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Abstract: Optical Coherence Tomography Angiography 
(OCTA) is an imaging modality that provides three-
dimensional information of the retinal microvasculature 
and therefore promises early diagnosis and sufficient 
monitoring in ophthalmology. However, there is 
considerable variability between experts analysing this 
data. Measures for quantitative assessment of the 
vasculature need to be developed and established, such as 
fractal dimension. Fractal dimension can be used to assess 
the complexity of vessels and has been shown to be 
independently associated with neovascularization, a 
symptom of diseases such as diabetic retinopathy. This 
investigation assessed the performance of three fractal 
dimension algorithms: Box Counting Dimension (BCD), 
Information Dimension (ID), and Differential Box 
Counting (DBC). Two of those, BCD and ID, rely on 
previous vessel segmentation. Assessment of the added 
value or disturbance regarding the segmentation step is a 
second aim of this study. The investigation was performed 
on a data set composed of 9 in vivo human eyes. Since there 
is no ground truth available, the performance of the 
methods in differentiating the Superficial Vascular 
Complex (SVC) and Deep Vascular Complex (DVC) 
layers apart and the consistency of measurements of the 
same layer at different time-points were tested. The 
performance parameters were the ICC and the Mann-
Whitney U tests. The three applied methods were suitable 
to tell the different layers apart and showed consistent 
values applied in the same slab. Within the consistency test, 
the non-segmentation-based method, DBC, was found to be 

less accurate, expressed in a lower ICC value, compared to 
its segmentation-based counterparts. This result is thought 
to be due to the DBC’s higher sensitivity when compared 
to the other methods. This higher sensitivity might help 
detect changes in the microvasculature, like 
neovascularization, but is also more likely prone to noise 
and artefacts.  

Keywords: Differential Box Counting, OCTA images, 
Fractal Dimensions. 

1 Introduction 
Optical Coherence Tomography Angiography (OCTA) is a 
non-invasive imaging technique used to diagnose and 
monitor diseases such as diabetic retinopathy and age-
related macular degeneration [1]. In contrast to the lower 
resolution of the gold standard of microvasculature 
imaging [2], fluorescein angiography, OCTA allows for 
layer wise assessment of high-resolution three-dimensional 
data within the retina and choroid.  

OCTA itself assesses the variance of consecutive Optical 
Coherence Tomography (OCT) scans of the eye. The main 
cause of variation in subsequent OCT scans is assumed to 
be due to moving particles, such as erythrocytes, within the 
retina and the choroid. OCTA data is divided into different 
slabs following the anatomic structure of the blood vessels 
in the eye. These are named the Superficial Vascular 
Complex (SVC), the Deep Vascular Complex (DVC), and 
the choriocapillaris layer. The SVC and DVC layers are 
found within the retina, and the choriocapillaris layer is 
found within the choroid [3].  

For any objective assessment of OCTA data, a 
quantification metric is needed. One such metric is fractal 
dimensions, a concept introduced in 1951 to describe the 
complexity of geometric shapes and mathematical 
functions of irregular shape or form [4]. The fractal 
dimension of microvasculature describes how thoroughly 
the pattern fills the space it is in. It was shown that the 
fractal dimension increases as new vessels form in the 
process of neovascularization [5]. This measure has been 
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used to assess the complexity of microvasculature, 
including in fluorescein angiography, where it was shown 
to be independently associated with neovascularization 
which is then associated with diabetic retinopathy [6].  

There are several ways to assess fractal dimensions. Some 
require a skeletonised OCTA image, which requires 
segmentation as a precursor. Differential Box Counting, 
however, is a fractal dimension measurement that does not 
require a segmentation step. 

This investigation aimed to assess fractal dimension values 
derived from multiple algorithms to investigate their 
consistency and their robustness.  

2 Materials and Methods 
Due to the inaccessability of a ground truth, the following 
criteria were assessed to get an impression of the 
algorithms' repeatibility and specifitivity: 

1. The repeatability of each algorithm given the 
same slab at a short time difference 

2. The separability between different slabs at the 
same time point  

Initially, 232 images of 58 patient eyes were provided, with 
varying image quality. For each eye, two subsequent 
OCTA images were taken with less than a five-minute 
difference between them. Given this short time between the 
OCTA data acquisitions, no anatomical changes in the 
patient's retina should take place. Following this, the FD 
values extracted from this data should be close.  

