding to escaped
fires, and responding to wildfire incidents. FARSITE’s empirical
fuel models rely upon the surface fire predictions of Rothermel
(1972), whose equations were derived from a series of small-scale
laboratory burns based on homogeneous dead fuel beds. In
contrast, the Prometheus model uses empirical fuel models

FIGURE 5 | Typical time and space scales for different types of wildfire spread models Figure by Ronchi et al. (2019), CC BY.
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representing 16 fuel types typical of Canadian ecosystems based
on measurements of landscape-scale fires (Tymstra et al., 2010).
Prometheus is mainly used to provide a decision-support tool to
aid fire managers planning prescribed fires, and in responding to
escaped fires which necessitate the need to fight fire on the
landscape (Suffling et al., 2008), but has also been used to
examine landscape fire risk (Parisien et al., 2005; Stralberg
et al., 2018). Other examples of semi-empirical fire spread
models include Phoenix (Tolhurst et al., 2008) and SPARK
(Miller et al., 2015) developed for Australian bushfires (Neale
and May, 2018).

As well as providing information on spatially-explicit fire
perimeters, most of the semi-empirical models will also
provide information on fireline intensity (kW m−1), flame
length (m), rate of spread (m min−1), heat release density (kJ
m−2), reaction intensity (kW m−2), along with information about
such behaviours as crown fire activity (e.g., FARSITE).
Depending on their use, fire spread models may include a
number of additional physical or parameterised sub-models.
Some examples include the parameterisation of embers-driven
spotting behaviour (Finney, 1998) and emissions modules that
may be used for subsequent modelling of smoke plume dispersion
(Volkova et al., 2018).

Global Fire Models
Global fire models are mathematical representations of processes
that determine the occurrence and extent of fire, including
ignition, spread, fuel combustion, vegetation mortality and
natural suppression (Hantson et al., 2016). Global fire models
are designed to interface with dynamic global vegetation models
(DGVMs) to explicitly model the impact of fire on ecosystems
and large-scale vegetation distribution. However, since DGVMs
are increasingly included in the land-surface component of
climate or earth system models, fire-enabled global vegetation
models are also used to make predictions of how changes in fire
regime impact pyrogenic emissions, biogeochemical cycles and
ultimately climate.

The vegetation model in which the fire model is embedded
provides information about the vegetation, generally in terms of
the proportions of different plant functional types present, and
this in turn determines the amount of both live and dead fuel
loads. Climate affects both vegetation growth and the probability
of fire. Temperature and precipitation determine what plant types
can grow and their productivity, for example, and hence
determine fuel availability; they also determine the rate at
which fuel dries out and therefore whether it is susceptible to
burn. Wind speed, fuel continuity and the atmospheric vapour
pressure deficit are important factors determining the rate at
which a fire spreads and hence how large an area is burnt.

The most fundamental assumption underpinning the
representation of fire in global vegetation-fire models is that
processes can be represented mathematically and are universal
in space and time. Spatial or temporal patterns in the expression
of these processes should arise explicitly from the patterns in the
controls on these processes. Thus, for example, a lightning strike
will trigger an ignition if it produces a long continuing current
sufficient to reach a given temperature threshold. Spatial

differences in the number and energy of cloud-to-ground
lightning strikes then determine how many lightning ignitions
will take place in a given region. Similarly, an ignition will cause a
fire only if the fuel bed is sufficiently dry; spatial differences in the
occurrence of fire after ignition are then determined by climate
factors that affect fuel dryness in a given location.

The implementation of universal processes modulated by
spatial or temporal differences in their controls is not always
straightforward. In practice, many global vegetation-fire models
use simplifications (parameterisations) of complex processes or
represent these processes through empirical relationships. For
example, fuel drying rates are determined not only by the
atmospheric vapour pressure deficit and wind speed but also
by the size and arrangement of the fuel (fuel packing). The
influence of fuel packing on drying is represented through
empirical relationships that relate packing to the size of the
fuel, which in turn is related to the rate of drying and fire

