
���������
���������
����

������
��������	
����	���	�������

Derivation of Change Sequences from
State-Based File Di�erences for
Delta-Based Model Consistency

Master’s Thesis of

Jan Willem Wittler

at the Department of Informatics
KASTEL – Institute of Information Security and Dependability

Reviewer: Prof. Dr. Ralf H. Reussner
Second reviewer: Prof. Dr.-Ing. Anne Koziolek
Advisor: M.Sc. Timur Sağlam
Second advisor: Dr.-Ing. Erik Burger

15th December 2020 – 14th June 2021

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

This document is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

https://creativecommons.org/licenses/by/4.0/deed.en

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 14th June 2021

. .
(Jan Willem Wittler)

Abstract

In view-based software development, viewsmay share concepts and thus contain redundant
or dependent information. Keeping the individual views synchronized is a crucial property
to avoid inconsistencies in the system. In approaches based on a Single Underlying Model
(SUM), inconsistencies are avoided by establishing the SUM as a single source of truth from
which views are projected. To synchronize updates from views to the SUM, delta-based
consistency preservation is commonly applied. This requires the views to provide �ne-
grained change sequences which are used to incrementally update the SUM. However, the
functionality of providing these change sequences is rarely found in real world applications.
Instead, only state-based di�erences are persisted. Therefore, it is desirable to also support
views which provide state-based di�erences in delta-based consistency preservation. This
can be achieved by estimating the �ne-grained change sequences from the state-based
di�erences.

This thesis evaluates the quality of estimated change sequences in the context of model
consistency preservation. To derive such sequences, matching elements across the com-
pared models need to be identi�ed and their di�erences need to be computed. We evaluate
a sequence derivation strategy that matches elements based on their unique identi�er
and one that establishes a similarity metric between elements based on the elements’
features. As an evaluation baseline, di�erent test suites are created. Each test consists of
an initial and changed version of both a UML class diagram and consistent Java source
code. Using the di�erent strategies, we derive and propagate change sequences based on
the state-based di�erence of the UML view and evaluate the outcome in both domains.

The results show that the identity-based matching strategy is able to derive the correct
change sequence in almost all (97 %) of the considered cases. For the similarity-based
matching strategy we identify two reoccurring error patterns across di�erent test suites.
To address these patterns, we provide an extended similarity-based matching strategy that
is able to reduce the occurrence frequency of the error patterns while introducing almost
no performance overhead.

i

Zusammenfassung

In der sichtenbasierten Software-Entwicklung ist es möglich, dass mehrere Sichten das
gleiche Konzept abbilden, wodurch Sichten redundante oder abhängige Informationen
darstellen können. Es ist essenziell, diese individuellen Sichten synchron zu halten, um
Inkonsistenzen im System zu vermeiden. In Ansätzen mit einem Single Underlying Model
(SUM) werden Inkonsistenzen vermieden, indem das SUM als zentrale und einzige Infor-
mationsquelle genutzt wird, von welcher Sichten projiziert werden. Um Sichten mit dem
SUM zu synchronisieren, wird in den meisten Fällen eine deltabasierte Konsistenzhaltung
verwendet. Diese nutzt feingranulare Änderungssequenzen, welche von den einzelnen
Sichten bereitgestellt werden müssen, um das SUM inkrementell zu aktualisieren. In realen
Anwendungsfällen ist die Funktionalität zur Bereitstellung dieser Änderungssequenzen
jedoch selten verfügbar. Stattdessen werden nur zustandsbasierte Änderungen persistiert.
Es ist insofern wünschenswert Sichten, welche nur zustandsbasierte Änderungen bereit-
stellen, in deltabasierter Konsistenzhaltung zu unterstützen. Dies kann erreicht werden,
indem die feingranularen Änderungssequenzen von den zustandsbasierten Änderungen
abgeleitet werden.

In dieser Arbeit wird die Qualität von abgeleiteten Änderungssequenzen im Kontext von
Modellkonsistenzhaltung evaluiert. Um eine solche Sequenz abzuleiten, müssen überein-
stimmende Elemente aus den verglichenen Modellen identi�ziert und deren Unterschiede
bestimmt werden. Um übereinstimmenden Elemente zu identi�zieren, nutzen wir zwei
Strategien. Bei der einen Strategie werden übereinstimmende Elemente anhand ihres
eindeutigen Bezeichners erkannt. Bei der anderen Strategie wird eine Ähnlichkeitsmetrik
basierend auf den Eigenschaften der Elemente genutzt. Als Evaluationsgrundlage werden
verschiedene Testszenarien erstellt. Für jeden Test wird eine initiale und eine geänder-
te Version von sowohl einem UML-Klassendiagramm als auch Java-Code bereitgestellt.
Wir nutzen die verschiedenen Strategien, um Änderungssequenzen basierend auf den
zustandsbasierten Änderungen der UML-Sicht abzuleiten, geben diese an das SUM weiter
und untersuchen die Ergebnisse in beiden Domänen.
Die Ergebnisse zeigen, dass die Strategie, welche eindeutige Bezeichner nutzt, in fast

allen betrachteten Fällen (97 %) die korrekte Änderungssequenz liefert. Bei der Nutzung
der ähnlichkeitsbasierten Strategie können wir zwei wiederkehrende Fehlermuster identi�-
zieren. Bezüglich dieser Probleme stellen wir eine erweiterte ähnlichkeitsbasierte Strategie
vor, welche in der Lage ist, die Auftrittshäu�gkeit der Fehlermuster zu reduzieren ohne
die Ausführungsgeschwindigkeit signi�kant zu beein�ussen.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Goals of the Thesis . 2
1.2. Structure of the Thesis . 3

2. Foundations 5
2.1. Automated Model Consistency Preservation 5

2.1.1. Single Underlying Model . 5
2.1.2. Delta-Based Consistency Preservation 6

2.2. The Automated Model Consistency Approach V�������� 6
2.2.1. Virtual Single Underlying Model 6
2.2.2. Consistency Preservation . 7

2.3. Model Comparison . 7
2.3.1. Model Matching . 8
2.3.2. Model Di�erencing . 9
2.3.3. The Model Comparison Framework EMF Compare 9

3. RelatedWork 11
3.1. Automated Model Consistency Preservation 11

3.1.1. Single-Underlying-Model-Based Approaches 11
3.1.2. Further Approaches . 12

3.2. Model Comparison Strategies . 12
3.3. Common Model Editing Operations . 13

4. Concept 15
4.1. State-Based Di�erences in Delta-Based Consistency Preservation 15
4.2. Relaxation of Change Sequence Correctness 16
4.3. Modeling Domain Considerations . 17

4.3.1. Critical Domains for Consistency Preservation 17
4.3.2. Consistency Speci�cation Requirements 19

4.4. Evaluation Baseline Construction . 19
4.4.1. Test Case Setup . 19
4.4.2. Model Correctness Metric . 20
4.4.3. XML as a Prototype for Semi-Structured Files 21

v

Contents

5. Implementation 23
5.1. Pipeline Setup . 23

5.1.1. Virtual Single Underlying Model Initialization 25
5.1.2. State-Based Change Application and Propagation 26

5.2. Output Validation . 27
5.2.1. UML Model Validation . 27
5.2.2. Java Model Validation . 28

5.3. Reactions Re�nements . 29
5.3.1. Move-Operations . 29
5.3.2. Java Accessor Tagged Correspondences 31

5.4. UML Domain Particularities . 32
5.4.1. XML Identi�ers . 32
5.4.2. Associations . 33

6. Test Suites 35
6.1. Arti�cially Constructed Systems . 35

6.1.1. Atomic Change Operations . 35
6.1.2. Common Refactoring Operations 37

6.2. Exemplary Medium-Scale Systems . 40
6.2.1. Example Model Match Challenge 40
6.2.2. Example Thesis System . 40

6.3. Generated Large-Scale Systems . 42
6.4. External Model Editor . 44

7. Findings 47
7.1. Classi�cation of Consistency Preservation Problems 47
7.2. Limitations of Existing Derivation Strategies 49

7.2.1. Identi�cation of Error Patterns 49
7.2.2. Synthesis of Failing Test Cases 50

7.3. Custom Similarity-Based Matching Strategy 52

8. Evaluation 55
8.1. Test Suite Results . 55

8.1.1. Existing Strategies Results . 55
8.1.2. Custom Similarity-Based Matching Strategy Results 57

8.2. Performance Overhead of State-Providing Views 59
8.3. Threats to Validity . 61

9. Future Work 63

10. Conclusion 65

Bibliography 67

A. Appendix 73

vi

List of Figures

5.1. Test Case Pipeline . 24
5.2. UML Association XML Example . 33

6.1. UML Model for Atomic Change Operations 36
6.2. UML Model for Common Refactoring Operations 38
6.3. UML Models for Example System Model Match Challenge 41
6.4. UML Model for Example Thesis System 42

7.1. Match Correction for Unmatched Containers 52
7.2. Match Correction for Unmatched Leaves 53

8.1. Average Performance Overhead of State-Providing Views 59
8.2. Absolute Execution Time of Change Sequence Derivation 60
8.3. Absolute Execution Time of Change Sequence Derivation for Huge System 61

vii

List of Tables

4.1. Critical Cases for Domain Relationships in a V-SUM 19

5.1. UML File Comparison Default Values . 28

6.1. Atomic Change Operations Test Description 37
6.2. Common Refactoring Operations Test Description 39
6.3. Model Match Challenge System Test Description 41
6.4. Thesis System Test Description . 43
6.5. Generated Large-Scale Systems Test Description 44

7.1. Consistency Preservation Problems . 48
7.2. Error Pattern Occurrences per Test Case for Similarity-Based Strategy . . 51

8.1. Change Sequence Properties Achieved by Existing Strategies 56
8.2. Change Sequence Properties Achieved by Custom Strategy 57
8.3. Error Pattern Occurrences per Test Case for Custom Strategy 58

A.2. Change Sequence Size per Test Case per Strategy 74
A.1. Model Correctness per Test Case per Strategy 75

ix

1. Introduction

Due to the rising size of current software systems, it is hardly possible for any engineer
to fully understand the developed system in its entirety. One approach to deal with
this complexity is View-Based Software Development. Here, the system description is
split up into di�erent Views each describing a part of the system under development.
By splitting up the system into smaller parts, only domain experts for the individual
views are required instead of for the entire system. A single view, or model, can contain
arbitrary information, like the documentation of requirements, a software architecture
diagram, or executable source code. One problem introduced by the fragmentation of the
system description are redundant or dependent information across views, as views can
share overlapping information. If these redundancies or dependencies are not correctly
managed, inconsistencies can occur. However, manually identifying and correctly managing
redundancies to avoid inconsistencies is a challenging and time-consuming task. Therefore,
various approaches for automated model consistency preservation exist.

One approach for automated model consistency preservation is the usage of a Single
Underlying Model (SUM) [3]. A SUM contains the entire system description and serves as
the single source of truth. It cannot be directly accessed but rather only indirectly from
views. In the SUM-based context, a view is a partial projection of the SUM. Since the
SUM is transparent for the engineer, the bene�ts of view-based software development still
apply for this approach. However, since internally there is no information fragmentation
anymore, no redundancies and thus no inconsistencies can occur.
A challenge with the SUM approach is propagating the changes of a view to the SUM

as view changes introduce temporary inconsistencies. Changes to a view can either be
expressed state-based or delta-based. In the state-based representation, the initial and
changed view state are provided. In the delta-based representation, the initial view state
and a sequence of �ne-grained changes that need to be applied to the view to obtain
its changed state are provided. A common approach for propagating view changes is
delta-based consistency preservation [16] which propagates the delta-based changes of a
view to the SUM. Using delta-based instead of state-based changes introduces the bene�t
that updates to the SUM are only performed incrementally instead of regenerating entire
parts which might lose information. To obtain the �ne-grained change sequences, they
need to be recorded by the editor which is used to modify the view. However, this limits
the real world applicability drastically as most industry tools do not o�er this functionality
and will not be extended to support it (due to closed source, legacy software, or simply
budget limits). Therefore, it is highly desirable to also support delta-based consistency in
cases where only state-based information is available.
To convert state-based changes to delta-based ones, the �ne-grained change sequence

needs to be estimated from the state-based information. This task is a complex and
ambiguous task with an in�nite search space as multiple change sequences can lead to the

1

1. Introduction

same �nal state. Therefore, although broad tooling support for this task is available, none
of them can guarantee to derive a correct change sequence in every case. Even though
an incorrect change sequence may lead to the correct �nal state of the considered view,
the propagation of these incorrect changes may lead to incorrect updates in the SUM. To
illustrate this, renaming an element may look identical to deleting the old and inserting a
new element with the modi�ed name in one view but may trigger distinct operations in
the SUM.
For the derivation of change sequences several strategies exist. A common concept

is to �rst identify matching elements across the compared models and then derive the
di�erences from those matches. A match should combine those elements of di�erent
models which are considered to represent the same (but possibly modi�ed) information. In
identity-basedmatching, thesematches are constructed based on the unique static identi�er
of each element. However, since identi�ers are not always available or not consistent
across the compared models, another approach is to use similarity-based matching. Here,
the features of elements are compared on their similarity to obtain a distance metric.

1.1. Goals of the Thesis

In this thesis we evaluate two existing strategies for change sequence derivation on their
correctness in the context of model consistency preservation. Therefore, we construct
test suites that are considered to pose challenges to the strategies and identify problems
occurring when running the strategies against them. The evaluated strategies apply
identity- respectively similarity-based matching. We show that for the identity-based
matching strategy, almost always a correct change sequence is derived. For the similarity-
based matching strategy, two reoccurring error patterns are identi�ed. To address these,
we provide a customized similarity-based matching strategy that is able to reduce the
occurrence probability of the identi�ed errors.
To derive a change sequence, the model comparison framework EMF Compare [9]

is employed. EMF Compare is embedded into the Eclipse Modeling Framework (EMF)
[52], supports binary and ternary model comparisons of arbitrary domains, and is highly
customizable and extensible. Both evaluated matching strategies are provided by EMF
Compare and are evaluated unmodi�ed.

For model consistency preservation the V�������� framework [34] is used. V��������
realizes the SUM concept using a Virtual Single Underlying Model (V-SUM). A V-SUM
leverages the SUM requirements to allow individual coupled models instead of a monolithic
one. As this again introduces redundancies, the individual models are kept consistent by
applying Model-to-Model (M2M) transformations whenever one of the models changes.
The de�nition of these transformations is expressed as Consistency Speci�cations between
the models.

Although our test suites aim to generate generic conclusions, providing tests for every
domain is not feasible. Therefore, we limit our test suites to contain only views of the
Uni�ed Modeling Language (UML) [26] and the Java [44] domain. More precisely, in every
test changes to a UML class diagram are performed and its in�uence on Java source code
is observed. These domains form good candidates due to their large semantic overlap

2

1.2. Structure of the Thesis

and their broad usage [17, 5]. Furthermore, they are already supported by the chosen
consistency preservation framework.
In this thesis we present an early approach towards the integration of real world

applications into automated model consistency preservation. While a correct derivation
of change sequences is an important aspect, other problems also need to be solved to
fully support unobserved editors. De�ning triggers to start the consistency preservation,
dealing with data not covered by the SUM like layout information, or supporting outdated
view states are just a few of them.

1.2. Structure of the Thesis

This thesis is divided into an introduction to the topic in chapters 1 to 3, a presentation of
our approach in chapters 4 to 6, its evaluation and obtained �ndings in chapters 7 and 8,
and �nally an overview of future work and a conclusion in chapters 9 and 10. In more
detail, the individual chapters contain the following:
Chapter 2 introduces the foundations for our work. It details model comparison and

model consistency preservation and presents the used frameworks for these tasks. In
chapter 3, related work is presented. Alternative approaches to automated model consis-
tency preservation and di�erent model comparison strategies are discussed. Furthermore,
identi�ed commonmodel editing operations are introduced which are reused in the created
test suites.

In chapter 4, the general concept of this thesis is explained. We highlight how the evalu-
ated test suites are embedded into the view-based approach, present the chosen metrics
for the evaluation, and reason why the considered tests are generalizable. Chapter 5 gives
insights on the implementation details, adjustments required to the applied consistency
speci�cations, and limitations of the chosen model domains. In chapter 6 the designed
test suites are explained. We discuss the selected test cases, why they pose challenges to
change derivation, and how they can be transformed into abstract concepts.
Chapter 7 presents the �ndings from evaluating the strategies on the designed test

suites. We identify generic problems that may occur and present a strategy optimized for
model consistency preservation. In chapter 8 the results of our evaluation are presented.
We evaluate our optimized and the existing strategies based on their correctness of the
generated models and their performance. Additionally, we discuss threats to the validity of
our approach. Finally, chapter 9 suggests topics for future work, and chapter 10 concludes
the thesis and summarizes the obtained results.

3

2. Foundations

In this chapter, the foundations on which this thesis is based are explained. We discuss
approaches towards automated model consistency preservation using a Single Underlying
Model and Delta-Based Consistency Preservation. Then, we present a speci�c realization
of this concept which is the V�������� framework. Furthermore, we show how model
di�erences are derived and its practical realization in the EMF Compare framework [9].

2.1. Automated Model Consistency Preservation

With the increasing complexity of modern software systems, di�erent approaches are
developed to abstract away from this complexity. In View-Based Software Development,
this complexity is reduced by splitting the system into role-speci�c Views, each presenting
only a part of the system. A view can contain arbitrary information about the system, like
requirements descriptions, modeling artifacts, or software parts. Since view semantics
can overlap, the same information may appear in di�erent views. This information
redundancy is a problem as inconsistent states can get introduced if only some of the
redundant information is updated [18]. However, manually preserving the consistency
across views is hardly feasible, especially with a growing number of views and their sizes.
Therefore, various approaches for automated model consistency preservation exist. One of
these is using a Single Underlying Model from which views are projected, and Delta-Based
Consistency Preservation [16] to propagate changes from the views to the SUM.

2.1.1. Single Underlying Model

To solve the problem of possible inconsistencies across views, in the Orthographic Software
Modeling (OSM) paradigm the concept of a Single Underlying Model (SUM) is established
[3]. “A SUM is a complete de�nition of a system and contains all known information about
it. It contains no redundant or implicitly dependent information and is thus always free of
contradictions, i.e., inconsistencies” [34]. Access to the SUM is not provided directly, but
through editable views which provide a partial projection of the underlying model. By
having the SUM as the transparent single source of truth while still providing individual
views on the systems, the bene�ts of view-based software development are preserved
although internally a monolithic system description is used.
Since views are projections of the SUM, they need to be generated dynamically. For

this purpose, di�erent model transformations are proposed [4, 10, 11, 56]. Using the
transformations, a view can be generated from the SUM and changes performed on the
view can be propagated back to the SUM. Although the SUM allows no inconsistencies, a

5

2. Foundations

view is allowed to be temporarily inconsistent while editing. However, eventually changes
need to be synchronized with the SUM to restore consistency.

2.1.2. Delta-Based Consistency Preservation

Changes to a view can either be represented state-based or delta-based. The latter one
represents changes explicitly by providing the �ne-grained sequence of change opera-
tions performed to obtain the modi�ed state. In the former one, changes are implicitly
represented by providing the initial and changed state of the view.
In the current SUM-based model consistency approaches, most frameworks use delta-

based change representations [34, 40, 56, 57] to apply delta-based consistency preservation
[16]. In delta-based consistency preservation, the �ne-grained changes are incrementally
applied to the SUM to perform small updates. An alternative approach was to use coarse-
grained changes which would require to regenerate parts of the model on every change.
However, in the context of model consistency the regeneration of model parts might lose
those information which are projected away when generating the view as they are not
included in the changed view state.

2.2. The Automated Model Consistency Approach V��������

One practical realization of the SUM-based model consistency approach is the V��������
framework [34]. Since the de�nition of a metamodel for a SUM, the Single Underlying
Metamodel (SUMM), is a challenging task as the engineer needs to be an expert for all
involved domains, the constraints on the SUM are leveraged. Instead of a SUM, a Virtual
SUM (V-SUM) is employed which consists of individual, but coupled models together with
Consistency Speci�cations between those models.

