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Abstract Depression is a prevalent psychiatric disorder that impacts the quality
of life of 300 million people around the world. The complex nature of depression
manifestations in patients and the lack of technological advances in the diagnosis
process has left a lot of room for improvement in this particular domain. At
present, the diagnosis is mainly made by physicians during a conversation
comprising the exploration of the symptoms and the diagnostic criteria for
depression. Recently, the electroencephalography (EEG) has regained interest
as a promising approach to provide bio-markers which are of clinical value in
the diagnostic process and for response prediction to therapy. In the present
landscape, even the addition of EEG data has resulted in a semi-automated
process, where the expert still has to heavily modify the raw data. This adds an
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inherent bias to the process based on the expert and incurs costs as well as time to
the process of diagnosis. In this paper, we present a fast, effective and automated
method that is able to quickly determine if the patient has depression while still
maintaining a high accuracy of diagnosis. Our approach is built on using raw
EEG-data, performing frequency domain preprocessing in order to split the data
into its different frequency domains and to create EEG ’images’. These images
are then treated by a convolutional neural network, which is a novel approach in
this area. Experimental results have shown to provide outstanding results and to
work without the need for feature engineering or any human interaction, which
is a core strength of the model we are proposing.

1 Introduction

One of the worldwide leading causes of disability is depression. It is a frequently
occurring mental disorder which has diverse symptoms and can lead to a decline
in the quality of life. Depression impacts all aspects of the affected person’s
life whether it be school, work or even family life. In extreme cases, it leads
to suicidal tendencies (Kupfer et al., 2012). Even though effective treatments
exist today, it is seen that less than half of the affected people receives treatment.
Reasons for this trend are not only the social stigma, lack of trained health-care
providers and lack of resources, but also false diagnosis. There is a high rate of
misdiagnosis for depression whereby people with non-psychiatric diseases could
show similar symptoms and thus get diagnosed as affected . More than 300
million people of different ages and social background suffer from depression,
thus in order to treat them best, a correct diagnosis is necessary (World Health
Organization, 2017). Nevertheless, a major epidemiological study has shown,
that primary care doctors identify only 55 % of patients with a clinically
significant depression (Wittchen and Pittrow, 2002).

One method which might contribute to major depression diagnosis (MD
diagnosis), apart from using questionnaires, is the analysis of the electroen-
cephalogram (EEG) (Motomura et al., 2002), which measures the electrical
activity of the brain cells over time and can thus record and track brain wave
patterns. Usually, the EEG’s electrodes are connected at multiple defined lo-
cations on the scalp at once, leading to a multi-channel EEG structure. Any
irregularities in the recorded activity can be a sign of brain disorders and
thus, can help with the medical diagnosis of patients. Depending on the device
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and need, different numbers of measurements per second (sampling rates) are
used. A discriminant for depression, as it corresponds to the EEG behavior, is
the inability of the human brain to go from an active state to a drowsy state.
Therefore, the diagnosis of depression seeks to find this underlying trend in EEG
readings taken during a session (Hegerl et al., 2012). Currently, the diagnosis
of depression is handled primarily by doctors. The usage of EEG information
along with the field expertise of doctors are the prime movers in the diagnosis,
however this process is susceptible to errors due to the number of variables
involved. Semi-automated techniques have been employed for the diagnostic
process but they rely heavily on feature engineering and costly human operators.
The aim of this paper is to provide a fully automated solution for analyzing raw
EEG data while making use of machine learning tools.

1.1 Problem Formulation

In order to efficiently analyze EEG-data, the signal’s artifacts must usually
be removed by algorithms or experts, e.g., Sai et al. (2018) and Parvinnia
et al. (2014). This step is essential for a correct interpretation of the EEG-
signal (Tatum et al., 2011). Finding a method in which this step is not required,
but still offers a good accuracy, can be useful for users. Additionally, false
removals of artifacts by experts can be avoided by removing this step. Splitting
up EEG-data into different frequency bands and analyzing the temporal order
has shown differences between healthy and MD patients. This improves the
classification of depression (Hegerl et al., 2012). Thus, it makes sense to split
the EEG-signal of each channel and include all of the resulting time-series in
the classification process.

