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Abstract: The detailed characterization of complex forms of 

atrial flutter relies on the correct interpretation of intra-atrial 

electrograms. For this, the near field components, which 

represent the local electrical activity, are decisive. However, 

far field components arising from distant electrical sources in 

the atria can obscure the diagnosis. We developed a method to 

separate and characterize atrial near field and atrial far field 

components from bipolar intra-atrial electrograms. First, a set 

of bipolar electrograms was created by simulating different 

propagation scenarios representing common clinical 

depolarization patterns. Second, near and far fields were 

detected as active segments using a non-linear energy 

operator-based approach. Third, the maximum slope and the 

spectral power were extracted as features for all active 

segments. Active segments were grouped accounting for both 

the timing and the location of their occurrence. In a last step, 

the active segments were classified in near and far fields by 

comparing their feature values to a threshold. All active 

segments were detected correctly. On average, near fields 

showed 15.1x larger maximum slopes and 40.4x larger 

spectral powers above 100 Hz than far fields. For 135 active 

segments detected in 72 bipolar electrograms, 5.2% and 6.7% 

were misclassified using the maximum slope and the spectral 

power, respectively. All active segments were classified 

correctly if only one near field segment was assumed to occur 

per electrogram. The separation of atrial near and atrial far 

fields was successfully developed and applied to in silico 

electrograms. These investigations provide a promising basis 

for a future clinical study to ultimately facilitate the precise 

clinical diagnosis of atrial flutter.  
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1 Introduction 

Atrial flutter (AFlut) is a common atrial tachycardia, which is 

not life-threatening but can cause severe comorbidities such as 

cerebral stroke. For diagnosis, physicians interpret intra-atrial 

electrograms (EGMs) in minimal-invasive electrophysiologi-

cal studies to identify local electrical activity, so-called near 

fields. However, far fields complicate the interpretation of 

EGMs since they are caused by the sum of distant electrical 

depolarization. Atrial far fields may occur due to broad 

activation waves passing a distant part of the atrium or an 

excitation spread at the opposite side of a line of block. 

So far, methods have only been developed to eliminate 

ventricular far fields [1]. Thus, methods to identify atrial far 

fields are still missing. In this study, we explore the extent to 

which atrial near fields and atrial far fields can be 

distinguished. Towards this goal, an algorithm was developed 

to detect, characterize, and classify both components in 

simulated bipolar electrograms (B-EGMs). 

2 Methods 

2.1 Simulation setup 

Figure 1 shows the simulation setups representing common 

clinical scenarios established within a square patch of tissue. 

Lines of block guided the spread of depolarization and 

provoked far field signals. The bidomain model was used for 

the simulations using openCARP [2]. 

The tissue patch had dimensions of 30 × 30 × 2.1 mm [3] 

and was surrounded by a 34 × 34 × 10 mm bath. The 

transmural lines of block were 0.3 mm wide, which proved 

sufficient to block an excitation wave. The electrode grid was 

based on the Advisor™ HD Grid Mapping catheter, Sensor 

Enabled™ (Abbott, Chicago, IL, USA) and comprised 16 

equidistant cuboid electrodes with an edge length of 0.9 mm. 

The overall mesh resolution was 0.3 mm. 

The following isotropic extracellular conductivities were 

implemented: 0.7 S/m for the bath [4], 106 S/m for the 

electrodes [5], and 0.55 S/m for the line of block, which 
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represented a myocardial lesion without any viable cells [6]. 

For the tissue patch simulation, the Courtemanche et al. [7] 

model was used. The ionic channels maximum conductances 

were modified to represent remodeling induced by atrial 

fibrillation (AFib) [8]. For the conduction velocity (CV), 

43.39 cm/s and 100 cm/s were chosen. The former value 

represents a CV commonly found in tissue remodeled by AFib 

[9], while the latter was considered physiological [10]. For 

AFib-induced anisotropic conduction, the following ratios 

were selected for the intracellular conductivities: 2:1 as the 

ratio between longitudinal and transversal conduction and 10:1 

as the ratio between longitudinal and normal conduction 

[9,11,12].  

