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Abstract: Features extracted from P waves of the 12-lead 
electrocardiogram (ECG) have proven valuable for non-
invasively estimating the left atrial fibrotic volume fraction 
associated with the arrhythmogenesis of atrial fibrillation. 
However, feature extraction in the clinical context is prone to 
errors and oftentimes yields unreliable results in the presence 
of noise. This leads to inaccurate input values provided to 
machine learning algorithms tailored at estimating the amount 
of atrial fibrosis with clinical ECGs. Another important aspect 
for clinical translation is the network’s generalization ability 
regarding new ECGs. To quantify a network’s sensitivity to 
inaccurately extracted P wave features, we added Gaussian 
noise to the features extracted from 540,000 simulated ECGs 
consisting of P wave duration, dispersion, terminal force in 
lead V1, peak-to-peak amplitudes, and additionally thoracic 
and atrial volumes. For assessing generalization, we evaluated 
the network performance for train-validation-test splits 
divided such that ECGs simulated with the same atria or torso 
geometry only belonged to either the training and validation or 
the test set. The root mean squared error (RMSE) of the 
network increased the most in case of noisy torso volumes and 
P wave durations. Large generalization errors with a RMSE 
difference between training and test set of more than 2% 
fibrotic volume fraction only occurred if very high or low atria 
and torso volumes were left out during training. Our results 
suggest that P wave duration and thoracic volume are features 
that have to be measured accurately if employed for estimating 
atrial fibrosis with a neural network. Furthermore, our method 
is capable of generalizing well to ECGs simulated with 
anatomical models excluded during training and thus meets an 
important requirement for clinical translation.  
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1 Introduction 

Atrial fibrillation (AF) is the most common 
supraventricular tachycardia and is associated with a 
progressive structural remodeling process affecting the atrial 
tissue. The formation of fibrotic tissue in the atria is one of the 
hallmarks of this process. Fibrosis contributes to the AF 
arrhythmogenesis as fibrotic tissue exhibits slower conduction 
properties and thus facilitates functional reentry of the 
depolarization wave. [1] 

Therefore, estimating the amount of atrial fibrosis could 
contribute to stratify the risk of new-onset AF. Furthermore, it 
could help to select the right strategy during catheter ablation 
as standalone pulmonary vein isolation has shown to entail 
considerable AF recurrence rates especially in patients with 
large arrhythmogenic substrate areas. Late gadolinium 
enhancement magnetic resonance imaging or uni- and bipolar 
voltage maps recorded during electrophysiological studies are 
commonly relied on in clinical practice to quantify the amount 
of atrial fibrosis. As an alternative to these start-of-the-art 
approaches, we have shown the general potential of features 
extracted from the P wave of the 12-lead electrocardiogram 
(ECG) as non-invasive surrogate measures of atrial fibrosis. 
We demonstrated that a combination of P wave duration, 
dispersion, terminal force in lead V1, peak-to-peak amplitudes 
in all 12 leads and measures for the atrial and thoracic volume 
could estimate the left atrial fibrotic volume fraction with an 
absolute RMSE of 6.3% in a computational study [2].  

For a successful clinical translation, two aspects not 
covered by our in silico study so far are to be investigated. On 
the one side, our regression model relies on features extracted 
from P waves of the 12-lead ECG. Those features are easily 
and robustly extractable from noise-free simulated signals, but 
their values are subject to several disturbances in the clinical 
use case. We therefore aim to quantify how sensitive the 
network is with respect to inaccurately determined feature 
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values and to what extent the network's estimation of the 
fibrotic volume fraction is still reliable if the feature values are 
corrupted by noise. On the other hand, the network should be 
able to estimate the amount of atrial fibrosis also for previously 
unseen ECGs if applied in practice. For this reason, we 
evaluate how well the network can generalize to simulated 
ECGs coming from atrial and thoracic geometries not included 
during training of the network. 