Each EEG-signal is represented by a univariate time series) = {C1, C2, . . . , C=},
which is a sequence of data points measured equidistantly over time and =

samples. The EEG-device records the voltage (microvolts) at different locations
at the same time. This can then be transformed into power of frequency bands
as a multivariate time series M is generated. Each element <8 represents
a univariate time series, while any timestamp of " now consists of < ·C =

{<1C , <2C , . . . , <�C }, where by C we denote the number of channels the EEG-
device is recording (Zheng et al., 2014). Given a specific number of EEG-
channels �, length of the time series ! and class H ∈ {0, 1} of the training data,
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the goal is to learn a model

Ĥ : R�×! −→ {0, 1} (1)

that, given the EEG recording of one patient, predicts whether this patient suffers
from depression or not. The classification model Ĥ is learned by minimizing a
binary classification loss:

min
\

L(H, Ĥ) = 1
%

%∑
8=1

−(H8 log( Ĥ8) + (1 − H8) log(1 − Ĥ8)) (2)

on a training data set of % patients. Here the vector \ denotes the parameters
learned during the optimization. These parameters are used by the model to
predict whether or not the input signal corresponds to a depressed or healthy
patient. By minimizing the above mentioned loss function, we maximize the
accuracy – the number of correctly classified patients divided by the number of
all patients – of our classifier.

There exist many different methods to approach this minimization problem.
A variety of optimization algorithms such as gradient-based methods or even
second order methods such as quasi Newton methods have been developed over
time. More important is the choice of the prediction model, as the data is highly
complex and structured. Lately, neural networks have gotten much attention due
to their outstanding accuracies in fields such as image recognition, which also is
a domain that uses complex and structured data.

Convolutional neural networks (CNNs) (Goodfellow et al., 2016) are a
type of deep feed-forward artificial neural networks that have been applied to
many areas in order to optimally classify objects. CNNs haven been especially
useful in the classification of images, see e.g. Sharif Razavian et al. (2014)
and Cireşan et al. (2012). A CNN takes a structured input, passes it through
multiple convolutions and max-pooling layers, where it learns a rich feature
representation of the data. Finally, fully connected layers are used on the
downsampled input, to then compute a prediction. Convolutional layers change
the dimension of the data by applying different kernels, which are automatically
learned from the loss signal and correspond to the most important features. The
max-pooling layers will save only the maximum value of a specific region and
are used to downsample the input while keeping the most important aspects of
the data. The fully connected layers have connections to all nodes in the previous
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layer and represent a high-level reasoning. The resulting network can classify
patterns, independent of their location in the input image which is shown in
(Robert, 2014). In the case of analyzing depression, the output layer must return
a binary value, however, for problems with multiple classes, the extension is
straightforward.

In order to optimally classify depressed patients, each EEG-signal will be
split into its different frequency domains, then aligned and vertically added
for each newly generated time series of every channel. The resulting matrix
is then treated as an image and thus be used as input for the CNN. By trying
multiple architectures, an optimally fitted architecture will be created. Using
this approach, we build a model that functions without human interaction while
still achieving a high accuracy.

2 Related Work

Manual time series classification, in order to classify major depression disorder,
can be done by observing the vigilance states of the EEG signal. It is split
up into different frequency bands, which are then analyzed regarding their
trend (Hegerl et al., 2012). In order to classify depression via extracted features,
common machine learning tools as logistic regression, k-nearest-neighbors
and linear discriminant analysis can be used, if features of the EEG signal are
extracted (Hosseinifard et al., 2013). There are many features that can be
pulled off an EEG-signal in order to differentiate depressed patients from healthy
controls. Examples are the power spectrum of different frequency bands, its
standard deviation, mean and entropy. These can be computed and used for the
classification via different machine learning algorithms (Katyal et al., 2014).

Some methods use only one channel for the task of classifying depres-
sion. In order to do so, the spectral asymmetry index SASI and detrended
fluctuation analysis (DFA) get computed, combined and then their accuracy
determined (Bachmann et al., 2017). Other methods use multiple channels to
classify depression. They tend to compute features for every channel and use
all of them for classification. The adaptive weighted distance nearest neighbor
algorithm can be used to classify multi-channel EEG signals. It assigns weights
to the training samples in order of their importance by using nearest neighbor
classifier with leave-one-out cross validation. These weights can then be used
to optimize the nearest neighbor search of new input queries. In this setting,
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coefficients of an autoregressive model (AR), the Higuchi fractal dimension and
the power of the 4 frequency bands alpha, beta, delta and theta, of each channel,
are used as features (Parvinnia et al., 2014). Another approach is the determi-
nation of wavelets in the EEG-pattern. These can be used to compute relative
wavelet energy and the coefficients of a discrete wavelet transformation. These
features then can be used as input for standard machine learning algorithms
as SVM, multilayer perceptrons, Naive Bayes and k-nearest neighbors (Amin
et al., 2017). The coefficients extracted from the wavelets can also be used as
input of feed forward neural networks (Hazarika et al., 1997).