The tissue was stimulated with a transmembrane current 

of strength 500 µA/cm2 for a duration of 2 ms. The sampling 

frequency fs of the output data was 2 kHz. The temporal course 

of the extracellular potentials was extracted and averaged for 

all elements within an electrode, yielding unipolar 

electrograms (U-EGMs). U-EGMs of adjacent electrodes in 

line with the main direction of excitation propagation were 

subtracted to obtain B-EGMs. 

2.2 Active segment detection 

Both near and far fields cause activity in the B-EGM. The 

active segments, thus near and far fields, were detected based 

on the non-linear energy operator (NLEO) [13]. As a threshold 

upon which high energy signal parts were classified as active, 

the following values were applied to the standard deviation of 

the NLEO signal: 0.35 for signals based on a CV of 43.39 cm/s 

and 3.5 for a CV of 100 cm/s. However, since far fields 

contained less energy than near fields due to weaker 

amplitudes and flatter curves, not all active components could 

be detected at once with this method. Thus, the algorithm was 

enhanced by iteratively detecting and eliminating active 

segments. In this way, after components with the highest 

energy were extracted, components with smaller energy, were 

now detectable. This was repeated at most 5 times or until the 

maximum signal energy fell below 1.9×10-5 mV2 for signals 

based on a CV of 43.39 cm/s and 1.1×10-4 mV2 for a CV of 

100 cm/s. To eliminate the detected active segment, the 

segment was replaced with either a linear interpolation or a 

Gaussian bell converging to the baseline at 0 mV. The 

Gaussian approximation method aimed at resembling far fields 

that were close to a near field. It was applied if the signal at 

the border exceeded 0.15 of the absolute amplitude of the first 

detected segment, and if a maximum was detected adjacent to 

the first detected active segment. The corresponding window 

width to identify possible maxima was chosen as the length of 

the detected active segment. Otherwise, the active segment 

border was linearly interpolated.  

2.3 Feature extraction 

The maximum slope and the spectral power were chosen to 

characterize an active segment. The maximum slope was equal 

to the maximum value of the differentiated active segment. 

The spectral power was calculated by applying the short-time 

Fourier transform to each B-EGM, generating a power spectral 

density (PSD). The width of the window function was set to 

20 ms based on the average duration of an active segment. The 

spectral power for an active segment was then estimated by 

trapezoidal integration: 

P ≈  
Δf

2
∑(PSD(fn) + PSD(fn+1))

fs
2

n=fα

 

As near and far fields were assumed to differ in their high 

frequency content, only the frequencies above fα = 100 Hz 

were considered. The spacing Δf between the equidistant 

points fn was 7.8125 Hz. For this method, a correct active 

segment detection was assumed as input. 

2.4 Spatio-temporal classification of 

active segments 

The active segments identified in B-EGMs of one scenario 

were grouped if the active time intervals of neighboring 

electrodes overlapped by at least 60%. These groups were 

called ‘matched active segment groups’ (MASGs) and 

contained active segments that shared the same point in time 

but did not originate from the same location. Due to the spatio-

temporal relationship in a MASG, the corresponding active 

segments were assumed to stem from the same electrical 

activity. Thus, feature values of active segments in one MASG 

were presumably in the same order of magnitude. For this 

reason, only the active segments that were part of a MASG 

were considered for the classification of active segments into 

near and far fields. The corresponding feature values were 

Figure 1: Simulation setups including dimensions and fiber 
orientation (visualized as axes of coordinates in longitudinal, 
transversal, and normal direction). 
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compared to a threshold which was the product of a factor α 

and the maximum feature value of the MASG. Exceeding the 

threshold indicated a near field, otherwise a far field. α was set 

to 0.3 for the slope feature and to 0.15 for the power feature. 

Additionally, if more than one near field was detected in a B-

EGM, only the active segment with the highest maximal slope 

was considered a near field, labelling the others as far fields. 

3 Results 

For all B-EGMs, the active segments were detected correctly. 