2 Methods 

2.1 ECG Simulations 
In order to generate a large-scale database of simulated P 
waves, we relied on statistical shape models of the atria [3] and 
the torso [4] to realize 80 atrial and 25 thoracic geometries. For 
each atrial geometry, we defined a fraction of 0%, 5%, 10%, 
15%, 20%, 25%, 30%, 35%, 40% and 45% of the total LA 
tissue volume as fibrotic [5]. The amount of right atrial fibrosis 
was subsequently defined according to the findings in [6]. To 
account for the diffuse and patchy nature of fibrotic tissue in 
the atria, we chose several disconnected patches accumulating 
to the total degree of fibrosis in which the density of fibrotic 
cells was reduced to ~80%. In these fibrotic cells, maximum 
ionic conductances were rescaled and tissue conduction 
velocity (CV) was either reduced by 80% and 50% in 
transversal and longitudinal fiber direction, respectively, or set 
to 0mm/s [2]. We subsequently received the transmembrane 
voltage distribution in the healthy control cases (0% fibrosis) 
and diseased cases (5%-45% fibrosis) by solving the Eikonal 
equation and applying an atrial action potential template. 
Each atrial geometry was rotated by -20°, 0° and +20° around 
the x-, y- and z-axis resulting in 27 rotation permutations per 
atrial geometry. By placing them in each of the 25 thoracic 
geometries we obtained a cohort of 54,000 model 
combinations covering a wide range of anatomical variability 

in our virtual population [2]. Subsequently, we obtained a total 
of 540,000 P waves (80 atrial geometries × 27 rotation angles 
× 25 torso geometries × 10 fibrotic volume fractions) by 
extracting the extracellular potentials at the standardized ECG 
electrode positions from the body surface potential 
distributions. 

2.2 Feature Extraction 
For each of these 540,000 P waves, the following 15 features 
were extracted as described in [2]: 
- P wave duration PW!"# as the time difference between the 

earliest detectable P wave beginning and the latest 
detectable P wave ending across all 12 leads detected with 
a fixed voltage threshold. 

- P wave dispersion PW!$%& as the time difference between 
the earliest and latest detectable P wave ending across all 
12 leads. 

- P wave terminal force in V1 (PTF V1) as the product of 
the amplitude and the duration of the negative deflection 
of the P wave in lead V1. 

- Peak-to-peak amplitudes in each lead (I',  II',   … ,  V6') as 
the voltage difference between the minimum and 
maximum amplitude in each lead. 

Furthermore, we also included the following anatomical 
measures of the atria and the torso as input features for the 
neural network:  
- left and right atrial volume (LA()*,  RA()*)  
- torso volume (T()*) 
- torso diameters along the anterior-posterior axis in the 

abdominal (T!') and the chest region (T!+) 

Figure 1: Setup for evaluating generalization and sensitivity of the neural network for the leave-torsos-out (LTO) splits. Red, green 
and blue samples are used for testing, validation and training, respectively.  
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2.3 Noise Model 
To recreate the clinical case of inaccurately extracted features, 
we superimposed the feature values extracted from our 
simulations with noise. For each feature, we realized 11 noise 
vectors consisting of Gaussian noise with zero mean and a 
standard deviation (σ,) set to different fractions n ∈ [0, 0.05, 
0.1, ..., 0.5] of the standard deviation of the respective feature 
distribution (σ-). By choosing Gaussian noise, we were able to 
account for different levels of imprecise extracted feature 
values occurring when applying automated feature extraction 
software. 