FIGURE 6 | Simplified representation of the structure of a global fire
model. The orange boxes represent natural processes and the blue boxes
human activities that impact fire starts, spread or duration, exclusion and/or
suppression. The grey arrows show pathways taken by individual global
fire models where arrows to a specific box show that this process is included
explicitly. GPP, gross primary production; RH, relative humidity; PD,
population density; GDP, gross domestic product: PFT, plant functional type.
The Nesterov Index is one example of a fire danger index where ignition
probability is calculated as a function of climate. The Rothermel equation is a
quasi-empirical expression for the rate of fire spread based on the
conservation of energy.
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spread. Simplifications may also be introduced because of
inadequacies in the available input data. For example, until
recently the only global lightning data set available provided
information about the total number of lightning strikes (Cecil
et al., 2014), requiring assumptions about the partitioning
between cloud-to-cloud and cloud-to-ground strikes and about
the energetic efficiency of cloud-to-ground strikes (Latham and
Schlieter, 1989). In the absence of other information, it is usually
assumed that these relationships are constant in space and time
(see e.g., Thonicke et al., 2010).

Further simplifications are introduced (see Hantson et al.,
2016; Rabin et al., 2017) because global vegetation-fire models are
designed to operate at a coarse resolution (0.5° × 0.5° or coarser).
This has three consequences. Firstly, the input data are specified
at this resolution which means the model is run using average
conditions. For example, the influence of wind speed on fire
spread does not take account of variable wind gustiness or of
pyrogenically induced winds. Secondly, models do not predict the
precise location of a fire, but rather the proportion of a grid cell
that is affected. Finally, there are no interactions between grid
cells: fires do not spread from grid cell to grid cell.

Although most global fire-vegetation models include some
consideration of the role of humans in fire regimes (Rabin
et al., 2017), this is the area which is treated most simplistically
in the current generation of models. Humans are considered as
a source of ignitions in many models (Figure 6). The number
of ignitions is generally specified as a function of population
density, increasing up to a threshold value where there are no
additional ignitions with increasing population. Both the
strength of the relationship between population density and
number of ignitions and the threshold value are empirically
tuned and vary between models. Some models employ
different relationships between population density and
number of ignitions depending on human economic
systems (e.g., LPJ-LMfire: Pfeiffer et al., 2013), although
again the values are empirically tuned. Humans may also be
considered as a source of landscape modification (Figure 6),
both promoting (e.g., agricultural fires, deforestation fires) and
suppressing (e.g., through landscape fragmentation) fire.
However, the failure to identify a universal process
susceptible to mathematical formulation and modification
through changes in easily obtained inputs means that these
treatments are not fully prognostic. For example, deforestation
fires are currently simulated using observed patterns of
deforestation as an input. This allows the ecological,
biogeochemical and climatic consequences of recent
deforestation to be quantified, but the model has no
predictive power because it does not incorporate process
understanding about the causes (and therefore the possible
future occurrence) of deforestation. Similarly, although most
models exclude fire in cropland areas and thus account for the
contribution of agricultural expansion to landscape
fragmentation, models which include fire as an agricultural
management tool are not fully prognostic, relying on data
derived from remote sensing for burned cropland fraction
(Rabin et al., 2018) or for empirical (non-process-based)
parameterization of crop fires (Li et al., 2013).

Global vegetation-fire models are useful tools for investigating
the impact of changes in climate on fire regimes and feedbacks to
climate. In a world increasingly affected by changes in land use
and land management, it is imperative to incorporate more
realistic treatments of human-fire interactions (Andela et al.,
2017; Forkel et al., 2019a; Teckentrup et al., 2019; Hantson
et al., 2020). Improved understanding of the processes
involved, identification of which drivers could be specified
from global data sources, and the creation of appropriate
driving data sets are key to implementing human-fire
interactions in global models in a realistic way.

Fire and Policy
Policies are a set of ideas or guidelines for the actions undertaken
by many types of organisation including governments, non-
governmental organisations (NGOs) and businesses. Fire
policies may draw on the information provided by the various
fire models described in the preceding sections and – through
their impact on human behaviour and vegetation – change the
input data for these models. Thus, when thinking about
modelling human-fire interactions, it is helpful to consider
how policies are developed and implemented (Figure 7).

Policies are usually developed in response to a problem.
However, the problem of fire can be framed very differently:
for example, ecologists may focus on maintaining biodiversity by
managing the size and timing of fires in line with the needs of an
ecosystem or species of interest, whereas town councils will focus
on preventing damage to people and infrastructure. In response
to the 2015 Paris Climate Agreement, managing land use to
reduce carbon emissions or increase sequestration has become an
increasingly powerful driver for many fire-related policies (Eloy
et al., 2019). However, land usemanagement decisions necessarily
involve trade-offs between the aspirations of different groups of
people (Mace et al., 2018). Thus although policies to reduce
emissions from deforestation and forest degradation and enhance
carbon stocks (REDD+) are promoted as win-win solutions, their
implementation could lead to significant carbon-biodiversity
trade-offs in fire-prone old-growth grassland ecosystems and
reverse progress made in decentralising forest management to
local communities (Phelps et al., 2010; Phelps et al., 2012).

