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A B S T R A C T

The rising share of intermittent renewable energy production in energy systems increasingly poses a threat to
system stability and the price level in energy markets. However, the effects of renewable energy production
onto electricity markets also give rise to new business opportunities. The expected increase in price differences
increases the market potential for storage applications and combinations with renewable energy production.
The value of storage depends critically on the operation of the storage system.

In this study, we evaluate large-scale photovoltaic (PV) storage systems under uncertainty, as renewable
energy production and electricity prices are fundamentally uncertain. In comparison to households who largely
consume the stored energy themselves, the major business case for large-scale PV and storage systems is
arbitrage trading on the electricity markets. The operation problem is formulated as a Markov decision process
(MDP). Uncertainties of renewable energy production are integrated into an electricity price model using
ARIMA-type approaches and regime switching. Due to non-stationarity and heteroskedasticity of the underlying
processes, an appropriate stochastic modeling procedure is developed. The MDP is solved using stochastic
dynamic programming (SDP) and recombining trees (RT) to reduce complexity taking into account the different
time scales in which decisions have to be taken. We evaluate the solution of the SDP problem against Monte
Carlo simulations with perfect foresight and against a storage dispatch heuristic. The program is applied to the
German electricity and reserve power market to show the potential increase in storage value with higher price
spreads, and evaluate a possible imposition of the feed-in levy onto energy directly stored from the common
grid.
1. Introduction

Electricity systems and markets are increasingly challenged by un-
certain production due to new technologies exploiting intermittent
resources, such as wind or solar energy. Electricity generation by
photovoltaic (PV) installations and wind power plants depends on the
availability of the related resources. A lag of several hours or even days
may occur between supply from these sources and peak demand. In this
case, the demand is covered by gas or (pumped-storage) hydropower
plants, which can react easily to load variations and to variable feed-in
of wind or solar electricity into the grid.

Other options to bridge the gaps of volatile supply are electrical
energy storage technologies that can be combined with PV or wind
power plants at a single site or virtually, so that the combined PV/wind
storage system can deliver energy more smoothly. Wind storage systems
are evaluated in several studies (Athertona et al., 2017; Keles, 2013).
As PV storage systems can effectively contribute to the successful
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integration of renewable energy sources (RES) electricity production,
balancing also day–night fluctuations, it is important to assess their
market value and to develop financing schemes in a future electricity
market design for this type of energy technology.

The operation of the components of a PV storage system can also be
done separately. However, regulations exist in today’s energy markets
that make a joint operation and optimization reasonable (see Section 6).
In the future, more regulations are expected to be implemented, to
support joint investments in renewables and storage, as they can help
to eliminate network congestion by smoothing intermittent generation
from RES. It is therefore relevant to develop and apply methods that
take into account positive portfolio effects of a PV and storage plant
and that jointly optimizes the operation of PV and storage on energy
markets.

Existing studies evaluating PV storage systems under uncertainty
focus on their dispatch and profitability on the electricity spot market
vailable online 14 January 2022
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(see Section 2), but rarely on additional earnings that can be generated
on the reserve power market. It can be also noted that if uncertainty
is accounted for in stochastic optimization models for the operation of
storage systems in energy markets, the appropriate stochastic process of
uncertain parameters hardly receives the attention required. However,
an appropriate consideration of uncertainties is essential to carry out
robust evaluations (Zheng et al., 2015; Davison et al., 2002). Moreover,
to the best knowledge of the authors, there is no study that examines
the role of network charges for creating portfolio effects for PV storage
systems. These charges have to be paid by energy storage plants if they
are dispatched at the spot market and if they are not considered as
network operation components.

Based on these points, the main contribution of this study can be
summarized as follows:

• We describe a joint optimization approach for the dispatch of
PV storage on both spot and reserve power markets, considering
interdependent uncertainties arising from electricity prices and
PV electricity generation.

• We contribute to the scientific literature illustrating the entire
approach from modeling uncertainties, their incorporation into
a stochastic optimization problem of energy storage operation,
and finally, solution algorithms based on heuristics and stochastic
dynamic programming.

• For the first time, we discuss the role of network charges in
creating a portfolio effect that can support the co-location of PV
storage plants and their system-friendly operation. Particularly,
renewable energy policy should address exemptions from network
fees of energy storage if storage’s future role is to support the
system operation instead of being considered an energy consumer.

• Finally, this study investigates the economic profitability of PV
storage systems under today’s price levels and future price de-
velopments accounting for expected renewable expansion. The
results will help stakeholders make informed decisions on invest-
ments and support policies for these technologies highly relevant
for future energy systems.

We first provide detailed modeling approaches for the stochastic pa-
ameters (electricity prices and renewable energy generation). Thereby,
e take cross-correlations between renewable energy production and
lectricity price into account. This is very important for the evaluation
f the value of renewable power production due to the concurrency
f the plant under evaluation and all the renewable plants selling
lectricity at the same time.

More precisely, we introduce a comprehensive approach starting
ith the detailed modeling of PV and wind power generation and
holesale electricity prices as well as their cross-correlations. Then
e continue with a scenario reduction technique to generate a re-

ombining tree for a stochastic dynamic program (SDP) that solves
Markov decision process (MDP) for the optimal operation and eco-

omic evaluation of investments in PV storage systems. The proposed
cenario reduction method simultaneously considers multiple uncertain
arameters (electricity prices and renewable energy feed-in) as well as
he high-dimensionality of these parameters, as the action-space of the
ecision problem covers the 24 h of the following day. This significantly
ncreases not only the complexity of the scenario reduction technique,
ut also of the applied SDP that, in contrast to most applications in the
iterature, has to cover the high-dimensional action space of the MDP.
urthermore, to keep the problem tractable, we discretize the storage
tates to a predefined number of storage levels at the beginning of each
ay and solve a discrete approximation of the optimal SDP.

We model a period of a whole year for the optimal operation plan
y maximizing the annual return, as our objective is not only to derive
n optimal operation strategy, but also to evaluate investments in PV
torage based on the calculated annual returns. The chosen period of a
ear allows us to consider earnings and cash-flows that can be realized
2

ue to all the seasonal variability of electricity prices.
Fig. 1. Graphical summary of this study.

Fig. 1 summarizes the applied overall methodology.
The remainder of the paper is structured as follows: After a brief

literature review (Section 2), we formulate the optimal operation of
a PV storage system as a Markov-decision process (MDP) with the
objective to maximize the annual return in Section 3. Thereby, the op-
timal operation of an energy storage considers the real option to delay
the dispatch and to use the stored energy for electricity production in
times of scarcity and high prices. Furthermore, the problem formulation
focuses on decisions that are to be made regarding operating the
PV storage on the spot or reserve power market. The MDP is then
approximated applying a SDP with recombining trees.

Before the SDP solution is presented, the modeling approach of
the main uncertainties, the volatile PV and wind power generation as
well as electricity spot prices, is described in detail (Section 4). The
combined modeling approach consists of extended time-series models
(ARMAX) that are developed to generate electricity price series consid-
ering the impact of PV and wind power generation on prices. The price
model is a regime switching model based on a seasonal ARMA process.
The procedure takes the stochastic properties of the time series such
as non-stationarity and heteroscedasticity into account. Thus, a valid
stochastic model is provided. The data used to calibrate the time-series
model is derived from EPEX Spot and the European Energy Exchange
(EEX).

The time-series models are applied to generate a large number of
price and PV output series which then are reduced to a recombining
scenario tree as a basis for the SDP model that optimizes the dispatch
of PV storage systems (Section 5) in the spot and reserve power market.

In Section 6, a case study is carried out to evaluate a PV storage
investment based on maximum annual returns which result from the
optimal operation of the system under price and PV power generation
uncertainty. The storage dispatch is optimized and annual returns are
maximized under imperfect foresight on prices and PV feed-in during
the year. Finally, the economic value of the PV storage system is
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analyzed for a future year with possible higher fluctuations in prices.
Main conclusions are drawn and possible directions of future research
are indicated in Section 7.

2. Literature review

In the recent literature, residential PV storage systems are often
evaluated based on maximizing self-consumption of generated PV elec-
tricity (Quoilin et al., 2016; Luthander et al., 2016; Vieira et al., 2017),
investigating optimal investment and operation plans for residential
energy systems (Lauinger et al., 2016), and comparing grid-connected
with off-grid solutions (Sandwell et al., 2016).

Besides the evaluations based on household use of storage, other
studies investigate PV and large-scale storage or aggregated small-
scale storage systems and the marketing of their capacity as well
as their energy on wholesale markets (Zucker and Hinchliffe, 2014;
Sioshansi et al., 2009; Aguado et al., 2009; Muche, 2014). Most of these
studies examine the value of storage based on deterministic parameters.
They follow an approach with pre-known prices. The uncertainty in
the future electricity prices and renewable energy generation is not
considered in all these studies.

However, studies in the storage literature take uncertain prices or
RES electricity production into account and develop different stochas-
tic optimization models to address these uncertainties in operational
planning of storage plants. First studies that consider uncertainties for
storage operation and evaluation were already developed for hydro
power storage in the 1990s and earlier. Pereira and Pinto (1991)
develop a multistage stochastic model for the planning of several hydro
reservoirs and apply stochastic dual dynamic programming (SDDP)
with Bender’s decomposition in each stage. A piece-wise linearization
is used to avoid discretization in the optimization problem. There are
also other studies that focus on the solution algorithm for a two-
stage (Fleten and Kristoffersen, 2007) or multi-stage (Flach et al.,
2010; Séguin et al., 2017) problem of optimal short-term hydropower
planning. However, the appropriate modeling of uncertain parameters,
such as prices and inflow to reservoirs, are not addressed in detail. One
of the few studies that contains a more detailed mathematical descrip-
tion of uncertain parameters is Löhndorf et al. (2013). They apply an
econometric approach to model electricity prices using system load,
wind and solar generation as regressors. Furthermore, they provide a
model for the short and mid-term operational planning, decomposing
the problem to inter-stage and daily intra-stage sub-problems, similar
to Pritchard et al. (2005).

Besides the broad literature on hydro storage, there are also first
studies focusing on battery storage. Bakke et al. (2016) evaluate the
profitability of battery storage under uncertainty using Monte Carlo
simulations in a real options approach considering spot and ancillary
services markets. Kim and Powell (2011) formulate the storage problem
as a Markov decision process and use a simple autoregressive process
to model the power generation of a wind farm. Sioshansi et al. (2014)
calculate the capacity value of storage using a dynamic program and
focus on power system outages with loss of load probabilities. The
stochastic state of the system is determined rather by the outage
probability than by the renewable generation of the system. Zhou et al.
(2016) analytically characterize the optimal policies of the storage
problem and numerically solve a discrete-state version of the model
by standard backwards dynamic programming. Gönsch and Hassler
(2016) develop an approximate dynamic programming approach with
an analytical derivation of the optimal policy approximating the value
function and combining it with classical backward induction. They
describe the wholesale prices, renewable energy generation, and the
‘‘penalty price’’ for purchased balancing power as stochastic parameters
by means of an autoregressive process AR(1).

A comprehensive review of the literature on electrical energy stor-
age is provided by Weitzel and Glock (2017). A very useful thematic
3

classification of the studies is provided: The perspective of study may be p
classified by the system scope (storage-only, see Densing, 2013; Steffen
and Weber, 2016, or combined plants, see Kou et al., 2015; Motevasel
et al., 2013 etc.), or the time horizon: day-ahead (Sioshansi et al., 2014)
or intraday trading (Wu et al., 2014). A methodological classification
based on the problem formulation and the applied solution technique
is undertaken as well: Fuzzy control, least-squares Monte-Carlo, meta
heuristics, or stochastic dynamic programming (SDP), etc.