2.2.1. Virtual Single Underlying Model

For the application of a SUM, there are several challenges in practice. First, the de�nition of
a SUMM is a highly complex task. Not only does the information of every domain needs to
be know, but also the dependencies and shared concepts across domains. With increasing
system sizes, �nding a domain expert for all considered domains is di�cult. Second,
the extension, evolution, or maintenance of a SUMM may easily introduce unintended
side e�ects as every change may impact various domains. Therefore, in the V��������
approach the monolithic SUM concept is replaced by a modular Virtual SUM (V-SUM)
concept [34].

A V-SUM provides the same guarantees as a SUM, namely being a complete and consis-
tent system description. However, it realizes this by integrating individual, but coupled
models instead of using one single large model. The coupling between the models is
expressed in Consistency Speci�cations. Therefore, the metamodel of a V-SUM, the Virtual
SUMM (V-SUMM) consists not only of the metamodels of the individual models but also
contains the consistency speci�cations between them. A bene�t of the modular design
is that existing metamodels are compatible to the V-SUMM, only requiring the addition

6

2.3. Model Comparison

of consistency speci�cations. Furthermore, the mentioned problems of SUMM de�nition,
extension, evolution, and maintenance are reduced as multi-domain knowledge is only
required for creating the consistency speci�cations. Since multiple speci�cations between
di�erent subsets of domains can be formulated, there is no need for a single expert for all
domains.

2.2.2. Consistency Preservation

While the usage of a V-SUM simpli�es the application for the engineer and the domain
expert, it introduces new consistency constraints between the internal models. Since
the coupled models may contain redundant information, it is crucial that this shared
information is synchronized. In the V�������� approach, consistency is guaranteed
inductively on changes to the model. This requires the initial state of the V-SUM to be
consistent and transitions between states to preserve consistency. Since empty models are
implicitly consistent, a consistent initial state is trivial to obtain. An approach to integrate
existing models while still preserving a consistent state is presented by Leonhardt et al.
[38]. To preserve consistency when transitioning states, delta-based consistency is used.
Redundant or dependent information between models is expressed using consistency

speci�cations. Whenever one of the internal models changes, the consistency speci�ca-
tions de�ne which Model-to-Model (M2M) transformations need to be executed to keep
the coupled models consistent. Since these transformations apply changes to another
model and thus may trigger other consistency transformations, transformations may be
applied transitively or even form cycles. To preserve the trace of the consistency trans-
formations, corresponding elements can be made explicit using Correspondences. These
link two elements of di�erent domains together such that for future transformations the
corresponding element can be retrieved by traversing the correspondence.

To realize the consistency speci�cation, V�������� uses Consistency Preservation Rules
(CPRs) betweenmetamodel pairs [36]. Each rule de�nes conditions for a pair of metaclasses
that need to be met by their instances to be consistent. To express these, three consistency
languages are provided [33, 36]. The Reactions language enables imperative, unidirectional
speci�cations from a source to a target metamodel. The Mappings language provides
support for declarative, bidirectional speci�cations between a pair of metamodels. In
the Commonalities language, rules are expressed by de�ning shared concepts of di�erent
metamodels.

2.3. Model Comparison

One requirement of delta-based consistency preservation is that �ne-grained changes are
provided. To obtain them when only state-based di�erences are available, they need to
be estimated. This can be accomplished using model comparison approaches. The aim
of model comparison is to detect and represent di�erences between models. Common
applications are the detection of version di�erences between models or of similarities for
distinct models. While theoretically an arbitrary number of models can be compared, in
practice binary and ternary comparisons are dominant. The process of model comparison

7

2. Foundations

can be split into the two phases Model Matching and Model Di�erencing [8]. In the
matching phase, similar elements from the compared models are matched together. In
the di�erencing phase, di�erences based on the computed matches are generated. These
phases are also established in the model comparison framework EMF Compare [9]. EMF
Compare is used in this thesis as the basis for the generation of model di�erences.

2.3.1. Model Matching

In the model matching phase, corresponding elements between the considered models are
matched together. Elements correspond to one another if the model matching strategy
identi�es them to represent the same (but possibly modi�ed) information. While commonly
matches contain one element of each model, matches with multiple elements of the same
model or unmatched elements are also possible. The computed matches are used in the
following phase to compute di�erences in the local scope of elements rather than in the
global scope of the entire model. Since the problem of model matching can be reduced to
the graph isomorphism problem, which is known to be NP-hard [47], di�erent approaches
have been proposed to deal with this complexity. These approaches can be grouped into
four di�erent categories.

Static Identity-Based Matching For the static identity-based matching approach every
model element is required to have a persisted, non-volatile unique identi�er. Two elements
are matched if their identi�ers are identical. Since only identi�ers are considered, this
approach promises fast performance and low susceptibility to errors, and is therefore the
preferred approach whenever unique identi�ers can be guaranteed. However, in common
real-world applications such identi�ers cannot be guaranteed. Models may get constructed
independently of another (thus having completely di�erent identi�ers) or simply do not
support identi�ers at all.

Signature-Based Matching To overcome the requirement for static unique identi�ers,
the signature-based matching approach computes identi�ers dynamically. The di�erent
features of an element are combined using a user-de�ned function to compute a unique
identi�er. Like in identity-based matching, elements are matched if their identi�ers are
identical. While this approach allows any models to be compared, it is highly dependent
on the function used to calculate the identi�ers.

Similarity-Based Matching Another approach which does not rely on static identi�ers is
similarity-based matching. In contrast to the previous two approaches, a match is not
based on strict equality of some identi�er but rather uses a distance metric to compute
how similar two elements are. A side e�ect of this non-binary matching is that many-
to-many matches are possible. To determine the distance between two elements, the
aggregated similarity of the elements’ features is computed. Since features tend to have
di�erent importance on the similarity of elements — e.g. an element’s name is often a
good similarity indicator while the exact numerical type of some attribute does rarely
in�uence the semantics of the element — weight parameters for the features need to be

8

2.3. Model Comparison

speci�ed. Even though this weighting function still strongly in�uences the result, the
approach enables less strict matching compared to signature-based matching. A drawback
of similarity-based matching is its performance. Since distances are computed on a pair of
elements instead of just once per element, the search space increases.

Custom Language-Specific Matching Algorithms While the three previous approaches are
meant to be used independently of the modeling domain, this approach tailors a matching
strategy for one speci�c modeling language. Commonly, it is based on similarity-based
matching but provides a weighting function speci�c for the considered domain. Using this
approach, results with high accuracy and great performance can be achieved. However,
the algorithm needs to be adjusted for every modeling language individually, thus lacking
generalizability.

2.3.2. Model Di�erencing

In the model di�erencing phase, the computed matches are translated into di�erences.
A local di�erencing on the matches instead of a global one on the entire model o�ers
the bene�ts of reduced complexity, as only elements need to be compared, and increased
performance, as all matches can be processed in linear time. The drawback of this local
comparison is that errors done in the matching phase cannot be detected or undone and
will result in incorrect di�erences. Therefore, it is of crucial importance to receive optimal
matches.
To generate the di�erences, for every match its a�ected elements are compared and

di�erences of each feature are extracted. Furthermore, creation or deletion di�erences are
created for every unmatched element, depending on whether the element is unmatched in
the old (creation) or the new (deletion) model. For a created element, additional di�erences
are generated to update its features to the presented state.

Di�erences can be represented in di�erent ways which should abstract away from the
used matching technology and the underlying metamodels. In the scope of this thesis, we
use the di� Metamodel [20] to describe di�erences. Here, di�erences are represented as
a sequence of atomic change operations. These operations are the creation, deletion, or
movement of an element, or the modi�cation of some element feature. However, other
representations, like Edit scripts [30], exist.

2.3.3. The Model Comparison Framework EMF Compare

EMF Compare [9] is a model comparison framework integrated into the Eclipse Modeling
Framework (EMF) [19]. It provides generic support for the binary or ternary comparison
of any EMOF-compatible models. EMOF is the meta-metamodel for any model in the EMF
environment and is compliant with the MOF standard [25]. Internally, the comparison
algorithm follows the introduced two phase approach. To allow a high reusability and
customization, the two phases are completely separated such that the logic for one phase
can be exchanged while still being compatible.

The matches and di�erences are represented as models conforming to thematch and di�
Ecore metamodels respectively [20]. Their representation is optimized to be model-based,

9

2. Foundations

compact, self-contained, transformative, compositional, and metamodel independent. This
enables a high abstraction from the underlying technology and enables further processing
such as con�ict detection or model transformations [9].
By default, EMF Compare uses a combination of an identi�er- and similarity-based

matching approach. If the compared elements all provide an identi�er, they are matched on
their identi�er equality, otherwise the similarity metric is used. The similarity is computed
by analyzing an element’s name, its content, its metaclass, and its relations. Several
heuristics, like limiting the search space to only elements in a certain neighborhood, are
used to �lter out noise and reduce the execution time. Modifying the framework to only
use identi�er- or similarity-based matching or even integrating a custommatching strategy
is also possible.
In addition to model matching and di�erencing, EMF Compare adds three additional

phases which are executed after the di�erences are computed. First, in the Equivalences
phase, changes representing the same operation are identi�ed. This is mainly required as
in EMOF-based models a change to a reference may automatically adjust the opposite of
the reference, thus the two changes need to be executed together. Second, the Requirements
phase identi�es dependencies between changes. Here changes that form preconditions for
other changes are identi�ed, such that they can be applied in the correct order. Last, for
ternary comparisons Con�icts are detected.

10

3. RelatedWork

Since this thesis is an early approach on evaluating change sequence derivation strategies
for delta-based model consistency, there is, to the best of the author’s knowledge, very
few literature for this speci�c topic. Therefore, in this chapter we rather give an overview
of work related to the individual parts of the chosen approach. These are the underlying
model consistency framework, the chosen model comparison tooling and the considered
strategies, and the editing operations considered for evaluation.

3.1. Automated Model Consistency Preservation

Besides of the already introduced V�������� approach, there exist several other solutions
for automated model consistency preservation. These can be grouped into approaches
which are also based on the Single Underlying Model (SUM) approach and those which
follow di�erent strategies.

3.1.1. Single-Underlying-Model-Based Approaches

Based on their original idea for Orthographic Software Modeling (OSM) [3], Tunjic and
Atkinson use asymmetric, bidirectional model transformations to synchronize views and
the SUM. Using the transformations, deltas of a view can be transformed to deltas for
the SUM or vice versa such that all artifacts can be kept consistent. Another approach
based on OSM is presented by Cicchetti, Ciccozzi, and Leveque [13]. In contrast to the
previous work, they do not use deltas but generate di�erence metamodels [14] for the
underlying model and each view. When a change occurs, it is represented in the associated
di�erence metamodel which can be transformed into the other di�erence metamodels
using higher-order transformations, and then applied to the corresponding views or the
underlying model.
An approach similar to the V�������� approach is the Role-Based Single Underlying

Model (RSUM) approach [57]. It also uses consistency preservation rules to keep individual
models consistent. However, it additionally allows to combine and reconnect existing
metamodels and uses role-based programming [37] rather than object-oriented program-
ming. MOdel CONSistency Ensured by Metamodel Integration (M�C����MI) is another
approach that combines the usage of an essential SUM with the support for integrating
existing (meta)models [40]. Existing models are integrated into one SUM by applying a
chain of �ne-grained transformations (Operators). Due to the reversibility of the operators,
the initial models are preserved as views which are updated using the chain of operators.
An overview of the described approaches, including the V�������� approach, and a

comparison between them can be found in [41]. One similarity of them is their usage of

11

3. Related Work

delta-based consistency. The focus of the existing literature is rather on the modeling and
preservation of consistency after the �ne-grained change sequences have been obtained.
In contrast, this work uses the existing consistency preservation mechanism provided
by the V�������� framework as a foundation to evaluate the quality of change sequence
derivation strategies.

3.1.2. Further Approaches

If di�erent models are kept consistent without a SUM as the ground truth, the individual
views combined form the entire system description. Thus, changes in one view need
to get directly translated to other views. One approach for this is to use coarse-grained
changes and coupled transformations to synchronize view points [58]. In this approach,
�ne-grained changes are derived using identity-based matching and transformed into
coarse-grained changes using detection rules written in Maude [15]. These changes are
then propagated to other view points using explicit correspondence links. The authors
motivate the usage of coarse-grained changes as the system modeler rather thinks in these
dimensions than in low-level ones and thus a more natural environment is provided to the
engineer.

Another approach that has direct synchronization between views is the CoWolf frame-
work [24]. It aims at delivering user friendly utilities for model driven development by
providing textual and graphical editors for di�erent model types. Models are kept con-
sistent in a delta-based approach using Henshin rules [2] which can either be created
manually or using the SiLift environment [29].

3.2. Model Comparison Strategies

Model comparison has a wide scope of applications. Besides its usage in model consistency
preservation, one of the most important applications is model versioning. As the text-based
comparison algorithms commonly used in version control systems like SVN or GIT had
been shown to be insu�cient for model versioning [42], numerous model comparison
approaches have been proposed. Since the vast number of approaches is out of scope for
this work, the interested reader can �nd a broad overview in [31, 53]. One frequently cited
early approach is UMLDi� [60] which provides model comparison based on custom, for
UML models optimized, similarity metrics. Since incorporating the speci�c UML semantics
into the metric limits its application to the UML domain, Lin et al. proposed a similar
approach but rather for arbitrary metamodels (DSMDi�) [39].
Another metamodel-independent approach is EMF Compare [9]. It uses similarity

metrics for model matching but provides a high degree of customizability to adapt for
custom strategies. It is model-based, i.e. its output is again represented by a model to
enable further model-to-model or model-to-text transformations.
Since model comparison is an inherently complex task, taking the bene�t of being

metamodel-agnostic introduces the drawback of reduced accuracy which has been shown
for EMF Compare and DSMDi� by Kolovos et al. [35]. Furthermore, Pietsch et al. presented

12

3.3. Common Model Editing Operations

a basic benchmark suite for model change scenarios which can pose problems for model
comparison techniques [46].
As an approach to overcome these limitations, Addazi et al. extend the EMF Compare

matching algorithm with semantic matching [1]. They compute the semantic distance
of objects using a lexical database to identify semantic similar words and extend the
matching policy by this semantic distance measure. While this approach outperforms the
default EMF Compare algorithm in particular benchmarks, it su�ers from a low precision
value due to overly many matches and is in�uenced heavily by the chosen ontological
speci�cation.
Müller and Rumpe extend the EMF Compare framework with the possibility for the

developer to provide presettings which specify how certain elements have changed [43].
While this can resolve any incorrect matches and enables the storage of the presettings
together with the changed model such that matching is performed correctly not only on
the local machine, the user has to know which matches need to be corrected manually and
thus additional e�ort is required.

3.3. CommonModel Editing Operations

Even though models are used in various use cases, there are certain editing operations
that occur more frequently. Parul and Sidhu propose �ve abstract refactoring operation
categories for UML class diagrams into which more speci�c operations can be grouped
[45]. These are adding or removing features, moving some method, and generalizing or
specializing an element. More speci�c refactoring operations for UML class diagrams are
presented in [51]. Here, seventeen model smells are identi�ed by grouping results from
previous literature. For each model smell, a sequence of refactoring operations to correct it
is listed. For this purpose, 34 refactoring operations are provided. These scale from single
operations like adding a parameter to complex changes like extracting common features
to a superclass. Another catalog for model smells and refactoring operations is collected
by Fowler [22]. In contrast to the previous work, this catalog is not domain speci�c and
listed refactorings are based on the author’s experience and preferences.

To emphasize that refactoring operations are not limited on intra-model editing, Wim-
mer et al. present a catalog of model-to-model refactoring operations [59]. The catalog
includes 24 operations for transformation rules and is derived by analyzing existing trans-
formation examples in the Atlas Transformation Language (ATL) [28]. Like in the UML
class diagram catalog, the presented operations scale from atomic operations to complex
changes. Interestingly, even though the three presented catalogs are collected for di�erent
domains, they share similar operations. As an example, collapsing or expanding hierarchies
are expressed by the refactoring operations Collapse Hierarchy and Extract Superclass in
[22, 51] and by Eliminate Superrule and Extract Superrule in [59].

To examine the application of refactoring operations in real-world applications, Tsantalis
et al. perform an empirical study on three Java projects with a history of six, seven, and
twelve years. To automatically identify refactoring operations, detection rules originally
introduced by Biegel et al. [6] are adopted and applied to model di�erences generated
using DSMDi� [39]. In their study, they identify movement of classes and methods and

13

3. Related Work

the renaming of classes as the dominant refactoring operations, followed by adjustments
to the hierarchy like pulling a method up or extracting a superclass. Basic operations like
the addition or removal of some element are not considered a refactoring operation in this
study and thus do not appear in the results.

14

4. Concept

In this chapter we present our concept for embedding and evaluating views with state-
based di�erences in delta-based consistency preservation. First, we discuss how state-based
di�erences can be supported using model comparison and which existing comparison
strategy approaches we consider in this thesis. Second, we motivate how requirements to
results of the model comparison strategies can be relaxed in the context of consistency
preservation. Third, application scenarios which pose non-trivial challenges to delta-based
consistency preservation are identi�ed. Finally, we present our evaluation baseline which
uses the discussed �ndings to allow generalizable conclusions.

4.1. State-Based Di�erences in Delta-Based Consistency
Preservation

In the theoretical concept for SUM-based approaches, there are no constraints on how
views are synchronized with the SUM. However, almost all current approaches use delta-
based consistency preservation [34, 40, 56, 57]. As discussed in subsection 2.1.2, delta-based
approaches allow to perform only small changes to models instead of regenerating them.
A requirement for its application is the availability of �ne-grained change sequences.
We call views that provide such sequences delta-providing views and views which only
provide state-based di�erences state-providing views. Intuitively, delta-providing views are
supported by delta-based consistency preservation. In contrast, a state-providing view
needs to be extended with the functionality to derive a �ne-grained change sequence from
its state-based changes to be supported by delta-based consistency preservation.

To extend a state-providing view with this derivation functionality, we use model com-
parison. There are four di�erent categories of model matching approaches in model com-
parison: identity-based, signature-based, similarity-based, and custom language-speci�c
algorithms. For the scope of this thesis we compare an identity-based matching and a
similarity-based matching strategy. Although identity-based matching approaches pro-
vide the best matching accuracy and performance, their application scenarios are limited.
Identi�ers may not be available for some or all elements of the model, or they may not be
consistent across the compared models. The latter may especially occur when multiple
people work simultaneously on a project, maybe even using di�erent model editors. For
these cases we consider similarity-based approaches to be the best choice. Similarity-based
approaches provide similar functionality as signature-based ones but are more �exible
by not requiring an exact match of the computed signature but use a distance metric.
Language-speci�c algorithms are not considered as we want to obtain results generalizable
to arbitrary domains.

15

4. Concept

Although bridging from state-based di�erences to delta-based ones is a crucial func-
tionality for integration real world applications, there are further challenges out of scope
for this thesis. One problem we assume to pose major challenges to model consistency
are simultaneous changes to the SUM and a view. If a SUM is modi�ed, views become
outdated and need to be regenerated. However, if the view is in a dirty state, a regeneration
would lose the changed information and thus the update is postponed. If an outdated view
provides delta-based changes — independent of whether they are observed or estimated
— they are based on an outdated SUM as its baseline but need to be resolved against the
updated SUM. This can introduce problems, as referenced elements got modi�ed or deleted.
While this is not a problem speci�c to state-providing views but may occur for any view,
we consider it to occur more frequently for state-providing views as changes are less often
synchronized. To avoid this problem, in this thesis we only consider scenarios in which
the changed view is based on the current SUM state.

Besides of the simultaneous change problem, other challenges are to de�ne triggers to
start consistency preservation and to deal with information of the application which is not
representable in the SUM. To limit the scope of this thesis, we only consider the trivial cases
of these challenges. Although additional data in the form of layout information is produced
during the creation of our models, we ignore it. Excluding layout information from the
SUM is reasonable, as it has no semantic value but only helps the user to understand the
model easier. In future work, one could evaluate how this decorative information can be
recovered by the SUM. Regarding triggers, only manual ones are used. This means that the
consistency preservation is initiated by manually providing the initial and changed view
states. In future steps, this should be extended to be executed automatically at meaningful
occasions. We imagine committing the model to version management or saving it to disk
to be good candidates for automatic triggers.

