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Abstract. Atmospheric mineral dust has a rich tri-dimensional spatial and temporal structure that is poorly
constrained in forecasts and analyses when only column-integrated aerosol optical depth (AOD) is assimilated.
At present, this is the case of most operational global aerosol assimilation products. Aerosol vertical distributions
obtained from spaceborne lidars can be assimilated in aerosol models, but questions about the extent of their
benefit upon analyses and forecasts along with their consistency with AOD assimilation remain unresolved. Our
study thoroughly explores the added value of assimilating spaceborne vertical dust profiles, with and without
the joint assimilation of dust optical depth (DOD). We also discuss the consistency in the assimilation of both
sources of information and analyse the role of the smaller footprint of the spaceborne lidar profiles in the results.
To that end, we have performed data assimilation experiments using dedicated dust observations for a period of 2
months over northern Africa, the Middle East, and Europe. We assimilate DOD derived from the Visible Infrared
Imaging Radiometer Suite (VIIRS) on board Suomi National Polar-Orbiting Partnership (SUOMI-NPP) Deep
Blue and for the first time Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP)-based LIdar climatology
of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) pure-dust extinction coefficient
profiles on an aerosol model. The evaluation is performed against independent ground-based DOD derived from
AErosol RObotic NETwork (AERONET) Sun photometers and ground-based lidar dust extinction profiles from
the Cyprus Clouds Aerosol and Rain Experiment (CyCARE) and PREparatory: does dust TriboElectrification
affect our ClimaTe (Pre-TECT) field campaigns. Jointly assimilating LIVAS and Deep Blue data reduces the
root mean square error (RMSE) in the DOD by 39 % and in the dust extinction coefficient by 65 % compared
to a control simulation that excludes assimilation. We show that the assimilation of dust extinction coefficient
profiles provides a strong added value to the analyses and forecasts. When only Deep Blue data are assimilated,
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the RMSE in the DOD is reduced further, by 42 %. However, when only LIVAS data are assimilated, the RMSE
in the dust extinction coefficient decreases by 72 %, the largest improvement across experiments. We also show
that the assimilation of dust extinction profiles yields better skill scores than the assimilation of DOD under an
equivalent sensor footprint. Our results demonstrate the strong potential of future lidar space missions to improve
desert dust forecasts, particularly if they foresee a depolarization lidar channel to allow discrimination of desert
dust from other aerosol types.

1 Introduction

The spatial and temporal distribution of atmospheric aerosol
can be optimally estimated by combining observations and
numerical models using data assimilation (DA) techniques.
The resulting fields, referred to as aerosol analyses, serve
as initial conditions for aerosol forecasting. Long-term and
consistent analyses, so-called aerosol reanalyses, are useful
for investigating aerosol variability, trends, impacts, and cli-
mate feedbacks, and they are produced with the same DA
techniques (Benedetti et al., 2009; Lynch et al., 2016; Ran-
dles et al., 2017; Yumimoto et al., 2017; Inness et al., 2019;
Di Tomaso et al., 2021).

A key uncertainty in current models is the representa-
tion of the aerosol vertical distribution (Pérez et al., 2006;
Koffi et al., 2016; Benedetti et al., 2018; Konsta et al.,
2018). Most operational aerosol forecast systems rely on
the assimilation of column-integrated aerosol optical depth
(AOD) from satellite-borne instruments (e.g. Xian et al.,
2019). Consequently, the vertical structure is mainly prop-
agated from the numerical model and only slightly and
indirectly from the assimilated observations. In the last
decade, a few studies have investigated the assimilation of
vertical aerosol profiles from lidar instruments, both satel-
lite (e.g. Cloud-Aerosol Lidar with Orthogonal Polarisa-
tion (CALIOP), Winker et al., 2010) and ground-based (e.g.
European Aerosol Research Lidar Network (EARLINET),
Pappalardo et al., 2014), showing the potential of vertical
profiling to improve the four-dimensional representation of
aerosols in analyses (Sekiyama et al., 2010; Zhang et al.,
2011; Wang et al., 2014; Kahnert and Andersson, 2017;
Cheng et al., 2019; El Amraoui et al., 2020) and forecasts
(Zhang et al., 2011; Wang et al., 2014). Difficulties prevent-
ing an effective assimilation of vertical profiles in operational
settings include the poor coverage of ground-based observa-
tions, the narrow footprint of satellite observations, potential
inconsistencies with other assimilated observations, and un-
derrepresented forecasting uncertainty in the vertical, among
others.

Our study focuses on the assimilation of desert dust
aerosol lidar observations around the two most prolific
source regions on Earth: northern Africa and the Middle East.
Dust models are subject to substantial uncertainties in the
description of lower boundary conditions relevant for dust
emission, modelled wind speed, dust emission processes,

vertical mixing, particle properties, and deposition (Huneeus
et al., 2011; Kok et al., 2021; Klose et al., 2021a). Thus,
combining modelling with dust observations through DA is
a powerful method to increase the quality of emission esti-
mates (Escribano et al., 2016, 2017) and dust forecasts. We
are specifically interested here in the impact of assimilat-
ing spaceborne lidar profiles upon dust forecasts. Dust is the
largest continental contributor to the global aerosol load and
impacts marine (Jickells et al., 2005) and land biogeochem-
istry (Okin et al., 2004), radiative fluxes (DeMott et al., 2009;
Kok et al., 2017; Marinou et al., 2019), human health (Du
et al., 2015), and the economy (Kosmopoulos et al., 2018;
Papagiannopoulos et al., 2020). Properly representing its ver-
tical structure both within the planetary boundary layer over
sources and in the free troposphere in the outflow areas is
particularly important for predicting its long-range transport
and associated impacts (O’Sullivan et al., 2020). Despite this
important role, the dust vertical structure in models and fore-
casts is poorly constrained by observations (Benedetti et al.,
2014). So far, only lidar measurements, either from space or
from ground, can deliver vertical profiles of the atmospheric
dust.

Our work involves both modelling and data assimilation
aspects along with the handling of observations and their
uncertainty. We use the Multiscale Online Non-hydrostatic
AtmospheRe CHemistry (MONARCH) model, formerly
known as NMMB/BSC-Dust (Pérez et al., 2011; Klose et al.,
2021a), enhanced with a local ensemble transform Kalman
filter data assimilation capability (Di Tomaso et al., 2017).
MONARCH provides dust forecasts at the World Meteoro-
logical Organization (WMO) Sand and Dust Storm Warn-
ing Advisory and Assessment System (SDS-WAS) regional
centres for northern Africa, the Middle East, and Europe
(http://sds-was.aemet.es/, last access: 11 November 2021;
http://dust.aemet.es/, last access: 11 November 2021) hosted
by the Spanish Meteorological Agency (AEMET) and the
Barcelona Supercomputing Center (BSC). We address the
challenge of how to best express model uncertainty also in
the vertical coordinate and consequently in the dust transport,
generating an ensemble for MONARCH based on both mete-
orological and dust source perturbations. Rubin et al. (2016)
showed that combining meteorology and aerosol source en-
sembles produces sufficient spread in outflow regions that
positively impacts the results. Characterizing model uncer-
tainty is key to effectively assimilating observations; spatial
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and multivariate structures of the error background covari-
ance determine the spread of observational information in
space and across variables, allowing for statistically consis-
tent increments between neighbouring grid points, also along
the vertical dimension. The use of an ensemble-based data
assimilation scheme, such as the one used in this work, al-
lows for background covariances to evolve with the forecast.