Policy formulation is a messy and unpredictable process
(Cairney, 2015) that involves weighing up and negotiating trade-
offs, that are essentially about power, relationships, responsibility
and accountability (Nunan et al., 2018). In many cases, policy is
determined more by politics than evidence. In Australia, for
example, the compulsory purchase of land by government
recommended by the Victoria Bushfire Royal Commission on the
catastrophic fires of 2009 (Teague et al., 2010) was not adopted
because of its political unpopularity (Bowman et al., 2011). Similarly,
an investigation into a fire in which five fire-fighters died in Spain
terminated discussion of the limitations of fire control (González-
Hidalgo et al., 2014). The adoption of evidence-based policymay also
be limited because the underpinning bodies of evidence, whether
local or global, are rarely neutral. Fire experiments, which informed
both colonial and post-colonial fire policy in West Africa, were
designed to test the belief that the savanna was the product of
generations of anthropogenic burning (Laris and Wardell, 2006), a
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view that has been widely contested both by social scientists
(Amanor, 2002; Leach and Scoones, 2015) and by ecologists
(West et al., 2000; Bond and Zaloumis, 2016). Knowledge-
production is fundamentally political in nature, as is evident in
the privileging of remote sensing and quantitative analyses over
traditional ecological knowledge in supporting fire suppression
policies (Sletto, 2008; Leach and Scoones, 2015).

Fire-related policies broadly fall into two categories, state-enforced
regulations and market-based mechanisms, though the boundaries
between them are increasingly blurred (Sikor et al., 2008; Lambin
et al., 2014). Regulatory policies include land use zoning associated
with rules about whether and when fires can be set. Market-based
mechanisms, such as commodity roundtables (e.g., the Roundtable
on Sustainable Palm Oil) may be implemented by the private sector
but enforced by NGOs. Payments for Environmental Services
schemes, like REDD+, may involve both governments and NGOs
in implementation and enforcement (Lambin et al., 2014). The
different approaches can co-exist. Carmenta et al. (2017), for
example, report that severe peat fires in Sumatra led to the
development of a variety of fire management interventions across
scales, sectors and stakeholders, ranging from new regulations to
technical innovations, developments in fire monitoring and the
provision of incentives to communities for fire-free practices.

Once policies are formulated, there is an assumption that they will
be implemented (Figure 7). In reality, there is often a large policy-
implementation gap. This may arise because responsible authorities
lack the capacity or resources to enforce new rules. It can also be the
result of poor policy development processes which have not
effectively addressed the trade-offs experienced by some
stakeholders. The fire exclusion policy adopted in Bale National
Park in Ethiopia, for example, forced local communities to stop small-
patch burning practices and resort to illlicit fires, often set late in the

dry season when ignition is more likely, to maintain the grazing
landscape, with the inadvertent result that the size of fires in the park
has increased (Johansson et al., 2019). In contrast, wide acceptance
allows Indigenous Tagbanua farmers in the Philippines to practise
traditional fire-based swidden farming despite the practice being
criminalised for decades by both state and non-state actors (Dressler
et al., 2020). Political interests may also undermine policy intentions.
In Tanzania, for example, community forest and fire management
initiatives must defend collectively owned lands from the hunting
fires set bymore powerful and politically well-connected stakeholders
who hold hunting concessions (Khatun et al., 2017). Understanding
the diverse motivations for fire use is essential if interventions are to
succeed (Carmenta et al., 2017). In the case of Sumatran peat fires, for
example, no single stakeholder group is primarily responsible for fire-
setting and there are many nuanced motivations for setting fires
(Carmenta et al., 2017). Co-production of fire policies through the
involvement of local stakeholders (Laris andWardell, 2006;Monzón-
Alvarado et al., 2014; Humphrey et al., 2020) and the recognition of
traditional knowledge in the environmental policy making process
(Rodríguez et al., 2018; Bilbao et al., 2019; Devisscher et al., 2019;
Mistry et al., 2019) may be important ways to narrow the policy-
implementation gap. When policies are evaluated (and possibly
adapted) there is a need to disaggregate across societal groups,
with particular attention paid to the voices of often marginalised
stakeholders, such as the poorest, Indigenous peoples and women
(Schreckenberg et al., 2018).