4.2. Relaxation of Change Sequence Correctness

For the derivation of change sequences, model comparison is used. Commonly, its main
goal is to derive the correct change sequence, i.e. the change sequence that was originally
used to create the changed model. However, for model consistency preservation this can
be relaxed. In particular, the derived change sequence is only an intermediate artifact
which is discarded after consistency is restored. Therefore, though the main target of
this work is to optimize the derived change sequence, its validation does only rely on the
correctness of the SUM. To emphasize this shift of focus, we de�ne two new properties of
change sequences.

De�nition 1 (Conservative Change Sequence). Let + be a view projected from the single
underlying model (*" . Let + 0 be its changed version. Let (�+ ,+ 0 be the change sequence
derived from + and + 0. Let (*"0 be the updated underlying model obtained by applying
(�+ ,+ 0 on (*" using the consistency preservation mechanism.

(�+ ,+ 0 is conservative if + 0 is projected from (*"0.

De�nition 2 (Admissible Change Sequence). Let + be a view projected from the single
underlying model (*" . Let + 0 be its changed version obtained by applying the change

16

4.3. Modeling Domain Considerations

sequence (⇤�+ ,+ 0. Let (�+ ,+ 0 be a change sequence derived from + and + 0. Let (*"0 be
the updated underlying model obtained by applying (⇤�+ ,+ 0 on (*" using the consistency
preservation mechanism.
(�+ ,+ 0 is admissible if applying (�+ ,+ 0 on (*" using the consistency preservation mecha-

nism produces (*"0.

A conservative change sequence preserves the changed state of the considered view
after change propagation while giving no warranties for other information of the SUM.
An admissible change sequence guarantees the correctness of the SUM and thus implicitly
also of the changed view. As a consequence, an admissible change sequence is always
conservative. Following the de�nitions, the goal of change sequence derivation for model
consistency can be reformulated to deriving an admissible change sequence, as this is
exactly the case when the SUM is correct. We require every change sequence to be at least
conservative. Generating an invalid changed view should never be an accepted outcome.
To distinguish that for the scope of model consistency preservation the admissibility of a
change sequence is su�cient to produce correct results, we avoid the term correct change
sequence in the latter of this work. Rather, we refer to the change sequence that was
used to produce the changed state as the actual change sequence. Since the actual change
sequence produces the correctly updated SUM, it is by de�nition admissible and thus also
conservative.

4.3. Modeling Domain Considerations

Since we require any derived change sequence to be at least conservative, we want
to consider only scenarios where a conservative change sequence is not automatically
admissible. A conservative change sequence can always be obtained by deleting all
elements of the original view and creating all elements of its changed version. Thus, if
a conservative change sequence was always admissible, the change sequence derivation
would be trivial. We call scenarios in which a change sequence might be conservative but
not admissible critical cases. As a SUMM is constructed by combining the information of
di�erent domains, we call domains that form a critical case critical domains. Furthermore,
as we use a V-SUMM for consistency preservation, the used consistency speci�cations
can also in�uence which cases are critical. To make our results independent of the used
consistency speci�cations, we require certain properties from the speci�cations.

4.3.1. Critical Domains for Consistency Preservation

Whether a SUMM constructed by combining certain domains forms a critical case or not is
dependent on the view type from which changes are provided. The same SUMM can be a
critical case for some view types and not critical for others. To illustrate this, propagating
changes from a view which represents the entire SUM is trivially not critical. However, a
view which only contains a fraction of the information for some element can be a critical
case. Here, renaming an element preserves the information of the element not in the
view, while a deletion and re-insertion with the new name loses it. However, in the view

17

4. Concept

both changes look identically. Both described views can be projected from the same SUM,
resulting in one critical and one not critical case.
The described examples already highlight one aspect to identify a critical case: the

portion to which elements of the SUM are represented in the view. In the �rst described
example, every element is completely covered by the view, thus forming no critical case.
In the second example, an element is only partially covered, therefore being a critical
case. The third case are views which only cover elements completely but do not cover
every element. In this case, the classi�cation is depending on the relation between the
covered and stripped elements. If there is a relation of any kind (for example association,
inheritance, or containment) between the covered and stripped elements, the scenario is
critical. Since the relation to the stripped element can be seen as a property of the covered
element, this property is not covered by the view and thus the element can be considered
to be not completely covered. If all covered elements have no relation to stripped elements,
it is not a critical case as any changes to the covered elements cannot in�uence the stripped
elements.
We can apply this classi�cation also to the V-SUM approach. Since individual coupled

models are used instead of one monolithic model, the covered portion of an element trans-
forms to whether there is a correspondence of one element in another model. Therefore, to
identify critical cases, we need to assess how much the domains overlap semantically. For
two domains, there can either be none, a partial, or a complete semantic overlap. Since for
the scope of this thesis we only consider a view which is projected from a single internal
model, we can simplify this further to the semantic overlap of the a�ected model to the
other models. We say the other domains are distinct from the changed model, have a
partial overlap, or are contained. Distinct and contained domains form the extreme cases
where no or a complete semantic overlap is present. In all other cases, the domains are
partially overlapping. An additional property that may appear in a V-SUM are ambiguous
representations between models. One semantic concept of one domain may allow multiple
di�erent representations in another domain. A concept is only considered as ambiguous
representable if it is represented in both domains to some extent. Otherwise, for partially
overlapping domains every exclusive information would be considered to be an ambiguous
representation as it can be arbitrarily changed while preserving consistence.
Since the amount of semantic overlap and the possibility of ambiguity are distinct

properties, there is a total of six combinations of which �ve are possible; distinct domains
cannot be ambiguous as there are no shared semantic concepts. The combinations are
shown in Table 4.1. Any possible ambiguous case (partial overlap or contained) and
every case with partially overlapping domains forms a critical case. For ambiguous
representations, di�erent change sequences may lead to the construction of a di�erent of
the multiple possible representations of an ambiguous concept. For partially overlapping
domains, exclusive information of some domain may get lost or incorrectly preserved
depending on the change sequence. Distinct domains are always consistent with each
other as they share no semantic overlap. Therefore, they can never form a critical case.
Finally, contained domains with non-ambiguous representations are also not critical. Since
we require every change sequence to be conservative, the changed domain is updated
to its correct new state. As all information of the contained domains is also available in

18

4.4. Evaluation Baseline Construction

Distinct Partial Overlap Contained
Non-Ambiguous � + �

Ambiguous (�) + +

� non-critical + critical

Table 4.1.: Critical Cases for Domain Relationships in a V-SUM

the changed domain, it can be regenerated from the changed domain independent of the
applied change sequence.

4.3.2. Consistency Specification Requirements

For our classi�cation of critical domains, certain properties of the consistency speci�cation
are implied. If the consistency speci�cation is wrongly con�gured, conservative change
sequences may lead to incorrect results even in non-critical cases. To avoid these, a
consistency speci�cation needs to be complete and correct. A consistency speci�cation is
complete if every possible operation is supported. A consistency speci�cation is correct if
every occurring semantic concept is correctly con�gured. The latter property includes
that constructed correspondences should not dependent on the order in which a model
is constructed. Both requirements can be weakened to apply only for the occurring
scenarios and their a�ected elements if the scope of occurring scenarios is known for
some application. This simpli�cation is necessary for real-world applications, as the
domains in these contexts are often too complex for taking every single element and
every possible change sequence into account. We think every consistency speci�cation in
consistency preservation applications should ful�ll these completeness and correctness
requirements. Otherwise, incorrect models may occur even for delta-providing views as
certain operations are not supported or the order of distinct operations produces di�erent
results.

4.4. Evaluation Baseline Construction

In order to evaluate how state-providing views perform in delta-based consistency preser-
vation, an evaluation baseline is necessary. However, providing test scenarios for all
domains and consistency speci�cations is not feasible. Therefore, we chose a critical
domains pair on which our evaluation is based. To reduce the bias introduced by the
choice of the domains, we avoid exploiting certain particularities of the domains but rather
apply general concepts that can be found across domains. Nevertheless, it is not claimed
that there are no cases which are not considered by this thesis.

4.4.1. Test Case Setup

The chosen case study includes the UML [26] and Java [44] domains. In particular, the
modi�ed state-providing view is a UML class diagram and the coupled model consists of
Java source code. Since in the current V�������� implementation views can only implicitly

19

4. Concept

de�ned by representing one internal model, the state-providing view and the internal UML
model are identical. As changes are propagated from UML to Java, we call UML the source
domain and Java the target domain. These domains were chosen for several reasons. UML
class diagrams are widely used and can be serialized using an international standardized
eXtensible Markup Language (XML) representation, thus even if the generalization for
some insight is not possible, it is still valid for the UML domain which makes it applicable
to a wide range of scenarios. Furthermore, its metamodel is MOF-compatible, which makes
it very representative for other metamodels. Java is one of the most used programming
languages in academia and industry [5]. In addition, for most UML elements there is an
unambiguous 1:1 mapping to some Java element which makes the consistency speci�cation
easy to understand. Finally, Java contains additional information not present in the UML
domain (e.g. method bodies) and some ambiguous consistency mappings (e.g. accessor
methods) which makes the case study a critical case. Besides of the scienti�c reasons,
the case study was also chosen due to some practical motivation. First, both domains
are already supported by the V�������� framework such that there is a serialization and
deserialization functionality to transform from �le representation to in-memory model
representation (or vice versa respectively). Second, consistency speci�cations from UML
to Java and from Java to UML already exist (though incomplete, see section 5.3).
For every test case, we construct the V-SUM with initial UML and Java models which

are consistent to each other. Since we want to identify cases when a conservative change
sequence is not admissible, the SUM needs to be extended with exclusive or ambiguous
information not present in the changed view. In our case, the Java domain needs to be
extended. Although critical domains are chosen, the properties that make them critical,
namely partial overlap and ambiguous, also need to be exploited. If no such information
was present in the SUM, it could be stripped from the SUM thus making the domains non-
critical. Following on the V-SUM setup, we provide a changed state of our state-providing
view and observe the results in the V-SUM. More precisely, a modi�ed UML class diagram
is provided to derive a change sequence from it. This change sequence can then be used
to update the coupled models using the consistency preservation.

4.4.2. Model Correctness Metric

To automatically evaluate the resulting V-SUM of our test cases, we need to introduce some
metric. The target of a test case is to produce an admissible change sequence. Also we
want to verify that our precondition of a conservative change sequence is hold. Although
the conservative and admissible properties are de�ned in the scope of view and SUM, due
to our test setup we are able to simplify them. Since the changed view exactly matches
the internal UML model, we can assess whether a change sequence is conservative by
comparing the internal UML model to the expected one. As the V-SUM only consists of the
UML and the Java model, this leaves only a validation of the Java model when checking
whether a change sequence is admissible.

Since a conservative change sequence is a requirement, any deviation from the expected
UML model in the internal one should cause the test to fail. Therefore, a su�cient metric
for the source model is its equality to the expected source model. Any deviating source

20

4.4. Evaluation Baseline Construction

model is caused by a non-conservative change sequence which breaks our assumptions
on the derivation strategies.

For the target model we know due to the correct and complete consistency speci�cation
and the conservative change sequence that every target domain element that is covered by
the consistency speci�cation will be correct independent of whether the derived change
sequence is admissible. Therefore, in the case of an incorrect change sequence, only a
small portion of the target model will be incorrect. Consequentially, common metrics
like precision, recall, or F1-score would produce misleading high accuracy scores even
though the change sequence could be far from the actual change sequence. To shift the
evaluation focus to the faults in the model, another metric would be to count the number of
incorrect model elements. However, this requires to match the elements of the two models
to identify the incorrect ones. As model matching is already performed during change
sequence derivation, the metric would be dependent on a feature of the evaluated strategy
which reduces its meaningfulness. Therefore, the target model metric is simpli�ed to also
evaluate the equality of the generated target model compared to the expected target model.
Since the target model is split over multiple �les, the equality can be evaluated for each
�le separately. For incorrect models, the incorrect elements can be annotated manually.

4.4.3. XML as a Prototype for Semi-Structured Files

As the considered domains are selected to serve as a generalizable case study, we need to
assess the in�uence of the underlying �le serialization. In both the chosen consistency
preservation framework and the model comparison framework, models are represented
using an in-memory representation. Although this requires some deserialization logic to
convert from the �le to the in-memory representation, it abstracts away from underlying
�le semantics. This already weakens the in�uence of the chosen �le serialization. Further-
more, the �le serialization of our considered UML view, the eXtensible Markup Language
(XML), can be considered as prototypical for a wide range of �le structures.

The structure of a �le can be categorized into structured, semi-structured, and unstructured
data [23]. Structured data requires a prede�ned data model and is represented in a tabular
format. One of themost common examples for this are SQL databases. Semi-structured data
uses tags or markers to self-describe the structure of its �le in a prede�ned matter. Famous
representatives of semi-structured data are XML or JSON �les, or No-SQL databases.
Unstructured data does not adhere to some data model or some prede�ned structure.
Audio or video �les belong to this category but also text-heavy data like messages or
documents; a common keyword associated with unstructured �les is Big Data.
We can consider XML as a prototype for both structured and semi-structured data

as any �le of these structure categories can be converted to XML. Structured data can
be represented in XML by converting each table row to an XML element with children
representing the di�erent table cells. An example of modeling relational databases in XML
is described in [48]. For semi-structured data, they all share the concept of a hierarchical
self-describing structure such that this structure can be simulated in XML. Note that
even though the �le itself can be represented in XML, speci�c traits of the �le (like fast
queries and indexes in relational databases) are not necessarily preserved. Nevertheless,
as we only consider the model comparison properties of the �les, this can be neglected.

21

4. Concept

Although unstructured data can be embedded into XML, it cannot be converted to a
self-structured format with a semantic concept as there is no prede�ned structure or
a describing metamodel. While this prevents to make any conclusions from XML to
unstructured data, unstructured data cannot be described by an in-memory model neither
— due to the absence of a metamodel — and is therefore not applicable to the considered
model comparison technology.

22

5. Implementation

Before being able to evaluate di�erent change sequence derivation strategies, a test envi-
ronment needs to be built that enables change propagation from state-providing views and
validation of the achieved results. Furthermore, a correct and complete consistency speci-
�cation is needed to be assured that test scenarios are failing due to incorrectly derived
change sequences and not due to an incomplete or inconsistent consistency speci�cation.

In this section, the implementation steps for building the test environment are discussed.
The pipeline used for automatic model loading and change propagation is shown in sec-
tion 5.1 and following, its output validation is described in section 5.2. In section 5.3,
implemented solutions for inconsistencies and missing features of the consistency spec-
i�cation are highlighted. Lastly, particular traits of the chosen domains and required
adjustments for these are presented in section 5.4. The test environment is built as a test
application of the V�������� framework and is available on GitHub1. In order to build the
system, adjusted versions of the V�������� framework2 and its domains3 are needed.

5.1. Pipeline Setup

In the current implementation of the V�������� approach, there is no explicit concept of
views. Rather, a view is de�ned implicitly as a projection of one of the coupled models
contained in the V-SUM and assumed to provide �ne-grained change sequences. While
it is desirable to eventually support de�ning and customizing view types, it is beyond
the scope of this thesis. Therefore, instead of providing a full implementation to support
di�erent types of views, a lightweight adapter to integrate state-providing views in the
model consistency preservation is implemented.

This adapter is integrated in a pipeline which allows to automatically setup the V-SUM,
propagate changes, and validate the results. In order to setup the V-SUM, the pipeline
loads the baseline state of the state-providing view from �le into the V-SUMwhich triggers
internal transformations. More precisely, the triggered transformations generate a coupled
consistent model of the target domain. As a second step, the changed state of the state-
providing view is used to derive a change sequence which is then applied to the V-SUM.
This triggers again transformations which update the considered view and modify the
coupled model of the target domain. To distinguish between conservative and admissible
change sequences, the generated target domain model can be modi�ed — with restricted
operations to preserve consistency — before change propagation. An overview of the
pipeline is shown in Figure 5.1.
1https://github.com/JanWittler/Vitruv-Applications-ComponentBasedSystems
2https://github.com/JanWittler/Vitruv
3https://github.com/JanWittler/Vitruv-Domains-ComponentBasedSystems

23

https://github.com/JanWittler/Vitruv-Applications-ComponentBasedSystems
https://github.com/JanWittler/Vitruv
https://github.com/JanWittler/Vitruv-Domains-ComponentBasedSystems

5. Implementation

Action Source Target

preload source
model

"(⇢ "(

generate target
model

"⇤

)

extend target
model

")

model validation "(⇢ ")⇢ "(")

derive change
sequence

"0

(⇢
(�"(," 0

(⇢

apply change
sequence

"0

(

propagate
change sequence "0

)

model validation "0

(⇢
"0

)⇢ "0

("0

)

Input

construct propagate

propagate

Figure 5.1.: Test Case Pipeline

24

5.1. Pipeline Setup

To allow a more precise description of the pipeline steps, in this section we use the terms
source model and target model instead of referring to views and the SUM. As in our test
cases the SUM only consists of two models, we can directly reference them. The source
model is the state-providing view that is modi�ed, and the target model is the coupled
model which is kept consistent.

5.1.1. Virtual Single Underlying Model Initialization

Since as of implementing the pipeline, the V�������� framework did not support to store
and reload its V-SUM in a version control compatible way — as it relied on absolute paths
of the local machine — each test case reconstructs the V-SUM from an initial empty state.
Although this introduces a performance overhead, it makes the pipeline not susceptible to
changes of how the V�������� framework stores its internal state.
The V-SUM is based on the initial source model state "(⇢ which is provided as an

external �le. To setup the V-SUM, the external source model is copied into the V-SUM.
However, copying the �le to the appropriate location is not su�cient, as the V��������
instance needs to be aware of the newly added view to adapt its internal state. Instead,
an empty internal source model "(is created, the external source model is loaded into
memory, and every element of the external model is copied to the internal model. Using
this approach, V�������� is able to register the creation and modi�cation of every model
element as if the model was created in an observed editor. Thus, delta-based changes are
made available to the consistency preservation.
Since delta-based changes are available, the delta-based consistency preservation can

be applied to generate a coupled consistent target model "⇤

) . Although the delta-based
changes are not necessarily matching the actual change sequence, we can assume them to
be admissible. This can be done as the target model is empty before propagating changes
and thus does not contain domain-inherent information, and the consistency speci�cation
is required to be correct. Generating an admissible change sequence is crucial as otherwise
the test evaluation is based on a wrong initial state. However, to completely assure the
model correctness, it is additionally validated after the V-SUM setup.

Although after change propagation already coupled source and target models are gener-
ated, the V-SUM setup requires the additional step of extending the target model (obtaining
")). This is necessary such that not every conservative change sequence is also admissible
(see subsection 4.4.1). However, the target model cannot be arbitrarily modi�ed as changes
may trigger some consistency preservation modi�cations in the source domain. Perform-
ing a change that triggered modi�cations in the source model would break the assumption
taken for this thesis that the baseline state of the state-providing view is identical to the
regenerated view from the SUM.
To not perform changes that a�ect the source model, the presented test cases modify

the target model only in two di�erent ways. Either additional information that cannot
be represented in the source domain is added, or information where the consistency
speci�cation allows multiple representations is changed to an alternative representation.
In our test cases, we allow two speci�c modi�cations. First, a method body may be added
to some Java method or constructor. Since method bodies do not have a representation in
UML, no consistency transformations are triggered. Second, Java property accessory may

25

5. Implementation

be deleted. Property accessors are automatically generated on UML �eld creation but have
no explicit representation in UML. Thus they form an ambiguous case, their existence or
absence results in the same consistent UML model. Since once more simply copying the
changed Java �le to the appropriate �le system location is not su�cient as the V��������
instance needs to be aware of the changes, modi�cations are speci�ed programmatically
using the JaMoPP-based model representation of Java �les [27].

5.1.2. State-Based Change Application and Propagation

With the initial V-SUM state being setup, the state-based changes can be applied. Therefore,
a second external model of the source domain"0

(⇢
is provided. This model represents the

changed state of the evaluated state-providing view. The V�������� framework already
provides the function propagateChangedState(Resource newState, URI oldLocation)

to propagate state-based changes. This function derives the �ne-grained change sequence,
and applies them to the source and target models.
To derive the change sequence, the derivation strategy of the changed model is used.

