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Abstract: This contribution is part of a project concerning the 
creation of an artificial dataset comprising 3D head scans of 
craniosynostosis patients for a deep-learning-based 
classification. To conform to real data, both head and neck are 
required in the 3D scans. However, during patient recording, 
the neck is often covered by medical staff. Simply pasting an 
arbitrary neck leaves large gaps in the 3D mesh. We therefore 
use a publicly available statistical shape model (SSM) for neck 
reconstruction. However, most SSMs of the head are 
constructed using healthy subjects, so the full head 
reconstruction loses the craniosynostosis-specific head shape. 
We propose a method to recover the neck while keeping the 
pathological head shape intact. We propose a Laplace-
Beltrami-based refinement step to deform the posterior mean 
shape of the full head model towards the pathological head. 
The artificial neck is created using the publicly available 
Liverpool-York-Model. We apply our method to construct 
artificial necks for head scans of 50 scaphocephaly patients. 
Our method reduces mean vertex correspondence error by 
approximately 1.3 mm compared to the ordinary posterior 
mean shape, preserves the pathological head shape, and 
creates a continuous transition between neck and head. The 
presented method showed good results for reconstructing a 
plausible neck to craniosynostosis patients. Easily generalized 
it might also be applicable to other pathological shapes. 
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1 Introduction 

1.1 Clinical Motivation 

Craniosynostosis manifests in characteristic head deformities 
and can lead to elevated intracranial pressure resulting in 
limited brain growth. Early diagnosis is crucial for surgical 
planning and clinical treatment. Although radiation-free 
classification approaches by means of machine learning have 
been proposed [1], computed tomography (CT) remains the 
gold standard for classification. It has been shown that head 
deformities of craniosynostosis can be captured using 3D 
photogrammetric scans [2]. Robust classifiers using 3D 
surface scans or 2D image data derived from surface scans 
could eliminate the need of CT thus avoiding ionizing 
radiation for infants. However, 3D surface scans of 
craniosynostosis patients are sparse, so we plan to construct a 
large dataset craniosynostosis patients using a Statistical 
Shape Model (SSM). Our long-term goal is to create 3D and 
2D image data for deep-learning-based classifiers. The 
synthetic image data needs to contain both the characteristic 
head deformity of craniosynostosis as well as a full head 
including face and neck to conform to real data.  

1.2 Shape Reconstruction 

 
Posterior shape modeling is one of the most suitable methods 
for shape reconstruction. It allows incorporating a-priori 

______ 
*Corresponding author: Matthias Schaufelberger: Karlsruhe 
Institute of Technology, Institute of Biomedical Engineering, 
Karlsruhe, publications@ibt.kit.edu  
Reinald Kühle, Frederic Weichel, Christian Freudlsperger: 
Clinic of Oral and Maxillofacial Surgery, Heidelberg University 
Hospital, Heidelberg, Germany 
Niclas Hagen, Friedemann Ringwald, Urs Eisenmann: Institute 
of Medical Informatics, Heidelberg University Hospital, Heidelberg, 
Germany 
Andreas Wachter, Werner Nahm: Karlsruhe Institute of 
Technology, Institute of Biomedical Engineering, Karlsruhe, 
Germany 

DE GRUYTER Current Directions in Biomedical Engineering 2021;7(2): 1        1-1  4 

 Open Access. © 2021 The Author(s), published by De Gruyter.  This work is licensed under the Creative Commons Attribution 4.0 International License. 