Assimilating dust in models is possible to the extent
that there are dust-specific retrievals with suitable cover-
age, quality, and uncertainty quantification. Progress has
been made recently to provide dust products from satellite-
borne spectroradiometers in the visible (e.g. Pu and Ginoux,
2016; Zhou et al., 2020b, a), from the Infrared Atmospheric
Sounding Interferometer (IASI) (e.g. Capelle et al., 2018;
Clarisse et al., 2019), from ground and satellite-based li-
dar instruments (Mamouri and Ansmann, 2014; Amiridis
et al., 2015), or from combinations of reanalyses with satel-
lite retrievals (Gkikas et al., 2021). In our study we assim-
ilate pixels with dust retrievals from the Visible Infrared
Imaging Radiometer Suite (VIIRS) Deep Blue AOD prod-
uct (Hsu et al., 2019) along with LIdar climatology of Verti-
cal Aerosol Structure for space-based lidar simulation stud-
ies (LIVAS) pure-dust extinction coefficient profiles from
CALIOP as described in Amiridis et al. (2013, 2015) and
Marinou et al. (2017). Finally, our analyses and analysis-
initialized forecasts are evaluated against independent ob-
servations, namely dust-filtered AOD from ground-based
AErosol RObotic NETwork (AERONET) observations and
lidar dust extinction coefficient profiles collected during the
PREparatory: does dust TriboElectrification affect our Cli-
maTe (Pre-TECT, http://pre-tect.space.noa.gr, last access:
11 November 2021) and Cyprus Clouds Aerosol and Rain
Experiment (CyCARE, Radenz et al., 2017) campaigns be-
tween 19 and 23 April 2017.

The paper is organized as follows. In Sect. 2 we describe
the data and methods employed in this study. In Sect. 3 we
investigate the potential improvements in the representation
of the dust vertical structure by assimilating dust-dedicated
profiling information in a close-to-optimal data assimila-
tion framework. We also assess the overall benefit of ap-
plying constraints on both the dust total column extinction
and the dust extinction profile. Finally, we compare verti-
cally resolved versus column-integrated data assimilation un-
der comparable temporal and spatial geographical sampling.
Section 4 concludes the paper, highlighting the main results
obtained.

2 Data and methods

We performed data assimilation experiments to evaluate the
impact of assimilating satellite products of dust optical depth
(DOD) and vertically resolved dust extinction coefficient,
either alone or in combination. These two datasets are de-
scribed in Sect. 2.1. The experiments were evaluated against

independent ground-based Sun photometer and lidar obser-
vations that are described in Sect. 2.2. The modelling and
data assimilation systems, described in Sect. 2.3 and 2.4 re-
spectively, were optimized in a number of respects, includ-
ing the generation of ensemble perturbations, the spatial and
temporal localization that creates a smooth limit upon the
observation influence in the analysis fields, and the optical
properties used in the observation operator. A description of
the experiments and their evaluation are provided in Sect. 2.5

2.1 Assimilated observations

2.1.1 CALIOP-based LIVAS dataset

Pure-dust profiles assimilated in this study were derived
from the global three-dimensional European Space Agency
(ESA) LIVAS database (Amiridis et al., 2013, 2015). LI-
VAS is based on multiyear CALIPSO (Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations, Winker et al.,
2009) CALIOP aerosol observations. In this work, we use
the LIVAS pure-dust extinction coefficient product, derived
at CALIPSO Level 2 with a vertical resolution of 60 m and a
horizontal resolution of 5 km. The methodology of LIVAS to
retrieve the pure-dust extinction coefficient from CALIPSO
uses the depolarization-based separation method introduced
by Shimizu et al. (2004) and Tesche et al. (2009), coupled
with a regionally suitable climatological lidar ratio. The lat-
ter is estimated from long-term EARLINET measurements
(e.g. 55 sr for the Sahara, 40 sr for the Middle East) (Baars
et al., 2016). It has been shown that the LIVAS dust prod-
uct presented in Amiridis et al. (2013) and later updated in
Marinou et al. (2017) is in good agreement with AERONET-
collocated measurements, with an absolute AOD bias of the
order of ∼ 0.03.

Accordingly, and prior to assimilation, the profiles of the
LIVAS pure-dust extinction coefficient at 532 nm were ag-
gregated to the horizontal resolution of the model. In the re-
gridding process, error definitions and filtering of CALIOP
profiles followed procedures similar to Cheng et al. (2019).
More specifically, Cheng et al. (2019) used CALIOP opti-
cal products under the condition that at least 20 CALIOP
L2 profiles were provided in each 2◦× 2◦ model grid cell.
Considering the finer model grid resolution of 0.66◦× 0.66◦

of the present study – in an analogous approach to Cheng
et al. (2019) – a threshold of at least three quality-assured
(QA) cloud-free (CF) CALIOP L2 profiles was set, achiev-
ing a similar proportion of horizontal geographical coverage
to Cheng et al. (2019). Similar was the filtering approach fol-
lowed for the coefficient of variation (standard deviation di-
vided by mean) of the data prior to regridding, although it
was less restrictive due to the smaller number of profiles and
the higher spatial resolution of the model grid. More specifi-
cally, only grid cells with a coefficient of variation less than
unity were used in the assimilation, while in Cheng et al.
(2019) the corresponding threshold was set equal to 0.5.
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In addition, in order to avoid spurious values in the as-
similation process (e.g. unrealistic high values of the extinc-
tion coefficient at 532 nm arising from possible misclassifi-
cation of clouds as aerosols), we discarded LIVAS dust ex-
tinction coefficients larger than 10−3 m−1. Errors in LIVAS
pure-dust extinction coefficient profiles are of the order of
20 %–54 % (Marinou et al., 2017). In consequence, and sim-
ilarly to Cheng et al. (2019), input error statistics for the data
assimilation routine were prescribed as 20 % of the value
of the dust extinction coefficient. An additional filter was
applied to ensure that the 60 m vertical-resolution observa-
tions cover at least half of each model layer vertical thick-
ness. Model layer thickness is defined by the model hybrid
pressure–sigma coordinate; its value is not homogeneous in
the vertical: it varies between 16 and 61 m close to the sur-
face depending on the topography, between about 140 and
750 m at 6.5 km altitude and between 540 and 640 m at 10 km
height. Model layers and the corresponding LIVAS observa-
tions with less than 50 % of vertical coverage were omitted
in the observation operator. The remaining observations were
averaged and the associated uncertainty was computed as-
suming a Gaussian correlation length of 1 km in the vertical
coordinate for each model layer independently.

2.1.2 VIIRS Deep Blue dataset

The DOD at 550 nm was extracted from the Deep Blue
(DB) Level-2 product of the VIIRS instrument on board
the Suomi National Polar-Orbiting Partnership (SUOMI-
NPP) satellite (Sayer et al., 2018; Hsu et al., 2019). The
DB product provides total AOD at 550 nm with a global
coverage daily. Along with AOD, the DB product includes
a flag with the aerosol-type classification of the retrieval
(namely dust, smoke, high-altitude smoke, non-smoke fine-
dominated, mixed, background, and fine-mode-dominated)
and quality-assurance flags over ocean and land from 1
(worst quality) to 3 (best quality). Hsu et al. (2019) highlight
the improvements done in the DB retrieval for dust aerosols,
as the optical model was updated with non-spherical dust op-
tical properties.

The standard DB product is AOD. We used only pixels
classified as “dust” aerosol type and with a quality assur-
ance flag equal to 3 over the ocean and greater than or equal
to 2 over land. The resulting DOD dataset was then inter-
polated to the model grid and assigned an uncertainty of
0.2×DOD+ 0.05 following Sayer et al. (2019). Hereafter
we use DDB to refer to this filtered dust DB retrieval. We
note that DDB is not necessarily a pure-dust AOD and may
include contributions of other aerosol types, although dust
should be predominant, particularly in northern Africa and
the Middle East.

The large swath (∼ 3040 km) of the VIIRS instrument can
be a big plus for data assimilation. In contrast, CALIOP has
a horizontal footprint of 100 m and a horizontal resolution of
333 m. When comparing the assimilation from both instru-

ments, it is key to understanding the role of these differences
in spatial coverage. To respond to this fundamental question,
we prepared a subset of DDB data, called hereafter DDBsub-
set, that contains the (regridded) DOD from DDB collocated
with LIVAS. This collocation is done at a daily resolution
and in the horizontal model grid (which is the same horizon-
tal grid of DBB and LIVAS after the processing described in
the previous paragraphs). For each UTC day, we create a bi-
dimensional binary mask whose values are set to valid only
when the LIVAS dataset has a valid retrieval in at least one
vertical level for that UTC day. This daily mask is applied to
DDB to create DDBsubset.