While in the existingV�������� implementation eachmodeling domain has a �xed strategy
associated with it, we extend the implementation to allow fast switching between our
evaluated strategies. The strategies are provided with the base state"(and the modi�ed
state"0

(⇢
of the source model and return a list of di�erences in the EMF Compare di�erence

model format. The conversion from these di�erences to the V�������� change model is
already supported by the framework. Therefore, the di�erences are replayed on a copy
of the base state of the source model and an attached observer records these to produce
V�������� changes.

For the implementation of our evaluated identity- and similarity-based strategies, we
use the existing model comparison logic of EMF Compare. By default, EMF Compare uses
identity-based matching if identi�ers are available, and similarity-based matching if not.
As we know that all our evaluated elements have an identi�er, we use the default logic
without modi�cations as the identity-based strategy. For the similarity-based strategy,
we also use the default logic but disable identity-based matching, such that always the
similarity metric is used.

Although �ne-grained change sequences are derived for the changed source model state,
this changed state is not yet re�ected in the V-SUM. Therefore, the internal source model
is updated to"0

(by applying the derived change sequence. As the update is performed
with estimated delta-based changes, the delta-based consistency preservation is triggered.
Thus, the target model is updated to"0

) by propagating the applied changes.
By using an existing function of the V�������� framework to propagate state-based

changes, design decisions of the pipeline in�uence the consistency preservation only
marginally. We only modify the existing work�ow to allow the insertion of our own
derivation strategies which implement the same protocol as the existing derivation strategy.
A challenge of this approach is to obtain the actual derived change sequences which is
valuable for reasoning about test results. Since the sequence is only an intermediate artifact
to restore consistency, it is by default discarded as soon as the change application and
propagation is completed. Furthermore, we do not want to overload our own strategies
with this logging functionality. To solve this, we insert an additional object in the strategy

26

5.2. Output Validation

call chain between the V�������� instance and the actual strategy. This object forwards
any change derivation requests to the actual strategy but stores the derived sequence
before returning it to the V�������� instance. With this approach, the logging of the
derived change sequences is transparent to both the strategy and the V�������� instance.

5.2. Output Validation

Each test generates source and target model �les, the derived change sequence, and the
internalV�������� virtual model state as its output. Although the derived change sequence
and the V�������� state are important artifacts to debug potential failing test cases, they
do not require any validation. Validating the internal V�������� state would give no
bene�t as it is tool-dependent and might change in future versions of the framework. The
derived change sequence is only an intermediate representation which is discarded after
the change is applied. Additionally, by de�nitions 1 and 2, it is implicitly conservative
whenever the changed view, i.e. the source model, is correct, and admissible whenever the
SUM, i.e. both the source and target model, is correct. Since admissibility is the su�cient
requirement for each change sequence, the correctness of each test is determined only
by the correctness of the output model �les. To prevent errors in the change sequence
derivation process by incorrect inputs, in addition to validating the models after each
test case, they are also validated after the V-SUM preloading is completed (see Figure 5.1
model validation). This ensures that the system is in the expected state and there are no
undetected errors in the setup logic.

Although the V�������� framework already o�ers functionality to compare two model
�les, the model validation relies on custom model comparison logic. This is primarily mo-
tivated by the fact that the model preloading and change sequence derivation, application,
and propagation rely on the same model representations that could be used to compare
models. Thus, any issues introduced by the model representations would remain unde-
tected by the model validation. Furthermore, this makes the model validation independent
of the used model consistency framework. However, simply bit-wise comparing the �les is
not su�cient (as e.g. for XML the order of attributes can change), therefore each domain
uses a custom �le comparison to check for semantic, instead of syntactic, equality.

5.2.1. UML Model Validation

To validate the UMLmodel, the model �le managed by the V�������� instance is compared
to the already provided external model �le. Since UML models use an XML �le repre-
sentation, the model validation is performed using XMLUnit [7]. This tool parses XML
�les into a tree-like structure which allows to ignore whitespaces and the order of XML
attributes. XMLUnit already o�ers a default comparison mechanism which performs an
element-wise comparison of the XML �les by iterating through their hierarchies. Two �les
are considered as equal if both �les share the same hierarchy and all element comparisons
are succeeding. For an element comparison to succeed, the compared elements need to
match their node name, all their attributes, and all their descendants.

27

5. Implementation

Node condition Missing attribute Default value
tag name = uml:Model xmlns:ecore any

tag name = packageImport xmi:type uml:PackageImport
tag name = ownedAttribute xmi:type uml:Property
tag name = ownedOperation xmi:type uml:Operation
tag name = ownedParameter xmi:type uml:Parameter
tag name = eAnnotations xmi:type ecore:EAnnotation
tag name = details xmi:type ecore:EStringToStringMapEntry
tag name = ownedEnd xmi:type uml:Property
tag name = generalization xmi:type uml:Generalization

xmi:type = uml:Class visibility public

Table 5.1.: UML File Comparison Default Values

Even though the default comparison is already quite elaborate, some modi�cations are
required for the UML �le comparison. These adjustments are necessary as the serializa-
tion used by the external UML model tool and the serialization used by the V��������
framework are di�erent. In particular, the external serialization stores default attributes,
whereas the V�������� serialization does not. Therefore, the absence of default attributes
is ignored. Table 5.1 shows the list of default values for some attribute of some node.
Furthermore, association members are stored in di�erent orders. As the order is arbitrary,
it is ignored.

5.2.2. Java Model Validation

For the validation of the Java model, a folder containing the expected Java �les in their
expected �le hierarchy is required. This folder is provided as additional input to the tests
for each model validation phase (")⇢ respectively"0

)⇢
in Figure 5.1). Since there are two

model validation phases, two expected Java �le hierarchies need to be provided. However,
since most test cases within one suite share their base model (see chapter 6), the Java
�le hierarchy for the setup validation can be shared. The Java model is considered to be
correct if the �le hierarchy managed by the V-SUM matches the provided one and each
internal Java �le has semantic equality to its expected counterpart.
The Java �le comparison works line-based. Starting with the �rst line in both �le,

the current line of each �le is tested for equality with the current line of the expected
�le. To adjust for particularities of the JaMoPP serialization, empty lines are skipped and
whitespaces at the start or end of a row and before semicolons are ignored. Furthermore,
the generated source �le contains fully-quali�ed type references instead of only the
classi�er name together with an according import statement. However, as the expected
Java �les should serve as a gold standard, they apply the preferred combination of an
import statement and the classi�er name only. To still being able to correctly compare
these two di�erent representations, lines with import statements are also skipped for

28

5.3. Reactions Re�nements

comparison and fully-quali�ed type references are simpli�ed to their classi�er name if the
referenced type got already imported in any of the two compared �les.

It is worth noting that the proposed Java �le comparison will incorrectly mark �les as
not matching when the order of methods and attributes is changed, even though the order
is arbitrary in Java. While this could be addressed with additional implementation e�ort,
such cases appeared only in two out of 144 tests and were corrected manually with little
e�ort.

5.3. Reactions Refinements

As motivated in subsection 4.3.2, an incorrect or incomplete consistency speci�cation may
distort the evaluation. Consequentially, a correct and complete consistency speci�cation
is required. However, providing a complete consistency speci�cation is a challenging task
due to complexity of the chosen domains and their large semantic overlap. Therefore, the
properties of correctness and completeness are weakened to only apply for those elements
and scenarios that are considered. More speci�cally, the consistency speci�cation is only
required to be complete for those elements which are covered by the test suites and to be
correct within the scope of tested scenarios. Since the test space is constructed and thus
known to be completely covered by the consistency speci�cation, it is valid to assume that
test failures are only caused by incorrectly derived change sequences.
In the V�������� framework, the consistency speci�cation between UML and Java

is implemented in the Reactions language [36] and was initially provided by Chen [12].
Though the majority of cases and elements considered in this thesis are already covered
by the consistency speci�cation, some limitations have to be overcome to consider it as
correct and complete.

5.3.1. Move-Operations

When deriving change sequences, one of the most common operations is the movement of
objects to another container. Though they also might occur in the actual change sequence,
especially for similarity-based strategies they are often a side-e�ect of a conservative
matching for the parent container. As an example, renaming a container may result in a
deletion and re-insertion of the renamed container and as a consequence a move of all
the container’s children. This observation is discussed more detailed in subsection 7.2.1.
In the V�������� di�erence model, a movement is represented by a removal from and a
subsequent insertion into a container. In the existing consistency speci�cation, any reaction
for an insertion or removal is bound to trigger only when a prior creation respectively a
subsequent deletion of the object occurred (compound trigger). Since an object’s lifetime
extends before and beyond a movement, this does not hold true for this kind of operation
which results in no reaction trigger for a movement operation causing failures in a majority
of test cases.
Since the Reactions language limits the possible combination of atomic triggers in

compound triggers to {2A40C8>=, 8=B4AC8>=} and {A4<>E0;,34;4C8>=}, it is not possible to
distinguish between, for example, a creation and an insertion or an insertion without cre-

29

5. Implementation

ation of an object. In order to support insertion without creation changes while preserving
reactions to creation and insertion, one either could add an additional reaction to react to
the atomic trigger of an insertion or avoid compound triggers altogether. With the latter
approach, insertions with or without a previous creation are uni�ed to the same scenario.
While the prior option may seem like a valid alternative, it imposes additional constraints
on both reactions (the newly added and the existing one with a compound trigger) as
a creation and insertion pattern would trigger both of them. As the execution order of
reactions is by design non-deterministic [32], the result needs to be identical independent
of the execution order of the reactions. Since this might be di�cult to achieve and, more
importantly, introduces new requirements to testing — as a test should cover all possible
reaction execution orders — it is favorable to avoid compound reaction triggers and rather
use atomic triggers only.
To extend the consistency speci�cation with the support for movement operations by

splitting the compound triggers into atomic ones, three design alternatives are considered.
Besides of providing the missing support for movement operations, we aim at preserving
as much of the existing consistency speci�cation logic as possible. For the refactoring,
especially the reactions triggered by creation and subsequent insertion require detailed
attention as the correspondences are setup in these routines. If the setup of the correspon-
dences fails, any subsequently triggered reaction will not execute as it requires a correctly
setup correspondence.

Correspondence at creation The �rst approach is the most intuitive approach. It splits
any reaction with compound triggers into reactions for each atomic trigger and adjusts the
model in those reactions accordingly. For example, a trigger for creation and insertion is
split into a reaction that reacts to a creation and creates the object and its correspondence;
and another reaction that reacts to an insertion and inserts the corresponding object. This
implies that correspondences are created at the creation of the object and need no special
considerations afterwards, thus removing the special treatment in insertion reactions.

Though the approach appears elegant, it does not ful�ll all requirements. An instance of
the same metamodel element may get inserted in di�erent containers resulting in di�erent
representations in the target model. For example, a UML property may get inserted in a
UML class or a UML association which results in di�erent Java representations. However,
since the correspondence has to be setup during creation, the target metamodel element
type needs to be known before insertion which is not possible in this case. Another problem
is introduced by transitive cases. In these scenarios, an object may already be created by
some other consistency speci�cation from other domains and only the correspondence
to the current object is missing. Therefore, before creating any object it is searched for
a possibly matching object which correspondence is just missing (pattern �nd-or-create
[49]). This pattern does fail when applied directly after creation, as the created object has
no identifying attributes set yet. As a consequence, a new object would be created each
time, leading to duplication of objects in transitive scenarios.

Correspondence at insertion The second approach aims at reducing the compound trig-
gers to their latest executed atomic trigger. Namely, a trigger for creation and insertion

30

5.3. Reactions Re�nements

is reduced to a trigger only for insertion; a trigger for removal and deletion is reduced
to a trigger only for deletion. Consequentially, the correspondences are setup in the
insertion-triggered reaction. This implies that for every insertion the �nd-or-create pat-
tern is executed. However, the introduced execution overhead is only marginal as the
pattern terminates early when a correspondence is already setup, which holds true in
the majority of cases. Another consequence of the refactoring would be that there was
no reaction that reacts explicitly to a removal of an object from its container. While this
may seem like a gap in the consistency speci�cation, it can be safely assumed that each
removal is either followed by the object’s deletion or an insertion to some other container.
This is mandatory as objects without a container are not allowed by the Eclipse Modeling
Framework. Therefore, removals are implicitly captured by the other reactions.

Correspondence at renaming The third approach is similar to the previous approach as
that compound triggers are reduced to their latest executed atomic trigger. The di�erence
with this approach is that correspondences are created when the object is initially named.
In contrast to creating the correspondences on insertion, the execution of the �nd-or-
create pattern can be reduced to once per object — on initial naming — instead of on every
insertion.

Approach selection After evaluating the di�erent approaches, the second approach, cor-
respondence at insertion, was implemented. While creating the correspondences at creation
seems appealing, the problems introduced with it cannot be resolved within the current
language implementation thus making it no alternative. As the other two approaches are
very similar, the second approach is favored as it is closer to the previous consistency
speci�cation implementation, thus allowing to reuse more existing code.

Nevertheless, the chosen implementation alternative as well as the option with creating
correspondences on renaming impose some implicit constraints on the order of the changes.
In most cases, the �nd-or-create pattern requires both the object’s name and the object’s
container to be set to identify a matching object, thus for the chosen alternative the
name must be set before the insertion, and for the renaming alternative an element must
be inserted before named. While this order assumption holds for all test cases in the
V�������� framework and all tests evaluated in this thesis, it cannot be assumed. If the
order does not match the assumptions, the �nd-or-create pattern fails and thus will create
a new object even if potentially the object is already existing. Furthermore, changes to
other attributes of an element need to be performed only after the correspondence is setup,
as otherwise the executed reaction does not have a corresponding object to modify yet
and no changes are propagated. However, these problems were also present in the existing
consistency speci�cation.

5.3.2. Java Accessor Tagged Correspondences

Though most commonly one element of the source domain is represented by at most
one element of the target domain, there also exist one-to-many relationships. One of
these cases are UML attributes and Java �elds and accessors. One UML attribute always

31

5. Implementation

corresponds to exactly one Java �eld but may additionally have correspondences with a
getter or setter Java method. Since accessors are optional in Java, the representation of the
UML attribute is ambiguous in Java. As pointed out in subsection 5.1.1, this ambiguity
of the Java accessors representation is exploited in the test scenarios to create a target
model that contains information not present in the source model. Therefore, it is of central
importance that the consistency speci�cation correctly deals with accessors and especially
does not accidentally recreate or delete them when the UML attribute changes.
In our application, the consistency speci�cation automatically creates both accessor

methods alongside the Java �eld when a UML �eld is created. It is worth noting that this is
an explicit design decision. Other options — like creating no accessors at all automatically
— would also result in correct consistency speci�cations. However, the existing consistency
speci�cation does not model an explicit correspondence between the UML �eld and the
accessors. Rather, the correspondence is implicitly resolved by matching the methods by
their name. This introduces issues, as renamed accessors cannot be matched anymore or
methods matching the accessor naming pattern are incorrectly recognized as an accessor
method. Furthermore, if transitive transformations are enabled, i.e. a triggered change to
the Java domain may trigger changes back in the UML domain, the creation of the accessor
methods would trigger the creation of a corresponding operation in the UML domain.
Therefore, accessor correspondences were made explicit using tagged correspondences.
A tagged correspondence is a correspondence that uses a textual tag to distinguish it
from regular correspondences. By using a unique tag for each of the getter and the
setter methods, each accessor method can be unambiguously identi�ed. This allows to
correctly �nd the corresponding elements even if the accessor got renamed, prevents
incorrect correspondence matching for similarly named methods, and the creation of UML
operations for Java accessor methods.

5.4. UML Domain Particularities

While this thesis aims at utilizing the UML to Java case study only as a foundational example
which provides generalizable conclusions, it is unavoidable that certain particularities of
the chosen domains will uncover during the research. For the UML domain we identify two
problems. First, XML identi�ers are incorrectly managed when having multiple resources
for the same XML document in memory. Second, the usage of UML associations may lead
to incorrect matching behavior.

5.4.1. XML Identifiers

Since UML is serialized as an XML document, it uses XML identi�ers (tag attribute xmi:id).
As these are speci�c to XML, they are not part of the Eclipse UML metamodel but are
rather stored in a mapping owned by the XMLResource. An XMLResource is the in-memory
representation of a UML XML �le.

In the V�������� framework, it may happen that there are multiple objects based on the
same �le simultaneously in memory. Commonly, the virtual model hosts one object per
resource, and the test view hosts another object for each resource that it accesses. While

32

5.4. UML Domain Particularities

1 <packagedElement xm i : t ype = " um l :A s s o c i a t i o n " xm i : i d = " 1 "
memberEnd= " 2 3 " >

2 < eAnno ta t i ons xm i : t ype = " e co r e : EAnno t a t i on " xm i : i d = " 4 "
sou r c e = " org . e c l i p s e . papyrus " >

3 < d e t a i l s xm i : t ype = " e co r e : E S t r i n gToS t r i n gMapEn t r y "
xm i : i d = " 5 " key= " na tu r e " va l u e = " UML_Nature " / >

4 < / eAnno ta t i ons >
5 <ownedEnd xmi : t ype = " um l : P r ope r t y " xm i : i d = " 3 " name= "

example " type= " 6 " a s s o c i a t i o n = " 1 " / >
6 < / packagedElement >

Figure 5.2.: UML Association XML Example

in most execution scenarios this does not pose any harm as changes in a test view are
observed and thus the other resource representations can be updated accordingly, changes
to the identi�er mapping of the XMLResource are not observed. This leads to inconsistent
XML identi�ers across the V�������� instance. More precisely, the test view resource
instance does contain the correct identi�ers — those of the external model loaded from
�le — but the models hosted by the virtual model contain newly generated identi�ers.
To overcome this, the XML identi�ers are copied manually to the resources hosted by

the virtual model after the initial source model loading and after resolving the changed
model. If this workaround was left out, the identi�ers of the internal model would not
match the ones of the preloaded model and thus also not match those of the changed model.
This would lead to incorrect change sequences for any strategy that relies on identi�ers.

5.4.2. Associations

Associations are a common element in UML diagrams as they are used to describe the
relationship between di�erent classes, data types, and interfaces. Unfortunately, they are
also a common error source for an incorrectly derived change sequence as the default
EMF Compare implementation has di�culties to correctly match associations and their
descendants. Since associations also have identi�ers, this is less critical for identity-based
matching strategies but even for these strategies errors may appear which can lead to
non-conservative change sequences. We discuss the occurrence of these cases in detail in
chapter 8.

To understand why associations are a problematic type of element, Figure 5.2 provides
an extract of a UML model that shows an association. An association has two endpoints
which are de�ned by listing their identi�ers in the memberEnd attribute separated by spaces.
Note that the endpoints do not need to be contained in the association. In the provided
example, one endpoint is contained in the association (xmi:id 3) as an ownedEnd, the other
one is not (and therefore not included in the shown XML). Endpoints not contained in
their association are commonly de�ned as a property contained in a classi�er with an
association attribute pointing to the association. Furthermore, each association contains

33

5. Implementation

the shown eAnnotations which are used for internal handling of the UML resource and
do not provide additional semantic information.

When it comes to matching associations with EMF Compare, there are several properties
that do not work well with the similarity-based matching strategy. First, besides of
their identi�ers, annotations and their children are identical for all associations. Second,
associations are hard to match as they do not provide a name attribute. Third, there
may be multiple endpoints across di�erent associations with the same name. Fourth,
associations are stored directly in the root element of a UML model. The combination
of these four properties makes it hard for the EMF Compare match engine to identify
matching associations as neither the association container, its name attribute, nor children
attributes can be used to identify similarities. The only uniquely identifying attribute is
the memberEnd attribute. However, as the default match engine is optimized to support
matching of arbitrary elements, it is not optimized for this speci�c case and therefore does
not weigh the memberEnd attribute as strong as an identi�er.
While EMF Compare o�ers lightweight extension points to optimize the matching for

this speci�c case, this thesis does not provide some optimized matching logic for the UML
domain. This was left out as the purpose of this work is to obtain generalized �ndings for
any domain and not to generate a logic optimized for the UML domain; an overview of
optimized UML comparison approaches is presented by [50]. However, we still examine
the impact of incorrect association matching on the overall error for incorrect change
sequences in chapter 8.

