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1 Introduction

Quantum computers promise to solve specific computational problems much faster
than any conventional computer [1]. Their elementary building blocks are two-level
systems called quantum bits (qubits) [2]. Like classical bits, they are comprised of
two fundamental states, denoted as |0〉 and |1〉. Two important effects distinguish
qubits from their classical counterparts: superposition and entanglement. The
former describes the ability of qubits to be in both fundamental states at the same
time. The latter is defined between multiple qubits and means that the states of
these no longer have to be independent of each other.

Superposition and entanglement lead to the enormous gain in computing perfor-
mance for certain problems [3]. Potential applications of quantum computers are
manifold, including integer factorization [4], quantum encryption [5], [6], database
search [7], simulations of large and complex systems [8], [9], drug research and
discovery [10], [11], material science [12], as well as general optimization problems
[13] like quantum machine learning [14].

In the last 30 years, different physical realizations of qubits have been proposed. Well-
known examples are ion traps [15], [16], individual photons [17]–[19], semiconductor
quantum dots [20]–[22], and superconducting circuits [23]–[26]. Recently, especially
the latter gained additional momentum due to the increasing interest and research
activities of major information technology companies like Google, IBM, and
Microsoft [27]. In March 2018, Google presented a superconducting quantum
processor with 72 qubits [28]. One and a half years later, they successfully
demonstrated quantum advantage [29] on 53 qubits by outperforming a classical
supercomputer when sampling the result of a pseudo-random quantum circuit.

Eventually, many more qubits are necessary for a universal quantum computer [30],
as they are subject to noise of the environment. Together with intrinsic imperfections,
this distorts the qubit states leading to errors [31], [32]. To perform successful
calculations, these must be accounted for using quantum error correction. In contrast
to classical correction schemes, hundreds to thousands of physical qubits are needed
to form a protected, so-called logical qubit [33]. A universal quantum computer will
thus need thousands of physical qubits for a few logical ones [30].
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1 Introduction

Scaling of multi-qubit systems is currently one of the challenges on the path
to quantum computation and it is still unclear how the architecture of a future
quantum processor will look like. Research towards a universal quantum computer
has to consider the full hardware and software stack. An essential component is
the interface between quantum algorithm and quantum processor which requires
sophisticated control electronics [29], [34].

For superconducting qubits, such electronics needs to cover the generation of
microwave signals with frequencies of up to 10 GHz [35], [36], as well as data
acquisition and processing of similar signals to read out the state of the qubits [37],
[38]. With arbitrary pulse shaping necessary and pulse durations between a few
and hundreds of nanosecond [39], [40], this also implies tight timing requirements.
Some quantum processors furthermore depend on nanosecond-accurate flux pulses
generated by currents with microampere strength [41], [42], or DC bias currents,
spanning a broad range from microampere to multiple amperes for some special
applications [43], [44]. Advanced experiment and control schemes, as well as online
data processing and reduction are necessary to cope with the high input data rates
of tens of gigabyte per second and to reach sufficient statistics in reasonable time
[45]–[47]. Custom electronics based on a field-programmable gate array (FPGA) can
be utilized to meet the high processing demands [48]–[50].

In this thesis, such a control electronics for the interface between quantum and
classical processing domains, called QiController, is designed, implemented, and
tested. Major objectives for its development have been applicability to different
types of superconducting qubits, as well as usability, scalability, and flexibility. It is
targeted at advanced research and near-term applications with quantum processors.
It also explores concepts to control future quantum processors. To leverage its
full capabilities, the QiController is complemented by a high-level programming
language, called QiCode.

The QiController is extensively tested with various superconducting single- and
multi-qubit chips. The experiments range from single-qubit characterization
measurements, over continuous observations of quantum jumps and time-resolved
multi-qubit characterizations, to high-precision online state preparations using a
fast feedback scheme. Some of these experiments are infeasible or even impossible
to implement with commercial laboratory equipment. They demonstrate the
capabilities of the QiController, as well as its flexibility, scalability, and usability.
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2 Fundamentals

Building electronics for quantum computing in general and superconducting
quantum bits (qubits) in particular requires a solid understanding of the physical
principles regarding these qubits and belonging measurement concepts. This chapter
first introduces the basic principles of quantum computing before elaborating
in more detail on its realization using superconducting materials. Then, field-
programmable gate arrays (FPGAs) and heterogeneous systems are introduced.

2.1 Quantum Computing

Quantum computers operate fundamentally differently than their classical counter-
parts. Problems that seem to be impractical to solve on a classical computer might be
no challenge at all for a quantum computer [1]. Its power essentially emerges from
the laws of quantum mechanics, especially the phenomena of superposition and
entanglement [3]. However, quantum computers will most likely not replace classical
computers as general-purpose machines. Rather, they can act as complementing
accelerators in a heterogeneous computing system for special problems that can be
efficiently solved on a quantum computer [51], [52].

Harnessing the quantum mechanical nature of these systems, one area of application
relates to the simulation of systems that behave according to quantum mechanical
laws [8]. This includes atoms as well as molecules and can, for example, be used
for material science [12]. But it also includes more complex structures like proteins
and their folding mechanisms which are very complex and resource-intensive to
simulate classically [10]. Molecule and protein simulations both offer extensive
opportunities in the field of drug research and discovery [11]. Other applications
can be formulated as optimization problems which can be efficiently solved on
a quantum computer [13]. This includes the area of quantum machine learning
[14]. It also covers the simulation of large and complex systems, like solving the
Navier-Stokes nonlinear differential equations for a viscous fluid [9]. Yet other
applications center around the Grover algorithm to search efficiently through an
unstructured database [7] or quantum encryption [5], [6] and Shor’s algorithm to
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2 Fundamentals

perform efficient integer factorization [4]. The latter can have a significant impact
when universal quantum computers are available and powerful enough to break the
security of modern cryptosystems like RSA [53].

However, right now, these applications are still in the future and it is not well-
established when a universal quantum computer with sufficient qubit count will be
available. Yet, a few basic conditions that any experimental setup needs to fulfill in
order to build a universal quantum computer can already be formulated. These are
called the DiVincenzo criteria [54] and require a setup that:

1. is a scalable physical system with well-characterized qubits,

2. has the ability to initialize the qubits into a well-defined state,

3. consists of qubits with long coherence times in comparison to gate operations,

4. supports a universal set of quantum gates, and

5. provides means to reliably measure the qubit states.

The following sections will therefore elaborate on the definition of a qubit, means to
control and measure their state, and how they are scaled up in a quantum computing
architecture.

2.1.1 Quantum Bits

Classical computers process information in binary form. The unit of information are
bits which can only be in one of the two elementary states 0 and 1, corresponding
to two distinct voltage levels VGND and VCC, respectively. Likewise, their quantum
computing counterpart, the qubits, have two fundamental states, labeled |0〉 and |1〉
[2]. In most cases, these are eigenstates of the Hamilton operator Ĥ of the system
with energy eigenvalues E0 and E1.

As qubits behave according to quantum mechanical laws, they can also be in a linear
superposition of these two eigenstates:

|q〉 = α |0〉+ β |1〉 with α, β ∈ C, |α|2 + |β|2 = 1 . (2.1)

α and β are complex-valued coefficients which are only limited by the normalization
requirement

〈q|q〉 :=
∫

Ψ∗q (x)Ψq(x) dx = 1 . (2.2)

Therefore, the superposition state |q〉 can be rewritten as follows:

|q〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 . (2.3)
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|0〉

|1〉
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x
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Figure 2.1: Schematic figure of the Bloch sphere, illustrating the possible states of a qubit. Next to it,
the two energy levels E0 and E1 of the qubit corresponding to states |0〉 and |1〉 are shown. [43]

This representation emphasizes that there is a two-dimensional manifold of possible
qubit states. These can be depicted as points on a spherical surface as shown
in Figure 2.1. This representation is called Bloch sphere and states are depicted
by a Bloch vector pointing from the origin onto the sphere’s surface [55]. In this
representation, the polar angle θ describes the probabilities of the states and the
azimuth angle ϕ expresses the relative phase between them. On the Bloch sphere,
θ defines the state component along the z axis and ϕ describes the component in
the x-y plane. Accordingly, state |0〉 is located at the north pole of the sphere, and
|1〉 on the south pole [56]. Consequently, operations on the qubit are in SU(2), i.e.
rotations around the surface of the sphere.

In a physical system, the qubit is inevitably coupled to the environment. This
coupling is necessary to interact with the qubit and manipulate and read out its
state. It also leads to noise and decoherence of the qubit state [31]. To characterize
these effects and thereby the quality of the qubit, two types of time constants are
important: First, the energy relaxation time T1 which describes the decay time of the
higher energy state |1〉 back to the ground state |0〉. And second, the decoherence
time T2 which defines the timescale on which the state of the qubit is lost. Besides
the energy relaxation, this also includes when the phase ϕ between both states
becomes blurred. Both times are related via a third constant, Tϕ, called the pure
dephasing time. They can be linked when expressed as decay rates [32]:

1
T2

=
1

2T1
+

1
Tϕ

. (2.4)
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2 Fundamentals

2.1.2 Quantum Gates

Quantum gates are linear operations used to manipulate the state of a qubit. To
be able to perform all possible operations, one needs to define a universal set of
gates [57]. Single-qubit gates are rotations on the surface of the Bloch sphere, i.e.
can be represented as operations in SU(2) [58]. One possible set of single-qubit
gates are rotations around the different basis axes. These are expressed as Rx/y/z(θ)

where x/y/z denotes the axis around which the rotation is performed and θ the
rotation angle. Special cases of such rotations are the Pauli gates X/Y/Z which are
rotations around the respective axis with θ = π. The X operation can be compared
to a classical not operation, as it flips the qubit state from |0〉 to |1〉 and vice versa.
In mathematical representation, gates acting on a state are interpreted the same way
as matrices being multiplied with a vector. This means that AB |ψ〉 says that gate B
is applied onto the qubit state |ψ〉 and, afterwards, gate A is applied.

Probably the most popular single-qubit gate is the Hadamard gate H [59]. It is
defined by its behavior on the two fundamental states |0〉 and |1〉:

H |0〉 = |0〉+ |1〉√
2

and H |1〉 = |0〉 − |1〉√
2

(2.5)

creating a superposition state from the two basis states. It can be decomposed
to rotations around the Bloch sphere as H = X

√
Y = Rx(π)Ry(

π
2 ). This is a

90° rotation around the Y axis, followed by a 180° rotation around the X axis. An
interesting property of the Hadamard gate is that it is an involution, i.e. H2 |ψ〉 = |ψ〉
for all qubit states |ψ〉 of the computational subspace.

Besides the one qubit gates, a two-qubit gate is necessary to define a universal set
of gates [57]. One candidate for such a two-qubit gate is the CNOT or CX gate
(conditional not gate) [59]. It acts on two qubits where the first qubit is referred to
as control qubit, and the second qubit as target qubit. When the control qubit is in
state |0〉 it leaves the target qubit unchanged. If the control qubit is in state |1〉, an X
operation is performed on the target qubit, thereby flipping its state:

CNOT |00〉 = |00〉 , CNOT |01〉 = |01〉 ,

CNOT |10〉 = |11〉 , CNOT |11〉 = |10〉 .
(2.6)

In this notation, the single qubit states have been summarized, i.e. |01〉 ≡ |0〉 |1〉. A
different two-qubit gate is the CZ or CPhase gate. It behaves exactly the same as
the CNOT gate but instead of a conditional X rotation, it performs a conditional Z
rotation on the target qubit.

Yet another popular two-qubit gate is the iSWAP gate. Contrary to the conditional
gates, the iSWAP is symmetric. It swaps the qubit states between two qubits and
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2.1 Quantum Computing

Table 2.1: State of the art parameters for different qubit realizations. Values show the highest reported
values for qubit lifetime T2 and two-qubit gate fidelity. [62]–[67]

Qubit type Lifetime T2 Gate fidelity Gate time Gates per T2

Superconducting 50 − 100 µs 99.7 % 10 − 50 ns 1000 − 10 000
Trapped ions 1 − 1000 s 99.9 % 3 − 100 µs 10 000 − 108

Photons 150 µs 98 % 1 ns 150 000

adds a phase of i to the amplitudes of the |01〉 and |10〉 contributions [60]. Its action
on the basis states of the two qubits is therefore defined as:

iSWAP |00〉 = |00〉 , iSWAP |01〉 = i |10〉 ,

iSWAP |10〉 = i |01〉 , iSWAP |11〉 = |11〉 .
(2.7)

Physically, the iSWAP gate is realized by a resonant exchange interaction X⊗ X +

Y ⊗ Y between the two qubits [61]. By cutting the interaction time in half, one
can furthermore obtain a

√
iSWAP gate which is suitable as two-qubit gate for a

universal set of gates.

What kind of gates are available depends on the physical implementations of the
qubits and the coupling between them. When one elementary two-qubit gate is
available, other gates can be constructed as a composition of this two-qubit gate and
additional single-qubit gates, similar to classical logic.

Each gate will also take a finite duration to execute. When assessing the quality
of a qubit or a quantum processor, it is important to determine how many gate
operations can be successfully performed. This has to take into account both the
real-world fidelity of a gate implementation, as well as its duration when compared
to the decoherence time T2 of the qubits. Table 2.1 summarizes state of the art
parameters for the three most popular qubit realizations to illustrate the current
status and scale of these values.

2.1.3 Quantum Registers

Combining multiple qubits together leads to a quantum register. Similar to a
classical register with N bits, a quantum register is a collection of N qubits that
can hold values ranging from 0 to 2N − 1. The single qubit states of a register are
grouped together to shorten the necessary notation, e.g.:

|0〉 |0〉 |1〉 |1〉 |0〉 |1〉 |1〉 ≡ |0011011〉 ≡ |27〉 . (2.8)

7



2 Fundamentals

As qubits can be in a superposition, a quantum register (|qN−1〉 , . . . , |q0〉) can hold
all 2N possible values at the same time. If, for example, all qubits are in an equal
superposition of both states, i.e. |qn〉 = H |0〉 = 1√

2
(|0〉+ |1〉), one obtains:

|X〉 = 1
2N/2

N−1

∏
n=0

(|0〉+ |1〉) = 1
2N/2 (|0 . . . 00〉+ |0 . . . 01〉+ |0 . . . 10〉+ . . .)

=
1

2N/2

2N−1

∑
m=0
|m〉 .

(2.9)

This is an equal superposition of all classically possible register states [55].

If one uses this superposition state of the register to calculate the outcome of a
classical function, one will thus calculate all possible outcomes at the same time.
This can be further leveraged using quantum entanglement. When entangled, the
qubit states within the register are no longer independent. An arbitrary, classical
function of the form

f : {0, 1, . . . , 2N − 1} 3 m 7→ f (m) ∈ {0, 1, . . . , 2N − 1} (2.10)

can then be fully encoded using a register of 2N qubits in the following way:

|X〉initial =
1

2N/2

2N−1

∑
m=0
|m〉 |m〉 1⊗ f−→ |X〉 = 1

2N/2

2N−1

∑
m=0
|m〉 | f (m)〉 . (2.11)

In this operation, the register |X〉 is initially prepared to represent the same number
m twice in the first N and the second N qubits, i.e. |m〉 |m〉. That means that the
first N qubits of the register are now entangled with the second N qubits. Both
parts will always hold the same number when read out, but all possible numbers
with equal probability 2−N . Then, the function f is applied once to the second N
qubits in the register. The first part of the register stays untouched, still holding the
functions input values. Now, the first N qubits encode the possible input values
|m〉 and the second N qubits are entangled to represent the according function
results | f (m)〉. With this mechanism, the whole function f is now encoded inside a
2N-sized quantum register.

In a classical computation, the function would have been executed for each possible
input value, i.e. 2N times. Therefore, by preparing the quantum register in a
superposition of all possible input values an exponential speedup is gained as the
function only needs to be executed once. Additionally, while this takes only 2N bits
in a quantum register, a classical computer would need N2N bits to store the same
function in a lookup table. Therefore, also exponentially less space was needed
to store the same amount of information. For algorithms that require all possible
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2.1 Quantum Computing

function values to be evaluated, this can have a major impact. This is especially the
case if a global property of the function should be tested, like in the Deutsch-Jozsa
algorithm which is introduced in the next section.

However, this example can also show a bottleneck of quantum computing. If the
superimposed state of the register is read out, only one of the possible values will
be returned. Moreover, the measurement projects the register to this result and the
information of the whole function is lost. Generally speaking, while an N qubit
quantum register can hold a large amount of information, a readout of such a
register can only extract N classical bits of information. Therefore, it is essential that
the register is prepared in a state where it contains the relevant information before
it is read out. But measurements being projective is only one challenge for quantum
algorithm engineers. Another challenge is the no-cloning theorem which states that
it is not possible to copy an arbitrary qubit state to another qubit [68]. Therefore,
classical algorithms are mostly not suited to be implemented the same way in a
quantum computer.

2.1.4 Quantum Algorithms

This yields for a new class of algorithms, specifically tailored to the capabilities and
limitations of quantum computers. One of these is the Deutsch-Jozsa algorithm [69].
It is used to determine a global property of an unknown function f : {0, 1}N →
{0, 1}. For the Deutsch-Jozsa algorithm, the task is to find out if the function is
either constant, i.e. has the same output for every input, or balanced, i.e. returns 0
for half of the input values and 1 for the other half. It is guaranteed that f fulfills
exactly one of these two global properties. While this problem is of little practical
relevance, it was the first quantum algorithm that was proven to solve a specific
problem exponentially faster than any classical algorithm can [3].

In a classical computer, solving this problem would require to calculate the outcome
of up to one more than half of the 2N individual input values to be sure that it is
really constant. Thus, it will need to execute the function up to 2N−1 + 1 times. The
quantum algorithm, on the other hand, only has to perform the calculation once
due to a possible superposition of all input values. We thereby gain an exponential
speedup in time complexity for this particular problem. Furthermore, the quantum
computer can perform the whole algorithm with just N + 1 qubits.

The working principle of the quantum algorithm is simple: Instead of checking
every single result one by one, the resulting quantum register with the superposition
of all results is further transformed. At the end, all qubits of the register will be in
state |0〉 if the function is constant. Otherwise, some or all of the qubits will be in
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Figure 2.2: Circuit diagram of the Deutsch-Jozsa algorithm acting on N + 1 = 5 qubits Q0 to Q4. All
qubits are initialized in the ground state |0〉 at the beginning. Then, different gate operations are
applied, including Hadamard (H) and NOT (X) gates. The results of the final measurements (purple
measurement blocks) are stored as bits of a classical register C. [70]

state |1〉. Then, the function is balanced. To determine which outcome is the case,
the qubit states are measured once and thereby projected to a classical outcome. The
algorithm is designed in a way, that the resulting state in the qubits is pure in both
cases. That means that the projection of the measurement will not change the state
in the quantum register. Thereby, one measurement is sufficient to determine this
global property of the function. It should be noted that, while one learns about this
property, one does not get any information about the single function output values
[55], as opposed to the classical algorithm.

Algorithms acting on a quantum register are often depicted as circuits consisting
of qubits (horizontal lines) and gates (boxes). The time sequence of the gates
is the order along the horizontal axis. The circuit diagram of the Deutsch-Jozsa
algorithm is shown in Figure 2.2 for N = 4 data qubits and one ancilla qubit (Q4).
Ancilla qubits are auxiliary qubits to assist during calculations. The data qubits are
initialized in an equal superposition of all states by performing a Hadamard gate on
each of them. The ancilla qubit is first prepared in the |1〉 state by performing a X
gate, before also being prepared in a superposition by a Hadamard gate. The oracle
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is the function implemented in a specific way. Let |x〉 = |q0q1q2q3〉 be the data qubits
and |y〉 = |q4〉 the ancilla qubit, then the oracle performs the following operation:

|x〉 |y〉 oracle−→ |x〉 |y⊕ f (x)〉 . (2.12)

The operation ⊕ denotes the addition with modulo 2. This entangles the data qubits
with the ancilla qubit:

1√
24

24−1

∑
m=0
|m〉 |0〉 − |1〉√

2
oracle−→ 1√

24

24−1

∑
m=0
|m〉 |0⊕ f (m)〉 − |1⊕ f (m)〉√

2
. (2.13)

As an effect, it will add a negative global phase to all states |m〉 in the data qubits
where f (m) = 1, but not for those with f (m) = 0:

1√
24

24−1

∑
m=0

(−1) f (m) |m〉 |0〉 − |1〉√
2

=
1√
24

24−1

∑
m=0

(−1) f (m) |m〉 |q4〉 . (2.14)

Afterwards, a second Hadamard operation is performed on the data qubits. If no
negative phases have been collected, this will return all zeros again. The same holds
true if a negative phase was collected for all states, as it then only is a global constant
in the state, i.e. (−1)const. = ±1, const. ∈ {0, 1} for all contributions:

±1√
24

24−1

∑
m=0
|m〉 |q4〉

[H]4⊗1−→ ±
[

4−1

∏
n=0

H
|0〉+ |1〉√

2

]
|q4〉 = ±

[
4−1

∏
n=0
|0〉
]
|q4〉 . (2.15)

In contrast, if negative phases have been collected in exactly half of the cases, the
state will be orthogonal to the state before the oracle:

〈x, y|x, y⊕ f (x)〉 = 1
24

24−1

∑
n=0

24−1

∑
m=0

(−1) f (m) 〈n|m〉 〈q4|q4〉 =
1
24

24−1

∑
m=0

(−1) f (m) = 0 .

(2.16)
Thus, in the constant case, the oracle keeps the data qubits untouched with exception
of a non-measurable, global phase. In the balanced case, the data qubits will be
orthogonal to the initial state and thereby also to the resulting state of the constant
case. After applying the Hadamard gates in this balanced case, one obtains a new
state |Ψ〉 of the data qubits. In the constant case, one obtains ± |0000〉 as was shown.
As the states after the oracle are orthogonal for both cases, this also applies for the
states after the Hadamard gates, i.e. 〈0000|Ψ〉 = 0. Thus, the probability to measure
all zeros will vanish for the balanced case [71]:

P(|0000〉) = |〈0000|Ψ〉|2 = 0 . (2.17)

To summarize, after the Deutsch-Jozsa algorithm, one measurement of the data
qubits is enough to determine if the investigated function is balanced (all qubits
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are in |0〉) or not (at least one qubit is in |1〉). This is achieved by applying the
information of the function using the oracle onto the ancilla qubit. However, the
ancilla qubit itself is not further investigated after the oracle. Instead, the operations
will lead to a so-called phase kickback within the data qubits which is depending on
the properties of the function. This is a common technique used in many quantum
algorithms [71].

Grover’s algorithm [7] is another well-known quantum algorithm which performs
quantum searching. It provides quadratic speed up over a classical computer when
searching through a large set of unstructured data. The underlying principle is
called amplitude amplification technique and can also be used as part of a variety
of other algorithms [72]. In essence, an equal superposition of all database entries
is created in a quantum register. Subsequently, however, only the amplitudes of
the relevant entries are amplified while the contributions of all other entries are
reduced.

But the most famous quantum algorithm is probably Shor’s algorithm [4] due to its
relevance in cryptography. For a long time, it was assumed that the factorization
of a composite number of two large primes cannot be performed in polynomial
time. Composite integers are the product of two smaller integers. The security of
many public key cryptography systems rely on this assumption. One of them is the
RSA cryptosystem [53]. It is widely used for secure data transmission. While the
assumption may still hold for classical computers, Shor’s algorithm provides the
means to factorize composite integers in polynomial time on a quantum computer.
In future, quantum computers might thus be able to break these cryptosystems.

Shor’s algorithm consists of two parts, one part which is performed on a classical
computer and a quantum calculation. The classical part reduces the number
factoring problem to the problem of order-finding. The latter is equivalent to finding
the period of a function and can be efficiently solved by a quantum computer using
a quantum Fourier transform. The result is then again post-processed classically
to find one of the prime factors. Shor’s algorithm is therefore a good example
of a quantum computer acting as complementing accelerator in a heterogeneous
computing system. The algorithm is furthermore probabilistic as, with a small
probability, it will not return a prime factor. This is due to the fact that the algorithm
relies on randomly picking a number as initial input. By repeating the algorithm
multiple times with different inputs, the probability to not obtain a result is
exponentially suppressed [73].
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2.1.5 Quantum Error Correction

In a classical computer, errors can happen in the form of bit flips, i.e. the value of a
bit changing unintentionally between 0 and 1. For qubits, the energy relaxation
time T1 would be the typical time scale on which such bit flip errors occur. But
also other types of errors can occur due to the ability of arbitrary superpositions.
Therefore, also the decoherence time T2 is an important figure. For most qubit
realizations, these times are only a few magnitudes larger than the typical time
to perform a gate operation [1]. Therefore, errors happen regularly during the
calculation with such a system and an error correction mechanism is necessary.

Classical error correction is mostly handled by redundantly copying the information
and performing checksum calculations to determine if a bit has flipped in one of the
copies [74]. In quantum computation, this is not possible. The qubits can stay in
arbitrary superpositions of the two fundamental states, but reading out the state
will destroy this superposition and return only one of the two alternatives. More
generally speaking, it is even impossible to copy the state of a qubit, which is also
formulated as the no-cloning theorem [68]. Thus, classical error correction schemes
cannot be applied.

Instead, entanglement is used to create an error correction code. The information of
one logical qubit will be encoded in the entangled state of multiple physical ones,
e.g. with three qubits [75]:

|q〉L = α |0〉L + β |1〉L = α |000〉+ β |111〉 . (2.18)

Now, if a bit flip occurs on one of these qubits, one can detect this error using
syndrome measurements. By just comparing if the physical qubits are the same,
but not checking the actual state they are in, one will not destroy the superposition
but only determine if an error has happened or not. By performing multiple of
these syndrome measurements, one can directly infer the qubit that has flipped
and perform an appropriate correction gate. Furthermore, a continuous error on
the Bloch sphere is projected onto just two discrete outcomes, i.e. state flipped or
not. The correction algorithm used for this simple case is the bit-flip-code [75]. As
the name suggests, it can only correct bit-flip-like errors within the logical qubit.
A more sophisticated code which can fully correct a single qubit is the Shor code,
which requires nine physical qubits to create one logical one [76].

A more general class of error correction codes are so-called stabilizer codes [77],
[78]. In this case, the data qubits are appended by additional ancilla qubits. Then,
one generates a highly entangled, encoded state for the logical qubit which corrects
for local noisy errors. Regular, repetitive measurements of the ancilla qubits will
stabilize the encoded quantum information. When an error happens, it is detected
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by the ancilla qubits and can be tracked or even corrected. One example of such a
code is the surface code [79], [80].

2.2 Superconducting Quantum Bits

Superconducting qubits are artificial atoms built from superconducting materials.
For a better understanding, first some basic concepts of superconductivity are given,
before the implementation of superconducting qubits is covered, as well as readout
and control mechanisms.

2.2.1 Superconductivity

First observed by Kamerlingh Onnes in 1911 [81], superconducting materials
completely drop their electrical resistance below a critical temperature TC. Also,
multiple other effects have been observed in superconductors which cannot be
explained classically. This includes the Meissner effect where an external magnetic
field is completely expelled from the interior of the superconductor or phenomenons
like flux quantization [82].

It was only in 1957, that John Bardeen, Leon Cooper and John Robert Schrieffer
(BCS) proposed a microscopic theory that was able to explain these behaviors [83].
According to this BCS theory, two electrons attract each other via the exchange
of a virtual phonon, the quantum of lattice excitations in solids. With thermal
fluctuations becoming weaker at lower temperature, two electrons can form a bound
state, a so-called Cooper pair. These pairs do not obey the Pauli exclusion principle
anymore and thus can all occupy the same ground state similar to a Bose-Einstein
condensate. The binding energy of the two electrons also leads to an energy gap
within the spectrum between this bound state and the state of free electrons. If
scattering processes cannot transfer enough energy to break these Cooper pairs,
scattering will be suppressed. Cooper pairs can then travel without friction through
the superconducting material. As these consist of two electrons and are therefore
charge carriers, a current can flow without any resistance but is limited by a
critical current threshold. Above it, the Cooper pairs have enough kinetic energy
to participate in scattering processes leading to non-vanishing electrical resistance
[84].

In the common ground state of the Cooper pairs, the whole superconductor is
described by a single, global wave function

Ψ(x) = |Ψ(x)| · eiϕ(x) . (2.19)
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Weak link

Superconductor 1
Ψ1 with phase ϕ1

Superconductor 2
Ψ2 with phase ϕ2

Josephson phase φ

r1 r2

Figure 2.3: Schematic structure of a Josephson junction. [43]

This wave function can also be used to explain other effects observed in supercon-
ductors. One of these is the Josephson effect [85] which describes the behavior of
two superconducting electrodes connected via a weak link called Josephson junction
(see Figure 2.3). Each electrode has its own wave function Ψi due to the weak link,
but both are related to each other via the Josephson phase

φ = ϕ2 − ϕ1 −
2π

Φ0

∫ r2

r1

A dr . (2.20)

Here, ϕi are the phases of the wave functions Ψi and Φ0 = h/2e is the supercon-
ducting flux quantum.

The Josephson phase is directly linked to observables via the Josephson equations
[84] which describe the junction behavior:

U(t) =
Φ0

2π

∂φ

∂t
(2.21)

I(t) = Ic sin(φ(t)) (2.22)

where Ic is the critical current through the junction. It is the highest possible current
that can flow through the junction without causing any dissipation. As seen from
the first equation, an applied voltage U(t) across the junction will lead to a constant
drift in the Josephson phase. Vice versa, a change in φ will also induce a voltage. By
the second equation, the Josephson phase is directly linked to the current flowing
through the junction I(t). Following from these equations, one can calculate the
inductance L = U/ ∂I

∂t across the junction [31]:

L(φ) =
Φ0

2π Ic cos(φ)
. (2.23)

As this inductance depends on the phase φ across the junction, it can be utilized as a
non-linear element to design specific circuits and corresponding energy structures.
One example are superconducting qubits.
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2.2.2 Two-Level Quantum Systems

A fundamental concept of quantum mechanics is the discretization of energy.
Systems like atoms, molecules, or the quantum harmonic oscillator all show discrete
energy states in which they can be situated. For atoms, these can be different electron
populations of the orbitals. For molecules, one can additionally observe discrete
vibrational and rotational modes. A quantum harmonic oscillator shows equally
spaced energy levels En = h̄ω(n + 1

2 ) corresponding to different excitation modes.

To build a qubit, only two states |0〉 and |1〉 are needed to form the computational
subspace: a ground state |0〉 with energy E0 and an excited state |1〉 with energy
E1 > E0. Spin 1/2 particles in a magnetic field, for example, fulfill this condition [2].
In general, also multi-level systems can be used when the different levels can be
addressed independently. This requires that the anharmonicity α = ∆E1,2 −∆E0,1
is large enough. One example would be Rydberg atoms where two distinguished
energy states are picked from the spectrum to define the required computational
subspace [86], [87]. In contrast, the harmonic oscillator is not suited for this, as α = 0
and one cannot distinguish between the different energy levels.

Nevertheless, artificial two-level quantum systems are often based on a harmonic
oscillator where a source of anharmonicity is added in order to reach the desired
energy spectrum. For superconducting qubits, a simple implementation is a charge
qubit [23]. It is constructed out of a classical LC harmonic oscillator where the
inductance is replaced by a Josephson junction acting as non-linear element. The
state of the charge qubit is determined by the number of Cooper pairs that have
tunneled across the junction. It is therefore also quite sensitive to charge noise
which limits its usability [88]. To alleviate this, different improved designs have
been proposed, with the Transmon qubit currently being the most popular one.

Transmon qubits are charge qubits shunted by a large capacitance [24]. This leads to
a suppression of the system’s susceptibility to charge noise. The first Transmon qubit
was introduced by Koch et al. A sketch of it is depicted in Figure 2.4. Fluctuations
in the charge will not significantly influence the qubit properties anymore due to
the large capacitance. The effective Hamiltonian Ĥ stays the same as for the charge
qubit and is given by

Ĥ = 4EC(n̂− ng)
2 − EJ cos φ̂ (2.24)

where n̂ is the number operator of the Cooper pairs tunneling through the junction,
ng is the effective offset charge induced by an external gate voltage Vg and φ̂ is the
operator of the Josephson phase which corresponds to the gauge-invariant phase
difference between the two superconductors. The charging energy is defined as
EC = (2e)2/2C and the Josephson energy as EJ = Φ0 Ic/2π.
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Figure 2.4: (a) Effective circuit of the original Transmon qubit by Koch et al. (b) Design schematics of
the same Transmon qubit. The single Josephson junction is replaced by a superconducting quantum
interference device (SQUID) so the qubit frequency can be tuned by an external flux. The coil and the
belonging current source to create this flux are sketched in brown on the right side of the SQUID.
The crossed boxes in the SQUID loop represent the Josephson junctions characterized by the intrinsic
capacitance CJ and the Josephson energy EJ ∝ Ic . Clearly visible is the large interdigital capacitor CB
that shunts the charge qubit. The qubit is capacitively coupled (Cg) to a transmission line resonator (Lr

and Cr , sketched in red). The resonator is coupled to the transmission line capacitively via Cin . The
system can be controlled by applying an external gate voltage Vg . [24]

In contrast to the charge qubit, for the Transmon qubit it holds EJ � EC. With
increasing

√
EJ/EC, the sensitivity to charge noise, i.e. fluctuations in n̂, exponen-

tially decreases. At the same time, the anharmonicity α u −EC also decreases.
In order to obtain a useful qubit, the anharmonicity needs to remain sufficiently
large, α/h & 100 MHz. Otherwise the system cannot be approximated as a two-level
system anymore and higher levels play a significant role in the dynamics of the
structure. Thus, a trade-off needs to be found between anharmonicity and the
suppression of charge noise [24].

Another type of improved qubit is the Fluxonium [25]. Instead of a large capacitance,
the charge qubit is shunted by a large inductance. As both sides of the junction
are now electrically connected, charge noise is also effectively suppressed. For the
Fluxonium qubit, the inductance is realized by a series array of Josephson junctions,
see Figure 2.5. Using this technique, high energy relaxation times T1 of up to 1 ms
have been achieved [89], [90]. Instead of fabricating a series of junctions, one can
also use granular aluminum for the inductance [35]. It exhibits similar behavior due
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(a) (b)

(c) (d)

Figure 2.5: (a) Sketch of a Fluxonium qubit coupled to a readout resonator and a 50 Ω transmission
line. (b) Structure of the series array of many Josephson junctions forming the large inductance. (c)
Electric circuit representation of the qubit with the array of junctions. (d) Simplified circuit model of
the Fluxonium qubit being a inductively-shunted charge qubit. The circuit also contains the readout
circuitry (marked in gray). [25]

to the granular structure but is easier to fabricate. As the large inductance and the
single Josephson junction form a loop, the qubit is tunable by an external magnetic
flux Φext. This also becomes obvious when looking at the Hamiltonian [25]

Ĥ = 4ECn̂2 +
1
2

ELφ̂2 − EJ cos
(

φ̂− 2π
Φext

Φ0

)
. (2.25)

On the downside, this dependency makes the qubit sensitive to flux noise. A
mitigation strategy is to apply an external field to operate the qubit in the
Φext/Φ0 = ±0.5 sweet spot. There, the spectrum is first-order insensitive to
flux-noise. Furthermore, energy relaxation due to non-equilibrium quasi-particles
tunneling through the Josephson junction is suppressed [91].

2.2.3 Rabi Cycles

The states of an atom can be probed and populated using light-matter interaction.
To excite an atom, i.e. transferring an electron to a higher state, a photon with the
energy difference of the old and the new state can be absorbed:

ω01 =
E1 − E0

h̄
. (2.26)
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This scenario is well-studied in quantum optics. It is described by the Jaynes-
Cummings model [92] where the Hamiltonian is split into three terms:

Ĥ = h̄ωr â† â +
h̄
2

ω01σ̂z + h̄g
(

σ̂+ â + σ̂− â†
)

. (2.27)

In this model, the atom is located inside a cavity. The cavity is a harmonic oscillator
represented by the first term and its resonance frequency ωr. Its creation and
annihilation operators â† and â, respectively, create and destroy a single photon
in the cavity. Each photon contributes h̄ωr energy to the system. The first term
therefore expresses the total energy of the cavity, with N̂r = â† â being the number
operator of photons in the cavity. The second term describes an atom consisting
of two energy levels. It thus can be represented like a spin using Pauli operators.
When projected, σ̂z returns either +1 or −1. Thus, the energy difference of the two
states is given by h̄ω01 = E1 − E0. Finally, the third term describes the interaction
between atom and cavity with the constant g defining the coupling strength. The
operators σ̂+/− excite and de-excite the qubit. The term can thus be interpreted
in the following way: The qubit transitions from |0〉 to |1〉 (corresponding to σ̂+)
when a photon from the cavity is absorbed (â). And it transitions back from |1〉 to
|0〉 (corresponding to σ̂−) by emitting a photon back into the cavity (â†).

This scheme also applies for artificial atoms like superconducting qubits. Typical
resonance frequencies fr = ωr/2π and qubit transition frequencies f01 = ω01/2π

are located around a few gigahertz and thus in the microwave domain.