Neural networks also play their part in the classification of EEG-data. One
method to classify multi-channel EEG-data, is the Multi-Channel Deep Convolu-
tion Neural Network (MC-DCNN). It takes a time series as input and computes
features separately for every channel via CNN and feeds them into a multilayer
perceptron to perform classification (Zheng et al., 2014). Convolutional neural
networks also have proven to be a good tool for image classification (Sharif Raza-
vian et al., 2014) (Robert, 2014). They offer many possibilities and can be
applied to different fields. CNN and other neural networks have also already
been used in order to classify schizophrenia (Chu et al., 2017) and other
disorders using the patients EEG-data.

3 Data Foundation

As the basis for this work, the dataset of Hegerl et al. (2012) is used which is
provided by the Department of Psychiatry and Psychotherapy of the University
Leipzig, Germany. This dataset is completely labeled, and was collected making
use of the same EEG equipment on a 15 minutes timeframe per session from 60
patients. It will be referred to as the Leipzig Dataset.

3.1 Proposed Method: Frequency Domain Exploration

By knowing that the decrease on vigilance stages is said to be an important
characteristic of depressed patients (Hegerl et al., 2012), it is important to first
comprehend what a decline on vigilance stages means. The brain operates in 4
different vigilance stages: Stages 0, A, B and C. Stage 0 is characterized by a
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total awake state, while stage C corresponds to a sleep onset. Stages A and B are
also subdivided into more specific states. In that sense, a decline on vigilance
stages represents a state of higher relaxation, but in order to detect a decline,
first it is necessary to properly identify each stage.

A decrease in vigilance states is not necessarily associated with a decrease
in a channel energy level along time. Instead, it takes into account the shape,
the amplitude, the presence of eye movement and also the predominant range
of frequencies which composes the signal (Hegerl et al., 2017). The four
predominant ranges are referred to as delta (2–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz) and beta (12–25 Hz). Therefore, a classification method based on
a frequency dimension analysis was proposed. The benefits are twofold: The
analysis converts the data into the frequency domain allowing a different analysis
and it provides a more compact data representation. The intuition of the method
can be seen in Figure 1.

Figure 1: Frequency Domain transformation applied to EEG data. A Fast Fourier Transform (FFT)
was applied, followed by the extraction of the Power Spectrum.
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3.2 Preprocessing

The preprocessing phase followed the work of Hegerl et al. (Hegerl et al., 2012).
The dataset was initially filtered (high-pass 0.5 Hz, low-pass 70 Hz, and notch
filter 50 Hz), and then divided into 1 second segments. With respect to the
proposed method (frequency domain exploration), the power spectrum technique
presented in Hjorth (1970) was applied independently to each of the 1 second
segments. Due to the Nyquist limit, only frequencies up to half of the sampling
rate can be obtained. In case of the Leipzig dataset, the reading was available
with a 500 Hz sampling rate, thus only frequencies up to 250 Hz can be obtained.
The initial approach was to concatenate the results obtained for the consecutive
segments, creating a new series as depicted in Figure 2 (each color represents a
different channel and for each second the full range of frequencies from 0 to the
selected threshold is used).

Figure 2: Schematic illustration of power spectrums applied to channels – in this example, three
channels. Each second of each power spectrum was determined by using the method described in
Figure 1.

Initial experiments on the loaded data identified the need of reducing its original
physical size due to memory and time constraints. In the dataset used, a one-
second segment corresponds to 500 readings for each channel (34 channels),
collected for 15 minutes (900 seconds). This represents almost 19 million
sampled values – per patient. Having initially 60 patients (Hegerl et al., 2012),
a complete representation of the data 918 million sampled energy levels. Table 1
represents the initial dimensions without dimensionality reduction.
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Table 1: Sample values from dataset.

Amount of Seconds Readings # of Channels # of Patients Total Number of
per Second Sample Values

900 500 34 60 918 millions

In order to reduce the data size, time skipping has been applied to collect one
out of every 4 seconds of reading, a frequency threshold has been set to only
use data within the ranges of the vigilant states and, finally, a signal resample
technique was performed to compress the characteristics of the data. The basic
idea is simply to obtain a more compact representation which still preserves the
overall trends along time.

4 Model Architecture

A Deep Neural Network has been proposed to learn the discriminant features
for correctly classifiying depression after the frequency domain treatment of
the raw data. After the preprocessing we are left with a reduced sized instance
which is then treated as an image input to the model. The channel inputs serve
the height � and the frequency range (considered after the power spectrum)
acts as the width , of the image, having # seconds concatenated. Secondly we
downsample the preprocessed values by using 4 different regimes i.e. 1000, 2000,
3000, and 4000 samples. These EEG frequency domain images of size � ×, ′,
where , ′ is the downsampled width, is then used as an input for the model.