2.2 Ground-based observations for evaluation

2.2.1 AERONET

We used ground-based measurements for the evaluation. For
DOD, we selected the group of AERONET stations (Holben
et al., 1998) used in the operational SDS-WAS verification.
The list of stations is presented in Appendix A. We used
the AERONET Direct Sun product, version 3, level 2. The
AOD was interpolated to 550 nm, and we assumed dust to be
predominant when Ångström exponents at 440–870 nm were
smaller than 0.3 (Basart et al., 2009). In a similar fashion to
the AOD filter used in DDB, this filtered AERONET dataset
is not a pure-dust AOD. Nevertheless, it is expected that the
main aerosol type in the vertical column of this AERONET-
filtered dataset is dust, but it can be mixed with other types
of aerosols (as for example coarse sea spray).

2.2.2 Ground-based lidar CyCARE and Pre-TECT
campaigns

The modelled vertical profiles of the dust extinction coeffi-
cient at 532 nm were evaluated against measurements from
three ground-based lidars of the lidar network PollyNET
(Baars et al., 2016; Engelmann et al., 2016) operated in the
eastern Mediterranean during the CyCARE and Pre-TECT
experiments. These lidars were located at Finokalia, Crete,
Greece (operated by the National Observatory of Athens,
NOA), Limassol, Cyprus (operated by the Leibniz Institute
for Tropospheric Research, TROPOS, in the framework of
CyCARE), and Haifa, Israel (Althausen et al., 2019, op-
erated by TROPOS). With these continuously operating li-
dars, the vertical profiles of the particle backscatter coef-
ficient at 355, 532, and 1064 nm, the extinction coefficient
at 355 and 532 nm, and the particle depolarization ratio at
355 and 532 nm can be retrieved. Using the obtained par-
ticle backscatter coefficient, extinction coefficient, and de-
polarization ratio at 532 nm, the dust-only extinction coeffi-
cient can be obtained as described in Mamouri and Ansmann
(2014, 2017). With this method, the backscatter-related dust
fraction is calculated based on the known depolarization ratio
of pure dust (31 %) and the non-dust component (5 %). Hav-
ing the dust-only backscatter coefficient, the dust-only ex-
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tinction coefficient is determined by the use of the pure dust
lidar ratio at 532 nm of 45 sr (Mamouri and Ansmann, 2016).
The non-dust extinction coefficient is calculated similarly de-
pending on the type of non-dust aerosol. Finally, a consis-
tency check is performed by summing up the dust-only and
non-dust extinction profiles and comparing them to the total
measured extinction coefficient. More details can be found in
Urbanneck (2018).

In contrast to the estimated DOD from AERONET and
DB AOD retrievals, which may be affected by other aerosols,
the PollyNET measurements can provide pure-dust retrievals
(Tesche et al., 2009; Mamouri and Ansmann, 2017). For this
reason, we use here the lidar observations from the CyCARE
and Pre-TECT campaigns in the evaluation of our results.

2.3 MONARCH model

To simulate the dust cycle, we used the Multiscale On-
line Nonhydrostatic AtmospheRe CHemistry (MONARCH)
model (Pérez et al., 2011; Haustein et al., 2012; Jorba et al.,
2012; Badia et al., 2017; Di Tomaso et al., 2017; Klose
et al., 2021a). MONARCH is a fully online integrated sys-
tem for meso- to global-scale applications developed at the
BSC. It uses the Nonhydrostatic Multiscale Model on the B-
grid (NMMB, Janjic and Gall, 2012) as the meteorological
driver and couples gas-phase and mass-based aerosol mod-
ules to describe the life cycle of atmospheric components.
It uses the Autosubmit workflow manager (Manubens-Gil
et al., 2016), which is particularly useful for efficiently ex-
ecuting assimilation runs. The model provides operational
regional mineral dust forecasts at WMO SDS-WAS re-
gional centres. It has also contributed global aerosol fore-
casts within the multimodel ensemble of the International
Cooperative for Aerosol Prediction (ICAP) initiative (Xian
et al., 2019) since 2012 and will soon integrate the Coper-
nicus Atmosphere Monitoring Service (CAMS) – Air Qual-
ity Regional Production (https://www.regional.atmosphere.
copernicus.eu, last access: 11 November 2021).

MONARCH contains comprehensive aerosol and chem-
istry packages, but in this work we only focus on and
compute mineral dust aerosol. Dust is described using
eight particle-size bins within 0.2–20 µm in diameter. The
MONARCH dust module is described in detail in Pérez et al.
(2011) and Klose et al. (2021a). MONARCH offers a diver-
sity of mineral dust emission schemes along with multiple
configurations. As shown in Klose et al. (2021a), the emis-
sion scheme and their specific configuration have a strong
impact on the spatial and temporal behaviour of the simu-
lated dust. Because we aim at showing the impact on the fore-
cast by assimilating two different types of observations and
not at showing the best of the forecasts, we preferred to avoid
fine-tuning and cherry-picking the best-performing emission
scheme and configuration for our study case. Instead, we
computed dust emissions by averaging the emissions pro-
duced by the four configurations listed in Table 1. All the

configurations used a modified version of the dust emission
scheme of Ginoux et al. (2001) with modifications described
in Klose et al. (2021a) that include the use of friction velocity
instead of 10 m wind speed, a dust-particle size-independent
threshold friction velocity for particle entrainment taken as
the minimum value of the threshold function from Shao and
Lu (2000), and an emitted size distribution following Kok
(2011). The entrainment threshold accounts for soil mois-
ture using the correction from Belly (1964) as described in
Ginoux et al. (2001). Areas where dust emission is allowed
are constrained by satellite observations, specifically by the
frequency of occurrence (FoO) of the Moderate Resolution
Imaging Spectroradiometer (MODIS) DB DOD exceeding
0.2 (Hsu et al., 2004; Ginoux et al., 2012). Dust can be emit-
ted for areas in which FoO > 0.025 (Klose et al., 2021a).
The four configurations differ with regard to the descrip-
tion of (a) the preferential dust sources used for scaling of
the dust emission flux and (b) vegetation and surface rough-
ness effects. Configurations I and II used the MODIS FoO of
DOD > 0.2 to scale the dust emission flux obtained with the
modified Ginoux et al. (2001) parameterization. Configura-
tions III and IV used the original topographic source mask
from Ginoux et al. (2001) as the scaling function. To account
for roughness elements on the land surface, such as vegeta-
tion, rocks, or pebbles, configurations I and III used the drag
partition parameterization from Marticorena and Bergametti
(1995) with corrections from King et al. (2005) in combina-
tion with a monthly climatology of MODIS-derived leaf-area
index (Myeni et al., 2015) and aerodynamic roughness length
data for arid regions from Prigent et al. (2012). In contrast,
configurations II and IV utilized the drag partition parameter-
ization from Raupach et al. (1993) together with a monthly
climatology of photosynthetic and non-photosynthetic vege-
tation cover data from Guerschman et al. (2015) (Klose et al.,
2021a). The drag partition corrections were applied to the
threshold friction velocity for particle entrainment.

2.4 Data assimilation

MONARCH is coupled to a local ensemble transform
Kalman filter (LETKF, Hunt et al., 2007). The LETKF im-
plementation used in this study was built upon the implemen-
tation from Miyoshi and Yamane (2007), Schutgens et al.
(2010), and Di Tomaso et al. (2017). We used the 4D-LETKF
configuration of this code with an assimilation window and
forecast length of 24 h (starting at 00:00 UTC) and with
hourly outputs. In this LETKF implementation, the obser-
vations had been compared to the model-simulated equiv-
alent observations with collocation in time and space and
then concatenated to construct the observation and the simu-
lated observation vectors. An ensemble of MONARCH runs
is used to estimate the error covariance matrix of the prior
at the observations’ times and locations. We used a Gaussian
localization with a horizontal scale of six grid cells (around
435 km in our model configuration), a vertical scale of one
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Table 1. Summary of the four model configurations used to create the multi-scheme dust emissions.