ISSUES AND COMMONALITIES

The models discussed here originate from diverse disciplines,
were developed for different purposes and address different

FIGURE 7 | Simplified policy cycle: Far from being a technocratic exercise, politics is embedded in the cycle, from the framing of the problem to determining which
evidence to use, weighing up trade-offs between different policy options, ensuring resources and buy-in for policy implementation and undertaking and reacting to
evaluation.
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questions, include different types of processes, and operate on
different time and space scales, resolution and complexity
(Figure 1). Nevertheless, they share some common features.

Each type of model has a theoretical basis for the
representation of the relationship between humans, the
biological, physical, and in some cases, spiritual, attributes of
the environment, and fire. The underlying theory may be
incomplete, the theoretical basis of some individual models
developed within each class of models may even be wrong, but
there is an assumption that the models should embody causal
relationships. Data analysis or machine-learning approaches have
been used to derive empirical relationships or parameterisations
for economic models (Papakosta et al., 2017; Storm et al., 2020)
and global fire models (Forkel et al., 2017; Stralberg et al., 2018;
Forkel et al., 2019b), and may even be useful for the development
of typologies (e.g., Delgado et al., 2018), but these are not
unsupervised analyses and the types of data are selected based
on the underlying theory involved.

Each type of model is a simplification of the complexities of
the real world. Even place-based models of fire knowledge
represent a partial view, because participants are selected or
self-select, because people understand and relate to fire in
multiple ways which may not always be elicited in the
process of model construction, or because some social
constructs are difficult to represent. Practical considerations
also lead to simplification, whether this is the limited computer
power available for global-scale fire modelling which precludes
ultra-high resolution in order to simulate individual fires (see
e.g., Toivanen et al., 2019) or the limited data availability that
necessitates substituting travel costs to monetise loss of
recreational value in economic modelling (e.g., Hesseln
et al., 2003; Nobel et al., 2020). Simplification may be driven
by considerations of the relative importance of specific
processes at a given time or space scale, informed by theory,
or by lack of appropriate data. Lack of quantitative data on the
timing and extent of human burning and fire suppression in
agricultural areas, for example, underpins the widespread use of
population density as a surrogate measure. However, all of the
types of model require extensive data inputs, and in many cases
data limitations are the strongest constraint on model
development.

The models differ in potential for co-production by scientists
and stakeholders that use or manage fire or are directly impacted
by wildfires. In some cases, stakeholder knowledge is
incorporated by scientists into a pre-determined model
structure. This is the case, for example where stated preference
approaches are used in economic modelling (e.g., Loomis et al.,
2005), or interview and social survey data feeds into an agent-
based model (e.g., Spies et al., 2017). Stakeholders may also
participate more directly, potentially playing a part in defining
the structure of the model. Place-based models of fire knowledge
have been most amenable to such participatory modelling
approaches (e.g., Bilbao et al., 2019). Generally, co-production
is more likely and feasible where models operate at smaller spatial
scales, and can incorporate information from individuals or
communities, and where power differentials between
stakeholders are less extreme.

Each type of model is oriented towards and designed to lead to
practical outcomes. Place-based models of fire knowledge, for
example, can be used to engineer dialogues between different
groups of stakeholders or help promote cultural identity. ABMs
can be used to develop locally relevant policies for landscape
management, while economic models can be used to ensure that
the hidden costs and benefits of wildfire are factored into the
development of effective fire management policies. Global fire
models provide a way to predict changes in fire regimes and fire
impacts in response to future climate and land-use scenarios.
However, different types of models may yield different
recommendations for fire policy and management because of
their very different foci and scales. The need to develop more
holistic fire-related policies and practices provides a good
motivation for combining the strengths and benefits of
different types of models.

Some differences between the models may be more apparent
than real. There is an apparent tension for example between the
assumption made by global fire models that processes are
universal and the place-centred focus of place-based models of
fire knowledge. This translates into the perception that policies
and practices based on local knowledge cannot be usefully applied
elsewhere. However, global fire models also assume that universal
processes such as ignition, fire spread and extinction are governed
by factors that vary spatially, such as climate or vegetation
properties or land use, thus giving rise to different fire regimes
(Hantson et al., 2016). The use of agent typologies (e.g., Lauk and
Erb, 2016) makes a similar assumption - that there are universal
activities or types of behaviour, although the mix of different
agent types may change through time or across space as do
climate and vegetation properties.