The basis of the architecture was derived using the ImageNet (Krizhevsky
et al., 2012) architecture that has proven to have excellent performance in the
image recognition domain. The treatment of the preprocessed data as images
with one color channel allows us to leverage the pattern recognition power of
the deep CNNs to extract the discriminant patterns of depression. Given that
the input coming in from the EEG recording device is multi-channel in nature,
this enables us to treat each of these channels as a component of the height of
the image. Thereby, we stack them one on top of the other to create an EEG
“image”. The height of these images are the EEG channels and the width is the
EEG readings inside these channels over time. The multi-channel nature of the
data also enables us to make the image by stacking multiple channels.
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4.1 Architecture Details

The base architecture is a 5 layer CNN interleaved with max-pooling layers
and using the ReLu (Rectified Linear Unit) activation function as described by
H = max{0, G}. Two fully connected layers were used before the output layer
and the final output was softmax to provide “Depressed” or “Not-Depressed”.
An overview over this architecture can be seen in Figure 3. In order to arrive at
the best model for this particular setup, 4 variants of the base architecture were
created which went from shallow to deep in terms of the filters they incorporated.
The details of the architecture of the convolutional layers can be seen in Table 2.
The kernel size has been kept constant for all the variants in order to have a
practical learning time. The aim of the architecture is to capture the general
trends in the time series using the first three convolutional layers and capture
the higher level trends using the last two layers.

Table 2: Architectures breakdown with respect to the number of filters applied in each convolutional
layer. Each convolutional layer is followed by a max pooling layer with a stride of 2.

Name Filters / Complexity

Arch_1 3, 6, 8, 12, 18
Arch_2 3, 6, 12, 24, 28
Arch_3 3, 6, 12, 20, 30
Arch_4 3, 6, 18, 36, 72

Figure 3: The above figure shows the base architecture components. Each convolutional layer is
followed by a ReLU activation layer and a maxpooling layer. The different architectures mentioned in
Table 2 correspond to the filters used in each layer respectively. Maxpooling stride has been chosen to
decrease the input size by half. This technique is used to enhance the feature space while reducing the
spatial size of the images ( that have been created after the preprocessing).
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Along with the variants of the architecture, we also investigated the degree
to which the data could be down-sampled in order to achieve comparable
performance while simultaneously reducing the time needed to learn the model.
The downsampling technique was inspired by Esling and Agon (2012), where
they showed that time series could be effectively downsampled while still
maintaining the integrity of the underlying trends of interest to us in the
depression classification as stated in Hegerl et al. (2017).

The downsampling of the preprocessed data enabled us to extract the relevant
trends within the sampling rate while bringing down the volume of the data
at the same time. This was necessary, as mentioned in Section 3.2 and also as
shown by empirical evidence.

5 Experiments

5.1 Baselines

According to Hosseinifard et al. (2013) good accuracies for the classification of
depressed patients can be achieved by analyzing non-linear features of EEG-
data. In their research, they compute the Higuchi-fractal, detrended fluctuation
analysis (DFA), correlation dimension and Lyapunov exponent for every channel
of the EEG-data and use those as input for classifiers as linear discriminant
analysis (LDA), logistic regression (LR) and k-nearest-neighbors (KNN). For
further improvement of the results, the features were combined and also applied
to the classifiers. The data was split into two thirds training data and the
remaining third for testing purposes. A genetic algorithm1 on the training data
was used for feature selection. In order to make most of the data, leave-one-out
cross validation was used in this step.

In our research, the data only consists of 60 instead of 90 patients. Also,
artifacts of the EEG-data are not removed. This resulted in a high volatility of
the feature values. This problem is known and usually the reason, why artifacts
get discarded (Tatum et al., 2011). The Lyapunov exponent did not return good
results and was thus not used. Apart from that, the steps of Tatum et al. (2011)
were followed. The best accuracy was computed when the data was downsampled

1 https://github.com/manuel-calzolari/sklearn-genetic
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to 2000 samples. Average accuracies for different classifiers and features over
multiple runs can be seen in Table 3. Performing feature selection via a genetic
algorithm with leave-one-out cross-validation slightly increased the accuracy for
the combined features using an LDA-classifyer to an average of 68 %. LR and
KNN did not benefit from feature selection. This was verified by also performing
reccursive feature elimination.

Table 3: Average accuracies for baseline-model using different features and classifiers.