Config. Dust source mask/scaling Drag partition Vegetation/roughness

I MODIS FoO/MODIS FoO Marticorena and Bergametti (1995) MODIS LAI/Prigent et al. (2012)
II MODIS FoO/MODIS FoO Raupach et al. (1993) Guerschman et al. (2015)
III MODIS FoO/topo. sources Marticorena and Bergametti (1995) MODIS LAI/Prigent et al. (2012)
IV MODIS FoO/topo. sources Raupach et al. (1993) Guerschman et al. (2015)

model level, and a temporal scale of 12 h. Unlike Di Tomaso
et al. (2017) or Cheng et al. (2019), we computed the analy-
sis every hour instead of only at 00:00 UTC. With this con-
figuration, the 4D-LETKF acts as a Kalman smoother that
effectively localizes the influence of the observations in time
and therefore produces better-quality analyses throughout the
24 h assimilation window. This choice is advantageous when
the assimilated observations are temporally distributed along
the assimilation window like in the case of LIVAS with day-
time and nighttime profiles or when the observations are
more representative of local conditions, as is the case of
extinction coefficients compared to column-integrated AOD
values. In comparison with Di Tomaso et al. (2017) and
Cheng et al. (2019), the Kalman smoother choice described
above should provide the same analyses at 00:00 UTC as the
filtering option. Therefore, the analysis-initialized forecasts
are identical with both approaches.

A key ingredient in the data assimilation algorithm is the
representation of model uncertainty, which in an ensemble-
based scheme, like ours, had been derived from the model
ensemble. We have generated the MONARCH ensemble by
perturbing dust emissions and by using an ensemble of me-
teorological initial and boundary condition analyses (Global
Ensemble Forecast System (GEFS), Zhou et al., 2017). The
model ensemble was constructed with 20 members, concor-
dant with the 20 GEFS ensemble members. The dust emis-
sions in the model (Sect. 2.3) were perturbed by multiplica-
tive factors that were extracted from a random Gaussian dis-
tribution with a spatial correlation of 250 km, a mean of
unity, and a standard deviation of 0.4. In all cases we as-
sumed that the observational errors were uncorrelated, i.e.
that the observational error covariance matrix was a diagonal
matrix.

2.5 Experiment description and evaluation

We describe in Sect. 2.1 the three datasets used in the assimi-
lation: DDB, DDBsubset, and LIVAS. Using a fixed configu-
ration of the model and the data assimilation scheme parame-
ters (Sect. 2.3 and 2.4), we designed and ran five experiments
assimilating combinations of the three datasets.

The first experiment, named eLIVAS, assimilated the
pure-dust extinction coefficient from the regridded LIVAS
dataset (Sect. 2.1.1). A second experiment, named eDDB,
assimilated the DOD from the DDB dataset (Sect. 2.1.2).

The third experiment, named eDDBsubset, assimilated the
DDBsubset dataset (Sect. 2.1.2). The fourth, named eLI-
VAS+DDBsubset, assimilated the LIVAS and DDBsubset
datasets, and the fifth, named eLIVAS+DDB, assimilated the
LIVAS and DDB datasets. For the sake of clarity, we have
excluded DDBsubset experiments until Sect. 3.3. Therefore,
until Sect. 3.3, we will focus on results of eLIVAS, eDDB,
and eLIVAS+DDB experiments.

We ran our data assimilation experiments over a regional
domain centred at 20◦ E in longitude and 30◦ N in latitude,
which covers northern Africa, the Middle East, and Europe
(e.g. Fig. 1). The model was set up with a rotated latitude–
longitude grid with 0.66◦ resolution at the centre of the grid,
40 vertical layers, and hourly output of dust concentrations
for the eight size bins. The dust extinction coefficient and
DOD were computed with software provided by Gasteiger
and Wiegner (2018). We have assumed spheroidal dust par-
ticles with the axis ratio distribution shown in Table 2 of
Koepke et al. (2015) and the OPAC refractive index for dust
(e.g. 1.53+ 0.0055i for 550 nm) as in Koepke et al. (2015).

We performed the five data assimilation experiments be-
tween March and April 2017. A 14-month spin-up was run
without assimilation to properly initialize the soil moisture
content. We also ran a control experiment over the period
of study, consisting of an ensemble forecast without data
assimilation. For each of the five data assimilation experi-
ments (eLIVAS, eDDB, eDDBsubset, eLIVAS+DDBsubset,
and eLIVAS+DDB), we obtained two types of simulation
outputs: analyses and forecasts.

We produced ensemble forecasts with a forecast length of
24 h, initialized with the last time step of the analyses of
the day before (at 00:00 UTC in our 24 h assimilation win-
dow). Forecasts and observations along with their prescribed
error were the input for the data assimilation scheme, which
computed the four-dimensional mass concentration dust field
analyses within the assimilation window. Therefore, for a
given day, forecasts can carry the observational information
assimilated from the days before, but analyses can, in addi-
tion, carry the observational information of that given day.
In contrast, the control experiment omits the assimilation of
dust information.

When comparing the model against observations, the
model was always collocated in space and time with the
valid observations. In the case of ground-based lidar obser-
vations, the model is integrated in time over the measurement
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Figure 1. DOD from DDB and model simulations between 19 and 23 April 2017 for the control and eLIVAS experiments. The first four
columns show the DOD from DDB (left) and three model simulations of DOD collocated with DDB: control experiment, forecast, and
analysis from the eLIVAS experiment. The last column shows the analyses’ daily average without collocation with DDB. Each row represents
a different day.

window. To summarize the comparison between model and
observations, we have computed six scores. Five of the six
scores use the model ensemble mean, and one of the scores
uses the full ensemble. Given a set of N pairs of model
ensemble mean values {mi}i=1...N and matched observation
{ri}i=1...N , we use

mean bias (MB)=
1
N

N∑
i=1

mi − ri , (1)

mean fractional bias (MFB)=
2
N

N∑
i=1

mi − ri

mi + ri
, (2)

Pearson correlation coefficient (ρ)

=

∑N
i=1(mi −m)(ri − r)√∑N

i=1(mi −m)2
√∑N

i=1(ri − r)2
, (3)

mean fractional error (MFE)=
2
N

N∑
i=1

∣∣∣∣mi − rimi + ri

∣∣∣∣ , (4)

root mean square error (RMSE)

=

√√√√ 1
N

N∑
i=1

(mi − ri)2 , (5)

wherem and r are the average of the model and observations
respectively. We also included the mean over the number
of observations of the continuous ranked probability score
(CRPS, Hersbach, 2000, and references therein), which is
computed for each observation ri and model ensemble mji ,
j = 1. . .M as

CRPSi =

∞∫
−∞

[
Pi(x)−Pri (x)

]2dx , (6)

where Pi is the cumulative distribution function of the en-
semble, which is approximated empirically by theM ensem-
ble members, and Pri the cumulative distribution function of
the observation ri , computed as Pri (x)=H (x−ri), whereH
is the Heaviside step function.
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3 Results and discussion

We first discuss the internal consistency of the data assimi-
lation system in Sect. 3.1 by comparing analyses and fore-
casts with the assimilated data. We then present the evalua-
tion against ground-based measurements from Sun photome-
ters and lidars in Sect. 3.2. We finish this section with a com-
parison between the experiments (Sect. 3.3).