To alter the state of the qubit, a microwave pulse at drive frequency ωdr and
amplitude A ∝ ωA can be applied. This will result in so-called Rabi cycles where
the qubit is periodically excited and de-excited. When starting in the ground state
|0〉, the probability to end up in the excited state |1〉 after a well-defined time t is
given by:

P(|1〉) =
(ωA

Ω

)2 1− cos(Ωt)
2

(2.28)

with Rabi oscillation frequency Ω =
√
(ωdr −ω01)2 + ω2

A [93]. For the special case
ωdr = ω01, i.e. driving the qubit on resonance, this simplifies to:

P(|1〉) = 1− cos(ωAt)
2

= sin2
(

ωAt
2

)
. (2.29)

By varying amplitude and length of the microwave pulse, one can periodically
drive oscillations between the qubit’s |0〉 and |1〉 state population. This corresponds
to rotations around the Bloch sphere, as introduced in Section 2.1.1. E.g. fixing a
certain amplitude ωA and choosing the time t such that t = π/ωA, or vice versa,
one obtains a π rotation.
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Furthermore, the phase of the drive tone will determine the axis on the equator of
the Bloch sphere around which the rotation takes place [94]. Typically, one arbitrarily
chooses one phase which will correspond to rotations around the x axis, e.g. the
phase of the first drive pulse. Then, a relative phase of π/2 with respect to this
reference will lead to rotations around the y axis. A phase offset of π corresponds to
counter clockwise rotations around the x axis, and so on. As the phase reference is
only an arbitrary definition, one can also perform so-called virtual Z rotations [94].
That means that one intentionally changes the phase reference by a well-defined
angle −η. This corresponds to a rotation of the reference frame by this angle around
the z axis. As, obviously, the qubit state does not change by this redefinition, from
the view of the adapted reference frame, the qubit has now itself rotated around the
z axis by the angle +η. This can be used to perform error-free and instant rotations
around the z axis. As this Rz(η) rotation does not require physical interaction with
the qubit, it is called a virtual gate.

2.2.4 Dispersive Readout

When a qubit is coupled to a harmonic oscillator, the state of the qubit will affect the
properties of the oscillator. Transforming the Hamiltonian in Equation 2.27 using a
unitary transformation and neglecting fast oscillating terms, one obtains an effective
Hamiltonian which is diagonalized and time-independent. The approximation is a
common element in quantum optics and called rotating wave approximation [95].
The diagonalized Hamiltonian can be written as

Ĥeff ≈
h̄
2
(ω01 + χ)σz + h̄(ωr + χσ̂z)â† â (2.30)

with dispersive shift χ = g2/∆ and detuning ∆ = ω01 −ωr, |∆| � g [37].

The second term represents the cavity. Due to the coupling, a shift in the resonance
frequency ωr → ωr ± χ is observed. Its sign depends on the qubit state as given by
σ̂z. Therefore, by observing the cavity’s resonance frequency fr = ωr/2π one can
infer the state of the qubit. This is also depicted in Figure 2.6.

In an experiment setup, one will most likely operate with fixed frequency pulses.
Thus, the amplitude and phase response of such a pulse has to be evaluated.
Depending on the resonator, the experiment setup, and the frequency used, the
state can either be mostly encoded into an amplitude difference (when pulsing at
frequency ωr ± χ) or a phase difference (using ωr). In Figure 2.6, this is visualized as
dotted black lines. As the dispersive shift χ is usually much smaller than depicted,
it is typically beneficial to measure the phase. The first derivative of the amplitude
vanishes around the resonance frequency which gives reduced sensitivity to small
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(b) Phase response of the resonator.

Figure 2.6: Schematic picture showing the qubit chip response as a function of the frequency.
Depending on the qubit state, the resonance frequency of the coupled resonator is shifted by plus (blue
line, state |1〉) or minus (red line, state |0〉) the dispersive shift χ. The response of the bare resonator
without coupled qubit is indicated as dashed gray line. (a) Amplitude of a signal transmitted through
the cryostat with a Lorentzian-shaped dip at the resonance frequency. (b) Phase of the transmitted
signal.

frequency changes. Contrary, the first derivative of the phase exhibits an extremum
at this point which makes it better suited to observe the qubit state [37].

Performing measurements will project the qubit state to either state |0〉 or |1〉. Thus,
one can retrieve two discrete phase values, ϕ0 or ϕ1, corresponding to these two
qubit states. Depending on the measurement setup, the noise on the signal might
exceed the difference of these values and averaging becomes a necessity. In this case,
one cannot infer the qubit state for a single measurement outcome. By repeating the
experiment and averaging, one obtains an approximation of the qubit population

P(|1〉) = 〈ϕ〉 − ϕ0

ϕ1 − ϕ0
. (2.31)

If the qubit stays in the detected state after the measurement, one furthermore
calls the operation a quantum non-demolition (QND) measurement [96]. This is a
special type of detection scheme that minimizes the disturbance introduced by the
measurement process. It is an important concept in quantum physics. The dispersive
readout scheme is a QND measurement, as long as the power of the readout tone is
sufficiently small to not cause adverse side effects [38].
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2.2.5 Transition Frequency Tuning

Depending on the design of the superconducting qubits, their transition frequency
f01 can either be fixed or influenced externally. Generally speaking, it is advanta-
geous to have fixed-frequency qubits as otherwise additional noise channels can
significantly increase qubit decoherence. However, depending on the experimental
requirement and the realization of quantum gates, frequency tunability can some-
times be required, e.g. for an implementation of a two-qubit gate or to perform a
physical Z rotation.

To be able to change the frequency, and equivalently the energy difference between
|0〉 and |1〉, one can replace the Josephson junction by a split-pair geometry, i.e.
two parallel ones. These then form a loop in the circuit which is equivalent
to a superconducting quantum interference device (SQUID). SQUIDs are very
sensitive to magnetic flux passing through the loop due to flux quantization of the
superconducting material. The properties of the junctions are then a function of
external magnetic flux Φext in this loop, and so is the transition frequency of the
qubit. For Transmon qubits, this theoretically results in [97]:

f01(Φext) ∝

√∣∣∣∣cos
(

πΦext

Φ0

)∣∣∣∣ . (2.32)

However, due to fabrication variations, the Josephson junctions in the SQUID loop
will not be perfectly identical. This will result in a slightly deviating dependency
with a reduced tunability range not reaching zero frequency. More details can e.g.
be found in the supplementary material of [41].

By placing a bias current line close to the SQUID loop and applying a DC current
through it, a controlled magnetic field can be created in the vicinity of the qubit.
Thereby, the transition frequencies of individual qubits can be tuned independently
by adapting these bias currents. Taking the Biot-Savart law into account, it is clear
that there is a linear dependency between the current through the bias line and the
magnetic flux Φ within the SQUID loop.

2.2.6 Example Implementation

To illustrate typical scales for properties of superconducting qubits, one qubit
is presented in the following as an example. It is a concentric Transmon qubit
that has been designed and fabricated at the National Institute of Standards and
Technology (NIST) in Boulder in the United States. The qubit properties mentioned
in the following are taken from characterizations performed in [98]. A microscopic
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2.2 Superconducting Quantum Bits

Figure 2.7: Microscopic pictures showing a concentric Transmon qubit. Light areas are superconducting
TiN layers. The remainder of the chip shows the silicon substrate. (a) Overview over the whole sample.
The meandered structure in the center is a λ/2 transmission line resonator used to dispersively read
out the qubit state. It is capacitively coupled to the qubit and the input port on the left. (b) More
detailed view of the Transmon qubit showing two capacitor islands that are connected by a single
Josephson junction. [99]

photograph of the sample chip is shown in Figure 2.7. Its concentric design is
advantageous to reduce the dipole moment of the structure and thereby the coupling
to the environment via an electric field [41], [99]. The sample only has a single
microwave port, hence all measurements are performed in reflection. A readout
resonator is capacitively coupled to this port and the qubit. Its resonance frequency
is fr = 8.573 GHz. The qubit is controlled via microwave pulses over the same
port. Its transition frequency is f01 = 4.755 GHz. As the resonator acts as a band
pass filter and mostly reflects the control pulses, their amplitude needs to be much
stronger than the one for the readout [100]. The Transmon qubit is not a perfect
two-level system. Indeed, it also shows higher energy levels. The quality of the qubit
is characterized by its anharmonicity, i.e. the energy difference between the |0〉 − |1〉
and the |1〉 − |2〉 transition. In this case, it is α/h = f12 − f01 = −197.7 MHz. This
is large enough to reliably distinguish the different energy levels but still leads
to some leakage into higher states due to thermal excitations [43]. The coherence
times of the qubit show fluctuations in time [36] with values up to T1 ≈ 30 µs and
T2 ≈ 50 µs. The duration for an X gate, i.e. half a rotation around the Bloch sphere,
is around 100 ns, depending on the strength of the control pulses.

2.2.7 Multi-Qubit Interaction

Different mechanisms to implement two-qubit gates with superconducting circuits
exist. Which one can be used essentially depends on the physical design of the chip
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Fig. 3a) or equivalently an alternating current (a.c.) Stark shift of the
qubit frequencies23. The frequency shift x1,2 can be calculated from
the detuning D1,2 and the measured coupling strength g1,2 (ref. 21).
The last term describes the interaction between the qubits, which is a
transverse exchange interaction of strength J5 g1g2(1/D111/D2)/2
(see Fig. 1c). The qubit–qubit interaction is a result of virtual
exchange of photons with the cavity. When the qubits are degenerate
with each other, an excitation in one qubit can be transferred to the
other qubit by virtually becoming a photon in the cavity (see Fig. 3b).
However, when the qubits are non-degenerate jv12v2j? J, this
process does not conserve energy, and therefore the interaction is
effectively turned off. Thus, instead of modifying the actual coupling
constant7–9, we control the effective coupling strength by tuning the
qubit transition frequencies. This is possible because the qubit–qubit
coupling is transverse, which also distinguishes our experiment from
the situation in liquid-state nuclear magnetic resonance (NMR)
quantum computation, where an effective switching-off can only
be achieved by repeatedly applying decoupling pulses24.

We first observe the coherent interaction between the two qubits
via the cavity by performing spectroscopy of their transition frequen-
cies (see Fig. 2). This is done by monitoring the change in cavity
transmission when the qubits are probed by a second microwave
signal. By applying a magnetic flux the qubits can be tuned through
resonance with each other (see Fig. 2b), revealing an avoided cross-
ing. The magnitude of the splitting agrees well with the theoretical
value 2J5 2g1g2/D5 2p?26MHz when one takes into account that
g1,2 vary with frequency for a transmon qubit21. The splitting is well
resolved, with a magnitude Jmuch greater than the qubit linewidths,
indicating a coherent coupling and that the qubits are in the strong
dispersive limit25. We note that although the coupling strength J is
smaller than the cavity decay rate k/2p< 33MHz, the avoided cross-
ing is nearly unaffected by the cavity loss. This is possible in such a
large-k cavity, which is required for fast measurements, because only
virtual photons are exchanged; if real photons were used, the cavity-
induced relaxation of the qubits (Purcell effect20) would make coher-
ent state transfer unfeasible.

Another manifestation of the coherence of this interaction is
the observation of a dark state. One observes a disappearance of
the spectroscopic signal near the crossing point, which is due to
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Figure 1 | Sample and scheme used to couple two qubits to an on-chip
microwave cavity. Circuit (a) and optical micrograph (b) of the chip with two
transmon qubits coupled by a microwave cavity. The cavity is formed by a
coplanarwaveguide (light blue) interruptedby two coupling capacitors (purple
boxes and inset). The resonant frequency of the cavity is vr/2p5 5.19GHz
and its width is k/2p5 33MHz, determined by the coupling capacitors. The
cavity is operated as a half-wave resonator (L5 l/25 12.3mm) and the
electric field in the cavity is indicated by the grey line. The two transmon
qubits (optimized Cooper pair boxes, red and green boxes and inset) are
located at opposite ends of the cavity, where the electric field has an antinode.
Each transmon qubit consists of two superconducting islands connected by a
pair of Josephson junctions and an extra shunting capacitor (‘interdigitated
finger’ structure in the green inset). The left qubit (qubit 1) has a charging
energy of EC1/h5 424MHz and maximum Josephson energy of Emax

J1 /h5
14.9GHz. The right qubit (qubit 2) has a charging energy EC2/h5 442MHz
and maximum Josephson energy of Emax

J2 /h5 18.9GHz. The loop area
between the Josephson junctions for the two transmon qubits differs by a
factor of approximately 5/8, allowing a differential flux bias. The microwave
signals enter the chip from the left, and the response of the cavity is amplified
andmeasured on the right. c, Scheme of the dispersive qubit–qubit coupling.
When thequbits are detuned fromthe cavity ( |D1,2 | 5 |v1,22vr | ? g1,2) the
qubits both dispersively shift the cavity. The excited state in the left qubit
|#"0æ interacts with the excited state in the right qubit |"#0æ via the exchange
of a virtual photon |##1æ in the cavity.
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Figure 2 | Cavity transmission and spectroscopy of single and coupled
qubits. a, The transmission through the cavity as a function of applied
magnetic field is shown in the frequency range between 5 and 5.4GHz.When
either of the qubits is in resonance with the cavity, the cavity transmission
shows an avoided crossing due to the vacuum Rabi splitting. The maximal
vacuumRabi splitting for the two qubits is the samewithin themeasurement
uncertainty and is,105MHz. Above 5.5GHz, spectroscopic measurements
of the two qubit transitions are displayed. A secondmicrowave signal is used
to excite the qubit and the dispersive shift of the cavity frequency is
measured. The dashed lines show the resonance frequencies of the two
qubits, which are a function of the applied flux according to
v1,2~vmax

1,2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cos (pW=W0)j

p
. The maximum transition frequency for the

first qubit is vmax
1 /2p5 7.8GHz and for the second qubit is vmax

1 /2p5
6.45GHz. For strong drive powers, additional resonances between higher
qubit levels are visible. The black box indicates the region shown in
b. b, Spectroscopy of the two-qubit crossing. The qubit levels show a clear
avoided crossing with a minimum distance of 2J/2p5 26MHz. At the
crossing the eigenstates of the system are symmetric and antisymmetric
superpositions of the two qubit states. The spectroscopic drive is
antisymmetric and therefore unable to drive any transitions to the
symmetric state, resulting in a dark state. c, Predicted spectroscopy at the
qubit–qubit crossing using a markovian master equation that takes into
account higher modes of the cavity. The parameters for this calculation are
obtained from the vacuum Rabi splitting and the single-qubit spectroscopy.
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Figure 2.8: Two frequency-tunable Transmon qubits coupled to a common resonator acting as quantum
bus. (a) Schematic representation of the sample. (b) Microscopic picture of a chip. The resonator is
a coplanar waveguide interrupted by coupling capacitors (purple boxes). Two Transmon qubits are
located at opposite ends of the resonator where the electric field shows maximum displacement and
thus high coupling to the qubits. [97]

employed. One class is based on tuning the qubit’s transition frequencies. Another
one is all microwave induced [101].

For the first type, one requires frequency-tunable qubits which are coupled to a
common resonator. An exemplary image of such an architecture is depicted in
Figure 2.8. In this case, the resonator can act as a quantum bus where the qubit-qubit
interaction is mediated by the exchange of a virtual photon [97]. Different gate
schemes exist. By tuning the qubit’s transition frequencies into resonance, they start
to periodically exchange their excitations between |01〉 and |10〉. Carefully choosing
the interaction time, i.e. the time of both qubits being in resonance, one can create
an iSWAP gate. Alternatively, by cutting the time in half, one obtains a

√
iSWAP

gate [102].

Another gate that can be implemented with superconducting Transmon qubits is a
cPhase gate. It leverages that the Transmon is no perfect two-level system but also
has higher states. When adiabatically tuning the |0〉 − |1〉 transition frequency of
one qubit close to the |1〉 − |2〉 transition frequency of the other one, the basis states
will acquire a state-dependent phase. By engineering the rising and falling edge of
the flux pulses to tune the qubit, as well as the interaction time, one can engineer a
cPhase gate [42].
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A different type of two-qubit gates are based on couplings solely induced by
microwave drives [103]. A great advantage of these gates is that they do not require
control over the qubit transition frequencies. Therefore, fixed frequency qubits can
be used which eliminates one source of noise and decoherence. This scheme can
also reduce the number of wires necessary to control a certain amount of qubits.
One gate within this category is the cross-resonance gate [104], [105]. It requires
separated microwave control lines for each qubit but no flux lines to tune the qubit.
The scheme is conceptually simple: One irradiates a microwave pulse on the control
line of one qubit but with the frequency matching the second qubit. If the qubits are
weakly coupled to each other on the off-diagonal (e.g. XX-coupling), this coupling
will be amplified by the cross-resonance pulse. The pulse thus effectively turns on
the coupling between the two qubits and its strength will depend on the amplitude
of the pulse (compare Eq. (14) in [104]). Furthermore, by changing the phase of
the pulse, one can select different two-qubit gates. One example is the ZX gate
which, together with one-qubit rotations, gives a universal gate set for quantum
computation. The same way, a

√
ZX gate can be achieved, which is related to the

CNOT gate by only one additional π/2 rotation per qubit [104]:

CNOT =
[

Rz(−
π

2
)⊗ 1

]√
ZX

[
1⊗ Rx(−

π

2
)
]

. (2.33)

Yet another two-qubit gate is the parametric iSWAP gate. It can be used with
fixed-frequency qubits but requires a tunable coupler between them [61]. An
exemplary image of such an architecture is shown in Figure 2.9. Typically, these
couplers are superconducting qubits themselves but with a SQUID-based junction
and thus flux-tunable. With this architecture, it is possible to parametrically turn on
the coupling between the two qubits via the coupler. This is achieved by oscillating
the coupler at the qubit-qubit detuning, resulting in an oscillation between the
states |01〉 and |10〉. The oscillation time will determine the extend of the exchange,
making it possible to obtain both an iSWAP and a

√
iSWAP gate.

2.2.8 Quantum Software Tools

When working with superconducting qubits, different software tools exist to support
the researchers and users to perform experiments, write quantum algorithms and
simulate quantum computations. Specialized measurement frameworks are used
to control laboratory instruments, perform experiments and persist the acquired
data. One such framework designed for superconducting qubits is the open-source
quantum measurement suite Qkit [106]. It is developed and actively used by
the Institute of Physics at the Karlsruhe Institute of Technology. Qkit provides a
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updating Eq. (3) to include all other expansion terms, the
Hamiltonian becomes

H
ℏ
¼

XN
i

−
�
~ωi −

δ2

4

∂2 ~ωi

∂Φ2

�
σ̂Zi
2

þ
XN
j>i

�
δ
∂Jij
∂Φ cosðωΦtÞ −

δ2

4

∂2Jij
∂Φ2

cosð2ωΦtÞ
�

× ðσ̂þi σ̂−j þ σ̂−i σ̂
þ
j Þ; ð8Þ

where all values are evaluated at Φ ¼ Θ. Because there is
a drive-induced qubit shift, all N qubits will acquire a
phase during the flux-modulation pulse. This phase may
be compensated for by applying single-qubit Z gates. In a
frame rotating at the qubit frequencies (including the drive-
induced shift), the Hamiltonian is

H
ℏ
¼

XN
i;j>i

�
δ
∂Jij
∂Φ cosðωΦtÞ þ

δ2

4

∂2Jij
∂Φ2

cosð2ωΦtÞ
�

× eiΔij;δtðσ̂þi σ̂−j þ σ̂−i σ̂
þ
j Þ; ð9Þ

where Δij;δ ¼ ð ~ωi − ~ωjÞ þ ðδ2=4Þ½ð∂2 ~ωj=∂Φ2Þ − ð∂2 ~ωi=
∂Φ2Þ�. When ωΦ is resonant with Δij;δ, the
Hamiltonian is

H
ℏ
¼ δ

2

∂Jij
∂Φ ðσ̂Xi σ̂Xj þ σ̂Yi σ̂

Y
j Þ; ð10Þ

which is a resonant exchange interaction between qubits i
and j only. There can also be a resonance condition when
2ωϕ ¼ Δij;δ with a different exchange coefficient. The
interaction described by Eq. (10) couples any states in the
same excitation manifold. For two qubits, this coupling
involves only the set of states fj10i; j01ig. Applying this
interaction for certain periods of time can generate
entanglement and be used as a two-qubit gate. This effect
will be explored in Secs. III and IV.

(a)

(b)

FIG. 1. (a) Schematic of an N qubit, one-bus device. (b) Size of
the expansion terms for ω and J versus the dc flux tuning the bus.
Calculations are for the device parameters given in Sec. II B.

FIG. 2. (a) Optical image and (b) schematic of our circuit
consisting of two fixed-frequency transmon qubits (Q1, Q2)
coupled via a third tunable bus qubit (“tunable bus,” TB). Q1 and
Q2 have individual readout resonators (RR1, RR2). The TB is
tuned by a dc-bias coil and a high-speed flux line (HSFL).
Spectroscopy of (c) TB and (d) Q1, Q2 frequency versus dc flux;
Q1 tunes more strongly with flux because it is closer in frequency
to the TB.We fit these tuning curves (the solid lines) using Eq. (4)
to extract the Hamiltonian parameters for Eq. (1).

UNIVERSAL GATE FOR FIXED-FREQUENCY … PHYS. REV. APPLIED 6, 064007 (2016)
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Figure 2.9: Two fixed-frequency Transmon qubits coupled to a third frequency-tunable qubit acting
as tunable coupler. (a) Microscopic picture of a chip. Each Transmon qubit (Q1 and Q2) has its own
readout resonator (RR1 and RR2). Both are coupled to a third qubit (TB) which is frequency-tunable
using a high-speed flux line (HSFL) as well as a bias coil to adjust the working point of the coupler. (b)
Schematic representation of the same circuit. [61]

collection of drivers to control laboratory instruments. Furthermore, it takes care of
storing data in a standardized format and provides an interface to use this storage
and work with the data. Additional modules encapsulate different measurement
functionalities, data analysis capabilities and a graphical user interface to inspect
the acquired data.

On a higher abstraction level, the open-source quantum development kit Qiskit [107]
exists to work with quantum computers at the algorithm level. It is developed by
IBM and widely used in the community when working with high-level applications
of quantum computing. Qiskit provides tools to create quantum algorithms by
combining quantum gates into a circuit (compare Section 2.1.4). These circuits
can then be executed on various backends, mainly simulators and online systems
provided by IBM. The quantum development kit is provided in Python which is the
de facto language of choice when working in the field of quantum computing.

Qiskit is divided into multiple packages called Qiskit Aer, Terra, Ignis and Aqua.
Aer provides low-level access to quantum hardware via pulsed experiments. It
also contains various classical simulators to simulate the behavior of a quantum
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processor classically. Different noise models to make these simulators more realistic
and investigate the impact of different noise sources are also provided.

Terra includes the generation of quantum circuits using a gate-level programming
language. It also provides methods to optimize such circuits to be executed with
minimal possible error on an actual quantum processor. Terra also contains the
interface to real quantum hardware provided by IBM, so-called backends. Cloud
backends of IBM can be accessed by a so-called provider that establishes a connection
to the IBM Quantum Experience. Multiple superconducting quantum processors of
IBM are available online to be selected.

Ignis is used to perform qubit characterization experiments and to apply error
correction and mitigation techniques. It also contains different benchmarks to verify
the operation of an existing quantum processor.

Finally, Qiskit Aqua provides high-level access to a number of quantum algorithms
which have been written in Qiskit Terra but can be used without the necessity
to rewrite the algorithms again. This includes different algorithms for chemistry
simulations, finance applications, machine learning, and optimization problems. As
the different Qiskit packages interlock, one can write a high-level algorithm using
Aqua which can then be executed using a Qiskit Terra provider.

2.3 Typical Experiment Setup

Superconducting qubits are typically read out and controlled using microwave
pulses with frequencies up to 10 GHz. Additionally, bias currents and fast current
pulses might be necessary to tune the qubits or perform certain operations on
them. Due to the utilization of superconductors like aluminum (TC = 1.2 K [108])
and the energy spacing of existing qubits, low temperatures on the order of 10 mK
are required [31]. Therefore, the chip on which the superconducting circuits are
fabricated is located inside a cryostat, most commonly a dilution refrigerator. A
schematic overview of a typical experiment setup is depicted in Figure 2.10.

The low temperature requirement imposes challenges concerning the microwave
signal strength and noise thermalization. With control electronics being operated
at room temperature, noise at room temperature is added onto the microwave
signals. Thus, additional attenuation inside the cryostat is essential to thermalize
this noise to the target temperature [31]. At the same time, the signal strength will
also be reduced to a level of only a few photons on the chip. To obtain good signal
fidelity, it is therefore paramount to have a good amplification chain for the return
signal. Each amplifier has a specific noise temperature which needs to be taken
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Figure 2.10: Schematic overview of a typical experiment setup for superconducting circuits.

into account. The first amplifier after the sample is often a specific superconducting
circuit itself. This makes it possible to perform parametric amplification while
only adding little more than the minimum noise allowed by quantum mechanics
[109]. Examples of such quantum-limited amplifiers are traveling wave parametric
amplifiers (TWPAs) [110], Josephson parametric amplifiers (JPAs) [111], or dimer
Josephson junction array amplifiers (DJJAAs) [112]. While the specific mode of
operation differs, all of them need an external pump tone that acts as energy source
for the parametric amplification process. After this first amplification, classical
low-noise amplifiers are employed to further boost the signal. In most of the cases,
these are high-electron-mobility transistor (HEMT) amplifiers operated around 4 K
[113].

Depending on the necessary signal levels, further damping and amplification
can take place at room temperature. There, also filtering and possible frequency
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conversion within the radio frequency (RF) conversion frontend electronics is
possible. Often, these are discrete, SMA-connectorized components which are
manually installed and combined. The schematics of such a frontend are further
discussed in Section 3.3 and thus not covered in more detail here.

Common laboratory equipment to generate and analyze microwave pulses are
arbitrary waveform generators (AWGs) with gigasample precision and 12 to 16 bit
resolution, and analog-to-digital converters (ADCs) with similar properties. The
evaluation of the digitized signals happens on a separate computer. For generating
currents, controllable current sources combined with digital-to-analog converters
(DACs) might be used. For fast pulses, also AWGs with DC coupling can be
employed directly. DC bias currents most likely will require additional filtering
within the cryostat to remove noise from the signal which would disturb the
superconducting circuits. A photograph of a typical measurement setup is shown in
Figure 2.11.

All electrical devices are controlled by a separate user control computer. In
most laboratories, Python is used within Jupyter Notebooks [114] to perform the
configuration, measurement, and data processing. Different measurement suites
exist to simplify this process. A prominent example is Labber which was originally
developed at MIT and is now commercially distributed by Keysight [115]. Another
example is Qkit [116], a measurement suite developed at the Institute of Physics
(PHI) at Karlsruhe Institute of Technology (KIT) and introduced in Section 2.2.8.

The control platform presented in this thesis replaces the electronics to generate and
analyze microwave pulses, i.e. the AWGs, the ADCs, the computer used to evaluate
the digitized signals, as well as the RF conversion frontend. The architecture and
capabilities of this platform are discussed in detail in Chapter 3.

2.4 FPGAs and Heterogeneous Systems

With increasing processing, timing and data throughput demands, pure software-
based approaches become impractical and custom hardware is necessary. One
option for such a situation are application-specific integrated circuits (ASICs). As
these incur a high fixed cost to develop and manufacture as well as relatively long
fabrication times, they are not suited for (rapid) prototyping and small-volume
productions. Instead, programmable logic devices (PLDs) can be used which are
integrated circuits that can be configured by the user after manufacturing. One type
of PLDs are field-programmable gate arrays (FPGAs) which are introduced in the
following section [117, p. 713 ff.]. These can be combined with classical processing
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Figure 2.11: Photograph of a typical measurement setup for superconducting circuits. On the left,
a closed-cycle dilution refrigerator is visible. Above it, multiple voltage supplies as well as room
temperature amplifiers can be spotted. On the right, multiple racks with laboratory equipment are
visible. These include RF frontend electronics as well as AWGs and current sources, but also more
generic measurement equipment like vector network analyzers (VNAs) or spectrum analyzers. The
picture was taken in 2017 inside the laboratory of the Institute of Physics (PHI) at the Karlsruhe
Institute of Technology (KIT).

units to form a heterogeneous system-on-chip (SoC). Going even one step further,
for applications where RF microwave signals need to be generated and processed,
also DACs and ADCs can be directly integrated into such systems.

2.4.1 Field-Programmable Gate Array

FPGAs are integrated circuits produced in cutting-edge transistor technology which
can be configured to act like a custom logic circuit. As the name field-programmable
gate array suggests, these can be configured by the user in the field. FPGAs contain
many configurable logic blocks (CLBs) which can be programmed and connected
based on the needs of the user and the circuit to realize. These blocks provide all the
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basic components needed to form a wide variety of circuits. They are embedded in
a versatile interconnection network that can be configured to connect different cells
and their elements among each other, leading to the name "gate array". The FPGA
can furthermore be interfaced with peripheral electronics using input/output (I/O)
connections [117, p. 713 ff.].

The FPGAs used in this thesis are manufactured by Xilinx and based on their 16nm
FinFET UltraScale architecture [118], [119]. Besides standard logic cells, common
resources inside the FPGA are the following:

Look-up tables (LUTs) have n binary inputs and can represent any arbitrary
n-digit binary function f : {0, 1, . . . 2n − 1} → {0, 1}. The output values are stored
inside static RAM (SRAM) cells within the LUT and the input configuration defines
the address of the result to take. In a Xilinx UltraScale architecture, n = 6 inputs
are used. LUTs can also be combined to form distributed random access memories
(RAMs). [120]

D-type flip-flops capture the value of a data input (called D) at a defined section
of an input clock cycle, e.g. at a rising edge. The captured value then becomes the
output Q of the flip-flop. For other sections of the clock cycle, the output stays
unaffected. This can be used to store and delay digital signals. In the UltraScale
architecture, the flip-flops can also be configured to act as level-sensitive latches.
[120]

Multiplexers are multiple-input, single-output switches that select the input based
on a separate select signal. They can be utilized to route different input signals
onto the same output and switch between them. Likewise, one input can also be
forwarded to different outputs depending on the separate select signal. The Xilinx
UltraScale architecture offers eight multiplexers with a 4:1 mapping per CLB. They
can be further combined to result in a mapping of up to 32:1. [120]

Digital signal processing (DSP) slices perform efficient arithmetic operations,
from adding over accumulation and logic operations up to multiplication. Common
use cases are for filter designs, fast Fourier transforms, or complex multipliers.
Xilinx’ implementation of the DSP slices offers signed arithmetic operations with a
two’s complement multiplication of up to 27× 18 bit. [121]
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Block RAMs (BRAMs) provide versatile data storage on the FPGA. As these are
RAMs, data can be written to and read from arbitrary positions inside the available
memory address range. In a Xilinx UltraScale device, each BRAM stores up to
32 kbit of data. They can also be configured as two independent 18 kbit memory
blocks. Furthermore, multiple BRAMs can be cascaded to form larger memories.
Different operation modes can be distinguished: In the true dual-port mode, the
memory can be accessed completely independently by two separate ports, including
different clocks. Both ports offer full read and write access. In the simple dual-port
mode, one port is exclusively used for writing, the other only for reading. In both
modes, read as well as write accesses are executed synchronously in one cycle. [122]

I/O blocks (IOBs) connect external devices and logic to the FPGA fabric via I/O
pads of the chip. These can be configured for different voltage levels and behaviors.
Different types of blocks exist for slow signals, differential signals, and high-speed
serial signals. The latter requires a serializer and deserializer (SerDes) so one can
serially transmit and receive data with higher data rates than the design clock
rate on the FPGA [123]. To achieve this, the data is converted between a parallel
representation inside the FPGA and a serial representation at the I/O pad. In a
Xilinx UltraScale device, IOBs are combined as I/O banks. Different banks exist
depending on the application, called HP I/O for high-speed interfaces, HR I/O for
flexible signal support, and HD I/O for low-speed interfaces. [124]

Integrated hard IP blocks for special purpose applications provide functionality
predefined in the chip design of the FPGA. Examples are interface blocks for
PCI Express, DDR memory control, 100G Ethernet, and Interlaken, a scalable
chip-to-chip interconnect protocol for multi-gigabyte per second data transmission.
[119]

2.4.2 Multi-Processor System-on-Chip

While FPGAs are perfectly suited to implement deterministic logic circuits with
high data throughput and nanosecond precision, more versatile applications with
less stringent requirements might be better handled by running software on a
processing system (PS). Therefore, modern approaches often combine the benefits
of both worlds in a heterogeneous system. These integrate an FPGA with one or
multiple PSs on a single chip [118]. Due to the close interconnection, communication
between both components can happen with latencies on the order of hundreds of
nanoseconds.

32



2.4 FPGAs and Heterogeneous Systems

Processing System

Application Processing Unit

ARM Cortex-A53

32kB I-Cache 32kB D-Cache

MMU

Real-Time Processing Unit

ARM Cortex-R5

128kB TCM 32kB I+D-Cache

MPU

x4

x2

Programmable Logic

Memory

DDR4/3 Ctrl.

256kB OCM

Platform Management Unit

Configuration & Security Unit

Graphics Processing Unit

ARM Mali-400 MP2

High-Speed

Connectivity

General
System Functions (DMA, Timer, ...)

64kB L2 Cache MMU

Block RAM

DSP

Storage & Signal Processing

UltraRAM

High-Performance HP I/O

High-Density HD I/O

General-Purpose I/O

GTH

Interlaken

High-Speed Connectivity

GTY PCIe 4

100G Eth.

Figure 2.12: Top-level block diagram of the Zynq UltraScale+ EG MPSoC. [118]

In this thesis, the Xilinx Zynq UltraScale+ multi-processor system-on-chip (MPSoC)
architecture is used [118]. The top-level block diagram of this heterogeneous system
is depicted in Figure 2.12. The programmable logic (PL) contains the typical
elements of an FPGA, as well as additional general-purpose and high-speed I/O
interfaces. In the PS part, two processing units are implemented: an application
processing unit (APU) consisting of a four-core ARM Cortex-A53 processor and
a two-core ARM Cortex-R5 as real-time processing unit (RPU). It furthermore
contains the graphics processing unit ARM Mali-400 MP2, as well as a DDR4
memory controller, two 128 kB tightly-coupled memories (TCMs) for the Cortex-R5
cores, and a 256 kB on-chip memory (OCM). The PS also offers dedicated units for
platform management, configuration, and security, as well as versatile interfaces to
connect to peripheral devices. With this rich set of heterogeneous capabilities, the
Zynq UltraScale+ MPSoC is well suited to accommodate and partition tasks with a
wide range of requirements.
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2.4.3 Radio Frequency System-on-Chip

Telecommunications applications, as well as radar and others, require the generation
and detection of microwave signals. To fulfill typical data processing requirements
for these applications, either an FPGA-only or a heterogeneous MPSoC approach is
employed. The PL is then connected to separate DACs and ADCs which translate
the digital signals to analog microwave signals and back. Going one step further, one
can also combine these converters into the heterogeneous system with the FPGA,
forming a radio frequency system-on-chip (RFSoC) [125].

Driven by the development of the 5G standard with a frequency range of initially
up to 6 GHz, high-precision, multi-gigasample DACs and ADCs entered the market
to enable direct-synthesis of the required signals [125]. These benefit strongly from
a tight integration with an FPGA, as otherwise the data throughput to and from
the converters becomes a challenging bottleneck. Xilinx offers a Zynq UltraScale+
RFSoC family [125] with 14 bit DACs operating at up to 10 GHz sampling frequency
and 12 or 14 bit ADCs operating at up to 5 GHz sampling frequency.

The chip used in this thesis is a Zynq UltraScale+ ZU28DR, a first generation RFSoC,
with eight 14 bit DACs and eight 12 bit ADCs. The DACs can be operated at up to
6.554 GHz and the ADCs at up to 4.096 GHz. The chip also contains an FPGA with
930 000 system logic cells, 4272 DSP slices and 60 MB of memory. On the PS side, it
contains all the units the Zynq UltraScale+ MPSoC architecture offers, as described
above.

The data exchange between the PL and the so-called RF data converter [126], which
contains the ADCs and DACs, is handled using AXI4-streams. Multiple samples
are transmitted each cycle and the signal can also be represented as in-phase and
quadrature (I/Q) components. Control and configuration of the RF data converter
block is exposed via an AXI4-Lite register interface.

Xilinx offers a variety of special DSP functionality for their converter blocks.
Functional diagrams for both DACs and ADCs are shown in Figure 2.13. A FIFO is
used to translate between the data signal rate and the converter clock frequency.
Interpolation and decimation filters can be applied to end up at the sampling
frequency. Each ADC and DAC signal path contains an I/Q mixer which has an
internal numerically controlled oscillator (NCO) and, when activated, performs
a digital up- or down-conversion (DUC/DDC) with an arbitrary frequency and
phase offset. A crossbar enables flexible configuration and connection between
neighboring signal paths. For example, results of multiple mixers can be combined
on one DAC output for multi-band operation or the resulting I/Q values of one
mixer can be split up to two separate outputs. A quadrature modulator correction
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Figure 2.13: Functional diagrams of single signal paths within the RF data converter. Blue elements
are interconnected between neighboring signal paths. (a) Digital-to-analog conversion path. (b)
Analog-to-digital conversion path.

(QMC) makes it possible to adjust phase and amplitude of the signal, e.g. to
calibrate external I/Q mixers. A coarse delay block can furthermore adjust for
delay mismatches between multiple outputs by delaying the signal by up to seven
sampling clock cycles. As final element before signal conversion, the DAC signal
path has an inverse sinc filter to compensate the analog output response of the
DAC if enabled [126, p. 104 f.]. The ADC exposes flags to indicate an over-voltage
situation where the converter is shut-down to prevent damage and over-range
situations where the input signal saturates the full-scale digital signal range. Right
after digitization, a built-in threshold detection can furthermore be configured in
the RF data converter [126].