Generally, it can be noted that the studies incorporating uncertain-
ties mainly focus on the solution approach of the stochastic optimiza-
tion problem, but, except a few (e.g. Löhndorf et al., 2013) less on
the description of the stochastic processes for uncertainties and their
incorporation into the optimization problem of uncertain parameters.
Although the broad literature on hydropower provides insights on how
to capture the stochasticity of electricity prices and how to apply this
to multi-stage optimization problems of storage operation, there is still
a need for more detailed mathematical description of solar and wind
power generation time-series if the focus is changed from the hydro
storage to wind or PV storage systems. And as the stochastics of PV
and wind becomes apparent already in the short and mid term — in
contrast to hydro inflows, where the long-term uncertainty counts —
the problem formulation has to be adjusted accordingly. Although there
are accurate day-ahead forecasting models for PV and wind power,
where the mean relative error is below 5% for machine learning based
approaches (Atsushi Yona et al., 2008), for the subsequent days and
weeks (i.e. in the mid-term) the weather forecast and thus the wind
power and PV forecasts become quite uncertain (Foley et al., 2012).
For this reason, the problem formulation for the dispatch of PV storage
systems needs to take this mid-term uncertainty into account.

Furthermore, the stochastic state of the system and the properties
of the time series such as autocorrelation, non-stationarity or het-
eroscedasticity must be taken into account in the evaluation of PV
storages under uncertainty, since they may introduce large bias to
model results (Granger and Newbold, 1974). Hence, a comprehensive
approach including an appropriate description of the non-stationary
processes is developed to evaluate profitability PV-storage systems
under uncertainty applying SDP. Furthermore, we compare the SDP
solution to a heuristic approach which is based on the same stochastic
tree as the SDP approach. We demonstrate hereby the performance
of the SDP approach compared to heuristic approaches applied to the
evaluation of PV storage systems.

3. Storage problem formulation as a Markov decision process

To evaluate an investment in a PV storage system, we start from the
perspective of a price-taking power producer operating a renewable-
energy plant (for example, producing solar power) and a battery storage
system maximizing its profit. We assume the producer has incentives
for the joint operation of PV storage systems, as the combination of both
technologies bears advantages in firming up otherwise intermittent
power production (IRENA, 2019). The power producer is licensed to
sell energy on the day-ahead electricity market and on the reserve
power market.1 In both markets, the commitment is decided day ahead.
The investment perspective entails the necessity to analyze the long-
term profitability of the PV storage system. Additionally, day-ahead
electricity prices and renewable production can be well forecasted (Ziel
et al., 2015). We thus assume that the power producer neglects the
intraday uncertainties of a possible deviation of the price and renew-
able forecasts from its realization. Instead, the producer investigates
the day-by-day uncertainties arising from the difficulties of mid and
long-term forecasts of renewable energy production and prices. While

1 Reserve power markets are multi-unit auctions, where market actors place
ids consisting of prices for keeping reserve power capacity available and
rices for the actual activation of the withheld capacity (Ocker, 2018).
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this simplification implies a deviation from the real world, it keeps
calculations of the problem with long time horizons tractable.

On every day 𝑑 ≤ 𝐷, the power producer decides upon the com-
mitment 𝑋𝑠𝑝𝑜𝑡

𝑑 = (𝑋𝑠𝑝𝑜𝑡
𝑑,ℎ )1≤ℎ≤24 of the storage facility on the day-ahead

market, and on the reserve power market 𝑋𝑟𝑒𝑠
𝑑 . At the same time, it

decides on the energy bought from the day-ahead market 𝑋𝑠𝑡𝑜𝑟
𝑑 within

the next 24 h and the energy from renewable production (i.e. solar pro-
duction) that is sold directly 𝑅𝑠𝑝𝑜𝑡

𝑑 and/or stored 𝑅𝑠𝑡𝑜𝑟
𝑑 . These operations

decide upon the storage level 𝐿𝑑 . For convenience, all the variables in
the following are denoted as 24 × 1 vectors reflecting the structure of
he decision problem, and define the decision matrix

𝑑 = (𝑋𝑠𝑝𝑜𝑡
𝑑 , 𝑋𝑟𝑒𝑠

𝑑 , 𝑋𝑠𝑡𝑜𝑟
𝑑 , 𝑅𝑠𝑝𝑜𝑡

𝑑 , 𝑅𝑠𝑡𝑜𝑟
𝑑 ) ∈ R24 × R5.

he producer is thus tapping three different income streams: first, the
olar production is marketed directly on the day-ahead market or stored
o being sold later; second, the storage capacity can be sold as reserve
ower; third, the storage is operated in the day-ahead market for
rbitrage trading. The last two options may be particularly interesting
or combining battery storage with solar power production, as long
eriods of the day are characterized by the absence of power production
nd the storage can be used otherwise.

The producer makes its decision based on the exogenous power
rice 𝑝𝑑 and the power production of the renewable power plant2 𝑟𝑑

that lie out of the control of the producer. We assume that the plant
operator has decided on a strategy for reserve power capacity bids 𝑝𝑟𝑒𝑠𝑑 ,
based, for example, on historical prices.

For the sake of simplicity, we do not model reserve energy activa-
tion in detail. This is mainly for two reasons. First, data availability
constraints for reserve activation forbids the empirical fitting of ded-
icated stochastic processes that are needed for our approach. Second,
this would require modeling intraday uncertainties, that increase model
complexity (e.g., Löhndorf et al., 2013).

Instead, we compare the opportunity costs of selling the electricity
on the spot market against the price that can be obtained for blocking
capacity for the reserve. The resulting expected value is a conservative
estimate of the storage value with regard to reserve energy. On the
other hand side, this way we can include the capacity prices that can
be collected from reserve markets.

We describe the operation problem as a Markov decision process
(MDP) in accordance with the literature (Gönsch and Hassler, 2016;
Löhndorf et al., 2013). We define the state of the system first, de-
scribe then how the storage level is updated, and finally describe the
restrictions that might be imposed by the operation in a reserve power
market on the example of the German tertiary reserve. Subsequently,
the contribution function is introduced and the objective function of
the problem is formulated.

To avoid a potential source of confusion, we briefly introduce the
different indices that describe the different layers of the time struc-
ture. This is critical to fully understand the problem setting and the
time series methodology proposed in this paper. The time structure is
imposed by the structure of bids on the considered electricity markets
and the different natural behavior of the time series of solar and wind
production. The smallest unit referred to in this paper is one hour. The
total length of a time series3 is referred to as 𝑇 and indexed as 𝑡 ≤ 𝑇 .
Time series comprise of a number of days 𝑑 ≤ 𝐷. As the regulation
of the German tertiary reserve power market demands the availability
of the offered capacity for a certain amount of hours (e.g. 4 h), we
divide each day into time slices (𝑡𝑠 ∈ 𝑇𝑆, e.g. 6 time slices per day)

2 In the application of this paper the renewable production 𝑟𝑑 equals to the
solar production 𝑣𝑑 whose process is modeled in 4.1.

3 Strictly speaking, we will not need the index 𝑡 ≤ 𝑇 within the formulation
of the Markov decision problem in Section 3. However, it relates the temporal
structure of time series models in Section 4 to the decision problem, wherefore
4

it might help the reader to link time series models to the decision problem. t
comprising of successive hours (compare Fig. 2). Lastly, each day 𝑑
s subdivided into 24 h ℎ. The chosen time structure is adapted to
he different markets under consideration, but can easily be applied
o other use cases such as the intraday market or other reserve power
onstraints.

.1. State of the system

The state of the system is described by the matrix

𝑑 = (𝑝𝑑 , 𝑝𝑟𝑒𝑠𝑑 , 𝑟𝑑 , 𝐿𝑑−1) ∈ R24 × R4

omprising of the external power prices and renewable energy produc-
ion and the storage level on the previous day. The state forms the base
or decisions taken on day 𝑑 (Fig. 2). The state transits from 𝑑 to 𝑑 + 1
ith

𝑑+1 = (𝑝𝑑+1, 𝑝𝑟𝑒𝑠𝑑+1, 𝑟𝑑+1, 𝐿𝑑 (𝐿𝑑−1, 𝑟𝑑 , 𝑋𝑑 )),

here 𝐿𝑑 (𝐿𝑑−1, 𝑟𝑑 , 𝑋𝑑 ) is the storage level on day 𝑑 described below.
he exogenous processes update according to the models described in
ection 4, where wind production is denoted as 𝑤𝑑 and solar produc-
ion as 𝑣𝑑 which take the place of 𝑟𝑑 in the application. The transition
robabilities to the next state 𝑆𝑑+1 can be calculated according to the
istributions of the exogenous processes.

.2. Storage level update

The storage levels on day 𝑑 are given by the following relationship:

𝑑,ℎ(𝐿𝑑,ℎ−1, 𝐿𝑑−1, 𝑟𝑑 , 𝑋𝑑 ) =

=

{

𝐿𝑑,ℎ−1 +𝑋𝑠𝑡𝑜𝑟
𝑑,ℎ ⋅ 𝜇𝑠𝑡 + 𝑅𝑠𝑡𝑜𝑟

𝑑,ℎ ⋅ 𝜇𝑠𝑡 −𝑋𝑠𝑝𝑜𝑡
𝑑,ℎ for ℎ > 1, ℎ ∈ 𝑡𝑠

𝐿𝑑−1,24 +𝑋𝑠𝑡𝑜𝑟
𝑑,ℎ ⋅ 𝜇𝑠𝑡 + 𝑅𝑠𝑡𝑜𝑟

𝑑,ℎ ⋅ 𝜇𝑠𝑡 −𝑋𝑠𝑝𝑜𝑡
𝑑,ℎ for ℎ = 1, ℎ ∈ 𝑡𝑠

(1)
for 1 ≤ ℎ ≤ 24,

here 𝜇𝑠𝑡 ≤ 1 describes the efficiency of the battery.4 Due to the time
tructure of the commitment problem, the storage level has two recur-
ive elements. The inter-day relationship is maintained by considering
he last storage level of the preceding day (case ℎ = 1, compare Fig. 2).
he intra-day relationship between hours on the same day is considered
y including the storage level 𝐿𝑑,ℎ−1 of the preceding hour (case ℎ > 1).
he division into inter-day and intra-day problems is established in the

iterature as well (Löhndorf et al., 2013; Pritchard et al., 2005).
The storage level cannot exceed a maximum level, and the energy

roduced by the renewable energy plant must be split into energy
irectly sold on the day-ahead market and the energy stored in the
attery. Thus, the following restrictions must hold for upper and lower
imits 𝐿𝑚𝑖𝑛∕𝑚𝑎𝑥 ≥ 0 on the storage level:
𝑚𝑖𝑛 ≤ 𝐿𝑑 ≤ 𝐿𝑚𝑎𝑥

𝑠𝑝𝑜𝑡
𝑑 + 𝑅𝑠𝑡𝑜𝑟

𝑑 = 𝑟𝑑
(2)

.3. Reserve power market restrictions

The compliance with the reserve power market requirements im-
oses restrictions on the operation of the system. We assume that the
perator withholds a certain amount of capacity to be used on the
eserve power market. A fraction of the capacity blocked is requested
y grid operators and lies beyond the control of the plant operator, as
t is dispatched by grid system operators. This amount is blocked by the
irst constraint, if opportunity costs of reserve capacity are higher than

4 Although the efficiency factor 𝜇𝑠𝑡 is assigned to the charging variable only
n Eq. (1), it represents the total round-trip efficiency of the charging and
ischarging processes. However, for simplifying the modeling it is reasonable
o consider it at one of the process steps.



Energy Economics 106 (2022) 105800D. Keles and J. Dehler-Holland

d
p

c
t
f
d
𝑝
c
i
p
e
s
r

o
s
p
b
m
v
a
t

Fig. 2. Depiction of the Markov decision process for storage and PV operation.
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ay-ahead market operation. Some regulations demand that reserve
ower is available for a certain amount of hours 𝑖 (for example, the

German tertiary reserve must be guaranteed over a period of 4 h). This
is reflected in the first two restrictions, which guarantee the availability
of a sufficient amount of energy to serve a possible 4 h request or
empty storage in the case of a negative reserve power (Regelleis-
tung.net, 2017). As on the reserve power market, positive and negative
reserve power are traded, which are to balance deviations in both
directions; we distinguish between 𝑋𝑟𝑒𝑠,𝑝𝑜𝑠

𝑑,𝑡𝑠 and 𝑋𝑟𝑒𝑠,𝑛𝑒𝑔
𝑑,𝑡𝑠 describing offers

for both trading options. Furthermore, we introduce a second time
structure 𝑇𝑆 of 24∕𝑖 time slices 𝑡𝑠 comprising of several consecutive
hours (compare Fig. 2). The second set of restrictions ensures that the
charging/discharging capacity 𝑋𝑠𝑡𝑜𝑟

𝑚𝑎𝑥 and 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑚𝑎𝑥 of the battery is not

exceeded by simultaneous operation in both markets.