MOVING FORWARD: KEY CHALLENGES
AND A ROADMAP FOR MODEL USE AND
INTEGRATION
The major challenge for developing better models of human-fire
interaction is lack of data that can be used to develop heuristic,
globally-applicable schemes in amodelling framework. Collecting
field data at a local level is time-consuming. The synthesis of data
from multiple local studies into a global data set could provide
one route to obtaining sufficient data to parameterise models,
whether these are ABMs, economic models or fire-enabled
vegetation models, but the quality of such a synthesis depends
to some extent on whether the same information has been
collected and whether the same data-collection methods have
been applied (Costafreda-Aumedes et al., 2017). Many place-
based models of fire knowledge are not framed in the quantitative
way required for use by global fire models, for example. There is
also an issue about representativeness. In the physical sciences,
there are standard methods that are used to judge what is the
minimum data set required to provide global metrics (see e.g.,
Mann et al., 2008). Such an assessment is likely to be more
difficult given the diversity of human socio-economic and
cultural systems and the heterogeneity of their influences on
fire. Furthermore, research on human use and management of
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fire is fragmented across many disciplines and heterogenous in
the methods used and data produced. However, this situation is
not uncommon in studies of socio-ecological systems, and meta-
study methods to synthesise diverse case-studies have been
developed (Magliocca et al., 2015; van Vliet et al., 2016). Large
scale syntheses using such methods are ongoing (e.g., Perkins
et al., 2021; Smith and Mistry, 2021), with the aim of improving
systematic understanding of human use and management of fire,
which in turn will be useful in developing improved human-fire
models.

The scaling-up of models that function at a local scale to the
global scale is also a major challenge. Models of fire spread, for
example, explicitly deal with the influence of topography, whereas
global fire-enabled vegetation models ignore topographic
influences. To some extent, this is because of the
computational cost that working at sufficiently high resolution
would entail but it also reflects decisions about the importance of
specific factors at different scales, and whether these processes can
be represented probabilistically rather than deterministically.

To some extent, scaling up can be seen as a process of
simplification. For example, scaling ABMs to the global scale
could involve defining a limited number of Agent Functional
Types (AFTs) based on theoretical typologies derived for
example from local fire studies. This would be parallel to the
use of Plant Functional Types (PFTs) in most of the current
generation of dynamic global vegetation models (and indeed in
most land-surface models). This parallel is informative about
the potential traps involved in such simplification. The original
idea behind the use of PFTs to represent plant functional
diversity involved classifying plants in terms of adaptations
to climate (Prentice et al., 1992; Harrison et al., 2010),
drawing inspiration from the seminal work of Raunkiær
(1909). PFTs defined in this way do not necessarily represent
plant functional diversity with respect to other traits, for
example they do not distinguish between fire-adapted, fire-
tolerant and fire-intolerant species (Pausas et al., 2004;
Brando et al., 2012; Clarke et al., 2013). Furthermore, recent
empirical (Diaz et al., 2015) and theoretical (Wang et al., 2017;
Smith and Keenan, 2020; Wang et al., 2021) developments
suggest that there are alternative ways to treat plant diversity,
including simulating the adaptive traits directly (e.g., Scheiter
et al., 2013; Fyllas et al., 2014; Berzaghi et al., 2020) or as
emergent properties of the system (Wang et al., 2017; Franklin
et al., 2020; Harrison et al., 2021). Thus, in the creation of
simplified representations of human-fire interactions, it will be
important to consider both the purpose of the model which will
use these relationships and to test the theoretical basis for such
representations rigorously. Furthermore, in so far as the
development of typologies of fire users assumes there are
universal rules governing how specific fire-user types behave
across time and space, or that certain fire practices are associated
with certain environmental conditions, there is a danger of
adopting outdated concepts including environmental
determinism or societal evolution through linear stages of
economic development, with corresponding land
management practices, from primitive to modern (Coughlan
and Petty, 2013; Coughlan, 2015).