191

9 9



Laplace-Beltrami Refined Shape Regression Applied to Neck Reconstruction for Craniosynostosis Patients 

knowledge about the shape, modeled as a probabilistic 
function based on real data [3]. Consequently, the shape 
reconstruction is restricted to shape attributes provided by the 
shape model, i.e., to the training data which was used to 
construct the SSM. If an SSM is constructed from subject with 
normal head shape, the posterior mean shape will also be a 
normally-shaped head. To the best of our knowledge, there are 
no publicly available head models constructed from 
craniosynostosis patients to date, so we have to use a publicly 
available SSM of the healthy head with the necessity to 
recover the pathological head shape. In this contribution, we 
propose a Laplace-Beltrami-based deformation step to obtain 
a full head with neck and the craniosynostosis-specific head 
deformity. We propose a two-step-approach using a posterior 
shape model [3] and a modified version of a Laplace-Beltrami-
based As-Rigid-As-Possible morphing [4]. 

2 Methods 

2.1 Dataset and Preprocessing 

For this study, we used 3D stereo photographs of 
scaphocephaly patients, acquired in the Department of Oral 
and Maxillofacial Surgery of the Heidelberg University 
Hospital, Heidelberg, Germany in the years 2011 to 2020. All 
scans were recorded using a VECTRA-360-nine-pod system 
(Canfield Science, Fairfield, NJ, USA) and annotated with 10 
cephalometric landmarks by trained medical staff. We selected 
50 patients diagnosed with scaphocephaly. The mean age of 
the selected patients is 0.55 ± 0.29 years. 
As the children were held by medical staff during recording, 
neck and upper torso are either covered by the children's 
clothes or the hands of medical staff. We therefore aim for 
reconstructing an artificial, but realistic-looking neck using a 
SSM. We use the Liverpool York Child Head Model 
(LYCHM) constructed from children between 2 and 15 years 
(8.9 ± 3.3 years) [4] with the idea to reconstruct a plausible 
neck for all our patients.  

For correspondence establishment, we extracted the 
craniofacial part of the LYCHM and performed the LB 
regularized projection of [4] using the mean shape of the 
LYCHM. Note that the template shape is arbitrary, if it shares 
the same point identifiers as the SSM and has the same 
triangular mesh structure we use for shape reconstruction later. 
The full observation (cranium and neck) has 𝑝 = 11510 
points, the partial observation (cranium only) has 𝑝 = 10620 
points.  

2.2 Shape regression with Laplace 
Beltrami regularized refinement 

When dealing with observations and SSMs general, we need 
to remove non-shape related components (rotation, translation, 
and scaling) from the 𝑝	points of any unaligned observation 
𝐗* ∈ ℝ-×/ first. This alignment step can be performed using 
Procrustes Analysis applied to vertex-to-vertex 
correspondences to compute rotation matrix 𝐑 ∈ ℝ/×/, 
translation vector 𝐭 ∈ ℝ/, and isotropic scaling 𝑠 between 𝐗* 
and the mean shape 𝚳 ∈ ℝ-×/ of the SSM. We can therefore 
obtain the aligned observation 𝐗 using  

 
𝐗 = 𝑠 ⋅ 𝐑 ⋅ 𝐗𝒖 + 𝐭𝑻 .     (1) 

To align partial observations with 𝑞 points with 𝑞 < 𝑝, we 
simply select the 𝑞 vertices from the mean shape 𝚳 and use 
eq. 1 in an analogous manner. 

Regarding the shape model notation, we will mainly rely 
on [3]. We convert the block matrix 𝐗 into column vector 𝐱 ∈
ℝ/- (and analogous 𝚳 into 𝛍) using  

 

𝐱 = 𝐜𝐨𝐥(𝐗) =	A

BC
DC
EC
BF
⋮
EH

I, 𝛍 = 𝐜𝐨𝐥(𝐌).  (2) 

The SSM consists of mean shape 𝛍 ∈ ℝ/- and sample 
covariance matrix 	𝚺 ∈ ℝ/-×/-. 𝚺 can be decomposed using 
eigenvalue decomposition 𝚺 = 𝐔𝐃N𝐔O ∈ ℝ/-×/-. It can be 
reduced to its first 𝑛	eigenvalues in diagonal form 𝐃 ∈ ℝQ×Q 
and the first 𝑛	principal components 𝐔 ∈ ℝ/-×Q. With the 
principal component matrix 𝐐 = 𝐔𝐃 ∈ ℝ/-×Q, we can 
represent a shape of the SSM as a combination of 𝛍, 𝐐, and 
coefficient vector 𝛂 ∈ ℝQ using 