𝑋𝑟𝑒𝑠,𝑝𝑜𝑠
𝑑,𝑡𝑠 ≤ min

ℎ∈𝑡𝑠

[ 1
𝑖
𝐿𝑑,ℎ

]

∀𝑡𝑠 ∈ 𝑇𝑆

𝑋𝑟𝑒𝑠,𝑛𝑒𝑔
𝑑,𝑡𝑠 ≤ min

ℎ∈𝑡𝑠

[ 1
𝑖
(

𝐿𝑚𝑎𝑥 − 𝐿𝑑,ℎ
)

]

∀𝑡𝑠 ∈ 𝑇𝑆

𝑋𝑠𝑝𝑜𝑡
𝑑,ℎ +𝑋𝑟𝑒𝑠,𝑝𝑜𝑠

𝑑,𝑡𝑠 ≤ 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑚𝑎𝑥 ∀ℎ ∈ 𝑡𝑠 ∧ ∀𝑡𝑠 ∈ 𝑇𝑆

𝑋𝑠𝑡𝑜𝑟
𝑑,ℎ +𝑋𝑟𝑒𝑠,𝑛𝑒𝑔

𝑑,𝑡𝑠 ≤ 𝑋𝑠𝑡𝑜𝑟
𝑚𝑎𝑥 ∀ℎ ∈ 𝑡𝑠 ∧ ∀𝑡𝑠 ∈ 𝑇𝑆

(3)

3.4. Contribution function/revenue

The contribution function (4) includes profits originating from stor-
age dispatch (𝑝𝑑 − 𝑐𝑠𝑡𝑜𝑟) ⋅ 𝑋𝑠𝑝𝑜𝑡

𝑑 (where the dot indicates the standard
scalar product) and from PV power sold on the spot market including
a market premium5 based on the RES support. 𝑐𝑑𝑖𝑠𝑐ℎ and 𝑐𝑠𝑡𝑜𝑟 are
onstant variable costs of the storage operation. Terms representing
he daily returns of the renewable plant are added to the contribution
unction. The term (𝑝𝑑 + 𝑚𝑑 ) ⋅ 𝑅

𝑠𝑝𝑜𝑡
𝑑 includes the renewable power sold

irectly on the spot market on day 𝑑, priced with the current spot price
𝑑 and the corresponding market premium 𝑚𝑑 on day 𝑑, interpreted as a
onstant 24 × 1 vector. If some part of the renewable power generation
s stored, the amount 𝑅𝑠𝑡𝑜𝑟

𝑑 of stored energy is valued with the market
remium 𝑚𝑑 , while the earnings from the market for this amount of
nergy occur when the energy is again released from the storage and
old on the spot market, or the storage volume is used for offering
eserve power.

5 According to the current Renewable Energy Act in Germany and some
ther European countries, renewable power operators of large plants have to
ell their produced energy on the spot market and get the so-called market
remium as additional support. The market premium is equal to the difference
etween a fixed feed-in tariff for a specific renewable technology and the
arket value of the electricity produced with this technology. The market

alue is the monthly average price for electricity. For the calculation of the
verage price, the hourly prices are weighted by the produced RES-volume in
he specific hour.
5

f

On every day 𝑑, the renewable power plant and the battery storage
ontribute to the revenue of the producer:

(𝑆𝑑 , 𝑋𝑑 ) = (𝑝𝑑 − 𝑐𝑑𝑖𝑠𝑐ℎ) ⋅𝑋𝑠𝑝𝑜𝑡
𝑑 + (𝑝𝑑 + 𝑚𝑑 ) ⋅ 𝑅

𝑠𝑝𝑜𝑡
𝑑

+ 𝑚𝑑 ⋅ 𝑅𝑠𝑡𝑜𝑟
𝑑 −

(

𝑝𝑑 + 𝑐𝑠𝑡𝑜𝑟
)

⋅𝑋𝑠𝑡𝑜𝑟
𝑑

+ 𝑝𝑟𝑒𝑠,𝑝𝑜𝑠𝑑,𝑡𝑠 ⋅𝑋𝑟𝑒𝑠,𝑝𝑜𝑠
𝑑,𝑡𝑠 + 𝑝𝑟𝑒𝑠,𝑛𝑒𝑔𝑑,𝑡𝑠 ⋅𝑋𝑟𝑒𝑠,𝑛𝑒𝑔

𝑑,𝑡𝑠 .

(4)

.5. Objective function and Bellman equation

The objective of the power plant operator is to maximize the profit
ver the entire time horizon. Thus, the expectation of the sum of every
ay’s contributions is maximized similar to Gönsch and Hassler (2016)

ax
𝜋∈𝛱

E

[ 𝐷
∑

𝑑=1
𝐶(𝑆𝑑 , 𝜋𝑑 (𝑆𝑑 ))

|

|

|

|

𝑆0

]

(5)

here the maximum is taken over all possible admissible policies 𝜋 ∈ 𝛱
hat are constrained as explained above.

In order to solve the problem as a stochastic dynamic program, we
ormulate the Bellman equations, or, to stay in the terms of MDP, the
alue functions recursively:

𝑑 (𝑆𝑑 ) = max
𝑋𝑑

{

𝐶(𝑆𝑑 , 𝑋𝑑 ) + E
[

𝐵𝑑+1(𝑆𝑑+1)|𝐿𝑑
]}

∀𝑑 from 𝐷 − 1 to 0 (6)

The starting storage levels on the first day can be chosen freely. For
eing sure that the earnings of the storage result from the inner-year
peration, we fix 𝐿0 = 𝐿𝐷.

. Modeling volatile electricity prices and PV power generation

As the storage evaluation problem has to be solved taking into
ccount the main uncertainties — in this case electricity prices as
ell as wind and PV power generation — the characteristics and
rocesses of these parameters have to be modeled in detail. A large
umber of solar feed-in and corresponding price series as input data
re required to capture the stochastic distribution within the solution
pproach appropriately, i.e. in the SDP model. As a major uncertainty
f electricity prices also stems from wind power production, a dedi-
ated model is developed to produce stochastic series of wind power
eneration. Additional wind power production depresses the power
rice, so for future scenarios with a high installed capacity of wind
urbines the consideration of wind power in the price models enables

more realistic evaluation of a storage plant (compare Section 6).
ind and solar influences are included in the model of power prices.

ontrary to the increasing stream of literature on stochastic modeling
f wind and solar power, the approach used in this paper is based on
ower production directly without the detour of modeling wind speeds
r solar irradiation (Lei et al., 2009; Jung and Broadwater, 2014).
his circumvents the issue of deriving the overall power production
rom geographically disaggregated wind speed or solar irradiation. We
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use an extended autoregressive approach to both renewable energy
sources, as the autocorrelation is of high relevance to the evaluation
of storage technologies (Feijóo and Villanueva, 2016). In the case of
power prices, we include a Markov regime switching model for higher
and lower price regimes (Möst and Keles, 2010). We specifically take
great care to account for the non-stationarity and heteroskedasticity of
the time series, since, as we have argued above, they may introduce
great bias into price models and, ultimately, into the final evaluation of
PV storage systems. These considerations lead to several transformation
steps, the elimination of deterministic trends (such as seasons), and the
division of the data input into different subsets. The approach to model
power production and prices is related to the models in Keles et al.
(2012a), Keles (2013) and Wagner (2012).

The seasonal and statistical properties of the time series make it
necessary to divide the series into different subsets or to restructure
the historical data according to the hour of the day. This is reflected in
a change of indexing for clarity in the modeling process.

4.1. Stochastic modeling of renewable energy feed-in

To model solar power feed-in (SPF) time series, we use autoregres-
sive time series models (AR(p)). In order to achieve a AR(p) process
from historical SPF data, several steps are necessary. First, we assume
that the stochasticity of solar energy production is largely contained
in the time series of the daily maximum production (Wagner, 2012
argues along the same lines). After normalization and transformation
a seasonal correction is applied as sunshine intensity varies greatly
throughout a year. After those steps, we can fit a AR model to the
transformed data which can be used for simulation purposes. Re-
transformation of the simulated time series yields stochastic processes
following the autoregressive, seasonal, and distributional patterns of
historical SPF. To match the characteristic daily pattern of SPF, historic
monthly averages of every hour are used. In the following, we describe
the time series analysis process more formally. We use lower case letters
for the stochastic processes to stay consistent with the notation of the
parameters of the problem setting above.

In the first step, the SPF time series (𝑣𝑡)𝑡≤𝑇 with hourly resolution is
normalized with the yearly installed capacity 𝐶𝑣

𝑦 to make the time series
independent of the installed capacities. Let 𝑑 ≤ 𝐷 denote the day of
production and the total number of days in the time series, respectively.
The daily maximum of SPF is denoted as

𝑣𝑚𝑎𝑥𝑑 = max{ 𝑣𝑡∕𝐶𝑣
𝑦 | 24 ⋅ (𝑑 − 1) < 𝑡 ≤ 24 ⋅ 𝑑 }, 𝑑 ≤ 𝐷. (7)

The seasonal yearly cycle is removed by subtracting the trigonometric
function

𝑑𝑒𝑠𝑒𝑎𝑠(𝑑) = 𝛼1 cos ⋅(2𝜋𝛼2𝑑 + 𝛼3) + 𝛼4 sin ⋅(2𝜋𝛼5𝑑 + 𝛼6) + 𝛼7, (8)

where 𝛼1,… , 𝛼7 are fitted to the time series 𝑣𝑚𝑎𝑥𝑑 . Thus, the deseason-
alized maximum time series is defined by

𝑣̂𝑚𝑎𝑥𝑑 = 𝑣𝑚𝑎𝑥𝑑 − 𝑑𝑒𝑠𝑒𝑎𝑠(𝑑). (9)

To normalize the time series we transform the deseasonalized time
series using the logit transformation similar to Wagner (2012). An
autoregressive model is estimated to model the maximum process:

𝑣̂𝑚𝑎𝑥𝑑 =
∑

1≤𝑖≤𝑝
𝛽𝑣𝑖 𝑣̂

𝑚𝑎𝑥
𝑑−𝑖 + 𝜀𝑑 , (10)

where 𝛽𝑣𝑖 are estimated with least squares and 𝜀𝑑 denotes the residuals.
Visual inspection of the residual’s normal probability plot shows that
they are approximately normally distributed. The stochastic process of
maximum production is obtained by simulation of the autoregressive
model with normally distributed residuals. The seasonal component is
added again and the time series is re-transformed and again denoted as
𝑚𝑎𝑥
6

𝑣𝑑 for 𝑑 ≤ 𝐷.
To model the daily patterns depending on the season, monthly 𝑚 ≤
12 averages of SPF are calculated for every hour of the day ℎ ≤ 24:

𝛿(𝑚, ℎ) = mean𝑚{𝑣𝑡 | 𝑡 mod ℎ = 0 }, ℎ = 1,… , 24, 𝑚 = 1,… , 12.

The daily pattern is then multiplied with the re-transformed maximum
process to produce stochastic SPF time series

𝑣𝑠𝑖𝑚𝑡 = 𝑣𝑚𝑎𝑥
⌈𝑡∕24⌉ ⋅ 𝛿(𝑚, 𝑡 mod 24), for 𝑡 in month 𝑚 . (11)

where ⌈⌉ denotes the ceiling operator. The retransformed series for the
solar feed-in consider the historical values with a lag up to 24 h. More
precisely, the historical information of the daily cycle and the AR(1)
process for the daily maximums carry the historical information of the
last 24 h.

Beside the SPF series, we need to model and generate wind power
feed-in (WPF) series, as wind power is an important price driver
(see Bublitz et al., 2017) that has a significant impact on electricity
prices. During hours with high wind energy production, prices usually
drop. As a consequence, wind energy production becomes vital for the
revenue of electricity storage, even though the storage facility may not
be directly connected to a wind power plant. The stochastic model of
electricity prices (see Section 4.2) needs a large number of WPF series
as input variable; we explain the WPF model in the following.