The converters thereby offer a flexible and customizable way to generate and process
analog signals and exchange them with the PL. Different operation schemes are
possible, from multi-band operation, over I/Q signal generation and detection up to
standard real signal handling with and without DUC and DDC.

2.5 Summary

Quantum computing is a promising field with diverse applications. The funda-
mental building blocks of a quantum processor are qubits. Different physical
implementations of qubits exist, like photons or ion traps. This thesis focuses on
qubits realized by superconducting circuits. A variety of different qubit designs
belong to this category, including charge, Transmon, and Fluxonium qubits. They
are controlled and read out using microwave pulses with frequencies of up to
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10 GHz. Experiments with superconducting qubits consist of well-defined pulse
sequences. Such experiments can, e.g., be conducted using laboratory equipment
and the quantum measurement suite Qkit. Multiple qubits form a quantum register
on which quantum algorithms can be executed. Such algorithms are composed of
quantum gates acting as elementary operations on one or multiple qubits. One
possibility to write such algorithms is a language provided by the IBM quantum
development kit Qiskit which is widely used in the field of quantum computing.

To perform experiments with qubits and run quantum algorithms on actual quantum
processors, sophisticated control electronics is required to bridge the gap between
both worlds. FPGA- and RFSoC-based systems have a great potential in this area.
The next chapter discusses in detail how they can be used to implement control
electronics for superconducting qubits.
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This chapter describes the architecture of the control electronics developed in this
work, the QiController. The word is a combination of "Qi" for quantum interface
and controller, as the system realizes the quantum-classical interface by controlling
the connected quantum bits (qubits). First, requirements for the QiController are
identified based on which a concept is deducted. Then, the different components
of the system are introduced in more detail and a perspective on scalability is
provided. Finally, results of characterization measurements with the QiController
are given.

3.1 Functional Requirements

As a first step, it is crucial to identify requirements the QiController needs to meet in
order to provide a flexible system to control and read out superconducting qubits.
However, these requirements largely differ depending on the superconducting qubit
chip employed as already discussed in the previous chapter. They are affected, e.g.,
by the type of qubit utilized, the number of qubits, as well as the coupling mechanism
between the individual qubits for two-qubit gates. New superconducting qubit
types are regularly proposed and research groups around the world strive to further
improve their properties [90], [127]. Furthermore, the design of multi-qubit chips
and quantum processors is still considered to be fundamental research in physics
[29], [128]. For all these reasons, precise figures for the requirements often cannot be
provided as the field is rapidly changing. Instead, this section elaborates on some
guiding frames that a versatile control electronics should cover in order to support
most of the superconducting qubit chips currently available.

Qubit Control

To control the state of individual superconducting qubits, microwave pulses with
arbitrary shape and gigahertz frequencies have to be generated. Depending on
the qubit type, these frequencies vary from tens of megahertz to roughly 10 GHz
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[35], [36]. Typical pulse durations are between a few and hundreds of nanoseconds
[40]. Arbitrary pulse shapes with nanosecond precision are required for optimal
control protocols [39]. Other commonly used pulse shapes are rectangular pulses,
Gaussian-shaped pulses, or pulses based on the derivative removal by adiabatic
gate (DRAG) technique [129]. The latter is especially important for short pulses to
eliminate leakage to higher qubit states in weakly nonlinear systems like a Transmon.
It requires the ability to independently shape the in-phase and quadrature (I/Q)
amplitude of the control pulses. To set the rotation axis around the Bloch sphere of
the qubit state, precise control over the phase of control pulses is necessary [94].
Typical phases are multiples of 90° as these resemble the x and y axis on the Bloch
sphere. Even small phase deviations can lead to an error of the performed operation
which will add up when more operations are performed. For the same reason,
it is important that the phase noise of the control signal is small. Otherwise, this
will contribute to an effective reduction of the qubit’s decoherence time T2 [31],
[32]. Per qubit, multiple different pulses are likely required to perform rotations
around different axes and with different angles. Additionally, having the possibility
to perform virtual Z gates with arbitrary rotation angles is beneficial as these can be
implemented instantaneous and free of physical errors [94].

Qubit Readout

To read out the qubit state, microwave pulses at the frequency of the readout
resonator need to be generated and acquired [37], [38]. The frequencies are typically
between 4 and 10 GHz and separated from the control frequencies to minimize
undesired leakage and cross-talk [35], [36]. Except for some special readout schemes,
the pulse shape is only of secondary importance. Often, rectangular or Gaussian-
shaped pulses are employed. Typical pulse lengths for the readout are on the order
of hundreds of nanoseconds. Longer readout pulses yield a higher signal-to-noise
ratio (SNR) but the qubit state might flip during the measurement if the energy
relaxation time T1 is on a comparable timescale. Too long pulses will thus increase
the readout error and nullify the better SNR [31]. State-of-the-art readout pulses
which still preserve high fidelity are on the order of 50 ns for appropriate chip
designs [130].

The qubit state is encoded in the amplitude and phase response of the returning
readout pulse [37], [100]. Therefore, state measurements also involve microwave
signal recording and demodulation. As the returning signal is only a few photons
strong and thus has to be amplified intensively, the SNR is limited and good
filtering is important [100]. The resulting phase and amplitude information then
needs to be translated into the measured qubit state. For some operations, e.g.
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in quantum error correction schemes, it is furthermore necessary to perform
conditional pulses depending on this state [46], [48]. With single pulses on the order
of tens to hundreds of nanoseconds, response latencies for such measurement-based,
closed-loop feedback operations should also be on the same order of magnitude.

Multi-Qubit Interactions

The implementation of multi-qubit operations strongly depends on the chip
architecture used. So far, it is not obvious which approach will be the dominant
one for future chip designs. Some approaches require fast flux pulses generated by
microampere currents to effectively turn on the interaction of two neighboring qubits
[41], [42], [97]. Other approaches use microwave pulses to mediate the interaction
[61], [103], [105]. As the field is still very diverse, deriving clear requirements for
the electronics is not yet possible. However, a versatile control electronics should
keep these different approaches in mind and be extensible to support these when
required, e.g. by integrating and triggering additional laboratory equipment to
create flux pulses.

Experiments & Quantum Algorithms

Pulses and measurements act as gate operations on the stationary qubits. Multiple
such operations are concatenated to perform a quantum algorithm [131]. Performing
computational tasks and experiments therefore requires executing well-defined
sequences of pulses and state measurements. The delays between multiple pulses can
also have a significant impact on the results, e.g. due to decoherence or intentional
detuning of control pulses [100]. As experiments and algorithms are typically
repeated many times to collect sufficient statistics for the results, reproducibility on
the nanosecond timescale is another important requirement. Advanced experiments
can furthermore require complex control schemes, as well as sophisticated online
processing and data reduction capabilities [45].

Scalability

When controlling many qubits, the requirements to the control electronics largely
depend on the chip architecture used. It especially dictates the number of microwave
channels required to control a number of qubits N. For some chips, each qubit has
two separate input microwave lines for readout and control, so 3N lines in total
when including the return lines for the readout. For other chips, frequency-division
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multiplexing (FDM) is used to combine multiple signals onto one microwave line.
The concept of FDM is introduced in Appendix A.3. For single-qubit chips, often
manipulation and readout pulses are fed into the chip using the same microwave
port as seen in the example in Section 2.2.6. The same principle can be applied to a
multi-qubit chip where each qubit has its own readout resonator which is also used
for the control pulses, thereby requiring 2N lines [132]. Other chips combine the
readout signals of all or some qubits onto a single line while the manipulation signals
still use a separate line per qubit [133]. If all readout signals are multiplexed, one
requires N + 2 microwave line. However, with growing qubit count, the accessible
bandwidth becomes a limiting factor. A typical spacing between multiple resonators
is at least tens of megahertz or higher [29], [133]. Therefore, larger architectures
using FDM usually only group roughly six to eight qubits together for a single
readout line [29]. If qubits are organized in G < N sub-groups that are separately
multiplexed, N + 2G lines are required. Finally, some architectures combine both
readout and manipulation for all qubits onto a single microwave line resulting in
only 2 microwave lines. While this approach is the most attractive one in terms of
microwave lines wired through the cryostat, it also leads to non-negligible cross-talk
between different qubits [134]. To summarize, multi-qubit control electronics needs
to support FDM and provide flexibility for the user to decide which signals should
be combined onto one or multiple microwave lines connected to the cryostat.

3.2 QiController Concept

As the design of a superconducting quantum processor is still active research and
the way to control it will likely change in the future, the QiController is not designed
according to one specific chip in mind. Instead, its goal is to facilitate experiments
with superconducting qubits and first prototypes of quantum processors with
moderate number of qubits. This is also reflected in the design choices of the system
leaving as much flexibility as possible for the user to adapt the control and readout
to the investigated qubit chip.

Hardware Selection

A field-programmable gate array (FPGA) is best suited to deterministically assemble
and process the required pulses with nanosecond accuracy. Compared to an
application-specific integrated circuit (ASIC), FPGAs can still be adapted in the
field to changing requirements that might arise in the ongoing research with
superconducting qubits. As the FPGA handles signals digitally, high-speed and
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Figure 3.1: Photograph of the QiController consisting of a Xilinx ZCU111 evaluation board and a
custom-built balun board.

high-precision digital-to-analog converters (DACs) and analog-to-digital converters
(ADCs) are necessary to generate and acquire the required microwave pulses. The
Xilinx Zynq UltraScale+ radio frequency system-on-chip (RFSoC) architecture is
used as a basis for the QiController as it tightly integrates eight multi-gigasample
DACs and ADCs with a large FPGA and two processing units. This provides great
flexibility to partition tasks with different requirements onto different parts of the
chip. More details to the RFSoC architecture are given in Section 2.4.3.

The converters are operated at 4 GHz sampling frequency and handle the microwave
generation and digitization in the complex baseband. Using decimation and
interpolation filters, a per-channel data rate of 1 GSPS and thus 1 ns time resolution
is obtained within the programmable logic (PL). This simplifies the internal signal
handling and is sufficient for most experiments with superconducting qubits.
For the PL design, a clock rate of 250 MHz is selected. To reach the data rate of
the converters, four samples have to be processed each clock cycle. The clock is
directly derived from the converter clocking to have a stable clock relation without
dephasing.

As hardware, the Xilinx ZCU111 evaluation board is selected as it provides a readily
available and flexible board hosting a ZU28DR RFSoC. To utilize all the eight ADC
and DAC channels, a custom balun board is designed to convert the differential
outputs and inputs from the RFSoC to single-ended SMA connectors. These can
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then be connected to a radio frequency (RF) frontend or directly to the experiment.
A picture of the QiController comprising ZCU111 and custom-built balun board is
shown in Figure 3.1.

Overall Architecture

An overview of the QiController architecture is presented in Figure 3.2. Tasks
which require nanosecond accuracy are handled within the PL. There, the main
functionality is provided by digital unit cells. They generate digital microwave
pulses which are routed via AXI-streams to a separate cell multiplexer module.
In this module, they are combined and distributed to the available DAC channels.
Likewise, returning digitized microwave signals from the ADCs are distributed
and split up onto the belonging cells. The necessary frequency conversion between
RFSoC and qubits is happening inside an RF frontend electronics which is further
structured into analog unit cells. Besides the microwave pulses, also digital trigger
signals can be issued which will be routed to digital output pins. These are added to
further expand the flexibility of the system, as additional laboratory equipment can
be integrated and triggered for extra functionality.

A special cell coordinator is connected to all digital unit cells to ensure synchronicity
and exchange information. In particular, it is able to start any subset of digital unit
cells simultaneously. On the processing system (PS), online data processing and
advanced control is implemented within the real-time processing unit (RPU) using
the Taskrunner framework [47]. The application processing unit (APU) provides a
user interface to interact with the platform via Ethernet. It is implemented using
a modular communication server called ServiceHub [135]. The PS controls and
configures the PL using a register-based AXI4-Lite bus where the PL modules are
mapped into the physical memory address range of the PS. Access is performed by
simple memory read and write operations using the AXI HPM FPD interface. To
communicate between both processors, a shared memory is employed.

Partitioning of Functionality

Based on the architecture introduced above, experiments running on the QiController
are always partitioned in a similar way. Pulse generation, detection, sequencing and
result storage, as well as simple parameter variations, happen with nanosecond
precision in the digital unit cells in the PL. Their execution is synchronized by the
cell coordinator which is triggered by the Taskrunner. The Taskrunner controls
the execution of the PL, performs more complex parameter variations between
multiple executions and collects the result data that is generated within the digital
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unit cells. Also, further data aggregation, sorting or online evaluation are possible,
depending on the requirements of the experiment. This includes, but is not limited
to, averaging of data, collection of individual qubit states or single measurement
values, as well as counting different qubit state outcomes. The resulting data is
then sent via the ServiceHub to the user client where the user can either persist
or further process the data offline. During the experiment, no connection between
client and QiController is required. However, the user can monitor the process of
the execution and, depending on the experiment, stream some result data already
before the execution finished.

Qubit Interface (Digital Unit Cell)

Different PL modules are developed to generate and analyze microwave pulses,
to persist data, and to coordinate their execution in a well-defined sequence of
operations with the required precision and timing accuracy. These are bundled inside
a so-called digital unit cell which contains all functionality required to interface a
single superconducting qubit. The microwave signals are digitally represented in
the complex-valued baseband as I/Q components with 16 bit resolution each. This
is required to perform arbitrary pulse shaping and to have full phase and sideband
control of the up-converted signal. As discussed, four samples are processed each
cycle to obtain the converter data rate of 1 GSPS.

Frequency Conversion (Analog Unit Cell)

With this data rate, microwave signals in the baseband, with frequencies of up to
fs/2 = 500 MHz, can be generated. To cover the full frequency range from tens of
megahertz up to ten gigahertz, a separate RF frontend is necessary to convert the
frequencies. Frontends built out of discrete components are common in typical
experiment setups but face high relative cost, long assembly time, high space
requirements, and increased susceptibility to errors. Therefore, a custom printed
circuit board (PCB) is developed to mitigate these challenges. It forms a so-called
analog unit cell and handles the frequency up- and down-conversion with the same
reference oscillator for a single RF output and input.

Scalability

To control multiple qubits with a single QiController, digital and analog unit cells
are replicated. The concept is illustrated in Figure 3.3 with a three-qubit chip
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Figure 3.3: Abstract concept of single-platform scalability with digital and analog unit cells. For
illustration, a chip with multiplexed readout but separate control pulses for three qubits is sketched.

where the readout is frequency-multiplexed while the control pulses are not. As
introduced, digital unit cells are implemented on the FPGA and contain all digital
logic required to control and read out a single qubit. For three qubits, therefore
three digital unit cells are necessary. Analog unit cells translate the baseband signals
to and from the required frequency range. Each analog unit cell interfaces with
two DAC channels to up-convert the generated I/Q signal. It might furthermore
also interface with two ADC channels to down-convert a returning signal with the
same frequency reference. In the above example, one analog unit cell is used to up-
and down-convert the frequency-multiplexed readout signals. As the manipulation
signals are not multiplexed, three additional analog unit cells are required to
up-convert their frequencies. The mapping between digital and analog unit cells
happens on the FPGA within the cell multiplexer module.

Online Data Processing and Advanced Control (Taskrunner)

Nanosecond-accurate creation of pulse sequences and qubit state measurements, as
well as simple parameter variations, are handled on the FPGA. More complex tasks
with less strict timing requirements are implemented on the RPU of the RFSoC. For
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example, this can be the collection and online post-processing of experiment result
data, or complex parameter changes between pulse sequences. A great advantage
of this partitioning is that it combines the flexibility of a software-based approach
with a tight and low-latency interconnection to the capabilities provided on the
FPGA. This minimizes the overhead compared to an execution on a separate control
computer. To provide convenient access to the RPU, the Taskrunner framework [47]
is designed. It complements the PL with versatile, low-latency real-time control,
data aggregation and evaluation features. The RPU is not used by any other software
to guarantee a mostly time deterministic interaction with the PL (compare [47],
[135]). With the Taskrunner, a user can load arbitrary C code onto the RPU which
will be compiled on-the-fly to reduce external dependencies and improve usability.

User Interface (ServiceHub)

The control electronics needs to provide a well-defined interface to exchange control
signals, configuration values and measurement data with the user in a convenient
way. To provide an extensible interface, a modular communication server called
ServiceHub [135] is designed which is running on the APU of the RFSoC. It is
closely connected to and controls the PL, the RPU, as well as peripheral devices like
analog unit cells. The user interface is implemented using remote procedure calls
via an Ethernet connection. This provides flexible means for the user to configure
and control the QiController from a remote control computer. The ServiceHub runs
on a Yocto-based Linux operating system which also initializes the whole platform
at boot time. Software developments targeting the APU can therefore leverage the
rich ecosystem of Linux. As many physics laboratories use Python, a Python client
is provided to interface with the platform. It wraps the remote procedure calls
exposed by the ServiceHub. More information on the client is given in Chapter 4.

The following sections will present the different parts of the QiController in more
detail.

3.3 Analog RF Frontend

To convert the baseband signals generated by the RFSoC to the desired frequencies
of the qubit chips and back, an analog RF frontend is required. Such frontends
can be assembled using discrete components, which is a popular approach for
experiment setups. However, notable downsides include high space requirements
and costs, long assembly time, and increased susceptibility to errors. This also
impairs scalability when multiple signals need to be converted. Therefore, the
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and a receiving part (RX). Depending on the requirements, only the TX or both parts are used. Colors
indicate different frequency domains, that is baseband (yellow), intermediate frequency (IF) (orange),
and RF (red).
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Figure 3.6: Photograph of the analog RF frontend PCB.

functionality to up- and down-convert a single signal is integrated onto a PCB,
forming an analog unit cell. To decrease cost while maintaining high signal quality,
a superheterodyne, two-step mixing process is used [136, p. 678]. The concept of
it is sketched in Figure 3.4. A functional schematic of the analog RF frontend PCB
is given in Figure 3.5. In this approach, the complex-valued baseband signals are
first converted to a fixed IF using an I/Q mixer (see Appendix A.1). The IF signal is
then further up-converted to the desired RF frequency using a real mixer. The same
two-step process is performed in reverse when translating the RF signal back to the
baseband for readout.

To cover a wide RF frequency range of 4 to 9 GHz with a single setup, the IF
frequency of the local oscillator is chosen at 3.5 GHz. With the 1 GHz digital data
rate in the complex baseband, one obtains an accessible frequency range at this
stage between 3 and 4 GHz. A great advantage of this approach is that high-quality
and low-cost telecommunication chips are readily available for this frequency range.
The IF signal is then up-converted by a real mixer, which produces both the sum
and difference of the frequencies. The mirror sideband, being the frequency sum in
this case, is easily rejected using a low pass filter. This can efficiently be achieved as
the difference between both bands is 6 GHz due to the first up-conversion to the IF
band. A low-pass-filter with 3 dB cut-off frequency of 9.1 GHz is used. This upper
frequency is sufficient for most applications, and expansions are easily possible by
exchanging the filter.

The PCB was developed during the master thesis of Robert Gartmann [137]. A
photograph of the second version of the PCB is given in Figure 3.6. Besides the
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Figure 3.7: Architecture of a single digital unit cell. Arrows of the Wishbone (WB) bus indicate the
direction from master to slave.

required RF electronics, it also integrates the power supply as well as an I2C and
SPI interface to control and configure the components. It can either be connected to
a separate Raspberry Pi and controlled via Ethernet, or to the QiController which
then provides access via the ServiceHub.

3.4 Programmable Logic

The core of the QiController is the PL which hosts the entities to control and read out
the superconducting qubits. Its general structure was already depicted in Figure 3.2.
The detailed functionality of the different modules as well as the inner structure
of the digital unit cell is covered in the following sections. The whole design is
operating with a 250 MHz clock derived from the converter clock. Its resource
utilization, as well as for the single modules, is given in Section 3.7.1.

3.4.1 Digital Unit Cell

The digital unit cell contains all the relevant logic to generate and analyze pulses in
the complex-valued baseband for a single qubit and to control peripheral devices
for additional capabilities. Its architecture is sketched in Figure 3.7.
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Two signal generators create the required pulses to control and read out the qubits
as AXI-streams. A signal recorder takes the digitized signal from the ADCs and
demodulates it to obtain the qubit state. A dedicated data storage collects the
resulting data from the signal recorder and the sequencer. A digital trigger block
can generate digital signals to address and trigger external lab equipment. All
modules are controlled and activated by the sequencer which orchestrates their
execution in single-cycle steps (4 ns). For fast conditional responses, the signal
recorder directly reports all measured qubit states back to the sequencer which can
then act accordingly. In all other cases, the modules communicate exclusively via a
WB bus [138]. This also applies for trigger signals from the sequencer to control the
execution of the other modules.

3.4.2 Wishbone Bus Infrastructure

Wishbone (WB) was selected as bus architecture because of its simplicity and
resource efficiency compared to a full-featured AXI interface. A custom implemen-
tation is used to ensure deterministic timing which is essential for the targeted
application. The WB bus inside the digital unit cell features a 16 bit address width
and a 32 bit data width. It is also used by the PS to configure and access the modules
in the unit cell. Therefore, an AXI4-Lite to WB bridge is utilized to translate the
register accesses for the internal bus. It also performs an address translation from
byte-based addressing as used by the AXI4-Lite bus to register-based addressing
used by WB.

All slave modules have a special WB register interface implemented that guarantees
a deterministic response time of 2 cycles without stalling. For the generation of the
interface, a script was implemented that translates an abstract register definition file
to the required VHDL entity. The register definition is stored as comma-separated
values (CSV) and can be edited with a normal text editor or a spreadsheet program.
This eases development and ensures that all interfaces are implemented in the same
way.

A custom WB interconnect allows for two masters and up to seven connected slaves.
Both sequencer and WB bridge are connected as masters. In case of a conflicting
access, the sequencer always takes priority in order to keep deterministic timing
during executions. With the interconnect, read and write operations take exactly
4 cycles from the sequencer to return a response. The timing diagram of such an
operation is sketched in Figure 3.8. As the sequencer takes priority, the access from
the WB bridge will take one extra cycle for buffering and might be stalled if the
sequencer is currently accessing the bus. With the deterministic latency in mind,
the interconnect was modified to allow a single pipelined register access each cycle
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Figure 3.8: Timing diagram for a WB bus access from the sequencer to a slave register interface.
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Figure 3.9: Common start of the register interfaces of all modules inside the digital unit cell. The
address offset is given in bytes. Signal generators (SG), signal recorder (SR), and digital trigger (DT)
are abbreviated.

on the bus. This even applies if a previous operation originating from one of the
masters has not finished yet as the deterministic timing still allows to route the
multiple requests independently. This way, one can ensure that the sequencer can
always issue trigger commands on the WB bus with deterministic access latency.

The multiplexing between the modules happens according to the highest three
address bits. While 000 up to 110 represent the according connected module,
111 acts as broadcast modifier. In this case, the bus operation will be forwarded to
all connected slave modules at the same time. This feature is utilized to provide
means to trigger all the connected modules with a common trigger word at the same
time without utilizing a separate trigger infrastructure. The register interfaces of all
slave modules are therefore starting in a similar way with an info, a status and a
control register. Afterwards, a broadcast register follows with a 20 bit trigger word
field that can be strobed by a write access. The remaining registers can be freely
and independently used depending on the demand of the different modules. The
common structure of the register interfaces and the trigger word is also depicted
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in Figure 3.9. Special trigger commands are shared between all modules to reset
them, mark the start of an execution, and to synchronize the numerically controlled
oscillators (NCOs) inside the two signal generators and the signal recorder.

3.4.3 Sequencer

The sequencer is the core of the digital unit cell. Its purpose is to control and
orchestrate the execution of experiments with single cycle accuracy. It controls
all connected slave modules and can, e.g., schedule pulses or start a recording.
Via the WB infrastructure, it can furthermore even change configurations of other
modules within the unit cell or read out data from their register interfaces. The user
can define a sequence of operations in 4 ns steps using the RISC-V instruction set
architecture (ISA) [139] together with a custom special-purpose set. The RISC-V ISA
was selected as it is state-of-the-art, easily extensible, very flexible, and hardware
efficient. It furthermore provides a rich ecosystem and is well established in the
scientific community.

From the modular instruction sets of the RISC-V ISA, most of the base integer and
multiplication set, as well as a custom special-purpose set for the sequencing is
implemented. In total, 33 instructions are available for the sequencer as well as 32
registers (one being the x0 register tied to zero). The following operations are part
of the special-purpose set:

TRIG: writes the given trigger word to the broadcast register of all connected WB
slave modules, compare Figure 3.9.

WAIT-IMM: delays the execution by the given number of clock cycles.

WAIT-REG: delays the execution by the number of clock cycles given in the defined
register.

WAIT-REG-TRIG: same as WAIT-REG but reduces the wait time given in the register
by one cycle. This can be used to wait a register-defined time and take the one
cycle to execute a previous command into account. The main use case is to perform
a trigger operation and then wait a time defined in a register until it completes.
As TRIG and WAIT-REG are two separate commands, the total delay would be one
cycle too long. Therefore, the separate WAIT-REG-TRIG is implemented.

SYNC-EXT: waits for external input before continuing with the program execution.
E.g., this can be the resulting qubit state returned by the signal recorder.

SYNC-START: ends the execution of the sequencer and returns to an idle state where
it waits for a new start command.
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Figure 3.10: Internal structure of the RISC-V-based sequencer within the digital unit cell.

A list with the implemented instructions from the base integer and multiplication
set is given in Appendix B.1.

Most instructions are optimized to execute in only one cycle for highest performance.
Only multiplication takes 6 cycles in order to relax the timing requirements for
the 32 bit times 32 bit multiplication. Instructions entailing a jump in the program
counter take 3 cycles. These are branch instructions if the comparison yields true,
as well as the unconditional JAL jump operation. The different wait operations
take as long as specified in the command and the sync commands might wait an
undetermined time on external input.

The internal structure of the sequencer is shown in Figure 3.10. Up to 1024
instructions can be stored in the internal block RAM (BRAM) of the sequencer.
With typical experiments requiring tens of instructions or less to be executed, this
is sufficient for nearly all imaginable experiments. A state machine fetches the
instruction words from this memory via a buffering and decoding stage. It then
performs the adequate operation depending on the RISC-V instruction obtained.
Multiplication is handled by a separate multiplier unit realized with four digital
signal processing (DSP) slices. The sequencer has both a WB master and slave
interface. As for every other module, the slave interface is used to configure and
control the sequencer. The master interface is used to trigger the connected slave
modules and can also reconfigure or fetch data from them. This can be used to
change pulse properties like frequency, phase or amplitude, or to vary the settings
for the recording, just to name two examples. One thereby gains a lot of additional
flexibility and capabilities what the sequencer can handle directly in hardware.
The according load and store operations will take exactly 8 cycles as they wait for
the acknowledgment of the WB bus and a possible read data value. Of these 8
cycles, 4 cycles account for the deterministic latency of the bus and the remaining 4
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for processing the operation in the sequencer, applying the output to the bus and
processing the return signals from the bus.

Contrary, trigger commands are applied to the bus using pipelined block write
operations and the sequencer does not wait for a response but directly continues
with the next command. This way, trigger commands can be issued each cycle
without stalling. However, after trigger operations, the bus is still processing while
the sequencer already executes the next operation. If this is a normal load or store
operation, it will first have to wait until the bus is not busy anymore. In this case,
the latency to perform such an operation might also be longer than 8 cycles. This
could be further optimized by always applying pipelined block write operations
and exploiting the deterministic latency of the modified WB bus. For now, the WB
master interface of the sequencer was designed in a way that it can also be connected
to any normal WB interface without causing any compatibility issues.

A more detailed coverage of the implementation aspects of the sequencer can be
found in the master thesis of Rainer Illichmann [140].

3.4.4 Signal Generator

The signal generator handles the generation of pulses in the complex-valued
baseband with a common frequency and well-defined, stable phase relation. Users
can load 15 different pulse configurations into the module, corresponding to the
available 4 bit trigger command value. The sequencer uses this value to start the
generation of the corresponding pulse in the signal generator. Pulses are defined by
their envelope which is then multiplied within the module by an NCO signal acting
as global phase reference and defining both pulse phase and frequency. It is not
possible to store the baseband pulses directly as a well-defined and stable phase
relation between consecutive qubit control pulses is crucial. The structure of the
signal generator is presented in Figure 3.11.

All configuration, as well as the trigger from the sequencer, is fed to the module via
the WB interface. The 4 bit trigger command can select one of 15 pulse configurations,
which are called trigger sets. Trigger value 0 is reserved for the no operation case.
For each trigger set, the following properties can be individually specified:

• The duration of the pulse in cycles. As four samples are handled each cycle,
sample-accurate, sub-cycle precision of the pulse can be achieved by padding
the envelope values with zeros to fill up a full cycle.
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Figure 3.11: Internal structure of the signal generator within the digital unit cell.

• The phase offset of the pulse relative to a global phase reference inside the
module. Using this property, the rotation axis on the equator of the Bloch
sphere can be selected.

• I and Q envelope sample values of the pulse.

• Option to hold the last envelope sample value until another trigger is received.
This results in continuous wave (CW) operation and can also be used to create
variable length pulse shapes like a trapezoid.

• Option to persist the phase offset in the global phase reference. This enables
the user to perform a virtual Z rotation.

The envelope values are stored inside the envelope memory which is an 8 kB
large true dual-port BRAM. It can store 4096 real-valued samples (16 bit each)
corresponding to up to about 4 µs of pulse data if I and Q share the same envelope
samples. As most pulses are in the order of tens to hundreds of nanoseconds, this is
enough for most applications and multiple pulses to be stored. Trigger sets define
the address offsets to the envelope values in the BRAM. These can be the same
address if the envelopes for I and Q are identical, or different, if not (e.g. for DRAG
pulses).

When a trigger arrives and selects one of the 15 trigger sets, the configuration of
this trigger set is activated and the execution of the sample players is started. Two
sample players are instantiated, one for the I, and one for the Q envelope. They
simultaneously read the I and Q envelope values out of the dual-port BRAM. After
the duration of the pulse has passed, the sample players either turn off the envelope
output or keep the last sample value, depending on the option given in the trigger
set.
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The I and Q envelope values are then forwarded to a complex multiplier. There,
they will be multiplied by the oscillating complex quadrature signal of the NCO.
The NCO is based on the direct digital synthesis technique and acts as global phase
reference for all pulses generated by this signal generator. It has a configurable
frequency and a global phase offset. The latter can be temporarily shifted for a single
pulse by the configuration in the trigger sets. It can also be intentionally changed to
perform arbitrary virtual Z rotations. Synchronization of the frequency references
between multiple modules is performed by simultaneously resetting the internal
phase of all NCOs to zero. This is achieved by the special sync trigger command
(compare the structure of the trigger word in Figure 3.9).

At the output of the multiplier, one obtains the digital pulse in the baseband. Before
it is forwarded towards the DACs as AXI-stream, the I and Q quadratures can be
independently calibrated by a scaling factor. Factors from zero to two (excluding)
are possible with high precision as the factor is implemented as a 1:15 fixed point
value, one for the I and one for the Q component. If the multiplication product
exceeds the valid range of the 16 bit data width, it will be clipped and a saturation
flag will indicate this to the user until it is manually cleared. From receiving the
trigger at the WB register interface until the pulse is output as AXI-stream, the
signal generator needs in total 13 cycles. A breakdown of this delay is given in
Appendix B.2. It also includes two pipeline stages to relax timing constraints.

3.4.5 Signal Recorder

The signal recorder receives the digitized microwave signals from the converters
in the complex-valued baseband. After an initial signal conditioning, a digital
down-conversion (DDC) follows using a complex mixer followed by an accumulator
acting as boxcar integrator. The demodulated I and Q value are further evaluated to
obtain the estimated state of the qubit. All results are forwarded to a separate data
storage module. There, the desired results are selected, aggregated and consecutively
persisted in one or multiple BRAMs for later retrieval by the PS and the user. More
information on the data storage is given in the next section. The structure of the
signal recorder is depicted in Figure 3.12.

A typical readout operation will trigger a signal generator to play a pulse with a
certain length. After some latency and electrical delay through the setup, a modified
version of the pulse will arrive at the recording module. Then, the pulse has be
demodulated and evaluated by the signal recorder to obtain the amplitude and
phase response of the investigated system. To cover this, the sequencer will not only
trigger the signal generator but simultaneously also activate the signal recorder.
In the signal recorder, a trigger delay is specified to compensate for the latency of
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Figure 3.12: Internal structure of the signal recorder within the digital unit cell.

the pulse through electronics and experiment setup. By adjusting the duration of
the recording to the length of the pulse, the accumulator will then take the whole
returned pulse into account. Using these two parameters, the user can define a
rectangular recording window which will be evaluated by the DDC.

Due to mixer and other imperfections in the analog setup, the raw I and Q data from
the converters might not be well balanced in amplitude or have a 90° phase relation.
To correct for this, a signal conditioning is performed on the raw input data. It
consists of a multiplication with a 2× 2 conditioning matrix Mcond following after
an offset subtraction to remove a potential DC offset:(

Iout

Qout

)
= Mcond

[(
Iin

Qin

)
−
(

Ioffset
Qoffset

)]
. (3.1)

The corrected raw time trace is then stored inside a separate BRAM whenever a
recording is performed. The memory thus always contains a snapshot of the raw
data used for the last demodulated I and Q value. Due to the limited size of the
BRAM, it can only store up to 1024 ns of raw data. If longer recording durations
are set, only the beginning of the incoming raw time trace will be persisted in the
BRAM. For most applications, the recording pulse is considerably shorter than
this length. The stored time trace can later be used for debugging purposes or to
visualize the raw input.

At the same time, the conditioned signal will also be down-converted by complex
multiplication with a reference oscillation from an NCO. The NCO is of the same
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type as in the signal generator. To obtain reproducible results, it is important that
both NCOs are synchronized at the beginning of an experiment to have a stable
phase relation. The phase offset of the NCO in the signal recorder can furthermore
be adapted to rotate the down-converted signal in the I/Q plane to a desired
position. The frequency of the NCO is chosen to be the negative value of the NCO
used in the signal generator of the corresponding readout pulse. The complex
multiplier thereby shifts the frequency of the input signal carrier to DC. To make
configuration easier, the quadratures of the NCO are swapped in the recording
module which effectively negates the frequency. Both readout signal generator and
recorder can thus be configured with the same frequency value.

Afterwards, a low-pass filter and decimation are necessary to average the resulting I
and Q component. These components then correspond to the amplitude and phase
response of the resonator. In the signal recorder, a boxcar integrator is implemented
by using an accumulator to add up the samples over an adjustable time window.
This recording duration can be freely chosen by the user and typically is a trade-off
between a desired fast readout operation and a sufficient signal-to-noise ratio.
Alternatively, a FIR filter and decimation could be used for a better low-pass
characteristic. At the same time, the accumulation yields a smaller latency to obtain
a result which is the reason why it was preferred.

The accumulation will add up the incoming 16 bit I and Q values separately for the
specified time window in two 32 bit accumulator registers. Therefore, a minimum of
216 = 65 536 samples can be averaged without creating an overflow, corresponding
to recording durations of over 65 µs. The values will then be reduced back to 16 bit.
An overflow of the values during this operation can be prevented by shifting the
values by a user-defined number of bits before reducing the bit size. This value
shift is, by default, automatically calculated by the drivers based on the recording
duration so an overflow cannot happen. Especially if the digital input range of the
ADC is not maxed out, it can be beneficial for the signal quality to intentionally
reduce this shift to increase the obtained signal strength. A status flag will indicate
if an overflow happened when reducing the bit size after the value shift. This gives
the user the feedback that the obtained data is corrupted and the value shift should
be increased.

While conditioning and complex multiplication are performed continuously, the
boxcar integration as well as the storage of the raw time trace are only activated
when the signal recorder receives a trigger signal. Once the recording duration has
passed, the accumulated I/Q result value is passed to the data storage, as well as
to a state estimation routine. In the latter, the result is transformed into a binary
information of 0 or 1 corresponding to the estimation of the measured qubit state.
This state result will be directly returned to the sequencer which can be programmed
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Figure 3.13: Illustration of the I/Q plane with noisy measurement results of the readout pulse indicated
by two areas for the qubit states |0〉 and |1〉. The dashed line is the linear discriminant to distinguish
between both states.

to wait for this value and store it in a register using the SYNC-EXT operation. The
state will also be passed to the data storage where it can be aggregated and saved for
later retrieval. To distinguish between states |0〉 and |1〉, in most cases, it is sufficient
to determine a linear discriminant of the form

aTm + b = 0 (3.2)

for the I/Q plane of the result values. By checking on which side of the discriminant
a measurement result m = (I, Q)T is located, the qubit state can then be inferred.
This is illustrated in Figure 3.13. The discrimination can be realized by evaluating
the left hand side of Equation 3.2 and checking if the result is larger or smaller than
zero. The values a = (aI, aQ)

T and b are calibrated and configured by the user as
32-bit signed integers. As only integers are allowed, special care has to be taken
that rounding errors do not play an important role. This can be easily prohibited
by multiplying Equation 3.2 by a factor k � 1. As the equation still describes the
same linear discriminant, the coefficients aI, aQ and b can also be multiplied by this
common factor k without changing the discrimination. By choosing k appropriately,
the relative errors when rounding the coefficients become small. If a result is located
directly on the discrimination line, it is, for simplicity, attributed to the positive case.
This way, the state estimation can simply calculate the left hand side of Equation 3.2
and use the sign bit of the result as estimated qubit state.
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For simple experiments, the signal recorder also provides an averaging functionality.
Single results obtained from the accumulator will be further summed up until the
module is reset externally. This is especially helpful if a single measurement should
be performed and repeated many times to obtain an averaged I and Q result value.