Concerning the feature extraction, Figure 2 shows a visible 

gap between near and far fields. On average, near fields 

showed 15.1 times larger maximum slopes and 40.4 times 

larger spectral power than far fields. Figure 3 exemplarily 

demonstrates the successful matching of active segments 

based on the time and location of their occurrence as observed 

for all scenarios. Furthermore, Figure 3 indicates that a near 

field on one side of the line of block coincides with a far field 

on the opposite side. For scenarios A and B, all segments were 

classified correctly for both feature comparison procedures. In 

scenario C, far fields recorded in B-EGMs next to the right line 

of block were misclassified. The error rate was the number of 

falsely classified active segments over the total number of 

segments detected in all B-EGMs with 6.7 % for the power 

feature comparison and 5.2 % for the slope feature 

comparison. All segments were classified correctly if only one 

near field was assumed to occur per B-EGM. 

4 Discussion 

For the active segment detection as well as the threshold-

dependent segment classification, parameters were tuned 

using the presented in silico EGMs. For this data, the 

method was robust since the parameters were based on a 

known distance to the source, CV, and main propagation 

direction of the excitation wave. However, in clinical 

setups this is not the case. The following aspects should 

therefore be considered in future work: Increasing distance 

to the electrical source leads to decreased and flattened 

deflections of active signal components as the recorded 

field intensity of the electrical activity decreases. This 

occurs either by lifting the electrodes from the tissue or by 

moving them away from a distant source. Creating MASGs 

partially solves this problem as in one group only active 

segments are considered that occur at the same time and 

thus were likely to have deflections of comparable 

magnitude. However, feature comparison through 

thresholding is challenging when near and far field 

morphologies and thus feature values become more alike 

with increased distance to the tissue. Additionally, broad 

wavefronts with large excited tissue areas may also 

provoke far fields with feature values in the order of 

magnitude of near fields. In rare cases, if near fields have 

small amplitudes in relation to far fields or do not exist, this 

can lead to misclassified active segments. When using 

MASGs for classification, this condition is negligible. 

Figure 3: Schematic showing both MASGs of scenario A and 
illustrating the spatio-temporal relationship between near and far 
fields. The colored squares represent the B-EGMs of the 4 x 4 
electrode grid in line with the main propagation direction. 

                                                            

                                                          

                     

Figure 2: Normalized occurrence frequency of the maximum 
slopes and the spectral powers of the active segments 
detected in the B-EGMs of scenarios A – C. 
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Another limitation are different CVs because e.g., 

increasing CV leads to sharper deflections due to faster 

propagating excitation waves. Different CVs change the 

maximum slope and the spectral power of the active 

segments and thus require adaptive parameters. Here, 

estimating the CV beforehand would allow adjusting the 

algorithm accordingly. 

Furthermore, this work was simplified by expecting the 

B-EGMs to align with the excitation direction. Otherwise, 

the active segments would change their morphology. To 

ensure the correct B-EGM alignment, omnipolar EGMs (O-

EGMs) [14] could be used as they adapt automatically to 

the direction of propagation of the near field. Far fields are 

not crucial for the calculation of O-EMGs, even though the 

morphology of far fields is also dependent on the 

orientation of its wave front. Yet, this aspect will not affect 

the correct classification of far fields as long as the far field 

features are correctly interpreted. 

Also, we simulated only one position of a static 

electrode grid instead of moving the catheter across the 

tissue. If far fields were recorded with corresponding near 

field origin outside the covered area, the classification 

failed. In scenario C, this error occurred for those B-EGMs 

close to the right line of block. Here, the corresponding 

electrodes recorded far fields which resulted from the 

excitation wave passing on the right side of the line of 

block. Since no electrode recorded the according near field, 

the threshold calculation for the MASG was only based on 

far fields. In this work, this was prevented by allowing only 

one near field per B-EGM. Yet, moving the electrode grid 

for sequential mapping as common clinical practice should 

avoid this circumstance altogether.  

Additionally, U-EGMs should be considered in future 

work due to their independence from propagation direction 

even though they are prone to noise and are therefore not 

commonly used in clinical studies. 

In summary, we successfully developed and applied a 

feature-based, spatio-temporal separation method to in 

silico EGMs building a promising basis for facilitating the 

precise clinical diagnosis of AFlut. Further studies will 

have to investigate the robustness of our proposed method 

in a clinical setup.  
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