 
𝐱 = 𝛍 +𝐐 ⋅ 𝛂.     (3) 

For a given partial observation of 𝑞 points 𝐱T = col(𝐗T) ∈
ℝ/X, we usually cannot find any 𝛂 according to eq. 3 to match 
the observation perfectly. We rather match it in terms of an 
observation noise 𝛜 ∈ ℝ/X. By selecting the corresponding 
rows and columns in 𝐐 for the 𝑞 points we obtain	𝐐T ∈ ℝ/X×Q 
and can model 𝐱T as  
 

𝐱𝒈 = 𝛍𝒈 +𝐐𝒈 ⋅ 𝛂 + 𝛜.     (4) 

According to [3], the posterior mean shape (PMS)  𝝁\ ∈ ℝ/- 
of the conditional distribution can be calculated using  
 

𝛍𝒄 = 𝛍 +𝐐^	𝐐𝒈𝑻𝐐𝒈 + 𝝈𝟐𝐈𝒏c
d𝟏𝐐𝑻(𝐱𝒈 − 𝛍𝒈).  (5) 
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𝜎 models the variance of the observation. For 𝜎 → 0, we 
demand that the SSM match the observation accurately, which 
usually leads to an over-emphasis of the noisy components of 
the SSM. Increasing 𝜎 allows the SSM more flexibility for 
fitting the observation.  

The PMS is a representation of the full shape created from 
the SSM. Features not present in the training data are not yet 
represented in the reconstruction. If mapped the partial 
observation directly onto the reconstructed shape, we would 
create a gap between the partial observation and the 
reconstruction.  

By converting 𝛍\ = col(𝚳\) and 	𝐱T = col^𝐗Tc back into 
their respective matrix form (analogous to eq. 2), we can 
proceed with the LB regularized refinement. We use the LB 
regularized projection [4] to deform the reconstruction to 
match the partial observation. 𝐋\ ∈ ℝ-×- denotes the LB 
Operator of the PMS 𝚳\ ∈ ℝ-×/. We solve the system of 
linear equations for the refined points 𝐗j ∈ ℝ-×/, which is 
given by 
 

k𝝀𝐋𝒄𝐒𝒄
n 𝐗𝒓 =	 k

𝝀𝐋𝒄 ⋅ 𝐌𝒄
𝐈𝒈 ⋅ 𝐗𝒈

n.   (6) 

𝐈T ∈ ℝX×X denotes the identity and 𝐒\ ∈ ℝX×-  denotes a 
Boolean selection matrix. For each of the observed points 𝑞 of 
𝐗T we selected the corresponding vertex from the 𝑝 vertices of 
𝐗j which we are solving for. This equation balances retaining 
the morphology of the PMS 𝐌\ and mapping the partial 
observation 𝐗T. By changing the regularization parameter 𝜆, 
we can put more weight to either the correspondences of the 
morphology or the PMS. It can therefore be described as the 
"stiffness" of the transformation. For 𝜆 → ∞, the result is the 
rigidly transformed 𝚳\, for	𝜆 → 0, we map the observation 
almost directly and create an irregular mesh. 

For the two parameters 𝜎 and 𝜆 introduced in eq. 5 and 
eq. 6, we choose 𝜎 = 1 and 𝜆 = 1.  

2.3 Evaluation of reconstruction 
methods 

We quantitatively evaluated our proposed LB refined 
morphing approach on 50 scaphocephaly patients using 
correspondence errors on the head between the reconstruction 
and the observation. With respect to the neck, a smooth 
transition from the head to the artificial neck is desirable. We 
assessed the transition by computing the gap length reduction 
between the boundary sets of head and neck, compared with 
the distance when simply mapping the partial observation onto 
the PSM. Qualitatively, we evaluated the fit in terms of 
regularity of the mesh on the transition of head and neck.  