For each OCTA dataset, an SVC and DVC image can be 
extracted. Non-ideal images were excluded, giving a final 
image count of 36 images for 9 eyes.  

Due to the patient’s motion between the two scans, slight 
misalignments can be seen between the SVC and DVC en 
face projections from time-point 1 and 2. Thus, a 

registration based on Styner et al. [7] which is implemented 
in commercially available software toolboxes [8] ensured 
that a vessel comparison was valid between the two 
subsequent images (see figure 1). The matrix 
transformations of the images were allowed in rotation, 
translation, and scaling.  

For the segmentation-based methods, a segmentation then 
a skeletonization of the images was applied. For the non-
segmentation-based method, a Sobel filter was applied in 
the x and y directions to find the magnitude of the gradient 
for both OCTA images. This was done to normalize the 
grey values and reduce the grey value variability between 
the two images.   

Quantification Methods 
Three fractal dimension methods were used: 

1. Box Counting Dimension (BCD) 
2. Information Dimension (ID) 
3. Differential Box Counting (DBC) 

For the implementation of the BCD and the ID methods, 
take a Boolean square matrix of size M*M that corresponds 
to the pixel dimensions of the image. The image is then split 
down into square grids of side lengths s*s.  

As introduced in Fractal Dimensions of Networks [9], BCD 
is defined by the formula:  

 𝐵𝐶𝐷 ≡ lim
(→*

+,-.(()
+,- 1/(

  

BCD, denotes the box-counting dimension; s is the side 
length of each square grid; B(s) defines the number of 
images where an intersection between the object, which is 
given by the value 1, and the grids exist. For quantization 
accuracy, the side lengths are defined as the factors of M, 
and a measurement of B(s) is taken for multiple different s 
trials [9]. Finally, a regression line is drawn between every 
log B(s) and log 1/s, with the slope denoting BCD. 

As introduced in Fractal Dimensions of Networks [9], ID 
is defined by the formula:  

𝐼𝐷 ≡ − lim
(→*

𝐻(𝑠)
log 𝑠

	 

Similarly, given the same scenario earlier, the information 
dimension, ID, can also calculate the fractal dimension. 
Here, s denotes the side length of the square grids, and H(s) 
denotes the entropy of finding a set number of 1s in a grid. 
Here the entropy, also called Shannon's entropy, is given 
by the formula: 

𝐻(𝑠) = −;𝑝( log𝑝(
(

 

Figure 1: Given is the registration process. Here the purple and green 
images denote the SVC slabs at the two-time images. The left image 
is the pair before registration and the right image is the pair after 
registration.  
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An introduction to entropy in information theory as given 
by Shannon is given in Fractal Dimensions of Networks 
[9].  

Again, for quantization accuracy, the side lengths are 
defined as the factors of M, and the H(s) of multiple s trials 
is measured [9]. A regression line is drawn between every 
H(s) and log s, with the slope of the line denoting ID. 

DBC, as introduced by Sarkar et. al [10], is defined on the 
grey value space of the image and thus does not require a 
prior segmentation. Here, space is defined on M*M*G 
where M defines the side lengths of the square image and 
G defines the maximum grey value of the image. A grid is 
used to measure the fractal dimension of the image; the grid 
also lies in the third dimension G. Therefore, the 
dimensions of the boxes that define the grid are given by 
s*s*s' where s' is a proportionality factor described by:  

𝑀
𝑠
=
𝐺
𝑠′

 

s' describes the height prescribed for every box. The box-
counting on each column is then given by the formula: 

 𝑛(𝑖, 𝑗) = 𝑙 − 𝑘 + 1 

Here n(i,j) is the number of boxes counted in the column 
(i,j), l is the box number given for the maximum grey value 
within (i,j), and k is the box number for the minimum grey 
value within (i,j) [10]. 

Finally, the total number of boxes counted is given by: 

 𝑁 = ∑𝑛(𝑖, 𝑗)	 

Here the same procedure done previously with ID and BCD 
is done with DBC, where s is given by the factors of M, and 
the N is calculated for multiple s trials. Finally, linear 
regression is done between log N and log 1/s. Due to 
quantization errors, the method described by Lieu et al. [11] 
was used to account for known errors in the DBC. Errors 
include undercounting the number of boxes, n, due to sharp 
grey value intensity changes in the images and 
overcounting due to the definition of n(i,j). 

