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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 

Procedia CIRP 104 (2021) 720–725

2212-8271 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System
10.1016/j.procir.2021.11.121

© 2021 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2021) 000–000 

  
     www.elsevier.com/locate/procedia 
   

 

 

 

2212-8271 © 2021 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System 

54th CIRP Conference on Manufacturing Systems 

Comprehensive machine data acquisition through intelligent parameter 
identification and assignment 

 Philipp Gönnheimer a,*, Andreas Karlea, Lorenz Mohra, Jürgen Fleischera  
awbk Institute of Production Science, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany 

 

* Corresponding author. Tel.: +49-1523-950-2578 ; fax: +49-721-608-45005. E-mail address: philipp.goennheimer@kit.edu 

Abstract 

In today’s highly competitive manufacturing environment, process data monitoring continues to be of high priority, but often relies on modern 
communication interfaces being provided by PLC manufacturers. This paper proposes an alternative approach in which data is acquired 
automatically from various PLC models through available interfaces. Multiple Machine Learning algorithms are incorporated to identify machine 
parameters, which are then assigned to appropriate machine information models. All functionalities can be provided by a dedicated hardware 
module or as software modules on IPCs. The proposed approach can be integrated into existing Industry 4.0 efforts to accelerate digitalization in 
challenging environments. 
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1. Introduction 

With the goal of increasing the Overall Equipment 
Effectiveness (OEE) in production, there is an ever-increasing 
number of approaches and solutions in the area of machine and 
process monitoring. However, commercially available 
applications often represent isolated solutions. In addition, 
there are approaches to process monitoring that are based only 
on control data such as motor currents and position data, but 
there is often the difficulty that these machine parameters first 
have to be extracted and identified from the control system [1]. 
This is usually a manual and time-consuming process.  

In order to automate this process and to make the 
comprehensive data acquisition for such applications scalable 
across machines, this paper describes how machine data 
acquisition can be performed with intelligent parameter 
identification and assignment.  

 

Nomenclature 

OEE Overall Equipment Effectiveness  
PLC Programmable Logic Controller 
SME Small- and medium-sized Enterprises 
ML Machine Learning 
TSC Time-Series Classification 
umati Universal Machine Technology Interface 
FCN Fully Convolutional Network 
ResNet Residual Neural Network 
LSTM Long Short-Term Memory 

2. State of the art and objectives  

In this chapter, the state of the art in three fields of research 
is discussed. First, the retrofitting of existing machinery to 
integrate I4.0-ready communication capabilities. Second, time-
series classification (TSC) through various methods. Third, 
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2. State of the art and objectives  

In this chapter, the state of the art in three fields of research 
is discussed. First, the retrofitting of existing machinery to 
integrate I4.0-ready communication capabilities. Second, time-
series classification (TSC) through various methods. Third, 
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machine information models. While being subjects of many 
different research group’s active efforts, each of these 
contribute to the system presented in this paper. The objective, 
therefore, is to implement these individual components and 
conduct further research to optimize them for the given 
application, as described in the fourth part of this chapter. 

2.1. Retrofitting 

To comply with the I4.0 standard, companies must digitalize 
their production systems. In particular, small and medium-
sized enterprises (SME) are faced with the necessity of 
integrating modern communication technology with their 
existing machine inventory. In context of the research project 
“Retrofitting of machines and plants” (RetroNet), it was 
determined that the utilization potential of retrofitting might be 
diminished by its requirements of methodical implementation 
procedures, additional hardware expenses and qualified 
personnel on-site [2]. These obstructions are further 
pronounced if machine controls of several different 
manufacturers are present. Individual solutions might include 
third-party modules which facilitate OPC UA communication 
between machines that might feature proprietary, 
manufacturer-dependent software [3]. These existing 
approaches still require an extensive set-up process through 
qualified personnel, which constitutes a barrier for SMEs when 
embracing I4.0 developments. The approach presented in this 
paper attempts to significantly reduce the effort and required 
expertise to implement these changes. 

2.2. Machine information models 

A machine information model describes a machine’s state 
with a defined parameter and event structure. Standardization 
of such models aims to accelerate training of employees and 
integration into process monitoring systems, facilitating 
communication between machines of different manufacturers, 
and general error prevention. The Universal Machine 
Technology Interface (umati) is a machine information model 
being developed by the Mechanical Engineering Industry 
Association (VDMA) and industrial partners on basis of OPC 
UA since 2018. As of December 2020, the first part, “UA CS 
for Machine Tools Part 1 - Monitoring and Job”, has been made 
available as OPC UA Companion Specification [4]. 