For modeling WPF series, we proceed similarly to the SPF approach
described above. Again, we use autoregressive processes to account for
autocorrelation. The yearly historical series of the wind power pro-
duction (𝑤𝑡)𝑡≤𝑇 with hourly resolution (𝑇 = 8760) is normalized with
the available yearly capacity 𝐶𝑤

𝑦 . After deseasonalization 𝑑𝑒𝑠𝑒𝑎𝑠𝑤()
accounting for the 10% and 90% quantiles (Keles, 2013), the process

𝑤̂𝑡 = 𝑑𝑒𝑠𝑒𝑎𝑠𝑤(𝑤𝑡∕𝐶𝑤
𝑦 ), 𝑡 ≤ 𝑇 (12)

is obtained. The first-order differences are observed to follow a Laplace
distribution. Furthermore, the distribution of the differences varies with
the height of production in the previous hours. For these reasons, the
first-order differences are modeled as a random variable with a Laplace
distribution, where diversity and mean are determined dynamically
depending on the moving average of the previous hours and historical
data (see Keles, 2013). The simulated process is then obtained as

𝑤̂𝑡 = 𝑤̂𝑡−1 + 𝛥𝑤̂𝑡. (13)

Finally, the removed seasonal components are added to the stochastic
component, and the resulting series of wind power utilization rates
is then multiplied with the overall available wind capacity 𝐶𝑤

𝑦 of
the simulated year to obtain final simulated WPF series 𝑤𝑠𝑖𝑚

𝑡 for the
analyzed year.

4.2. Stochastic modeling of electricity prices with merit-order effect

Different methods can be applied for the stochastic modeling of elec-
tricity prices. Besides mean-reversion processes (or Ornstein–Uhlenbeck
processes, see Uhlenbeck and Ornstein, 1930), autoregressive-moving
average (ARMA) models can be applied. We have opted for an ARMA
model, combined with regime-switching elements (Weron, 2009) since
the autoregressive structure of consecutive hours is important to the
evaluation of short-term electricity storage technologies such as batter-
ies.

In this study, the hourly wind and solar time series are used for
determining the merit order effect of the wind and solar energy with
an additional model for electricity prices. The electricity price model
is an extension of the model described in Keles et al. (2012a) and
Keles et al. (2012b). Historical electricity price series, wind, and solar
power feed-in are used to fit the model parameters and to render the
simulated time series as realistic as possible. The model is summarized
in Fig. 3. A major improvement in comparison to other electricity price
models for stochastic programming (Gönsch and Hassler, 2016), the

effect of renewable energies onto the electricity price is included. As
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Fig. 3. Summary of the power price modeling approach.
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he electricity production from renewable energies is expected to rise
n the coming years, the proposed method brings along another benefit:
nvestments in the years to come can be evaluated, taking into account
he higher share of renewable electricity and its price impact. The price
mpact stems from the fact that renewable electricity can be produced
ith vanishing marginal prices, thus decreasing electricity prices on

he day-ahead market (the so-called merit-order effect, e.g. Ragwitz
nd Genoese, 2008). Thus, a higher share of renewable electricity pro-
uction will have an effect on the profitability of storage technologies.

Initially, the merit order effect of wind and solar energy production
n historical prices is eliminated by fitting linear models. To ensure
tationarity, we keep the season and the hour of the day fixed while
itting models over all days. However, for clarity in notation, we do
ot introduce separate indices for season or day. Keep in mind that this
rocedure results in 24 × 4 distinct models. Subsequently, the residuals
f this first step are free of the deterministic effect of wind and solar
ower production and are considered a stochastic process itself. The
lectricity price 𝑝𝑡 is modeled in dependence on the wind power feed-

in 𝑤𝑡 and solar power feed-in 𝑣𝑡 fitting least squares regression with
coefficients 𝛽𝑖 and residuals 𝑝̃𝑡 free of the influence of wind and solar:

𝑝𝑡 = 𝛽0 + 𝛽1𝑤𝑡 + 𝛽2𝑣𝑡 + 𝑝̃𝑡, 𝑡 ≤ 𝑇 . (14)

Parameter and residual estimates are obtained and used later to include
stochastic renewable production. Additionally, the long-term trend and
further deterministic components, such as daily or weekly cycles are
removed from the residuals 𝑝̃𝑡. The methods for the consideration of
deterministic components are based on the observation of the typical
characteristics of electricity prices, i.e. that they have a trend, as well
as daily, weekly and annual cycles. For example, the weekly cycle
is approximated with trigonometric functions such as 𝑑𝑒𝑠𝑒𝑎𝑠𝑆 (see
Section 4.1). The daily cycle is described by the hourly mean values of
the electricity price during one day. This cycle is determined separately
for each season and for two day types (weekday and weekend day).
After describing all deterministic components, they are removed from
the residuals 𝑝̃𝑡 as developed in Keles et al. (2012a). A deseasonal-
ized process with the influence of wind and solar feed-in removed is
obtained.

Additionally, electricity prices show jumps and high spikes in very
short time horizons (Weron, 2009). Due to the electricity price mecha-
nism and the structure of the power production portfolio (merit order),
price jumps do not depend linearly on the electricity demand or past
realizations of the price process. Therefore, price spikes cannot be
modeled using a simple ARMA process. Nonetheless, they are very
7

important to the economic evaluation of energy storage technologies: p
The capability to store energy over time and to dispatch energy at
any point in time enables particularly storage to gain profits in the
electricity market. In order to include price spikes adequately in the
simulation, a regime switching approach (compare Weron, 2009) is
chosen to enhance the ability of the stochastic price model to simulate
prices realistically. Price spikes in empirical data are defined as prices
above or below a certain threshold. For the underlying study, 𝜇 ± 2𝜎
were chosen as the upper and lower limits of the base regime and the
different regimes were defined as follows:

𝜌𝑖 =

⎧

⎪

⎨

⎪

⎩

(𝜇 + 2𝜎,∞] for 𝑖 = 1
[𝜇 − 2𝜎, 𝜇 + 2𝜎] for 𝑖 = 0
(𝜇 − 2𝜎,−∞] for 𝑖 = −1

rom the empirical data, regime switching (RS) probabilities

𝑟𝑅𝑆𝑖,𝑗 = P(𝑝̃𝑡+1 ∈ 𝜌𝑖|𝑝̃𝑡 ∈ 𝜌𝑗 ), 𝑖, 𝑗 ∈ {−1, 0, 1} (15)

of the switch between three regimes 𝜌𝑖 were elicited based on the
relative frequency of price spikes in the transformed historical time
series 𝑝̃𝑡. For the determination of the regime switching probabilities,
nly two seasons were separated: One period comprising of the months
rom October to March, the other comprising of the spring and summer
onths. Additionally, it is assumed that upward jumps only occur

etween 8 a.m. and 8 p.m., while downward jumps only occur in the
emaining night hours. For the simulation, the additional magnitude
f the price spikes is drawn as a normal distributed random variable
ith mean zero and standard deviation according to the historical

ealizations of the regimes (denoted by 𝜎2±):

𝜂(𝑖) =

⎧

⎪

⎨

⎪

⎩

𝜔1 ∼ 𝑁(0, 𝜎2+) for 𝑖 = 1
𝜔2 = 0 for 𝑖 = 0
𝜔3 ∼ 𝑁(0, 𝜎2−) for 𝑖 = −1

We define a random variable 𝜑(𝑝̃𝑡) ∈ {−1, 0, 1} that switches states
according to the regime switching probabilities 𝑝𝑟𝑅𝑆𝑖,𝑗 defined on the set
f all (preprocessed) observations and to the regime 𝑝̃𝑡 belongs to.

The base regime is simulated with an ARMA(p, q) process fitted
o the deseasonalized process (𝑝̃𝑡)𝑡≤𝑇 , where values below and above
he thresholds are replaced by the long-term mean to obtain a series
ithout price jumps:

̃𝑡 =
∑

1≤𝑖≤𝑝
𝛾𝑖𝑝̃𝑡−𝑖 +

∑

1≤𝑗≤𝑞
𝛿𝑗𝜀𝑡−𝑗 + 𝜀𝑡, (16)

here 𝜀𝑡 are the residuals, 𝛾𝑖 and 𝛿𝑗 are estimated with least squares.
o simulate a price process, it is assumed that the residuals 𝜀𝑡 are inde-

endent and normally distributed. Drawing the residuals accordingly,
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simulated time series for the base regime are obtained. The lower and
upper regime are drawn with their respective distributions and added
according to the transition probabilities 𝑝𝑟𝑖,𝑗 .

𝑝̃𝑠𝑖𝑚𝑡 =
∑

1≤𝑖≤𝑝
𝛾𝑖𝑝̃

𝑠𝑖𝑚
𝑡−𝑖 +

∑

1≤𝑖≤𝑞
𝛿𝑗𝜀

𝑠𝑖𝑚
𝑡−𝑗 + 𝜀𝑠𝑖𝑚𝑡 + 𝜑(𝑝̃𝑠𝑖𝑚𝑡−1)

|

|

|

𝜂(𝜑(𝑝̃𝑠𝑖𝑚𝑡−1))
|

|

|

(17)

Using the same functions as before, the simulated time series (𝑝̃𝑠𝑖𝑚𝑡 )𝑡≤𝑇
are re-seasonalized (daily, weekly and yearly cycles) and result in
simulated residual processes. The final price simulation (𝑝𝑠𝑖𝑚𝑡 )𝑡≤𝑇 is
obtained by adding the effect of wind and solar feed-in to the simulated
residuals from (14):

𝑝𝑠𝑖𝑚𝑡 = 𝛽0 + 𝛽1 ⋅𝑤
𝑠𝑖𝑚
𝑡 + 𝛽2 ⋅ 𝑣

𝑠𝑖𝑚
𝑡 + 𝑝̃𝑠𝑖𝑚𝑡 . (18)

Finally, we choose an AR(5) autoregressive process for electricity
prices, which means that the prices of the last 5 h is used for the price
simulation at a specific time t. The chosen order of 5 has revealed
very good results for the ARMA model of electricity prices in previous
analyses (Keles et al., 2012a). Furthermore, as daily and weekly cycles
are determined and added as deterministic components to the price
simulation, the price information 24 h and 168 h ahead also influences
the simulated price at time 𝑡.

5. Solving the Markov decision problem using SDP

The formulation of the storage operation for a whole year as a
stochastic optimization problem would result in a multi-stage program
with D = 365 stages. The complete enumeration of all branches of
the related stochastic tree is an 𝑛𝑝-hard problem (with 𝐾365 solutions
with 𝐾 = number of nodes/number of clusters, see below). Although
there are promising scenario reduction techniques, the problem is still
extremely complex. Dupacová et al. (2005) found out that reducing
electrical load scenario trees, which are similar to those of electricity
prices, by 50% achieves still 90% accuracy. However, a 50% tree
reduction remains 𝑛𝑝-hard and the stochastic problem of 365 stages is
not solvable as a closed optimization within an acceptable computation
time or even generally.

Instead of closed optimization, we make use of dynamic program-
ming, in this case stochastic dynamic programming (SDP). To reduce
the complexity of the SDP, the initial large number of price and PV
feed-in series has to again be reduced to a representative tree with a
small number of price and PV feed-in price clusters (nodes) at each
stage. Furthermore, we solve an approximated version of the original
problem, where we start fixing the storage levels at the beginning of
each day to 𝑁 discrete states, following the scenario lattice approach
in Löhndorf et al. (2013) or known as Markov Chain in Gjelsvik et al.
(2010) and Vector Quantization Tree in Bonnans et al. (2012). The
reduction to 𝑁 states is reasonable due to the nature of the decision
problem of bidding on the spot or reserve power market with time slices
of four hours. For instance, the discretization into five states displays
quite well the hourly possible actions and related storage states within
four hours in which the storage could be run from state ‘‘full’’, ‘‘three
quarterly full’’, ‘‘half full’’, ‘‘quarterly full’’ to ‘‘empty’’. Generally,
for realized battery projects, storage volumes are chosen as a small
multiple of the charging capacity, which in turn permits the operation
of the storage with a few pre-defined states. The small number of states
keeps the computation time of the stochastic dynamic program (SDP)
acceptable, and we do not require further approximation techniques,
such as approximate dynamic programming (ADP).