Classifier / Feature Correlation Higuchi DFA Combination

LDA 55.6 % 52.5 % 52.5 % 66.2 %
LR 54.5 % 57.5 % 52.6 % 60.1 %

KNN 61.7 % 57.2 % 53.7 % 62.01 %

5.2 Our Model

In order to test our model, the preprocessing was done to create two versions
from the Leipzig dataset. One subset included frequencies up to 40 Hz while
the other contained frequencies up to 100 Hz. These datasets were then brought
together into one combined dataset. This artificial augmentation combined with
the subsampling over the individual instances enabled us to double the amount
of data that was available for the training of the model. This augmentation
also enabled us to sample from the varying frequency ranges and still capture
the underlying data trend which is the discriminant feature of depression. The
combined dataset was then treated with the hold-out technique with 25 % of the
data being used for testing the model. All models were trained using an Nvidia
Tesla K80 GPU. The criteria for convergence was classification error based on
the cross-entropy loss (Robert, 2014), the training was stopped when there was
no noticeable reduction in the error anymore.

Each architecture as shown in Table 2 was tested with the down-sampling
rate from 1000 to 4000 in steps of 1000 samples. This enabled us to find
the right trade-off between information used vs training time. The results are
presented in Table 4. It also shows the best average accuracy of the baseline
model in Section 5.1. It is easy to see, that our model outperforms the baseline
considerably.
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Table 4: Results: Mean Accuracy for the different architectures (± standard deviation) for 10 runs.

Name /
Sampling 1000 2000 3000 4000

Arch_1 85.56 % ± 4.10 84.78 % ± 2.76 85.75 % ± 5.34 83.58 % ± 6.60
Arch_2 84.78 % ± 2.63 84.06 % ± 2.86 86.94 % ± 4.95 84.30 % ± 1.90
Arch_3 88.14 % ±1.31 84.05 % ± 6.31 88.62 % ± 2.63 89.18 % ±5.82
Arch_4 87.42 % ± 3.46 85.99 % ± 3.25 82.14 % ± 1.56 87.54 % ±2.31

Baseline 68 %

The mean accuracy listed in Table 4 shows that comparable performance can
be achieved with an intermediate architecture. The need for a more complex
architecture like Arch_4 does not enhance the accuracy significantly. Therefore,
the most complex architecture, namely Arch-4, is not selected. This results in
a reduction of the training time of the model due to a decrease in the model’s
complexity. This is further corroborated by the standard deviation which can
also be seen in the results. Figure 4 shows the comparison of accuracy of the 4
architectures for the 4 sampling rates. The standard deviation (SD) for the runs
is shown by the black bar atop the columns. The length of the bar corresponds
to the SD (shorter the bar, smaller the SD).

Figure 4: Comparison of architectures.
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It is evident from Figure 4 that it is possible to get a very good performance
by using an intermediate architecture such as Arch_3. We can also see that a
more rigid downsampling regime leads to a more consistent performance in
terms of the variance of the results. This can be due to the models overfitting on
the higher samples of the data. Therefore a more rigid downsampling adds an
intrinsic regularization to the model and leads to a more consistent performance.

It is also possible to inspect the confusion matrix in Table 5, which describes
the best model performance both for depressed and non-depressed patients.
It was obtained by running twice a 5-Fold Cross-Validation (with different
random splits) on the Leipzig dataset and using the described data augmentation
technique (different frequency threshold).

Table 5: Confusion Matrix (n = 240).

Predicted Value \ True Value Depressed Non-depressed

Depressed 106 (44.2 %) 20 (8.3 %)

Non-depressed 14 (5.8 %) 100 (41.7 %)

6 Conclusion

In this paper, we have shown that the advances made in the field of machine
learning can contribute to improvement of MD diagnosis. We have presented a
novel architecture which could be used with the frequency domain approach of
the time series data coming in from conventional EEG equipment. The proposed
methodology has been shown to perform better than the baseline methods tested
here as well as to provide an end to end mechanism with which raw EEG data
could be used for the diagnosis of depression. We have investigated several
downsampling regimes with roughly comparable accuracy. Lastly, we have
analyzed several architectures in terms of their complexity, to arrive at one
that provides the best trade-off for training time versus accuracy. In contrast to
the other methods, there is also no need to set the specific frequency ranges
which will be used to set each of the vigilance states, since the model learns
that by itself. Thus, future work on this model could possibly lead to a broader
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generalization with respect to other mental health-related applications. The
small dataset size did not allow us to keep a holdout set. Also, the accuracy
might get further increased by using a higher or lower sampling size, that we
did not try.
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