3.1 Consistency and cross-comparison checks with
satellite products

We cross-compared the model simulations (control, fore-
casts, and analyses) with the two main assimilated observa-
tional datasets. Consistency can be checked when analyses
are compared with an observational dataset used for the as-
similation (e.g. when DDB DOD is compared to analyses
from the eDDB or eLIVAS+DDB experiments). This verifi-
cation step provides a sanity check for the data assimilation
process. When the datasets are not assimilated (e.g. when
DDB DOD is compared to analyses from the eLIVAS exper-
iment), the comparison is then performed with independent
satellite observations. Forecasts are initialized from analyses,
and thus forecast scores (i.e. error metrics calculated for the
forecast fields) can also be considered, up to a certain degree,
as an evaluation of the forecast quality, even though the ref-
erence observations and the forecast cannot be assumed to be
completely independent in this case.

A showcase of the eLIVAS experiment is presented in
Fig. 1. Here we show the DDB DOD and the control, fore-
cast, and analysis DOD for selected days in April 2017,
where it is possible to identify a dust plume over the east-
ern Mediterranean that was captured by the CyCARE and
Pre-TECT campaigns (Sect. 3.2).

In contrast to the control run, which overestimates DOD,
the analyses and forecasts are in better agreement with DDB
in terms of both overall DOD values and spatial distribu-
tion. In this experiment, DDB DOD was not assimilated, and
thus the qualitative improvement of the analysis compared to
the control run indicates that, despite the relatively low spa-
tial coverage of LIVAS, its assimilation can positively im-
pact the spatial representation in the analysis. Improvements
where observations are not available, mainly due to the nar-
row satellite footprint of CALIOP, are explained by the spa-
tial spread of the observational information through the back-
ground error covariance matrix.

Average maps of DOD are shown in Figs. 2 and 3. Com-
pared to the DDB DOD, the control run shows a large over-
estimation of DOD over the Sahara and an underestimation
elsewhere (Fig. 2). Figure 2 also shows relatively large val-
ues of DOD in the DDB panel over the North Atlantic that
are not simulated in the control run. The first two rows of
Fig. 3 show that the analyses have, in general, lower DOD
values than the forecasts, which also have lower DOD val-
ues than the control experiment. The third row of Fig. 3

Figure 2. Averaged DOD from the control run and DDB during
the whole study period. Panel (a) shows the average of the control
run DOD. Panel (b) shows the average of the control run DOD in
the pixels collocated with DDB. Panel (c) shows the average of the
DDB DOD. Panel (d) shows the average difference between the
control run and the DDB DOD.

shows the average difference between forecasts and analy-
ses. In this row, there is a common decrease in DOD val-
ues close to the Bodélé Depression after assimilation. Exper-
iments eDDB and eLIVAS+DDB show increasing DOD in
the eastern part of the domain in the analyses. Averaged dif-
ferences of the simulations with respect to DDB are shown
in the last two rows of Fig. 3. As expected, these differences
are smaller in the eDDB and eLIVAS+DDB experiments be-
cause the DDB dataset is assimilated in these two experi-
ments.

Figure 4 shows the average values of the assimilated LI-
VAS pure-dust extinction coefficient profiles compared with
collocated model-derived dust extinction profiles for the full
domain and the four regions presented in Fig. B1. The model
systematically overestimates the dust extinction coefficient
below 7 km in the analyses of experiments excluding LIVAS
assimilation and in the forecasts, including experiments with
LIVAS assimilation. In contrast, analyses with LIVAS as-
similation underestimate the dust extinction coefficient be-
low 7 km. The altitude of the maximum values and shape of
the dust extinction coefficient are well captured by the model
in all regions except the Mediterranean (middle column of

Atmos. Chem. Phys., 22, 535–560, 2022 https://doi.org/10.5194/acp-22-535-2022



J. Escribano et al.: Assimilating spaceborne lidar dust extinction 543

Figure 3. Averaged DOD from the experiments and differences with the DDB DOD during the whole study period. Experiments listed in
Sect. 2.5 are represented in columns. The first and second rows show the average DOD for the forecast and analysis experiments respectively.
The third row shows the difference between average analyses and forecasts. Collocated differences between the forecasts and the DDB DOD
averages are shown in the fourth row. The last row shows the difference between the analyses and the DDB DOD averages.

Fig. 4), where the mean values are relatively small. Relative
changes in the shape of the dust extinction coefficient com-
pared to the control experiment are shown in the right column
of Fig. 4. On average, experiments that assimilate LIVAS (i.e.
eLIVAS, eLIVAS+DDB) show a stronger decrease in the ex-
tinction coefficient than eDDB. Analyses from eLIVAS and
eLIVAS+DDB also show large decreases below 3 km of al-
titude over the Sahara and the Arabian Peninsula. The rela-
tive changes in the dust extinction coefficient of analyses and
forecasts from eLIVAS and eLIVAS+DDB are larger above
3 km compared to eDDB. The different shapes of the fore-
casts and analyses from eLIVAS and eLIVAS+DDB (right
column of Fig. 4) indicate that, close to the surface, the dust
extinction profile is largely influenced by the model forward
simulations (and the associated dust emissions) rather than
by the assimilated information. In contrast, in the upper part
of the atmosphere the assimilation of LIVAS data adds in-
formation to the analyses that is propagated in time by the
subsequent forecast cycles. This effect is not as noticeable in

eDDB. The relatively flat curves associated with eDDB show
that the shape of the simulated dust vertical profile is mainly
propagated from the forward model.

The control run and the three selected assimilation ex-
periments were also quantitatively evaluated against the LI-
VAS dust extinction coefficients and the DDB DOD using the
scores described in Sect. 2. When evaluated against LIVAS
(left column of Fig. 5), the control run shows a positive mean
bias that decreases in the forecasts from all the assimilation
experiments. When LIVAS is assimilated either with or with-
out DDB, the analysis is negatively biased. The MFB is pos-
itive for all the experiments, and its absolute value slightly
decreases with the assimilation. The negative mean bias of
eLIVAS and eLIVAS+DDB analyses suggests that the as-
similation tends to decrease rather than increase mass. Small
mixing ratios have a smaller spread in the ensemble than the
larger ones because the mass mixing ratio (the control vector
in the DA) is bounded by zero. This may favour the decrease
in mass for large DOD or extinction coefficient values but
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Figure 4. Collocated average dust extinction coefficients from model experiments and LIVAS-assimilated observations in the four-
dimensional domain. The left column shows the mean extinction coefficient profiles in m−1. The middle column shows the mean extinction
profiles but normalized such that the vertical integration of each profile in the panel equals 1. The right column shows the relative difference
between the mean value of each experiment and the control run. Each row represents a different geographical domain defined in Fig. B1,
from top to bottom, as the full domain, Eastern Sahara, Western Sahara, the Mediterranean, and the Arabian Peninsula.
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Figure 5. Verification scores against LIVAS dust extinction coef-
ficient in the left column, scores against the DDB DOD dataset in
the right column. Scores of the control run are shown in green, fore-
casts in red, and analyses in blue. In the left column, panels of model
mean, mean bias, RMSE, and mean CRPS have units of m−1.

not for small values. Amending this behaviour could require,
for example, application of non-linear transformations to the
control vector and/or to the observation operator, which is
beyond the scope of this work. As expected, the correlation
coefficients obtained for the analyses from experiments as-
similating LIVAS are significantly higher than those from
the control run. However, the impact of the LIVAS assimi-
lation is limited in the forecasts. Experiment eDDB slightly
improves the correlation in the analyses but not in the fore-
casts. The MFE of analyses and forecasts is similar or smaller
for the three assimilation experiments than for the control ex-
periment. The RMSE and CRPS decrease similarly for all the

forecasts. As expected, the RMSE and CRPS of eLIVAS and
eLIVAS+DDB analyses show smaller values. It is also worth
noting that the RMSE and CRPS of eDDB analyses decrease
despite not assimilating LIVAS.