5.1. Scenario tree for strategies under uncertainty

To apply stochastic dynamic programming to the economic evalua-
tion of a renewable storage system, we first generate a stochastic tree.
A stochastic tree consists of nodes representing different possible states
of the external variables power price and renewable energy production,
8

and transition probabilities between the different states (see Fig. 4).
Therefore, a large number 𝑆𝐶 ∈ N of price and RPF series generated
with the price and renewable models are reduced to a recombining
stochastic tree (Weber, 2005). It is important that in case of a PV
storage system the RPF series (𝑟𝑡)𝑡≤𝑇 equals the modeled SPF series
(𝑣𝑠𝑖𝑚𝑡 )𝑡≤𝑇 (see Section 4).

Given a RPF series (𝑟𝑡)𝑡≤𝑇 and a price series (𝑝𝑡)𝑡≤𝑇 we call the price-
PF-tuples (𝑝𝑡, 𝑟𝑡)𝑡≤𝑇 a scenario. Given a number 𝑆𝐶 of scenarios we

ndicate with (𝑝𝑠𝑐𝑡 , 𝑟𝑠𝑐𝑡 )𝑡≤𝑇 , 𝑠𝑐 ≤ 𝑆𝐶 that the scenario is indeed part of a
ollection of scenarios.

The first step of tree generation is that each of the price and
PF scenarios are standardized by their respective mean 𝑝̄𝑠𝑐 , 𝑟̄𝑠𝑐 and
tandard deviations 𝜎𝑝𝑠𝑐 , 𝜎𝑟𝑠𝑐 .

̃𝑠𝑐𝑡 =
𝑝𝑠𝑐𝑡 − 𝑝̄𝑠𝑐

𝜎𝑝𝑠𝑐
, 𝑟𝑠𝑐𝑡 =

𝑟𝑠𝑐𝑡 − 𝑟̄𝑠𝑐

𝜎𝑟𝑠𝑐
. (19)

The standardized series are combined to a new series of price-RPF-
uples 𝑧𝑠𝑐𝑡 = (𝑝̃𝑠𝑐𝑡 , 𝑟𝑠𝑐𝑡 ). Please note that this step is only an auxiliary
ne. The standardization is needed to successfully apply the scenario re-
uction algorithm to parameters at the same scale/interval. Originally,
he two series (electricity prices and renewable power feed-in RPF)
re at different measurement levels and they are standardized to give
oth series/uncertainties the same weight in the reduction algorithm.
owever, for the application in the SDP program, the reduced tree and

he standardized values of the stochastic parameters are transformed
ack to original levels.

The scenario tree generation must be adapted to the specific time
tructure of the day-ahead market. While all the uncertain time series
ave an hourly resolution, decisions must be taken for a whole day
n advance. The nodes thus represent days consisting of 24 h of the
espective time series. Thus, the series (𝑧𝑠𝑐𝑡 )𝑡≤𝑇 is divided into 𝐷 sections
𝑠𝑐
𝑑 , each representing price and RPF series for a day 𝑑.

All the different sections (𝑧𝑠𝑐𝑑 )𝑠𝑐≤𝑆𝐶𝑑≤𝐷 are converted to a matrix. Its
irst dimension stands for the 𝑆𝐶 scenarios, the second for the D
ays, the third for the 48 values of hourly prices and RPFs. The k-
eans algorithm with ‘‘City-Block-distance’’ is found to be an efficient

lustering method6 and is thus applied to the matrix which reduces then
he 𝑆𝐶 series to generate a scenario tree (MacQueen, 1967).

Choosing a fix number of clusters 𝐾 ∈ N, the resulting tree is
escribed by the clusters (𝑍𝑑,𝑖)𝑖≤𝐾 for each day 𝑑. Each cluster is
epresented by its centroid.7

Besides the clusters of scenarios, transition probabilities between
he cluster 𝑖 on day 𝑑 and 𝑗 on day 𝑑 + 1 are necessary to generate the
ecombining tree. These transition probabilities are calculated based on
he number of transitions between scenario states 𝑧𝑠𝑐𝑑 clustered in 𝑍𝑑,𝑖
n day 𝑑 and scenario states 𝑧𝑠𝑐𝑑+1 clustered in 𝑍𝑑+1,𝑗 on day 𝑑+1 (Felix
nd Weber, 2012). The number of these transitions is divided by the
otal number of transitions from cluster 𝑖 to all clusters on day 𝑑 + 1 to
eceive the cluster transition probability 𝑝𝑟𝐶𝑇

𝑑,𝑖,𝑗 .

𝑟𝐶𝑇
𝑑,𝑖,𝑗 =

𝑐𝑎𝑟𝑑
{

𝑠𝑐|𝑧𝑠𝑐𝑑 ∈ 𝑍𝑑,𝑖 ∧ 𝑧𝑠𝑐𝑑+1 ∈ 𝑍𝑑+1,𝑗

}

𝑐𝑎𝑟𝑑
{

𝑠𝑐|𝑧𝑠𝑐𝑑 ∈ 𝑍𝑑,𝑖
} , 2 ≤ 𝑑 ≤ 𝐷. (20)

For the first step, we need the probabilities 𝑝𝑟𝐶𝑇
𝑖 of the price clusters

on the first day. They are calculated as the ratio between scenarios
matched to the cluster 𝑍1,𝑖 and the total number of price scenarios:

𝑝𝑟𝐶𝑇
𝑖 =

𝑐𝑎𝑟𝑑
{

𝑠𝑐 ≤ 𝑆𝐶|𝑧𝑠𝑐1 ∈ 𝑍1,𝑖
}

𝑆𝐶
(21)

6 Initial tests showed that the City-Block distance allows in case of electric-
ty prices more diverse clusters than the Euclidean distance does. This can be
xplained by the few price jumps distort the price distribution.

7 The centroid is defined as the price/RPF section on day 𝑑 that has the
smallest sum of distance from the other price/RPF sections, which are grouped

into the same cluster.
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Fig. 4. Recombining tree for the price development.
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5.2. Discretization of the general problem

In order to solve the problem (5) we have formulated the Bell-
mann equations in Section 3 and repeat them here for the reader’s
convenience:

𝐵𝑑 (𝑆𝑑 ) = max
𝑋𝑑

{

𝐶(𝑆𝑑 , 𝑋𝑑 ) + E
[

𝐵𝑑+1(𝑆𝑑+1)|𝐿𝑑
]}

∀𝑑 from 𝐷 − 1 to 0 (6)

with 𝐿0 = 𝐿𝐷 and the constraints formulated above. In the following
we will describe the procedure to estimate solutions. For MDPs, several
efficient estimation procedures are available such as least squares
Monte Carlo (Nadarajah et al., 2017) or approximate stochastic dual
programming (Löhndorf et al., 2013). However, as the primary goal of
this paper is the detailed model formulation and the analysis of results,
in the following we limit ourselves to approximating the MDP using
classical backwards stochastic dynamic programming.

In pursuit of the approximation of the optimization problem, we
define the discrete state of the system in the 𝑖th cluster on day 𝑑 given
the fixed storage level 𝑠𝑏 ∈ {0, 1… , 𝑁} in the last hour of the preceding
day

𝑆 𝑖,𝑠𝑏
𝑑 ∶= (𝑝𝑑,𝑖, 𝑝𝑟𝑒𝑠𝑑 , 𝑟𝑑,𝑖, 𝑠𝑏) ∈ R24 × R4.

The storage update 𝐿𝑖
𝑑 is defined accordingly.

We approximate the expectation in Eq. (6) with the expected value
ver discrete states (Puterman, 1994). This is done using the discrete
torage levels 𝑠𝑏 and a linear interpolation between the discrete levels.

The storage levels 𝑠𝑏 = 0, 1, 2,… , 𝑁 serve to simplify the model order.
While in the general model formulation, the storage level 𝐿𝑑,1 is chosen
within its constraints in R, we now fix the starting storage level 𝐿𝑑,1

ith the help of storage level 𝑠𝑏 to 𝑁 fixed conditions. For example, if
= 4, 𝑠𝑏 indicates whether the storage is empty (𝑠𝑏 = 0), quarter full

𝑠𝑏 = 1), half full (𝑠𝑏 = 2), three quarters full (𝑠𝑏 = 3), or completely
illed (𝑠𝑏 = 4) at the beginning of a day. The end storage level 𝐿𝑑,24
s interpolated linearly between the fixed storage levels 𝑠𝑏, inducing

new decision variables 𝜆𝑑 to be constrained appropriately later on (see
23)). Fixing the storage levels in the first hour of the day makes the
roblem tractable.

Given a set of discrete storage levels, and 𝐾 price clusters on each
day, the problem (6) can be approximated by

𝐵𝑑,𝑖(𝑆
𝑖,𝑠𝑏
𝑑 , 𝑋𝑑 , 𝜆𝑑 ) =

= 𝐶(𝑆 𝑖,𝑠𝑏
𝑑 , 𝑋𝑑 ) +

𝑁
∑

𝑠𝑏′=0

𝐾
∑

𝑗=1
𝜆𝑠𝑏

′

𝑑 ⋅ 𝑝𝑟𝐶𝑇
𝑑,𝑖,𝑗 ⋅ 𝐵𝑑+1,𝑗 (𝑆

𝑗,𝑠𝑏′
𝑑+1 , 𝑋

𝑗,𝑠𝑏′
𝑑+1 , 𝜆

𝑗,𝑠𝑏′
𝑑+1 )

(22)

here (𝑋𝑗,𝑠𝑏′
𝑑+1 , 𝜆

𝑗,𝑠𝑏′
𝑑+1 ) = argmax𝑋,𝜆 𝐵𝑑+1,𝑗 (𝑆

𝑗,𝑠𝑏′
𝑑+1 , 𝑋, 𝜆), subject to essen-

tially the same constraints we have already defined complemented with
an alternation of the storage level update (1) in order to keep the
9

problem solvable in a reasonable time in (23), and the introduction
of a new set of decision variables 𝜆𝑑 = (𝜆𝑠𝑏𝑑 )0≤𝑠𝑏≤𝑁 that choose a future
storage level.

Additionally to the constraints in Section 3, it has to be guaranteed
that the end storage level 𝐿𝑑,24 of day 𝑑 and the starting storage level
𝐿𝑑+1,1 of the following day 𝑑 + 1 are equal as described in (1).

As the number of starting states 𝑠𝑏 is limited to 𝑁 storage states, we
have chosen to interpolate the end storage state in the last hour of each
day with 𝜆𝑑 = (𝜆𝑠𝑏𝑑 )0≤𝑠𝑏≤𝑁 for every day 𝑑 to estimate the expected value
of the storage. More formally, this leads to the additional time-coupled
constraints

𝐿𝑒𝑛𝑑
𝑑 ∶= 𝐿𝑑,24 =

𝑁
∑

𝑠𝑏′=0
𝜆𝑠𝑏

′

𝑑 ⋅
𝑠𝑏′

𝑁
⋅ 𝐿𝑚𝑎𝑥 for 1 ≤ 𝑑

𝐿𝑑,1 =
𝑠𝑏
𝑁

⋅ 𝐿𝑚𝑎𝑥

𝑁
∑

𝑠𝑏′=0
𝜆𝑠𝑏

′

𝑑 = 1

𝑠𝑏
𝑑 ≥ 0 for 1 ≤ 𝑑, 0 ≤ 𝑠𝑏 ≤ 𝑁

At most two adjacent 𝜆𝑠𝑏′𝑑 for 0 ≤ 𝑠𝑏 ≤ 𝑁 are nonzero.