2.4 Neural Network Setup 
We used the 15 extracted P wave features as well as the 5 

anatomical measures listed in section 2.2 as input and trained 
a regression model to estimate the left atrial fibrotic volume 
fraction as an output. The network architecture counted 1 
hidden layer comprising 10 neurons and was set up as 
explained in [2]. To evaluate the network's generalization 
ability, we used 5-fold cross-validation to evaluate the 
performance of the regression model in the case of noise-free 
input data. For that purpose, we considered two scenarios: To 
evaluate how well the network can generalize to unseen torso 
geometries, we split the dataset into 5 subsets, each comprising 
108,000 ECGs simulated with 5 different torso geometries of 
ascending volumes (leave-torsos-out split (LTO)). For each 
cross-validation run, one of these five sets were used for 

Figure 3: Generalization results for LAO splits (left) and LTO splits (right). The RMSE for training, validation and test sets are marked in 
blue, green and red, respectively for each split. 

Figure 2: Sensitivity results for LAO splits (left) and LTO splits (right). The RMSE output by the network is shown for different noise 
levels applied to the input features. The vertical lines indicate an increase of the RMSE by 1% compared to the noise-free case. The 
legend entries show the features that cause a RMSE increase by more than 0.8%.  
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testing, the remaining four for training and validation, 
resulting in a train-validation-test distribution of 60% - 20% - 
20%. This procedure is illustrated in Figure 1. A similar 
division was realized to assess the network's generalization 
ability in the case of previously unseen atrial geometries. The 
five-fold split resulted in 108,000 ECGs per subset simulated 
with 16 different atrial geometries of ascending volumes 
(leave-atria-out split (LAO)). 

3 Results 
3.1 Sensitivity 

Figure 2 shows the RMSE of the network output averaged 
over all 5 LTO and LAO test results depending on the applied 
noise level 𝑛. For the LTO scenario, the absolute RMSE 
increased by 1% compared to the noise-free baseline case for 
a noise level of  𝜎./𝜎/ = 0.2	for the torso volume 
(corresponding to an absolute noise standard deviation of  
𝜎.=0.0028m2) and a noise level of 𝜎./𝜎/ = 0.3	for the P wave 
duration (𝜎.	= 4.3ms). For the LAO scenario, an absolute 
RMSE increased by 1% compared to the noise-free case 
occurred for a noise level of 𝜎./𝜎/ = 0.25	for the torso 
volume (𝜎. =  0.0036m2) and a noise level of 𝜎./𝜎/ = 0.3	for 
the P wave duration. 

3.2 Generalization 
The generalization results for the different train-validation-test 
splits are shown in Figure 3. The RMSE of the test sets 
increased if very small and large atrial geometries were left out 
during training in the LAO scenarios. For the LTO splits, the 
test accuracy was decreased the most for split 1 in which small 
torso volumes were excluded during training. 

4 Discussion 
We found that the RMSE increased the most if noisy feature 
values for the torso volume and P wave duration were provided 
to the network independent on how the data were split for 
training, testing and validation. The presence of fibrotic tissue 
reflects in a change of the P wave amplitudes that are also 
affected by the torso volume. Furthermore, the reduced CV in 
the fibrotic regions cause P wave durations to increase. For 
these reasons, those two features are most important to 
separate the changes in P wave features resulting from fibrotic 
infiltration of atrial tissue from those caused by healthy 
anatomical variations and thus must be accurately measured. 
The network was able to generalize well to ECGs simulated 
with unseen atrial and torso geometries if ECGs generated 

with different geometries, but similar atrial and thoracic 
volumes were included during training. In our simulation 
study, we only assessed the network’s sensitivity in case of 
noise being added to a single input feature. However, in 
clinical practice, usually even a combination of different 
features is determined with uncertainty. Therefore, clinical 
ECG recordings as input for the network require robust signal 
processing methods for extracting key features accurately. 

Conclusion 
We have shown that an accurate assessment of the torso 
volume and the P wave duration is necessary for reliably 
estimating the amount of atrial fibrosis with our proposed 
method. Furthermore, we demonstrated the capability of the 
network to generalize well to unseen ECGs during training 
paving the way for clinical translation of a machine learning 
tool for risk stratification and therapeutic decision support. 
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