Despite these challenges, there are ways to move forward.
Climate projections are made using scenarios of changes in
anthropogenic emissions and land use developed using
alternative assumptions about human activities in the future,
for example a continued dependence on fossil fuels or the
widespread adoption of deliberate strategies to reduce
emissions (O’Neill et al., 2017; Riahi et al., 2017). Global fire-
enabled vegetation models can use these climate projections to
examine the consequences of climate changes for future fire
regimes, but they could also use the underlying scenarios
about human activities to modulate the treatment of human
ignitions and/or suppression.

Notwithstanding the highly political nature of much policy-
formulation, the potential for different types of models to lead to
radically different outcomes for policy and management means
that some form of model integration is vital. The primary step is
the development of ways to use outputs from one model to
inform other models. For example, global vegetation-fire models
could be used to make projections of the probability of climate-
induced changes in fire regimes. These projections could be used
in the context of economic models to determine the costs and
benefits of fire management or fire reduction at a regional scale.
Agent-based models could then be used to establish whether
specific mitigation actions are likely to be taken up in these
regions. The predicted changes in human behaviour could then
be used to construct new scenarios for incorporation into global
vegetation-fire models simulations. The enchaining of models in
this way is already integral to impact modelling, for example in
the framework of the ISIMIP project (Rosenzweig et al., 2017).
The challenge is either to develop consistent terminology and
standardised protocols that allow outputs from one model to feed
into another model or to provide appropriate tools that translate
these outputs into appropriate formats.

Another step in using multiple kinds of models to address
human-fire interactions could focus on the implicit coupling of
global and regional models. Global climate simulations, for
example, are used to provide the boundary conditions for
regional climate models which because of their higher
resolution can be used to project the influence of local
features, such as large lakes, on regional climate (e.g., Diallo
et al., 2018). Higher-resolution regional models can also reduce
the need for parameterisation of individual processes (Giorgi,
2019), but since they operate on a limited spatial domain they can
do so without excessive computational costs. Similar approaches
could be adopted with fire modelling, either to link similar types
of models across scales (e.g., fire spread models and global
vegetation-fire models) or to derive probabilistic
representations of human-fire interactions derived from local
studies into global-scale models. Improved coupling between
regional and global scales would facilitate addressing fire
policy questions since wildfires are not typically confined to a
single jurisdiction. Fire management has a global dimension, as
illustrated by climate change mitigation concerns and
transboundary pollution associated with forest fires in the
tropics (Khatun et al., 2017). Scale is a challenge for natural
resource governance, since ecological and social/administrative
processes rarely occur on the same spatial or temporal scale
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(Nunan et al., 2018) and politics and power often determines the
scale at which decisions are made (Zulu, 2009). Effective multi-
level governance requires both vertical coordination between
actors at different levels and horizontal cooperation, e.g.
between different sectors (Nunan et al., 2018).

It is difficult to envisage creating a single model that addresses
all the different questions and scales currently addressed by
different types of human-fire models. Nevertheless, there are
obvious avenues for integration. The use of local conceptual or
placed-based models of fire knoweldge and of global fire-use
typologies to develop agent classifications for use in global ABMs
seems a fruitful avenue to explore. ABM can be readily combined
with economic models (e.g., Bert et al., 2015), and building
economic constraints into land- and fire-use decision-making
would be useful. There is also an important gap in linking

place-based models of fire knowledge with ABM. Given that
landscape-scale ABMs have already drawn on interviews, surveys
and workshops with fire managers in developed-world contexts
(e.g., Millington et al., 2008; Spies et al., 2017), there is no reason
why models could not be derived from data generated in similar
ways with indigenous fire practitioners. Pursuing such model
integration to understand human-fire interactions in developing
world landscapes will be important for improving firemanagement
and ensuring sustainability under changing socio-economic and
climate conditions.

There is potential for global ABM predictions to be
incorporated in fire-enabled global vegetation models: given
that some global models already allow relationships between
population density and number of ignitions to vary depending
on changes in human economic systems through time (e.g.,

FIGURE 8 |Options for integrating an agent-based model of anthropogenic fire impacts into a fire-enabled global vegetation model or Earth SystemModel (ESM).
The table shows examples of socio-ecological feedbacks that could be captured by tight model coupling.
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Pfeiffer et al., 2013), this could be extended to include other
human-fire interactions, such as suppression. Including humans
as agents within a fire-enabled global vegetationmodel would also
lay the groundwork for incorporating feedbacks between
changing fire regimes and changing human activities
(Figure 8). For example, under a loose model coupling, the
ABM would provide static inputs to the fire-enabled global
vegetation model, for example by replacing anthropogenic
ignitions from population density with an ABM output. Under
a tighter-coupling (Figure 8), the ABM would be run alongside
the fire-enabled global vegetation model, allowing cross-system
feedbacks to be captured though at the expense of significant

additional model complexity. In a loose coupling, the ABM’s
ecological inputs such as land cover and NPP would come from
secondary data, whilst under a tighter model coupling, these
could come from the dynamic outputs of the fire-enabled global
vegetationmodel (Antle et al., 2001). Designing rigorous methods
of evaluating these coupled human-fire models, as is already done
for fire-enabled vegetation models (Hantson et al., 2020), will
require careful consideration.