2.3. Time series classification 

TSC is an established field of research in various disciplines 
ranging from medicine to climate research [5,6]. A well-
established dataset with the purpose of facilitating 
interdisciplinary cooperation exists in the form of an archive 
hosted under the cooperation of the University of East Anglia 
(UEA) and the University of California – Riverside (UCR) [7]. 
The dataset features a variety of time series data, but none 
commonly encountered in machine control systems. In recent 
years, a meta-ensemble of various conventional classification 

methods called Hierarchical Vote Collective of 
Transformation-based Ensembles (HIVE-COVE) was 
developed and constitutes the state-of-the-art solution [8]. 
Deep Learning methods might offer a more generalized 
applicability outside the UCR/UEA dataset but have seen only 
limited research efforts so far [8]. Comparisons of various TSC 
methods commonly consider accuracy as singular evaluation 
metric. More recently, researchers achieved valuable results in 
improving computing efficiency and processing speed [9]. The 
work presented in this paper aims at developing an accurate, as 
well as efficient, TSC-method with the specific purpose of 
identifying machine parameters under on-line processing 
constraints. 

2.4. Research deficits and objectives 

None of the existing approaches covers the entirety of the 
intended application and its challenges – the extraction of data 
from retrofitted machines, the identification of machine 
parameters, and the assignment of these parameters to a 
standardized machine information model under on-line system 
restraints. The research presented in this paper aims at 
developing a solution for this key problem and has resulted in 
several publications so far, which shall be briefly reiterated 
here. The concept of automated parameter acquisition, 
identification and assignment to an information model and the 
results of a probability-based heuristic approach was first 
published in [10]. A feasibility study of a probability-based 
heuristic approach identified limitations of that approach. 
Thereafter, research focus was shifted toward ML-based 
parameter identification to improve the system’s scalability 
with promising early results [11]. Further work established a 
multi-stage identification process, incorporating Deep 
Learning algorithms to successfully identify drive parameters 
of a limited dataset [12]. This paper discusses the next stage of 
work. First, an experimental setup is introduced, to apply and 
evaluate various ML-methods concerning their capacity to 
identify machine parameters under on-line constraints, with 
evaluation datasets originating from machines not included in 
training datasets. Second, the results of in-depth optimization 
and comparison of several Deep Learning models on basis of 
an expanded dataset are presented. 

3. Machine data acquisition 

A comprehensive approach to acquire machine data must 
accommodate various contingencies. Qualified personnel on-
site might not be available. On-line implementation might be 
required to avoid or minimize machine downtime. Machine 
control systems might be inaccessible or feature proprietary 
software restrictions. A varying selection of machine 
information models might be desired as output. Under these 
considerations, the target system is best defined as a black box, 
with as little required user-side input and effort as possible. The 
black box can be further divided in modules which serve a 
specific purpose and have defined interfaces, allowing 
simultaneous developments independent of each other. These 
modules correspond to the fields of research outlined in the 
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above chapter: data extraction, parameter identification and 
assignment to a machine information model. 

3.1. Experimental setup 

The experimental setup consists of two test beds: An I4.0-
ready multi-axis milling machine outfitted with Siemens S7 
machine controls and Siemens Edge communication modules 
to accumulate training data and a single-axis horizontal test bed 
which is mobile for exhibition and demonstration purposes. 
The test bed features a Bosch Rexroth machine control system 
which is accessed via OPC UA communication. Several 
independent research projects concerning leadscrew condition 
monitoring that require access to machine parameters are 
implemented on the test bed, serving as a convenient use case 
for the data acquisition system presented in this paper. ML-
algorithms, trained with data acquired from the I4.0 milling 
machine at high time resolution, are evaluated in their capacity 
of identifying on-line machine data generated and extracted 
from the test bed. The training data consists of different milling 
processes representing the characteristics of seven signal 
classes on three linear axes and one main spindle. The seven 
signal classes are binary signals (bin), cycle signals (cyc), 
control differences (ctrl), currents (cur), torques (tor), the actual 
and target positions (enc/des pos). 

