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Zusammenfassung

Im Rahmen dieser Arbeit wird ein Ansatz zur bildbasierten Simulation von Luftturbulenzstörungen

vorgestellt. Es wird aufgezeigt, wie durch einen bestehenden Ansatz aus experimentellen Kameradaten

Parameter von aktuellen Turbulenzmodellen abgeschätzt werden können. Diese Parameter werden dann

für vergleichbare Simulationen genutzt und mit experimentellen Daten verglichen.

Eine weit verbreitete Methode ist das sogenannte "Split-step"-Strahlpropagationsverfahren, welches die

Ausbreitung eines Lichtsignals durch ein turbulentes Medium simulieren kann. Hierbei werden Phasen-

störungen des elektromagnetischen Felds verursacht durch Turbulenz als zweidimensionale Phasen-

schirme in mehreren Abständen zwischen Lichtquelle und Kamerasensor modelliert und simuliert.

Anhand aktueller Turbulenzmodelle werden zwei Methoden zur Phasenschirmerzeugung hinsichtlich

Genauigkeit und Rechenzeit verglichen. Zum einen ist das als Goldstandard die inverse Fouriertrans-

formation von gefiltertem Rauschen mit Hinzufügen von subharmonischen Frequenzen. Zum anderen

ist das die "Sparse Spectrum"-Methode zur Erzeugung von korrelierten Phasenschirmen durch Über-

lagerung von planaren Wellen mit zufälligen Ausrichtungen.

Phasenschirme stellen 2D-Abbilder von zufälligen räumliche Schwankungen des Brechungsindex von

Luft dar, die zu meist unerwünschten Störeffekten bei der Übertragung von Lichtsignalen führen. In der

Kamerabildgebung äußern sich diese Störeffekte durch räumliche und zeitliche Schwankungen der Bil-

dunschärfe und Position ("Image dancing") einzelner Bildausschnitte. Diese Schwankungen entstehen

durch Induktion turbulenter Luftströmungen durch Sonneneinstrahlung verbunden mit der Temperatur-

und Druckabhängigkeit des Brechungsindex von Luft. Da exakte fluiddynamische Simulationen zeit-

und rechenaufwendig sind und die Kenntnis vieler Randbedingungen, z.B. der Bodenbeschaffenheit vo-

raussetzen, werden diese Brechungsindexschwankungen oft durch Rauschleistungsspektren als Turbu-

lenzmodelle beschrieben.

Mithilfe der Phasenstrukturfunktion als häufig genutztes Validierungskriterium wird gezeigt, dass erzeugte

Phasenschirme korrekte, zu erwartende räumliche Korrelationen aufweisen.

Für beide Methoden werden zweidimensionale Ausbreitungsprofile von Lichtpunktquellen berechnet

und mit gängigen Metriken validiert. Dies sind zum Beispiel Langzeit- und Kurzzeitmodulationstrans-

ferfunktionen ("long-exposure/short-exposure"), das Strehlverhältnis und der aperturgemittelte Szintil-

lationsindex. Das Strehlverhältnis setzt zwei Maximalwerte für eine räumliche, ensemble-gemittelte

optischen Intensitätsverteilung ins Verhältnis, einem Maximalwert für eine gegebene Turbulenzstärke

und dem Maximalwert für den turbulenzfreien Fall. Durch zunehmende Turbulenzstärke werden die op-

tischen Intensitätsverteilungen im Allgmeinen breiter. Dadurch sinken diese Maximalwerte und dadurch



auch das Strehlverhältnis. Das Punktbildprofil auf dem Sensor ergibt sich dann durch Fourieroptik aus

der Feldverteilung an der Apertur. Diese Punktbildprofile repräsentieren die Turbulenzstörung einzelner

Lichtpunktquellen für bestimmte Sichtlinien. Durch Verschiebung der Phasenschirme senkrecht zur Aus-

breitungsrichtung lassen sich Punktbildprofile für unterschiedliche Sichtlinien zum Sensor berechnen.

Dadurch ergeben sich räumlich variierende und korrelierte Punktbildprofile. Es lassen sich regelmäßige

Gitter solcher Punktbildprofile berechnen, und zur ungleichmäßigen Filterung über beliebige Bilder als

Eingangsszenen nutzen. Zur experimentellen Validierung werden in mehreren Feldversuchen vergleich-

bare Messungen mit LED-Matrizen als Gitter von Punktquellen durchgeführt. Durch Verwendung von

zwei Arten von LEDs von geringfügig unterschiedlichen mittleren Wellenlängen wird untersucht, ob

und inwieweit sich der erwartete Unterschied in der Bildunschärfe der LED-Projektion zur Verbesserung

der Abschätzung von Turbulenzmodellparametern eignet. Aus gemessenen Bildern der LED-Matrizen

werden außerdem differentielle Neigungsvarianzen berechnet. Die differentielle Neigungsvarianz als

Maß für die räumliche Korrelation der Zentroidverschiebungen dieser Punktbildprofile ist analytisch

beschreibbar und wird deshalb auch zur Validierung genutzt. Durch Anpassung theoretischer Ausdrücke

an diese lassen sich die wahrscheinlichsten Parameter von aktuellen Turbulenzmodellen abschätzen.

Basierend auf diesen Parametern werden turbulent gestörte Punktgitter simuliert und daraus abgeleit-

ete Neigungsvarianzen mit experimentellen Daten verglichen. Ebenso werden Verteilungen der Turbu-

lenzmodellparameter über alle Messtage aufgezeigt sowie ihrer Anisotropie zwischen horizontaler und

vertikaler Richtung. Dies kann als Datengrundlage für zukünftige bildgebenden Turbulenzsimulatio-

nen genutzt werden, zum Beispiel zur Bewertung von Kameras oder der Entwicklung und Verbesserung

von turbulenzkompensierenden Bildverarbeitungstechniken. Die aufgefundenen Verteilungen von Tur-

bulenzmodellparametern können außerdem zur Validierung von Simulationen und Messungen von klein-

skaligen atmosphärischen Phänomenen in Bodennähe genutzt werden.







Abstract

In this thesis, an approach to image-based simulation of air turbulence disturbances is presented. It is

shown how an existing approach can be used to estimate parameters of current turbulence models from

experimental data. These parameters are subsequently used for independent simulations and compared

to experimental data.

A widely used method is the so-called "split-step" beam propagation method, which simulates the prop-

agation of a light signal through a turbulent medium. Phase perturbations of the electromagnetic field

caused by atmospheric turbulence are modeled and simulated as 2D phase screens at several distances

between light source and camera sensor.

Using current turbulence models, two methods for phase screen generation are compared in terms of

accuracy and computation time. The first one is the inverse Fourier transform of filtered noise with

addition of subharmonic frequencies. The second one is the sparse spectrum method for generating

correlated phase screens by superposition of planar waves with random orientations.

Phase screens represent 2D projections of random spatial fluctuations of the refractive index of air which

lead to mostly undesired perturbation effects in the transmission of light signals. For camera imaging

applications these perturbation effects are manifested by spatiotemporal fluctuations of image blur and

positions ("image dancing") of single image sections. These fluctuations are caused by induction of

turbulent air flows by solar radiation and the dependency of the refractive index on temperature and

pressure. Since exact fluid-dynamic simulations are time-consuming and computationally expensive

and require the knowledge of many boundary conditions, e.g. soil properties, these refractive index

fluctuations are often described by noise power spectra as turbulence models.

Using the phase structure function as a frequently used validation criterion, it is shown that generated

phase screens have correct, expected spatial correlations.

A commonly used validation criterion for phase screens is the phase structure function. For both methods,

propagated 2D profiles of point sources are computed and validated with common metrics. These are

e.g. long-exposure and short-exposure modulation transfer functions, the Strehl ratio and the aperture-

averaged scintillation index. The Strehl ratio puts into relation the peak level of average spatial optical

intensity distributions for some turbulence strength and the peak level of intensity distribution for the

case of no turbulence. For increasing turbulence strength the intensity distribution gets wider, the peak

level decreases and thus also the Strehl ratio. The so-called point spread function, i.e. the profile in the

sensor plane, results from Fourier optics from the field distribution at the aperture. These point spread

functions represent the turbulence perturbation of individual point sources for specific lines of sight.