The enchaining of models is not unidirectional. While it may
be useful to think how insights gained at local scales or models
that consider a single component of the human-fire system can
contribute to improving global fire models, there could also be a

FIGURE 9 | Simulated burned area by the middle of the 21st century (2040–2049) in response to the SSP2-RCP4.5 scenario made with the CESM2-WACCM
coupled climate model, (A) for northern Africa, and (B) for South America.
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useful flow of information from global models to other kinds of
fire modelling. When modelling closely coupled human-
natural systems, it is common to explore the uncertainty
associated with policy decisions, socioeconomic trends, and
technological development by exploring discrete scenarios for
the future. These scenarios, or storylines, can be used to set up
simulations from one kind of model that can then be fed into
other kinds of models, in order to evaluate various aspects of
the changing Earth system. The Inter-Sectoral Impacts Model
Intercomparison Project (ISIMIP), for example, uses scenario-
based trajectories from climate, economic, and land-use models
as inputs to models that simulate the impacts of climate change
on sectors including agriculture, human health, fisheries, and
many others (Frieler et al., 2017). The outputs from global fire
models could be used in a similar way. For example, global fire
models driven by different scenarios of climate change could
provide information about potential changes in fire frequency,
burned area and fire intensity. These outputs could then be used
in economic modelling, as the environmental constraints for
ABM modelling at a regional or local scale, or as what-if
scenarios for local fire modelling. This can be illustrated by
considering simulations of the response of burned area to
changes in climate and land use under the SSP2-RCP4.5
scenario made with the CESM2-WACCM coupled climate
model (Danabasoglu et al., 2020). By the middle of the 21st
century (2040–2049), the model predicts a decrease in burnt
area in western Africa although there is a substantial increase in
burnt area in a limited area of north-central Africa (Figure 9A).
In contrast, the model predicts a generalised increase in burnt
area along the southern margin of Amazonia (Figure 9B). The
projections of decreased burnt area in western Africa suggest
that rigorous fire suppression policies may not be required as
part of conservation measures to protect forested areas. On the
other hand, the projected increase in burnt area in South
America would have major economic and policy
implications. These kind of scenario maps could also form
the basis for exploring how local populations could adapt their
current use of fire.

Above all, the process of coupling different types of model
will be a learning exercise, in part because it challenges narrow
discipline-bound assumptions and in part because it provides
the opportunity to assess the strengths and weaknesses of
different approaches to understanding human-fire
interactions (Antle et al., 2001; Voinov and Shugart, 2013).
Coupling different types of models should facilitate detailed
representation of individual elements of human-environment
systems and also exploration of the links and feedbacks between
those elements. However, there are technical, conceptual and
semantic challenges in model coupling (Janssen et al., 2011),
and these challenges are linked to important issues of model
uncertainty and assessment (Millington et al., 2017). Semantic
integration of models requires ensuring language,
understanding, and perspectives on the entities and processes

being modelled are shared between modellers from different
disciplinary backgrounds. Conceptual integration requires
ensuring alignment and consistency of concepts and units as
information is passed between models, likely requiring
conversion of units but also potentially concepts. Assessing
the types and magnitudes of uncertainty introduced through
model coupling will be an ongoing issue, although tools are
available to assist in its management (e.g., Bastin et al., 2013).
Coupling models of human activity with biophysical models to
improve our understanding of fire regimes can benefit from the
previous experience to couple models rooted in different
scientific disciplines (e.g., Janssen et al., 2011; Voinov and
Shugart, 2013; Calvin and Bond-Lamberty, 2018). Ultimately,
model coupling should provide a stronger foundation for
making predictions about future fire regimes and how these
are influenced and will influence human actions. It will also
provide a basis for the co-production of fire-related policies that
take account of the aspirations of all sectors of society, thus
promoting environmental justice.
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