3.2. Process from data extraction to assignment 

The procedure to acquire machine data from a machine 
includes the following steps: 
• Determining the presence or absence of a OPC UA server 

and/or the Programmable Logic Controller (PLC) model 
• Establishing a connection to a present OPC UA server or the 

PLC directly 
• Surveying acquisition targets and constraints, such as the 

number of parameters to identify, the number of machine 
axes, and achievable query times 

• Buffering process data 
• Preprocessing and prefiltering of data as required by the 

specific ML-algorithm 
• Identification of machine parameters  
• Postprocessing of machine parameters as applicable, such as 

assignment of dynamic parameters to specific axes 
• Assignment of machine parameters to an internal machine 

information model 
• Mapping of input parameters to the machine information 

model desired by the user, such as umati 
• Provision of on-line process data in the desired form on a 

user-accessible OPC UA server 

4. Parameter identification 

The studies concerning the parameter identification 
conducted in this paper can be split in four sections.  

First, the impact of two preprocessing parameters on the 
accuracy of the ML-models have been studied. 

Secondly, the ML-models have been embedded in a holistic 
system, performing a three-stage process to identify all signal 
classes and assigning them to the different axes 

In the third section, the three neural networks (FCN, ResNet 
and LSTM) as well as a random forest have been optimized and 
compared to solve the task of parameter identification. The 
Fully Convolutional Network (FCN) and Residual Neural 
Network (ResNet) have been chosen due to their 
recommendation in the work of [13] and the architectures are 
used without further changes. As recurrent networks are known 
of their capability of sequential data processing a single-layer 
Long Short-Term Memory (LSTM) was added for competition 
and the random forest was expected to be an easy-to-train and 
transparent model to generate useful insight of the problem. 

Conclusively, the final models are compared in a last section 
and the best models are tested for the purpose of feasible usage 
on unfamiliar processes and machines. 

All four sections are introduced in detail in this chapter and 
the most important results are discussed in chapter 5. 

4.1. Preprocessing parameters 

For the time series to be processed, several preprocessing 
steps must be carried out shown in Fig. 1. 

 

Fig. 1. Steps of the pre-processing in detail 

First, samples of specific length must be extracted, which 
already yields the first preprocessing parameter, the sample 
length. This preprocessing parameter is measured in data points 
and regulates the amount of information provided to the models 
for a single prediction. Desirably this preprocessing parameter 
should be as small as possible to prevent long data acquisition 
times and computing costs. 

Secondly, the samples must be tested for their activity, 
meaning that the axes are used in the process at the point of 
data acquisition. This is requested since inactive signals lead to 
constant samples causing numeric problems in the following 
normalization step and contain little to no information about 
the signal class. Filtering inactive samples can be achieved by 
calculating the standard deviation (std) of each sample and 
comparing it with a threshold. This std-threshold is the second 
preprocessing parameter studied. 

As a third step, the samples are standardized, supplying 
samples with mean of zero and unit variance. This procedure 
reduces the amount of information in exchange of samples, 
containing unified signal characteristics which can be 
translated to different production processes and machine types. 

If the chosen model for the parameter identification is a 
random forest, features must be calculated from the time series 
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to fit the models expected input. Therefore, 40 commonly used 
features for time series representation are calculated. Those are 
simple metrics as maximum and minimum and more complex 
information as deviations and frequencies. 

4.2. Parameter identification in three stages 

As shown in Fig. 2, the complete process of parameter 
identification can be split up in three stages. 

 

Fig. 2. Three stages of the parameter identification 

In stage 1 the selected ML-model predicts a signal class for 
each signal. Since the neural networks cannot diver between 
cycle and position signals, a rule-based identification of the 
cycle based on increase per time step takes place. This rule is 
reliable due to the specific characteristic of the cycle signal to 
be incremented by 1 each time step. 

To enhance the reliability of the predictions the class 
probability of each prediction was used to reject uncertain 
samples. As the class probability strongly depends on the 
model, the predictions were scanned for an optimal probability 
threshold to maintain a fair balance of rejecting most wrong 
samples while remaining as many correct ones as possible. 

The following stage 2 aims to expand the position class into 
actual and target positions signals as well as the current/torque 
class into separated current and torque signals. Both 
enhancements can be achieved due to the correlation of the 
signals within their class and the selection of coupled signals. 
Since the actual position follows its corresponding target 
position with a very short time delay, the correlations of the 
signals are very high. Once all the signal couples are found, a 
comparison of the local extrema indicates the signals due to the 
delay. 