By shifting the phase screens perpendicular to the direction of propagation, point image profiles can

be calculated for different lines of sight to the sensor. This results in spatially varying and correlated

point profiles. Regular grids of such point image profiles can be calculated and used for non-uniform

filtering over images as input scene. The differential tilt variance as measure for the spatial correlation

of the centroid shifts of these point spread functions can be described analytically and is therefore also

used for validation. For experimental validation, comparable measurements are performed in several

field experiments using LED matrices as grids of point sources. By using two types of LEDs with

slightly different mean wavelengths, it is investigated whether and to what extend the expected difference

of image blur of the LED projections is suitable for an improvement of model parameter estimation.

Then, differential tilt variances can also be calculated from the measured images. By fitting theoretical

expressions to these, the most likely parameters of current turbulence models can be estimated. Based

on these parameters, point source grids degraded by turbulence are simulated and the differential tilt

variances derived from them are compared with experimental data. Likewise, distributions of turbulence

model parameters over all recording days are shown as well as their anisotropy between horizontal and

vertical direction. This can be used as a data basis for future imaging turbulence simulations, e.g. for

performance assessment of cameras or the development and enhancement of techniques for turbulence

mitigation

The diagnosed distributions of model parameters may also be used for the validation of simulations and

measurements of microscale atmospheric phenomena near ground.
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1. Introduction

Optical turbulence effects in the atmosphere of earth pose a problem in a variety of application areas to

name but a few astronomy, imaging, remote sensing, free space optical communication and laser radar

systems (Andrews and Phillips [2005]).

The cause for these perturbation effects lies in the fact that the sun heats the rough earth surface and the

atmosphere in different ways. This temperature difference generates convective air currents which lead

to spatiotemporal fluctuations of temperature and air pressure in the atmosphere. Hence the refractive

index of air is also fluctuating spatially and temporally, since it depends on temperature and pressure.

For optical wave propagation these variations of refractive index result in wave front distortions leading

to various undesired phenomena limiting the performance of various applications.

Depending on turbulence strength beams are spreaded beyond pure diffraction. There are random varia-

tions of the position of the beam centroid denoted as beam wander. Irradiance fluctuations often denoted

as scintillation occur due to random redistributions of beam energy within the cross section of the propa-

gating beam. In ground-based astronomy this can be observed as twinkling of stars. For imaging applica-

tions aperture-averaged wave front phase distortions result in local image dancing and non-uniform blur,

i.e. there are spatially and temporally varying local shifts of individual image patches and the sharpness

of these image areas is also temporally fluctuating.

For some applications advanced adaptive optics (AO) systems are used to counteract these degradational

effects. For wave-front sensing a variety of different types of wave-front sensors have been developed

within the last decades such as the Shack-Hartmann wave-front sensor (Platt and Shack [2001]) or the

curvature sensor (Roddier [1988]). In ground-based astronomy objects of interest are often subject to

faint fields. Then artificial guide stars (Foy and Labeyrie [1985]) in the vicinity of the object of interest

are formed by scattered laser light. As the projection of the object of interest is then subject to wave

front distortions similar to those of the guide star, images of the object of interest can be enhanced

by sensing and correcting wave front distortions from the guide star. Deformable mirror arrays are

used to correct sensed turbulence-induced aberrations. Various types of deformable mirror arrays have

been proposed and developed such as the bimorph mirrors (Samarkin et al. [2002]), which use two thin

piezo-ceramics plates with locally varying surface curvature. Bending of a mirror surface is achieved by

mechanical tension caused by applied electrical voltages (inverse piezoelectric effect). Stacked-actuator

mirrors (Laslandes et al. [2015]) use sophisticated electrode layouts optimized for low residual wavefront

aberrations with minimum number of separate electrodes. Compared to plain imagers AO systems are

1



1. Introduction

in general more extensive due to the required wavefront sensor and corrector. Data processing between

wavefront sensor and corrector is also specific for the used device.

For imaging applications, several digital turbulence mitigation techniques have been proposed. These

methods use series of turbulence-degraded images to reconstruct single enhanced images. Lucky re-

gion fusion (Vorontsov and Carhart [2001]) forms a running average of frames within a video se-

quence weighted by a local sharpness metric. However, for using appropriately sized image patches,

this method requires knowledge about turbulence conditions which is in general not available from se-

ries of turbulence-degraded images with arbitrary image content. Bispectral speckle imaging (Carrano

[2002]) uses averaged spectra of image frequencies for series of captured images to form reconstruc-

tions near the diffraction limit. Space-variant blind deconvolution (Zhu and Milanfar [2013]) uses an

image registration technique, which estimates a motion field of local displacements for every image of

a series of turbulence-degraded images. By inverse shifting of image patches turbulence-induced im-

age dancing is corrected. Then a near diffraction-limited image is reconstructed by selecting locally

sharpest image patches from the entire image series. A single-image global deconvolution process com-

pensates for degradations caused by the used imager itself and gives the final image. Another work

(Nieuwenhuizen and Schutte [2019]) shows that deep models trained on image sequences with simu-

lated turbulence with known turbulence strength can reconstruct mitigated images with enhanced quality

from image sequences with real turbulence and unknown turbulence strength.

However, field trials with cameras for aggregating turbulence-degraded imagery are time-consuming and

expensive. Also atmospheric turbulence depends on a variety of environmental conditions such as tem-

perature, daytime, wind, cloudiness, ground condition, air humidity, etc. Most of these conditions are

not deliberately controllable and therefore difficult to reproduce. Furthermore, the measurement of these

conditions is aggravated by spatial and temporal inhomogeneity. Another problem can be nonstationary

stabilization errors of cameras due to wind effects and displacements in the experimental setup. Hence,

for assessing imager performance of multiple imagers under same conditions especially of those using

unknown embedded turbulence mitigation techniques it is preferable to have an experimental setup in

the laboratory consisting of a part for scene projection and the devices under test. As the effects of atmo-

spheric turbulence on scenes with objects of interest then have to be replaced by artificial video sequences

representing projected scenes, a realistic image-based simulation of turbulence effects is required.

An algorithm for image-based turbulence simulation using non-uniform Gaussian blur and inverse map-

ping for local displacement was proposed (Repasi and Weiss [2008], Bosq and Repasi [2015]). Blur

kernel widths and displacements were derived from edge width end position variations of checkerboard

patterns captured in a field trial. This approach was enhanced by a data-constrained algorithm for the

generation of long-range turbulence-degraded videos (Miller et al. [2019]). A main focus of this work has

been real-time application in order to generate much image data in short time for assessment of machine

learning algorithms, whose performance highly depends on the availability of large amounts of data. 2D

random maps for non-uniform blur and local image displacement based on power law noise spectra are

2



generated in accordance with experimentally measured noise spectra from a field trial. Sparse represen-

tations of realistic short-exposure point spread functions are calculated. The source image is then filtered

by convolution with these representational point spread functions. As this step has to be applied only

once for a specific input image the algorithm is faster than filtering frame-by-frame with space- and time-

variant filter kernels. The final image is then formed as spatially and temporally varying superposition of

these prefiltered images. Temporal variations of blur and displacements are calculated by random walk

simulations leading to power law noise spectra and require a support of a single frame.

In this thesis a more general approach for image-based turbulence simulation is presented. 2D phase

screens representing refractive index fluctuations are generated based on current turbulence models.

Wave propagation of spherical waves through this refractive index fluctuations is applied to calculate

wavefront aberrations occurring at the circular aperture of an imaging system. Then Fourier optics on

these wavefront aberrations integrated over the aperture gives the point spread function representing the

combined degradation due to turbulence and optical diffraction, i. e. the intensity profile in the focal

plane related to a point light source at a specific distance to the imager. This image is formed by Fourier

optics of the aperture-masked field transmission. Spatial shifting of the phase screens enables the calcu-

lation of point spread functions at different viewing angles. To determine which phase screen methods

are best suited in terms of accuracy and speed, two methods, the FFT method with subharmonics and

the sparse spectrum (SS) method are compared. Current simulation approaches use turbulence model

parameters as input, which cannot trivially be derived from meteorological, location and time data. In

this thesis an existing approach is used to retrieve distributions of turbulence model parameters based on

current turbulence models from experimental data recorded on several days at the same location. How-

ever, if simulations with the retrieved turbulence model parameters can approximate the corresponding

experimental data, has to be checked.