34

6. Test Suites

In order to assess di�erent change sequence derivation strategies, reference models and
change sequences are needed to have an evaluation baseline on which the derived change
sequences can be compared. However, the number of possible systems and change se-
quences is unlimited and thus cannot all be covered. Therefore, models and test cases need
to be selected in such a way that they are not speci�c to their underlying reference system
and provide some representative characteristics for a larger class of change sequences.

For the scope of this thesis, three di�erent approaches are used to choose representative
systems and test scenarios. First, systems are arti�cially constructed to highlight basic
changes and recurring change patterns (section 6.1). Second, systems already described in
previous work that are stated to pose problems to change sequence derivation are reused
(section 6.2). Third, large-scale systems are generated to evaluate the performance of the
di�erent strategies under high load (section 6.3). For all systems, the considered elements
and attributes are constrained to a small subset of the entire UML domain. By limiting the
considered elements, there are less domain-speci�c cases to consider which could break the
assumption of a correct and complete consistency speci�cation. Furthermore, since only a
few concepts of the chosen domain are considered, elements can be better embedded into
an abstract environment. Thus, occurring problems can be better generalized to arbitrary
domains. The test systems are constructed using the external editor Papyrus [21]. Its
features and the tool selection process are described in section 6.4.

6.1. Artificially Constructed Systems

For the creation of meaningful arti�cial systems, common change sequences need to be
identi�ed. This section presents test suites for two classes of common change sequences.
First, a system to test atomic changes is presented. Evaluating the strategies against atomic
changes is a crucial part of the evaluation as any further test suites rely on the correct
behavior for atomic changes. Second, a test suite for common refactoring operations is
presented. Besides of their common appearance, testing refactoring operations provides
the bene�t that their change sequences mostly consist of a larger number of atomic changes
and therefore are assumed to pose a bigger challenge to the evaluated strategies.

6.1.1. Atomic Change Operations

Any change sequence, regardless of the model’s size or the number of changes, can be
considered as a composition of atomic change operations. To assure that each of these
atomic change operations is supported by the consistency preservation tool and covered

35

6. Test Suites

com.example.�rst
com.example.second

Example

� name: String

+ nameEquals(otherName: String): Boolean

Second

Figure 6.1.: UML Model for Atomic Change Operations

by the consistency speci�cation, the test suite for atomic change operations contains tests
for all atomic change kinds for various model element types.

By testing all kinds of atomic changes, it can be assured that the consistency speci�cation
covers all relevant cases and that the consistency preservation framework and the used
pipeline work correctly. This will also help to evaluate larger change sequences as for
strategies passing the test suite for atomic changes it can be assumed that occurring errors
are related to the derived change sequence and not to some internal limitations or failures.
Since the change sequences are derived using EMF Compare, the kinds of atomic

changes are also de�ned by EMF Compare. In particular, the di�erence model used by
EMF Compare de�nes the four atomic change kinds add, change, delete, and move. Note
that, since V�������� uses a di�erent metamodel for change sequence representation, an
atomic change of EMF Compare is not necessarily an atomic change in V��������. More
speci�cally, an add operation is translated into a creation and insertion-into-container
sequence, a move operation is translated into a removal-from-container and insertion-into-
container sequence, and a delete operation is translated into a removal-from-container and
deletion sequence. Only a change operation is translated to an atomic change of an attribute
operation. However, other combinations of changes in the V�������� change sequence
representation cannot occur since all change sequences originate from the di�erence
metamodel of EMF Compare and are therefore limited to its kinds.
The UML model which is used for all test cases of the Atomic Change Operations

(ACO) test suite as the initial model is shown in Figure 6.1. Since the purpose of this test
suite is to identify fundamental issues of the environment setup rather than evaluating
the change derivation strategies, the model is kept minimal on purpose to reduce the
probability of deriving an incorrect change sequence. While the support for atomic
changes could have also been tested by directly providing the speci�c atomic change
to the consistency preservation engine, incorporating the state-based change derivation
was chosen to examine the test pipeline as a whole. For the target model extension (see
section 5.1), the setter method for the name attribute of the class Example is deleted, and the
method nameEquals is extended with the method body return this.name == otherName;.

The di�erent test cases are listed in Table 6.1. To test a change operation, an element’s
name attribute is changed (rename); the other change kinds map to their equally named
tests. For each change kind, the change is performed for an attribute of a class, a method of
a class, and a class each. These three elements are chosen to represent di�erent concepts

36

6.1. Arti�cially Constructed Systems

Name Changes
Add Attribute Add attribute counter of type Integer to class Example
Add Class Add empty class New to package com.example.first
Add Method Add method +doSomething(i: Integer) to class Example
Move Attribute Move attribute name from class Example to class Second
Move Class 1 Move class Second to package com.example.first
Move Class 2 Move class Example to package com.example.second
Move Method Move method nameEquals from class Example to class Second
Remove Attribute Remove attribute name from class Example
Remove Class Remove class Example
Remove Method Remove method nameEquals from class Example
Rename Attribute Rename attribute name of class Example to newName

Rename Class Rename class Example to Renamed

Rename Method Rename method nameEquals of class Example to nameNotEquals

Table 6.1.: Atomic Change Operations Test Description

in terms of generalizability. A class represents a container without siblings, a method a
container with siblings, and an attribute an element without children.

6.1.2. Common Refactoring Operations

When it comes to developing tests for a larger number of changes, the number of potential
change sequences is unlimited. To select a reasonable subset of these, already identi�ed
refactoring operations were used. While this certainly does not cover all scenarios that
may be encountered in real applications, it can be assumed that the identi�ed patterns
will be common change sequences and that the sizes of their change sequences lie within
the average expected range. Furthermore, since EMF Compare exploits the locality prin-
ciple and therefore only matches within a certain neighborhood [9], any composition
of refactoring operations in di�erent parts of one model can be considered to result in
similar results as deriving the change sequences successively for the di�erent refactoring
operations.
The initial UML model for all test cases of the Common Refactoring Operations (CRO)

test suite is shown in Figure 6.2. It is based on the mediastore.basic package of the
Media Store case study [54] which is implemented in Java, and adapted to enable certain
refactoring operations and to adjust for limitations of the used UML model editor.

To extend the Java model, the setter methods for the attributes providedMethods of class
ProvidedInterface, requiredMethods of class RequiredInterface, requiredInterface of
class LegacyData, encoding of class Metadata, and all setter methods contained in classes
EJB, Config, and CurrentUser are deleted. Additionally, all getter methods contained in
the class Config are also deleted. Furthermore, the methods toString of class Method,
printRequiredInterfaces and printProvidedInterfaces of class EJB, isReconfigurable
and getEJBs of class Config, and the constructor of class CurrentUser are extended with
appropriate method bodies.

37

6. Test Suites

basic

con�g data

providedInterface1

providedMethods*

1requiredInterface

*requiredMethods

legacyData
0..1

* requiredInterface

*

ejb

providedInterfaces1

ejb

*

1requiredInterfaces

data 1

metadata 1

EJB

� name: String
� host: String
� port: String
� appName: String
� moduleName: String
� beanName: String

⇠ printProvidedInterfaces()
⇠ printRequiredInterfaces()

ProvidedInterface

� name: String

RequiredInterface

� name: String

Method

+ name: String
+ parametersCount: Integer

+ toString(): String

Con�g

� timestamp: Integer
� recon�gurable: Boolean
+ ejbs: EJB [*]

+ loadCon�g()
+ isRecon�gurable(): Boolean
+ getEJBs(): String

AbstractData

+ binaryData: Integer [1..*]

Metadata

+ encoding: String

LegacyData

Data

+ deserialize(): String

CurrentUser

� id: Integer
� �rstName: String
� lastName: String
� email: String
� passwordHash: String

+ CurrentUser(id: Integer,
�rstName: String, lastName: String,
email: String, passwordHash: String)

Figure 6.2.: UML Model for Common Refactoring Operations

38

6.1. Arti�cially Constructed Systems

Name Changes
Change Method Signature Make method deserialize of class Data static

Change return type of deserialize to Boolean

Add parameter data of type Data to method deserialize

Rename method deserialize to deserializeData

Collapse Hierarchy Move attribute binaryData of class AbstractData to class Data
Delete class AbstractData

Extract Associated Class Create class Printer
Move method printProvidedInterfaces

of class EJB to class Printer
Add parameter ejb: EJB to printProvidedInterfaces

Move method printRequiredInterfaces

of class EJB to class Printer
Add parameter ejb: EJB to printRequiredInterfaces

Add 1:1 composition printer from EJB to Printer

Extract Superclass Create class Interface
Make class ProvidedInterface a subclass of Interface
Move attribute name of class ProvidedInterface

to class Interface
Move attribute providedMethods of class

ProvidedInterface to class Interface
Rename attribute providedMethods to methods

Make class RequiredInterface a subclass of Interface
Delete attribute name of class RequiredInterface
Delete attribute requiredMethods of class RequiredInterface

Inline Class Move attribute encoding of class Metadata to class Data
Delete class Metadata

Remove Associated Class Delete class LegacyData

Table 6.2.: Common Refactoring Operations Test Description

The modeled test cases are based on the common model editing operations presented
in section 3.3 and follow the refactoring operations catalog presented by Sidhu, Singh,
and Sharma [51]. Since various of their identi�ed refactorings are too simple to reveal
any issues with the change sequence derivation (like hide attribute or move class are just
atomic changes), only those operations that require a larger number of change operations
are implemented. To pertain a broad coverage of scenarios, the test cases are selected to
cover all categories of refactoring operations identi�ed by Parul and Sidhu [45] (except
for method movement which is already covered by atomic operations, see Table 6.1). The
implemented test cases are listed in Table 6.2. Even though the implemented refactorings
are de�ned for UML class diagrams, similar operations occur also for other domains as
discussed in section 3.3. Therefore, we consider the chosen test cases to be representative
even beyond the UML domain.

39

6. Test Suites

6.2. Exemplary Medium-Scale Systems

Due to the large amount of research already performed on change sequence derivation and
model matching, there already exist di�erent systems that are shown to pose a challenge
to model matching algorithms. Therefore, two of these systems are reused as test suites
for this work. The selected test systems are the Model Match Challenge system by Pietsch,
Müller, and Rumpe (subsection 6.2.1) which was designed as a general benchmark for
model matching strategies, and the Thesis System example by Addazi et al. (subsection 6.2.2)
which was speci�cally designed to show problematic changes when using EMF Compare.

6.2.1. ExampleModel Match Challenge

The Model Match Challenge (MMC+) is an example system presented by Pietsch, Müller,
and Rumpe to showcase identi�ed problems with model matching and was designed to
serve as a benchmark for model comparison [46]. The initial UML models for the test cases
are shown in Figure 6.3. The default model (Figure 6.3a) was altered in comparison to
the original paper such that the DomesticAnimal class always has the properties nickname,
species, and the association owner. This was done to enable a shared initial model for
four of the �ve test cases. Since the change only adds additional elements to the model
which increases its complexity, it can be assumed that matching errors occurring in the
originally proposed model will also occur in the altered version. For the test case Exchange
Elements, a custom initial model is used which is shown in Figure 6.3b. The list of test
cases is shown in Table 6.3 and exactly mirrors the test cases described in [46].
To extend the target domain, the setSpecies method of the DomesticAnimal class is

deleted. For the Exchange Elements model, additionally the setNickname method of the
DomesticAnimalNew class is deleted. These adjustments to the target model are added to
the original test cases proposed by Pietsch et al. as they did not target model consistency
preservation but model matching.

As pointed out in subsection 5.4.2, associations are a source of error for change sequence
derivation. To evaluate the impact of associations, a modi�ed model match challenge
without associations (MMC-) is created. To avoid associations, the owner association of class
DomesticAnimal is replaced with an equally named property of type Owner. Accordingly,
models based on the associations-avoiding default model are created for all test cases except
for Exchange Elements (as this does not have associations in �rst place). Since both the
association-based and association-free models correspond to the same Java representation,
the target domain extension remains identical and all Java model validation �les can be
used for both models.

6.2.2. Example Thesis System

In their work for extending EMF Compare with semantic matching features, Addazi et
al. present the Thesis System (TS) example as a motivating scenario [1]. The model is
speci�cally designed to show problematic matching with the EMF Compare default match
engine. More speci�cally, the authors state that EMF Compare is only able to match 25
elements out of 37 manually identi�ed matches. While the executed tests support their

40

6.2. Exemplary Medium-Scale Systems

de

domesticAnimal*

owner0..1

DomesticAnimal

� nickname: String
� species: String

OwnerPerson

(a) Default

de

shop

core

DomesticAnimal

� nickname: String
� species: String

DomesticAnimalNew

� nickname: String
� species: String

(b) Exchange Elements

Figure 6.3.: UML Models for Example System Model Match Challenge [46]

Name Changes
Exchange Elements Move class DomesticAnimal to package core

Move class DomesticAnimalNew to package shop
Move Create package shop as subpackage of de

Move class DomesticAnimal to package shop
Move Renamed Create package shop as subpackage of de

Move class DomesticAnimal to package shop
Rename class DomesticAnimal to Pet

Rename attribute nickname of class Pet to moniker

Rename Rename class DomesticAnimal to Pet

Rename attribute nickname of class Pet to moniker

Update Reference Target Change type of attribute owner of class DomesticAnimal to Person

Table 6.3.: Model Match Challenge System Test Description [46]

41

6. Test Suites

root

1

*
students

1

departments

*

1

theses* 1

*teachingSta�

students1..*

0..1
thesis

* examinedTheses 1..*examiners

supervisedTheses* supervisor 1..*

1department

teachingSta�
*

Student

+ id: Integer
+ forename: String
+ surname: String
+ emailAddress: String
+ username: String
+ password: String ThesisSystem

Department

+ id: String
+ name: String

Thesis

+ id: Integer
+ title: String
+ abstract: String
+ link: String
+ grade: Integer
+ topic: String

TeachingSta�Member

+ id: Integer
+ name: String
+ emailAddress: String
+ username: String
+ password: String

Figure 6.4.: UML Model for Example Thesis System [1]
All containment endpoints of ThesisSystem are named thesisSystem.

statement that the test suite poses problems to EMF Compare, the plain numbers may be
misleading as for a perfect matching rate multiple elements from the original model need
to be matched with one element from the changed model which is not intended in EMF
Compare. The results of the performed tests are discussed in detail in chapter 8.
The initial UML model of the Thesis System example is shown in Figure 6.4. The

performed test case is described in Table 6.4. Like in subsection 6.2.1, the authors did
consider model matching but not model consistency preservation, therefore the target
model extensions are added additionally. These include deleting the setter methods for
the attributes id of class Department, id and grade of class Thesis, departments of class
ThesisSystems, and all setter methods of classes Student and TeachingStaffMember.

6.3. Generated Large-Scale Systems

One common problem during model matching is the compromise between performance
and accuracy. Naively, each element needs to be compared to each other element to �nd a
possible matching partner, leading to a run-time of O(=2) based on the model’s elements

42

6.3. Generated Large-Scale Systems

Name Changes
Default Test Extract superclass User from Student and TeachingStaffMember

Create class User
Make Student a subclass of User
Move all six attributes of Student to User

Make TeachingStaffMember a subclass of User
Delete all �ve attributes of TeachingStaffMember

Rename attribute topic of class Thesis to subject

Table 6.4.: Thesis System Test Description [1]

number. To improve this performance, modern model matching algorithms use di�erent
heuristics like limiting the search to a certain neighborhood or only matching elements of
identical metamodel classes [9]. However, the introduction of these heuristics may reduce
the matching accuracy. As for small-scale systems, like the ones described in the previous
sections, both performance and accuracy can be kept high with the processing power of
modern computers, there may not occur any limitations imposed by the heuristics for
performance improvement. Therefore, two large-scale test systems are generated which
scale beyond the size of the previously described systems. Since the systems are generated,
they are not built using the Papyrus editor but created programmatically.

Both generated systems consist of packages, classes, attributes, operations, and operation
parameters. Each element is provided a generated name, and operation parameter types
are set to one of the basic types String, Boolean, Integer, Real. All other attributes are
left with their default values. Each class contains between four to seven attributes and
three to �ve operations. Each operation has zero to four parameters and has a 50 % chance
of returning void, otherwise one of the basic types is returned. The exact numbers are
generated randomly using a �xed seed for reproducibility. The number of packages and
their hierarchy as well as the number of classes per package is de�ned individually per
system.

For the Large System (LS), there are four packages in total: two root packages, and each
root package containing another package. Each package contains three classes, making it
twelve classes in total. Overall, the system consists of 250 elements. The Huge System (HS)
uses a package hierarchy of seven levels. There are three root packages, and each package
of the �rst six hierarchy levels contains another two sub-packages. Each package contains
ten classes. In total, the system contains 381 packages, 3810 classes, and 88 318 elements.

The test cases used with the generated systems are described in Table 6.5. While the test
cases for the large system are close to the ones described in subsection 6.1.1 but include
multiple atomic changes of the same kind in a single test scenario, the test cases for the
huge system are designed with the explicit intention of breaking the assumptions made by
the heuristics of the strategies. More speci�cally, they try to exploit the locality principle
which performs the matching search only on elements within a certain distance. Therefore,
in the test cases classes in di�erent hierarchy levels are moved to packages which are far
away, i. e. the closest shared ancestor between the initial and changed container of the
class is multiple hierarchy levels above.

43

6. Test Suites

Name Changes
Large System

Delete Classes Delete 4 classes
Delete Methods & Attributes Delete 4 methods

Delete 3 attributes
Move Classes Move 5 classes
Rename Classes Rename 5 classes
Rename Single Method Rename 1 method
Rename Single Attribute Rename 1 attribute
Rename Methods & Attributes Rename 4 methods

Rename 3 attributes

Huge System

Move Shallowly Nested Classes Move 4 classes within hierarchy levels 2-4
Move Deeply Nested Classes Move 4 classes within hierarchy levels 4-7

Table 6.5.: Generated Large-Scale Systems Test Description

Since the generated test cases do not contain any semantics, the target model extension
step of the pipeline and the target model validation are skipped for these systems. Instead,
the tests are validated bymanually assessing the derived change sequences. Another reason
for skipping the mentioned steps is the performance with theV�������� framework. While
for the large system the consistency preservation is slow but feasible, for the huge system
the consistency preservation has to be disabled as it does not terminate after running even
for several hours.

6.4. External Model Editor

To simulate a realistic application of state-providing views, we want to use an editor
external to the consistency preservation framework. To select an appropriate editor,
several requirements were de�ned. First and most importantly, the editor needs to support
serializing the model in UML 2.x XML format. This is a crucial property as it allows to load
the created model without modi�cations into the model consistency preservation tool and
thus simpli�es the pipeline drastically. If the exported model format was not supported, it
either would need to be converted to UML 2.x or an adapter for the new format would
have to be added. Secondary requirements are a public license, that it is open-source, and
that the editor is still maintained.
The chosen editor that ful�lls all stated requirements is Papyrus [21]. It supports up

to UML 2.5.0 and provides editors for various UML diagram types, including UML class
diagrams. It is licensed under the Eclipse Public License 2.0, is open-source, and is under
active development. Considering its role as an external editor, it may be questionable
that both Papyrus and V�������� are based on the Eclipse modeling framework. Theo-
retically, �ne-grained changes could be observed in Papyrus. However, for our scenario

44

6.4. External Model Editor

we do not use this feature and only provide state-based di�erences, making the editor a
state-providing view. Furthermore, among the evaluated editors, Papyrus was the only
editor to ful�ll all requirements thus making it a reasonable trade-o� to allow the shared
foundations.

45

7. Findings

This chapter presents the �ndings obtained by integrating and evaluating state-providing
views in delta-based consistency preservation. We �rst discuss three generic consistency
preservation problems for critical cases and their causes. Second, reoccurring error patterns
of the similarity-based derivation strategy are presented. Finally, we use our obtained
�ndings to construct a custom similarity-basedmatching strategy. This strategy is extended
with two new matching heuristics and is able to reduce the occurrence probability of the
identi�ed error patterns.