As the current directly influences the torque and both signals 
have low resistance to changes, high dependency can be 
measured for signals of the same axis. The search of a clear rule 
for the signal identification turned out to be quite challenging 
and still is unsolved. The signals do not show a time delay and 
at times reach correlation coefficients of 1, illustrating the 
similarity of the signals. 

Stage 3 maps the signals to their axis due to the 
dependencies of the signals. As reference for the axes the 
current/torque class is adduced and then the other signal classes 
allocated to the axes. The feasibility of this stage was reviewed 
in [12] and has not been object of further research. 

4.3. Hyperparameter optimization of ML-models 

The first specification for all models was the number of 
outputs, representing the signal classes. As shown in [12], 
training the models to predict fewer signal classes and use 
expert knowledge as a rule-based subsequence to receive the 
finale signal classes can be a superior identification process. 
Afterwards, the hyperparameters of each model have been 
optimized to provide the fittest algorithms. 

The random forest was used to conduct a model-based 
feature reduction as awareness of highly correlated features 
existed. Accordingly, the maximum depth of the decision trees 
and the number of trees in the ensemble was examined. For the 
neural networks, hyperparameter tuning involved studies of the 
batch size and training time. Further studies of sample sizes for 
the LSTM were conducted, due to the unstable convergence 
with long sample sizes. Finally, the number of hidden states 
was varied to accomplish a fitting internal complexity. 

4.4. Comparison of ML-models and final evaluation 

To select the fittest solution, initially the neural networks 
were compared among each other and the selected model was 
then matched with the random forest. 

As applicability to other production processes and machine 
tools was of high priority, the winner was trained and tested 
with separated processes from the test bed to show the 
capability of the model to transfer learned knowledge to other 
processes and machine tools. 

5. Results and discussion 

5.1. Preprocessing parameters 

To show the impact of the sample size and std-threshold for 
the activity filter, random forests were trained to compare the 
accuracy at specific values of those preprocessing parameters. 
Especially for the std threshold strong influence on the 
accuracy was observed. Fig. 3 shows the recalls of the 
confusion matrix for each output and the accuracy of the model. 
As the recalls monitor the ratio of true positives to all true 
samples of each signal class, it is used to measure the model’s 
capability of predicting each class. 

The models accuracy rises steadyly with the std-threshold, 
gaining improvements for two signal classes only. The control 
difference (ctrl) is calculated based on the position signals (pos) 
and therefore inherits its dependency from them. Further 
investigation of position samples with low standard deviation 
showed high frequent oscilations with low ampplitude, which 
are not the expected dominant characteristic of such a signal. 
These oscilations are assumed to be vibrations caused from the 
milling process. Filtering the inactive samples minimizes the 
dominance of such vibrations in the models input and 
consequently reducing misguided classification. 

The sample size showed a similar but weaker effect, 
resulting from longer observations less freqeuently containing 
no active axis movment. Conclusively, a std-threshold of 0.01 
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and sample sizes of 1000 data points (2s) are recommended to 
limit the amount of samples rejected from the filter. 

 

Fig. 3. Std-thresholds for filtering inactive samples 

5.2. Parameter identification in three stages 

Since all stages have been reviewed in [12], this section 
focuses on the utilization of the model’s class probabilities in 
stage 1 to reject uncertain predictions. 

The neural networks already hand out class probability as 
consequence of their softmax-layer, this information is already 
available. Decision trees also provide class probabilities as 
ratios of samples in the leaf of the predicted class and random 
forests calculate a mean over all trees to generate a final class 
probability. 

To pick a threshold which rejects most false predictions 
without reducing to many true ones, the number of all 
predictions are counted for various probabilities, shown in Fig. 
4 for the ResNet. 

This visualization indicates that a higher percentage of false 
samples occur within lower class probabilities as correct 
samples. Due to the general high probabilities of the ResNet a 
threshold of 0.9999 was selected reducing 47.4% of all wrong 
classifications while only rejecting 2.8% of the correct 
predictions. 

 
Fig. 4. Number of samples over the class probability for the ResNet 

Likewise, this procedure was conducted with the random 
forest delivering a threshold of 0.6 and resulting in 43.6% less 
false and 3.6% less correct predictions. 