(23)

Under the consideration of these time-coupled constraints and the
storage level update (1), the storage level constraints (2), and the
reserve power market constraints (3), the function (22) is solved by
backward induction starting on day 𝐷 ending on the first day, assuming
we have decided for 𝐾 price clusters on every day:

𝐵(𝑆 𝑖,𝑠𝑏
𝑑 ) = max

𝑋𝑑 ,𝜆𝑑
𝐵𝑑,𝑖(𝑆

𝑖,𝑠𝑏
𝑑 , 𝑋𝑑 , 𝜆𝑑 ) ∀1 ≤ 𝑑 ≤ 𝐷, 𝑖 ≤ 𝐾, 𝑠𝑏 ≤ 𝑁. (24)

For the last step, instead of the transition probabilities, the initial
probabilities are used. In the last step, we constrain the storage state
at the beginning of the first day to equal the storage state on the
last day of the time period. This way we make sure that all value of
stored electricity is exploited and the earnings completely come from
the inner-year operation:

𝐵∗ = 𝐵(𝑆𝑖
0) = max

𝜆𝑠𝑏0

𝐾
∑

𝑗=1

(

𝜆𝑠𝑏0 ⋅ 𝑝𝑟𝐶𝑇
𝑗 ⋅ 𝐵1,𝑗 (𝑆

𝑗,𝑠𝑏
1 , 𝑋𝑗,𝑠𝑏

1 , 𝜆𝑗,𝑠𝑏1 )
)

, s.t.

𝐿1,1 =
𝑠𝑏
𝑁

⋅ 𝐿𝑚𝑎𝑥 = 𝐿𝑒𝑛𝑑
𝐷 .

(25)

As for the entire SDP, 𝐾 ⋅ 𝐷 ⋅ 𝑁 sub-problems need to be solved,
the problem scales linearly with the number of price clusters. In more
detail: with increasing 𝑁 , only the number of optimization steps in-
creases, but not the sub-problem size that is solved in each step/node
of the SDP. However, if the number of storage states 𝐾 is increased, not
only the number of optimization steps increases, but also the problem
size increases, as the number of the interpolation variables 𝜆𝑑 gets
larger. That means that the SDP problem is likely to grow exponentially

by increasing the number of storage states.
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Fig. 5. Simulated and historical price duration curve 2011–2015.

6. Evaluation of a large-scale PV storage system

Based on the optimal annual returns under uncertainty calculated
with the help of the SDP model for each year of the lifetime of
the PV storage system, the economic profitability can be measured
applying a net present value (NPV) approach or the annuity method
to a large-scale8 battery storage system combined with a solar power
plant under uncertain spot prices and solar power generation. Thereby,
it is important to mention that the case study makes use of historical
electricity price and PV generation from the EEX for the German market
area to calibrate the stochastic models (EEX, 2017). The reserve power
prices are received from the website of the German TSOs tendering the
required reserve capacity (Regelleistung.net, 2017).

We coded the SDP manually in GAMS and ran, for each optimization
within the stochastic tree, a MIP that is solved by CPLEX. Depending
on the number of applied price clusters and the available CPU perfor-
mance, the computation time varies between 4 and 24 h for a model
horizon of one year.

6.1. Validation of price and renewable energy production models

For evaluation of the proposed model, in-sample and out-of-sample
tests are conducted (see Table 1). In order to obtain meaningful error
measures, root mean squared errors (RMSE) and mean average percent-
age errors (MAPE) are calculated on the sorted time series to account
for the fact that price components are simulated stochastically (Fig. 5):
Obviously, due to the inclusion of simulated solar and wind power feed-
in, the correlation of the simulated price series with historical prices is
weakened.

The long-term in-sample test reveals that fitting data to an (overly)
long time series leads to a distribution close to the Gaussian distribution
in the simulated time series (kurtosis of 3.16 as compared to 16.79
in the original time series). Fitting to a shorter time series leads to a
better fit even in out-of-sample simulations regarding RMSE and MAPE
(Table 1). On that basis, it was decided to choose only one year to fit
the parameters for later simulations. It was generally found that, while
providing a good approximation of electricity price patterns (Fig. 6),
the distributions of simulated and historical power prices are not fully
identical.

Fig. 5 illustrates that the maximum of historical prices is higher than
the one of the simulated price path. Although this figure displays only
one scenario of price simulation, the analysis of around 30 simulated

8 ‘‘Large-scale’’ means here that the size of the PV storage is by far larger
than small-scale household applications and refers to systems operated by
energy utilities.
10
Table 1
Error measures and statistics of historical data and 30 simulations of an in-sample test
for 2011–2015 and an out-of-sample (OOS) test fitted with data from 2014 for 2015.

Data source Historical 30 simulations (mean)

Period 2011–2015 2015 2011–2015 OOS-2015

RMSE – – – 3.73 2.31
MAPE % – – 6.28 5.31
𝑅2 % – – 40.87 27.68
𝜎 e/MWh 16.63 12.66 17.20 13.15
𝜇 e/MWh 39.17 31.63 37.44 30.15
kurtosis – 16.79 5.77 3.16 3.58
skewness – −0.71 −0.31 −0.13 −0.36
min e/MWh −221.99 −79.94 −59.36 −46.71
max e/MWh 210 99.77 93.15 85.00

Fig. 6. Exemplary simulation and historical prices in 2015.

price paths for the exemplary year 2015 confirms that the maximum
values of simulated prices are lower than the maximum of the historical
price path. Indeed our approach is not very accurate when it comes
to simulating the maximum peak price. This may be attributed to the
assumption of a normal distribution for the height of the price jumps
in the peak price regime. The normal distribution is not performing
well in covering single peaks at the tails of the jump regime. However,
the quite accurate standard deviation (see Table 1) reveals that it is
able to produce a similar number and distribution for all peak prices.
As the overall return of the evaluated PV storage does not solely rely
on the single maximum price but mostly on the overall number and
distribution of prices in the jump regime, the error that is made in
the annual return calculation of PV storage remains low. However, the
distribution of future electricity prices may become more extreme, and
future research can easily incorporate other regime distributions such
as log-normal or Pareto distributions to account for increasingly heavy
tails of regimes (Weron, 2009).

6.2. Evaluation and comparison of the SDP approach with other method-
ologies

As a goal of this study is to provide a comprehensive approach to
the analysis of photovoltaic storage systems, we also provide a short
comparative evaluation study of the proposed SDP formulation.

We implemented two strategies to benchmark the above model. As
upper bound, we run a Monte–Carlo simulation with a perfect foresight
variant of storage operation (henceforth, perfect foresight optimization).
On the other hand, we show that our SDP approach performs better
than algorithms that heuristically operate the storage intra-day (short:
heuristic strategy).9

9 We note that there are more accurate bounds for SDPs, such as dual upper
bound of Nadarajah et al. (2017). The idea behind the chosen two alternative
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As a test case, all three strategies are applied to a battery storage
system with a charging capacity of 5 MW and a storage volume of 5
MWh for a testing period of 30 days (for other parameters, see Table 5
in the Appendix). We simulate 1000 price and PV production paths and
reduce them to 50 clusters for the SDP and heuristic strategy solutions
as described above, while the perfect foresight is applied for all 1000
paths. The return of the three strategies are calculated for the case in
which the storage is dispatched at the spot market.

For the perfect foresight optimization the simulated prices are used as
n exogenous input for a deterministic perfect foresight optimization
hose target is to maximize the overall return 𝐵, optimizing the
ispatch of the energy storage not only for the next day, but the entire
eriod. The return covers the cash-flows generated on the spot market:

ax
𝑋

𝐵(𝑋) = max
𝑋

720
∑

ℎ=1

(

(𝑝ℎ − 𝑐𝑑𝑖𝑠𝑐ℎ) ⋅𝑋𝑠𝑝𝑜𝑡
ℎ −

(

𝑝ℎ + 𝑐𝑠𝑡𝑜𝑟
)

⋅𝑋𝑠𝑡𝑜𝑟
ℎ

)

. (26)

The target function is maximized subject to the same constraints
oted in the problem formulation (Eqs. (1) and (2)), where the disam-
iguation in the storage level update (1) collapses to the hourly case.
e report the mean value of the maximized returns and other operation

arameters are calculated, as well as standard deviation and confidence
evels (Table 2).

The heuristic strategy is developed to compare the results of the
DP model with a less complex strategy that can be applied under
ncertainty. The core idea is to differentiate the hours of the following
ay into hours with peak prices 𝑝𝑝𝑑 and off-peak prices 𝑝𝑜𝑝𝑑 , similar to the

peak and off-peak marketing products sold at the EEX, and to exploit
the price differentials in-between.10

The daily return (contribution margin 𝐶𝑑,𝑖) in scenario 𝑖 is then
calculated as the difference between the earnings on the spot market at
peak prices and the costs for the stored energy purchased on the spot
market at off-peak prices of the same day:

𝐶𝑑,𝑖(𝑋𝑑,𝑖) = (𝑝𝑝𝑑,𝑖 − 𝑐𝑑𝑖𝑠𝑐ℎ) ⋅𝑋𝑠𝑝𝑜𝑡
𝑑,𝑖 −

(

𝑝𝑜𝑝𝑑,𝑖 + 𝑐𝑠𝑡𝑜𝑟
)

⋅𝑋𝑠𝑡𝑜𝑟
𝑑,𝑖 . (27)

We assume that the storage level must be zero (more generally:
equal) at the beginning and at the end of each day. Similar to the
backwards induction of the SDP solution, cumulative return from 𝑑 to
𝐷 at scenario 𝑖 is formulated as
𝐵𝑑,𝑖 = 𝐶𝑑,𝑖(𝑋𝑑,𝑖) +

∑

𝑗
𝑝𝑟𝑑,𝑖,𝑗𝐵𝑑+1,𝑗 . (28)

For more details of the heuristic strategy, compare Keles (2013).
The comparison of all three strategies show that the SDP strategy

achieves 78% of the perfect foresight strategy.
The confidence interval of the Monte–Carlo runs of the perfect

foresight monthly return is narrow. In 95% of the cases, the expected
monthly return does not deviate from the mean by more than 0.5%.11

The results of the perfect foresight strategy can be seen as very robust
and it can be used as a benchmark for the comparison with the other
strategies.

calculations here, however, is not to find better upper and lower bounds for
the SDP. The rationale behind the perfect foresight benchmark is to determine
what the theoretical maximal earnings of PV storage system would be if the
operator had perfect information on the uncertain parameters. Besides, the
heuristic strategy displays a more real case of a practical trading strategy at
exchanges, where traders ‘‘manually’’ optimize the operation of storage by
comparing forecasts of peak and off-peak prices and dispatch the storage when
positive spreads can be expected on the day-ahead market.

10 The approach of daily planning of storage dispatch bases on price spreads
is comparable to those applied to pumped hydro storage plants in reality, as
we could learn from personal reports of experts from the power industry.

11 For the other strategies, we do not get a distribution for the variables
in the results, but single values. Therefore, we can only provide a confidence
interval for the perfect foresight strategy.
11
In this case study, the heuristic strategy is only able to reach 63%
of the perfect foresight result (see Table 2). However, we remark that
both, SDP and heuristic, yield more accurate results, if the number
of scenario clusters is increased. Additionally, the SDP results can be
more fine-grained by a higher number of storage levels. To explore both
effects in detail is beyond the scope of this article, as we now turn to
our case study results.

6.3. Profitability of different storage capacities

Subsequently, the model is used to determine the best combination
of the battery volume and charging capacity for a stand-alone battery
system. The price of the battery system depends on the charging
capacity (𝐶 in kW) in terms of the related power electronics, and the
battery volume (𝑉 in kWh). To fully characterize different systems, it
is sufficient to vary only the ratio 𝑉 ∕𝐶 as the costs and returns increase
proportionally with increasing volume and capacity for a constant ratio.

Table 3 shows the results for different battery system configurations.
It is found that the battery is mostly operated on the spot market.
Positive minute reserve does not have a large share in the overall
operational hours. If at all, the battery is offered for negative reserve.
This is despite the fact that the spot market prices are considered
as being uncertain while minute reserve prices are handled as being
deterministic and perfectly foreseen.

Thereby, it is worth mentioning that for the investigated business
case, the historical series of 2015 with the minimum prices of the
accepted bids in the minute reserve power market are applied, so that
the optimization model could decide to accept these reserve power
prices, or to bid on the spot market with expected prices for the next
day’s hours. Another strategy, such as applying historical mean prices
for reserve power, could improve the number of full load hours on the
reserve power market. However, the assumption of perfectly known
power prices within the optimization process is then hardly reasonable,
as recent studies have shown that applying a bidding strategy based on
historical mean prices instead of minimum prices reduces the proba-
bility that the bid is accepted in the reserve power market (Wagner
and Oktoviany, 2012). A deterministic approach with perfectly known
prices therefore requires the strategy with minimum price bidding.