Note the range of each fractal dimension method. Since 
DBC is applied in three-dimensional space, the curve that 
is being measured should lie between 2.0 and 3.0, where 
3.0 denotes a very rough surface [10]. In contrast, after a 
segmentation process, the curve being measured lies in 
two-dimensional space thus the expected range of fractal 
dimensions lies between 1.0 and 2.0.  

Statistical Methods 
The intraclass correlation coefficient (ICC), two-way 
mixed effects, and the Mann-Whitney U test were used to 
assess repeatability of the same slab at two images and the 
separability of different slabs at the same images, 
respectively.  

The two-way mixed effects ICC is given by the formula 
[12]: 

ICC(𝐴, 1) =
𝑀𝑆N − 𝑀𝑆O

𝑀𝑆N + (𝑘 − 1)𝑀𝑆O +
𝑘
𝑛 (𝑀𝑆P −𝑀𝑆O)

 

For either SVC or DVC, a matrix is given with rows 
denoting measurement of all 9 eyes, and columns denoting 
the different observations of the same eye, at either t1 or t2. 
Here, ICC(A,1), denotes the ICC of two-way mixed effects; 
MSR denotes the mean square for the rows; MSE is the mean 
square error; MSC is the mean square for the columns; k is 
the number of observations per eye; n is the number of eyes 
observed [12]. 

3 Results  
The results are visualized in the boxplots in figures 2 and 
3. The Mann-Whitney U tests between the SVC slabs at t1 
and t2 and DVC slabs at t1 and t2 of all the methods was 
found to be ≤ 0.005. The ICC values of all the methods for 
both layers were > 0.8, however the ICC values of the BCD 
and ID were both >0.9, whereas the ICC values of the DBC 
was found to be between 0.82-0.84. 

Absolute Difference 

Absolute Difference 

Type of Difference Type of Difference Type of Difference 

ID 

Figure 2: Boxplots visualizing the difference in the fractal 
dimensions of every method. DVCvDVC denotes the difference in 
fractal dimension between two DVC images of a given eye. 
SVCvSVC denotes the difference in fractal dimensions between two 
SVC images of a given eye. SVCvDVC denotes the difference 
between the fractal dimensions of SVC and DVC of a given eye. It 
was used as a reference to compare SVCvSVC and DVCvDVC 
boxplots. The boxplots show the medians and interquartile of the 
distributions.  

BCD DBC 

Absolute Difference 
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4 Discussion 
ICC values > 0.8 and P-values < 0.05 were considered 
statistically significant.  

The results show that the BCD and ID performed better in 
comparison to the DBC, in separability of measurements of 
different layers at the same time point and repeatability of 
measurements of the same layer at different time points.  

It is thought that the changes in intensity between the 
OCTA images could be a possible cause for the higher 
deviation of error in the DBC calculation. Whereas 
variances in intensity in OCTA have a lower effect, only 
affecting the calculation for critical pixels just at the 
threshold, on the segmentation-based methods as they 
measure the fractal dimension of the two-dimensional 
geometry in the segmented image.   

Artefacts in the OCTA image itself could be another cause 
for the higher error deviation in the DBC as artefacts result 
in higher intensity values when compared to many 
neighboring vessels. This leads to a tendency of 
overcounting artefacts in the DBC whereas artefacts and 
neighboring vessels are counted equally in the 
segmentation-based methods.  

5 Conclusion and Outlook 
The DBC has been shown to have a lower ICC value within 
the consistency assessment. This was assumed to be due to 
sensitivity of DBC to artefacts in the image and intensity 
differences, possibly noise, between the subsequent 
images.  

Therefore, methods such as averaging multiple en-face 
OCTA images, as outlined by Uji et al. [13], could create 

consistent intensity values in subsequent OCTA images 
and therefore improve the reliability of information for 
quantification. This method can also attenuate the possible 
problems caused by motion artefacts.  

If variances and artefacts in the OCTA are attenuated, this 
perceived sensitivity to changes could turn the drawbacks 
of DBC into an advantage since it is more sensitive to 
changes in the microvasculature, like changes due to 
neovascularization. 
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Figure 3: Boxplots visualizing the fractal dimensions of every 
method. DVC_FDs shows the median and interquartile 
distribution of the DVC. SVC_FDs shows the median and 
interquartile distribution of the SVC.  
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