When evaluated against DDB DOD (right column of
Fig. 5), the bias is negative for all experiments and products,
and it is even becoming larger with assimilation. The oppo-
site sign in the mean bias of the control run depending on the
reference dataset suggests a potential inconsistency between
DDB DOD and LIVAS. We note that none of the datasets
has been bias-corrected. Inconsistencies may be related to
the different quantities retrieved (DOD versus extinction co-
efficient), each one with its own uncertainties. By construc-
tion the DDB DOD (Sect. 2.1.2) may tend to be positively
biased because although the selected scenes are mostly af-
fected by dust, there will be always some contamination by
other aerosols in the atmospheric column (see for example
the relatively large DDB DOD values over the North At-
lantic in Fig. 2). On the other hand, the low sensitivity of
CALIOP to thin layers (Kar et al., 2018) or the signal atten-
uation in CALIOP measurements when the dust load is large
could also play a role in the obtained biases. When compar-
ing with DDB DOD, the correlation coefficient is larger for
both forecasts and analyses when DDB is assimilated (eDDB
and eLIVAS+DDB), while the improvement of this score is
smaller for eLIVAS. The analyses show a better correlation
coefficient with respect to DDB than the forecasts, and both
show a better behaviour than the control run for all the ex-
periments. The three error scores (MFE, RMSE, and CRPS)
differ across two distinct groups of experiments. These errors
increase in eLIVAS for both the forecast and analyses with
respect to the control run. In contrast, the other two experi-
ments (eDDB and eLIVAS+DDB) show a decrease in these
error scores for both the forecasts and analyses. The latter is
expected as the scores are computed taking the DDB as the
reference.

In summary, the results of the cross-comparison checks are
consistent with the assimilated observations used in each ex-
periment. Also, when LIVAS is used as the reference dataset,
all experiments improve their scores after assimilation for
both forecasts and analyses. The comparison shows mixed
results when the reference dataset is DDB.

3.2 Evaluation against ground-based measurements

Figure 6 presents the scores for each experiment when eval-
uated against dust-filtered AOD at 550 nm from AERONET
stations (Appendix A). We acknowledge that the filter used
for creating this AERONET DOD dataset (Ångström expo-
nent less than 0.3) can bias our analysis towards large values
of DOD. The left column of Fig. 6 shows the scores when
all the filtered observations are taken into account (2681 ob-
servations), while the other three columns show the scores in
northern Africa (1394 observations), the Mediterranean and
southern Europe (1029 observations), and the Middle East
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Figure 6. Verification scores against DOD filtered from AERONET AOD observations.

(258 observations). The list of stations used for each set of
scores is given in Appendix A, and it is based on the list of
stations used for operational verification of the SDS-WAS
forecasts.

The bias of the control run is positive, which contrasts with
the negative bias resulting from the comparison with DDB
(Fig. 5). While the different spatial and temporal localiza-
tions used in the comparison may play an important role in
this difference, an additional explanation is that the dust fil-
ter in the DDB dataset is less conservative and provides on
average larger DOD values due at least partly to the pres-
ence of other aerosols. The high positive bias of the control
run for all AERONET stations decreases in absolute terms
in all the experiments after assimilation, consistent with the

systematic decrease in the simulated DOD shown in the first
row of Fig. 5. Forecast and analyses from experiments where
LIVAS was assimilated (eLIVAS and eLIVAS+DDB) show
a stronger negative bias and MFB than eDDB, notably in
the Mediterranean and southern European (a subset of 39 %
of all the AERONET observations used here) and Middle
Eastern panels (9 % of all the AERONET observations used
here).

The correlation coefficient increases in all the assimilation
experiments compared with the control for northern Africa
and the Mediterranean, particularly in the analyses but also in
the forecasts. Experiment eDDB shows higher correlations.
Over the Middle East, with only 258 observations, the cor-
relation coefficient is very low but still positive. Over north-
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Figure 7. Simulated and measured dust extinction coefficient during the CyCARE and Pre-TECT campaigns by PollyNET lidars. The figure
contains three groups (for the three measurement sites) with four panels each. The first panel of each group shows the DOD evolution
estimated from the lidar measurements (black dots, equal to the vertical integration of the dust extinction coefficient profiles), the AOD
without dust filtering for the AERONET station (coloured dots), the DOD of the control experiment (green line), the DOD from the forecasts
(dashed lines), and analyses (continuous lines) for the three selected assimilation experiments. The second row of each group shows the
vertical profiles of the measured dust extinction coefficient. The third row of each group shows the dust extinction coefficient from the
control run (in green) and the forecasts (dashed lines). The fourth row of each group shows the dust extinction coefficient from the analyses.
The scale for all the dust extinction coefficient profiles is shown on the right-hand side of the second panel in each group.

ern Africa, all the experiments show smaller errors (MFE,
RMSE, CRPS) in comparison with the control run. With the
exception of eLIVAS, all the analyses have smaller errors
than the forecasts and – similarly to the correlation coeffi-
cient – the experiments where DDB DOD was assimilated
show better scores in their analyses.

As introduced in Sect. 2, we used lidar retrievals of pure-
dust profiles for the evaluation of the experiments. The eval-
uation was conducted for the dust event above the eastern
Mediterranean between 19 and 24 April 2017, whose extent
and dynamics can be observed in the right column of Fig. 1.

We compared our five experiments with the dust extinc-
tion coefficient provided by these lidars. Figure 7 shows the
comparison between the lidar measurement in the three sites,
the control run, the forecasts and analyses from three experi-

ments (eLIVAS, eDDB, eLIVAS+DDB), and the AOD from
AERONET sites close to the lidar instruments, without fil-
tering by Ångström exponent. Rows 1, 5, and 9 of Fig. 7
show the integrated dust extinction coefficient for lidar mea-
surements and model runs and the AOD from AERONET
instruments close to these sites. The control run is overesti-
mated in the three sites, and both analyses and forecast show
values closer to the AERONET AOD and the lidar-integrated
DOD. The three experiments capture the timing and the mag-
nitude of the dust event. Qualitatively, eDDB overestimates
the AOD and lidar-integrated measurements, eLIVAS+DDB
is closer to AERONET AOD measurements, and eLIVAS is
closer to the lidar-integrated DOD. The control run not only
overestimates the dust profile, but also underestimates the
height of the maximum values in the plume (e.g. in the Li-
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Figure 8. Verification scores against ground-based PollyNET lidar
dust extinction coefficients from the CyCARE and Pre-TECT cam-
paigns. Panels of model mean, mean bias, RMSE, and mean CRPS
have units of m−1.

massol panel, 21 and 22 April). For forecasts and analyses,
the experiments where LIVAS was assimilated (eLIVAS and
eLIVAS+DDB) are able to decrease the dust concentration
in the lower layers (below 2.5 km), making the shape of the
profiles similar to the observed ones. The eDDB profiles do
not show this feature.

The overall quantitative evaluation is shown in Fig. 8.
These scores have been computed by concatenating all the
pairs of observed and simulated extinction coefficients in a
vector without distinguishing among profiles on the compu-
tation. In general terms, both bias scores are smaller for eLI-
VAS and eLIVAS+DDB than for eDDB. The correlation co-
efficient is weakly affected by the assimilation in all experi-
ments and the MFE is slightly smaller for experiments where
LIVAS was assimilated. RMSE and CRPS behave similarly,
with improvement for all the experiments compared to the
control run, particularly for those where LIVAS was assimi-
lated.

We have also computed the evaluation scores for each
of the available profiles (Fig. 7), which are summarized
in Fig. 9. The assimilation performance was split into two
groups. The first group is characterized by low values of
measured dust extinction coefficient (non-shaded columns
in Fig. 9), where the dust plume cannot be easily identified
in Fig. 7. A second group of profiles corresponds to high
dust extinction coefficients (green-shaded columns in Fig. 9).
For these profiles, it is possible to visually identify in Fig. 7
the altitude and shape of the dust plume. We have averaged
these scores of individual profiles in the last three columns of
Fig. 9. In Fig. 9, the mean all column shows the average of
the scores of all the profiles, the mean high column shows the
average of the scores of the profiles with strong dust extinc-
tion coefficients (i.e. green-shaded columns of this figure),
and the mean low column shows the average of the scores
of the profiles with small values of measured dust extinction
coefficients (non-shaded columns in Fig. 9). These last three
columns in Fig. 9 are also shown in Table 2. We note that
scores of Fig. 8 and the last three columns of Fig. 9 are com-
puted differently. In the former, we have concatenated all the
profiles and computed the scores, while in the latter, we have
computed the scores for individual profiles and then averaged
their values. This methodological difference impacts, for ex-
ample, the values of the correlation coefficient and RMSE
when comparing the mean all values of Table 2 with those of
Fig. 8.