As an indicator for the economic comparison of different system
configurations we evaluate the return on investment (ROI). It was found
that the most preferable battery system configuration is a battery with
𝑉 ∕𝐶 = 2 except for scenarios with very low costs for the battery
size (volume in MWh) (see Fig. 7). It is likely that, these economic
conditions will not be met in the coming years (Fleer et al., 2016).
In these cases, battery systems with a higher volume in comparison to
their charging capacity will be favorable.

It is to be noted that the low level of ROI leads to a negative
net present value (NPV) for large-scale battery systems operated in
the day-ahead market and the minute-reserve market if the conditions
met today on these markets are applied to the SDP model. The NPV
calculated based on 2015 price level and distribution and based on an
economic lifetime of 15 years is even negative for very low interest
rates (see Fig. 8).

However, future developments such as the expansion of volatile RES
in the German electricity system (r2b, 2014), and decreasing battery
prices, can lead to a higher profitability of the underlying business
model. To investigate the future value of battery storages operated
on the spot and minute reserve market, the price model in Section 4
is applied to adjusted data. More precisely, we used the expected PV
and wind power capacity for the year 2025 from the EU reference
scenario to calculate the merit order effect of RES electricity and
simulated prices based on this merit order effect. Furthermore, we
used the electricity prices and the RES profile of the year 2011 to
calibrate the price model. The year 2011 is a representative year for

possible developments in the future, as the fuel and carbon prices were
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Table 2
Results of different strategies applied to 30 days-dispatch of a battery storage (charging capacity: 5 MW,
storage volume: 5 MWh, efficiency: 85%)

Perfect Foresight MC Heuristic Strategy SDP Strategy

Monthly return [𝑘𝐸𝑈𝑅] 5.98a 3.80 4.67
Spot market rev. [𝑘𝐸𝑈𝑅] 13.63a 6.76 12.66
Monthly expenses [𝑘𝐸𝑈𝑅] 7.65a 2.96 7.97
CI Monthly ret. [𝑘𝐸𝑈𝑅] 5.98 ± 0.025b – –
Stdev Monthly ret. [𝐸𝑈𝑅] 404.17 – –

Calculation time 3 h a few sec. 45 min.
Time horizon = 720 h 1000 scen. 50 cluster 50 cluster

aMean value
b𝛼 = 0.05.
Table 3
Results for different battery storage systems. Reference charging capacity 5 MW with varying volume.

Ratio Ann. return [e] Discharging [h] Charging [h] Pos. reserve [h] Neg. reserve [h]

0.2 10767 146 171 6 64
0.5 26913 362 425 14 161
1 53474 716 842 28 320
2 98227 1324 1557 69 628
3 133025 1804 2122 123 928
4 158759 2145 2523 206 1116
Fig. 7. Return on investment ROI for different battery system configurations with
different cost assumptions for the battery volume (300 e/kWh) and a fixed cost
assumption on capacity costs (120 e/kW).

quite high compared to 2015 prices. These higher prices for drivers of
electricity prices (Bublitz et al., 2017), and the capacity scarcity which
occurred in France in the winter of 2017 had a significant impact on
German electricity prices. These developments are a realistic scenario
that may occur in the next ten years. This is why we ran our simulation
and evaluation models for a fictive year in the future that incorporates a
similar price development for input fuels and CO2 emission certificates
as in 2011 and the RES expansion numbers for 2025 mentioned above.

The simulated electricity prices for the fictive future year have a
mean level of about 26 e/MWh, which is lower than the level in 2015.
This is mainly due to the increased merit order effect, that outstrips
the price-increasing effect of the fuel and carbon prices. However, the
standard deviation of the simulated future prices (about 21 e/MWh)
is higher than the one of the historical prices of the last years. This
can again be explained by the merit order effect of the variable RES,
wind and PV, which themselves are not evenly distributed, but are very
volatile. Hence, more volatile electricity prices can be expected in the
future, leading to a better profitability of storage technologies.

The NPV of large-scale battery storage systems, operating mainly in
the future spot market with the higher prices mentioned above, is again
negative for acceptable interest rates (see Fig. 8). Only for low interest
rates below 4.5%, the NPV becomes positive. Hereby, a strong price
decrease for battery storage systems is assumed, reaching even slightly
lower battery prices (200 ekWh for storage volume and 80 ekW for
12
its power electronics) than in Fleer et al. (2016). This indicates that
large-scale battery storage will remain economically infeasible, if the
underlying business model is based on operating in spot and minute
reserve power markets.

Finally, it can be concluded that especially due to the current low
level of minute power prices, the business model of bidding only in the
minute reserve power market (beside the bidding on the spot market) is
economically non-profitable. Hence, the business case of operating the
battery storage capacity on the other reserve power markets (e.g. pro-
viding primary or secondary reserve in the German case or the so-called
spinning reserve in other markets) should be investigated by future
research.

6.4. Profitability of large-scale PV storage systems, and impact of network
and RES charges

After analyzing single storage facilities, we investigate the economic
value of combining battery storage with large-scale PV plants. There-
fore, we calculate the NPV for the combined PV storage based on the
annual return of the combined system maximized under uncertainty.

Technically, the PV plant and the storage can be operated sepa-
rately, optimizing the profits of each component. However, specific
market regulations can produce a positive portfolio effect and make
a joint optimization more profitable than the stand-alone optimal op-
erations of the PV plant and storage. For instance, if the exemption
from network and RES charges for energy storage (EnWG§118, 2009) is
removed after 2026,12 a combined PV storage system is more profitable,
as the storage can be charged by the PV electricity produced onsite
avoiding these charges. In fact, even a very small network charge
for energy storage anywhere in the electricity system would make
future PV storage investments more profitable than stand-alone storage.
Regulators have high incentives to favor combined installations: The
combination of renewable production with storage technologies can
defer transmission and distribution grid investments as well as reduce
curtailment of renewables (IRENA, 2019). The current German renew-
able energy legislation already reduces compensation for renewable
power that is switched off due to congestion in the electricity network
to 95% of the market premium. Furthermore, if negative prices occur
on the market for six or more consecutive hours, the market premium

12 The regulation applicable today will expire 2026 and must then be
revised.
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Fig. 8. Net present value (NPV) for different storage systems with 1 MW capacity and varying volume. Cost assumptions of 120 e/kW and 300 e/kWh (2015) and 80 e/kW and
150 e/kWh (2025) (Fleer et al., 2016) considering different interest rates and power prices of 2015 and 2025.
Fig. 9. Net present value (NPV) for PV-storage systems with 1 MW capacity (for PV
and battery charging) and expenses for the PV plant investment: 550 e/kW in 2015
and 400 e/kW in 2025.

is not paid anymore to renewable operators (EEG§51, 2017). In both
cases, the availability of storage can shift the energy feed-in to times
where these restrictions do not apply and full premiums can be earned,
so that a combined operation becomes more profitable than stand-alone
operation. The ongoing rapid expansion of renewables will induce both
situations much more frequently than today’s energy system. Besides
regulations in Germany, there also exist regulations in other countries
that make a joint optimal operation more profitable, for example
cheaper connection charges in UK (DNVGL, 2017).

In the following, we illustrate first the results for different jointly
operated PV storage systems under the current legislation of being ex-
empted from network charges for the price level of 2015 and 2025. Af-
terwards, we compare the current legislation to a case where regulators
impose charges, to illustrate the portfolio effect.

Besides the assumptions applied for the battery storage in Sec-
tion 6.2 (investments for battery: 300 e/kWh and 120 e/kW, 15 years
economic lifetime), we assume for the large-scale PV investments ex-
penses in the amount of 550 e/kW.13 All techno-economic parameters
of the PV storage system are summarized in Table 5 in the Appendix.

The results indicate that the NPV is again negative if price simu-
lations based on 2015 prices are applied. However, in the 2025 price

13 The assumed value for PV investment is determined with the help of
the latest auction for ground-mounted PV in Germany that resulted in an
average feed-in tariff of 5.66 e-ct/kWh. For the calculation, a payback period
of 10 years and 978 full load hours production per year (Wirth, 2017) are also
taken into account.
13
scenario, the NPV becomes positive for also high interest rates. This
holds for storage systems with a volume/ratio of 1 and 4 (V/C-1
and V/C-4). It is obvious that this improvement of the PV storage
combination is due to the additional investment in the large-scale PV
plant. The PV plant increases the entire systems profitability. This
becomes obvious if one compares the profitability of the PV storage
system (Fig. 9) with the stand-alone storage14 (see Fig. 8). The NPV
is in the latter case negative for high interest rates, while it is always
positive for the PV storage system. This comparison indicates that a
stand-alone PV park may even be more profitable than the combined
PV storage system. However, the high profitability of PV originates also
from the current support scheme with market premiums for renewable
electricity. The profitability may change if these premiums are removed
by the regulator in the near future according to the current affordability
discussion. A PV storage system may then become more profitable than
a stand-alone PV park. To survey this, we make two more model runs
for the year 2025 without applying market premiums for the produced
PV electricity. The results show that in this case the NPV of the PV
storage is higher than that of stand-alone PV for an interest rate up to
9% (see Fig. 10), but remains lower for higher interest rates. This is
mainly due to the fact that the additional returns of the PV storage (on
top of the stand-alone PV) are discounted by high interest rates making
the additional investment in the storage in 𝑡0 less profitable.

Besides, it has to be considered that the positive net present value
is possible only if network and RES electricity charges are not applied
to the battery storage during the charging process. The application
of RES charges and network charges would decrease the profitability
of PV plants and storage as stand-alone facilities drastically. How-
ever, PV storage systems can remain profitable if they are combined
at a single site avoiding additional payments, such as network and
other charges.15 In a further scenario, we applied the 2017 level of
RES charges (6.88 e-ct/kWh) for charging the battery and another
1 e-ct/kWh of network charges assuming that the large-scale battery
and PV plant are connected to the 110 kV voltage grid.16

The application of these charges reduces the annual return of the
PV storage system by almost 30% calculated with the 2015 prices (see
Table 4). Furthermore, the introduction of RES and network charges
hinders almost completely the economic dispatch of the storage on the

14 Stand-alone means a single storage system without PV.
15 There is an ongoing discussion about applying RES charges to house-

hold systems that increase the self-consumption rate by battery storage.
Analogously, the charging of a large-scale battery storage can be seen as a
consumption, at least from the network perspective. Hence, the introduction
of RES and network charges could be demanded again, as it was the case at
the beginning of RES electricity funding.

16 This in turn means that network charges for the lower voltage levels are
not applied.
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Table 4
Results for PV storage systems (battery: 5 MW, 20 MWh; PV: 5 MWp) applying charges or wo charges and price simulations
for 2015.

Scenario Ann. return [e] Discharging [h] Charging [h] Neg. reserve [h] PV to storage [h]

Wo any charges 480930 2143 2345 1119 188
With charges, stand alone 341351 4.13 4.63 2804 0
With charges, on-site 374578 577 0.54 2602 754
spot market: Only about 4–5 full load hours can be achieved for the
battery operation. This is due to fact that the price spread in 2015
price series is not sufficient to cover the charges that apply in the case
of charging and operating the storage in the spot market. However, a
reasonable spot market dispatch can be reached for the battery if it is
charged by a PV plant that is located on the same site (see Table 4,
scenario ‘‘with charges, on-site’’) and if the mentioned charges do not
apply for PV electricity that is ‘‘self-consumed’’ by the on-site storage.
This change in operation leads to significantly higher annual return
compared to the scenario, in which the PV plant and storage are stand-
alone facilities. In the scenario ‘‘with charges, on-site’’, a large part of
the PV electricity is used to charge the battery (754 full load hours) and
to discharge the battery at times with higher prices. Only about 300 full
load hours electricity of the PV plant is directly sold in the spot market.
Besides, the battery charging with grid electricity diminishes again, as
the RES charges apply for grid electricity use in this scenario as well.
It can be concluded that it is economically more feasible to build PV
plants and storage on a single site to avoid extra costs/charges that may
be installed by future energy policy.