7.1. Classification of Consistency Preservation Problems

Since any critical case for model consistency preservation needs to exhibit certain prop-
erties, we can deduce problems that may arise due to these properties. As motivated in
section 4.3, a view which covers elements from the SUM only partially forms a critical
case. We identify two possible problems from this partial projection. Either the additional
element information contained in the SUM is deleted though it should be preserved or
it is preserved though it should be deleted. We call the former the information deletion
problem and the latter the information preservation problem. For the concept of a V-SUM,
we additionally identi�ed that ambiguous representations can cause a critical case. In these
cases, the information ambiguity problem may occur. This problem describes the case that
a certain representation for some ambiguous concept is not preserved during consistency
preservation but rather another representation of the multiple allowed ones is created.
Since the state of some ambiguous representation can also be treated as some additional
information of the target domain, we consider the information ambiguity problem to be a
specialized version of the information deletion problem.
For all described problems, in either the correct or incorrect case information of the

SUM stripped away in the changed view is deleted. As this additional information is
not covered by the view, it cannot get directly modi�ed or intentionally deleted by the
consistency preservation. As a consequence, the only change subsequence that can trigger
the deletion of this additional information is a deletion operation of the element containing
the additional information. Therefore, the information deletion and ambiguity problems
are triggered by an incorrect deletion of some element and the information preservation
problem is triggered by a missing deletion of such an element. When transforming this
problem to the V-SUM approach, the additional information translates to coupled elements
of other domains. While any operation could cause a corresponding model element to
get deleted, commonly element life cycles are coupled across domains. This means that
elements are only deleted by the consistency preservation if their corresponding elements
get deleted. This holds true for every element covered by our considered consistency

47

7. Findings

Problem Domains Property Cause Severity
Information Preservation Partial Overlap Incorrect Match low
Information Deletion Partial Overlap Missing Match very high
Information Ambiguity Ambiguous Missing Match high

Table 7.1.: Consistency Preservation Problems

speci�cation. Thus, the causes of all three problems are in the V-SUM approach also
triggered by the incorrect deletion respectively absence of a deletion in the changed view.
It is worth noting that the constraint about element life cycle coupling does only a�ect
the causes in a V-SUM of the identi�ed problems. The problems itself remain valid even if
the life cycles are not coupled.
In model matching, a deletion of some element is caused by an unmatched element.

Whenever no match for an element of the original version could be found, the element
is treated as not existent in the changed version anymore and thus deleted. Since for
the information deletion and ambiguity problems to occur some element needs to get
incorrectly deleted, this incorrect deletion is caused by the absence of a match for the
a�ected element. For the information preservation problem it is the contrary case; the
element is incorrectly not deleted thus the element is matched with a wrong element.
Although all problems can occur in the context of consistency preservation, they are

of di�erent severity. We assume that it is easier for a developer to manually remove
accidentally preserved data than to restore it. This is mainly motivated by the fact that
existing data can simply be deleted while the restoration of data requires an additional
e�ort to search for the data to restore in the multitude of previous versions. This problem
becomes even more di�cult if the absence of information is only detected with delay such
that intermediate changes are performed, making it harder to �nd and correctly restore
the lost information. Therefore, the occurrence of the information deletion or information
ambiguity problem is treated to be more critical than the occurrence of the information
preservation problem. Since in the case of the information ambiguity problem only the
ambiguous state information but not actual data is lost, we treat its occurrence as less
critical than the occurrence of the information deletion problem. An overview of the
problems, their causes in model matching, and their severity for consistency preservation
is shown in Table 7.1.

It is important to note that the occurrence of these problems is not only depending on
the change sequence but also on the information in the SUM. If the information projected
away in the view is equal to its initial values, deleting or preserving it makes no di�erence
as upon regeneration of the element the features would get initialized with the same
values again. Therefore, a consistency problem might not appear even though in the
derived change sequence an error exists that would lead in other cases to a problem. In our
test suites, we try to avoid hidden consistency problems by extending the target domain
(see subsection 4.4.1). However, we cannot cover every possible target domain extension.
Therefore, to guarantee the correctness of the V-SUM independent of the target domain
extension, the actual change sequence needs to be derived. Still, since it is rarely the

48

7.2. Limitations of Existing Derivation Strategies

case that every element of the target domain has additional information, even a change
sequence with potential consistency problems is admissible in most cases.

7.2. Limitations of Existing Derivation Strategies

Since we want to obtain results generalizable to any domain, we need to identify abstract
scenarios that pose challenges to the existing strategies. To detect these challenges,
common error patterns are identi�ed by assessing the derived change sequences of the
various test cases. Using the detected patterns, test cases can be synthesized to show the
limitations of the existing strategies.

7.2.1. Identification of Error Patterns

To identify failure reasons on the �ne-granular level of a single test case, the generated
change sequence can be compared to the expected sequence. While this can be helpful
to detect issues with the consistency speci�cation or the used consistency preservation
framework, the comparison is too speci�c to allow a general conclusions on the used
change sequence derivation strategy. Therefore, reasons for the identi�ed failures need to
be grouped to reoccurring patterns which abstract away from underlying domain semantics
or element-speci�c properties. In this thesis, we identify two generic patterns for the
similarity-based matching strategy. Leaving out failures caused by domain particularities
(see section 5.4), all incorrect change subsequences could be mapped to one of these two
patterns. For the identity-based matching strategy, no reoccurring patterns are found. The
absence of patterns with this strategy is caused by the high matching rate of the derived
change sequence with the actual one. In chapter 8 this accuracy of the identity-based
strategy is explained in detail.

The identi�ed patterns are an undetected movement operation and an undetected renam-
ing operation. Both patterns manifest themselves in a change sequence by an unexpected
high number of movement operations. When assessing the change sequences in detail,
the moved respectively renamed element gets deleted and a new element with the same
attributes gets inserted at the new location or with the new name. Subsequently, all
children of the a�ected and deleted element are attached to the newly created element
which causes the high number of movement operations. A list of the pattern occurrences
when running the test cases with the similarity-based matching strategy is shown in
Table 7.2. As one would expect, the number of occurring error patterns increases with
the complexity of the system. Furthermore, renaming operations pose a harder challenge
to the derivation strategies than movement operations. This is indicated by undetected
renaming cases for the simplest test suite of atomic change operations and no renaming
detection at all for the Large System whereas movement operations are correctly identi�ed
for that system. One special case is produced by the Thesis System test. Here, a superclass is
extracted from two classes which share the same attributes. For the superclass extracting,
the attributes of class Student are moved to the superclass while the attributes of class
TeachingStaffMember are deleted. However, in the derived change sequence the attributes
of TeachingStaffMember are moved instead of those of class Student. Although a move-

49

7. Findings

ment is correctly identi�ed, we still count those operations as undetected movements as
they move the wrong elements.

It is important to note that an undetected operation in an element does not propagate
matching errors down the hierarchy, i.e. descendants of an unmatched container can still get
correctly matched. This can be seen in the change sequence by the performed movement
operations on the children. If the unmatched container prevented its descendants from
correctly matching, they would also get deleted and regenerated. The local boundedness of
the matching error is a crucial property and reduces the severity of the identi�ed patterns
by far, as consistency problems can only occur for the scope of the unmatched element
instead of its entire sub-hierarchy.

7.2.2. Synthesis of Failing Test Cases

Considering the consistency preservation problems described in section 7.1, both detected
error patterns may cause an information deletion problem or information ambiguity
problem. These problems may occur as in both patterns the a�ected element is incorrectly
deleted instead of being modi�ed. Due to the incorrect deletion, additional information
inherent to the element of the target domain respectively the state of an ambiguous
representation is lost. Upon recreation of the element, the additional information cannot
be restored and the ambiguous representation is set to its default state — as de�ned by the
consistency speci�cation — which does not necessarily match its previous representation.
Since the patterns can cause the information deletion problem, they cannot cause its
contrary problem, the information preservation problem.

To show that the described problems may actually occur, test cases exploiting the
described patterns can be synthesized with the intention to fail for the similarity-based
matching strategy. To synthesize a failing test case, a change that triggers any of the error
patterns is required. Additionally, the element a�ected by the pattern needs to have a
non-default target domain representation. This can either be an extension with additional
information to cause the information deletion problem, or a modi�ed representation of
an ambiguity to cause the information ambiguity problem. Using the described approach,
consistency problems could theoretically get injected to any of the test cases in which
an error pattern occurs. In practice however, the test cases are limited due to the target
domain modi�cation constraints. Due to the large overlap of UML class diagrams and
Java source code, the possible modi�cations to the target domain are strictly limited (see
subsection 5.1.1).

As a basis for concrete test cases, the Rename and Move Renamed scenarios of the Model
Match Challenge system are reused. In both test cases, a UML attribute is a�ected by the
error patterns which allows a target domain modi�cation. To create this modi�cation,
its Java setter method is deleted. With only this modi�cation to the target domain, for
both test cases the consistency preservation regenerates the setter method when using
the similarity-based matching strategy, thus causing the information ambiguity problem.

50

7.2. Limitations of Existing Derivation Strategies

Test Case Undetected Movement Undetected Renaming
Atomic Change Operations

Move Attribute 0 / 1 -
Move Class 1 0 / 1 -
Move Class 2 0 / 1 -
Rename Class - 0 / 1
Rename Method - 0 / 1
Rename Attribute - 0 / 1
Rename Class - 1 / 1
Rename Method - 0 / 1

Common Refactoring Operations

Change Method Signature - 0 / 1
Collapse Hierarchy 0 / 1 -
Extract Associated Class1 0 / 2 -
Extract Superclass2 0 / 2 0 / 1
Inline Class 0 / 1 -

Model Match Challenge3

Exchange Elements 0 / 2 -
Move 0 / 1 -
Move Renamed2 1 / 1 2 / 2
Rename - 2 / 2

Thesis System

Default Test 4 / 6 1 / 1

Large System

Move Classes 0 / 5 -
Rename Classes - 5 / 5
Rename Single Method - 1 / 1
Rename Single Attribute - 1 / 1
Rename Methods & Attributes - 7 / 7

Huge System

Move Shallowly Nested Classes 4 / 4 -
Move Deeply Nested Classes 4 / 4 -

Table 7.2.: Error Pattern Occurrences per Test Case for Similarity-Based Strategy
Test cases without any movement or renaming operation are not listed.

1 Evaluation performed on a non-conservative change sequence.
2 For these test cases, the movement and renaming operations are correlated.
3 Pattern occurrence is identical for the Model Match Challenge system with and without associations.

51

7. Findings

1
! # 2

! # 3
! # 3

' # 2
' # 1

'

⇠>=C08=4A! ⇠>=C08=4A' C Container
N Child

Match
Added Match
Navigation

Figure 7.1.: Match Correction for Unmatched Containers

7.3. Custom Similarity-Based Matching Strategy

Using our �ndings for consistency preservation problems and error patterns in the current
similarity-based derivation strategies, we want to provide a strategy that is optimized for
model consistency preservation. We motivated the information deletion and the informa-
tion ambiguity problems to be those problems with the highest severity for consistency
preservation. Therefore, our custom similarity-based matching strategy should aim to
reduce the occurrence probability of these problems. Since both problems are caused
by incorrectly unmatched elements, an approach to avoiding them is to increase the
number of matches identi�ed by the strategy. While this could be achieved by lowering
the threshold of the similarity distance function to consider two elements sooner as a
match, the side e�ects introduced by modifying this already elaborate function are hard
to estimate. Therefore, the threshold is not changed. Instead, the extended matching is
applied after the matching of the default similarity-based strategy is completed. Another
bene�t of this post-processing approach is that most elements are already matched which
reduces the search space. However, producing additional matches always comes with
the risk of matching the wrong elements which can lead to the information preservation
problem. Although the strategy is designed with this risk in mind, there can always be
unconsidered cases where incorrect matches get created. Nevertheless, the severity of the
information preservation problem is low compared to the problems aimed to be solved
with the extended matching.

We know from the identi�ed error patterns that it is common that a renamed or moved
container is not matched but its children are. Furthermore, due to the hierarchical naviga-
bility of both the matches and the elements, the correct match for the container element
can be reached by accessing the parent of a matched element of a child. Therefore, in the
custom similarity-based matching strategy, the missing match is restored by traversing
this path to retrieve the matching container (Figure 7.1). To limit the impact of incorrect
child matches, all matched children of some unmatched container must be matched to
an element with the same container. If there are multiple possible container matches,
no match is created. A more aggressive approach to consider incorrect child matches
would be to already treat a container as the correct match when it is referred to by only a
certain percentage of the element’s children. However, in the evaluated test cases there
was no bene�t of allowing this. Besides of its uniqueness among the children, the found
container is also required to be unmatched and to be an instance of the same metaclass as
the unmatched container. While it is theoretically possible that one element of one model

52

7.3. Custom Similarity-Based Matching Strategy

1
! # 2

! # 3
! # 3

' # 2
' # 1

'

⇠>=C08=4A! ⇠>=C08=4A' C Container
N Child

Match
Added Match
Navigation

Figure 7.2.: Match Correction for Unmatched Leaves

version corresponds to multiple elements of a di�erent model version, EMF Compare
restricts this to at most one match per element. The metaclass constraint is required as
an element’s metaclass cannot change after instantiation, thus elements with di�erent
metaclasses cannot be changed versions of another.
One problem with restoring element matches based on its children occurs when the

unmatched element does not have any children (a leaf element). Without any children to
traverse, no corresponding element can be found. However, this scenario was detected in
the test cases for di�erent renaming scenarios. To deal with it, the custommatching strategy
is extended with another matching heuristic. For any unmatched leaf, all unmatched
children with the samemetaclass as the unmatched element of both the leaf’s container and
its matched counterpart are collected. If for the leaf’s container only the leaf is unmatched
and for the counterpart there is also only one unmatched child with a matching metaclass,
the leaf is matched to this child (Figure 7.2). This restriction is used to prevent multiple
unmatched leaves of the same container to be matched to the same element. Since this
matching does rely only on the content hierarchy and not on any distance metric inherent
to the matched element, it contains a high risk of introducing the information preservation
problem. To allow an optimized balance between accidental deletion and accidental
preservation, the match correction for unmatched leaves can be disabled depending on
the use case. However, for the considered test cases the evaluation (chapter 8) shows that
with this aggressive merging technique enabled, the results improve further.

An additional customization point introduced with the custom matching strategy is to
prevent the extended matching for certain elements. While per default every unmatched
element is eligible for the extended matching, developers can limit this set to compensate
for known matching issues in the particular use case or to prevent unintended side e�ects
when extending the strategy with domain-speci�c matching logic. In the considered
use case of UML class diagrams and Java classes, UML associations may get incorrectly
matched (see section 5.4) already in the original matching. Therefore, associations or any
of their descendants are excluded from the extended matching to prevent subsequent
matching errors.

53

8. Evaluation

In this chapter we present the obtained results by evaluating the di�erent strategies against
our created test suites. First, we show how the identity- and similarity-based strategies
perform in terms of deriving a conservative, admissible, or even the actual change sequence.
Then, we compare the outcome of our extended similarity-based matching strategy to
these results. Second, we analyze the performance overhead of state-providing views
when compared to delta-providing views as well as the performance comparison of the
three strategies. Finally, we present threats to the validity of our obtained �ndings.

8.1. Test Suite Results

Each of the considered strategies is run against all seven test suites. We de�ned a test case
to succeed whenever the derived change sequence is admissible which is indicated by a
correct source and target model. As an additional metric, for each derived change sequence
it was annotated whether it matches the actual change sequence. Since the admissibility of
a change sequence depends on the target domain extension, the test case could fail if the
extension got changed. If the actual change sequence is derived, the test case will succeed
in every case in which a delta-providing view would succeed, as they provide the same
change sequence in this case. We consider a change sequence to match the actual change
sequence if it consists of the same operations, independent of the order. Since we only
consider a correct consistency speci�cation, any order of the same operations produces
the same outcome.

8.1.1. Existing Strategies Results

The test results for the identity- and basic similarity-based matching strategies are shown
in Table 8.1. For the identity-based matching strategy one can see that in all but one case
the actual change sequence was derived. This is reasonable as due to the immutability
of the element identi�ers the matching phase can produce perfect results. It is worth
noting that the matching is not in�uenced by the size of the system, as even for the
large-scale generated models the actual change sequences are derived. Since the actual
change sequence is also conservative and admissible, all test cases except for the one
mentioned are passed successfully with the identity-based matching strategy.
For the similarity-based strategy, the actual change sequence is only derived in less

than half of all test cases. In UML models with associations, no change sequence matches
the actual change sequence due to the known problems with deriving changes for UML
associations (see section 5.4). To not distort the results by the UML associations matching
problem, we added an additional comparison to check whether the actual change sequences

55

8. Evaluation

Identity-Based Similarity-Based
Test Suite conservative admissible actual conservative admissible actual actual*

Atomic Change
Operations 13/13 13/13 13/13 13/13 13/13 12/13 -
Common Refactoring
Operations 5 / 6 5 / 6 5 / 6 4 / 6 4 / 6 0 / 6 4 / 6
Model Match Challenge
(with Associations) 5 / 5 5 / 5 5 / 5 3 / 5 3 / 5 1 / 5 3 / 5
Model Match Challenge
(without Associations) 4 / 4 4 / 4 4 / 4 4 / 4 4 / 4 2 / 4 -

Thesis System 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 0 / 1 0 / 1

Large System 7 / 7 - 7 / 7 7 / 7 - 3 / 7 -
Huge System 2 / 2 - 2 / 2 2 / 2 - 0 / 2 -

Total 37/38 28/29 37/38 34/38 25/29 18/38 24/38

Table 8.1.: Change Sequence Properties Achieved by Existing Strategies
The actual* column counts those cases where the actual change sequence was derived but extended with

noise due to faulty UML associations matching.

would have been derived if associations had been excluded (column actual*). This raises the
actual change sequence quota to slightly above 60 %. The test cases with non-actual change
sequences are exactly those where one of the two identi�ed error patterns occur (see
section 7.2). Although the actual change sequence quota is signi�cantly lower compared to
the identity-based strategy, the rate of successful test cases, i.e. derived admissible change
sequences, is with above 86 % closer to the one of the identity-based strategy (96 %). Since
in the test cases only parts of the target domain are extended, some occurring matching
errors do not result in a consistency problem and therefore the consistency preservation
can still produce correct results. However, it is worth noting that the test success rate
is dependent on the target domain extension and could drop down to the actual change
sequence quota if target domain extensions were constructed with the intention to fail the
test cases.

Even though we required every change sequence to be conservative, the tested strategies
fail to provide such sequences in some cases. For the identity-based matching strategy,
one non-conservative change sequence is derived. For the similarity-based matching
strategy, four non-conservative change sequences are derived. In all of these �ve cases,
the failure is caused by UML associations. In the one case produced by the identity-
based matching strategy and in three cases produced by the similarity-based strategy,
children of an association are incorrectly managed and remain as dangling elements in the
resource which is forbidden. In the last case of the similarity-based matching strategy, an
association end is not correctly renamed to its new name. All these cases can be corrected
to produce conservative (and in these cases also admissible) change sequences by replacing
the problematic association with a UML property.

56

8.1. Test Suite Results

Similarity-Based Custom (Conservative) Custom (Aggressive)
Test Suite actual actual* actual actual* actual actual*

Atomic Change
Operations 12 / 13 - 13 / 13 - 13 / 13 -
Common Refactoring
Operations 0 / 6 4 / 6 0 / 6 4 / 6 0 / 6 4 / 6
Model Match Challenge
(with Associations) 1 / 5 3 / 5 1 / 5 3 / 5 1 / 5 3 / 5
Model Match Challenge
(without Associations) 2 / 4 - 2 / 4 - 4 / 4 -

Thesis System 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1 0 / 1

Large System 3 / 7 - 4 / 7 - 7 / 7 -
Huge System 0 / 2 - 0 / 2 - 0 / 2 -

Total 18 / 38 24 / 38 20 / 38 26 / 38 25 / 38 31 / 38

Table 8.2.: Change Sequence Properties Achieved by Custom Strategy
The actual* column counts those cases where the actual change sequence was derived but extended with

noise due to faulty UML associations matching.