3 Results 

Although evaluated on all 50 subjects, for qualitative metrics, 
we exemplify our results on one subject (S1). Quantitative 
results were evaluated on all 50 subjects. Figure 1 shows the 
reconstruction for the PMS and our proposed LB refined 
approach. While the PSM shows large regions with absolute 
correspondence errors higher than 2 mm on the face and the 
cranium, the LB refined approach shows errors between ± 1 
mm. Note that we restricted the color scale to ± 2 mm for the 
sake of comparability, although the maximum absolute 
correspondence error of the PSM is 9.7 mm. The PMS 
resembles a shape without scaphocephaly while the proposed 
LB refined approach shows good accordance with the 
elongated head of a scaphocephaly patient. 

Figure 2 shows the region where the left neck transitions 
into the left head parts. As opposed to a direct mapping, neither 
the PMS, nor the proposed LB refined approach show a gap.  

Figure 3 shows the correspondence errors for the PMS and 
the LB refined reconstructions for all 50 subjects. The PMS 
based reconstruction consistently yield higher errors than the 
proposed LB refined approach. While median correspondence 
errors for PMSs are approximately 1.9 mm, median 

Figure 1: Correspondence errors of reconstructions exemplified 
on  S1. Top row: PMS, bottom row: LB refined. Left: Front 
view, right: top view. Color scale limited to ±2 mm. 

Figure 2: Boundary of head and neck exemplified on S1. From left 
to right: PMS, mapped, and LB refined. 
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correspondence errors for the LB refined reconstructions are 
around 0.6 mm. 

Figure 4 shows that both PMS and the proposed LB 
refined approach reduce the mean gap distance for all 50 
subjects using both methods. The mean and median reduction 
is at around 0.3 mm. This corresponds to a reduction of more 
than 10% as the mean of the mean edge length of the PMSs 
was 2.62 mm. 

4 Discussion 
We proposed a refined shape reconstruction method using an 
LB-based refinement of a posterior shape model. The 
proposed LB refined reconstruction method reduces 
reconstruction errors compared with the PMS while also 
allowing a smooth transition from the original observation to 
the reconstructed part. Shape features not present in the PMS 
could be re-established using the proposed LB refined 
reconstruction. This includes shape differences and the 
subjects’ faces most likely introduced by age and ones 
introduced by head shape. We provided a general description 
of our method which makes it applicable to a variety of shapes. 

Our study has several limitations. The first limitation 
concerns the limited variability of both dataset and application 

that we provided. Given the nature of craniosynostosis, we 
only tested our approach on 50 patients younger than 1.5 years. 
We also applied our method only to neck reconstruction. 
When generalizing, the results should be interpreted carefully. 
Secondly, we used a large, homogeneous, and connected 
region as partial observation which might explain why the LB 
refined approach was able to fit the observation to the PMS 
well. Furthermore, the partial observations contain little noise. 
As the LB refined fit does not consider observation noise, it 
might be very sensitive to noisy observations or wrong 
correspondences, especially for isolated and scattered 
observation points. 

5 Conclusion 
We showed that our proposed LB refined shape reconstruction 
method shows good results for reconstructing a plausible neck 
for 50 scaphocephaly patients. As opposed to ordinary 
posterior shape modeling, our method can be applied even if 
the SSM has significant differences in its training data 
population. Our approach should be tested in terms of 
robustness and its suitability for other shapes. Further 
applications of our method include the creation of synthetic 
dataset for machine learning approaches which are dependent 
on a conform dataset.  
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Figure 3: Mean correspondence error on the head for all 50 
subjects. 

Figure 4: Mean gap reduction on the boundary of head and 
neck for all 50 subjects. 
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