5.3. Hyperparameter optimization of ML-models 

To determine the final hyperparameters of the models first 
the target classes for the classification are presenter and 
subsequently the specific parameters of the random forest and 
the neural networks are discussed. 

For all models’ shortcomings of distinguishing the currents 
and torques were found and accordingly a common 
current/torque class was introduced. A similar problem took 
place when the models where trained to predict the actual and 
target position, therefore the differentiation of those signal 

classes is also postponed to stage 2. Further, all neural networks 
were incapable of separating the positions from the cycles, 
which the random forest was able to accomplish reliably. 

All models could determine the axis type as spindle or linear 
axis for the current/torque class and the random forest even for 
its isolated position class. Conclusively, the neural networks 
classified five signal classes while the random forest could 
categorize into seven classes. 

A recursive feature selection with the permutation 
importance as a metric to evaluate the feature importance of the 
random forest showed that with 10 of the 40 features, no 
decrease of the model’s accuracy occurred and therefore only 
those 10 best features are used to reduce computational costs 
during the preprocessing. The limitation of a maximum depth 
showed no advantage of computation time or memory 
consumption and an amount of 50 learners was found out to be 
sufficient. 

The parameter studies of batch size for the neural networks 
lead to specific hyperparameters for each net, so the FCN and 
LSTM were trained with batch size 16 and the ResNet with 64. 
Since no stable solution with sample size 1000 was found for 
the LSTM, a length of 100 data points was used. A study of the 
dimensionality of the hidden state revealed an optimal amount 
of 200 states and a single layer LSTM was used for the 
predictions. 

5.4. Comparison of ML-models and final evaluation 

A comparison of all models trained with their final 
hyperparameters and 10000 samples, tested on all data, 284400 
samples from the I4.0 milling machine, was conducted with the 
results presented in Fig. 5. The deepest network, the ResNet, 
demonstrated to have the highest accuracy with 97,8% whereas 
the FCN showed the highest minimum recall for all classes with 
94.6% predicting the spindle axis of the current/torque class. 

The random forest achieved a lower accuracy but could 
classify the position axis types and a separate cycle class. 

To finally demonstrate that the models can be used to predict 
signals from different processes and machines, close to 200 
time series of the position, current and torque from the test bed 
have been extracted. Predicting all data of those processes 
showed that all signals classes have been predicted with 
accuracies of 95% by the ResNet and 100% by the random 
forest. None of the models could distinguish if the axis type of 
current and torque was linear or spindle. This is assumed to be 
caused by the different motors of the machine tools and shows 
that the prediction of the axis type from current and torque 
signals is less transferable between different machines. 

The random forests predict the position signals all correctly 
as linear axes and a correct classification of the signals due to 
stage 2 and 3 is possible even without usage of the axis types 
of the current and torque class. 
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Fig. 5. Accuracies and class recalls of the ML-models in comparison 

6. Conclusion and outlook 

The experimental setup was successfully implemented, 
evaluation datasets were captured and the training dataset 
already used in previous work was expanded substantially. 
With this, valuable results could be achieved that will inform 
further research. The studies of the preprocessing parameters 
illustrated the importance of the input data quality and that the 
utilization of a std-filter can improve the model accuracy 
significantly, due to less noisy data of inactive signals. 

Four ML-models have been trained and optimized for the 
task of parameter identification from time series. The test 
results indicated that the neural networks could achieve the 
highest accuracies but, on the downside, did not converge to a 
minimum in which the positions could be separated from the 
cycles. In contrast the random forest due to the manually 
selected features from the preprocessing could reliably predict 
the cycle classes and since the positions can be isolated the axes 
types could also be identified. 

The successful test with different processes and machine 
tools demonstrates that the approach and models are mostly 
transferable. Still, the variety of tested machines is very limited 
and to identify the applicability to more different machine 
tools, as turning machines or even robots, more data from other 
machines is required. The embedding of the ML-models in the 
multistage system shows how the weaknesses of the ML 
approach can be compensated with subsequent rule-based 
expert knowledge. Further, the usage of model-based class 
probabilities was demonstrated to avoid wrong classifications 
on the cost of few correct predictions. 

Future research efforts will concentrate on further dataset 
expansion, increasing the number of identifiable parameters, 
and the practical implementation on various platforms as a 
black-box system. 
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