8.1.2. Custom Similarity-Based Matching Strategy Results

For the similarity-basedmatching strategywith extendedmatching there exist two di�erent
con�gurations. We call these con�gurations conservative and aggressive, depending on
whether the matching of single leaves is enabled (aggressive) or disabled (conservative). For
both con�gurations, the conservative and admissible properties of the change sequences
for each test case remain unchanged compared to the similarity-based matching strategy. It
is expected that the results do not worsen as the custom strategy only extends the matches
produced by the similarity-based strategy. Additionally, since all non-conservative change
sequences are caused by UML associations which are not post-processed by the custom
strategy, correcting the derived change sequences for these cases was not possible.
Even though the number of passed tests remains identical compared to the similarity-

based strategy, an improvement is achieved when comparing the change sequence to
the actual change sequence (Table 8.2). Here, the conservative con�guration produces
the actual change sequence in two and the aggressive con�guration in seven additional
cases. When excluding the four cases for which no conservative strategy could be derived,
the aggressive strategy is able to derive the actual change sequence for all test cases of
medium-sized systems except for one and for the Large System. By being closer to the
actual change sequences, achieving a successful test result is less dependent on the target
domain extension. As an example, the aggressive con�guration is able to pass the test
cases which were constructed to fail for the similarity-based strategy (see subsection 7.2.2).
To get a more �ne-grained insight on the improvements of the custom strategy, we

compared the occurring error patterns to those of the default similarity-based strategy
(Table 8.3). Since the custom strategy only adds additional matches, no new unmatched
movement or unmatched renaming errors can occur. For the conservative con�guration,
11 out of 33 previously occurring error patterns got corrected. Especially the detection
of renaming operations was improved. With the aggressive con�guration, there are only

57

8. Evaluation

Similarity Custom Custom
-Based (Conservative) (Aggressive)

Test Case U. Move U. Rename U. Move U. Rename U. Move U. Rename

Atomic Change Operations

Rename Class - 1 / 1 - 0 / 1 - 0 / 1

Model Match Challenge1

Move Renamed2 1 / 1 2 / 2 0 / 1 1 / 2 0 / 1 0 / 2
Rename - 2 / 2 - 1 / 2 - 0 / 2

Thesis System

Default Test 4 / 6 1 / 1 4 / 6 1 / 1 4 / 6 0 / 1

Large System

Rename Classes - 5 / 5 - 0 / 5 - 0 / 5
Rename Single Method - 1 / 1 - 1 / 1 - 0 / 1
Rename Single Attribute - 1 / 1 - 1 / 1 - 0 / 1
Rename Methods & Attributes - 7 / 7 - 5 / 7 - 0 / 7

Huge System

Move Shallowly Nested Classes 4 / 4 - 4 / 4 - 4 / 4 -
Move Deeply Nested Classes 4 / 4 - 4 / 4 - 4 / 4 -

Total 13 / 15 20 / 20 12 / 15 10 / 20 12 / 15 0 / 20

Table 8.3.: Error Pattern Occurrences per Test Case for Custom Strategy
Test cases with no occurring error patterns for the similarity-based strategy are not listed.

1 Pattern occurrence is identical for the Model Match Challenge system with and without associations.
2 For this test case, the movement and renaming operations are correlated.

three test cases left in which error patterns occur. In the Default Test of the Thesis System
example, the default similarity-based matching strategy identi�es the wrong elements to
be moved which cannot get corrected by the extended matching. For both test cases of the
Huge System, due to the system’s size the accuracy of the local bound matching search
of the default similarity-based strategy is strongly reduced. As the extended matching
requires a certain level of matching accuracy which is not reached anymore, there are no
bene�ts with the custom strategy for such large systems. Besides of correcting the results
for several previously occurring error patterns, no new errors in the form of incorrect
matches are produced. Interestingly, this applies to both strategy con�gurations, showing
that the restrictions chosen for the aggressive con�guration are su�cient. However, the
considered test cases are not designed for revealing information preservation problems
and thus the absence of incorrect matches may be biased on the considered test suites.

58

8.2. Performance Overhead of State-Providing Views

AverageACO CRO MMC+ MMC- TS LS
0

100

200

300

Test Suite

O
ve
rh
ea
d
(in

%)
Identity-based
Similarity-based

Custom (Aggressive)

Figure 8.1.: Average Performance Overhead of State-Providing Views compared to Delta-
Providing Views

8.2. Performance Overhead of State-Providing Views

In comparison to delta-providing views, state-providing views require an additional com-
putation phase when used in delta-based consistency preservation. This phase is the
derivation of the change sequence from the state di�erences. Since all other phases of the
consistency preservation are identical for both view types, state-providing views introduce
a performance overhead. As the availability of a change sequence is a requirement for delta-
based consistency preservation, this overhead is unavoidable. To measure it, we compare
the time to derive a change sequence)⇠(to the overall execution time)+⇡ of the consis-
tency preservation for delta-providing views. Since the execution time of delta-providing
views is the same as for state-providing views minus the additional time of the change
sequence derivation, we can measure the overall execution time of the state-providing
views)+(and compute)+⇡ by)+⇡ =)+(�)⇠(. By measuring both values in the same test
run, distortions in the measurements due to di�erent caching or machine workload can
be reduced. The performance overhead is computed by)⇠(/)⇡ =)⇠(/()+(�)⇠() and is
shown in Figure 8.1. Each test suite is run twenty times and for each test case the overhead
average over these twenty runs is computed. For a test suite, the overhead is the average
of the averaged overheads of each test case within that suite.
The results show that the averaged overhead is between 75 % and 300 %, depending

on the test suite. Interestingly, the overhead reduces with the complexity of the system.
This is reasonable as for larger systems and longer change sequences, the consistency
preservation execution time also increases. Furthermore, the overhead across the strategies
appears to remain stable. Since for each strategy the derived change sequence is taken
as the measurement baseline, the execution time of the consistency preservation varies.
If the strategy derives a change sequence with more operations, the execution time of
the consistency preservation increases. Therefore, the relative overhead should not be
compared across strategies as di�erent baselines are involved.

59

8. Evaluation

ACO CRO MMC+ MMC- TS LS
0

10

20

30

40

50

139.75 ms

Test Suite

Ex
ec
ut
io
n
Ti
m
e
(in

m
s)

Identity-based
Similarity-based

Custom (Aggressive)

Figure 8.2.: Absolute Execution Time of Change Sequence Derivation

A better metric to compare the strategies is their absolute execution time to derive
a change sequence which is shown in Figure 8.2. The execution times are the absolute
values of the overhead computation and are averaged using the same approach. In general,
the identity-based matching outperforms the other strategies in any test suite. This is
reasonable as the matching logic for similarity-based strategies is more complex than an
identi�er comparison and therefore takes more times. We can also see that all strategies
perform slower with growing complexity of the system. However, the identity-based
matching strategy scales better than the similarity-based ones. While the similarity-based
strategy is around 50 % slower for the Atomic Change Operations, this increases to around
280 % for the Common Refactoring Operations and even 330 % for the Large System.
Although one reason for this is also the simpler matching of the identity-based strategy,
it is additionally in�uenced by incorrect or missing matches. As for similarity-based
strategies the number of matching errors increases with the system complexity, the e�ort
of the di�erencing phase increases and thus also the execution time. The di�erence in
scalability manifests itself even more when assessing the execution time for the Huge
System tests (Figure 8.3). Here the similarity-based strategies are around 15 (Move Shallow)
respectively 22 (Move Deep) times slower than the identity-based strategy. Interestingly,
for the identity-based strategy there is no signi�cant di�erence whether shallowly or
deeply nested classes are moved. In contrast, the similarity-based strategies require almost
double the time to derive a change sequence for the movement of the deeply nested classes.

Even though the custom matching strategy adds an additional matching step compared
to the similarity-based strategy, its performance is similar or even better. While the basic
matching for both strategies is identical and thus should last the same time, improvements
in the matching phase reduce the execution time of the di�erencing phase. A signi�cant
improvement can be seen for the Large System, where the custom strategy achieves an

60

8.3. Threats to Validity

Move Shallow Move Deep
0

10

20

30

40

50

Test Case

Ex
ec
ut
io
n
Ti
m
e
(in

s)

Identity-based
Similarity-based

Custom (Aggressive)

Figure 8.3.: Absolute Execution Time of Change Sequence Derivation for Huge System

almost four times speed-up. Since all occurring matching errors in this test suite are
resolved by the custom strategy, the number of detected di�erences decreases in the most
extreme case of the Rename Classes test suite from 57 to 5 change operations. Another
reason for the only marginal overhead of the extended matching is that the existing
strategy already matches the majority of elements. Therefore, the extended matching is
only performed on a fraction of the entire model.

8.3. Threats to Validity

To conclude the evaluation, in this section we discuss the threats to validity of our results.
We see the strongest threat in the choice and coverage of our considered test suites. Al-
though it is tried to obtain a broad coverage by using multiple approaches to constructing
a test suite, constraining the considered elements and features to a small subset of the
domain, and reusing relevant scenarios from existing literature, certain cases may not be
considered. Similarly, there may exist pairs or tuples of domains for which our generaliza-
tion of the employed UML to Java case study do not apply. Since in these unconsidered
cases new consistency problems may occur, further evaluation of state-providing views in
di�erent contexts has to be done in the future.
Regarding our extended similarity-based matching strategy, we identify two possible

threats. First, as the strategy is extended with matching heuristics obtained exclusively
from our own evaluation, it may be over�tted to our test suites. This could reduce its
performance in other applications by creating wrong matches leading to the information
preservation problem. However, due to the strict constraints on the added matches, we
assume to just not generate any additional matches in the worst case instead of wrong
ones. Second, the performance of the custom strategy is only evaluated for cases with
an already high matching rate. Since we are looping over the unmatched elements of
both models, the performance of the extended matching routine is O(=2). While this is

61

8. Evaluation

not problematic for a few elements, if the default similarity-based matching is not able to
match a large number of elements, we expect the execution time to increase signi�cantly.
However, our tests show that even for models with over 80 000 elements the matching rate
remains stable enough to not have strong in�uence on the execution time of the extended
matching.

Finally, by using the model consistency framework V�������� our results are dependent
on its correctness. This includes its in-memory model representation, the used consistency
speci�cation, as well as its management of the V-SUM state. Exemplary, if a deleted
element is preserved too long in memory, the �nd-or-create pattern may reuse it to create
a correspondence which could incorrectly preserve information. We minimized this threat
by additionally assessing each derived change sequence manually.

62

9. Future Work

Besides of mostly providing only state-based information, there are other aspects of in-
dustry tooling that need to be considered to fully support these in automated model
consistency preservation. Answering these questions is a task for future work. Further-
more, the validity of our results can be assessed by extending the considered domains or
evaluating changes from industrial applications.
Besides of their state-providing trait, models from real world applications introduce

additional challenges to automated model consistency preservation. It is possible that these
models contain information inherent to the used editor that should not be included in the
SUM, like layout information. When regenerating such a model from the SUM, solutions
need to be found to cope with this information, either leaving them out or preserving them
from the previous view state. Another challenge is dealing with simultaneous changes to
the SUM and the view. Commonly, an engineer works on a local copy of a model. If the
SUM is changed but the local model is not refreshed, subsequently propagated changes
from the model are based on an outdated state and may reference deleted or changed
elements. To start the consistency synchronization, in this thesis manual triggers are
used. These need to be extended to automatic triggers which allow view synchronization
without user input. Imaginable triggers are on every �le save or on every model versioning
commit. For the choice of triggers the rate of the synchronization needs to be weighed
up against the size of the changes, as the derivation imprecision increases with larger
changes.
As an early approach, we evaluate two existing strategies and our modi�ed one in a

UML to Java case study. In future work, the evaluation should be extended to further
domains and to incorporate changes of real applications. Exemplary, this could be achieved
by using the change history of existing projects. Additionally, in the context of a V-SUM
the impact of state-providing views for a network of transformations can be assessed.
As in this thesis only binary, non-transitive transformations are considered, there might
occur new consistency problems in transitively linked domains or when having circular
consistency dependencies.

Another interesting topic is whether the information in the SUM can be used to improve
the change sequence derivation for a view. Although the change sequences are applied to
the entire SUM, currently only the information of the view is used for the sequence deriva-
tion. Providing additional information to the change sequence derivation strategies may
improve their matching accuracy. A challenge of this approach is that SUM information is
only available for the initial view state but not for the changed one.

63

10. Conclusion

In this thesis, we showed how state-based di�erences can be integrated into delta-based
model consistency preservation. This was done as in real world applications the delta-
based changes are rarely available. For the evaluation, we created di�erent test suites
with consistent UML class diagrams and Java source code. A test pipeline was created
which uses the V�������� framework to preserve model consistency and to propagate the
derived change sequences. Change sequences were derived by using the EMF Compare
framework. To obtain meaningful results, the existing consistency speci�cation was
extended to support all considered operations.

As an evaluation metric, we introduced the term of an admissible change sequence. This
was necessary to identify cases in which an incorrect change sequence is derived which
application still produces the correct SUM. We discussed properties of tuples of domains
that pose additional challenges to consistency preservation, and showed that the chosen
domains are a critical domains scenario. We presented steps taken in the design of the
test suites to allow general conclusions for arbitrary domains from the �ndings. These
span over the choice of a critical domains scenario, the XML serialization of UML class
diagrams, and the restriction of considered elements and attributes in the individual test
suites.

In the evaluation, we identi�ed two reoccurring problems of similarity-based matching
and one error pattern speci�c to the chosen domain. We showed that for the identity-based
matching strategy almost always the actual change sequence is derived. The strategy only
failed once due to the domain-speci�c error. For the similarity-based strategy, we achieved
a test success rate of over 86 % while deriving the actual change sequences in three out of
�ve cases.
To avoid the identi�ed problems with similarity-based matching, we presented a cus-

tomized similarity-based matching strategy that aims at reducing the occurrence prob-
ability of the error patterns. We showed that even though the passed tests remained
unchanged, we were able to halve the number of occurring error patterns and derive the
actual change sequence in six additional cases. In terms of performance, we were able to
introduce only a marginal overhead compared to similarity-based matching and in some
cases were even able to improve the overall performance.
In conclusion, our results indicate that using state-providing views with delta-based

consistency preservation is feasible. Especially when identity-based matching is possible,
there was almost no di�erence to using delta-providing views. For similarity-based match-
ing, we proposed an extended strategy to reduce critical problems that may appear with
the default strategy. Although the results appear promising, further case studies based on
other domains or realistic change histories need to be executed. Additionally, there are
other unresolved problems to integrate existing model editing tools into automated model
consistency preservation.

65

Bibliography

[1] Lorenzo Addazi et al. “Semantic-based Model Matching with EMFCompare”. In: 10th
Workshop on Models and Evolution. Ed. by Tanja Mayerhofer et al. CEUR-WS, Oct.
2016, pp. 40–49. ���: http://www.es.mdh.se/publications/4468-.

[2] Thorsten Arendt et al. “Henshin: Advanced Concepts and Tools for In-Place EMF
Model Transformations”. In: vol. 6394. Oct. 2010, pp. 121–135. ����: 978-3-642-16144-
5. ���: 10.1007/978-3-642-16145-2_9.

[3] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. “Orthographic Software Mod-
eling: A Practical Approach to View-Based Development”. In: Evaluation of Novel
Approaches to Software Engineering. Ed. by Leszek A. Maciaszek, César González-
Pérez, and Stefan Jablonski. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 206–219. ����: 978-3-642-14819-4. ���: 10.1007/978-3-642-14819-4_15.

[4] Colin Atkinson and Christian Tunjic. “A Deep View-Point Language for Projective
Modeling”. In: 2017 IEEE 21st International Enterprise Distributed Object Computing
Conference (EDOC). 2017, pp. 133–142. ���: 10.1109/EDOC.2017.26.

[5] Latifa Ben Arfa Rabai, Barry Cohen, and Ali Mili. “Programming Language Use in
US Academia and Industry”. In: Informatics in Education 14 (Oct. 2015), pp. 143–160.
���: 10.15388/infedu.2015.09.

[6] Benjamin Biegel et al. “Comparison of Similarity Metrics for Refactoring Detection”.
In: Proceedings of the 8th Working Conference on Mining Software Repositories. MSR
’11.Waikiki, Honolulu, HI, USA: Association for ComputingMachinery, 2011, pp. 53–
62. ����: 9781450305747. ���: 10.1145/1985441.1985452. ���: https://doi.org/
10.1145/1985441.1985452.

[7] Stefan Bodewig, Je�Martin, and Tim Bacon. XMLUnit - Unit Testing XML for Java
and .NET. ���: https://www.xmlunit.org (visited on 06/14/2021).

[8] Petra Brosch et al. “An Introduction to Model Versioning”. In: Formal Methods for
Model-Driven Engineering: 12th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, SFM 2012, Bertinoro, Italy, June
18-23, 2012. Advanced Lectures. Ed. by Marco Bernardo, Vittorio Cortellessa, and
Alfonso Pierantonio. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 336–
398. ����: 978-3-642-30982-3. ���: 10.1007/978-3-642-30982-3_10. ���: https:
//doi.org/10.1007/978-3-642-30982-3_10.

[9] Cédric Brun and Alfonso Pierantonio. “Model di�erences in the eclipse modeling
framework”. In: UPGRADE, The European Journal for the Informatics Professional 9.2
(2008), pp. 29–34.

67

http://www.es.mdh.se/publications/4468-
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1109/EDOC.2017.26
https://doi.org/10.15388/infedu.2015.09
https://doi.org/10.1145/1985441.1985452
https://doi.org/10.1145/1985441.1985452
https://doi.org/10.1145/1985441.1985452
https://www.xmlunit.org
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1007/978-3-642-30982-3_10

Bibliography

[10] Erik Burger and Oliver Schneider. “Translatability and Translation of Updated
Views in ModelJoin”. In: 9th International Conference on Theory and Practice of Model
Transformations, ICMT 2016 Held as Part of Conference on Software Technologies:
Applications and Foundations, STAF 2016; Vienna; Austria; 4 July 2016 through 5 July
2016. Ed.: P. Van Gorp. Vol. 9765. Lecture Notes in Computer Science. 37.06.01; LK
01. Springer International Publishing, 2016, pp. 55–69. ����: 978-3-319-42063-9. ���:
10.1007/978-3-319-42064-6_4.

[11] Erik Burger et al. “View-Based Model-Driven Software Development with Mod-
elJoin”. In: Softw. Syst. Model. 15.2 (May 2016), pp. 473–496. ����: 1619-1366. ���:
10.1007/s10270-014-0413-5. ���: https://doi.org/10.1007/s10270-014-0413-
5.

[12] Fei Chen. “Änderungsgetriebene Konsistenzhaltung zwischenUML-Klassenmodellen
und Java-Code”. Bachelor’s Thesis. Karlsruhe, Germany: Karlsruher Institut für Tech-
nologie (KIT), May 24, 2017.

[13] Antonio Cicchetti, Federico Ciccozzi, and Thomas Leveque. “A hybrid approach for
multi-view modeling”. In: ECEASST 50 (Jan. 2011). ���: 10.14279/tuj.eceasst.50.
738.

[14] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. “A Metamodel Inde-
pendent Approach to Di�erence Representation.” In: Journal of Object Technology 6
(Oct. 2007), pp. 165–185. ���: 10.5381/jot.2007.6.9.a9.

[15] Manuel Clavel et al. All About Maude - A High-Performance Logical Framework: How
to Specify, Program and Verify Systems in Rewriting Logic. Vol. 4350. Jan. 2007. ����:
978-3-540-71940-3. ���: 10.1007/978-3-540-71999-1.

[16] Zinovy Diskin et al. “From State- to Delta-Based Bidirectional Model Transforma-
tions: The Symmetric Case”. In: Model Driven Engineering Languages and Systems.
Ed. by Jon Whittle, Tony Clark, and Thomas Kühne. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 304–318. ����: 978-3-642-24485-8. ���: 10.1007/978-3-
642-24485-8_22.

[17] Brian Dobing and Je�rey Parsons. “Dimensions of UML Diagram Use”. In: Journal
of Database Management 19 (July 2010), pp. 1–18. ���: 10.4018/jdm.2008010101.

[18] Anthony Finkelstein et al. “Viewpoints: A Framework for Integrating Multiple Per-
spectives in System Development”. In: International Journal of Software Engineering
and Knowledge Engineering 02.01 (1992), pp. 31–57. ���: 10.1142/S0218194092000038.
���: https://doi.org/10.1142/S0218194092000038.