Different operation modes of the signal recorder can be distinguished, based on the
received trigger value. The following values are implemented:

RESET: resets all internal data of the module, including the averaged result.

SINGLE: performs a single measurement.

ONESHOT: performs a single measurement but does not include it into the result
averaging. A typical use-case are two consecutive measurements where the first one
is only used internally and will result in a state estimation on which the sequencer
will react. The second one is then to obtain a measurement result of the experiment.

CONTINUOUS: continuously performs consecutive measurements and returns the
values to the storage module. This mode can be used to obtain a seamless stream
of demodulated results without the need of the sequencer to trigger each single
measurement. The continuous mode will continue until a STOP trigger is received.
This mode provides the basis for continuous operation over long periods, e.g. to
observe state changes of the qubit over time (quantum jumps).

3.4.6 Data Storage

The data storage provides a configurable and flexible way to store experiment
data from both the signal recorder and the sequencer. It contains multiple memory
containers which can be filled with data independently and in parallel, e.g. to
partition measurement results, or to persist values from the sequencer in parallel to
the results of the recording module. From these memory containers, the data can
later be retrieved by the user.

When the signal recorder performed a measurement, it passes the single results and
belonging estimated qubit states to the data storage. To be efficiently stored, qubit
states will be concatenated to 32 bit words. Either 32 or 10 states are combined,
depending if only one bit is used or also higher states are accounted for (3 bit
information per state). The user can then select between the following data sources
to be stored in the memory containers:

• Single I and Q result values

• Single estimated qubit states
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Figure 3.14: Internal structure of the data storage within the digital unit cell.

• Concatenated qubit states (either 10 or 32 per register)

• Input data from the WB interface

The last data source is a special register in the WB interface to which the sequencer
can write to append values to the memory blocks. This way, the sequencer can also
perform manipulations on the results before storing them or persist some additional
values in the data storage.

The structure of the data storage is shown in Figure 3.14. It comprises four memory
containers, each with a separate dual-port BRAM to store data. Each container
provides an interface to consecutively append 32 bit values to the memory until it is
full after 1024 values have been stored. It furthermore contains an option to use the
memory as circular buffer and wrap the address instead of rising an overflow flag if
the memory is full. In this mode, it can endlessly write data to the memory trusting
that the PS fetches it again fast enough before being overwritten. The second port
of the dual-port BRAM is mapped into the WB interface for direct read and write
access from sequencer and PS. If a memory container is otherwise unused, the
sequencer can also utilize it via the WB interface as a memory extension, e.g. for
arrays. The memory containers can be configured via the WB interface and also
expose status signals the same way, like empty, full, and overflow flags, as well as
the current data size.

3.4.7 Digital Trigger Output

While the system covers most aspects to control and read out superconducting
qubits, for some experiments it can be necessary to digitally trigger external
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Figure 3.15: Internal structure of the digital trigger output inside the digital unit cell.

measurement equipment for additional functionality. A common use case are
current pulses for special qubit gates. For these situations, the digital unit cell
contains a digital trigger output module capable of generating trigger signals for
external devices. These signals are routed to GPIO pins of the platform.

The structure of the digital trigger is depicted in Figure 3.15. Each unit cell has
8 digital outputs available that can be strobed. The module provides 15 trigger
sets to define the behavior of the trigger signals. Using a bit mask, one can define
which outputs to activate for a given trigger set. One can also control the number of
cycles how long the outputs should stay asserted. A special option can be used for
continuous activation until another trigger value from the sequencer is received.
Each output can be individually inverted and a trigger delay specified. This delay is
especially important to synchronize the action of external devices with the operation
of the system.

3.4.8 Cell Coordinator

The cell coordinator synchronizes the execution of the digital unit cells. When
started externally, the sequencers within the digital unit cells run independently.
However, for experiments requiring multiple cells, the execution needs to be aligned
in time. This is achieved by the cell coordinator which is connected to all digital
unit cells in a star point architecture. Using this structure, the cell coordinator can
synchronously start the sequencers of any subset of the available digital unit cells. It
also aggregates their busy flags and exposes them to the user.

The structure of the cell coordinator is sketched in Figure 3.16. Via an AXI4-Lite
register interface, the status of the digital unit cells can be monitored. The user can
also trigger the synchronous execution of some or all digital unit cells by writing a
trigger mask to the interface. The start trigger is then forwarded to the sequencers
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Figure 3.16: Structure of the cell coordinator connected as star point to all digital unit cells.

of the relevant unit cells. As the delays of the individual logic signals are matched,
a synchronous start of execution is guaranteed. To stay synchronous during the
execution, one can insert appropriate wait statements in the program instructions of
the different sequencers.

In future, the cell coordinator could be extended to implement data exchange
between unit cells, like measured qubit states or register contents of the sequencers.
Also, means for an explicit synchronization between multiple unit cells during
the execution could be added. This can be necessary when, e.g., one cell performs
a conditional execution and the timing cannot be inferred beforehand. However,
the structure of the exchange between digital unit cells will also likely change
depending on the evolving requirements concerning multi-qubit chips. As it is not
required for most experiments, it was decided to not implement it yet but first let
the research field evolve further. With more detailed requirements being known in
future, the star point structure might also be replaced by another architecture which
better suits the requirements of future quantum processors.

3.4.9 Cell Multiplexer

The cell multiplexer connects the digital unit cells with the DAC and ADC channels
and can combine and split up multiple signals using FDM (see Appendix A.3). The
required routing of the signals between converters and cells depends on the design
of the chip and the remaining setup. The signals are either generated for separate
microwave lines, or need to be frequency-division multiplexed on a single line. With
the cell multiplexer, one can flexibly route the signals from the different digital unit
cells to the converters and back. Its functionality was already depicted in Figure 3.3.
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All signals from the converters and the digital unit cells are connected as AXI4-
streams. Frequency-division multiplexing is achieved by digitally adding multiple
signals together. As these are generated by the digital unit cells with different
frequencies, the sum of the signals is a multi-tone signal which will then be
synthesized by a DAC. During the addition, an overflow can happen if the resulting
signal exceeds the valid range. For this case, the cell multiplexer has an overflow
detection which will set a flag and alert the user who then can reduce the individual
signal amplitudes. Returning signals from the ADCs are split up onto the relevant
digital unit cells. Multiplexed signals are simply routed to multiple cells. The
discrimination between different carriers happens inside the signal recorders which
perform DDCs with different intermediate frequencies. Other signal contributions
are thus suppressed if their frequencies are sufficiently spaced apart to be removed
by the low-pass filtering.

3.4.10 Platform Information and Management Core

The platform information and management core (PIMC) is an FPGA module
designed to provide standardized access and recognition of different hardware
images. It provides an AXI4-Lite register interface to query the status of the running
image, as well as to perform a global reset operation. The status also includes a
project and a platform ID to identify the built hardware image and the platform
for which it is intended. This information can later be used by other software
components to check for compatibility with the system. It also provides information
of the build revision as well as the timestamp when the FPGA bitstream was created.
A busy flag indicates if the platform is currently performing an operation. A ready
flag tells the user if the platform is fully initialized and ready to use. This includes a
check if all clocks are configured and running correctly, and if the connection to the
converters is established and working. Finally, it also connects to the LEDs of the
board to show this status information to the user. For this purpose, it also divides
the clock down to a frequency of 1 Hz which will be used to let an LED blink at this
frequency to show the design clock is working correctly. The PIMC is also actively
used in other projects at the Institute for Data Processing and Electronics (IPE).

3.5 Software Stack

While the functionality to interact with the qubits is completely implemented within
the FPGA to leverage its fast parallel processing and nanosecond accuracy, more
complex and versatile tasks are performed in software. By utilizing a multi-processor
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system-on-chip (MPSoC) platform, the processors are tightly linked to the FPGA
and can interact with it. Still, a latency of a few hundreds of nanoseconds occurs for
the communication between PL and PS. This is too slow for time-critical tasks like
pulse sequencing but can be used for more high-level control over the setup.

Two different subsystems have been developed during this thesis and will be
explained in more detail in the following sections: First, the ServiceHub which runs
on the APU and provides an interface between the user and the platform. Second,
the Taskrunner on the RPU that complements the execution on the PL with versatile
control and data aggregation capabilities.

3.5.1 ServiceHub

The ServiceHub framework [135] is a modular communication server that runs on
the APU as Linux application. It provides a flexible abstraction of the platform’s
functionality and convenient means to interact, control and configure the different
parts of the QiController. Besides facilitating configuration and control capabilities
for the different PL modules, the interface is also used to transfer measurement
data from the system to the user. An example would be to read the content of the
memory blocks inside the storage modules or transferring data from the Taskrunner
which is treated in the following section. The ServiceHub is based on C++ and
access to the platform is implemented using remote procedure calls (RPCs) utilizing
the open-source framework gRPC [141]. In gRPC, the interface is specified in
language-agnostic protobuf definition files. From these files, client interfaces can be
automatically generated in a large variety of supported languages, like Python, Go,
C/C++, Rust, or C#.

The architecture of the ServiceHub is sketched in Figure 3.17. Its modularity is
achieved by separating different functionality into different plugins. The plugins are
then dynamically loaded by the ServiceHub according to a specified configuration.
Each plugin has access to the ServiceHub infrastructure via a standardized interface.
This provides means for plugin management and health checks, storage, logging
and user configuration, as well as SysFS and device tree access. Each plugin also
defines its own gRPC remote procedures that will be exposed to the user via the
ServiceHub. Plugins can also interface with and control other plugins to coordinate
between them or provide more complex calibration and high-level control routines.

For each type of PL module, a ServiceHub plugin exists which facilitates the
user access to these modules. Plugins are separated into a part with the gRPC
methods that will be exposed to the user, and one or more endpoints that implement
the drivers to access the underlying hardware objects. As multiple unit cells are
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Figure 3.17: Architecture of the ServiceHub as modular interface between platform entities and user
control computer.

implemented, e.g. plugins addressing the contents of a unit cell have multiple
endpoints, like the plugin for the signal generator or the sequencer. In these cases,
an endpoint index needs to be additionally passed to the remote procedure calls to
select the endpoint index to use. Besides the PL modules, also other plugins exist,
like for the RF frontend electronics that is controlled via SPI and I2C, or for the
Taskrunner.

Besides the plugins which are dynamically loaded depending on the hardware
project used and the available entities within the platform, a ServiceHub control
plugin is loaded. It provides a default service for the user which is always present
whenever a ServiceHub is running on the system. It can be used to query a list of
loaded plugins, the current status of the setup and the logs, as well as to control the
platform, like reloading the ServiceHub or rebooting the system.

From a conceptual point of view, the ServiceHub exposes functionality to the user,
and when called translates these requests to internal signals within the platform.
One example would be changing the frequency of the NCO within the signal
recorder, as is depicted in Figure 3.18. The signal recorder plugin exposes an RPC
method called SetInternalFrequency for this purpose. Its function arguments
are the endpoint index, as well as the frequency in hertz. Based on the index, the
memory address range of the corresponding signal recorder within the AXI4-Lite

66



3.5 Software Stack

Recorder Plugin Signal Recorder

SetInternalFrequency

Digital Unit Cell 3ServiceHubPython Client

gRPC Stub

Write value 0x0F5C28F6

to address 0xAA308020(index = 3,  value = 60e6)

Ethernet AXI4Lite

Figure 3.18: Conceptual view of a remote procedure call to change the frequency inside a signal
recorder within the FPGA.

interface is selected. The frequency is translated inside the plugin from hertz to a
phase increment value which is then written to the appropriate register within the
FPGA using the AXI4-Lite bus. The plugins thus also encapsulate and abstract from
implementation-specific details of the endpoints that are not relevant for the user.

3.5.2 Taskrunner

Complex parameter variations during experiments are commonly necessary to
sweep a specified parameter range. Measurement results need to be further
processed, evaluated, and aggregated. Both requirements can be highly experiment-
specific and are not well suited to be implemented within the FPGA due to lacking
flexibility and a high entry barrier. As an alternative, a software-based approach
is pursued. Yet, largely deterministic timing and low latency control of the PL is
required to reliably process an incoming data stream and reduce the time overhead
for control schemes. Utilizing the APU is not convenient due to uncontrolled context
switches by the Linux operating system, as they occur, e.g., by external requests via
Ethernet. If the data buffer between FPGA and APU would overflow during such an
interruption, data loss would be the consequence.

Based on these considerations, a separate subsystem is implemented on the real-time
co-processor of the MPSoC architecture, the Taskrunner [47]. It provides convenient
access to the RPU and enables users to dynamically execute arbitrary C code,
so-called user tasks. Thereby, complex control schemes and flexible online data
processing can be implemented directly in software.

The structure of the Taskrunner framework is sketched in Figure 3.19. It consists
of three parts: the Taskrunner firmware on the RPU, a ServiceHub plugin, and a
cross-compiler on the APU. The firmware on the RPU handles the execution of
user tasks. It also provides an interface to exchange data and status information
with the APU. The ServiceHub plugin provides an interface of the Taskrunner
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Figure 3.19: Structure of the Taskrunner framework inside the MPSoC architecture.

to the user client. It interacts with the interface of the firmware on the RPU and
exposes its functionality to the client. To transfer data to the user client, a shared
memory region inside the DDR4 memory is used. In it, so-called data boxes are
created which are written by the user task in the RPU. These data boxes are used to
store obtained or processed values. They are then fetched by the ServiceHub plugin
on the APU and transferred to the client. As user tasks are conveniently specified
using standard C language, the source code is compiled on the fly directly using a
cross-compiler on the APU.

The Taskrunner firmware is hosted by the real-time operating system FreeRTOS.
Both are loaded together during the Linux boot sequence from the APU. The
firmware consists of two threads that are scheduled by the FreeRTOS scheduler.
One handles the communication with the ServiceHub plugin on the APU, the
other controls the execution of the user task, in the following called application
thread. The communication thread is only scheduled when the plugin is requesting
information from or sending data to the Taskrunner. Unwanted context switches
can be inhibited by defining a critical section in the user task. Both Taskrunner
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firmware and user task are located inside the tightly-coupled memory (TCM) of the
RFSoC to ensure the execution of operations with deterministic timing. The RPU is
operated in lock-step mode, giving access to the full 256 kB TCM capacity.

The APU acts as host, controlling the RPU slave via remoteproc, based on the Open
Asymmetric Multi Processing (OpenAMP) [142] framework. The communication
between Taskrunner firmware and ServiceHub plugin is handled by the RPMsg
protocol which utilizes inter-processor interrupts and a shared DDR4 memory. User
tasks are transmitted as source code to the ServiceHub plugin on the APU where the
cross-compiler for the RPU is invoked. A library is provided to abstract from a pure
register-based access when interacting with digital unit cells on the FPGA. During
compilation, the task is linked against the RPU firmware binary in order to provide
the C standard libraries as well as an interface to interact with the Taskrunner. The
resulting binary is loaded onto the RPU using the RPMsg interface where it is stored
inside the TCM by the communication thread. Direct access from the APU to the
TCM is not required.

Prior to starting the task execution, parameter values can be passed to the user task.
The parameter list is copied into a designated 15 MB DDR4 memory region by the
ServiceHub plugin. A wide range of parameters can be passed, like a list of delays,
the number of average repetitions to perform, or some boolean information. When
the user starts the task execution, the communication thread of the Taskrunner
ensures that no task is currently running and notifies the application thread about
the received start command. The application thread then calls the entry function of
the user task in the context of the application thread.

The user task can utilize a provided function library to interact with the Taskrunner.
The user-defined parameter list can be accessed to customize the task’s behavior. A
progress value can be specified and queried during execution to monitor the task
progress. Error messages can be specified and will be appended to a queue that can
be fetched by the Taskrunner plugin within the ServiceHub. Finally, functions to
operate with data boxes are provided to exchange data with the user. The full list of
available commands is given in Appendix C.1.

Data boxes are located in a 480 MB heap in the DDR4 memory. Custom memory
management functions exist to request, finish and discard data boxes of an
individually settable size. Finished data boxes can be queried by the client, also
during the user task execution. The ServiceHub plugin then fetches a list of
corresponding DDR4 memory addresses and sizes from the Taskrunner. After
sending the data boxes to the client, the corresponding memory regions are freed
and can be reused again.

69



3 Platform Architecture

When transferring data, two different operation schemes can be distinguished. For
shorter experiments, it is sufficient to collect the data after the user task completed.
The data boxes are finished at the end of the user task and the client checks if the task
is done prior to fetching the data boxes. During task execution, only the progress
value is exchanged with the client. Longer experiments, on the contrary, might
exceed data sizes that can be handled by the 480 MB data box heap. Therefore, data
boxes can also be finished during the user task execution and collected in parallel
by the client. This prevents memory exhaustion and provides the means to directly
visualize the evolving measurement results while the experiment progresses.

3.5.3 Boot and Initialization

The heterogeneous platform consists of a lot of different components that need to
be initialized when starting the system. When the power is turned on, a first stage
boot loader (FSBL) is started. It configures the RFSoC and programs the FPGA
bitstream with the components discussed in Section 3.4. Then, it starts U-Boot
which will select the appropriate boot device and initialize the Linux kernel located
on it, e.g. on an SD card. During Linux boot, peripheral devices get configured.
This also includes the external Texas Instruments LMX2594 clock chips that supply
the sampling frequency to the DACs and ADCs. They get configured to operate
at 4 GHz output frequency. Only after setting up the converters, the PL design is
functional, as its main clock is derived from the converter clock. To ensure proper
initialization, a reset of the PL design is triggered once the clock is ready.

The Taskrunner is also initialized during Linux boot. An init script first ensures that
the RPU is stopped. Then it copies the Taskrunner binary including FreeRTOS as
firmware into the TCM. After copying the firmware, the RPU is started and it is
checked that the processor is running. Finally, a Linux kernel module handling the
inter-processor communication between APU and RPU is loaded. After the Linux
boot process finished, the ServiceHub is started and the required ServiceHub plugins
are loaded, depending on a given configuration file. The plugins themselves can
perform further initialization routines. For example, the plugin for the Taskrunner
will open a connection via RPMsg to the RPU and the firmware running on it.

3.5.4 System Reliability

As the platform is designed to be operated in the laboratory, it is important that it
runs as reliable as possible and only with minimal downtime. One measure to avoid
an otherwise necessary in-person maintenance is the integration of a fail-over boot
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mechanism. Whenever the normal operation fails or the system gets stuck during
Linux boot or afterwards, a separate fail-over system is loaded instead. In consists of
a minimal Linux setup without the qubit control functionality. Yet, it enables remote
access via Ethernet to the system and thus the possibility of a remote maintenance.
The fail-over system is stored on the QSPI flash of the ZCU111 board and loaded as
random access memory (RAM) disk to prevent overwriting the fail-over. This way,
also the SD card containing the full image can be mounted and altered to restore
operation. U-Boot is expanded by a boot loop detection counter which will trigger
a boot from QSPI if a loop is detected, and from the SD card otherwise. During
normal operation, a watchdog supervises the ServiceHub and triggers a restart of
the system if it is not responding anymore. This way, a non-functional system will
cause multiple restarts which eventually lead to an initialization of the separate
fail-over system. Furthermore, the system can also be triggered manually during the
U-Boot startup process for manual maintenance when necessary. Robin Bauknecht
covered the topic of system reliability in more detail in his master thesis, including
an analysis of possible failure scenarios and belonging mitigation strategies [143].

3.6 Scalability

Current systems mostly consist of only few superconducting qubits that need to
be controlled and read out. However, when targeting a useful quantum computer,
many qubits need to be combined into a quantum processor. This will require
reinventing the complete hardware and software stack. Yet, also for the intermediate
regime of tens of superconducting qubits, technical solutions are required. Concepts
for this intermediate regime are described in the following sections.

3.6.1 Single Platform

As already motivated and introduced in Section 3.2, multiple qubits can be
controlled by a single QiController as the architecture is divided in digital and
analog unit cells. A sketch of this concept is presented in Figure 3.3. The provided
experiment description language QiCode, described in Section 4.4, is also designed
from ground-up to be a scalable experiment description language and to support
multi-qubit experiments as well as quantum algorithms. The modular concept
of both software and hardware makes it possible to control an arbitrary number
of qubits, as long as the FPGA resources are sufficient and the qubits can be
controlled with the available amount of DAC and ADC channels. With the resource
utilization given in Section 3.7.1, it is clear that a total of 15 digital unit cells can be
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currently implemented on the FPGA. A more stringent limit is typically imposed
by the available DAC channels. When both readout and manipulation signals are
separately multiplexed, any number of qubits can be controlled with four DAC and
two ADC channels. However, in many cases, only the readout is multiplexed while
the manipulation is not. In this case, the eight available DAC channels of the Xilinx
ZU28DR RFSoC on the ZCU111 can only be used to interface with a total of three
separate qubits.

An alternative approach would be to use a chip with more DAC channels. For
example, the Xilinx ZU49DR RFSoC offers 16 DAC and ADC channels. With it,
up to seven qubits can be read out in frequency multiplex when controlled via
individual microwave lines. Another approach would be to perform a first frequency
up-conversion already in the digital domain to replace the separate I/Q signals of
the modules already by a real signal before converting them to the analog domain.
As introduced in Section 2.4.3, the DAC tiles offer specialized DSP components
like a digital I/Q mixer that can be used to perform this conversion. A digital
up-conversion (DUC) of the I/Q signal to a real signal in the gigahertz domain
can be established this way. With a converter sample rate of 4 GHz, the signal
could be positioned in the second Nyquist zone around 3 GHz. Using a similar
procedure as explained for the analog unit cells in Section 3.3, the signal could be
further converted to the target frequency. With the ZU49DR, the DACs could also
be clocked with up to 10 GHz, thereby allowing direct RF synthesis of signals with
the desired frequencies. In both cases, the number of channels could be cut in half.
Using multiplexed readout pulses that also utilize a DUC, up to seven qubits can
be controlled with the ZU28DR and up to 15 qubits with the ZU49DR. However, a
reduced phase-noise performance is to be expected compared to analog I and Q
generation at lower frequencies which will later be up-converted by an I/Q mixer.
Therefore, it first needs to be established if this scheme can be used to perform
high-quality qubit control pulses.

3.6.2 Multiple Platforms

As seen in the last section, each QiController can control a limited number of
qubits, on the order of ten. If more qubits need to be controlled, e.g. to interface
with a medium-scale quantum processor, multiple QiController can be combined.
The concept on how to scale up these systems is sketched in Figure 3.20. Each
QiController interfaces with a subset of qubits in the experiment and might
additionally control external laboratory equipment. All platforms are connected to
and configured from a single user client via a regular network infrastructure.
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Figure 3.20: Concept of scaling the qubit control system up to multiple platforms.

When multiple platforms are operated in parallel, it is very important that they
act synchronously, including a rigid clock synchronization. Pulses scheduled on
multiple platforms have to be generated and output at the same time and with
matching frequencies, no matter on which platform they are generated. Additionally,
fast data transfer between the platforms is beneficial in order to, e.g., provide means
for inter-platform feedback operations.

To fulfill these requirements, a multi-platform synchronization scheme is outlined
in the following. It is based on daisy-chained SFP connections between the
QiControllers. Clock and time synchronization can be handled by a scheme inspired
by the White Rabbit project [144]. White Rabbit is a collaborative project including
CERN, GSI, and others to develop a deterministic network for sub-nanosecond time
synchronization and general purpose data transfer based on Ethernet.

When scaling up superconducting qubits, they are typically arranged in a two-
dimensional grid with connections to all four neighboring qubits. Therefore, a
QiController should ideally also be able to interface with a unit cell of this grid
that can be repeated along both axes of the chip. Data transfer between multiple
QiControllers is especially relevant for the control of neighboring qubits on the
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Figure 3.21: Topology of the synchronization connections between multiple QiControllers. The arrows
point from master to slave.

quantum processor at the boundaries of these grid unit cells. In a classical daisy
chain architecture, it would not be possible to minimize the latency for data transfer
in all four directions. Thus, a modified synchronization and data exchange topology
is proposed that is oriented along the needs of a near-term quantum processor.
It itself forms a two-dimensional grid where each node is a QiController that has
a longitude and a latitude index as identifier. To provide a deterministic chain
of synchronization, each platform has two master ports and two slave ports for
synchronization. The topology is visualized in Figure 3.21. In this structure, the
latency overhead for a data exchange would grow linearly with the distance of
the QiControllers in the two-dimensional grid. It thereby minimizes the latency
between the control logic of neighboring qubits on the quantum processor.

Multi-platform synchronization will also require adaptations of the PL of the
individual QiController, as shown in Figure 3.22. The design needs to be extended
by a global time counter which will be incremented each cycle and can be adjusted
via the board synchronization mechanism. The cell coordinator also has to be
extended so it can start all or a subset of the digital unit cells when the global time
reaches a certain value. The board synchronization mechanism will implement the
communication and time synchronization via the SFP connection. It also holds its
identifier which is the two-dimensional position index of the topology shown in
Figure 3.21. It defaults to (0, 0) and is automatically updated if it is synchronized
from another master. If the master has the id (i, j), the slave will get either id (i + 1, j)
or (i, j + 1), depending on the direction along the grid and therefore the interface
used. Synchronization of the slave should ideally happen automatically whenever
an SFP connection with another master interface is established.

As soon as the global time is synchronized across the whole network of QiControllers,
and each platform has its unique identifier, data transfer would be possible. Utilizing
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Figure 3.22: Adaptions to the PL of a single platform to support multi-platform synchronization.

the two-dimensional index, the routing of information is easy. When the cell
coordinator is extended to facilitate the exchange of register contents between digital
unit cells, the same interface could be further extended to integrate multi-board
data transfer. Each digital unit cell of the complete setup can be uniquely identified
by the two-dimensional index of the QiController in the grid and the index of the
digital unit cell within the platform.

To conclude, a clear vision exists demonstrating that and how the QiController can
be further scaled. However, a detailed concept will still need to be elaborated and
consecutively implemented. It also depends on ongoing developments regarding
the architecture of superconducting quantum processors. The provided vision and
sketched approaches can be used as a starting point for this future work.
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Table 3.1: Resource utilization on a Xilinx XCZU28DR RFSoC. Categories are configurable logic blocks
(CLBs), block RAMs (BRAMs), and digital signal processing (DSP) slices.

Entity CLB BRAM DSP

Available resources 53 160 1080 4272

Full design 74.69 % 97.2 % 32.3 %
Single cell (5.01± 0.17) % 6.48 % 2.15 %
Sequencer (1.57± 0.03) % 0.09 % 0.09 %
Signal generator (0.84± 0.05) % 2.04 % 0.47 %
Signal recorder (1.45± 0.08) % 1.94 % 1.12 %
Data storage (0.30± 0.02) % 0.37 % 0 %
Digital trigger (0.43± 0.02) % 0 % 0 %
WB infrastructure (0.63± 0.04) % 0 % 0 %

3.7 Characterization Results

To compare the performance of the QiController with other devices, several
characterization measurements have been performed. A Xilinx ZCU111 evaluation
board is used as QiController without analog frontend.

3.7.1 Resource Utilization

The Xilinx ZU28DR RFSoC on the ZCU111 offers resources for up to 15 digital unit
cells. The resource utilization of the design is given in Table 3.1. The amount of cells
is limited by the amount of available BRAMs, mainly due to the resources required
for the NCOs inside the signal recorders and generators. These account for 1.48 %
BRAM usage per NCO. When more digital unit cells are needed, special Ultra
RAM blocks available inside the RFSoC could be used in addition to normal BRAM
blocks. These are special memory blocks within the Xilinx UltraScale+ architecture
offering additional memory capacity within the FPGA while being more optimized
but less flexible than normal BRAM. On the other hand, the ZU28DR offers only
eight DAC channels. For most experiments where these are sufficient, 15 unit cells
are more than enough as already discussed in Section 3.6.1. Yet, when utilizing
another RFSoC with more channels, this optimization might become useful to allow
for more unit cells on the system. However, also the available configurable logic
blocks (CLBs) will pose a limitation with only roughly 5 additional unit cells that
can be implemented then.
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Figure 3.23: Output power over frequency of a baseband signal generated with the QiController. (a)
Complete frequency range which can be generated, from 0 to 500 MHz. (b) Low-frequency region
where the DC cut-off of the balun becomes visible. (c) Frequency region with nearly linear dependency
of the power.

3.7.2 Analog Signal Properties

When characterizing the quality of generated microwave signals, important proper-
ties are output power, phase noise performance, and spurious free dynamic range.
The measurements have been performed with a Rohde & Schwarz FSWP50 phase
noise analyzer which also supports a spectrum analyzer mode, and a Tektronix
MDO4104C oscilloscope. Depending on the measurement, one of the devices is
directly connected to an SMA output port of the QiController’s balun board via
an SMA cable. Due to the internal data rate of 1 GSPS within the PL, the generated
microwave signals are limited to frequencies below fs/2 = 500 MHz.

Signal power levels are typically expressed in decibel-milliwatts, a logarithmic scale
defined as LP(dBm) = 10 log10 (P/1 mW). When comparing such power levels, the
level difference of a signal with respect to a reference, called carrier, is given as
decibel-carrier: ∆LP(dBc) = LP(dBm)− Lcarrier(dBm).

Output Power

The maximum output power of the microwave signals depending on the output
frequency is depicted in Figure 3.23. No analog frontend was used in this case.
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For frequencies below 5 MHz, one can see a slight drop in signal power. This is
due to the passive baluns used to convert the differential signals from the DACs to
single-ended signals required for the experiments. As the baluns feature an inherent
AC coupling, DC signals cannot pass through the balun. Up to 420 MHz, the signal
power is very stable with a slight linear decrease of roughly 1 dBm over the whole
range. For even higher frequencies, the signal power drops more significantly, as the
signal approaches half the sampling frequency, fs/2 = 500 MHz. All these behaviors
are as expected. Additionally, one can see a small periodic oscillation in the signal
power with peak-to-peak variations below 0.1 dBm and a period duration of roughly
7 MHz. The origin of this oscillation is unclear. It might be a parasitic resonance on
the balun board. However, the oscillation is small compared to the general slope
in dependence of the frequency and is not critical. The highest measured output
power is 1.14 dBm at 8 MHz. At the oscilloscope, this corresponded to an output
signal amplitude of 652 mVPP which is a bit lower than expected from the spectrum
measurement. The difference to 1.14 dBm, equivalent to 721 mVPP, could be caused
by worse cable losses and an impedance mismatch in case of the oscilloscope.

Phase Noise Performance

The phase noise of output signals with different frequencies is shown in Figure 3.24.
Offsets larger than the carrier frequency have been excluded from the plot. The
corresponding root mean square (RMS) time jitters are similar for all carrier
frequencies and around 210 fs. The phase noise increases with increasing carrier
frequency which is as expected, as time jitter and phase noise are linked via the
carrier frequency (δϕ = f · δt). All signals show a phase noise contribution at
426.58 kHz carrier offset, potentially indicating a contribution of noise from the
onboard clocks or switching regulator noise. For selected carrier offsets, the phase
noise values are also given in Appendix D.1. In general, the phase noise performance
is good and comparable to other devices. By measuring with a variety of frequencies
and across a wide span of offset values, it is furthermore verified that no critical
outliers exist.

Frequency Stability

The ZCU111 has an internal, temperature-compensated 12.8 MHz reference oscilla-
tor (TCXO) from which the converter clocks and the PL design clock are derived.
To assess the frequency stability of the system, a 100 MHz tone is continuously
generated by the platform and repeatedly measured by the FSWP for more than 16
hours. The FSWP itself is referenced to an external, high-precision reference clock.
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Figure 3.24: Phase noise of the output signal for different carrier frequencies.

The measurement result is depicted in Figure 3.25. The absolute frequency mismatch
is on average 22 Hz. In an environment with stable temperature surrounding, the
frequency jitters with a standard deviation of 64 mHz. However, actively changing
the room temperature, in this case by opening a window, resulted in a frequency
drop by up to 4 Hz and consecutive increased frequency jitter with 730 mHz stan-
dard deviation. If an external reference clock is supplied to the ZCU111 which
replaces the internal reference oscillator, no frequency deviation can be detected
anymore and the absolute frequency mismatch is less than 100 mHz. The RMS jitter
for frequency offsets between 5 Hz and 10 kHz is reduced from (1480± 130) fs to
(816± 12) fs. This is also visible in the phase noise for small carrier offsets, compare
Figure 3.26.

Spurious Free Dynamic Range

The three most dominant spurious contributions to the output signal in dependence
of the output frequency of the desired signal carrier are presented in Figure 3.27.
The spurious free dynamic range (SFDR) is below −62 dBc for carrier frequencies
of up to 413 MHz. At higher frequencies, the signal from the second Nyquist
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Figure 3.25: Frequency stability of the output signal without external reference.

Figure 3.26: Phase noise of the output signal for low carrier offsets with and without an external
reference.

80



3.7 Characterization Results

Figure 3.27: (a) Signal strength of the top three spurious contributions in dependency of the output
frequency of the desired signal carrier. The highest contribution (sketched in blue) is equivalent to
the spurious free dynamic range (SFDR). (b) Frequencies of these top three spurious contributions in
dependency of the carrier output frequency. The dashed gray line indicates the frequency of the carrier
itself. The colors match between both subplots.

zone becomes dominant as the frequency approaches half the sampling frequency,
fs/2 = 500 MHz. The SFDR is limited by the harmonics of the signal, as can be
clearly seen when looking at the frequencies of the spurious contributions. To get a
more refined picture, some device manufacturers provide a separate value for the
contributions by harmonics, the harmonics distortion, and an SFDR where these
harmonics have been excluded. As the resolution of the SFDR without harmonics
needs to be much better due to lower power levels, the spectrum measurements
have been repeated with lower resolution bandwidth (100 Hz instead of 10 kHz). In
this case, the noise floor of the spectrum was located below −105 dBc. Figure 3.28
shows the results of this second measurement, with excluded harmonics. In this
case, the SFDR is even lower and below −84 dBc.
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Figure 3.28: Similar measurement as in Figure 3.27 but without harmonic contributions and with
decreased resolution bandwidth to improve the measurement noise floor. (a) Signal strength of the top
three spurious contributions and (b) their frequencies.

Comparison to Commercial Devices

To get a better impression, the obtained properties are compared to datasheet values
of three commercial arbitrary waveform generators (AWGs) which are used in
the field. One device is the HDAWG by Zurich Instruments [145] which is also
advertised for applications with superconducting qubits. Other similar devices are
the Tektronix AWG5200 [146] and the Active Technologies AWG5062 [147]. Phase
noise performance, as well as harmonics distortion and SFDR are summarized in
Table 3.2. Not all properties are given in the data sheets for all devices. If multiple
values are available, the one with the most similar settings to the QiController
characterization is selected. In general, all properties of the QiController are
competitive to the commercial devices. Only the harmonics distortion of the Active
Technology AWG5062 is slightly better than the one of the QiController. In all other
cases, the QiController even exceeds the values of the commercial devices.
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Table 3.2: Comparison of analog signal properties of the QiController to commercial AWGs. Missing
values are not given in the data sheet of the devices. PN stands for phase noise and is presented for a
100 MHz tone at the given offsets.

IPE Zurich Instrum. Tektronix Active Technol.
Property QiController HDAWG AWG5200 AWG5062
PN @ 10 kHz −140 dBc/Hz −135 dBc/Hz - −123 dBc/Hz
PN @ 1 MHz −161 dBc/Hz −148 dBc/Hz - -
Harmonics −62 dBc −53 dBc - −70 dBc
SFDR −84 dBc −80 dBc −70 dBc −75 dBc

Analog RF Frontend

Additionally, the impact on signal performance when using the analog RF frontend
is evaluated. A single analog unit cell is connected to the output of the ZCU111
board which generates a 100 MHz I/Q baseband signal. The frontend is configured
to output the resulting up-converted RF signal at 6 GHz. In this case, the highest
spurious contribution is given by local oscillator leakage of the I/Q mixer conversion
stage at around −30 dBc. Without further I/Q mixer calibration, the sideband is
roughly −40 dBc suppressed. These values are comparable to other setups using I/Q
mixers. The RMS jitter of the 6 GHz output signal measured between 100 Hz and
1 GHz offset is 1.4 ps. The phase noise is −104 dBc/Hz at 10 kHz and −122 dBc/Hz
at 1 MHz offset. When comparing these values to the values from the baseband
signal, the different carrier frequencies need to be considered. The same jitter will
result in a phase noise difference of 36 dBc/Hz between both frequencies. This
matches well to the measured values and indicates that the analog RF frontend does
not significantly impair the phase noise of the signal.

3.7.3 Digital Signal Properties

Apart from the microwave signal properties, latencies and data communication
properties are of interest.