An image based simulation of turbulence can be helpful for several purposes. On the one hand, it can be

used to improve modelling of the optical properties of air turbulence in an iterative way. On the other

hand, various image quality metrics can be evaluated on simulated images with turbulence degradation.

These image quality metrics can be used to develop or assess methods for digital turbulence mitigation

(Kamenetsky et al. [2016]). In recent decades a vast variety of image qualtity metrics have been proposed

and used to assess image degradations due to blur, noise, lossy compression, etc (Bosse et al. [2018]).

Another application of these metrics is the assessment of imagers for remote sensing based on lab mea-

surements (Koerber et al. [2018]). Then the turbulence simulation may serve as a building block in a

chain of other degradations related to sensor sampling, digital processing, etc. This dual use scheme is

depicted in figure 1.1. Depending on specific turbulence model parameters z turbulence-degraded images

can be simulated based on images of point source grids. Based on the simulated images properties of the

degraded point source profiles can be calculated such as width, centroid shifts or spatial correlation. The

very same can be done on captured video sequences of point sources. Then the most likely turbulence

parameters z for the environmental condition x can be derived by fitting an analytical model pmodel(z)

3



1. Introduction

Figure 1.1.: Dual use scheme: 1. An image based simulation can be used for turbulence model improvements. 2.
Simulated image sequences with turbulence degradation can be used for applications that rely on image assessment
(digital turbulence mitigation, lab-based imager assessment)
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to the point source properites in the experimental data pexp(x). Optical turbulence effects are caused by

refractive index fluctuations in the air. Since the refractive index depends on pressure, temperature and

humidity and convective air flows near ground are induced by solar radiation, the environmental condi-

tion x varies during a day. The simulation can be validated by comparing point source properties derived

from simulated frames psim(z) with the corresponding analytical properties pmodel(z). A great benefit

of the image based simulation compared to theoretical models is the ability to represent multi-speckle

patterns resulting from single point sources at high turbulence strengths. A precise theoretical descrip-

tion of these multimodal distributions would require to take many high order moments into account.

Moreover, an image-based simulation can be used to search for measurable quantities which are very

sensitive to single model parameters. This may help for more accurate estimations of these parameters

from experimental data.

Retrieval of these model parameters z and its distributions may also be helpful for comparison with

microscale turbulence simulations in meteorology, i.e. processes in the range of few mm to several

hundred m, which are building blocks in multiscale models used in numerical weather prediction models

(?). These methods are very computationally expensive. Hence, for suitable grid spacings in numerical

simulations, knowledge is required about realistic inertial subranges of turbulence described by the model

parameters z.

The structure of this thesis is as follows: In chapter 2 the general background and the development

of turbulence models for optical propagation are explained. In chapter 3 the classical imaging process

of cameras within a chain of subsequent degradational effects is described, e.g. motion, detector sam-

pling and footprint, optical diffraction and atmospheric turbulence, whose implementation is complex

due to its nonlinear nature. Also various validation metrics for the image-based turbulence simulation

are introduced. As many of these metrics are only available as integral representations, which cannot

be solved analytically, convergence tests of numerical integrations are made. Chapter 4 describes the

phase screen method of turbulence simulation, which consists of the generation of correlated and un-

correlated 2D phase screens based on selected turbulence models and an imaging turbulence simulation

via non-uniform filtering of pristine imagery of input scenes. In this chapter also statistical properties

of simulated 2D phase screens are validated. Then in chapter 5 simulated projections of single point

sources and grids of equidistant point sources are validated. Turbulence-degraded grids of point sources

serve as filter kernels for non-uniform filtering that can be used for anisoplanatic imaging of arbitrary

input scenes. For realistic image-based turbulence simulations also taking model parameter uncertainties

into account, prior knowledge about real model parameter distributions is required. For this purpose,

field trials at the same location conducted on several days are described in chapter 6. In these field trials

projections of an LED matrix representing an equidistant grid of point sources are recorded at varying

distances of about 100 m - 150 m. Acquired image data can be used for the estimation of most likely

turbulence model parameters, which can be used in respective turbulence simulations. Also diversity

of the retrieved turbulence model parameters over all recording dates is shown. These findings provide
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realistic data distributions of model parameters, which can be used as input for the described approach

and future turbulence simulations. Compared to single-shot simulations with fixed model parameters,

these distributions enable the assessment of uncertainties in the simulation results due to varying envi-

ronmental conditions. Finally in chapter 7 conclusions are drawn and the scope of application for an

image-based turbulence simulation discussed, as well as further approaches for future improvement.
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2. Turbulence models

Solar radiation causes turbulent air flows in the atmosphere of the earth and near the surface. Mechanical

turbulence is caused by friction between air flows and the ground due to roughness of earth’s surface,

man-made obstacles, hills, mountains, etc (USA National Weather Service [2021]). Different types of

terrain or irregularities in the terrain lead to varying absorption of sun radiation, e.g. soil and sand heat up

much more rapidly than grass, and this in turn heats up much more rapidly than water. Inhomogeneous

heating of the uneven ground leads to convective air flows, i.e. warm air rises and cools down, while

cold air descends and warms up. These procedures are illustrated in figure 2.1. Further mechanisms for

Figure 2.1.: Illustration of turbulence near ground: 1. Solar heating of the earth’s surface forms convection cells:
Warm air rises and cools down, while cold air descends and warms up. 2. Obstacles and the uneven surface of
the earth cause friction between air currents and the ground. 3. Different types of terrain absorb sun radiation to
different degrees, which leads to temperature inhomogeneities.

Earth‘s surface
(uneven)

Soil

Convec�on

Man-made obstacles
Hills

Mountains

Sun

Grass
Forest

Water Sand Asphalt

Radia�on
absorp�on

the generation of turbulent air currents in the atmosphere exist, e.g. wind shear, temperature inversion or

friction between opposing cold and warm air fronts (USA National Weather Service [2021]).
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2. Turbulence models

These turbulent air flows induced by sun radiation lead to local fluctuations of pressure p(R) and tem-

perature T (R). The refractive index of air is dependent on pressure and temperature (Owens [1967])

by

n(R) = 1+77.6 ·10−6(1+7.52 ·10−3
λ
−2)

p(R)

T (R)
, (2.1)

with wavelength λ and position R. In practice pressure fluctuations are small compared to temperature

variations and can be neglected. This leads to refractive index fluctuations responsible for several degra-

dational effects in light and laser propagation through air. Also dependencies of the refractive index on

air humidity were found by measurements (Tunick and Rachele [1992], Chang et al. [2007]), since water

has a refractive index n ≥ 1.3 for visible and longer wavelengths λ (Hale and Querry [1973]). This is

significantly larger than that of the air n ≈ 1. Also humidity influences buoyancy forces near ground.

Statistically homogeneous 3D random fields of refractive index n(R) can be expressed by a Riemann-

Stieltjes representation

n(R) =
∫ ∫ ∫

∞

0
exp(iKR)dν(K) (2.2)

with a random amplitude dν(K) with covariance

〈
dν(K)dν

∗(K′)
〉
= δ (K−K′)Φn(K)d3

κd3
κ
′ (2.3)

The refractive index fluctuations are then modeled by the spatial power spectrum Φn(K). In many cases

also isotropy is assumed:

Φn(K) = Φn(κ) (2.4)

with κ = |K|. Spatial temperature gradients are induced by heat diffusion and convection due to a non-

vanishing velocity field of air. The atmosphere can be considered as a viscous fluid, which may be in two

distinctive states, laminar flow and turbulent flow (Andrews and Phillips [2005]). While for laminar flow

the velocity characteristics are uniform or regular in some fashion, for turbulent flow the velocity field

loses its uniform characteristics due to dynamic mixing and acquires random subflows called turbulence

eddies. The classical theory of turbulence was developed by Kolmogorov in the early 1940s (Andrews

and Phillips [2005]). It concerns random fluctuations in both the magnitude and direction of the velocity

field of a fluid. His theory is driven by a set of hypotheses based on physical insights. The turbulence

behaviour of geometrically similar objects in a flowing fluid can be characterized by the Reynolds number

Re =
vd
ν

(2.5)

8



Figure 2.2.: Kolmogorov cascade theory of turbulence. L0 denotes the outer scale and l0 the inner scale. Eddies
between scale sizes l0 and L0 form the inertial subrange (Adaptation of a figure in Andrews and Phillips [2005]).