6.5. Critical reflection

In this study, we have combined a statistical (econometric) model
for price simulation with a stochastic dynamic program for the op-
eration of a PV storage system to maximize its annual return under
uncertain prices and PV production. Although the price model covers
one of the main transitions in the energy system (i.e. the significant in-
crease of renewable energies in the power sector), it relies on historical
trends for other market parameters and does not cover other structural
changes in the energy market, such as sector coupling. For this reason,
we limited the price modeling to the analysis with simulated 2015 and
2025 prices and take the 2025 annual return as a proxy for further
future years. However, future research could combine the econometric
price model with a power market simulation model to capture not
only the short-term uncertainty of electricity prices due to intermittent
renewable production, but also substantial changes to the power sector
that might affect the long-term price developments.

Another important limitation of our approach is the missing activa-
tion of reserve power. The German TSOs do not provide detailed data
on the activation of particular plants. We therefore cannot properly
calibrate a stochastic process describing the activation of contracted
reserve power capacity. After weighing the options of including a
stochastic activation without empirical basis or not considering the
reserve power market at all, we decided for the third option of in-
cluding only capacity bids for the case study, neglecting the effect
of reserve activation onto the storage level. We argue that the actual
error is small, as the producer can close its position using the intraday
market. The error is thus the difference between intraday price and the
marginal costs of reserve activation. Furthermore, it worth recalling the
share of revenues within the total revenue stream of the PV storage
system. Under the investigated prices for the minute reserve power
market, the revenues from that market equal to about 3% and the time
the PV storage is dispatched on the reserve power market equals to
almost 4% in case of the PV storage plant with a ratio 1:1 (charging
power : storage volume) (see Tables 3 and 6 in the Appendix for
results on monthly revenues.). If you further consider that the average
activation probability corresponds to only 7%–8% (see Kraft et al.,
2019) of the time reserve power is offered, the error for not considering
14
reserve power activation becomes marginal. However, future research
may reconsider the modeling of reserve power activation if reserve
prices and activation time increase tremendously and detailed data on
activation is available at technology level.

7. Conclusions

In this paper, different approaches to model uncertain parameters
on energy markets, such as electricity prices, PV feed-in and wind
power generation, are introduced. The electricity price model takes into
account the so-called merit order effect of PV and wind power and
the inherent non-stationarity of the underlying time series. A second
method based on stochastic dynamic programming is then developed
to evaluate the economic profitability of PV storage systems operating
on the spot and minute reserve power markets, whereby the previously
developed electricity and PV models are used to generate a large
number of price and PV feed-in scenarios that cover the uncertainty
in these parameters.

A large number of price and PV scenarios are necessary to cover
the wide range of possible developments. However, a usual stochastic
optimization model for the dispatch and evaluation of PV storage sys-
tems cannot be executed in an acceptable computation time applying
these large numbers (1000 simulations) of scenarios and 365 stages
of decision. Hence, an SDP model is found to be more suitable for
capturing the uncertainty, and is applied after reducing the initial large
number of scenarios to a recombining tree with a small number of price
clusters representing the price development on each day. The scenario
reduction with 20 price clusters leads to about 6 h computation time
for the SDP model with a time horizon of one year.

As demonstrated in Section 6.2, the SDP model is able to generate
more profit for PV storage systems considering the uncertainty of prices
and renewable energy generation. Compared to heuristic strategies,
it is able to achieve a higher portion (more than 80%) of the upper
threshold which can be achieved only under perfect foresight, i.e. op-
timization with certainty on price developments within a price path.
Hence, the SDP approach is a well-performing method to evaluate
systems with energy storage under uncertainty.

Regarding the evaluation results for battery storage, it can be con-
cluded that the business model of operating a large-scale battery on the
electricity spot market and minute reserve power market is currently
economically unfeasible and will remain so, if no unexpected increase
in price level and volatility occurs in the next years. A moderate
increase in price volatility increases the economic value of the inves-
tigated battery configurations. But the low ROI of 2–4.5% and the
negative NPVs for acceptable interest rates (5%–10%), even in the case
of a significant decrease in investment expenses, leads to the conclusion
that battery investments will not become profitable in the next few
years if they are operated only on the spot and minute reserve power
markets, although they are welcome from the point of view of system
security.

However, investments in battery storage can be economically more
feasible, if their capacity is operated on the other reserve power mar-
kets (primary and secondary reserve), as the prices per MW are cur-
rently much higher in these markets (Regelleistung.net, 2017). First use
of large-scale installations for primary reserve power operation indicate
new areas of storage operation. However, because of non-availability of
data for secondary reserve power prices with an appropriate intraday

resolution for the analyzed time period, in this study, we focused on
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Table 5
Techno-economic parameters of the investigated PV storage system.

Parameter Standard case Future scenario

Storage capacity 5 MWh 5 MWh
Roundtrip efficiency 85% 85%
Cost of battery storage [e/kWh] 300 150
Cost of storage electronics [e/kW] 120 80
ratio of storage volume/charging capacity 0.2–4 1–4
economic lifetime [years] 15 15
PV investments [e/kWh] 550 400
PV size 5 MWp 5 MWp
PV full load hours 978 978
RES charges [e-ct./kWh] 6.88 – (in the w/o scenario)
network charges [e-ct./kWh] 1 – (in the w/o scenario)
the minute reserve power market where data with a 4 h-resolution was
available. Since, the design of the secondary reserve power market has
been changed by the German regulator and this reserve is also now
traded day-ahead with 4 h block contracts, the developed approach
can be also applied to an evaluation with secondary reserve, when
after some years data is collected for a sufficient period of time.
Therefore, future research may focus on the evaluation of PV storage
investments if they are operated especially in the secondary reserve
market. Additionally, if detailed data for volumes of requested reserve
energy from different technologies is available, the numerical study can
be updated based on this data. Currently, new market designs for the
reserve power market are discussed and tested in the German electricity
system. If new design rules are defined, the provided MDP can be
adjusted according to these changes and new application results may
be derived for the case study.

Combining large-scale battery storage systems with PV plants signif-
icantly increases profitability and can make investments economically
reasonable, especially if electricity prices become more volatile in the
future with larger intraday spreads. However, it is to be noted that this
increase in value of the combined plant originates mainly from the PV
plant, which receives market premium payments apart from the spot
market returns. The profitability of the combined plant may be reduced
if RES and network charges are applied to battery storage. In this case,
the annual return would be reduced by almost 30%, and charging the
battery on the wholesale market would not be feasible in the economic
sense. A solution to avoid these charges (if they are introduced) would
be the installation of the PV plant and battery storage on a single
site, and to charge the battery with PV electricity. This measure again
increases the annual return by more than 12% in our analyses. Hence,
it can be concluded that it is economically more feasible to build PV
plants and storage on a single site to avoid extra costs/charges that may
be imposed by future energy policy.

For future research, it is of high importance to study other business
models for battery storage, besides the ones investigated in this study,
and to address these in future research. The methodology developed
in this study is applicable to other business models or future market
design choices.
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Fig. 10. Net present value of a PV-storage plant (2025-PV Stor w/o MP, PV-Capacity:
5 MW, Storage Capacity: 5 MW and Volume: 5 MWh) compared to an installation of
only PV (2025-PV w/o MP, PV-Capacity: 5 MW) in 2025 without market premium for
PV. The figure shows the value of avoiding grid charges and the ability of arbitrage
trading by combining both technologies.

Appendix

A.1. Additional findings

See Fig. 10

A.2. Nomenclature

Indices and Sets
1 ≤ 𝑑 ≤ 𝐷 Days
1 ≤ ℎ ≤ 24 Hour of the day
1 ≤ 𝑡𝑠 ≤ 24∕𝑖 𝑖 time slices each day for reserve power

market, provided 24 mod 𝑖 = 0.
1 ≤ 𝑚 ≤ 12 The month, 1 corresponds to January,. . .
1 ≤ 𝑠𝑏 ≤ 𝑁 Discrete storage levels at the beginning/end of

each day
𝑠𝑐 ∈ 𝑆𝐶 Price and renewable production scenario set
Parameters
𝑝𝑟𝐶𝑇

𝑖,𝑗 Probability of transition from cluster 𝑍𝑖 to 𝑍𝑗
on subsequent days

𝐿𝑚𝑖𝑛∕𝑚𝑎𝑥 Minimum/maximum volume of the storage
𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑚𝑎𝑥 , 𝑋𝑠𝑡𝑜𝑟
𝑚𝑎𝑥 Upper limits of discharging and charging speed

of the battery
𝑚𝑑 Market premium paid on day d for PV

electricity generation
𝑐 Variable cost of charging or discharging
𝜇𝑠𝑡 Overall efficiency of the battery storage
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Table 6
Revenue streams from the different market segments for a month operation of a system with 5 MW capacity
and 5 MWh storage volume.

Revenue streams and operation hours

Expected return 4976.98 e

Expected revenues on the spot market 12278.99 e

Expected revenues on the reserve power market 384.01 e

Expected expenses for charging 7686.02 e

Expected discharging full load hour 59 h
Expected charging full load hours 67 h
Decision variables
𝑋𝑑 Summary of all decision variables
𝑋𝑠𝑝𝑜𝑡

𝑑 Amount of energy released from the storage
and sold in the spot market

𝑋𝑠𝑡𝑜𝑟
𝑑 Amount of stored energy bought from the grid

𝑋𝑟𝑒𝑠
𝑑 Discharging/charging capacity offered in the

market for positive/negative reserve power
𝑅𝑠𝑝𝑜𝑡
𝑑 Renewable power directly sold in the spot

market
𝑅𝑠𝑡𝑜𝑟
𝑑 Renewable power shifted to the storage

𝜆𝑠𝑏𝑑 Interpolation variable for the storage levels 𝑠𝑏
at the end of day 𝑑

State variables
𝑆𝑑 Overall state of the system defined in 3.1
𝑆 𝑖,𝑠𝑏
𝑑 Discrete states of the system with storage state

𝑠𝑏 and price cluster 𝑖 of day 𝑑 5
𝐿𝑑 Storage level
𝐿𝑒𝑛𝑑 Storage level at the end of a day
External variables
𝑟𝑑 On-site produced renewable power of each

hour on day 𝑑
𝑣(𝑠𝑖𝑚)𝑡 , 𝑡 = 1,… , 𝑇 (Simulated) solar power production time series
𝑣𝑚𝑎𝑥𝑑 Daily maximum of solar power production on

day d
𝑤(𝑠𝑖𝑚)

𝑡 (Simulated) wind power production time series
𝑝(𝑠𝑖𝑚)𝑡 (Simulated) electricity day-ahead price
𝑝𝑠𝑐𝑡 (Simulated) electricity day-ahead price series

for the scenario 𝑠𝑐
𝑟𝑡 (Simulated) renewable series
𝑟𝑠𝑐𝑡 (Simulated) renewable series for the scenario

𝑠𝑐
𝑧𝑠𝑐𝑡 Tuple of price and renewable scenario 𝑠𝑐
𝑍𝑑,𝑖 Cluster of price and renewable tuple
𝑝̃𝑡 Stochastic part of electricity day-ahead price

with renewable production influence
eliminated

𝑝𝑟𝑒𝑠𝑑 Reserve power price of each hour
Notation
𝐶𝑑 Revenues/contribution on day 𝑑
𝐵𝑑 Bellman equation on day 𝑑 / Revenues from

day 𝑑 to 𝐷
𝐶𝑣∕𝑤
𝑦 Installed production capacity of solar/wind

technology in a given year
𝛽(𝑣∕𝑤)
𝑖 Fitted coefficients for a price, solar, or wind

time series
𝛼𝑖, 𝛾𝑖, 𝛿𝑖 Fitted coefficients of other modeling steps
𝑑𝑒𝑠𝑒𝑎𝑠(𝑑) trigonometric function fitted to correct for

seasonal influences
𝜀𝑡 Residuals of stochastic modeling
𝜇, 𝜎, 𝜎2 Mean, standard deviation, and variance
𝛥 Difference operator
𝜔, 𝜂, 𝜑 Random variables of the regime switching

price model
𝜌𝑖, 𝑝𝑟𝑖,𝑗 Regime intervals and the switching

probabilities between them
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A.3. Tables

See Tables 5 and 6.
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