Feedback Control Latency

The QiController is capable of reacting to a previously measured qubit state online
during the execution of the experiment. An important figure when performing such
feedback operations is the minimal latency between the readout pulse and a pulse
which is depending on the result of this readout. It can be measured by operating
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Figure 3.29: Oscilloscope recording of a measurement-based, closed-loop feedback operation with
the QiController. The delay between the first readout pulse and the conditional control pulse is the
platform-specific feedback latency.

the QiController in loop-back mode. An oscilloscope recording to visualize the
latency is presented in Figure 3.29. There, a 100 ns control pulse is conditionally
executed as fast as possible depending on the result obtained from a preceding
measurement pulse. Based on this oscilloscope recording, the intrinsic latency is
determined as 352 ns. Of this, 276 ns are attributed to the delay between signal
generator and recorder, i.e. the delays through the cell multiplexer, the converters,
as well as the electrical delay through the analog signal paths. This is represented
by the trigger delay which has to be adjusted in the signal recorder as introduced
in Section 3.4.5. The remaining 76 ns, i.e. 19 logic cycles on the FPGA, are due to
processing of the result in the signal recorder to obtain a state, and the decision
logic within the sequencer. A more detailed analysis of the individual contributions
is given in Appendix B.3.

Taskrunner Timing Performance

When interacting with the platform, benchmarking the speed and overhead for
communication operations is of interest. The modules on the FPGA are accessed
using single AXI4-Lite register read and write operations. Such operations can be
either performed encapsulated via the ServiceHub and the gRPC interface from
the Python client, or directly by a user task running on the Taskrunner. In the
latter case, the communication overhead via gRPC only occurs once before an
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Table 3.3: Timing performance for typical operations running on the Taskrunner or the Python client.
On the Taskrunner, the TCM is used for memcpy and array multiplication. The array multiplication
uses two 32 bit arrays, each with 1024 elements. 100 000 repetitive measurements have been performed
each to obtain the presented average durations and standard deviations. [47]

Operation Taskrunner Python client
AXI register read (306± 2) ns (590± 40) µs

AXI register write (323± 2) ns (620± 40) µs
Sequencer status poll (324± 2) ns (580± 60) µs

memcpy of 1024 AXI registers (312 401± 4) ns (1500± 130) µs
Array multiplication 10 270 ns (1.5± 0.8) µs

experiment is started. Afterwards, only the substantially smaller latencies of the
register accesses arise. A comparison between execution within the Taskrunner and
from the Python client for different operations is given in Table 3.3. The data of this
section is mainly extracted from the corresponding paper on the Taskrunner [47].
Accesses to the AXI4-Lite register interfaces originating from the Taskrunner take
on the order of 300 ns. The same operations performed from the APU yield similar
values, with (299± 4) ns read and (210± 2) ns write latency when accessed by a
bare metal application. When these operations are performed from within a Linux
operating system, additional outliers on the order of 10 µs can be observed which
are likely caused by other processes running at the same time [135]. In contrast, the
same accesses from the Python client are on the order of 600 µs due to the required
communication via Ethernet. Only for the array multiplication, where two 32 bit
integer arrays with 1024 elements each are multiplied, the Python client is faster
as it can leverage a stronger desktop processor and the Python numpy library.
Constant execution time of the array multiplication was observed on the Taskrunner
indicating deterministic timing behavior as expected when only RPU and TCM are
involved. Only the first two executions took 14 ns longer which is caused by the
branch prediction feature of the ARM Cortex-R5 processing unit in the loop used
for the calculation.

The overhead incurring when loading tasks with different complexity onto the
Taskrunner by the user is shown in Table 3.4. In all cases, the duration to process the
source file is dominated by the online compile time due to the use of optimization
flags. It does not pose an issue as compilation only occurs once during configuration,
and not during the experiment itself. The duration to load a source task also shows
a clear dependency on the complexity of the task. While the empty and basic tasks
only consist of a single function, the complex task implements multiple functions to
perform calculations like an FFT.
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Table 3.4: Durations to transfer different tasks from the Python client onto the Taskrunner. Source
code will be compiled on the fly on the platform before the generated binary is then transferred to
the Taskrunner. The binary file is directly transferred from Python to the Taskrunner. Three tasks are
distinguished based on their complexity (also reflected in the number of code lines). The durations to
load the source code are each averaged over 100 iterations while the durations to transfer the binary
file, due to lower values and higher relative fluctuations, are averaged over 10 000 repetitions. [47]

Task Lines Source code Binary file
Empty 6 (184.8± 0.5) ms (1.25± 0.09) ms

Basic 39 (260.3± 0.6) ms (1.55± 0.10) ms
Complex 386 (1107.2± 1.8) ms (2.99± 0.10) ms

Aggregation of larger amounts of data is also handled by the Taskrunner, as the
capacity of the BRAMs on the FPGA is limited. Therefore, the speed to transfer data
boxes from the Taskrunner to the Python client is another important benchmark.
Requesting and transferring 10 kB of data takes (4.3± 1.6) ms. With increasing data
box size, the relative overhead decreases and thus the transfer speed increases.
Transferring a 100 MB data box requires (2.32± 0.16) s corresponding to 345 Mbit/s
or 43 MB/s. This is likely limited by the necessary copy operation on the A53 to
convert the data into the right gRPC format, including the required marshaling of
the 4 B integers to make the data platform-independent. This is supported by the
fact that, during the transfer, one of the cores of the ARM processor is fully utilized.
Indeed, when transferring byte arrays instead where no marshaling is required,
speeds of 940 and 934 Mbit/s for read and write accesses can be observed [135].
These speeds are limited by the 1 Gbit/s Ethernet connection [148].

3.8 Summary

The QiController is a versatile control electronics specifically targeting super-
conducting qubits. It can create microwave pulses with arbitrary shapes on the
nanosecond scale, precise phase control, and frequencies up to over 9 GHz. Phase
noise and spurious contributions of the analog output signals are competitive to
high-end commercial AWGs. Readout pulses can be acquired and their amplitude
and phase decoded to extract the measured qubit state. Nanosecond-accurate
sequencing of pulses and measurements enables the reliable and reproducible exe-
cution of experiments and quantum algorithms, including fast feedback operations.
For complex experiment schemes, extensive online processing is provided using
the Taskrunner framework. Users can access the platform via Ethernet using a
modular communication server, called ServiceHub. The QiController is based on
the RFSoC architecture, combining high-speed converters with processing units and
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an FPGA. The FPGA firmware is structured into digital unit cells, each controlling a
single qubit. Analog unit cells, realized as custom PCBs, up- and down-convert the
microwave signals between the RFSoC and the quantum processor.

While the QiController provides unique capabilities and great flexibility, program-
ming such a complex system is nontrivial. Therefore, providing a suitable interface
to control the platform is essential which is covered in the next chapter.
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The QiController provides a versatile and flexible quantum bit (qubit) control
platform. To leverage its capabilities, convenient software access to it is of key
importance. Great effort was put in designing and implementing a user-friendly
and intuitive interface that allows the user to control the whole setup. The following
sections detail the considerations taken into account, provide some insights into
the interface and typical use cases, and introduce integrations into third-party
frameworks.

4.1 Philosophy

The QiController is meant to be used as laboratory equipment specifically designed
to meet the demands of the superconducting qubit research community. It consists
of numerous different modules: Taskrunner, cell coordinator, multiple digital unit
cells, each with sequencer, signal recorder and two signal generators, among others.
All modules can be individually controlled and configured using their register
interfaces to obtain the desired output and functionality.

To facilitate the usage of the QiController, different layers of abstraction to control
and configure the platform exist. The ServiceHub plugins already provide a first
layer by encapsulating the register interface accesses inside gRPC remote procedure
calls. These abstract from the hardware addresses and also include interpretations
and conversions of the register contents, e.g. for the frequency. A Python client
is provided to facilitate access to the low-level configuration of the platform in a
Python-style class by wrapping the remote procedure calls. The low-level access
provides many degrees of freedom. However, it also requires expert knowledge of
all the modules within the platform as well as their specific interactions among
each other. Directly configuring all the modules of this complex system is therefore
inconvenient for regular users, and also error prone.

To provide easy and intuitive access to the capabilities of the QiController, another
layer of abstraction is added. It is realized by a Python-based, high-level experiment
description language called QiCode. Its goal is to enable regular users to functionally
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and intuitively describe the cells’ control flow and output. The concept as well as
the technical details around QiCode are introduced in Section 4.4. The language
leverages the advanced partitioning of functionality within the QiController which
was already discussed in Section 3.2.

The underlying workflow can be generalized as follows: The user describes the
experiment they want to perform using the QiCode description language. The
description will then be compiled into the configuration for the QiController,
including the RISC-V instructions for the different sequencers, and loaded into the
modules on the programmable logic (PL). Depending on the requested result data
format, an appropriate task is loaded onto the Taskrunner. Predefined tasks exist for
the most common data formats, but a custom task can also be provided if special
data aggregation or evaluation is required. After the experiment execution on the
QiController finished, the resulting data is structured and stored in the reference of
the QiCode description, where it can be accessed by the user.

4.2 Python Client qiclib

QiCode is provided together with the Python gRPC client and a collection of
standard experiment descriptions and routines in a Python package called qiclib.
qiclib is an abbreviation for QiController (qic) and library (lib). It is the interface to
the QiController and enables the user to control the platform to any extend possible.
This ranges from direct low-level access to the PL modules up to high-level access
using QiCode and even integration in other quantum programming frameworks
like Qiskit.

The qiclib package is structured in multiple submodules. One submodule provides
the functionality of QiCode and includes the compiler. Another submodule
contains predefined experiments that can be executed without any specific platform
knowledge. Other submodules exist with utility functionality, the generated gRPC
interface and extended measurement scripts. The core submodule of qiclib, however,
contains the hardware representation of the QiController. It is used to configure and
interact with the platform and its containing entities and will be introduced in more
detail.

The main component to interact with the platform is the QiController class. A
connection to the platform can be established by creating an instance of this class and
passing the ip address of the QiController. The class instance then provides access
to all the functionality of the platform. Its structure is depicted in Figure 4.1. The
QiController class contains multiple submodules, one for the Taskrunner, another
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Figure 4.1: Structural diagram of the QiController class. Colored items are classes while white boxes
are properties of this class. Only properties containing instances of other classes are shown. The color
of the classes resembles the level of their abstraction. Green items are whole (sub)systems. Yellow
classes correspond to actual PL modules. Orange modules are the contents of the digital unit cell, and
red classes are used to access parts of these modules.

one for general status information by the platform information and management
core (PIMC), and a third one to represent the digital unit cells of the platform. Each
unit cell contains submodules for sequencer and signal recorder (called recording),
as well as for the data storage and both signal generators. The latter are called
readout and manipulation to distinguish between their intended usage. Each
submodule within the digital unit cell implements the gRPC calls to interact with the
corresponding plugin within the ServiceHub on the QiController. They encapsulate
the remote procedure calls in a Python-style class to ease access and make it easy to
familiarize oneself with the platform.

As an example, setting the pulse duration of the manipulation pulse stored in
trigger set 12 of the fifth digital unit cell is accomplished by:

Code 4.1: Accessing the configuration of the QiController using nested properties.

qic = QiController("ip-address") # Only needed once when initializing the board
qic.cell[4].manipulation.triggerset[12].duration = 80e-9 # seconds (80 ns)
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The assignment will then be handled within the TriggerSet class where it is
translated to a gRPC request of the PulseGen class that communicates with the
ServiceHub plugin of the signal generators on the QiController.

In general, most accesses to the platform are realized using the getter/setter pattern
where one does not call any method explicitly but just assigns the values to the
appropriate property which will be transparently propagated to the QiController.
Likewise, reading out a value happens by simply accessing the property which will
cause a gRPC request in the background whose result is then returned as value
of the property. Only more complex operations are implemented as methods to
indicate to the user that these operations might cause some considerable overhead.
The same applies for operations that not just configure the modules but trigger an
action, like starting the sequencer or resetting a module.

4.3 Typical Use Cases

The following section provides examples on how to use the platform with the high-
level experiment description language QiCode. A typical measurement procedure
with the QiController is described to demonstrate its capabilities. For each example,
also the underlying mechanics are explained to understand how the platform is
operating.

4.3.1 Setup and Initialization

Connection and Sample Object

At the beginning of each experiment, one has to include the qiclib package as well as
the QiCode language. The QiController can then be instantiated just by specifying
its ip address:

Code 4.2: Instantiating the QiController with qiclib.

import qiclib as ql
from qiclib.code import *

qic = ql.QiController('ip-address')

In the background, a gRPC connection to the ServiceHub will be established and
some key parameters of the platform are read out to determine if the Python drivers
are compatible with this version of the QiController.
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Figure 4.2: Experiment to calibrate the recording offset, i.e. electrical delay.

In QiCode, qubit properties are stored inside a QiCells object. Each element in this
object represents a single qubit which will later be mapped onto a digital unit cell of
the QiController. The QiCells sample is typically the first object one creates after
instantiating the platform driver. At the beginning, it will be populated with the
basic parameters to perform a readout, like pulse length, recording duration, and
the intermediate frequency of the readout signal:

Code 4.3: Creation of sample object to describe qubit properties.

sample = QiCells(1) # 1 cell for 1 qubit
sample[0]["rec_pulse"] = 416e-9 # s readout pulse duration
sample[0]["rec_length"] = 400e-9 # s recording window duration
sample[0]["rec_frequency"] = 60e6 # Hz readout pulse frequency
sample[0]["manip_frequeny"] = 85e6 # Hz control pulse frequency

Later, in the course of the qubit characterization experiments, further values can be
added to this sample object.

Electrical Delay Calibration

The first step is to determine the electrical delay of readout pulses through setup
and cryostat. The signal recorder offers a trigger offset to compensate for this delay.
Then, the recording will capture the whole readout pulse and start when it arrives
at the module. The offset can be determined by varying it over a large range to
maximize the amplitude of the recorded signal. Such an experiment is schematically
depicted in Figure 4.2, corresponding to the following QiCode snippet:

Code 4.4: Experiment to calibrate the recording offset, i.e. electrical delay.

with QiJob() as calib_offset:
q = QiCells(1) # This QiCode snippet controls one qubit
offset = QiVariable() # Define a variable for the offset which will be changed
with ForRange(offset, 0, 1024e-9, 4e-9):

PlayReadout(q[0], QiPulse(q[0]["rec_pulse"], frequency=q[0]["rec_frequency"]))
Recording(q[0], q[0]["rec_length"], offset, save_to="result")
Wait(q[0], 2e-6) # Give the resonator excitation some time to decay
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The defined QiJob acts on one qubit and uses the same property names that have
been defined above for sample. It is important to note that these are still different
objects. The key is that jobs can be an abstract representation of an experiment
using such named properties as placeholders. The same job can be executed for
different sample objects. The named properties will only be replaced once the job is
executed and the user has specified which sample to use. In this case, performing
the experiment on the QiController and obtaining the best offset entails:

Code 4.5: Execution of recording offset calibration experiment and sample update.

calib_offset.run(qic, sample, averages=1000) # Compile + run the QiJob 1000x with sample
data = calib_offset.cells[0].data("result") # Extract results as [I list, Q list]
sample[0]["rec_offset"] = 4e-9 * numpy.argmax(numpy.abs(data[0] + 1j * data[1]))

When the run() method is called on the calib_offset job, the QiCode compiler
will first extract the necessary configuration for the PL out of the description and
generate the RISC-V instructions for the sequencer. During this process, also the
properties of the sample object are mapped onto the QiCells object defined within
the QiJob. Then, the whole configuration is loaded onto the platform. The run
method also accepts a data_collection parameter which defines how the results
will be collected and processed by the Taskrunner. By default, for each recording
performed within the experiment description, the results are collected as I and Q
values. These results will then be averaged point-wise in the Taskrunner.

For each iteration, the Taskrunner starts the sequencer which performs the parameter
variations. In this example, the trigger offset is written into the register interface
of the signal recorder via the Wishbone (WB) bus at the beginning of each for
loop repetition. At the end of the sequencer execution, the data storage holds all
measurement results that have been generated during this single execution, so one I
and Q value for each loop repetition. This result data is collected and averaged by
the Taskrunner. Then, it is transmitted as data boxes to the Python client where it is
stored inside calib_offset.cells[0].data("result"). This corresponds to the
save_to="result" parameter specified in the Recording command executed on
cell 0 of the QiJob.

In the above code, the offset with the highest amplitude is determined in Python and
directly stored inside the sample object. From there, it can be reused for the following
experiments and characterizations. The same experiment, including the update of
the sample object, can be performed by calling ql.init.calibrate_readout(qic,
sample, averages=1000). It also contains further calibration routines, like resetting
the phase, and visualizes the results as plots for the user.
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Measurement Gate

In QiCode, gates are called QiGates and can be utilized as reusable building blocks.
Similar to a QiJob, QiGates can act as templates and use the placeholder properties
of the cells on which they should act. With the determined offset, one can define a
reusable measurement gate:

Code 4.6: Generic measurement gate to encapsulate readout pulse and recording.

@QiGate
def Measurement(cell: QiCell, save_to=None):

"""Output readout pulse and trigger recording module to process result."""
PlayReadout(cell, QiPulse(cell["rec_pulse"], frequency=cell["rec_frequency"]))
Recording(cell, cell["rec_length"], cell["rec_offset"], save_to=save_to)

Depending on the cell that is passed to the gate, the performed operation can be
quite different, with different pulse length, trigger offset, or frequency.

To verify that the electrical delay is configured properly, the raw data that is captured
during the recording window can be visualized. QiCode offers a predefined data c
_collection mode for this, namely "raw". The QiCode can stay the same as for
any other experiment. In this case, a simple readout is sufficient:

Code 4.7: Simple readout experiment to obtain raw data of recording window.

with QiJob() as readout:
q = QiCells(1)
Measurement(q[0], save_to="result")
Wait(q[0], 2e-6)

readout.run(qic, sample, averages=1000, data_collection="raw")
raw_i, raw_q = readout.cells[0].data("result")

The obtained result is the raw time trace of the I and Q input at the signal recorder
which was collected and averaged 1000 times by the Taskrunner before being sent
to the Python client.

4.3.2 Pseudo-VNA Measurement

After the readout has been configured, the qubit can be characterized. As a first
step, the readout resonator needs to be located. Typically, the frequency is already
known from previous spectroscopic measurements. Thus, local oscillator frequency
for analog frequency conversion as well as the intermediate frequency stored in the
sample can already be chosen appropriately. However, it should still be verified
with the platform itself that the right readout frequency is used. For this, a pseudo
vector network analyzer (VNA) scan can be implemented on the QiController:
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Code 4.8: Pseudo-VNA experiment to search the readout resonator frequency.

with QiJob() as pseudo_vna:
q = QiCells(1)
fr = QiVariable()
with ForRange(fr, q[0]["rec_frequency"] - 10e6, q[0]["rec_frequency"] + 10e6, 0.1e6):

PlayReadout(q[0], QiPulse(q[0]["rec_pulse"], frequency=fr))
Recording(q[0], q[0]["rec_length"], q[0]["rec_offset"], save_to="result")
Wait(q[0], 2e-6)

Running the QiJob is performed the same way as for the electrical delay calibration.
The execution on the QiController is also similar. Instead of changing the trigger
offset, in this QiJob, the numerically controlled oscillator (NCO) frequencies of both
signal generator and recorder are adapted. This happens using a broadcast write to
both modules via the WB bus to keep them synchronized. From the obtained I and
Q values, the amplitude and phase response can be calculated, equivalent to an S21
measurement of a VNA. Then, the resonator frequency can be precisely extracted
and the intermediate frequency of the readout signals can be updated accordingly.

4.3.3 Single-Qubit Characterizations

Two-tone Measurement

As next step, the qubit control frequency f01 needs to be determined. This can
be achieved by performing a two-tone measurement. Two signals are applied to
the setup, one at the frequency of the readout resonator and one with changing
frequency. The qubit will be excited when the changing frequency matches its
transition frequency f01. At this frequency, the excited qubit causes the readout
resonator to shift which can be measured with the first signal. The QiJob could
look similar to the pseudo_vna scan, but to demonstrate the flexibility of QiCode, a
different approach is chosen here. It is also depicted in Figure 4.3.

Code 4.9: Two-tone experiment with continuous tones to find the qubit control frequency f01.

with QiJob() as two_tone:
q = QiCells(1)
fcontrol = QiVariable(name="fcontrol")
PlayReadout(q[0], QiPulse("cw", frequency=q[0]["rec_frequency"]))
Play(q[0], QiPulse("cw", frequency=fcontrol))
Wait(q[0], 20e-6) # Wait for qubit to decohere in a driven 50/50 superposition
i = QiVariable()
with ForRange(i, 0, 10000):

Recording(q[0], q[0]["rec_length"], q[0]["rec_offset"])
Wait(q[0], 100e-9)

Play(q[0], QiPulse("off")) # End continuous control tone
PlayReadout(q[0], QiPulse("off")) # End continuous readout tone
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Figure 4.3: Two-tone experiment with continuous tones to find the qubit control frequency f01.

In this case, two continuous tones are applied, one at the readout output using
PlayReadout, and another one at a separate control output using Play. The control
frequency is given as a named variable called "fcontrol". Its value can be defined
by the user and adapted between multiple repetitions by writing a different value
into the corresponding sequencer register. After both continuous tones are turned
on, one waits some time so the qubit decoheres while being continuously excited.
If the control frequency matches the transition frequency, the qubit will end up in
an equal superposition of all possible states. Afterwards, repetitive recordings are
performed by the sequencer before the tones are turned off again at the end. As
no save_to parameter is supplied for the recording, the single values will not be
persisted. However, the signal recorder contains a simple averaging functionality
which will add all 10 000 single measurement results that are obtained during one
sequencer run. This averaged value will then be returned. Executing this job now
also entails controlling the frequency from the Python client:

Code 4.10: Execution of the two-tone experiment with parameter variations in Python.

exp = two_tone.create_experiment(qic, sample) # Compile QiJob
exp.configure() # Load configuration onto QiController
results = []
# Investigate frequencies close to the estimated frequency from the sample
frequencies = numpy.arange(-5e6, 5e6, 0.1e6) + sample[0]["manip_frequency"]
for fcontrol in frequencies:

exp.init_variable("fcontrol", fcontrol) # Set register in sequencer
data = exp.record() # Start the execution and obtain the averaged I/Q result
results.append(data)

In this case, the QiJob is not directly executed, but the compile step and the
execution happen separately. An experiment object will be created that contains
the compiled configuration values from the QiJob. These are then loaded onto the
QiController using the configure() method. Part of the compiled information is a
mapping between variable names and register indices in the different sequencers.
Therefore, it is possible to initialize variables with a custom value, which will then
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Figure 4.4: Rabi experiment to determine the control pulse length for a π rotation.

be written to the according registers. In this case, the value of the control frequency
is adjusted between consecutive QiJob executions. By calling the record() method,
the execution is started and the resulting average value is collected. After the
experiment, one obtains the resonator response depending on the control frequency.
The highest resonator shift will occur when the control frequency matches the qubit
transition frequency f01 which can thereby be extracted from this measurement.
The same experiment execution can also be performed using a custom task
on the Taskrunner. This would reduce communication overhead and speed up
the experiment. Alternatively, a pulsed experiment can be performed where the
frequency change is handled directly within the sequencer, similar to Code 4.8.

Rabi Experiment

Now that the qubit control frequency is known, the time to perform a π rotation
around the Bloch sphere can be determined. The Python driver provides a collection
of common experiment descriptions available via ql.jobs, including one for a Rabi
experiment. This experiment performs a control pulse with variable length and then
determines the resulting qubit state, see Figure 4.4. The Python code providing the
QiJob looks like the following (available as ql.jobs.Rabi):

Code 4.11: Method providing a Rabi experiment QiJob object for the user.

def Rabi(start: float, stop: float, step: float):
with QiJob() as job:

q = QiCells(1)
length = QiVariable()
with ForRange(length, start, stop, step):

Play(q[0], QiPulse(length, frequency=q[0]["manip_frequency"]))
Measurement(q[0], save_to="result") # Gate defined earlier
Wait(q[0], 5 * q[0]["T1"])

return job

By passing the values of the for loop to the Rabi method, a corresponding QiJob is
created and returned. This job also contains a Wait statement which depends on
the T1 time of the qubit and shall ensure that the qubit state relaxes back to thermal
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equilibrium, i.e. close to |0〉, before continuing with the next repetition. If the value
is not clear yet, e.g. for a new qubit that has not been used yet, a conservative value
should be chosen. In this experiment, the length of the manipulation pulse depends
on a variable. The sequencer will then turn on a continuous tone when the pulse
should start and turn it off again after the defined length of the pulse. In this QiJob,
the Measurement gate defined earlier is reused. The result values can be fitted to a
damped sine in order to extract the ideal pulse length to perform a π rotation.

Qubit Control Gates

With the π-pulse time being defined and stored as "pi" property inside the sample,
gates for π- and π/2-pulses can be created:

Code 4.12: Gates for qubit control pulses performing a π and π/2 rotation.

@QiGate
def PiPulse(cell: QiCell, phase: float = 0.0, detuning: float = 0.0):

"""Output manipulation pulse to rotate qubit state around Bloch sphere by pi."""
Play(cell, QiPulse(

length=cell["pi"],
phase=phase,
frequency=cell["manip_frequency"] + detuning

))

@QiGate
def PiHalfPulse(cell: QiCell, phase: float = 0.0, detuning: float = 0.0):

"""Output manipulation pulse to rotate qubit state around Bloch sphere by pi/2."""
Play(cell, QiPulse(

length=cell["pi"] / 2,
phase=phase,
frequency=cell["manip_frequency"] + detuning

))

The π/2-pulse could alternatively also be realized by cutting the amplitude in half
instead of the length, by using the amplitude=0.5 argument within the pulse. By
changing the phase of the pulses, the rotation axis can furthermore be defined. A
phase of π/2 for example would correspond to a rotation around the y instead of
the x axis. The detuning argument is useful when applying off-resonance pulses,
like for the Ramsey experiment.

With these gates and properties of the qubit being defined, further characterizations
can be performed. This includes a T1 measurement to determine the energy
relaxation time, a Ramsey experiment that can both be used to fine-tune the qubit
transition frequency and to determine the decoherence time T2. With a spin echo
experiment, slow fluctuating noise - when compared to the pulse sequence length -
is filtered out and an improved T∗2 time is obtained. As these experiments are built
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and executed similar to the previous ones using the available QiGates, they are not
explicitly shown here.

Once T1 is known, one can passively initialize the qubit state by letting it thermalize
with the environment. As this process is an exponential decay, after time T1, the
population of the excited state |1〉 will be reduced to a percentage of 1/e. When
waiting five times T1, the probability to still be in the |1〉 state is only 0.67 %. Of
course, this neglects thermal noise which can also excite the qubit from the ground
state again. However, waiting five to ten times the T1 time is a sufficient way to
initialize the qubit state by bringing it into thermal equilibrium. Therefore, one can
furthermore introduce a thermalization gate:

Code 4.13: Gate to let the qubit state thermalize as passive initialization.

@QiGate
def Thermalize(cell):

"""Wait 5 times the T1 time of the qubit so it can return to the ground state."""
Wait(cell, 5 * cell["T1"])

4.3.4 Single-Shot Resonator Response Plots

Single-shot readout is the capability to extract the qubit state from a single
measurement. It is an important requirement for quantum computing. The signal
recorder contains a state estimation that needs to be calibrated so it can attribute
different I and Q result outcomes to the respective qubit state. As the two qubit
states lead to different amplitude and phase responses, this is visible in the in-phase
and quadrature (I/Q) plane of the result values. With good enough signal-to-noise
ratio for single-shot readout, two separable regions can be distinguished in which
all result values are located. One represents the |0〉 state, and the other one the
|1〉 state. The regions can be visualized by performing many single-shot readouts
and plotting a histogram of the results in the I/Q plane. QiCode offers a special
data_collection mode called "iqcloud" for this purpose:

Code 4.14: Single-shot resonator response plot for both qubit states.

with QiJob() as states:
q = QiCells(1)
# State |0>
Measurement(q[0], save_to="result")
Thermalize(q[0])
# State |1>
PiPulse(q[0])
Measurement(q[0], save_to="result")
Thermalize(q[0])

states.run(qic, sample, averages=100000, data_collection="iqcloud")
state0, state1 = states.cells[0].data("result") # One iqcloud per recording
# Both state0 and state1 are a tuple: (I list, Q list)
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In this case, the average count tells the underlying task in the Taskrunner how many
data points to collect for each measurement within the QiJob. The job performs
two measurements, one for the ground state and one for the excited state. Separate
histograms can be created for both measurements, as the data is separately collected
for each of the measurements within the job. Again, the different data collection
mode is handled by a predefined task in the Taskrunner that collects all single
measurement results, groups them by measurement within the QiJob and sends
them back without averaging to the Python client. There, the data can be further
processed, e.g. to create a histogram as mentioned.

4.3.5 Multi-Qubit Characterizations

If a sample contains multiple qubits, these can be described as individual cells in
a QiCells object. For each cell, one individually defines all the properties needed
to perform experiments with this particular qubit, from frequencies, over pulse
lengths, to recording durations. For example, a sample object for five qubits could
be initialized like this:

Code 4.15: Creation of a sample object for a multi-qubit chip.

sample = QiCells(5, cell_map=[0,2,4,6,8])
sample[0]["rec_frequency"] = 30e6
sample[1]["rec_frequency"] = 80e6
sample[2]["rec_frequency"] = 130e6
# [...]

If the qubits are read out using frequency-division multiplexing (FDM), different
intermediate frequencies will be required to end up at the individual resonator
frequencies with a single local oscillator and I/Q mixer. Another relevant information
is the mapping of physical qubits as described by the sample object, and the digital
unit cells within the QiController. For this, a cell map can be passed that states
for each cell within the QiCells on which digital unit cell of the QiController
the execution should happen. In the given example, the qubit represented by
sample[0] is connected to digital unit cell 0, and sample[4] to digital unit cell 8.
As this mapping is specific to the setup wiring and the sample, but not to the actual
experiment, it is defined together with the sample properties.

To perform single-qubit characterizations for such a multi-qubit sample, the
mapping between the QiJob cell and the QiCells sample object can furthermore
be defined. Details regarding the mapping of cells is provided when formally
introducing the QiCode concept in Section 4.4 and is visualized in Figure 4.8. As
example, the electrical delay calibration from above, when performed for the fourth
qubit, will look like this:
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Figure 4.5: T1 experiment which is performed on N qubits simultaneously.

Code 4.16: Execution of the recording offset calibration for the fourth qubit.

calibrate_offset.run(qic, sample, averages=1000, cell_map=[3]) # 4th cell of sample
data = calibrate_offset.cells[0].data("result") # 1st cell of QiJob
sample[3]["rec_offset"] = 4e-9 * numpy.argmax(numpy.abs(data[0] + 1j * data[1]))

The job can stay unchanged as it acts as a template that can be executed on any
qubit thanks to the placeholder cell properties used to define it. By default, always
the first cells within the QiCells sample object are used. A QiJob requiring five cells
will therefore use the first five cells of the sample object, if no cell map is given.
Hence, without the cell map, the above calibration would always be executed for the
first qubit defined within the sample.

As an example of a multi-qubit characterization, a T1 measurement happening
simultaneously on all qubits can be described with only nine lines of code using
some already-defined QiGates:

Code 4.17: T1 experiment which is performed on all qubits simultaneously.

with QiJob() as multi_t1:
q = QiCells(len(sample)) # Control as many cells as the sample has defined, i.e. 5
length = QiTimeVariable()
with ForRange(length, 0, 4e-6, 100e-9):

for cell in q:
PiPulse(cell) # Excite qubit into state |1>
Wait(cell, length) # Wait variable time for qubit energy to decay
Measurement(cell, save_to="result") # Measure the obtained state
Thermalize(cell) # Reset qubit into its (thermal) ground state

As seen in the earlier examples, subsequent commands on the same cell will happen
after each other. With multiple cells involved, the timing is not always intuitively
clear. By default, commands on different cells will happen independently and in
parallel, even if they are defined after each other in the QiJob. This means that each
cell has its own timeline in QiCode, as can also be seen in Figure 4.5. However,
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explicit and implicit synchronization mechanisms exist. The latter will happen,
e.g., at the beginning of a gate acting on multiple qubits where the timelines of the
affected cells are automatically aligned. Another example is the loop body of the
ForRange. Here, at the beginning of each iteration, the timelines of all cells present
in the body are implicitly aligned. The same mechanism holds true for other control
structures in QiCode as well. Within the body, the commands on different cells
will then again be executed independently and in parallel. Therefore, a normal
Python for loop can be used to generate the pulse sequences within the body for the
different qubits. Python is an interpreted language and therefore, the for loop will
be executed directly while creating the QiJob. This leads to the sequences for all
qubits to be subsequently added within the ForRange loop body. As the defined
gates use the cell properties to determine all the parameters, we can use the same
gates for the different qubits, and the correct parameters will be later inserted just
before the compilation. This is a great advantage of QiCode and makes it very
flexible and reusable, like the example of the multi-qubit T1 experiment illustrates.

Similar to the single-qubit experiments, the experiment description will first be
compiled into the configuration for the QiController when the run() method of
the QiJob is called. In this case, the compiler separates the different pulses and
sequencer instructions for the individual digital unit cells. They are then loaded
onto the QiController and all utilized cells are synchronously started using the
cell coordinator. After the execution of all cells finished, the data from each cell is
separately collected by the Taskrunner which, again, also performs averaging and
restarts the utilized cells. Finally, the data is transmitted to the Python client where
it can be accessed by the user in the same way as for the single-qubit experiments:

Code 4.18: Execution of the multi-qubit T1 experiment.

multi_t1.run(qic, sample, averages=1000)
# Results are stored inside the job:
multi_t1.cells[0].data("result") # Data of first qubit
multi_t1.cells[1].data("result") # Data of second qubit
# [...]

For the user, the whole data collection process is transparent and will be automati-
cally handled by an appropriate task within the Taskrunner.

4.4 Experiment Description Language QiCode

QiCode is a high-level experiment description language to control the QiController.
While the last section already presented multiple use cases to illustrate its
capabilities, this section will provide a more technical and complete overview.
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4.4.1 Concept

Goals and Requirements

QiCode was designed from the beginning with the needs and requirements of the
superconducting qubit research community in mind. Based on discussions with and
input from experimental physicists, the following goals and requirements have been
identified for the new experiment description language:

> High-Level
no platform-specific, low-level knowledge required

> Versatile and Flexible
support a wide variety of experiments

> Easy to Use
facilitate working with the QiController

> Intuitive
new users can easily learn how to use the QiController

> Multi-Qubit Support
promote experiments with arbitrary number of qubits

> Reusable Abstractions
provide means to create reusable building blocks and abstract from qubit chip

> Reproducible Execution
complete, self-contained description with all configuration

> Flexible Data Handling
customizable modes to collect measurement data

> Custom Control Flows
advanced experiments with if/else clauses, variables, and loops

> Integration into Existing Workflows
description, execution and data retrieval directly in Python (widely used)

> Informative, User-Friendly Error Messages
instructive and understandable information about limitations, e.g. the sample rate

The QiCode language is specifically targeted and designed for quantum computing
experiments and algorithms. It provides means to define reusable gates and abstract
experiment descriptions that can act as template and be reused for different qubits.
An overview of its structure and concept is shown in Figure 4.6.
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Figure 4.6: Abstract concept of the QiCode experiment description language.

Multi-Qubit Sample Representation: QiCells

An important concept in this scheme are QiCells objects. These hold the physics
parameters to interact with a superconducting qubit chip. An instance of this class
is therefore called sample. The sample can consist of one or more cells, i.e. qubits,
and each cell defines all relevant properties for one qubit. This can be pulse lengths,
frequencies, but also other experiment-related parameters. The naming convention
of these properties is left to the user who can define any properties necessary. The
sample can furthermore also store qubit-related characteristics, like decay times and
further information which is not needed for the experiments. As the sample can be
exported as JSON file and imported again later, this can be useful.

Abstract Experiment Description: QiJob

An experiment description is called QiJob. Each QiJob defines a virtual QiCells
object which will be used within this job. This way, the user defines on how many
cells/qubits a QiJob will act. Within the job, one can access properties of this virtual
QiCells object. As it is a different object than the sample, no values will be set
within the virtual QiCells object when the job is created. Instead, a reference for
this property is stored as placeholder which will later be matched to the sample
when one executes a job. The QiJob therefore acts as a template experiment which
can later on be executed on different qubits with different properties by simply
changing the sample. Adaptions to the QiJob are not necessary as the properties are
defined in an abstract way. As long as the actual values are set in the sample which
is passed to the QiJob, it can be executed on the QiController. Otherwise the QiCode
compiler aborts and names the missing properties so the user can add them to the
sample.
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Modular Building Blocks: QiGates

While already the QiJobs are designed to be reusable, also smaller patterns might
occur again and again in one or across multiple experiments. For such cases,
QiGates have been designed as modular building blocks. These encapsulate one or
multiple QiCode commands which then can be reused multiple times and also for
different cells and experiments. Prominent examples are a π-pulse or a measurement
operation, consisting out of a readout pulse and a consecutive recording operation.
QiGates are regular Python methods which are prepended by a @QiGate decorator.
While this is not strictly enforced, one typically passes as first argument the
cell on which the gate should act before supplying additional parameters, e.g.
PiPulse(cell, phase=0.0). As all QiCode commands are structured the same way,
this improves the readability of the experiment description. Within the gates, the
cell properties can be accessed the same way as within the QiJob.

Advanced Control Flow: Context Managers

QiCode is written in Python. As Python is an interpreted language, some syntax
is reserved and cannot be used for QiCode, like if/else or for statements. Instead,
context managers (started by with statements) are used to implement control flows
for QiCode within Python. This even makes it possible to combine QiCode which
will only be evaluated during a later compilation step, and Python control flow
to dynamically generate and change a QiJob while it is created. One example was
already given in Code 4.17 where the QiCode commands for one qubit are repeated
multiple times with a Python for loop to end up with a QiJob that controls multiple
qubits. To distinguish normal Python syntax from QiCode, in QiCode all methods
are written as Pascal case, i.e. with initial capital letter and capital letters for each
consecutive word. In contrast, by convention, Python methods are normally written
as snake case, i.e. with lowercase letters and spaces not omitted but replaced by
underscores.