Energy
injection

Energy
transfer

Dissipation

L0

l0

v is the flow velocity of the fluid, d is the characteristic scale size and ν is the kinematic viscosity of

the fluid. If the Reynolds number Re exceeds a problem-dependent critial value Rekrit , a laminar flow

gets succeptible to smallest perturbations in the velocity field of the fluid. Hence there is a transition to

turbulent flow for Re > Rekrit . Close to the ground the characteristic scale size is d ∼ 2m, characteristic

wind speed is 1 to 5 m/s and ν ∼ 0.15 ·10−4 m2/s. Hence Reynolds numbers are of the order Re ∼ 105.

In such cases the motion is considered highly turbulent. Now for sufficiently large Reynolds numbers

it was hypothesized that the small-scale structure of turbulence is statistically homogeneous, isotropic

and independent of the large-scale structure. It was also assumed that the motion associated with the

small scale is uniquely determined by the kinematic viscosity ν and the average rate of dissipation ε of

the turbulent energy per unit mass of the fluid. The energy cascade theory of Richardson (Richardson

[2007]) shown in figure 2.2 is a useful model to understand the structure of the atmospheric turbulence.

The source of energy at large scales is wind shear or convection. In the cascade theory wind velocity

increases unit it reaches a point where the critical Reynolds number is exceeded. This leads to the

generation of unstable air masses ("eddies") with characteristic sizes slightly smaller than the parent

flow. Due to inertial forces larger eddies break up into smaller eddies to form a continuum of eddy size

for the the transfer of enery from a macroscale L0 denoted as outer scale to a microscale l0 denoted as
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2. Turbulence models

inner scale. The family of eddies with sizes between l0 and L0 form the inertial subrange. For scale sizes

smaller than l0 turbulence eddies disappear and the remaining enery is dissipated as heat.

Various methods for measurements of atmospheric turbulence have been used within the last decades.

Many of these experiments are focused on the properties of the atmosphere from a meteorologic point

of view, while others are concerned with the optical properties of atmosphere for applications such

as laser radar (lidar) systems (Halmos and Wang [1992]), laser satellite communication (Khalighi and

Uysal [2014]), laser airborne communication (Moll et al. [2015]), ground-based astronomy (McKechnie

[1992]) and remote sensing. Traditional means to measure fluctuations of wind speed and temperature

as parameters of atmospheric turbulence are ultrasonic anemometers and thermometers (Nosov et al.

[2019]). Acoustic locators (sodars) have been used for measuring vertical profiles of mean wind speed

and direction in atmosphere (Ito [1997], Rapoport et al. [2002], Engelbart et al. [2007]). Radar methods

can be used to estimate the eddy dissipation rate η or turbulence strength C2
n at different altitudes in the

troposphere. Heterodyne Doppler lidars (HDLs) (Drobinski et al. [2000]) have been used to measure

the atmospheric wind field and wind turbulence at some remote distance. However, HDL measurements

only represent spatial averages of the true wind velocity along the line of sight. Additionally, signal

qualtity is limited due to speckle fluctuations. Combinations of staring wind lidars (Mann et al. [2008])

can be used to measure temporal spectra of wind speeds in good agreement with those measured by a

sonic anemometer. A comparative study (Yatcheva et al. [2015]) shows a large variety of devices and

computational methods for measuring optical turbulence, such as widely used Laser and large-aperture

scintillometers and Shack-Hartmann sensors. The presented methods showed good agreement in terms

of turbulence strength C2
n . Absolute and differential image motion measurements with an LED array can

be used to derive turbulence model parameters.

The behaviour of the energy cascade shown in figure 2.2 is typically characterized by the Kolmogorov

power-law spectrum :

Φn,Kolmogorov(κ) = 0.033C2
nκ

−11/3 1/L0 ≪ κ ≪ 1/l0 (2.6)

However, this spectrum is appropriate only for wave numbers κ within the inertial subrange [1/L0,1/l0].

In order to account also for wave numbers outside the inertial range various models (Andrews and Phillips

[2005]) have been proposed. These models include the Tatarskii spectrum:

Φn(κ) = 0.033C2
nκ

−11/3
κ exp

(
−κ2

κm

)
κ ≫ 1/L0 κm = 5.92/l0 (2.7)

the modified von Karman spectrum:

Φn(κ) = 0.033C2
n

exp(−κ2/κ2
m)

(κ2 +κ2
0 )

11/6 0 ≤ κ < ∞ κm = 5.92/l0 (2.8)
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2.1. Generalized modified atmospheric spectrum

and the modified atmospheric spectrum:

Φn(κ) = 0.033C2
n [1+1.802(κ/κl)−0.254(κ/κl)

7/6]

× exp(−κ2/κ2
m)

(κ2 +κ2
0 )

11/6 0 ≤ κ < ∞ κl = 3.3/l0
(2.9)

Turbulence measurements close to ground (Gladysz et al. [2013]) have shown that the power slope α can

deviate from the Kolmogorov power slope αKolmogorov = 11/3. In the following two isotropic state of

the art tubulence models with general exponent α are presented, the generalized modified von Kármán

spectrum (GMVKS) and the generalized modified atmospheric spectrum (GMAS). These spectra are

used for the generation of phase screens required for image-based turbulence simulation. Then they are

also used for validation with experimental data.

Anisotropic turbulence models have been proposed within recent years (Toselli et al. [2011]). However,

most of proposed measurable quantities are integral representations of these models. Hence, numerical

evaluations of these integrals are more complex and expensive due to an additional spatial dimension

compared to isotropic models. Therefore, anisotropic models are not taken into account in this the-

sis. Some of these measurable quantities are presented in the next chapter and used for evaluations on

isotropic models described in the next sections.

2.1. Generalized modified atmospheric spectrum

The generalized modified atmospheric spectrum (GMAS)(Xue et al. [2011]) is given by

Φn,GMAS(κ) = A(α)C2
nκ

α

(
1+a

(
κ

κl

)
−b
(

κ

κl

)β
)

×exp
(
−κ2

κ2
l

)(
1− exp

(
−κ2

κ2
0

))
, (2.10)

where

A(α) =
Γ(α −1)

4π2 sin
(

π(α −3)
2

)
, (2.11)

κ0 =
4π

L0
, (2.12)

κl =
(πA(α)Cα)

1/(α−5)

l0
, (2.13)

Cα =
3−α

3
Γ

(
3−α

2

)
+a

4−α

3
−Γ

(
4−α

2

)
−b

3+β −α

3
Γ

(
3+β −α

2

)
(2.14)

The relevant parameters are the turbulence strength C2
n , the exponent α , the inner scale l0 and the outer

scale L0. a, b and β are further parameters modifying the high frequency contributions related to inner

scale l0.
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2. Turbulence models

2.2. Generalized modified von Kármán spectrum

The generalized modified von Kármán spectrum (GMVKS) (Toselli and Larry C. Andrews [2007]) is

given by

Φn.GMV KS(κ) = A(α) ·C2
n

exp
(
−κ2

κ2
l

)
(
κ2 +κ2

0

) α

2
, (2.15)

where

A(α) =
Γ(α −1)

4π2 · cos
(

απ

2

)
, (2.16)

κ0 =
2π

L0
(2.17)

κl =
c(α)

l0
, (2.18)

and

c(α) =

[
Γ

(
5−α

2
A(α)

2π

3

)] 1
α−5

(2.19)

Only the turbulence strength C2
n , the outer scale L0, the inner scale l0 and the exponent α are common

with the spectrum GMAS and have similar functionality. Vividly the outer scale L0 reduces the spectrum

to lower frequencies κ and the inner scale l0 reduces the spectrum to higher values of spatial frequency

κ . This is depicted in figure 2.3. For lengths L ≫ L0 or frequencies κ ≪ κ0 the spectrum gets flat. A flat

spectrum is related to a spatial covariance Cov(R) (equation 3.10):

Cov(R) = δ (R) =

{
R = 0 1

else 0
(2.20)

This means that there is no significant covariance Cov(R) for R = L ≫ L0.
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2.3. Height dependency of atmospheric turbulence

Figure 2.3.: Effects of outer scale L0 and inner scale l0 on spectrum:
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2.3. Height dependency of atmospheric turbulence

Atmospheric turbulence is highly dependent on altitude above ground over several meters to kilometers.