[19] Eclipse Foundation. Eclipse Modeling Framework. ���: https://www.eclipse.org/
modeling/emf/ (visited on 06/14/2021).

[20] Eclipse Foundation. EMF Compare. ���: https://www.eclipse.org/emf/compare
(visited on 06/14/2021).

[21] Eclipse Foundation. Papyrus. ���: https://www.eclipse.org/papyrus/ (visited on
06/14/2021).

68

https://doi.org/10.1007/978-3-319-42064-6_4
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.14279/tuj.eceasst.50.738
https://doi.org/10.14279/tuj.eceasst.50.738
https://doi.org/10.5381/jot.2007.6.9.a9
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.4018/jdm.2008010101
https://doi.org/10.1142/S0218194092000038
https://doi.org/10.1142/S0218194092000038
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/emf/compare
https://www.eclipse.org/papyrus/

[22] Martin Fowler. Refactoring: Improving the Design of Existing Code. Ed. by Kent Beck.
Second edition. The Addison-Wesley signature series - A Martin Fowler signature
book. Boston, MA, USA: Addison-Wesley, 2019. ����: 9780134757698.

[23] Enterprise Big Data Framework. Data Types: Structured vs. Unstructured Data. Jan.
2019. ���: https://www.bigdataframework.org/data- types- structured- vs-
unstructured-data/ (visited on 06/14/2021).

[24] Sinem Getir et al. “CoWolf – A Generic Framework for Multi-view Co-evolution
and Evaluation of Models”. In: vol. 9152. Springer. July 2015, pp. 34–40. ����: 978-3-
319-21154-1. ���: 10.1007/978-3-319-21155-8_3.

[25] Object Management Group. Meta Object Facility. Oct. 2016. ���: https://www.omg.
org/spec/MOF/ (visited on 06/14/2021).

[26] Object Management Group. Uni�ed Modeling Language Speci�cation. ���: https:
//www.omg.org/spec/UML/ (visited on 06/14/2021).

[27] Florian Heidenreich et al. “Closing the Gap betweenModelling and Java”. In: Software
Language Engineering. Ed. by Mark van den Brand, Dragan Gašević, and Je� Gray.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 374–383. ����: 978-3-642-
12107-4.

[28] Frédéric Jouault et al. “ATL: A QVT-like Transformation Language”. In: Companion
to the 21st ACM SIGPLAN Symposium on Object-Oriented Programming Systems,
Languages, and Applications. OOPSLA ’06. Portland, Oregon, USA: Association for
Computing Machinery, 2006, pp. 719–720. ����: 159593491X. ���: 10.1145/1176617.
1176691. ���: https://doi.org/10.1145/1176617.1176691.

[29] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. “A rule-based approach to the
semantic lifting of model di�erences in the context of model versioning”. In: Dec.
2011, pp. 163–172. ���: 10.1109/ASE.2011.6100050.

[30] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. “Consistency-preserving edit scripts
in model versioning”. In: 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 2013, pp. 191–201. ���: 10.1109/ASE.2013.6693079.

[31] Marouane Kessentini et al. “Search-based metamodel matching with structural
and syntactic measures”. In: Journal of Systems and Software 97 (2014), pp. 1–14.
����: 0164-1212. ���: https : / / doi . org / 10 . 1016 / j . jss . 2014 . 06 . 040. ���:
http://www.sciencedirect.com/science/article/pii/S0164121214001484.

[32] Heiko Klare. Vitruvius Wiki - The Reactions Language. ���: https://github.com/
vitruv- tools/Vitruv/wiki/The- Reactions- Language#Reactions (visited on
06/14/2021).

[33] Heiko Klare and Joshua Gleitze. “Commonalities for Preserving Consistency of
Multiple Models”. In: 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). Sept. 2019, pp. 371–
378. ����: 978-1-7281-5125-0. ���: 10.1109/MODELS- C.2019.00058. ���: http:
//dx.doi.org/10.1109/MODELS-C.2019.00058.

69

https://www.bigdataframework.org/data-types-structured-vs-unstructured-data/
https://www.bigdataframework.org/data-types-structured-vs-unstructured-data/
https://doi.org/10.1007/978-3-319-21155-8_3
https://www.omg.org/spec/MOF/
https://www.omg.org/spec/MOF/
https://www.omg.org/spec/UML/
https://www.omg.org/spec/UML/
https://doi.org/10.1145/1176617.1176691
https://doi.org/10.1145/1176617.1176691
https://doi.org/10.1145/1176617.1176691
https://doi.org/10.1109/ASE.2011.6100050
https://doi.org/10.1109/ASE.2013.6693079
https://doi.org/https://doi.org/10.1016/j.jss.2014.06.040
http://www.sciencedirect.com/science/article/pii/S0164121214001484
https://github.com/vitruv-tools/Vitruv/wiki/The-Reactions-Language#Reactions
https://github.com/vitruv-tools/Vitruv/wiki/The-Reactions-Language#Reactions
https://doi.org/10.1109/MODELS-C.2019.00058
http://dx.doi.org/10.1109/MODELS-C.2019.00058
http://dx.doi.org/10.1109/MODELS-C.2019.00058

Bibliography

[34] Heiko Klare et al. “Enabling consistency in view-based system development – The
Vitruvius approach”. In: Journal of Systems and Software 171 (2021). ����: 0164-
1212. ���: https://doi.org/10.1016/j.jss.2020.110815. ���: http://www.
sciencedirect.com/science/article/pii/S0164121220302144.

[35] Dimitrios Kolovos et al. “Di�erent Models for Model Matching: An analysis of
approaches to support model di�erencing”. In: May 2009, pp. 1–6. ����: 978-1-4244-
3714-6. ���: 10.1109/CVSM.2009.5071714.

[36] Max Emanuel Kramer. “Speci�cation Languages for Preserving Consistency between
Models of Di�erent Languages”. PhD thesis. Karlsruher Institut für Technologie
(KIT), 2017. 278 pp. ���: 10.5445/IR/1000069284.

[37] Thomas Kühn et al. “A Metamodel Family for Role-Based Modeling and Program-
ming Languages”. In: Software Language Engineering. Ed. by Benoît Combemale et al.
Cham: Springer International Publishing, 2014, pp. 141–160. ����: 978-3-319-11245-9.

[38] Sven Leonhardt et al. “Integration of Existing Software Artifacts into a View- and
Change-Driven Development Approach”. In: Proceedings of the 2015 Joint MORSE/-
VAOWorkshop on Model-Driven Robot Software Engineering and View-Based Software-
Engineering. MORSE/VAO ’15. L’Aquila, Italy: Association for Computing Machinery,
2015, pp. 17–24. ����: 9781450336147. ���: 10.1145/2802059.2802061. ���: https:
//doi.org/10.1145/2802059.2802061.

[39] Yuehua Lin, Je� Gray, and Frédéric Jouault. “DSMDi�: A di�erentiation tool for
domain-speci�c models”. In: European Journal of Information Systems - EUR J INFOR
SYST 16 (Aug. 2007), pp. 349–361. ���: 10.1057/palgrave.ejis.3000685.

[40] Johannes Meier and Andreas Winter. “Model Consistency ensured by Metamodel
Integration”. In: 6th International Workshop on The Globalization of Modeling Lan-
guages (GEMOC), co-located with ACM/IEEE 21st International Conference on Model
Driven Engineering Languages and Systems (MODELS 2018). Ed. by Regina Hebig and
Thorsten Berger. Copenhagen: CEUR Proceedings of MODELS 2018 Workshops,
Oct. 2018, pp. 408–415.

[41] Johannes Meier et al. “Classifying Approaches for Constructing Single Underly-
ing Models”. In: Model-Driven Engineering and Software Development : 7th Inter-
national Conference, MODELSWARD 2019, Prague, Czech Republic, February 20–22,
2019. Revised Selected Papers. Ed.: S. Hammoudi. 7th International Conference on
Model-Driven Engineering and Software Development. MODELSWARD 2019 (Prag,
Tschechien, Feb. 20–22, 2019). Vol. 1161. Communications in Computer and Infor-
mation Science. Springer Nature, 2020, pp. 350–375. ����: 978-3-030-37872-1. ���:
10.1007/978-3-030-37873-8_15.

[42] Tom Mens. “A state-of-the-art survey on software merging”. In: IEEE Transactions
on Software Engineering 28.5 (2002), pp. 449–462. ���: 10.1109/TSE.2002.1000449.

[43] Klaus Müller and Bernhard Rumpe. “User-Driven Adaptation of Model Di�erencing
Results”. In: Feb. 2014. ���: 10.13140/2.1.2796.7682.

[44] Oracle. Java programming language. ���: https : / / www . java . com (visited on
06/14/2021).

70

https://doi.org/https://doi.org/10.1016/j.jss.2020.110815
http://www.sciencedirect.com/science/article/pii/S0164121220302144
http://www.sciencedirect.com/science/article/pii/S0164121220302144
https://doi.org/10.1109/CVSM.2009.5071714
https://doi.org/10.5445/IR/1000069284
https://doi.org/10.1145/2802059.2802061
https://doi.org/10.1145/2802059.2802061
https://doi.org/10.1145/2802059.2802061
https://doi.org/10.1057/palgrave.ejis.3000685
https://doi.org/10.1007/978-3-030-37873-8_15
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.13140/2.1.2796.7682
https://www.java.com

[45] Parul and Brahmaleen Kaur Sidhu. “Model Smells In Uml Class Diagrams”. In:
International Journal of Enhanced Research in Management & Computer Applications.
Vol. 5. May 2016, pp. 1–13.

[46] Pit Pietsch, Klaus Müller, and Bernhard Rumpe. “Model Matching Challenge: Bench-
marks for Ecore and BPMNDiagrams”. In: Softwaretechnik-Trends 33.2 (2013), pp. 95–
100. ���: 10.1007/s40568-013-0061-x.

[47] Ronald C. Read and Derek G. Corneil. “The graph isomorphism disease”. In: Journal
of Graph Theory 1.4 (1977), pp. 339–363. ���: https://doi.org/10.1002/jgt.
3190010410. ���: https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.
3190010410.

[48] Michael Rys. “XML and Relational DatabaseManagement Systems: InsideMicrosoft®
SQL Server™ 2005”. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’05. Baltimore, Maryland: Association for Comput-
ing Machinery, 2005, pp. 958–962. ����: 1595930604. ���: 10.1145/1066157.1066301.
���: https://doi.org/10.1145/1066157.1066301.

[49] Timur Sağlam and Heiko Klare. “Classifying and Avoiding Compatibility Issues in
Networks of Bidirectional Transformations”. In: STAF 2021 Workshop Proceedings:
9th International Workshop on Bidirectional Transformations. CEUR-WS, 2021.

[50] Petri Selonen. “A review of UML model comparison approaches”. In: Workshop
Proceedings of the 5th Nordic Workshop on Model Driven Engineering, 27-29 August
2007, Ronneby, Sweden. Blekinge Institute of Technology. Research report. Ed. by M.
Staron. 2007, pp. 37–51. ����: 978-91-7295-985-9.

[51] Brahmaleen K. Sidhu, Kawaljeet Singh, and Neeraj Sharma. “A Catalogue of Model
Smells and Refactoring Operations for Object-Oriented Software”. In: 2018 Second
International Conference on Inventive Communication and Computational Technologies
(ICICCT). 2018, pp. 313–319. ���: 10.1109/ICICCT.2018.8473027.

[52] Dave Steinberg et al. EMF: Eclipse Modeling Framework 2.0 (2=3 Edition). Jan. 2008.
����: 9780321331885.

[53] Matthew Stephan and James R. Cordy. “A Survey of Model Comparison Approaches
and Applications”. In: Proceedings of the 1st International Conference on Model-
Driven Engineering and Software Development - Volume 1: MODELSWARD, INSTICC.
SciTePress, 2013, pp. 265–277. ����: 978-989-8565-42-6. ���: 10.5220/0004311102650277.

[54] Misha Strittmatter and Amine Kechaou. The Media Store 3 Case Study System. Tech.
rep. 1. Karlsruher Institut für Technologie (KIT), 2016. 35 pp. ���: 10.5445/IR/
1000052197.

[55] Nikolaos Tsantalis et al. “A Multidimensional Empirical Study on Refactoring Ac-
tivity”. In: Proceedings of the 2013 Conference of the Center for Advanced Studies on
Collaborative Research. CASCON ’13. Ontario, Canada: IBM Corp., 2013, pp. 132–146.

71

https://doi.org/10.1007/s40568-013-0061-x
https://doi.org/https://doi.org/10.1002/jgt.3190010410
https://doi.org/https://doi.org/10.1002/jgt.3190010410
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190010410
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190010410
https://doi.org/10.1145/1066157.1066301
https://doi.org/10.1145/1066157.1066301
https://doi.org/10.1109/ICICCT.2018.8473027
https://doi.org/10.5220/0004311102650277
https://doi.org/10.5445/IR/1000052197
https://doi.org/10.5445/IR/1000052197

Bibliography

[56] Christian Tunjic and Colin Atkinson. “Synchronization of Projective Views on
a Single-Underlying-Model”. Englisch. In: Proceedings of the Joint MORSE/VAO
Workshop on Model-Driven Robot Software Engineering and View-based Software-
Engineering : MORSE/VAO ’15 : 21 July 2015, L’Aquila, Italy. Ed. by Uwe Assmann.
New York, NY: ACM, 2015, pp. 55–58. ���: 10.1145/2802059.2802066. ���: https:
//madoc.bib.uni-mannheim.de/43503/.

[57] Christopher Werner and Uwe Aßmann. “Model Synchronization with the Role-
oriented Single Underlying Model”. In: 2018. ���: http://ceur- ws.org/Vol-
2245/mrt_paper_3.pdf.

[58] ManuelWimmer, Nathalie Moreno, and Antonio Vallecillo. “Viewpoint Co-evolution
through Coarse-Grained Changes and Coupled Transformations”. In: May 2012,
pp. 336–352. ����: 978-3-642-30560-3. ���: 10.1007/978-3-642-30561-0_23.

[59] Manuel Wimmer et al. “A Catalogue of Refactorings for Model-to-Model Transfor-
mations”. In: Journal of Object Technology 11.2 (Aug. 2012), 2:1–40. ����: 1660-1769.
���: 10.5381/jot.2012.11.2.a2. ���: http://www.jot.fm/contents/issue_2012_
08/article2.html.

[60] Zhenchang Xing and Eleni Stroulia. “UMLDi�: An Algorithm for Object-Oriented
Design Di�erencing”. In: Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering. ASE ’05. Long Beach, CA, USA: Association for
Computing Machinery, 2005, pp. 54–65. ����: 1581139934. ���: 10.1145/1101908.
1101919. ���: https://doi.org/10.1145/1101908.1101919.

72

https://doi.org/10.1145/2802059.2802066
https://madoc.bib.uni-mannheim.de/43503/
https://madoc.bib.uni-mannheim.de/43503/
https://doi.org/http://ceur-ws.org/Vol-2245/mrt_paper_3.pdf
https://doi.org/http://ceur-ws.org/Vol-2245/mrt_paper_3.pdf
https://doi.org/10.1007/978-3-642-30561-0_23
https://doi.org/10.5381/jot.2012.11.2.a2
http://www.jot.fm/contents/issue_2012_08/article2.html
http://www.jot.fm/contents/issue_2012_08/article2.html
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1145/1101908.1101919

A. Appendix

Test Case ID Similarity Custom Custom
(Conservative) (Aggressive)

Atomic Change Operations

Add Attribute 2 2 2 2
Add Class 1 1 1 1
Add Method 3 3 3 3
Move Attribute 1 1 1 1
Move Class 1 1 1 1 1
Move Class 2 1 1 1 1
Move Method 1 1 1 1
Remove Attribute 2 2 2 2
Remove Class 8 8 8 8
Remove Method 5 5 5 5
Rename Attribute 1 1 1 1
Rename Class 1 4 1 1
Rename Method 1 1 1 1

Common Refactoring Operations

Change Method Signature 11 83 83 83
Collapse Hierarchy 12 84 84 84
Extract Associated Class 24 96 96 96
Extract Superclass 30 90 90 90
Inline Class 18 78 78 78
Remove Associated Class 21 81 81 81

Model Match Challenge (with Associations)

Exchange Elements 2 2 2 2
Move 3 15 15 15
Move Renamed 6 29 27 24
Rename 4 28 25 22
Update Reference Target 2 14 14 14

73

A. Appendix

Test Case ID Similarity Custom Custom
(Conservative) (Aggressive)

Model Match Challenge (without Associations)

Move 2 2 2 2
Move Renamed 4 9 7 4
Rename 2 8 5 2
Update Reference Target 1 1 1 1

Thesis System

Default Test 29 119 119 116

Large System

Delete Classes 167 167 167 167
Delete Methods & Attributes 18 18 18 18
Move Classes 5 5 5 5
Rename Classes 5 57 5 5
Rename Single Method 1 9 5 1
Rename Single Attribute 1 9 4 1
Rename Methods & Attributes 7 24 18 7

Huge System

Move Shallowly Nested Classes 4 147 147 147
Move Deeply Nested Classes 4 218 218 218

Table A.2.: Change Sequence Size (in Number of Operations) per Test Case per Strategy

74

Test Case ID Similarity Custom Custom
(Conservative) (Aggressive)

Atomic Change Operations

Add Attribute X X X X
Add Class X X X X
Add Method X X X X
Move Attribute X X X X
Move Class 1 X X X X
Move Class 2 X X X X
Move Method X X X X
Remove Attribute X X X X
Remove Class X X X X
Remove Method X X X X
Rename Attribute X X X X
Rename Class X X X X
Rename Method X X X X

Common Refactoring Operations

Change Method Signature X X X X
Collapse Hierarchy X X X X
Extract Associated Class ⇥ ⇥ ⇥ ⇥

Extract Superclass X ⇥ ⇥ ⇥

Inline Class X X X X
Remove Associated Class X X X X

Model Match Challenge (with Associations)

Exchange Elements X X X X
Move X X X X
Move Renamed X ⇥ ⇥ ⇥

Rename X ⇥ ⇥ ⇥

Update Reference Target X X X X

Model Match Challenge (without Associations)

Move X X X X
Move Renamed X X X X
Rename X X X X
Update Reference Target X X X X

Thesis System

Default Test X X X X

Table A.1.: Model Correctness per Test Case per Strategy

75

	Abstract
	Zusammenfassung
	Introduction
	Goals of the Thesis
	Structure of the Thesis

	Foundations
	Automated Model Consistency Preservation
	Single Underlying Model
	Delta-Based Consistency Preservation

	The Automated Model Consistency Approach Vitruvius
	Virtual Single Underlying Model
	Consistency Preservation

	Model Comparison
	Model Matching
	Model Differencing
	The Model Comparison Framework EMF Compare

	Related Work
	Automated Model Consistency Preservation
	Single-Underlying-Model-Based Approaches
	Further Approaches

	Model Comparison Strategies
	Common Model Editing Operations

	Concept
	State-Based Differences in Delta-Based Consistency Preservation
	Relaxation of Change Sequence Correctness
	Modeling Domain Considerations
	Critical Domains for Consistency Preservation
	Consistency Specification Requirements

	Evaluation Baseline Construction
	Test Case Setup
	Model Correctness Metric
	XML as a Prototype for Semi-Structured Files

	Implementation
	Pipeline Setup
	Virtual Single Underlying Model Initialization
	State-Based Change Application and Propagation

	Output Validation
	UML Model Validation
	Java Model Validation

	Reactions Refinements
	Move-Operations
	Java Accessor Tagged Correspondences

	UML Domain Particularities
	XML Identifiers
	Associations

	Test Suites
	Artificially Constructed Systems
	Atomic Change Operations
	Common Refactoring Operations

	Exemplary Medium-Scale Systems
	Example Model Match Challenge
	Example Thesis System

	Generated Large-Scale Systems
	External Model Editor

	Findings
	Classification of Consistency Preservation Problems
	Limitations of Existing Derivation Strategies
	Identification of Error Patterns
	Synthesis of Failing Test Cases

	Custom Similarity-Based Matching Strategy

	Evaluation
	Test Suite Results
	Existing Strategies Results
	Custom Similarity-Based Matching Strategy Results

	Performance Overhead of State-Providing Views
	Threats to Validity

	Future Work
	Conclusion
	Bibliography
	Appendix