Accurate Timing: Implicit and Explicit Synchronization

Precise timing is of great importance in qubit experiments. Each command in
QiCode will wait until the action it triggered is over. Hence, the command to play
a pulse will wait the duration of this pulse before the next command is executed.
This makes it possible to seamlessly sequence multiple operations. If one, for
example, performs two consecutive pulse commands one one cell, these will be
executed sequentially after each other without any gap between them. Different
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Figure 4.7: Timing concept in QiCode showing the timelines for N cells, i.e. qubits. The depicted
operations are only exemplary to visualize the different time synchronizations across cells. The
changing loop body of the ForRange is only hinted.

cells, however, have their own, independent timeline. The timing concept in QiCode
is visualized in Figure 4.7. At the beginning of the execution, the timelines are
synchronized across all cells. The first command of each cell will thus be executed at
the same time. QiCode will also automatically align the timelines of multiple cells
at the beginning of control blocks, like for loops, if/else clauses, or QiGates. This
alignment will only take into account the cells that are used within these structures.
A command to explicitly synchronize the timelines of multiple cells, Sync, is also
provided so the user can reestablish a well-defined time relation where necessary.
An example of a multi-qubit experiment, including its time relation, is given in
Section 4.3.5 and also depicted in Figure 4.5.

Flexible Execution: Compilation and Cell Mapping

Once the QiJob is defined, it can be compiled into the configuration of the platform
and executed. The details of these steps are provided in Section 4.4.3. For the
compilation, the sample object needs to be provided, which will replace the
template properties within the job. Furthermore, additional parameters regarding
the execution can be specified, like the number of averages or repetitions to perform,
and the format in which the resulting data should be collected and sent back to the
user. Multiple predefined data collection modes are provided which can be further
customized by passing a user-defined Taskrunner task for online data processing
and retrieval. When multiple qubits are in play, the user can furthermore define on
which qubit(s) the QiJob should be executed by providing a custom cell mapping.
An overview over the general cell mapping between QiJob, QiCells sample object
and QiController is illustrated in Figure 4.8.
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Figure 4.8: Cell mapping concept between QiJob, QiCells sample object and QiController. As an
example, the QiJob utilizes three cells, and five qubits are defined as cells within the QiCells sample
object.

4.4.2 Available Commands

QiCode provides a set of commands to describe the experiments and the control
flow on the QiController. While Section 4.3 already showed some of them in action,
this section will introduce the available commands and provide a more technical
insight, how they are used and what their effect is on the platform.

> QiCells(number)
declares the number of cells to use for this experiment. Each QiJob needs to have
exactly one QiCells declaration, typically right at the beginning. Its reference also
acts as placeholder within the QiJob to define which command should act on which
cell. Outside of the QiJob, QiCells objects act as representation of physical samples
which can be filled with properties describing the relevant parameters of the qubits.
During compilation, the internal placeholder QiCells object will be replaced by the
provided sample with the actual parameters. This makes the QiJob reusable for
different samples with different properties without needing any adaptations.

> QiVariable(value_type, value, name)
declares and creates a variable in QiCode. It will be assigned during compilation to
sequencer registers of the cells in which the variable is used. If no type is provided,
it will be intelligently inferred based on the usage within the QiJob. For example, if
the variable is used as a pulse length, the type will automatically be inferred as a
time. Available types are integer, time, state, and frequency and can be specified
using the QiType enumeration. Depending on the type, the value of the variable
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needs to be differently converted for the platform, e.g. a time will be converted
from seconds to cycles. Multiple aliases exist for variables with predefined types,
like QiTimeVariable and QiStateVariable. If a value is given the variable will be
initialized to this value. Otherwise, it stays uninitialized. When a name string is
provided, one can later access the register within the sequencer using the name,
as the mapping between name and register index is stored. This can be used to
initialize the variable to different values before starting the execution. If neither a
name nor an initial value is provided, QiCode will complain if the variable is used
somewhere before being initially assigned within the code.

> Assign(destination, calculation)
performs a calculation and stores the result in the QiVariable provided as destination.
Any type of mathematical operation is possible that can be implemented within the
sequencer and is not forbidden by type constraints. That means that it is not allowed
to add a time and a frequency, for example. All common operations are available
with the exception of the division which is not implemented in the sequencer.
However, bit shifts are possible to divide numbers by a power of two. Also nested
calculations are possible which will then be separated into elementary operations
by the compiler. The operands of the calculations can be QiVariables as well as
constant integer and float values.

> Store(cell, variable, save_to)
stores the value of the variable into the result container of the specified cell with the
name given as save_to. The name is provided as string and can be used to identify
the data after the experiment.

> Wait(cell, delay)
delays the execution of the commands within the cell by the given amount of time.
The time can be given as number specifying the seconds or as QiVariable. On the
sequencer, it will be implemented using the wait instructions of the custom special
purpose instruction set.

> Shape(name, function)
defines a parametrized shape with a provided name. The provided function has to
be of the form [0, 1) → {x | x ∈ C, |Re (x) | ≤ 1, | Im (x) | ≤ 1}. It can be provided
as lambda function or as normal method. The input value will then be scaled to
the full length of the pulse that should have this shape. A library with predefined
shapes is also provided with QiCode and called ShapeLib. It contains shapes for
rectangular, Gaussian, ramp, and other pulses.

> QiPulse(length, shape, amplitude, phase, frequency)
creates a pulse object that can be used in the Play and PlayReadout commands.
The length can be either a fixed value in seconds or one of the two strings "cw"
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or "off". The strings will turn on and off a continuous wave (cw) tone with the
given parameters. The shape is a Shape object and defaults to a rectangular pulse.
The amplitude can be a value between [−1, 1] and defaults to 1. The phase is given
as float in radian and by default is 0. The frequency has to be provided in hertz.
If no frequency is given, the frequency will be automatically taken from another
pulse of the same cell and category (readout/control). Length and frequency can
also be given as a QiVariable. The compiler will then integrate a store operation in
the sequencer instructions to update these parameters within the register interface
of the appropriate signal generators. For a variable length parameter, only the
rectangular shape is currently supported as it is implemented as a cw pulse that
will be stopped after the time specified in the variable has passed.

> Play(cell, pulse)
outputs the specified QiPulse using the control signal generator of the given cell.
The pulse will later be assigned to a trigger set of the signal generator during
the compilation and consecutively loaded. A trigger instruction will be added to
the sequencer execution to play this trigger set on the control signal generator.
Afterwards, a wait time is inserted to delay the execution until the end of the pulse.

> RotateFrame(cell, angle)
rotates the reference frame of the control pulses generated by Play. This corresponds
to a counter-clockwise virtual Z rotation around the Bloch sphere by the given
relative angle. The operation takes one cycle and is a normal trigger command of the
control signal generator where the rotation is loaded as trigger set. There, the option
to persist the phase offset is selected which will cause the rotation of the phase
reference and thereby the reference frame whenever this trigger set is activated.

> PlayReadout(cell, pulse)
performs the same operation as the Play command but using the readout signal
generator instead of the control one.

> Recording(cell, duration, offset, save_to, continuous)
performs a recording at the input of the cell with the signal recorder. The duration
specifies the length of the recording window, the offset is the electrical delay
between the start of a preceding readout pulse and the time when the pulse enters
the signal recorder. The offset can also be a QiVariables and will then be updated
by a store operation of the sequencer. The save to parameter, similar to the Store
command, can be a string to specify the name of a result container where to store
the result values. Furthermore, it can also be a QiStateVariable so one can react
to the measured qubit state within the control flow. The continuous flag can be used
to start or stop a continuous measurement with True and False, respectively. By
default, only a single measurement will be performed. The command is typically
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used directly after a PlayReadout command and will then be merged with it to be
executed simultaneously. The offset will be separately handled within the signal
recorder and not by the sequencer.

> Sync(*cells)
synchronizes the timeline between multiple cells which can be passed as arguments
here. Normally, each cell has its own, independent timeline. However, some pulses
and operations need to be aligned to work properly. For this scenario, the Sync
command can be used. The compiler will synchronize the timelines by calculating
the difference in execution time and adding appropriate wait statements.

Besides these commands, QiCode supports complex control flows utilizing the
following Python context managers:

> with If(condition):
only executes the following indented QiCode block if the given condition is true.
A condition can be a fixed value or a QiVariable that will be evaluated to true if
it is greater than zero, as well as a comparison of two QiVariables or between a
QiVariable and a fixed value. Calculations can be nested within the condition which
will then be separated by the compiler and executed before the branch instruction is
performed within the sequencer.

> with Else():
only executes the following QiCode block if the condition within a preceding If
context manager evaluated to be false.

> with ForRange(variable, start, end, step):
loops the value of the given variable from start to end with increments provided as
step. The following indented QiCode block will be repeated for each value of the
variable. The compiler performs a few optimizations, including unrolling single
executions of the loop when the variable represents a time and is zero or one cycle
long in this loop execution. This is necessary so commands that should be zero
cycles long can be skipped in the unrolled loop iteration. When variable length
pulses are used, the pulse is split into a trigger to turn on the pulse, a wait command
that waits the number of cycles in the variable minus one, and a separate trigger
to turn off the pulse again. If the pulse should only be one cycle long, the wait
command in between needs to be left out as it will take at least one cycle which
makes the pulse at least two cycles long if it is present.

> with Parallel():
allows the parallel execution of multiple QiCode commands acting on the same
cell, e.g. performing a control and a readout pulse at the same time. In the normal
timeline, the pulses would always be executed after each other. With the parallel
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context manager, these can be executed at the same time. Multiple consecutive
Parallel blocks are merged by the compiler and run in parallel. Within the indented
blocks, the timeline will be organized as usual, with sequential commands of one
cell and independent timelines between multiple cells.

> with QiJob() as job_reference:
encapsulates all the other QiCode commands. These can only be used within this
context manager. The only exception is the QiCells command which can be defined
inside and outside the QiJob separately. The QiJob builds a control flow graph at
runtime from the utilized commands in its body and stores it for the compiler.
The job can be referenced, compiled, and executed using the job_reference of the
context manager and its provided methods, as further detailed in the next sections.

At the beginning of each of the context managers, the cells which are used within its
body will be automatically synchronized by QiCode.

4.4.3 Compilation

QiCode is designed in a way that a control flow graph (CFG) of the experiment
description is directly created when the Python interpreter goes through the code.
For this purpose, the QiJob context manager creates a global variable containing
this CFG. Each command of QiCode will extend it when being interpreted by
Python. This intermediate representation is then stored inside the QiJob reference.
Calculations with variables inside QiCode are stored as abstract syntax trees (ASTs).
Python makes it possible to overload all mathematical operations with custom
methods that will be called when the code is interpreted. This way, the AST will
be directly created using the Python interpreter, including the correct operator
precedence.

The QiCode compiler is started with the sample object, the cell map between sample
cells and QiJob cells, and the CFG of the QiJob. As a first step, the cells from the
sample object are extracted and rearranged to be in the same order as the cells of
the QiJob. These contain the properties of the sample which can be necessary to
compile the job. Then, the properties within the QiJob are replaced by the values
given within the sample object cells. If any unresolved properties remain after this
step, an exception is raised and the user is notified about the missing properties.

To compile the intermediate representation of QiCode into the configuration for the
QiController, additional information needs to be gathered. For example, commands
need to be assigned to the cells on which they have to be executed, like variables
and if statements for which it is not explicitly defined. To extract this information
from the CFG, the visitor pattern is used. Visitors represent operations that will
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be performed on the structure of the CFG by iterating through the single nodes.
In the visitor pattern, the operation is separated from the structure. This way, new
operations can be later added without having to adapt the data structure.

Multiple visitors are implemented which will walk through the tree structure of
the CFG and annotate the nodes where necessary. As an example, each command
will be annotated with a list of cells that are relevant for this command. To decide
which variable is used in which cell, a visitor will iterate through the CFG in reverse
and track the usage of the variables through all computations and so forth. Some
visitors will also perform additional code validity checks and raise exceptions if
forbidden or unsupported code is used. For example, the control variable of a
ForRange must not be altered within the loop body to prevent infinite loops and
guarantee well-defined behavior. During this phase of information gathering, also
the number of recordings performed for a result container during the execution
of QiCode is determined. This information is later used during the execution to
determine how much result data to expect and fetch from the PL.

Once the visitors collected the required information and annotated the CFG, the
translation into sequencer instructions takes place. To assemble the instructions,
another visitor is used. It iterates through the CFG and, for each command node
in the graph and each relevant cell of this node, selects the appropriate sequencer
instructions.

To organize this code translation phase, each cell has its own object representing an
abstract sequencer and digital unit cell. It takes care of assembling the sequencer
instructions by providing appropriate methods that are accessed by the visitor.
It furthermore contains a register stack that holds all the unused registers of the
sequencer which can still be used during the execution. If a command node requires
a new register, it will be popped from the stack and can then be utilized until it
might later be freed again and pushed back to the stack. The registers also keep
track of their value when traversing through the CFG. This way, the program length
can still be calculated when variables are used as pulse lengths or for wait delays.
Monitoring the execution time of the code in clock cycles is also handled within the
abstract sequencer class. As long as the current execution times of all the cells are
known, they can be synchronized at any time by adding wait statements with the
time differences.

The translation of the command nodes in the CFG to the sequencer instructions
can be separated in single and compound statements. Single statements include
Play, Recording, Wait, and so on. They can be directly translated into appropriate
sequencer instructions. If pulses should be played, they will be assigned with a
trigger set value and added to a dictionary for the signal generator to be loaded
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later on. The compiler also compares pulses. If multiple pulses with exactly the
same properties are used within the description, only one pulse is loaded and then
reused. Compound statements, represented in QiCode as context managers, require
more thorough handling. If multiple cells are relevant within such a statement, a
synchronization between these cells is added at the beginning of the statement so it
will be executed at the same time within all sequencers, as one would expect when
reading the QiCode. Depending on the compound statements, different sequencer
instructions will be added.

For the If block, a branch instruction will be added. When the condition is false, the
inner body will not be executed and thus needs to be jumped over. The condition for
the branch instruction will thus be inverted before being added. The relative jump
address will be determined after the body of the conditional clause was added to
the instruction list. If an Else block follows, an unconditional jump is additionally
introduced at the end of the If body to jump over the other one.

The bodies of multiple Parallel statements are evaluated and merged into a single
sequence of commands. These are then added to the sequencer instructions of the
relevant cells. In order to merge the commands, their timing needs to be known.
Then, wait times between parallel statement executions can be calculated and the
multiple command sequences appropriately combined.

To translate the ForRange loop, multiple different cases have to be distinguished.
If the run variable is a time and the start or end of the execution are zero or one
cycle, these loop iterations need to be unrolled. For loops are implemented by first
assigning the start value to the run variable. Then, a branch condition is added to
check if the run variable is greater (or smaller for negative step sizes) than the end
value. If not, the loop body will follow. Afterwards, the run variable is incremented
and an unconditional jump back to the branch condition is performed. Once the
branch condition is met, i.e. the run variable exceeds the for loop range, a jump is
performed to the instruction following the loop body and the unconditional jump.
The compiler also builds a tree structure of all existing for loops within the QiJob.
It will later be used to track the progress of the sequencer execution by reading
out the register values during runtime. As an example, if a ForRange increments
the run variable a hundred times, one can track the progress during the sequencer
execution by checking the current value of the register associated with the run
variable. When start, stop and step values are known, one can calculate which
iteration the sequencer is currently performing. For a more complex nesting of
loops, the value of the program counter is also necessary to determine the progress
of the execution. QiCode will automatically evaluate this value during runtime and
present it to the user.
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The language was initially implemented during the master thesis of Rainer
Illichmann. More technical details can therefore be found in his thesis [140].

4.4.4 Execution

Once the compilation is completed, for each cell of the QiJob, a sequencer instruction
list is returned. Additionally, the mapping between variable names, for those which
are explicitly named, and the register indices on the different sequencers is returned.
It can be used to access the belonging registers and initialize the variables based
on their names. With this information, an experiment class instance is created that
contains all the necessary logic to load the configuration of this QiJob and execute it
on the QiController. The QiJob reference contains two methods for this purpose:

> job.create_experiment(qic, sample, averages, cell_map, data_collection)
creates the experiment class instance of the QiJob job and returns it for more
advanced usage to the user. During the creation process, the compilation explained
above will take place. qic is the reference to the QiController, sample is a QiCells
object containing the information of the qubit chip needed for compilation of the
QiJob. With cell_map, the user can provide a mapping between sample cells and
job cells. Based on the second map within the sample, the job cells will be further
mapped onto the digital unit cells of the QiController. This cell mapping concept
is also depicted in Figure 4.8. averages and data_collection will change the
Taskrunner configuration, i.e. how the data is collected and how often the job should
be executed on the PL. Different predefined modes exist which are explained below.
After creating the experiment instance, the user needs to manually call the methods
to configure and execute the job. These can also be further modified and expanded
by additional operations. However, directly accessing the experiment instance is
only required for few advanced use-cases.

> job.run(qic, sample, averages, cell_map, data_collection)
also creates the experiment class the same way as the first command. However,
the experiment is never exposed to the user but directly executed within the run
method which is sufficient for most QiJobs. The results of the experiment will be
automatically stored within the job cells accessible as job.cells.

The following predefined data collection modes and belonging Taskrunner tasks
are available:

"average" is the default data collection mode and will return results as averaged I
and Q values. Multiple recordings inside the job are averaged separately.
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"amp_pha" performs the same measurements as "average". The obtained I and Q
values are afterwards converted to amplitude and phase values in Python.

"iqcloud" does no averaging on the resulting I and Q values but returns all single
values back to the user, grouped by recording in the QiJob. If, e.g., five recordings
are performed within the QiJob, five groups of measurement data will be returned,
each containing as many I and Q values as the user specified as average count.

"raw" returns the averaged raw time trace obtained within the signal recorders.
As only one time trace can be stored within the signal recorder per execution, this
mode is limited to one recording per experiment description and cell.

"states" collects the single measurement results as decimated state values instead
of as I and Q. Otherwise, the mode is similar to "iqcloud" and can be used to
measure quantum jumps.

"counts" is similar to the previous mode, but it interprets the qubits as a matching
quantum register and the last measured qubit states across all cells as a binary
number. It then counts how often which classical number occurred when repeating
the job multiple times and only reports back these counted values.

The execution of the QiJob can be separated in multiple stages:

In the first stage, the QiController is configured. The pulses are loaded into their
associate trigger sets within the signal generators of the different digital unit
cells. The NCO frequencies of the modules are updated and the signal recorder is
configured according to the parameters given within the job. Then, the instruction
lists are written into the sequencers of the digital unit cells and the appropriate data
collection task is loaded onto the Taskrunner. The task will later trigger the execution
of the sequencers and collect the results in the requested format. Different tasks are
used to switch between multiple data formats and aggregations as explained above.
The tasks are written in a very generic way so one can pass them the mapping of
the unit cells, the number of recordings performed per signal recorder and how
many repetitions to perform as parameters. Alternatively, a user-defined task can
be loaded, as detailed in the following section.

In the second stage, the execution of the Taskrunner is started. From now on, the
execution of the QiJob will happen completely decoupled from the Python client
on the QiController. One can monitor the progress of the execution using the
values provided by the task and in more detail also by monitoring the values of
the sequencer registers and its program counter. Once the Taskrunner finished, the
collected data is transferred from the platform to the client.
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In the third and last stage, the data is converted into the right format within Python
and distributed to the respective job cells where the user can access it.

4.4.5 Custom Data Processing

For special experiments, users might want to provide their own user task for the
Taskrunner to perform custom data processing and control flows. QiCode provides
the possibility to annotate a QiJob with a custom user task and data processing for
these situations:

> job.set_custom_data_processing(file, parameters, converter, mode)
attaches a custom user task C file which will control the job execution on the
Taskrunner. One can pass custom parameters to the task. If none are given, the same
set of parameters which is used for all predefined data collection modes is provided
by default. The converter is a method which takes the data boxes returned from
the task as argument and can post-process them. It needs to return the data in a
structured format based on which it will be assigned to the cells of the job and their
result containers. The mode defines the data type in which the data boxes have to be
collected. By default, they are transferred and interpreted as lists of signed 32 bit
integer values.

As an example, the user task state_collect.c of the "states" data collection
mode packages multiple states as single bits inside one 32 bit unsigned integer
value. If one created a job to record many such states, it can be annotated as shown
in the following to extract and unpack the boolean state information:

Code 4.19: Annotating a job with custom data processing, in this example to collect qubit states.

# Data converter to unpack the 32bit values back to boolean states
def data_converter(databoxes):

results = []
# Each data box contains the states obtained from one cell
for db in databoxes:

# States are compressed as single bits in 32bit unsigned integers
results.append([(val >> i) & 0x1 for val in db for i in reversed(range(32))])

return results

# Attach custom data processing with Taskrunner to job
job.set_custom_data_processing(

file="state_collect.c", converter=data_converter, mode="uint32",
)

# Run the experiment with custom data processing (default if attached)
# The average count is used by the task to define the number of states to collect
job.run(qic, sample, averages=10000)

# Get the data as list of 0s and 1s for the first cell (as processed by the data_converter)
states = quantum_jumps.cells[0].data("result")[0]
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4.4.6 Current Limitations

Current limitations are imposed by hardware restrictions and complex implementa-
tion efforts. Whenever possible, a descriptive error message will be displayed if the
user tries to create an experiment description that is not supported. The most basic
limitation is probably that time variables and values can only be a multiple of 4 ns
as this is the time of a clock cycle within the PL. When using different values these
will be rounded to the nearest 4 ns multiple in most cases.

Another limitation concerns the use of the Parallel context manager. As one
needs to analyze the parallel command executions and merge them into one,
synchronization and control logic is currently not allowed inside these context
managers as the timing is challenging to infer or even impossible in some cases. For
the same reason, it is also not possible to save the qubit state into a variable within a
parallel construction as this will cause the sequencer to indefinitely wait until the
state is returned by the signal recorder.

When changing the NCO frequencies of signal generators or recorder, the phase
relation to other parts of the experiment is lost. If the phase relation is important,
e.g. for control pulses within a sequence to specify the rotation axis, the frequency
must not be altered. This is due to the fact that the modules only have one global
frequency value but the phase relation is always defined to the common start of
all digital unit cells. When changing the frequency mid-term, the NCO will just
continue with the last phase value of the old frequency which does not match the
required phase the new frequency would have needed.

Division, as well as fixed or floating point numbers are not supported within QiCode
as they are not implemented within the sequencer. However, the use cases where
this would be necessary at all are quite rare and uncommon, or can be implemented
afterwards inside the Taskrunner or the Python client.

As the results are temporarily stored within the data storage inside the digital
unit cell, a QiJob is currently limited to 1024 recordings per execution and cell.
Otherwise, the memory is not sufficiently large to store all the results. A similar
restriction applies to the length of the raw time trace which can only be 1024 ns
long. Again, however, this is sufficient for most use cases.

The digital trigger module is not yet integrated into QiCode and relevant QiCode
design decisions have not yet been taken.

QiCode supports variable length pulses. As these are implemented as a continuous
wave which is turned off again after a delay matching the variable length has
passed, only rectangular pulses are supported. Variable length pulses with arbitrary
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shape can be implemented by reloading the envelope memory between different
executions using the Taskrunner. This entails a significant overhead when compared
to an implementation solely within the PL. One possibility for the latter would be
to store the envelope with high resolution inside a block RAM (BRAM) and then
subsampling it with a step size depending on the desired pulse length. However, as
this step size would be reciprocal to the pulse length, an obvious implementation of
a linear for loop within the sequencer is not possible. As this significantly diminishes
the advantage of variable length pulses, it was not implemented.

Another limitation is the duration of wait times and pulse durations. Wait times
are limited by the number of cycles fitting in a 32 bit register, i.e. 232 − 1 cycles,
corresponding to roughly 17 s. The pulse duration, with except for variable length
pulses, is limited by the number of envelope samples which can be stored. As 8192 B
of memory are available and each sample is 16 bit large, this corresponds to up to
4096 ns pulse length. In this extreme case, only one pulse can be loaded onto the
signal generator. However, for nearly all applications, either short pulses on the
order of ten to hundreds of nanoseconds are required, or the pulses can be realized
using the continuous wave functionality.

4.5 Qkit Integration

Qkit is an open-source quantum measurement suite used to control laboratory
instruments, perform experiments and store the acquired data [106]. A more detailed
introduction into Qkit is given in Section 2.2.8. Physicists in multiple laboratories
are used to perform research with superconducting qubits using Qkit. Thus, to
facilitate the usage of the QiController, an integration of the QiController into Qkit
was developed.

Qkit collects measurement data from the instruments and persists it as files on the
hard drive. For this purpose, Qkit requires a special instrument that provides the
resulting data in a specified format. Each experiment in qiclib therefore provides a
special readout instrument that mimics this. It will trigger the experiment execution
and reformat the obtained data for Qkit. It also provides additional functionality
required by Qkit, like a method to query a list with the frequencies of all utilized
readout tones for multi-qubit readout. The instrument is available as readout
property of the experiments and also packaged inside a special qkit_sample
property. The latter is a Qkit sample object stub which can be passed as adapter
to the Qkit measurement class. As an example, a Rabi experiment job written in
QiCode can be integrated in Qkit the following way:

119



4 Platform Interface and Control

Code 4.20: Integration of a Rabi experiment written in QiCode into the Qkit environment.

job = ql.jobs.Rabi(0, t_max, t_step) # Create QiJob from predefined experiment library
exp = job.create_experiment(qic, sample, averages=10000) # Create experiment for QiJob

# From here, the code is nearly identical to an experiment without the QiController
m = Measure_td(exp.qkit_sample) # Create Qkit measurement object and pass adapter
# Define the parameter axis within Qkit which is performed on the QiController
m.set_x_parameters(exp.time_range(0, t_max, t_step), 'pulse_length', None, 's')
m.dirname = "Rabi" # Name the experiment data
m.measure_1D_AWG(iterations=10) # Perform the measurement, obtain results and repeat 10x

In the code snippet, exp.qkit_sample is the experiment-specific adapter which
will be created and passed to the Qkit measurement class. At this point, during the
creation, also the QiController will be configured. Once Qkit requests a recording
from the instrument within this adapter, it will trigger the execution of the QiJob
on the platform. The data is then returned in the special format required by Qkit
so it can be automatically added to the measurement file. Qkit handles parameter
variations by defining an axis. As these are completely handled by the QiController
in this case, the Qkit axis is only given to store and visualize the data correctly. The
exp.time_range method of the experiment class is used to obtain a list with all time
values the ForRange will generate on the sequencer.

Qkit furthermore adds meta information to the obtained measurement data, like
information about the current sample, the status and configuration of all connected
instruments at the start of the experiment, as well as optional further information
given by the user. To leverage these capabilities of Qkit, an interface between the
QiController and Qkit was developed. All submodules of the platform within
qiclib, as well as the QiController itself, are derived from a common base class
named PlatformComponent. At creation, it stores a unique name of the submodule,
as well as the gRPC connection handle to the platform. If Qkit is available, it
furthermore creates a QkitInstrumentProxy which mimics the functionality of a
normal Qkit instrument and exposes the properties of this submodule for Qkit to
be automatically persisted. All properties which should be persisted are decorated
inside the class of the submodule using @platform_attribute.

Qkit also provides a visual progress bar widget when used within Python Jupyter
notebooks. If Qkit is available, QiCode and the experiments also utilize this progress
bar to visualize the progress of the execution, including iterations, averages and the
progress within the QiJob.

The integration into Qkit substantially improves usability of the QiController for
users who are familiar with performing experiments in Qkit. The interface is
designed to have a low footprint and be as simple as possible so it is easy to use
with a low entrance barrier.
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Figure 4.9: Abstract concept of the Qiskit integration with the QiController.

4.6 Qiskit Integration

Qiskit is an open-source quantum development kit for working with quantum
computers at the algorithm level. It is widely used in the quantum computing
community and also contains backends to interface with IBM quantum computers
in the cloud. A general introduction into Qiskit is provided in Section 2.2.8.

Besides predefined IBM backends, custom backends can be provided to utilize
Qiskit with own electronics and quantum processors. For the QiController, such
a generic backend was developed to be used with all kinds of attached quantum
processors. The goal of the Qiskit integration for the QiController is to be able to
use as much of the same code and syntax from Qiskit as possible. The backend
thus aims to integrate seamlessly in the remaining Qiskit workflow. This way,
users familiar with Qiskit can use the rich ecosystem directly with the QiController
without needing deep understanding of the platform. The abstract concept of the
Qiskit integration is visualized in Figure 4.9. A Qiskit circuit is translated inside the
backend to a QiJob and executed on the QiController. The obtained measurement
results are then returned to Qiskit where they can be further analyzed.

Defining and executing Qiskit circuits on an IBM backend in Python looks like this:

Code 4.21: Defining and executing a quantum circuit on a simulator in Qiskit.

from qiskit import *

circ = QuantumCircuit(3, 3) # 3 quantum and 3 classical bits
circ.h(0) # Hadamard gate on first qubit -> superposition
circ.cx(0, 1) # CNOT with qubit 1 as target and 0 as control
circ.cx(0, 2) # CNOT with qubit 2 as target and 0 as control
circ.barrier() # Barrier to measure all three qubits simultaneously
circ.measure([0,1,2], [0,1,2]) # Measure all three qubits, store states classically

backend = Aer.get_backend('qasm_simulator')
job = backend.run(circ, shots=1024)
result = job.result() # Obtains the results from the backend
counts = result.get_counts() # Gives the counts how often which result was measured
# Example for counts: {'000': 502, '111': 522}
plot_histogram(counts) # Visualize results
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First, Qiskit is imported and a quantum circuit created. In this case it entangles
three qubits by bringing the first qubit in a superposition and then performing a
conditional not operation on the other two qubits with the first qubit as control.
The final measurement stores the qubit states in the classical register. Due to the
entanglement, one should only obtain two different measurement results, namely
000 or 111. Using a simulator in Qiskit, this can be verified. A backend is created
for the simulator and the circuit is executed on this backend with 1024 repetitions.
The result is obtained from the backend and transformed to the counts of the
different outcomes in the classical register. Finally, it is plotted as a histogram to
visualize the result.

When using Qiskit together with the QiController, only the backend needs to be
exchanged by a custom one provided by qiclib:

Code 4.22: Using the QiController backend to integrate seamlessly in Qiskit.

from qiclib.packages.qiskit import QiController_backend
backend = QiController_backend(qic, sample, gates)

All the remaining Qiskit code stays exactly the same, at least from the perspective of
the user. The custom backend requires a reference to the QiController, as well as a
QiCells sample object. The sample object needs to include all relevant pulse lengths
and times, as these are required during the translation of circuits to QiCode. It is
therefore necessary to first fully characterize the connected quantum processor chip
and store the information inside the sample object.

Qiskit circuits are structured as sequence of gate operations, similar to the structure
of QiGates. When defining appropriate QiGates, a one-to-one mapping between
Qiskit circuits and QiCode can be performed. This showcases the great flexibility of
the QiCode experiment description language. A predefined set of QiGates for all
common single-qubit Qiskit gates is provided for the translation. It can be replaced
by a custom dictionary when creating the custom backend, see above, if the user
wants to provide different gates. This can also be used to supply additional gates,
for example a two-qubit gate. As these are highly experiment- and sample-specific,
no predefined two-qubit gate is provided by default.

To translate the Qiskit circuit, each Qiskit gate will be replaced by the equivalent
QiGate which is then added to a QiJob instance. Qiskit also has a concept of
individual timelines for single qubits, and barriers can be used to synchronize them
again. These will be translated to Sync commands in QiCode which essentially fulfill
the same purpose. Measurement operations are handled the same way, and replaced
by a Measurement QiGate as defined in Code 4.6. A resulting QiJob corresponding
to the example in Code 4.21 will then look like this:
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Code 4.23: Resulting QiJob from the translation of the Qiskit circuit in Code 4.21.

with QiJob() as job:
q = QiCells(3)
Hadamard(q[0])
CNOT(q[0], q[1])
CNOT(q[0], q[2])
Sync(q[0], q[1], q[2])
Measurement(q[0], save_to="result")
Measurement(q[1], save_to="result")
Measurement(q[2], save_to="result")

Hadamard and CNOT are QiGates which need to be defined inside the dictionary of
gates. Qiskit also offers a transpile method which allows a generic Qiskit circuit to
be optimized for a specific backend. Even if not all possible gates are implemented
in the dictionary, it is sufficient to have a universal set of gates. Then, Qiskit can
decompose all other gates to this basis set within the transpile method.

After the translation from a Qiskit circuit to a QiJob, this job is executed on the
QiController with the predefined "counts" data collection mode. It will aggregate
the measured qubit states directly on the Taskrunner by interpreting the qubit
measurements as single classical bits of a register. The task then counts how often
which register value is measured. This aggregation is reported back to the client and
can be accessed the same way as for other Qiskit backends using the get_counts()
method. Therefore, there is no difference from the view of the user between using
an IBM or a QiController backend.

The Qiskit integration opens up tremendous possibilities to further employ the
QiController in the field of quantum computing. Qiskit provides a rich ecosystem
to interact with quantum processors, including a library of high-level quantum
algorithms which can now all be readily used and accessed with the QiController.
Qiskit also has an active community one can benefit from and which now can utilize
the QiController as interface between Qiskit and actual qubit chips.

4.7 Summary

The client software provided with the QiController is an essential component
to leverage its capabilities. It is bundled as a Python package, called qiclib,
and provides means to access and control the platform with different layers of
abstraction. This ranges from low-level access via remote procedure calls, provided
by the ServiceHub, up to the high-level experiment description language QiCode.

QiCode enables users to functionally and intuitively describe experiments per-
formed with the QiController. It is designed from ground up for experiments and
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applications with superconducting qubits and in close exchange with experimental
physicists. Experiment descriptions are called QiJobs and can act on one or multiple
qubits which are represented as abstract QiCells object. Commands exist to perform
operations on single cells, i.e. qubits, like playing a pulse or performing a recording.
These can be combined into modular, reusable building blocks, called QiGates.
QiCode also supports advanced control logic, like variables, conditional clauses and
loops. Each cell has its own timeline where commands are executed sequentially
but independent of the other cells, if not explicitly or implicitly synchronized. The
description is compiled into a platform configuration which is then loaded onto the
QiController. With the Taskrunner, multiple repetitions are performed and the result
data is collected. A user-defined task can be specified for custom data processing.

Integrations into the quantum measurement framework Qkit and the IBM quantum
development kit Qiskit further extend the usability of the QiController. With a
custom Qiskit backend, users can conveniently run quantum algorithms written
in Qiskit on actual quantum processors controlled by the QiController. The
Qkit integration simplifies the recording of the experiments shown in the next
chapter. There, the QiController and QiCode are employed to perform exemplary
experiments showcasing the capabilities and strengths of the platform.
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This chapter provides exemplary experiments where the QiController is successfully
utilized. Some of these experiments are either impossible to implement using
common laboratory equipment due to limitations of the setup, or require much
more complex control from the user control computer. For each experiment, both
the physics and the platform perspective are covered. From a physics perspective,
the necessary background is provided to understand and motivate the application.
Furthermore, the exemplary results are discussed, thereby also demonstrating the
functional capability of the platform. In each case, the physics view is complemented
by the QiController setup, as well as a discussion about the provided functionality
and benefits of the platform. Apart from the specific applications introduced in the
following, the QiController is also actively used on a daily basis in research with
superconducting quantum bits (qubits) at Karlsruhe Institute of Technology (KIT)
and University of Glasgow.

5.1 Fast Feedback Control for State Preparation

5.1.1 Motivation and Physics Background

Quantum computing relies on the ability to efficiently initialize the state of the
qubits. This is also formulated as the second condition of the DiVincenzo criteria.
The most simple operation lets the qubit state reach thermal equilibrium by waiting
five to ten times the energy relaxation time T1 of the qubit. With improving qubit
properties, this duration becomes more and more substantial and significantly
slows down the execution of quantum algorithms. As example, waiting times of at
least 0.5 ms are necessary for qubits with T1 ≈ 100 µs, which is much longer than
typical gate times of tens of nanosecond. Furthermore, the thermal initialization
leads to a non-negligible population of the excited state |1〉. Therefore, a faster, and
more effective approach to initialize the qubit state is required.

One option is to measure the state and perform a correction pulse, if necessary,
to reliably initialize the qubit state in |0〉. Quantum non-demolition (QND)
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measurements, as introduced in Section 2.2.4, project any superposition onto the
two discrete basis states |0〉 and |1〉. However, prior to the measurement, one does
not know the resulting state. Thus, if the qubit is projected to the |1〉 state, one needs
to perform an additional π-pulse to rotate the state into the ground state |0〉. This
way, one can reliably initialize the qubit, if measurement and π-pulse are accurate
and the latency is much smaller than the T1 time of the qubit. Also some quantum
error correction schemes depend on such a feedback mechanism. This cannot be
realized with common laboratory equipment as the communication delays between
the different systems are much larger. In contrast, the QiController supports this
operation on the sequencer level. It is only limited by the delay of the readout signal
through the experiment and the processing latency within the platform.