Hence, for the simulation of optical turbulence effects over slant, top-bottom or bottom-top paths, e.g.

from airplane to ground or vice versa it would be crucial to take this dependency into account. However,

measurements on high altitudes require legal authorization and are cumbersome and expensive. There-

fore this thesis is focused and limited on simulations and measurements on horizontal paths near ground

with a fixed assumed turbulence strength C2
n along the line of sight. Nevertheless, proposed height mod-

els for single turbulence model parameters can be easily integrated, if these parameters are approximated

to be constant for the transversal extent of the propagated light field at any point of the line of sight.

Therefore, for reasons of completeness, known height dependencies of some model parameters are just

mentioned in the following. Not all required data is readily available for all model parameters of current

turbulence models, e.g. realistic data distributions for a (non-)Kolmogorov power slope α . The most

naive approach would be to use relations similar to known height models of single model parameters.

Based on measurements with balloon-borne radiosondes at several locations (Abahamid et al. [2004]),

height models for some turbulence model parameters have been evaluated for the atmospheric bound-

ary layer and the free atmosphere. The atmospheric boundary layer is the part of atmosphere whose

behaviour is directly influenced by the earth surface (Hayden and Pielke [2021]). Its height can vary

between 200 m (forest areas) and 5000 m (deserts). The overlying part of the atmosphere is denoted as
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2. Turbulence models

free atmosphere. In the atmospheric boundary layer the height dependency of turbulence strength C2
n and

outer scale L0 can be modeled by an exponential law

Y (h/km) = Y0 · (h/km)−p, (2.21)

where p∼ 0.1−0.3 for the outer scale L0 and p∼ 1.3−1.6 for the turbulence strength C2
n . Further models

for the free atmosphere were also proposed. The Hufnagel model describes the turbulence strength C2
n

for altitudes 3 km < h < 24 km:

C2
n =

[
2.2×10−53h10(W/27)2 exp

(
− h/m

1000

)
+10−16 exp

(
− h/m

1500

)]
exp[r(h, t)] (2.22)

W is a correlation factor related to scintillation and depending on wind speed v(h):

W =
1

15 km

∫ 20 km

5 km
V (h)2 dh (2.23)

Abahamid et al. [2004] measured a mean correlation factor of W = 18.6ms−2. r is a Gaussian random

variable with ⟨expr⟩= e.

The Beland-Brown model describes the outer scale L0 for altitudes 17 km ≤ 30 km:

L0(h/km) = 0.307−0.0324d +0.00167d2 +0.000476d3, (2.24)

where d = h/km−17.

The Coulman-Vernin model applies for altitudes 2 km < h < 17 km:

L0(h/m) =
4

1+
(

h/m−8500
2500

)2 (2.25)

Corresponding models and measured mean values of the outer scale L0 and turbulence strength C2
n are

shown in figure 2.4. Further height models for the turbulence strength C2
n were proposed (Lei and Tiziani

[1993]).
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2.3. Height dependency of atmospheric turbulence

Figure 2.4.: Measured mean values and models of outer scale L0 and turbulence strength C2
n depending on altitude

h (data extracted from Abahamid et al. [2004])
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The typical image forming process of camera systems is determined by a sequence of optical and tech-

nical components. While most of these components behave like a linear shift-invariant system (LSI

system), atmospheric turbulence reveals nonlinear temporal and spatial fluctuations that require special

treatment. A comprehension of the linear part of the image forming process is useful to recognize the

contrast to the more difficult and challenging turbulence part.

3.1. Point spread function (PSF) and optical transfer function (OTF)

The point spread function describes the response of an imaging system to a point source. If a point

source, e.g. in good approximation a star, is projected onto a camera sensor, the spatial intensity profile

is degraded by a chain of optical and technical components as well as enviromental effects. In remote

sensing applications air turbulence can have a significant impact. Wind effects, camera movements or

vibrating electronical components can cause stabilization errors. Optical diffraction through apertures

extends the optical intensity profile. The finite size of detector elements leads to further blur of the

intensity profile. Most of these degradational effects behave like a linear scale-invariant system, where

each component’s response to a single point source can be described by a point spread function (PSF).

The 2D intensity profile O(x,y) resulting from all effects can then be described by a concatenation of

convolutions on the point source profile I(x,y) = δ (x)δ (y):

O(x,y) = PSFdetector(x,y)∗PSFaperture(x,y)∗PSFstabilization

∗PSFatm(x,y)∗ . . .∗ I(x,y),
(3.1)

where a single convolution is given by

PSF(x,y)∗ I(x,y) =
∫ ∫

∞

−∞

dx′dy′ PSF(x′,y′) · I(x− x′,y− y′) (3.2)

For a finite image with Nx ×Ny pixels, the discrete convolution is given by

(PSF ∗ I)(i, j) =
Nx

∑
i′=0

Ny

∑
j′=0

PSF(i′, j′) · I(i− i′, i− j′), (3.3)
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with the column indices i and i′, the row indices j and j′ and the finite image with centered point source

I(i′, j′) =

{
i′ = Nx

2 , j′ = Ny
2 1

else 0
(3.4)

Now from the computational point of view, direct numerical evaluations of convolutions for a finite

image with Nx ·Ny pixels are expensive, as the calculation of N2
x ·N2

y summands are required. A more

efficient way is the use of optical transfer functions, which are the Fourier transforms of the point spread

functions

OT F(νx,νy) = FPSF(x,y) (3.5)

The optical transfer function OT F(νx,νy) describes the response of the component in the spatial fre-

quency domain. Then the Fourier transform of the output intensity profile can be calculated by subse-

quent multiplications on the input profile I(x,y):

FO(x,y) = OT Fdetector ×OT Faperture(νx,νy)×OT Fstabilization(νx,νy)

×OT Fatm(νx,νy)× . . .×F I(x,y)
(3.6)

The complex optical transfer function can be splitted into magnitude and argument. Then the magnitude

is given by the modulation transfer function (MTF) and the argument is given by the phase transfer

function (PhTF):

OT F = MT F · eiPhT F (3.7)

Many degradational effects have real OTFs, and so they are identical to their MTFs.

In the discrete case, the optical transfer functions can be multiplied pixelwise, so for each OT F only

Nx ·Ny products have to be calculated. Unfortunately this multiplication of discrete OTFs OT F(νi,ν j)

corresponds to the cyclic convolution of the inverse Fourier transforms, PSF(i, j) and I(i, j). In the

evaluation of equation 3.3, I(i, j) behaves Nx-periodic in horizontal direction and Ny-periodic in vertical

direction, i. e. I(i, j) = I(i+ kNx, j+ lNy) for all k, l ∈ Z. For an intermediate image

In(x,y) = PSFn(x,y)∗PSFn−1(x,y)∗ . . .∗ I(x,y) (3.8)

with significant signal at the image borders, this leads to overlapping between opposing sides of the

image in the convolution sum (equation 3.3). This is a computational artifact and physically not plausible.

However, this problem can be easily eliminated by adding Nx border columns and Ny border rows with

zero values. A typical workflow is depicted in figure 3.1.
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3.1. Point spread function (PSF) and optical transfer function (OTF)

Figure 3.1.: Image degradation process: Final PSF results from subsequent convolution with PSFs related to single
degradation effects. Final OTF results from subsequent pixelwise multiplication of OTFs related to same single
degradation effects. Gray scale images encode values in [0,1], with black = 0, and white = 1
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As any arbitrary input scene can be thought of as superposition of multiple point sources, and all op-

erations in the chain are linear, the procedure can be applied on input images to give the final camera

images. Now for air turbulence, the long-exposure PSF is independent of viewing angle through the aper-

ture. This is the optical intensity profile of a projected point source obtained from time integration with

integration times t ≫ tturb, where tturb ≈ 10− 100ms are typical correlation times. However for short

integration times, there are instantaneous phase aberrations at the aperture which lead to temporally and

spatially varying intensity profiles on the camera sensor depending on the viewing angle. Then the image
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formation cannot be described by convolution but filtering with a position-dependent instantaneous PSF

PSF(i, j, i′, j′):

O(i, j) =
Nx

∑
0

Ny

∑
0

PSF(i, j, i′, j′)I(i− i′, j− j′) (3.9)

3.2. Figures of merit

Optical perturbation effects of atmospheric turbulence are governed by the spatially varying refractive

index n(r). As explained in chapter 2 the refractive index n(r) of air depends on pressure p(r) and

temperature T (r). Computational fluid dynamics (CFD) simulations to calculate these fields of pressure

p(r) and temperature T (r) can often be computationally expensive and very time-consuming ((Jeong

and Seong [2014])). A much simpler approach used for applications relying on light propagation through

atmosphere is the modeling of the refractive index n(r) as 3D random fields. Then figures of merit are

required to define and characterize these random fields. Also derived and possibly measurable quantities

depending on the turbulence model Φn(k,z) as power spectral density are necessary to validate image-

based turbulence simulations and to estimate model parameters z from experimental data required to feed

in the simulation.