For the group of profiles with small values of the dust
extinction coefficient (“mean low” in Fig. 9), the absolute
scores (mean bias, RMSE, and CRPS) are small because sim-
ulated and observed values are also small, but they do not im-
prove after the assimilation. Similarly, the normalized scores
(MFE and MFB) and the correlation coefficient do not im-
prove. The group of profiles with high dust extinction coeffi-
cients (green-shaded columns in Fig. 9) generally show better
normalized scores than the group with low dust values. With
the exception of the correlation coefficient, all the scores in
this group improved after assimilation. In this mean high
group the mean bias drastically decreased when LIVAS was
assimilated (eLIVAS and eLIVAS+DDB). Similarly, MFB,
MFE, RMSE, and CRPS improved with LIVAS assimilation.
The correlation coefficient does not improve with assimila-
tion, but the degradation of this score in all experiments with
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Figure 9. Verification scores of the model analyses for the dust extinction coefficient profiles against measurements of PollyNET lidars of
Fig. 7. Mean bias, RMSE, and CRPS have units of m−1. Profiles with high values of extinction are shown with a green shade. The last three
columns show averages of the scores for the non-shaded profiles (mean low), for the shaded profiles (mean high), and for all profiles (mean
all). The areas of the squares are proportional to their values (in colours).

respect to the control run remains below 5 % of the control
run value. Overall, when dust extinction is large, all analyses
improved in all scores, with the exception of the correlation
coefficient. While improvements are enhanced when LIVAS
is assimilated, they are still non-negligible for eDDB. All in
all, despite the sparse spatial coverage of LIVAS compared to
DDB, this evaluation shows that dust extinction profiles are
best constrained in experiments where LIVAS is assimilated.

3.3 Consistency between column and profile
assimilation and the role of a narrow satellite
footprint

Along with the eDBB, eLIVAS, and eLIVAS+DDB experi-
ments shown in the previous sections, we have performed the
same analyses with the DDBsubset dataset, namely eDDB-
subset and eLIVAS+DDBsubset. We recall from Sect. 2.1.2
that DBBsubset contains the DBB DOD, but only when it is
collocated with LIVAS. We use here this dataset for studying
the impact of assimilating vertically resolved dust observa-

tions along with the impact of the different fields of view of
the measurements upon our analyses.

We have included the verification scores in Fig. C1. This
figure is equivalent to Figs. 5, 6, and 8 but with the addi-
tion of eDDBsubset and eLIVAS+DDBsubset experiments.
Figure C1 shows that, as expected, the skill scores of eD-
DBsubset are qualitatively analogous to those of eDDB,
but the magnitude of the change with respect to the con-
trol is smaller. The better scores of eDBB over eDDB-
subset underline the importance of the horizontal cover-
age of the observations in our assimilation. Similarly, eLI-
VAS+DDBsubset reaches scores close to those of eLIVAS.
This indicates that the impact of the LIVAS-assimilated ob-
servations is more important than that of DDBsubset in the
eLIVAS+eDDBsubset scores.

More interesting is the comparison of eLIVAS and eDDB-
subset in Fig. C1. They have a similar horizontal coverage
and eLIVAS performed better than eDDBsubset when eval-
uating against the vertical profiles of PollyNET. However,
the eLIVAS scores are worse than those of eDDBsubset for
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Table 2. Values of the last three columns of Fig. 9.

Score Group Control eLIVAS eDDB eLIVAS+DDB

Mean bias (×106)
Mean all 21.91 −0.29 12.30 3.97
Mean high 40.03 −1.69 19.17 6.19
Mean low 3.79 1.11 5.42 1.74

MFB
Mean all 1.02 0.55 0.90 0.71
Mean high 0.98 0.25 0.76 0.48
Mean low 1.05 0.85 1.03 0.94

ρ

Mean all 0.51 0.50 0.50 0.52
Mean high 0.81 0.81 0.77 0.80
Mean low 0.20 0.19 0.23 0.24

MFE
Mean all 1.35 1.18 1.27 1.19
Mean high 1.06 0.80 0.89 0.79
Mean low 1.63 1.55 1.64 1.58

RMSE (×106)
Mean all 29.59 9.03 19.46 11.21
Mean high 52.35 14.54 29.16 18.43
Mean low 6.82 3.53 9.76 4.00

Mean CRPS (×106)
Mean all 12.51 4.70 7.84 4.92
Mean high 22.42 8.05 11.98 8.22
Mean low 2.59 1.35 3.70 1.62

the comparisons with DBB DOD and some (but not all) of
the scores in the AERONET DOD panel of Fig. C1. We ar-
gue that a direct comparison among experiment analyses can
further help elucidate the differences in the performance be-
tween the two experiments.

Although DDBsubset was designed to have a similar hori-
zontal and temporal coverage to LIVAS, a direct comparison
between the eDDBsubset and eLIVAS experiments should
also take into account that (i) LIVAS provides direct obser-
vational information in the vertical coordinate, while DDB-
subset does not, (ii) the vertical influence of LIVAS infor-
mation is only partial if the column is not complete, in con-
trast to the DDB DOD that is propagated to the whole col-
umn, and (iii) DDB only provides data during the after-
noon overpass (about 13:30 LT), while LIVAS provides data
during afternoon and night overpasses. Nighttime profiles
have better quality, and given the assimilation cycle design
and the temporal localization applied, they should influence
the 00:00 UTC analyses more than the afternoon overpasses,
with more impact over the forecast and subsequent analyses.

It is possible to compare the experiments by inspecting the
histograms of differences between the analyses and the con-
trol run. We have computed these differences for DOD in
Fig. 10 and for dust extinction coefficient in Fig. 11. Fig-
ure 10 shows bi-dimensional histograms of the DOD differ-
ences for the five experiments. The 1 : 1 line indicates that
the respective analyses produce the same differences with
the control run, i.e. they are equal. Points in quadrants I
and III indicate that both experiments increase and decrease
the DOD values at the same locations and times, which is

a sign of consistency. It can be seen that the (eDDB, eLI-
VAS+DDB) panel shows less deviation with respect to the
1 : 1 line than the (eLIVAS, eLIVAS+DDB) case. This indi-
cates that most of the impact of the observations in the eLI-
VAS+DDB experiments comes from DDB rather than from
LIVAS, which is consistent with the scores presented in pre-
vious sections. A similar result is found when comparing
(eLIVAS+DDBsubset, eLIVAS) with (eLIVAS+DDBsubset,
eDDBsubset). In this case, eLIVAS+DDBsubset is closer
to eLIVAS than eDDBsubset. Because the datasets have
a similar horizontal coverage, we conclude that either LI-
VAS adds more information to the analyses than the DOD
from DDBsubset or that the nighttime overpass of CALIOP
has a stronger influence on the 00:00 UTC analyses, which
is also propagated to the forecasts. Similarities between
(eLIVAS+DDB, eLIVAS) and (eLIVAS+DDB, eDDBsub-
set) suggest that the LIVAS assimilation is less important
than the DDB assimilation in the eLIVAS+DDB case be-
cause of the smaller observational coverage. A relatively
large spread can be noticed in the (eLIVAS, eDDB) panel
and to a lesser extent in the (eLIVAS, eDDBsubset) panel.