5.1.2 Experiment Setup

For the experiment, a superconducting Fluxonium qubit [38] is used. It has a T1
time of 80 µs, therefore state initialization by thermalization would require 0.4 to
0.8 ms. The transition frequency of the qubit is f01 = 1.26 GHz and the frequency of
the readout resonator fr = ωr/2π = 7.244 GHz. An analog radio frequency (RF)
frontend is utilized for both signals to reach these frequencies. It is connected to
the QiController which generates readout and manipulation pulses and records the
response of the sample. To obtain single-shot readout fidelity, a quantum-limited
parametric amplifier [112] is used. Relatively long readout pulses of 800 ns further
enhance the signal quality. The π-pulse is calibrated to be a 160 ns long square
pulse. More details on the experiment setup can be found in [46].

5.1.3 QiController Setup

The QiController can be programmed using the following QiCode job when reusing
the QiGates defined in Section 4.3:

Code 5.1: Execution of feedback operations including control measurements using QiCode.

with QiJob() as state_init:
q = QiCells(1)
state = QiStateVariable()

# Conditional pi pulse depending on qubit state
Measurement(q[0], save_to=state)
with If(state == 1):

PiPulse(q[0])

# Verify the state in which the qubit ended up
Measurement(q[0], save_to="result")
Thermalize(q[0])
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Figure 5.1: Sequence to initialize an unknown initial qubit state to |0〉 with a conditional π pulse.

# Repeat with thermal |1> state as starting point
PiPulse(q[0])
Measurement(q[0], save_to=state)
with If(state == 1):

PiPulse(q[0])
Measurement(q[0], save_to="result")
Thermalize(q[0])

state_init.run(qic, sample, averages=1000000, data_collection="iqcloud")

In this QiJob, the qubit state is once reset from thermal equilibrium |0〉th. Afterwards,
it is reset a second time but from the reversed thermal equilibrium |1〉th prepared by
a π-pulse. This way, one can compare the efficiency of the state preparation in both
cases. The schematic pulse sequence for both cases is depicted in Figure 5.1.

Prior to the experiment, the state discrimination needs to be configured. For this,
two histograms in the in-phase and quadrature (I/Q) plane are created with the
measurement result of the qubit in |0〉th and |1〉th, see Figure 5.2. With single-shot
readout, two separate regions are visible, one representing |0〉 and one |1〉. The line
separating the plane between these regions is calculated and loaded into the signal
recorder, compare Equation 3.2. Then, the qubit state will be correctly estimated
and reported back to the sequencer which can react based on it.

5.1.4 Results and Discussion

The results of the fast feedback state initialization are shown in Figure 5.2. When
starting in the state of thermal equilibrium |0〉th, the qubit’s excited state |1〉 is still
populated non-negligible with 11.7 % probability. This corresponds to an effective
qubit temperature of 30 mK as can be inferred by using the Maxwell Boltzmann
distribution. It is slightly higher than the cryostat base temperature of roughly
20 mK. The difference can be explained by limited thermal coupling of the chip to
the environment and energy deposition by readout and manipulation pulses. After
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Figure 5.2: Demonstration of the state preparation by fast feedback using the QiController. The plots
show histograms of one million single-shot measurements each. On the left, the initial state is displayed.
The dashed line indicates the decision border programmed on the QiController to distinguish the qubit
states. On the right, the corresponding result after the reset operation is shown. Note that the color
scale is logarithmic.

the state initialization procedure, the probability of the qubit to be in the excited
state is reduced to only 0.6 %, i.e. the qubit is cooled to 11.9 mK.

When the the qubit is first excited into |1〉th, the probability of the qubit being in |1〉
is 77.2 %. Therefore, contrary to the other situation, a π-pulse needs to be performed
in most cases. After the initialization, the population in the |1〉 state is reduced to
3.1 %. This is slightly higher than if the qubit is already in the ground state but still
lower than thermal equilibrium. The effective qubit temperature corresponds to
17.5 mK.

The achieved fidelity of the initialization thus varies between 99.4 % and 96.9 %. It
is limited by the experiment setup and the duration of the pulses, as well as the
fidelity of the π-pulse and the readout, including the state discrimination. The
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Bayesian error of the latter alone places an upper bound of 99.5 % fidelity due
to a slight overlap of the Gaussian-like noise visible in Figure 5.2. The increased
infidelity of a reset from |1〉th can be partially attributed to a limited fidelity of
the π-pulse which is implemented as square pulse and performed much more
often than in the other case. The energy relaxation from the excited state back
to the ground state, characterized by T1, also contributes to the error. The whole
sequence of operation with electrical delays, platform latency, readout pulse length
etc. takes roughly t = 1.5 µs. During this time, a 100 % |1〉 population would decay
to a e−t/T1 ≈ 98.1 %. However, a state change between the first and the second
measurement will lead to an unexpected result and thus to a decreased fidelity. To
improve the fidelity, the feedback latency, the measurement and π-pulse times can
be reduced, and the T1 time of future qubits increased.

Concerning the QiController, the feedback latency could already be further reduced
from 428 ns to 352 ns after the experiment took place. This is mainly attributed to
a change of the design clock frequency from 125 MHz to 250 MHz. At the same
time, the cell multiplexer has been added after this measurement which leads to
an additional delay to route the signals between unit cells and converter channels.
Furthermore, additional pipelining has been introduced at critical signal paths
to ease timing requirements for the field-programmable gate array (FPGA) when
multiple digital unit cells are implemented. The platform latency is also covered in
Section 3.7.3.

In conclusion, the state of a Fluxonium qubit was successfully initialized with a
fidelity exceeding 96.9 %. This demonstrates that the QiController supports fast
feedback control, thereby making high-precision online state preparation possible
and opening up possibilities for advanced control schemes in superconducting
qubit research and quantum computing.

5.2 Quantum Jumps Measurement

5.2.1 Motivation and Physics Background

When measuring a qubit, it will always either be in |0〉 or |1〉. When one constantly
monitors the qubit state, one will experience so-called quantum jumps. These are
discrete jumps between the two states which become visible due to the continuous
measurement. The time of a jump is completely random, but guided by statistical
principles laid out by the energy relaxation time T1 due to unwanted interaction
with the environment.
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Monitoring these jumps can yield interesting insights into the dynamics of the
qubit. However, this requires to continuously process an input data stream from
the analog-to-digital converters (ADCs) of 12 GB/s per qubit, consisting of the two
12 bit ADC inputs for I/Q signals sampled at 4 GHz. Thus, online data processing is
key in order to reduce the data rate to an acceptable amount which can be handled
and stored in software. For quantum jumps, this reduction can be as far as one bit
per measurement to represent the obtained qubit state. Depending on the length of
an individual recording, this results in millions of qubit states being measured each
second.

5.2.2 Experiment Setup

To measure these qubit states, a similar setup as in the previous experiment is
required. Instead of a Fluxonium qubit, the superconducting concentric Transmon
qubit presented in Section 2.2.6 is used in this case. Due to aging of the materials,
the properties of the qubit changed since the initial characterizations. The updated
qubit transition frequency is f01 = 6.334 GHz and the readout resonator is located
at fr = 8.576 GHz. The T1 time of the qubit was determined to be roughly 20 µs.
To be able to detect the state with single measurements, special amplification is
needed. For this, a traveling wave parametric amplifier (TWPA) [110] is used. A
400 ns readout duration per qubit state is chosen which is sufficient to distinguish
the qubit states but resulted in a small overlap of the two measurement regions
reducing the readout fidelity. However, longer durations have not been feasible as
the T1 time is limited. Instead, the readout power is significantly increased above
single-photon level for sufficient signal-to-noise ratio (SNR) which might adversely
contribute to local heating on the qubit chip. Special care has to be taken that the
constant power input to the chip does not shift the qubit or the resonator.

5.2.3 QiController Setup

The QiController is set up to perform a continuous, repetitive recording each 400 ns
on the FPGA, as depicted in Figure 5.3. The experiment can be defined using the
following code:

Code 5.2: QiJob for the continuous quantum jumps measurement.

shots = 32000000 # 32 mio. consecutive qubit state measurements
with QiJob() as quantum_jumps:

q = QiCells(1)
# Turns on continuous readout tone
PlayReadout(q[0], QiPulse("cw", frequency=q[0]["rec_frequency"]))
Wait(q[0], 100e-9) # Wait for resonator to stabilize
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Figure 5.3: Sequence to perform 32 million continuous and consecutive qubit state measurements.

# Turn on continuous, repetitive recordings each 400ns
Recording(q[0], 400e-9, q[0]["rec_offset"], "result", continuous=True)
# Wait for the number of measurements, then turn off continuous mode again
Wait(q[0], (shots - 1) * 400e-9)
Recording(q[0], 400e-9, q[0]["rec_offset"], continuous=False)
Wait(q[0], 10e-6) # Wait until last recording has finished
PlayReadout(q[0], QiPulse("off"))

To continuously read out the resonator, a steady tone is applied. After some settling
time, the recording module is started in the continuous mode where it seamlessly
aligns consecutive measurements. One qubit state is extracted every 400 ns resulting
in a timing precision for a quantum jump of ±200 ns. After waiting for the desired
number of recordings, the recording module is stopped again.

The data storage memory will be configured as ring buffer and store the qubit states
as individual bits inside 32 bit values until the Taskrunner collects and transfers
them to the user client. Collecting the qubit states online during the experiment
execution is necessary as the data storage memory inside the FPGA can only hold
up to 32 768 boolean state values. This corresponds to 13 ms of recording, and thus
is not suited for longer measurements. The nearly deterministic and stable execution
of the Taskrunner without unpredictable interference by other processes is a great
advantage. It enables continuous data fetching and processing without any data loss
from the ring buffer due to fluctuating execution time. The Taskrunner itself can
store 3.84 billion states in the random access memory (RAM) without transferring
them to the user, corresponding to 25.6 min of data recording. The task for this
experiment copies the packed states from the data storage and forwards them to the
user in the same format. Its source code is given in Appendix C.3. The task can be
attached to the QiJob as custom data processing:

Code 5.3: Custom data processing for the continuous quantum jumps measurement.

# Data converter to unpack the states stored as single bits in 32bit unsigned integers
def data_converter(databoxes):

db = databoxes[0] # Task returns one databox per qubit -> in this case only 1
return [(packed >> i) & 0x1 for packed in db for i in reversed(range(32))]
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# Attach custom data processing with Taskrunner to job
quantum_jumps.set_custom_data_processing(

"quantum_jumps_multi.c", converter=data_converter, mode="uint32"
)

# Run the experiment with custom data processing (default if attached)
quantum_jumps.run(qic, sample, averages=shots)
states = quantum_jumps.cells[0].data("result")[0]

The provided data converter processes the obtained data boxes and extracts the
single bits of the values to a list of zeros and ones. In principle, data transfer to the
user can also happen simultaneous to the experiment execution, thereby making
continuous recordings over very long timescales feasible.

5.2.4 Results and Discussion

For this demonstration, 32 million states are recorded. Of these, the qubit was
detected roughly 5.6 million times in state |1〉, accounting to a population of 17.4 %.
This is quite a high value, indicating that either the state separation was not very
good and a significant overlap resulted in many wrongly detected |1〉 states, or
the temperature of the qubit chip was substantially increased. If one assumes the
probability is correct and neglects higher states, one obtains an effective qubit
temperature of around 200 mK. While this is significantly higher than for the
Fluxonium qubit, it is comparable to previous experiments with the same qubit [43].

Figure 5.4 shows a section of the quantum jumps measurement, as well as an
analysis of the full data regarding the durations the qubit state remained unchanged.
From the histograms, transition rates can be inferred leading to an energy relaxation
time T1 ≈ 7 µs. This is substantially smaller than the measurement obtained using
pulsed measurements. However, this is not unexpected as the qubit properties will
be affected by the constant population inside the resonator. The continuous readout
tone can furthermore induce local heating onto the chip which would also reduce
the T1 time. This also seems plausible due to the high observed effective qubit
temperature and the strong readout tone required to distinguish the qubit states.

For the exponential fits visible in Figure 5.4, the lowest bin has been excluded. It is
significantly larger than the remaining data and does not fit to the exponential decay
otherwise performed. It is likely that this is caused by the non-perfect discrimination
of the qubit state and thus a non-negligible overlap in the I/Q plane. In this case, due
to the overlap and noise, one would expect to see frequent changes of the qubit state
on a fast time scale, and thus an increase in the first bin of the histogram. For state
|0〉, the first bin includes all durations up to 14.4 µs (36 consecutive state recordings).
For state |1〉, it includes durations up to 2 µs (5 consecutive state recordings).

132



5.2 Quantum Jumps Measurement

Figure 5.4: Quantum jumps measurement with 32 million states. (a) 2 ms cutout of the measured
states. (b) Histogram over the duration which the qubit stayed in state |0〉. The red dashed line is an
exponential fit to obtain the characteristic time scale. (c) Same histogram, but over the duration which
the qubit stayed in state |1〉.

From a technical perspective regarding the QiController, recording 32 million
consecutive qubit states resulted in a total acquisition time of 12.8 s. During this
time, the ADC input data stream of 12 GB/s is reduced by the QiController to
313 kB/s. The accumulated input data at the ADCs of 153.6 GB during this time
is processed to only 4 MB of result data. Thereby, the QiController performed a
tremendous data reduction by a factor of nearly 40 000.

Quantum jump measurements can also be performed with multiple qubits. The
provided user task for the Taskrunner already supports multi-qubit operation. With
five qubits, for example, the QiController can measure a qubit state as fast as every
68 ns while still correctly fetching and forwarding the data using the Taskrunner.
For lower recording durations, the signal recorders fill the memory inside the
data storage modules faster than the Taskrunner can collect the data and data loss
will inevitably occur. However, with typical recording durations being multiple
hundreds of nanoseconds, this is more than enough for nearly all applications.
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To conclude, the QiController supports enormous data reductions by reducing
hundreds of nanoseconds of raw ADC data down to one bit of information. Data
reductions by a factor of nearly 40 000 have been experimentally verified. The
flexible architecture of the QiController does not only enable the user to perform
this reduction in a seamless and continuous manner, it also provides the means to
further collect and send this data to the user in parallel to the experiment execution.
Thus, quantum jumps can be recorded continuously for very long periods. While
not shown in this demonstration, quantum jumps have already been successfully
recorded with the QiController over multiple hours.

5.3 Detecting and Changing the Speed of Light

5.3.1 Motivation and Physics Background

Building a quantum computer not only requires high-quality qubits. Quantum
information also has to be stored during and between calculations. Therefore, an
efficient and universal quantum memory is needed. One approach is to significantly
reduce the speed of light of propagating microwave signals carrying this information
in a controlled manner [149]. This effect is called slow light and significant progress
has already been made with atoms at optical frequencies, now achieving coherent
quantum storage times of over an hour [150]. For superconducting circuits, however,
comparable devices are still lacking. By combining multiple qubits in a so-called
qubit metamaterial, the dispersion relation of this material can be engineered and
slow light can be achieved [151]. Moreover, by actively controlling the qubits,
in-situ control of the speed of light is possible. While this was already theoretically
described by Leung and Sanders [151], so far, an experimental verification was
still missing. Using the QiController and an eight Transmon qubit metamaterial,
a first realization of slow light in superconducting circuits could be successfully
demonstrated [152]. It thereby prepares the ground for future applications in
quantum computing, e.g. as on demand storage-and-retrieval memory.

Slowing down the speed of light can be achieved in numerous ways. One of the
most prominent techniques is a nonlinear optical phenomenon based on quantum
interference called electromagnetically induced transparency (EIT) [153]. It is
observed in atoms with three energy levels |0〉, |1〉, and |2〉, where the |0〉 − |2〉
transition is suppressed. For perfect EIT, these need to form a Λ-type energy
structure, see Figure 5.5a. A signal which is applied to the |0〉 − |1〉 transition will
be absorbed by the system. EIT is created by applying a constant control tone
to the |1〉 − |2〉 transition leading to Rabi oscillations between these two states.
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Figure 5.5: Structure of a three energy level atom. (a) Λ-type energy structure with a control tone and a
signal tone applied. (b) The same structure indicating the two absorption paths which are destructively
interfering in EIT. (c) Ladder-type energy structure with the same tones applied and Autler-Townes
splitting indicated.

Now, two possible paths exist for the signal to excite the |0〉 − |1〉 transition. This
can either happen directly or via the driven oscillation of the control tone, i.e.
|0〉 − |1〉 − |2〉 − |1〉, compare Figure 5.5b. Both paths interfere destructively, thereby
suppressing the absorption and leading to a transparency window. Hence, applying
the control tone induces transparency in the system, as the name EIT suggests [153].

The transparency window exhibits a steep dispersion profile. As the group velocity
vg is inversely proportional to the slope of the dispersion relation ∂k/∂ω, this leads
to a low vg and thus slow light [151]. The speed reduction in this case can be
described by the group index ng. It is defined as ng = c/vg with c being the speed
of light in vacuum. A group index of 100 thus indicates that the speed through the
material is 100 times slower than in vacuum.

Superconducting Transmon qubits are artificial atoms and are also described by
the same quantum optical formalism. Yet, they do not have a Λ-type energy level
structure and thus perfect EIT is not possible [152]. But also with the ladder-type
structure of Transmons, EIT can still be observed using the |0〉 − |1〉 transition
for the signal and the |1〉 − |2〉 one for the control [154]. By combining multiple
superconducting artificial atoms as linear array, this effect can be utilized to create a
coherent signal storage [151]. When driving the |1〉 − |2〉 transition using a control
tone with amplitude proportional to Ωc, these levels hybridize and Autler-Townes
splitting [155] can be observed as depicted in Figure 5.5c. The |0〉 − |1〉 transition
splits up in two separate band gaps with increasing Ωc leading to the emergence of
a transparency window in between with group velocity vg being proportional to
Ω2

c [152]. Therefore, low control amplitudes Ωc are desired to obtain the highest
possible signal retardation. At the same time, high amplitudes Ωc are beneficial as
the splitting is proportional to Ωc and it thereby determines the bandwidth of the
transparency window.
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Figure 5.1: Microscopic images of the eight qubit metamaterial (sample A) consisting of transmon
qubits capacitively side-coupled to a common coplanar waveguide. Local dc flux bias lines ensure
individual qubit frequency control. The spacing between adjacent qubits is d = 400µm, which is at
all accessible qubit frequencies smaller than the corresponding wavelength λ (d� λ). The qubits
are numbered from left to right in the direction of the transmission measurement (ports of the
two-port microwave network are indicated with blue numbers).

5.2 Flux Tunability and Crosstalk Calibration

As shown in Sec. 2.2.3, the energy splitting of a qubit can be tuned with a magnetic
flux penetrating its SQUID. The flux Φi used to tune qubit i is generated by
applying a dc-current Ii (given as current provided by the current source at room
temperature and not as on-chip current) to its corresponding on-chip bias coil.
Quantitatively, the frequency of the 1 → 0-transition f10 in dependence on the
magnetic flux Φ of the bias coils is given by (Eqs. 2.29 and 2.40):

f10(Φ) =

√
8EJ(Φ)EC − EC

h
=

√
8 Φ0

2π Ic,eff(Φ)EC − EC

h

=

√
8 Φ0

2π (Ic,a + Ic,b) cos
(

πΦ
Φ0

)√
1 + m2 tan2

(
πΦ
Φ0

)
EC − EC

h
(5.1)

Here, m is the asymmetry between the critical currents (Ic,a, Ic,b) of the two Joseph-
son junctions constituting the SQUID (see Eq. 2.29). Fig. 5.2 shows the measured
frequency dispersion of qubit 1. In good agreement with Eq. 5.1, the qubit can be
periodically tuned between its upper- and lower sweet spot ( f min

10 and f max
10 ). The

extracted sweet spot frequencies and junction asymmetries for all eight qubits are
listed in Tab. 5.1 of the following section. The tuning precision is limited by the

59

Figure 5.6: Microscopic pictures of the eight qubit metamaterial. Light green regions are the
superconducting aluminum film while the dark areas correspond to the underlying sapphire wafer
where the superconductor has been removed. The Transmon qubits are capacitively coupled to a
central waveguide used for both control and signal tones entering at port 1 and leaving at port 2.
Each qubit has a separate local flux bias line to tune its transition frequency. The spacing between
neighboring qubits is 400 µm. The sample was fabricated by Jan Brehm and the pictures are taken from
his work [152].

5.3.2 Experiment Setup

The metamaterial used in this experiment is an eight superconducting Transmon
qubit chip which is capacitively coupled to a coplanar transmission line waveguide.
The chip is fabricated and measured by Jan Brehm (KIT) [152]. A picture of the
sample is shown in Figure 5.6. For the qubits to behave as a single metamaterial, the
qubits need to be densely spaced, closer than the utilized signal wavelengths. The
transition frequency f01 of the qubits can be individually tuned using flux bias lines.
These introduce a local magnetic flux at the qubits which have a superconducting
quantum interference device (SQUID) loop integrated. Seven of the eight qubits are
tuned to a common transition frequency of f01 = 7.812 GHz by external DC current
sources. Then, a continuous control tone with a frequency of fc = f12 = 7.533 GHz
and varying amplitude Ωc is applied to resonantly drive the |1〉 − |2〉 transition and
create the Autler-Townes splitting.

Having prepared the metamaterial, the speed of light through it is measured by
generating and recording signal pulses. Due to the limited bandwidth, Gaussian-
shaped pulses with σ = 50 ns at frequency f01 are used. The amplitude of the
pulses are adjusted to the single photon level so they do not saturate the qubits.
From the delay τ of the pulses through the metamaterial, the group velocity vg
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Figure 5.7: Sequence to measure the raw response of the system after a Gaussian pulse.

can be calculated. It is given by vg = d/τ, with d = 2.4 mm being the length of the
metamaterial.

5.3.3 QiController Setup

For determining the delay τ of the signal through the metamaterial, the raw
measurement capability of the QiController is used. The Gaussian-shaped pulses
are created by the signal generator. The returning signals are then recorded by
the signal recorder and subsequently averaged within the Taskrunner. Afterwards,
they are transmitted to the user and further demodulated to obtain the Gaussian
envelope within Python. The schematic pulse sequence of this experiment is given
in Figure 5.7, corresponding to the following QiJob:

Code 5.4: QiJob to measure the signal delay through the metamaterial.

with QiJob() as signal_delay:
q = QiCells(1)
# Create Gauss pulse, shape is between +- 3 sigma (sigma = 50ns)
PlayReadout(q[0],

QiPulse(6*50e-9, shape=ShapeLib.gauss, frequency=q[0]["rec_frequency"]))
Recording(q[0], length=1000e-9, offset=0, save_to="result")
Wait(q[0], 2e-6) # Give system some time to recover

signal_delay.run(qic, sample, averages=10000, data_collection="raw")
# [...] Process obtained raw data to determine retardation

Depending on the delay through the metamaterial, the returned pulse signal will be
shifted in time relative to the generation of the pulse. By comparing the position to
a reference which was recorded when the qubits transitions are all far detuned from
the signal frequency, the pulse delay τ can be extracted and the group velocity vg

calculated.
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5 Waveguide Band Gap Engineering with a Qubit Metamaterial
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Figure 5.14: (a) Top: detected Gaussian pulse in the I and Q quadrature at the intermediate fre-
quency of fIF = 115 MHz. Bottom: digitally down-converted and low-pass filtered amplitude of the
pulse. (b) Measured pulses after propagation through the transparency window of the collective
ATS with N = 7 for different control tone powers Pcal

c . With decreasing Pcal
c , the pulses get more

delayed compared to a reference pulse with far detuned qubits. For better visibility, the pulses are
compressed by a factor of 20, with their maximum at time µ staying at the original position. (c)
Measured pulse delays τ compared to the reference. The obtained delays of pulsed time-resolved
measurements agree with the delay derived from the spectroscopic data of Fig. 5.13 and with
the numerical simulation based on the T-matrix method. Purple and pink lines indicate the two
asymptotes of Eq. 5.21 in the limit of a strong and weak control tone.

80

Figure 5.8: (a) Raw time trace of a Gaussian pulse recorded by the QiController and its extracted
envelope amplitude after digital down-conversion (DDC) and low-pass filtering. (b) Envelopes of
the detected Gaussian pulses for different control powers Pc. To better distinguish the pulses, their
length is shortened by a factor of 20, while their fitted maximum was kept at the original position. (c)
Pulse delays τ through the metamaterial for different control powers. The delays are both extracted
experimentally from spectroscopic and pulsed measurements, as well as verified theoretically by a
numerical simulation. [152]
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5.3.4 Results and Discussion

The results for different control amplitudes Ωc and thus control powers Pc are
shown in Figure 5.8. A clear retardation is visible with decreasing control power.
At the same time also the amplitude of the transmitted signal decreases as the
bandwidth of the transparency window gets smaller and an increasing part of the
signal is reflected. The time-domain measurement results with the QiController
are also confirmed by numerical simulations and spectroscopic measurements (not
shown here, see [152]) which are in good quantitative agreement.

The speed of light could be reduced by up to a factor of 1500 in pulsed measurements,
corresponding to a delay of 12 ns. Larger delays are not possible with pulsed
measurements as then, the bandwidth of the transparency window becomes smaller
than the bandwidth of the Gaussian pulse being 1/σ = 20 MHz. In spectroscopic
measurements, higher delays of up to 15 ns could be observed, corresponding to a
group index of ng = 1900. Substantially larger group indices can be achieved when
reducing the decoherence rate of the second excited state |2〉 of the qubits. This
can be implemented by using another type of qubits instead of Transmons, like
Fluxonium qubits which have a better suited, Λ-type energy level structure. [152]

To summarize, the flexibility of the QiController made it possible to use it
as experiment instrument to observe slow light in an eight Transmon qubit
metamaterial. Due to its versatile usability, the reduction of the speed of light could
be measured. The validity of the obtained values could be verified as these are in
quantitative agreement with spectroscopic measurement results. The QiController
thereby supported the research for future applications in quantum computing
where an improved version of the metamaterial might be used as on demand
storage-and-retrieval memory.

5.4 Simultaneous, Time-Resolved Multi-Qubit
Characterizations

5.4.1 Motivation and Physics Background

When building a quantum processor, the properties of all qubits need to be stable
and well known. Noise sources inside the chip can cause undesired parameter
fluctuations leading to a decreased fidelity in both control and readout. Fluctuations
occurring on time scales of hours and days can be mitigated by frequent recalibration
of the parameter values but this becomes increasingly difficult and time consuming
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Figure 5.9: Concept of interleaving multiple experiments, in this case a T1 measurement, a Ramsey
experiment (T2), and a spin echo experiment (T2*). Each block stands for a single qubit measurement
with fixed parameters. The number in brackets indicates the parameter variations. (a) Typical
measurement procedure where the experiments are executed one after each other and separately
averaged. (b) Interleaved execution of the three experiments where single measurements of the
experiments happen one after each other. Repetitions and averaging are only performed after all
parameter points for all experiments are measured.

with growing qubit count [156]. Furthermore, to build a large scale quantum
computer, it is important to analyze if noise and decoherence mechanisms are
only local to single qubits, or if there is correlated noise between multiple qubits.
Time-resolved long-term characterization measurements of the qubits can be
performed in order to better understand the extent and mechanisms of such noise.
By simultaneously measuring all relevant parameters of all qubits, they can be
further correlated to extract information about the origin of the noise source and
hence qubit decoherence.

Performing the different qubit characterization experiments after one another would
make the results susceptible to slow-fluctuating noise. If such noise is dominant
in the system, consecutive measurements of different qubit properties are not
comparable anymore. Instead, the qubit parameters should be effectively measured
at the same time. A way to achieve this is to interleave the different characterization
measurements in a single experiment. Each characterization measurement consists
of a one-dimensional parameter sweep where delays between pulses are varied.
Instead of performing the complete sweep of one experiment and averaging it,
followed by another experiment, the individual measurements within the sweeps
of multiple experiments can be interleaved. This interleaving can be pictured as a
time-division multiplexed scheme were single parameter points of the different
characterization measurements alternate, as depicted in Figure 5.9.

For a single superconducting Transmon qubit, such an experiment was already
performed by Schlör et al. [36]. The results of this experiment indicated that a small
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number of microscopic two-level systems located at the edges of the superconducting
film are responsible for low-frequency burst noise in the qubit. Interleaving the
experiment sequences is a complicated task and cumbersome to implement using
common laboratory equipment like arbitrary waveform generators (AWGs) and
digitizer cards. Therefore, follow-up measurements by the same authors, although
not the data presented in the paper above, were taken with the QiController.
This simplified the whole measurement process, from experiment creation to data
collection.

To determine if the properties between pairs of qubits are correlated and thus
influenced by a global effect, the correlation coefficient can be calculated. For two
random number variables X and Y, the correlation coefficient is defined using their
variance Var and covariance Cov as:

Corr(X, Y) =
Cov(X, Y)√

Var(X)
√

Var(Y)
. (5.1)

The correlation coefficient can be estimated based on a sample of n values each, i.e.
Xi and Yi, i ∈ 1, 2, . . . , n, by:

Corr(X, Y) ≈ ∑n
i=1(Xi − 〈X〉)(Yi − 〈Y〉)√

∑n
i=1(Xi − 〈X〉)2 ∑n

i=1(Yi − 〈Y〉)2
(5.2)

where 〈X〉 and 〈Y〉 are the expectation values of the random number variables X
and Y, respectively. The value of the correlation coefficient can be between −1 and
1. Complete correlation is indicated by an absolute value of 1. If two variables are
uncorrelated, the correlation coefficient will be zero. It thus gives an estimate how
much two variables are correlated. In this experiment, the random variables are the
properties of the different qubits.

5.4.2 Experiment Setup

The experiment is performed with a superconducting chip comprising six concentric
Transmon qubits which was designed and fabricated at the National Institute of
Standards and Technology (NIST) in Boulder, Colorado [134]. The qubits are not
coupled among each other but only via separate readout resonators to a common
microwave transmission line. Pictures of the sample are shown in Figure 5.10. Of
the six qubits fabricated on the chip, five are fully functional and can be used
for multi-qubit experiments. The qubits have no dedicated manipulation port.
Therefore, manipulation pulses are fed into the chip using the same transmission
line that is also utilized for the readout pulses. The whole chip is thus only
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Figure 5.10: Photographs of the six qubit NIST sample. (a) Chip mounted inside a sample box with
connected SMA pins. (b) Photograph of the whole chip. Additional bonds over the co-planar waveguide
structures are visible to suppress parasitic modes. (c) Microscopic picture of a single concentric
Transmon qubit with belonging readout resonator that is strongly capacitively coupled to the qubit.
The pictures are taken from the master thesis of Maximilian Kristen [134].

connected to the room temperature electronics by two microwave lines: one input
line for readout and manipulation pulses, and one output line for the returned
readout signal. The baseband signals are directly combined by frequency-division
multiplexing (FDM) within the QiController. After digital-to-analog conversion,
they are separately up-converted using two analog unit cells before being merged
into a single microwave line and fed into the cryostat. The local oscillator within the
analog unit cell is located at 6.85 GHz for the readout signals and at 4.97 GHz for
the control pulses. This is the combined value of the two-stage frequency conversion
process described in Section 3.3, i.e. where a DC signal from the platform would
hypothetically be shifted to in the frequency domain.

The properties of the five functioning qubits are given in Table 5.1. It also contains
the intermediate frequencies of the complex-valued baseband generated within the
digital unit cells of the QiController. The π-pulse durations tπ have been calibrated
to a whole number of clock cycles by adjusting the relative amplitude of the pulses
A01. As the signals are created in the digital domain, special care has to be taken
that the multiplexing of the signals does not lead to a value overflow. Therefore, all
scaling factors summed up result in 100 % while individual ones are significantly
smaller. Unfortunately, the qubit properties are not very competitive which makes it
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Table 5.1: Properties of the five functioning Transmon qubits on the NIST chip.

Qubit 1 Qubit 2 Qubit 3 Qubit 4 Qubit 5

fr / GHz 6.877 6.930 6.979 7.028 7.080
f01 / GHz 4.813 5.084 4.710 4.933 4.901
fIF,r / MHz 26.96 79.65 129.14 177.65 230.20
fIF,01 / MHz −156.78 114.42 −259.73 −37.26 −69.49
tπ / ns 120 80 104 80 80
A01 / % 22.5 16.1 21.6 20.9 18.9

T1 / µs 1.57 0.69 0.58 0.98 0.22
T2 / µs 3.08 1.02 1.53 1.50 0.41

difficult to perform meaningful experiments, especially for the fifth qubit where T1
is on the same order as the π-pulse time. The low qubit times can be attributed to
parasitic slot line modes in the resonators which would require more and accurately
placed on-chip bonds to suppress them [134].

The recording duration is chosen to be 400 ns with a readout pulse of 416 ns for each
of the qubits. The SNR of the amplification chain was not good enough to reach
single-shot readout, as the utilized TWPA, for unknown reasons, did not operate
according to its specifications. Instead, the experiment executions needed to be
averaged 4000 times to obtain results which could be later fitted to extract the qubit
properties.

5.4.3 QiController Setup

Interleaved T1, Ramsey and spin echo experiments are executed to obtain T1, T2,
T∗2 and the qubit frequency f01. The control pulses in the Ramsey experiment
are deliberately 5 MHz detuned from the qubit transition frequency f01 to obtain
Ramsey fringes. The frequency of the obtained oscillation matches the detuning and
can thus be used to precisely determine f01. 22 delay values are measured for the
T1 experiment which are logarithmically spaced between 8 ns and 20 µs. The same
values are also used for the spin echo experiment, as both are expected to show an
exponential decay with respect to the delay. For the Ramsey experiment, oscillations
need to be detected. Therefore, substantially more points are used: 75 delay values
are linearly spaced between zero and 3 µs.

The Taskrunner is leveraged to perform the parameter variations and interleave the
experiments. External variables are defined to select the experiment to perform and
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Figure 5.11: Sequences for T1, T2 (Ramsey), and T∗2 (spin echo) measurements. By changing between
the different experiment sequences before varying the delays for individual ones, the measurements
can be performed interleaved.

the delay to use. They are updated in the sequencer registers before the Taskrunner
starts the execution. The QiJob describing all three experiments looks like:

Code 5.5: Interleaved experiment execution together with special Taskrunner application.

with QiJob() as interleaved:
delay = QiVariable(name="delay")
expsel = QiVariable(name="experiment")
delay2 = QiVariable()
Assign(delay2, delay >> 1)
for q in QiCells(len(sample)):

with If(expsel == 0): # T1 Experiment
PiPulse(q)
Wait(q, delay)
Measurement(q)

with If(expsel == 1): # Ramsey
PiHalfPulse(q, detuning=-5e6)
Wait(q, delay)
PiHalfPulse(q, detuning=-5e6)
Measurement(q)

with If(expsel == 2): # SpinEcho
PiHalfPulse(q)
Wait(q, delay2)
PiPulse(q, phase=numpy.pi/2)
Wait(q, delay2)
PiHalfPulse(q)
Measurement(q)

Thermalize(q)
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It is also depicted in Figure 5.11. As only a single measurement is performed during
the sequencer run, the averaging capability of sequencer and signal recorder are
used to efficiently repeat the same sequence multiple times. The obtained averaged
I and Q value is fetched by the task on the Taskrunner which also sorts the results
by experiment and delay. The task furthermore changes the delay parameter and
switches between the different experiments. The source code of the task is shown in
Appendix C.2. The order in which the different experiments are performed and the
delay values to use are passed as parameters to the task:

Code 5.6: Parameters and data converter for the Taskrunner application.

def data_converter(databoxes):
# Convert a single data box with alternating I/Q to amplitude and phase values
def to_amp_pha(data):

tmp = numpy.array(data[::2]) + 1j * numpy.array(data[1::2])
return numpy.abs(tmp), numpy.angle(tmp)

# Each qubit returns 3 databoxes, for t1, ramsey, and spinecho
return [

{
"t1": to_amp_pha(data[3 * i + 0]),
"ramsey": to_amp_pha(data[3 * i + 1]),
"echo": to_amp_pha(data[3 * i + 2]),

}
for i in range(len(databoxes) // 3) # one dictionary per qubit

]

# Experiment parameters
delays_t1 = 8*np.logspace(-9, -5.6, 22) ## 22 logarithmically spaced values
delays_echo = delays_t1
delays_ramsey = np.arange(0, 3e-6, 40e-9) # 75 linearly spaced values
averages = 4000 # how many averages to perform per point
order = [1, 0, 1, 2, 1] # ramsey, t1, ramsey, echo, ramsey

# Prepare the parameters that are passed to the task
# (flatten converts the nested list to a 1D list)
task_parameters = flatten(

[
[3], # number of experiments (t1, ramsey, and echo)
[len(order)], # how many measurements per loop
[len(sample)], # number of qubits/cells
_cell_map, # Which digital unit cells to use
order, # In which order to interleave the experiments
[len(delays_t1), len(delays_ramsey), len(delays_echo)],
_nco_frequencies, # values to use as NCO frequency per qubit and experiment
np.concatenate((delays_t1, delays_ramsey, delays_echo)),

]
)
# Variables starting with underscore need to be extracted from QiJob (not shown here)

Due to its complexity, the execution of this experiment is wrapped inside its own
class, derived from the generic experiment class which is generated after compilation
of the QiJob. The above code snippet only presents a condensed extract of the class
content. Further values, like the cell map and the frequencies for the control signal
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generators which are adapted between the experiments, are additionally extracted
from the compiled QiJob which is not shown here.