3.2.1. Spatial covariance

The spatial covariance of a 3D random field n(r) is such a figure of merit. It is given as the Fourier

transform of the corresponding 3D noise power spectral density Φn(κ):

Cov(R) = ⟨n(r1)n(r2)⟩=
∫

∞

−∞

dK Φn(K)exp(iKR) (3.10)

with R = r1−r2. As a power spectral density is an even function (Φn(κ) = Φn(−κ)), the imaginary part

is eliminated:

Cov(R) = 2
∫

∞

0
dκΦn(κ)cos(κ ·R) (3.11)

The covariance for a spherically symmetric noise power spectral density is given by

Cov(R) = ⟨n(r1)n(r2)⟩=
4π

R

∫
∞

0
dκΦn(κ)sin(κR)κ (3.12)

with R = |r1 − r2|.
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3.2.2. Structure function

The structure function of a 3D random field n(r) is defined as

D(R) =
〈
(n(r)−n(r−R))2

〉
(3.13)

It is related to the covariance Cov(r) via

D(R) =
〈
n(r)2 −2n(r) ·n(r−R)+n(r−R)2〉

=
〈
n(r)2〉−2⟨n(r) ·n(r−R)⟩+

〈
n(r−R)2〉

=2(Cov(0)−Cov(R))

(3.14)

3.2.3. Wave structure function D(ρ))

For weak, isotropic and homogeneous turbulence, the method of small perturbations can be used to solve

the wave propagation problem. The statistical properties of the resulting complex field U(r) can be

described by the mutual coherence function (MCF) (Andrews and Phillips [2005])

Γ2(r1,r2,L) = ⟨U(r1)U∗(r2)⟩ , (3.15)

which is an ensemble average over field U(r). r1 and r2 are 2D coordinates in the same plane and L is the

propagation distance. This can be normalized to give the modulus of the complex degree of coherence

(DOC)

DOC(r1,r2,L) =
Γ2(r1,r2,L)√

Γ2(r1,r1,L)Γ2(r2,r2,L)

= exp
[
−1

2
D(r1,r2,L

] (3.16)

D(r1,r2) is the wave structure function. It is isotropic for plane and spherical waves and isotropic tur-

bulence spectra Φn(κ). With ρ = |r1 − r2|, the spherical wave structure function Dsp(ρ) and the plane

wave structure function Dpl(ρ) can be derived from the refractive power spectral density Φn(κ) by

Dsp(ρ,L) = 8π
2k2L

∫ 1

0
dξ

∫
∞

0
dκ κΦn(κ) [1− J0(κρξ )] (3.17)

Dpl(ρ,L) = 8π
2k2L

∫ 1

0
dξ

∫
∞

0
dκ κΦn(κ) [1− J0(κρ)] (3.18)
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J0(x) is the Bessel function of first kind and zero order. k = 2π/λ is the wavenumber with wavelength

λ . The wave structure function D(ρ,L) can be split into the log-amplitude structure function Dχ(ρ,L)

and the phase structure function DS(ρ,L)

D(ρ,L) = Dχ(ρ,L)+DS(ρ,L), (3.19)

where

Dχ,S(ρ,L) = 4π
2k2L

∫ 1

0
dξ

∫
∞

0
dκ κΦn(κ) [1− J0(κρ)]

[
1∓ cos

(
Lκ2ξ

k

)]
(3.20)

in the case of plane wave. For separation distances ρ much greater than the first Fresnel zone and much

smaller than the outer scale L0 the phase structure function DS(ρ,L) is the same as WSF D(ρ,L), as

Lκ2/k ≪ 1, cos(Lκ2ξ/k) ≈ 1 and hence Dχ(ρ,L) ≈ 0. For spherical wave the structure functions are

given by

Dχ,S(ρ,L) = 4π
2k2L

∫ 1

0
dξ

∫
∞

0
dκκΦn(κ) [1− J0(κξ ρ)]

×
{

1∓ cos
[

Lκ2

k
ξ (1−ξ )

]} (3.21)

With the same argumentation the log-amplitude structure function Dχ(ρ,L) can be neglected and the

WSF D(ρ,L) reduces to the phase structure function DS(ρ,L).

Later on the phase structure function DS(ρ,L) can be used for validation of statistical properties of gener-

ated phase screens. For some special cases (l0 = 0) the computer algebra software Wolfram Mathematica

provides solutions in terms of special functions, which seem not yet reported in former literature. For

the generalized modified von Kármán spectrum (GMVK) with inner scale l0 = 0, it can be calculated for

plane wave as

DS,GMV KS(ρ,L) = 8π
2k2L ·A(α)C2

n
(
κ

2
0
)1− α

2

×

 1
α −2

−
2−α/2α

(
1

κ2
0

) 1
2−

α

4
ρ

α

2 −1K1− α

2
(ρκ0)

Γ
(

α

2 +1
)

 (3.22)

Here Kν(x) is the modified Bessel function of second kind. For the generalized modified atmospheric

spectrum (GMAS) with inner scale l0 = 0 it can be calculated as

DS,GMAS(ρ,L) = 4π
2k2L ·A(α)C2

nΓ

(
1− α

2

)
×

((
1

κ2
0

) α

2 −1(
L α

2 −1

(
−1

4
r2

κ
2
0

)
−1
)
− 22−αρα−2

Γ
(

α

2

) ) (3.23)
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Here Lν(x) is a Laguerre polynomial. If L0 > 0, phase structure functions are limited by

DS,max,GMV KS = lim
ρ→∞

DS,GMV KS(ρ,L)

= 8π
2k2L ·A(α)C2

n
κ

2−α

0
α −2

(3.24)

DS,max,GMAS = lim
ρ→∞

DS,GMAS(ρ,L)

=−4π
2k2L ·A(α)C2

nκ
2−α

0 Γ

(
1− α

2

) (3.25)

3.2.4. Fried parameter r0

The phase structure function for the Kolmogorov spectrum (equation 2.6) is given by

Dϕ(r) = 6.88
(

r
r0

)5/3

(3.26)

Here r0 is the atmospheric coherence radius or Fried parameter (Fried [1966]). For plane waves (Andrews

and Phillips [2005]) it is related to the turbulence strength C2
n via

r0 =

[
0.42k2

∫ L

0
dz C2

n(z)
]−3/5

(3.27)

Here k = 2π/λ is the wave number L is the path length and C2
n(z) can be a path-dependent turbulence

strength. For spherical waves (Hardie et al. [2017]) it is given by

r0 =

[
0.42k2

∫ L

0
dz C2

n(z)
( z

L

)5/3
]−3/5

(3.28)

r0 decreases as the turbulence strength C2
n increases. It typically ranges at few to tens of centimeters at

ground level (?).

3.2.5. Strehl ratio

The Strehl ratio (Andrews and Phillips [2005]) is the ratio at centers x = y = 0 of the turbulence PSFturb

and the PSF0 unperturbed by turbulence:

SR =
PSFturb(0)
PSF0(0)

(3.29)
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3. Theory

It is related to the Fried parameter r0 (Andrews and Phillips [2005]) via

SR =
1[

1+
(

D
r0

)5/3
]6/5 (3.30)

with the aperture diameter D.

3.2.6. Isoplanatic angle

The isoplanatic angle θ0 is the viewing angle within turbulence degradation behaves approximately uni-

formly, i.e.