The spread in the (eDDBsubset, eDDB) panel is associ-
ated with the smaller coverage of DDBsubset. In this panel,
most values lie around zero on the eDDBsubset axis, which
is directly related to the reduced amount of assimilated data.
A small number of values (around the 6 % of this panel) are
in quadrants II and IV, meaning that the increments with re-
spect to the control DOD of the eDDBsubset and eDDB anal-
yses are of different signs. A possible explanation is a poten-
tially poor estimation of the terms outside the diagonal of the
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Figure 10. Bi-dimensional histograms of the difference between analyses and the control run DOD. Transposed plots in the figure are
symmetrical with respect to the 1 : 1 line. Colour scale shows the counts of analysis minus control in a box of 1DOD= 0.37, that is, 151
bins between −2.8 and 2.8. Please note the logarithmic scale of the counts.

background error covariance matrix, as they should spread
consistently (or at least in the same direction) the DDBsub-
set observational influence to the remaining pixels covered
by the full DDB dataset.

Bi-dimensional histograms of the differences in dust ex-
tinction coefficient between analyses and the control run ex-
periment are shown in Fig. 11. In general terms, this figure
shows similar but less clear features than the DOD in Fig. 10.
Notable differences are in the row comparing eDDBsubset
with the other experiments, where the values in the panels do
not show the clear correlation that appears in the DOD case.
This indicates that the shapes of the dust profiles in the exper-
iments assimilating LIVAS substantially differ from those as-
similating DDB. This is also supported by the eLIVAS+DDB
panels, where the larger influence of DDB on LIVAS obser-
vations shown for DOD in Fig. 10 is less clear for the ex-
tinction coefficient. As we show in Sect. 3.2, the assimilation
of LIVAS data (either in eLIVAS or eLIVAS+DDB) can pro-
duce more accurate dust profiles. This demonstrates that the
assimilation of vertically resolved pure-dust extinction coef-

ficients can effectively improve the dust vertical distribution
in forecasts and analyses.

4 Conclusions

We performed, analysed, and evaluated model experiments
assimilating spaceborne dust extinction coefficient profiles
and DOD over a 2-month period over northern Africa, the
Middle East, and Europe. We filtered the AOD observa-
tions from VIIRS DB to obtain a DOD dataset, and we have
used for the first time the CALIPSO-based LIVAS pure-dust
dataset in a data assimilation framework. In most cases, the
assimilation of these products (and their combination) is ben-
eficial for analyses and forecasts.

Experiments that assimilate DDB yield better DOD error
scores than those that assimilate only LIVAS when evalu-
ated against AERONET. However, the assimilation of only
LIVAS can still achieve significant improvements in these
DOD scores.
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Figure 11. Similar to Fig. 10 but for the dust extinction coefficient. The width of the bins is 4.63× 10−5 m−1.

We evaluated the potential improvements in the repre-
sentation of the dust vertical profile using a handful of
high-quality ground-based lidar pure-dust extinction coeffi-
cient measurements performed during the CyCARE and Pre-
TECT experimental campaigns in the Mediterranean. The as-
similation of LIVAS leads to a better representation of the
dust extinction coefficient profiles than the assimilation of
DDB alone. Jointly assimilating DDB and LIVAS yields the
second-best scores for both the DOD and the dust extinc-
tion coefficient profile, which proves their suitability for dust
forecast applications.

We have also focused on the limitations of the narrow
footprint of LIVAS compared with the large swath of DDB,
which reduces the observational influence on the analyses.
However, the impact of the vertically resolved information
provided by LIVAS is significant, and with a similar cover-
age it produces an even larger impact on the analyses than
the assimilation of DOD.

Our findings strongly support the conclusions of Cheng
et al. (2019) in that the assimilation of aerosol profiles can
improve their vertical representation in models. We addition-
ally show that the vertical profiles of dust extinction coef-

ficient can be constrained by assimilating the LIVAS prod-
uct. We are aware of the limitations of this study due to the
limited availability of ground-based PollyXT lidar measure-
ments. We are looking forward to the publication of ground-
based pure-dust lidar datasets from version 3 of the NASA
Micro-Pulse Lidar Network (MPLNET) and EARLINET
that would be very useful for a long-term assimilation and
evaluation of simulated dust extinction profiles from model
forecasts and analyses. Our work shows the value of space-
borne polarization lidars for improving desert dust forecasts
and analyses. As such, future satellite missions with com-
bined extinction and depolarization capability, such as the
Earth Cloud Aerosol and Radiation Explorer (EarthCARE),
are expected to further contribute not only to desert dust re-
search, but also to operational forecasts if real-time products
are made available.

Appendix A: AERONET sites

List of AERONET sites used in Sect. 3.2. The value in paren-
theses indicate the number of observations used for each sta-
tion.
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Mediterranean (1029). AgiaMarina_Xyliatou (2),
Aras_de_los_Olmos (7), Badajoz (11), Barcelona (4),
Ben_Salem (27), CUT-TEPAK (49), Cabo_da_Roca
(55), Cairo_EMA_2 (70), Carpentras (5), Coruna (15),
Eforie (2), Eilat (121), El_Arenosillo (45), Ersa (5),
Evora (29), FORTH_CRETE (12), Finokalia-FKL (19),
Galata_Platform (4), Gloria (2), Gozo (19), Granada
(34), IMAA_Potenza (1), IMS-METU-ERDEMLI (29),
LAQUILA_Coppito (1), Lamezia_Terme (24), Lampedusa
(17), Lecce_University (20), Madrid (4), Medenine-IRA
(84), Messina (4), Modena (1), Montsec (2), Murcia (7),
Napoli_CeSMA (4), OHP_OBSERVATOIRE (5), Pa-
lencia (3), Palma_de_Mallorca (11), Rome_Tor_Vergata
(9), SEDE_BOKER (99), Tabernas_PSA-DLR (41),
Technion_Haifa_IL (49), Tizi_Ouzou (10), Toulon (2),
Toulouse_MF (2), Weizmann_Institute (61), Zaragoza (2).

Northern Africa (1394). Banizoumbou (123), Capo_Verde
(106), Dakar (349), El_Farafra (95), IER_Cinzana
(163), Ilorin (47), LAMTO-STATION (50), Saada (80),
Santa_Cruz_Tenerife (124), Tamanrasset_INM (257).

Middle East (258). IASBS (17), KAUST_Campus (97),
Masdar_Institute (70), Mezaira (74).

Appendix B: Regions for LIVAS collocation

We present in Fig. B1 the definition of regions used in Fig. 4.

Figure B1. Definition of regions of Fig. 4. The Mediterranean re-
gion is shown in pink, Western Sahara in blue, Eastern Sahara in
red, and Arabian Peninsula in cyan.
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Appendix C: Scores of eDDBsubset and
eLIVAS+DDBsubset

We present in Fig. C1 the scores for the five experiments
listed in Sect. 2.5.

Figure C1. Scores of the full set of five experiments. Similar to Figs. 5, 6, and 8 but with the addition of eDDBsubset and eLI-
VAS+DDBsubset.
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Code and data availability. LIVAS pure-dust products are
available upon request from Eleni Marinou (elmarinou@noa.gr),
Vassilis Amiridis (vamoir@noa.gr), and Emmanuel Proestakis
(proestakis@noa.gr). PollyNET Finokalia data are available
upon request from Eleni Marinou (elmarinou@noa.gr) and
Vassilis Amiridis (vamoir@noa.gr). The SUOMI-NPP/VIIRS
Deep Blue Aerosol L2 6-Min Swath 6 km was acquired from
the Level-1 and Atmosphere Archive and Distribution System
(LAADS) Distributed Active Archive Center (DAAC), located
in the Goddard Space Flight Center in Greenbelt, Maryland
(https://doi.org/10.5067/VIIRS/AERDB_L2_VIIRS_SNPP.011;
VIIRS Atmosphere Science Team, SSEC, 2018). GEFS data
were acquired from the NOAA National Centers for Envi-
ronmental Information (https://www.ncei.noaa.gov/products/
weather-climate-models/global-ensemble-forecast, last access:
11 November 2021; NOAA, 2022). MONARCH source code is
available at https://doi.org/10.5281/zenodo.5215467 (Klose et al.,
2021b).
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