To make the task operation on the Taskrunner more tangible, a simplified pseudo-
code for one qubit would look like this:

Code 5.7: Pseudo-code to emphasize the operation of the Taskrunner for one qubit.

result_databoxes = [[], [], []] # create data boxes for t1, ramsey, echo
number_of_executions = len(delays_t1) + len(delays_ramsey) + len(delays_echo)
for i in range(number_of_executions):

# Select experiment and parameters
exp = select_experiment_based_on_order_and_remaining_points(i)
delay = get_experiment_delay_from_position(exp, i)
frequency = get_nco_frequency_value_for_experiment(exp)
# Update modules within FPGA
set_nco_frequency_of_control_signal_generator(frequency)
set_sequencer_register("experiment", exp)
set_sequencer_register("delay", delay)
# Start execution and persist result
start_sequencer()
wait_while_sequencer_is_busy()
result_databoxes[exp].append(get_averaged_result())
update_progress_value_for_user(i)

finish_databoxes_and_send_to_user(result_databoxes)

For the sake of completeness, interleaved measurements can also be performed
without a special Taskrunner execution. However, this requires that the delays for all
measurements are the same or can be easily calculated from within the sequencer.
In this case, the time-division multiplexing can be achieved with a single for loop
within the sequencer which then takes care of all parameter variations internally:

Code 5.8: Interleaved experiment execution with same delays for T1, Ramsey, and spin echo.

with QiJob() as job:
delay = QiVariable()
delay2 = QiVariable()
with ForRange(delay, 0, 4e-6, 200e-9):

Assign(delay2, delay >> 1) # Divide by two
for q in QiCells(len(sample)):

# T1 Experiment
PiPulse(q)
Wait(q, delay)
Measurement(q, save_to="t1")
Thermalize(q)
# Ramsey
PiHalfPulse(q, detuning=-5e6)
Wait(q, delay)
PiHalfPulse(q, detuning=-5e6)
Measurement(q, save_to="ramsey")
Thermalize(q)
# SpinEcho
PiHalfPulse(q)
Wait(q, delay2)
PiPulse(q, phase=numpy.pi/2)
Wait(q, delay2)
PiHalfPulse(q)
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Measurement(q, save_to="spinecho")
Thermalize(q)

In this case, the data is sequentially written into the data storage memory and
collected by the default Taskrunner task without any adaptations needed. Yet, in
most cases, the different decay times require different time scales to be recorded and
thus the more flexible, but also more complex QiJob of Code 5.5 including custom
Taskrunner operation is used for this experiment and the results discussed in the
following.

5.4.4 Results and Discussion

Repetitive multi-qubit characterizations have been performed for more than 25 h.
Each repetition took (5.15± 0.03) s and 17 600 repetitions have been performed
during this time. Hence, each single experiment point execution took on average
10.8 µs, dominated by the energy relaxation time of the first qubit which is waited
five times (7.85 µs) and the pulse sequence itself. As the standard deviations of the
obtained qubit properties have been too large to extract any meaningful correlations,
the raw data of five repetitions each has been additionally averaged. This reduced
the number of time points to 3520 with (25.73± 0.10) s measurement duration each.

The time-resolved properties of the first qubit, as resulting from the fits to the
measured data, are shown in Figure 5.12. Similar measurement results have also been
extracted for the other qubits. The time-resolved T2 values of all qubits are shown in
Figure 5.13. While the experiment data shows no systematic deviations within the
first 22 hours, a clear drop in qubit properties and shift of its resonance frequency is
visible near the end of the measurement. The shift is clearly correlated between the
different characterization measurements and thus confirms that the measurement
scheme is working as expected. The change was induced by unintended, external
heating inside the cryostat which substantially worsened the qubit properties and
also led to a reduced SNR of the readout signal. It is therefore excluded from
the following evaluations and analysis, as indicated by the red dashed line in
Figure 5.12.

From the remaining data, the mean characteristic times for the first qubit can be
determined as T1 = (1.49± 0.07) µs, T2 = (2.91± 0.17) µs and T∗2 = (2.9± 0.4) µs.
As T2 and T∗2 are quite similar, this suggests that phase noise on the timescale of T2,
i.e. on the order of megahertz and slower, does not play an important role in the
qubit decoherence. Indeed, the pure dephasing time can be calculated as Tϕ = 113 µs
using Equation 2.4. This is two orders of magnitude larger than the energy relaxation
time T1 indicating that phase noise is not dominant in the decoherence dynamics of
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Figure 5.12: Time-resolved properties of the first qubit over more than 25 h. The red dashed line
separates the initial normal phase from a phase where unintended heating inside the cryostat occurred.

the first qubit at all. For the other qubits, the situation looks different, as can be seen
in Table 5.2. While still being larger than T1, the pure dephasing is within the same
order of magnitude for these qubits. Although not during this experiment, it even
happened that qubit 2 and 5 could not be resolved at all using pulsed measurements,
indicating that these are also more prone to fluctuating phase noise. During the
interleaved measurement, the values also fluctuated as is indicated by the standard
deviations of the qubit properties.

When correlating the qubit properties over time between the individual qubits, no
clear correlation is visible. The correlations between the decoherence time T2 of
pairs of qubits are shown in Figure 5.14. However, time correlations happening on
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Figure 5.13: Time-resolved T2 values of all qubits over more than 25 h. The red dashed line separates
the initial normal phase from a phase where unintended heating inside the cryostat occurred. Qubit 4
furthermore experienced a sudden and short drop in its coherence which is also annotated in the plot.
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Table 5.2: Mean properties of the five functioning Transmon qubits on the NIST chip during the
interleaved measurement, excluding the phase of accidental heating.

Qubit 1 Qubit 2 Qubit 3 Qubit 4 Qubit 5

T1 / µs 1.49± 0.07 0.63± 0.05 0.73± 0.06 0.78± 0.08 0.48± 0.16
T2 / µs 2.91± 0.17 0.88± 0.09 1.18± 0.14 1.15± 0.12 0.6± 0.3
T∗2 / µs 2.9± 0.4 1.2± 0.2 1.2± 0.2 1.5± 0.4 0.7± 0.4
Tϕ / µs 114 2.90 6.3 4.35 1.47

Figure 5.14: Inter-qubit correlations of the time-resolved decoherence time T2. The red value indicates
the correlation coefficient for the data of these two qubits. The red line in the background is a linear fit
through the data to visualize potential correlations.
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Figure 5.15: Inter-qubit correlations of the time-resolved decoherence time T2 during the accidental
heating period. The red value indicates the correlation coefficient for the data of these two qubits. The
red line in the background is a linear fit through the data to visualize the correlations.

a time scale shorter than 25 s could not be resolved due to the lack in SNR of the
experiment setup.

To verify that correlations on larger time scales are detected by the platform, the
time window of the accidental heating can be inspected. The results are shown in
Figure 5.15 for the decoherence time T2. A clear correlation between all properties,
with expect of the fifth qubit, is visible. This is intuitively clear as the heating is a
global disturbance which will decrease the quality of all qubits. The decoherence
time of the fifth qubit only shows a weak correlation to the other ones. Judging from
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the data, this is due to the already low decoherence time of the qubit even without
the additional disturbance.

The absence of clear correlations in the normal data suggests that no global
disturbance substantially affects the qubit properties. Instead, it seems that the
decoherence properties of the qubit are dominated by local effects, at least on time
scales longer than 25 s. This hypothesis is also supported by the data of qubit 4 which
shows a sudden and short drop in qubit frequency and decoherence times after
around 15 h which could not be observed in the other qubits (compare Figure 5.13).
Further effects might become visible on a shorter timescale. This would require
optimizations of the SNR of the amplifier chain, as well as an improved qubit chip
with better decoherence properties.

Concerning the QiController, such experiments with time resolutions below one
second would be possible without any adaptations needed to the platform, except
for adapting the experiment parameters. However, the obtained data already verifies
that the operation is working as expected and meaningful data can be recorded
with the QiController. Experiments performed with other qubit samples and setups
furthermore corroborate that the SNR is not limited by the platform, but by the
experiment setup within the cryostat.

To conclude, multi-qubit characterization measurements can be successfully per-
formed using the QiController in a simultaneous and time-resolved manner with
large flexibility. While single pulse sequences have been on the order of mi-
croseconds, the time-resolved characterizations were executed for over 25 h. Data
processing, aggregation and transfer to the client was completely handled online
during the experiment execution on the QiController. The experiment furthermore
demonstrated correct operation of a frequency-division multiplexed control and
readout scheme with the platform, and scalable operation with multiple digital unit
cells involved.

5.5 Summary

The QiController can be used for a wide variety of experiments. It supports fast
feedback operations with intrinsic latency of 352 ns. Qubit states can be recorded
continuously and extracted online, corresponding to tremendous data reductions.
Using the Taskrunner, results can be collected and sent to the user in parallel to
the recording, enabling continuous measurements over very long time periods.
It also enables parameter variations and online data processing on the platform,
decoupled from the user client. Due to the large flexibility of the QiController, not
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only gate-based operations can be performed, but also more fundamental research
can be conducted. As an example, Gaussian-shaped pulses can be generated and
recorded in order to extract their propagation speed through a test sample.

Due to its flexibility, the QiController supports a large array of superconducting
circuits. Each of the four exemplary experiments in this chapter uses a different qubit
chip. Efficient and reliable qubit state initialization is demonstrated with a fidelity
exceeding 96.9 %, an essential requirement for quantum computing. Quantum
jumps are observed by continuously measuring the qubit state. 32 million states are
recorded in only 12.8 s. Time-resolved long-term characterization measurements
with a five qubit chip are performed for more than a day. The measurements indicate
that the dominant noise sources are local to the individual qubits, as no correlations
between them could be observed. Heating the sample leads to a correlated reduction
of the qubit coherences as expected, thereby verifying the measurement scheme. A
quantum metamaterial is studied as potential candidate for a universal quantum
memory, based on a controlled reduction of the speed of light through this material.

All presented experiments are facilitated by the flexible and modular architecture of
the QiController, as well as its unique features and the versatile QiCode experiment
description language. Thereby, experiments which are unfeasible or even impossible
to implement with commercial laboratory equipment can be performed with the
platform. This is corroborated by the fact that the QiController is also actively used
by other researchers at Karlsruhe Institute of Technology and abroad.
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Quantum computing is a groundbreaking technology. It promises to drastically
outperform conventional computers for a variety of computational problems,
including optimization problems, as well as quantum simulations and encryption.
To build a universal quantum computer, the full hardware and software stack need
to be considered. Sophisticated control electronics is a crucial component of a
quantum computer to bridge the gap between quantum processor and quantum
algorithm. For superconducting quantum bits (qubits), the presented QiController
provides a versatile, scalable, and integrated control electronics platform. It thereby
constitutes an important step towards a universal quantum computer.

The platform enables users to perform experiments which are unfeasible or even
impossible to handle using generic laboratory equipment. It consists of hardware,
firmware, and software. The hardware is based on the radio frequency system-on-
chip (RFSoC) architecture which combines eight 14 bit DACs and 12 bit ADCs, all
operating at 4 GSPS, with a field-programmable gate array (FPGA) and multiple
processors. The hardware also contains a custom-developed RF electronics to reach
the required frequency domain for superconducting qubits of up to 9 GHz. All
components are closely interconnected leading to a tight integration and data
exchange. On the application processor of the RFSoC, a modular communication
server, called ServiceHub, provides access to all components of the system via
Ethernet. The real-time processor hosts the presented Taskrunner framework to
execute user-created tasks facilitating complex control schemes and online data
processing with minimal overhead directly on the platform. The FPGA firmware
consists of reusable, so-called digital unit cells. They contain all logic to control a
single qubit, including signal generation and recording, as well as cycle-accurate
sequencing of operations. Limited by the resources available in the FPGA, up to 15
qubits can be controlled by a single RFSoC. For larger qubit numbers, a scheme to
connect and synchronize multiple platforms has been conceived.

A high-level experiment description language called QiCode was designed and
implemented. It enables users to functionally and intuitively describe the behavior
of the QiController using a simple yet powerful Python-based language. Thereby, it
drastically reduces the entry barrier to utilize the unique capabilities of the platform
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as no expert knowledge of the system is required. An integration into IBM Qiskit
is provided to leverage its rich ecosystem. With it, quantum algorithms written in
Qiskit can be executed on actual quantum processors controlled by the platform.

The QiController is actively used by other researchers. Currently, multiple platforms
are in operation at the Institute of Physics and the Institute for Quantum Materials
and Technologies at the Karlsruhe Institute of Technology, as well as at the James
Watt School of Engineering at the University of Glasgow. The platform was
extensively tested in various experiments to demonstrate and verify its capabilities.

High-precision online state preparation has been performed, demonstrating that
advanced control schemes required in quantum computing can be executed.
Quantum jumps of qubits have been continuously recorded with an enormous online
data reduction by factors of roughly 40 000. The speed of light inside a quantum
metamaterial has been observed, yielding potential applications as quantum
memory. Performing time-resolved multi-qubit characterizations demonstrated the
scalability of the QiController and successful operation of a frequency-division-
multiplexed control and readout scheme. While single pulse sequences are on the
order of microseconds, the time-resolved characterizations were executed for more
than a day. Data processing, aggregation and transfer to the client is handled online
during the experiment execution. This is only possible due to the flexible and
modular architecture of the platform, especially the digital unit cells, Taskrunner,
ServiceHub, and Python client.

With its unique features, the QiController fulfills all prerequisites to be quickly
distributed and employed in research groups around the world working with
superconducting qubits. Future improvements of the platform could extend
the system for even larger qubit numbers by fully integrating multi-platform
synchronization and data exchange. Moreover, due to its high flexibility, the
platform is perfectly suited as test bed to evaluate requirements for future, large-
scale quantum processors and their control electronics.
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ASIC application-specific integrated circuit
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BCS Bardeen-Cooper-Schrieffer

BRAM block RAM
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CIC cascaded integrator-comb
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CSV comma-separated values

CW continuous wave

DAC digital-to-analog converter

DC direct current
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DJJAA dimer Josephson junction array amplifier

DRAG derivative removal by adiabatic gate

DSP digital signal processing

DUC digital up-conversion

EIT electromagnetically induced transparency
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FIR finite impulse response
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KIT Karlsruhe Institute of Technology
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OpenAMP Open Asymmetric Multi Processing

PCB printed circuit board

PHI Institute of Physics
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PL programmable logic
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PS processing system
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qubit quantum bit
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RF radio frequency
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SRAM static RAM

TCM tightly-coupled memory

TCXO temperature-compensated crystal oscillator

TWPA traveling wave parametric amplifier

TX transmitter

VNA vector network analyzer

WB Wishbone
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Appendix

A Signal Processing

A.1 Quadrature Frequency Mixing

Interfacing superconducting quantum bits (qubits) requires microwave signals in
the frequency range of up to ten gigahertz with shapes defined on a nanosecond
scale. To generate these signals, a carrier frequency is modulated by the output
of high-resolution, nanosecond-accurate digital-to-analog converters (DACs) [117,
p. 1387 ff.]. The output of the converters at an intermediate frequency ωIF is shifted
to a target frequency band ωRF by so-called heterodyning. The frequency difference
ωLO = ωRF −ωIF is given by a local oscillator. Intermediate frequency signal and
local oscillator signal are then combined using a single mixer. To obtain both phase
and sideband control, quadrature frequency mixing with an IQ mixer is employed
[117, p. 1207 ff.]. Using this technique, the signal’s phase information is preserved
during the mixing process.

From a mathematical perspective, an IQ mixer multiplies the in-phase and quadra-
ture (I/Q) components of a signal with intermediate frequency, SI(t) and SQ(t),
with the signal of a local oscillator, SLO(t) = cos ωLOt, to obtain the resulting signal:

SRF(t) = SI(t) cos ωLOt + SQ(t)(− sin ωLOt) . (1)

Without loss of generality, the phase of the local oscillator signal can be assumed
to be zero as a choice of reference. To represent a signal with arbitrary amplitude
A(t) and phase ϕ(t), one chooses SI(t) = A(t) cos(ωIFt + ϕ(t)) and SQ(t) =

A(t) sin(ωIFt + ϕ(t)). It then holds:

SRF(t) = A(t) [cos(ωIFt + ϕ(t)) cos ωLOt− sin(ωIFt + ϕ(t)) sin ωLOt]

= A(t) cos (ωRFt + ϕ(t)) .
(2)

One obtains a signal where the phase and amplitude modulation on the intermediate
frequency IQ signal is directly transferred to a carrier frequency ωRF = ωLO + ωIF.
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The intermediate frequency ωIF can also be chosen negative which would result in
the same output as if SI and SQ are swapped at the input of the mixer.

If the mixer is not operating perfectly, the amplitudes of SI and SQ are not identical,
or the phase difference between them is not exactly 90°, the mirror frequency
ωLO − ωIF will also be present in the resulting signal. If this is the case, one can
calibrate the mixer by varying the relative amplitude of the inputs and their phase
difference in order to reduce the mirror signal.

To convert a radio frequency (RF) signal S′RF(t) back to the intermediate frequency,
another IQ mixer is used. When operated with RF signal

S′RF(t) = A′(t) cos
(
ωRFt + ϕ′(t)

)
(3)

as input, the mixer multiplies it with the local oscillator and outputs the following
components:

S′I(t) = S′RF(t) cos ωLOt =
A′(t)

2
[
cos(ωIFt + ϕ′(t)) + cos(ωPt + ϕ′(t))

]
and

S′Q(t) = S′RF(t)(− sin ωLOt) =
A′(t)

2
[
sin(ωIFt + ϕ′(t))− sin(ωPt + ϕ′(t))

]
.

(4)
The second terms with ωP = ωRF + ωLO can be suppressed when using an
appropriate low-pass filter behind the mixer. It thereby reconstructs the desired
I/Q component with amplitude A′(t)/2 and phase ϕ′(t). In order to obtain a stable
phase relation and being able to recover the phase, the same local oscillator signal
should be used for both frequency up- and down-conversion.

A.2 Digital Down Conversion

While quadrature frequency mixing performs a frequency translation in the analog
domain, a digital down-conversion (DDC) is used for similar signal processing in the
digital domain. It converts a digitized signal at a limited frequency band to a lower
frequency signal at lower sampling rate. This simplifies subsequent digital signal
processing (DSP) steps. DDCs can work both with real signals or with complex
I/Q ones. As part of an analog-to-digital converter (ADC), they often accept a real
input signal at high sampling rate and output a complex baseband signal at a lower
sampling rate for further processing in an FPGA, see also Section 2.4. But also a
complex input signal can be used and shifted in frequency [157, p. 333 ff.].

A DDC consists of three stages: a mixer, a low-pass filter, and a downsampler.
In the mixer, the input signal is multiplied with a (complex) reference signal
generated by a numerically controlled oscillator (NCO). In the complex case, the
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I/Q components can be represented in the complex plane as Sin = A(t)eiωint and the
reference as Sref = e−iωreft. For the reference, the frequency was negated to perform
a down-conversion during the mixing process, which can be formulated as complex
multiplication:

Sin · Sref = A(t)eiωint · e−iωreft = A(t)ei(ωin−ωref)t . (5)

Using the mixer, one thus shifts the frequency of the input signal by −ωref. For real
input signals, one will also obtain a component with frequency ωin + ωref. To reject
this component, a consecutive low-pass filter is used. It also limits the band of the
resulting signal and thus suppresses noise or other signals from outside this band.
Then, also a lower sample rate can be used without loosing any information. This is
handled by the downsampler.

Depending on the implementation of the low-pass filter, the downsampler can
also be integrated in this filter. An example would be a boxcar integrator that
simply sums up all incoming values over a specified time window and outputs
one average value per time window. Other commonly used low-pass filters include
finite impulse response (FIR) or cascaded integrator-comb (CIC) filters.

One special case of a DDC is to choose ωref = ωin. In this case, the signal of the
carrier frequency will be down-converted to a DC signal. The resulting I and Q
components are then equivalent to the amplitude A and phase ϕ information of the
signal which thus can be extracted:

I + iQ = Aeiϕ . (6)

A.3 Frequency-Division Multiplexing

Frequency-division multiplexing (FDM) is a technique to combine multiple signals
onto a single transmission medium. To achieve this, the bandwidth of the medium
is divided in multiple, non-overlapping frequency bands, so-called frequency
channels. Each band contains a separate signal [117, p. 1222 f.]. In this scheme,
multiple baseband signals si(t) are each transmitted by an individual carrier with
frequency fi and combined into a single, FDM signal:

SFDM(t) = s0(t) cos(2π f0t) + s1(t) cos(2π f1t) + . . . + sn(t) cos(2π fnt) (7)

The distance between the carrier frequencies fi has to be larger than the bandwidth
of the baseband signals si(t) so that they do not overlap in the frequency domain.
Otherwise, accurate reconstruction of the individual signals is not possible anymore.
In general, reconstruction of a single baseband signal can be performed using a
DDC with a suitable low-pass filter that selects a single frequency channel and
rejects all others [158, p. 94 f.].
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B Programmable Logic

B.1 Sequencer Commands

The following commands are supported by the RISC-V based sequencer:

• ADDI: add sign-extended immediate to register

• ANDI, ORI, XORI: bitwise logical AND, OR, and XOR on sign-extended imme-
diate and register

• SLLI, SRLI, SRAI: logical left shift, logical right shift, and arithmetic right
shift, respectively, of a register by shift amount as immediate

• LUI: load upper immediate

• ADD, SUB: add or subtract two registers, respectively

• MUL, MULH: multiply two registers and save the lower or upper part of the
result, respectively

• AND, OR, XOR: bitwise logical AND, OR, and XOR on two registers

• SLL, SRL, SRA: logical left shift, logical right shift, and arithmetic right shift,
respectively, of a register by shift amount in another register

• BEQ, BNE: compare two register and take the branch if they are equal or
unequal, respectively

• BLT, BLTU: compare two register and take the branch if the first is less than the
second using signed or unsigned comparison, respectively

• BGE, BGEU: compare two register and take the branch if the first is greater than
or equal the second using signed or unsigned comparison, respectively

• JAL: perform an unconditional jump to the target address defined by an
program counter offset as immediate

• LOAD: copy a value obtained via the Wishbone (WB) bus to a register

• STORE: write a value from a register to an address on the WB bus

More details on these 27 commands from the base integer and multiplication set can
be found in the RISC-V instruction set architecture (ISA) specification [139]. Besides
them, six additional commands are implemented as special-purpose set. These are
introduced in Section 3.4.3 and used for sequencing of operations.
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B.2 Signal Generator Timing

The signal generator needs in total 13 cycles from receiving a trigger signal at the
WB bus until outputting it to the AXI-stream interface. The delay stems from the
following process inside the module:

1. The WB register interface detects the write access and sets the trigger code at
its output.

2. The signal generator detects the trigger and loads the appropriate trigger set
configuration. It also triggers the sample players.

3. The sample players detect the trigger and update their internal state. They also
apply the address for the first envelope samples to the block RAM (BRAM).

4. The BRAM returns the first envelope samples to the sample players.

5. The sample player contains an output multiplexer to hold the last sample. It is
now forwarding the samples from the BRAM.

6. An output delay queue is added to match the delay between envelope samples
and NCO samples of the mixer. The signal needs to be delayed by three cycles.

7. The second delay cycle.

8. The last delay cycle. The envelope samples are applied to the output of the
sample player.

9. A pipelining stage delays the data for one cycle to relax the timing.

10. The complex multiplier performs the multiplication in two cycles.

11. The second cycle of the multiplication. The result is applied to the output of
the multiplier.

12. The data is calibrated by multiplying it with a scaling factor.

13. A pipelining stage delays the data for one cycle to relax the timing. The data is
applied to the AXI-stream interface.
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B.3 Measurement-based Feedback Timing

The digital unit cell provides feedback with 352 ns intrinsic platform latency, of
which 72 ns, i.e. 18 logic cycles on the FPGA, are due to processing of the result in
the programmable logic (PL). This can be further detailed as follows:

• 4 cycles to transfer the trigger from the sequencer via the WB bus to the
recording module’s state machine.

• 2 cycles to process the trigger and start the recording.

• 280 ns (70 cycles) trigger delay to compensate for the delays through the cell
multiplexer, the converters, as well as the electrical delay through the analog
signal paths in loop-back mode. This does not account for additional delay
through an experiment setup as this is experiment-specific.

• Length of the recording, also experiment-specific and thus not considered by
the intrinsic platform latency.

• 7 cycles to process the last incoming data and finalize the accumulation.

• 1 cycle to set the result of the measurement.

• 2 cycles to calculate the estimated qubit state from the result.

• 2 cycles to write the state into a sequencer register and perform a branch
operation without a jump (as a consecutive conditional pulse should not be
skipped).

The pulse generation part does not have to be covered as it is identical for the
readout and the conditional pulse. It thus does not contribute to the time difference
between both pulses. The same applies for the length of the recording, as it is chosen
to be identical to the readout pulse length, and the latency is measured from the
end of the readout pulse. Thereby, it is already subtracted from the latency making
it as independent as possible from varying experiment parameters.

C Taskrunner

C.1 Interface to the Taskrunner Firmware

The Taskrunner firmware provides the following methods for user tasks to interact
with firmware and user client:
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• void rtos_EnterCriticalSection()
starts a critical section where context switches are prohibited.

• void rtos_ExitCriticalSection()
ends a critical section and allows context switches to happen.

• void rtos_RestartTimer()
resets the internal performance monitors cycle count register (PMCCNTR).

• uint32_t rtos_GetCycleCountTimer()
reads the cycle count in the PMCCNTR (32bit register counting at 500MHz).

• uint32_t rtos_GetNsTimer()
reads the PMCCNTR and converts its value to a nanosecond delay, overflowing
after 4.2 s.

• void rtos_SetProgress(uint32_t progress)
updates the progress visible to the client to the given value.

• void* rtos_GetParameters()
returns the pointer to the parameter memory region in the shared DDR4
memory.

• uint32_t rtos_GetParametersSize()
returns the valid size of the parameter memory region in bytes.

• void* rtos_GetDataBox(uint32_t size)
creates and allocates a new data box with the specified size in the shared
DDR4 memory.

• void rtos_FinishDataBox(void* databox)
finalizes the given data box so it can be accessed by the client.

• void rtos_DiscardDataBox(void* databox)
frees the given data box without sending the data to the client.

• void rtos_printf(const char *format, ...)
prints a message to the UART channel. Uses the same syntax as a regular
printf.

• void rtos_ReportError(const char *error_msg)
adds a raw string to the error message queue that can be read out by the client.

• void rtos_PrintfError(const char *format, ...)
adds a formatted string to the error message queue which can also include the
values of internal variables etc.
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C.2 Interleaved Experiment Task for Multiple Qubits

The following script is executed on the Taskrunner together with the QiCode defined
in Code 5.5. In this version of the script, the detuning of the Ramsey pulses is still
handled by the Taskrunner and not by the Sequencer itself.

#include <string.h>
#include "task.h"
#include "cells.h"

int task_entry()
{

rtos_printf("\r\nStart Multi Interleaved Qubit Experiments\r\n");
uint32_t *param_list = (uint32_t *)rtos_GetParameters();
uint32_t param_count = rtos_GetParametersSize() / sizeof(uint32_t);
if (param_count < 3)
{

rtos_PrintfError("Not enough parameters provided (%d given).", param_count);
return -1;

}
uint32_t num_of_experiments = (param_list++)[0];
uint32_t experiments_per_loop = (param_list++)[0];
uint32_t cell_num = (param_list++)[0];

uint32_t param_count_expected = 3 // General parameters
+ experiments_per_loop // Experiment order
+ cell_num // Cell map (which cells to address)
+ num_of_experiments // Experiment-specific parameters
+ num_of_experiments * cell_num; // Cell and Exp.-specific parameters

if (param_count < param_count_expected)
{

rtos_PrintfError(
"Not enough parameters provided (needed atleast %d, but %d given).",
param_count_expected, param_count);

return -1;
}
uint32_t *cell_list_param = param_list;
param_list += cell_num;
uint8_t cell_list[cell_num];
uint8_t cell_count = cells_get_count();
for (int c = 0; c < cell_num; c++)
{

// Check if the cell index is valid (within range of available cells)
if (cell_list_param[c] >= cell_count)
{

rtos_PrintfError(
"Requested cell %d, but only 0 to %d available.",
cell_list_param[c], cell_count - 1);

return 1;
}
// Copy from 32bit to 8bit unsigned
cell_list[c] = (uint8_t)cell_list_param[c];

}

uint32_t *experiment_order = param_list;
param_list += experiments_per_loop;
uint32_t *experiment_executions = param_list;
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param_list += num_of_experiments;
uint32_t *experiment_nco_freq[cell_num];
for (uint8_t c = 0; c < cell_num; c++)
{

experiment_nco_freq[c] = param_list;
param_list += num_of_experiments;

}

for (uint32_t iexp = 0; iexp < num_of_experiments; iexp++)
param_count_expected += experiment_executions[iexp];

if (param_count != param_count_expected)
{

rtos_PrintfError(
"Not enough parameters provided (needed %d, but %d given).",
param_count_expected, param_count);

return -1;
}
uint32_t *experiment_delays[num_of_experiments];
for (uint32_t iexp = 0; iexp < num_of_experiments; iexp++)
{

experiment_delays[iexp] = param_list;
param_list += experiment_executions[iexp];

}

// Fetch cell pointers from platform (do not forget to free at the end!)
Cell *cells = cells_create();
Cell cell[cell_num];
for (uint32_t c = 0; c < cell_num; c++)
{

cell[c] = cells[cell_list[c]];

// Set start address to 0 (exp select via register)
seq_set_start_address(cell[c].sequencer, 0);

}

// Data structures
iq_pair *data[cell_num][num_of_experiments];
uint32_t pos[num_of_experiments];
uint32_t sum_of_executions = 0;
for (uint32_t iexp = 0; iexp < num_of_experiments; iexp++)
{

for (uint32_t c = 0; c < cell_num; c++)
{

data[c][iexp] = rtos_GetDataBox(experiment_executions[iexp] * sizeof(iq_pair));
}
pos[iexp] = 0;
sum_of_executions += experiment_executions[iexp];

}

rtos_printf(
"In total, perform %d experiment executions with %d cells.\r\n",
sum_of_executions, cell_num);

// At the beginning we once wait until controller has finished possible previous task
cells_wait_while_busy();

// Initialize with last experiment in row, so by incrementing we start with the first
uint32_t iorder = experiments_per_loop - 1;
uint8_t exp = 0;
for (uint32_t i = 0; i < sum_of_executions; i++)
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{
// Select next experiment:
// Check if next experiment still needs to be executed
// or if it should be skipped because no delays remain
do
{

iorder = (iorder + 1) % experiments_per_loop;
exp = experiment_order[iorder];

} while (pos[exp] >= experiment_executions[exp]);

for (uint8_t c = 0; c < cell_num; c++)
{

// Set the NCO Frequency of the manipulation pulsegen
pg_set_internal_frequency_reg(cell[c].manipulation, experiment_nco_freq[c][exp]);
// Write the delay register
seq_set_register(cell[c].sequencer, 1, experiment_delays[exp][pos[exp]]);
// Write the experiment select register
seq_set_register(cell[c].sequencer, 2, exp);

}

// Start the sequencer experiment execution
cells_start(cell_list, cell_num);

// Wait until execution finished
cells_wait_while_busy();

for (uint8_t c = 0; c < cell_num; c++)
{

// Store result in the appropriate location in the right data box
rec_get_averaged_result(cell[c].recording, &data[c][exp][pos[exp]]);

}

rtos_SetProgress(i + 1);

// Current execution finished so increment the counter
pos[exp]++;

}

for (uint32_t c = 0; c < cell_num; c++)
{

for (uint32_t iexp = 0; iexp < num_of_experiments; iexp++)
{

rtos_FinishDataBox(data[c][iexp]);
}

}

// Important to free the cells at the end to not generate a memory leak!
cells_free(cells);
rtos_printf("Task finished.\r\n");
return 0;

}

The parameters are generated within a custom Python experiment class where
one can pass the delays for the different experiments, the order in which the
experiments should be interleaved and on which cells they should be executed. One
can additionally define a per experiment detuning of the pulses which will be set by
the task.
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C.3 Quantum Jumps Collection Task for Multiple Qubits

The following C code is executed on the Taskrunner to collect the states measured
by the QiCode in Code 5.2. While the QiCode was only written for one cell, the
task also supports multiple qubits simultaneously and the QiCode could be easily
expanded.

#include "task.h"
#include "cells.h"

#define MAX_ADDR 1024
#define STATES_PER_REG 32

int task_entry()
{

uint32_t *param_list = rtos_GetParameters();
uint32_t param_count = rtos_GetParametersSize() / sizeof(uint32_t);
if (param_count < 4)
{

rtos_PrintfError(
"This task needs atleast 4 parameter values (only %d given).",
param_count);

return -1;
}
uint32_t repetitions = param_list[0]; // How many repetitions to perform
if (repetitions % STATES_PER_REG != 0)
{

rtos_PrintfError(
"This task can only perform a multiple of %d repetitions (%d requested).",
STATES_PER_REG, repetitions);

return -1;
}
uint32_t cell_num = param_list[1]; // How many cells need to be addressed
if (param_count != 2 + 2 * cell_num)
{

rtos_PrintfError(
"This task needs exactly %d parameter values (%d given).",
2 + 2 * cell_num, param_count);

return -1;
}
uint32_t *cell_list_param = &(param_list[2]); // Indices of the cells to use
// Recording counts would follow next, but not used here

// Verify the parameters
uint8_t cell_list[cell_num];
uint8_t cell_count = cells_get_count();
for (int c = 0; c < cell_num; c++)
{

// Check if the cell index is valid (within range of available cells)
if (cell_list_param[c] >= cell_count)
{

rtos_PrintfError(
"Requested cell %d, but only 0 to %d available.",
cell_list_param[c],
cell_count - 1);

return 1;
}
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// Copy from 32bit to 8bit unsigned
cell_list[c] = (uint8_t)cell_list_param[c];

}

// Fetch cell pointers from platform (do not forget to free at the end!)
Cell *cells = cells_create();
Cell cell[cell_num];
for (uint32_t c = 0; c < cell_num; c++)
{

cell[c] = cells[cell_list[c]];

// For each cell, initialize the storage module
// Reset BRAM 0 and activate wrapping
stg_set_bram_control(cell[c].storage, 0, true, true);
// Record state in BRAM 0 and accumulate in dense mode
stg_set_state_config(cell[c].storage, 0, true, true, true);

}

// Initialize the databoxes
uint32_t *states[cell_num];
uint32_t last_addr[cell_num];
uint32_t count[cell_num];
uint32_t *bram[cell_num];
for (uint32_t c = 0; c < cell_num; c++)
{

states[c] = rtos_GetDataBox(sizeof(uint32_t) * (repetitions / STATES_PER_REG));
for (uint32_t i = 0; i < repetitions / STATES_PER_REG; i++)

states[c][i] = 0;
last_addr[c] = 0;
count[c] = 0;
bram[c] = stg_get_bram_pointer(cell[c].storage, 0);

}
// Wait for potential previous task
cells_wait_while_busy();

uint32_t next_addr, i, c;

// Synchronously start all relevant cells
cells_start(cell_list, cell_num);
bool busy = true;
while (busy)
{

// Check busy here at beginning to ensure we do this loop once again if
// sequencers finishe in the meantime (to collect remaining data)
busy = cells_is_any_busy();

for (c = 0; c < cell_num; c++)
{

next_addr = stg_get_next_address(cell[c].storage, 0);
if (next_addr < last_addr[c])
{

// Address wrapped -> collect remaining ones
for (i = last_addr[c]; i < MAX_ADDR; ++i)
{

states[c][count[c]++] = *(bram[c] + i);
}
last_addr[c] = 0; // Continue at beginning

}
if (next_addr > last_addr[c])
{
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// More states present
for (i = last_addr[c]; i < next_addr; ++i)
{

states[c][count[c]++] = *(bram[c] + i);
}
last_addr[c] = next_addr;

}
}
// Take count from first cell (fetched first -> the least progressed one)
rtos_SetProgress(count[0] * STATES_PER_REG);

}

for (c = 0; c < cell_num; c++)
{

if (count[c] * STATES_PER_REG < repetitions)
{

rtos_PrintfError(
"Expected %d states, but only collected %d for cell %d!\n\r"
"The remaining states could not been catched in time...",
repetitions, count[c] * STATES_PER_REG, c);

}

rtos_FinishDataBox(states[c]);
}

// Important to free the cells at the end to not generate a memory leak!
cells_free(cells);
return 0;

}

The parameters for the task are the standard set of parameters generated by QiCode
when the QiJob is compiled. As these are sufficient for this case, they haven’t been
changed in Code 5.3 when attaching the custom task to the QiJob.

D Characterization

D.1 Phase Noise of Analog Output Signal

The following table provides phase noise values in dBc/Hz for different carrier
frequencies (rows) and at different offsets (columns). The data is extracted from the
same measurement as Figure 3.24.
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Carrier / Offset 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz
10 MHz −121 −139 −159 −165 −148 −34
50 MHz −107 −127 −146 −152 −166 −174
100 MHz −102 −121 −140 −146 −161 −172
150 MHz −99 −118 −138 −142 −158 −170
200 MHz −96 −116 −135 −140 −155 −169
250 MHz −93 −113 −134 −138 −153 −168
300 MHz −92 −112 −132 −136 −152 −167
350 MHz −90 −111 −131 −135 −150 −166
400 MHz −89 −109 −130 −134 −149 −165
450 MHz −88 −108 −128 −133 −148 −164
500 MHz −88 −107 −128 −132 −147 −163
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