PSF(x,y,x′,y′)≈ PSF(x,y) (3.31)

In astronomy, within an angle θ ≲ θ0 between a guide star and an object of interest, Adaptive Optics

(AO) systems can be used for wavefront correction. The isoplanatic angle can be calculated via

θ0 =

[
2.91k2

∫ L

0
C2

nz5/3 dz
]−3/5

(3.32)

3.2.7. Rytov variance σ2
R

The Rytov variance σ2
R (Andrews and Phillips [2005], L. C. Andrews [2014]) is a measure of turbulence

strength, which allows for classification to either weak or strong fluctuation theories, i.e.

σ
2
R < 1 ⇒ Weak fluctuation regime (3.33)

σ
2
R ∼ 1 ⇒ Moderate fluctuation regime (3.34)

σ
2
R > 1 ⇒ Strong fluctuation regime (3.35)

In the general form for a radial symmetric power spectrum it is given by

σ
2
R(L) = 8π

2k2L
∫ 1

0

∫
∞

0
κΦn(κ)

[
1− cos

(
Lκ2ξ

k

)]
dκ dξ (3.36)

For the Kolmogorov spectrum (equation 2.6) under weak fluctuation conditions (σ2
R ≪ 1) it is given by

σ
2
R = 1.23C2

nk7/6L11/6, (3.37)

with the turbulence strength C2
n , the wavenumber k and the propagation length L.
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3.2.8. Scintillation index

The scintillation index (Andrews and Phillips [2005]) measures fluctuations of a received irradiance

I(x,y) = |U(x,y)|2 (3.38)

It is defined as the variance of irradiance variance scaled by the square of mean irradiance:

σ
2
I (x,y) =

〈
I2(x,y)

〉
⟨I(x,y)⟩2 −1 (3.39)

Under weak turbulence conditions σ2
R ≪ 1 for the Kolmogorov spectrum it is given by

σI,pl(L) = σ
2
R = 1.23C2

nk7/6L11/6 (plane wave) (3.40)

σI,sp(L) = β
2
0 = 0.4σ

2
R = 0.5C2

nk7/6L11/6 (spherical wave) (3.41)

β 2
0 is known as the spherical wave Rytov variance. It is a commonly used symbol for the scintillation

index of a spherical wave. The scintillation index refers to irradiance fluctuations a point receiver with

infinitesimal aperture size would measure. However, real camera optics have finite aperture sizes. This

leads to an averaging effect of spatially varying irradiance fluctuations in the aperture plane. With the

total transmitted power P the aperture-averaged scintillation index over a circular aperture with diameter

D is given by

σ
2
I (D) =

〈
P2
〉

⟨P⟩2 −1 (3.42)

If attenuation effects between aperture and camera sensor are neglected, the total transmitted power P

arrives at the sensor plane. Hence, the aperture-averaged scintillation index can be measured by fluctua-

tions of camera pixel counts C, if a linear response C ∝ P is assumed for small power fluctuations. For

weak fluctuations the aperture-averaged scintillation index can be calculated from the homogeneous and

isotropic turbulence spectrum Φn(κ)

σ
2
I (D) = 8π

2k2L
∫ 1

0
dξ

∫
∞

0
dκ κΦn(κ)×

exp
(
−D2κ2ξ 2

16

)(
1− cos

(
Lκ2

k
ξ (1−ξ )

))
(spherical wave)

(3.43)

σ
2
I (D) = 8π

2k2L
∫ 1

0
dξ

∫
∞

0
dκ κΦn(κ)×

exp
(
−D2κ2

16

)(
1− cos

(
Lκ2ξ

k

))
(plane wave)

(3.44)
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For a Kolmogorov spectrum (l0 = 0,L0 → ∞, α = 11/3) (Andrews and Phillips [2005]) the aperature

averaged scintillation index σ2
I (D) can be written as

σ
2
I (D) = exp

 0.49β 2
0(

1+0.18d2 +0.56β
12/5
0

)7/6 +
0.51β 2

0 (1+0.69β
12/5
0 )−5/6

1+0.9d2 +0.62d2β
12/5
0

−1, (3.45)

where β0 is the spherical wave Rytov variance (equation 3.41) and

d =

√
kD2

4L
. (3.46)

3.2.9. Differential tilt variance

In a former work (Gladysz [2017]) the differential tilt variance was used to validate turbulence degraded

images of multiple point sources based on a (non-)Kolmogorov spectrum. In this thesis the same method

is extended and used for the spectra GMVKS and GMAS. The differential tilt variance is the ensemble

average of angle of arrival differences of two point sources

〈
(θx/y(r)−θx/y(r+d))2〉 (3.47)

for horizontal angle of arrivals θx (tip) and vertical angle of arrivals θy (tilt). r is the physical position of a

point source in the object plane. d is the physical separation between this point source and a second point

source. An illustation is shown in figure 3.2. A remarkable benefit of this figure of merit is the invariance

to global motion, since uniform shifts cancel out in the differences of angles θx/y(r) and θx/y(r+ d).

This is crucial, since camera vibrations may further degrade projections of point sources and impede the

estimation of model parameters from point source projections.

Analytical expressions for differential tilt variances in direction parallel (σ2
|| ) and perpendicular (σ2

⊥) to

the sources’ separation for the Kolmogorov spectrum have been proposed (Gladysz [2017]) asσ2
||

σ⊥

= 0.2073
∫ L

0
dz C2

n(z)
∫

dκ

[
cos2(ϕ)

sin2(ϕ)

]
κ
−11/3

×
(

4
D

)2

J2
1

(
zκD
2L

)
2{1− cos[κd cos(ϕ)]}

(3.48)

However, the integral kernel can be enhanced for any other turbulence spectrum byσ2
||

σ⊥

= 0.2073
∫ L

0
dz C2

n(z)
∫

dκ

[
cos2(ϕ)

sin2(ϕ)

]
κ
−11/3 Φn(κ)

Φn,Kolmogorov(κ)

×
(

4
D

)2

J2
1

(
zκD
2L

)
2{1− cos[κd cos(ϕ)]}

(3.49)
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Figure 3.2.: Illustation of two point sources projected onto a camera. The angle of arrivals σx(r) and θx(r+d)
fluctuate around time-averaged center positions.
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For faster numerical evaluation this can be simplified toσ2
||

σ2
⊥

=
41.7
D2 C2

n

∫ L

0
dz

[
IT (z)− I1(z)

I1(z)

]
, (3.50)

where

I1(z) =
∫

∞

0
dκκ

−8/3 Φn(κ)

Φn,Kolmogorov(κ)
J2

1

(
zκD
2L

)(
1
2
− J1(κd(L− z)/L)

κd(L− z)/L

)
(3.51)

IT (z) =
∫

∞

0
dκκ

−8/3 Φn(κ)

Φn,Kolmogorov(κ)
J2

1

(
zκD
2L

)
(1− J0(κd(L− z)/L)) (3.52)

These analytical expressions do not have any dependency on wavelength. This makes the differential tilt

variance suitable for monochromatic or spectrally extended light sources.

Now angle of arrivals θx,y can be easily calculated from displacements sx,y on camera images in units of

sensor pixels by using the instantaneous field of views

IFOVx,y =
px,y

f l
, (3.53)
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where the focal length of an objective f l ∈ [650mm,1300mm] and the pixel pitch px,y = 2.9 µm, i.e. the

distance between adjacent pixels. These values are adopted from a camera and objective used in field

trials described in a following chapter. In good approximation the pixel pitch can be assumed to be the

pixel size, since from the datasheet in table 6.1 a maximum relative error of 0.2% can be deducted.

3.2.10. Long-exposure and short-exposure optical transfer function

Another method for validation of generated point spread functions and turbulence strength estima-

tion is based on Fourier optics. A theoretical model for uncorrected ("long-exposure") and tip-tilt-

corrected ("short-exposure") optical transfer functions (OTFs) has been derived (Fried [1966],Yatcheva

et al. [2015]) as

OT FL,total(ν) = OT F0(ν)×OT FLE(ν), (3.54)

OT FS,total(ν) = OT F0(ν)×OT FSE(ν), (3.55)

where OT F0(ν) describes all remaining components in the process of degradation not related to air

turbulence such as optical diffraction and finite detector footprint, etc. Fried (Fried [1966],Yatcheva

et al. [2015]) developed expressions for

OT FLE(ν) = exp

−3.44

(
λ f lν

r0

)5/3
 (3.56)

OT FSE(ν) = exp

−3.44

(
λ f lν

r0

)5/3
1−α

(
λ f lν

r0

)1/3
 (3.57)

Here α is a factor that varies between 1/2 when there are both intensity and phase variations across the

collecting aperture and 1 when only phase distortions are present. In the following α = 1 is assumed.

The Fried parameter r0 is given by

r0 =

(
35/3

Lk2C2
n

)3/5

(3.58)

and describes the coherence length of a wavefront propagated through turbulence with propagation length

L. ν is the spatial frequency in the image plane, f l is the focal length and k = 2π

λ
is the wavenumber with

the average wavelength λ .
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In the following simulation approach, diffractional effects can not really be separated from turbulence

degradation. Simulated point spread functions will always be afflicted with the diffraction OTF, which is

given for a circular aperture as(Yatcheva et al. [2015])

OT Fdi f f (ν) =
2
π

arccos

(
λ f lν

D

)
− λ f lν

D

√√√√1−

(
λ f lν

D

)2
 , (3.59)

with the aperture diameter D.

From an experimental point of view artificial point sources such as LED elements always have an inten-

sity profile with some spatial extent and hence an extended point spread function. Then the final intensity

profiles can be calculated by

FPSFL/S, f inal(x,y) = OT F0(νx,νy))OT FLE/SE(νx,νy) ·FPSFLED(x,y) (3.60)

However, if a ratio R between both PSFs is formed, the OTFs of all components OT F0(νx,νy) and the

spatial LED profile PSFLED(x,y) cancel out:

R(νx,νy) =
FPSFL(νx,νy)

FPSFL(νx,νy)
=

OT FLE(νx,νy)

OT FSE(νx,νy)
(3.61)

In the following only the horizontal and vertical axes are taken into account ν = νx/y. The exponentials

in the OTFs can be eliminated by taking the logarithm of R(νx/y):

R(νx/y) = ln
(

OT FLE(νx/y)

OT FSE(νx/y)

)
= lnOT FLE(νx/y)− logOT FSE(νx/y)

=−3.44

(
λ f lν

r0

)5/3
1−

1−α

(
λ zνx/y

r0

)1/3


=−3.44α

(
λ zνx/y

r0

)2

R(νx/y)︸ ︷︷ ︸
y(νx/y)

=aν
2
x/y a =−3.44α

(
λ z
r0

)2

(3.62)

Now from sets of measured and simulated images of turbulence-degraded single point source projections,

spatial frequencies νx/y,i and abscissa values

y(νx/y,i) = ln
(

FPSFL, f inal(x,y)
FPSFS, f inal(x,y)

)
(3.63)

29



3. Theory

can be calculated. The prefactor a can then be found by linear regression of ν2
x/y,i and y(νx/y,i). Then it

can be used to determine the Fried parameter r0 and from equation 3.58 the turbulence strength C2
n can be

calculated. The long-exposure PSFL, f inal(x,y) can be calculated from ensemble averages ⟨.⟩S of image

sequences simulated by multiple sampling of intependent phase screens. For measured image sequences

a time average can be calculated: For the short-exposure OTF, which describes the degradation of point

source signal due to air turbulence for short integration times, tip/tilt variations are compensated. Based

on images In(x,y) these tips/tilts can be measured by centroids

cx,n =
∑x,y xIn(x,y)

∑x,y In(x,y)
, (3.64)

cy,n =
∑x,y yIn(x,y)

∑x,y In(x,y)
, (3.65)

if the background signal in the images In(x,y) can be neglected. In the most optimal case tips/tilts are

corrected by shifting the short-exposure images to have unique centroids (c̃x,c̃y). This can be achieved

by a phase modulation in the frequency domain:

In,shi f ted(x,y) = F−1
[

exp
(

2πµi
Nx

(c̃x − cx,n)+
2πη i

Ny
(c̃y − cy,n)

)
F In(x,y)

]
=

1
NxNy

Nx−1

∑
µ=0

Ny−1

∑
η=0

Nx−1

∑
x′=0

Ny−1

∑
y′=0

In(x′,y′)×

exp
(

2πµi
Nx

(c̃x − cx,n)+
2πη i

Nx
(c̃y − cy,n)

)
×

exp
(

2πµx′i
Nx

+
2πηy′i

Ny

)
×

exp
(

2πµxi
Nx

+
2πηyi

Ny
.

)
(3.66)

The corresponding PSF can be calculated by averaging a stack of multiple instantaneous PSFs:

PSFL, f inal(x,y) = ⟨In(x,y)⟩n , (3.67)

PSFS, f inal(x,y) =
〈
In,shi f ted(x,y)

〉
n . (3.68)

For the MTFs this gives

MT FL/S, f inal(νx,νy) = FPSFL/S, f inal(x,y). (3.69)

Toy experiments with multivariate 2D Gaussian profiles of varying widths and centroid positions show,

that simulations for MT FS, f inal(νx,νy) can be approximated by averaging magnitudes of Fourier trans-

forms of single frames over the entire image sequence. This is equivalent to a disposal of any phase
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3.3. Convergence of numerical integration

information introduced by shifts of the image contents. If the discrete Fourier transform DFTxy and the

pixel-wise average over the image sequence Averagez are used the MTFs can be written as

MT FS, f inal(νx,νy) = Averagez |DFTxyI(x,y)| (3.70)

MT FL, f inal(νx,νy) = |DFTxyAveragezI(x,y)| (3.71)

The long-exposure MTF for a circular aperture can be calculated from the spherical wave or plane wave

structure function Dsp/pl(uD) (Cui et al. [2010]):

MT FLE,sp/pl(u) = exp
[
−1

2
Dsp/pl(uD)

]
(3.72)

Here u = λ · f l ·ν/D ∈ [0,1] is a normalized spatial frequency with the wavelength λ , focal length f l,

diameter D and spatial frequency ν [1/m] in the sensor plane. More general integral representations

of long-exposure and short-exposure MTFs for arbitrary aperture forms are described in (Charnotskii

[2012]).

3.3. Convergence of numerical integration

The described figures of merit based on integral representations of the turbulence model Φn(κ,z) are

analytically solvable only for simple spectra or special cases of model parameters z. Often these solutions

involve special functions such as the incomplete Gamma function Γ(a,z), or hypergeometric functions

pFq(a,b,z). The availibility of these functions in software libraries is limited. Moreover, case distinctions

depending on ranges of input parameters for specific turbulence spectra Φn(κ) are very tedious and

cumbersome. Hence, numerical integration based on the Riemann rule is applied in all cases where these

integral representations have to be solved, i. e. integrals are approximated by

q(N) = ∆x
N−1

∑
k=0

k(xk) (1D integral) (3.73)

q(N) = ∆x∆y
N−1

∑
k=0

N−1

∑
l=0

k(xk,yl) (2D integral), (3.74)

q(N) = ∆x∆y∆z
N−1

∑
k=0

N−1

∑
l=0

N−1

∑
m=0

k(xk,yl,zm) (3D integral), (3.75)

and

xk = xmin + k ·∆x, (3.76)

yl = ymin + l ·∆y, (3.77)

zm = zmin +m ·∆z, (3.78)
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with

∆x =
xmax − xmin

N −1
, (3.79)

∆y =
ymax − ymin

N −1
, (3.80)

∆z =
zmax − zmin

N −1
, (3.81)

where k(x),k(x,y) and k(x,y,z) are integrand functions of the respective quantities q. Then the ques-

tion arises which grid size N should be used. For this purpose convergence tests are done for differ-

ent quantities with integral representations for plane waves and spherical waves, the aperture-averaged

scintillation index σ2
I,pl/sp(D) (equations 3.44 and 3.43), the long exposure MT FLE,pl/sp(ν) (equation

3.72) and the differential tilt variances σ2
∥ (d) and σ2

⊥(d) (equation 3.49). In figure 3.3 relative errors

∆q = (q(N)−q(5000))/q(5000) related to the largest handable grid size N = 5000 and mean durations

for single evaluations are shown. For each quantity q, 200 samples are generated based on uniformly

distributed model parameters of the spectrum GMVKS. Due to the logarithmic nature of turbulence

strength C2
n , log10C2

n is chosen uniformly distributed. The parameter ranges are estimated from dis-

tributions acquired from experimental data in chapter 6. Random values for the turbulence strength

log10[C
2
n/(m

−2/3)]∈ [−16,−12], the inner scale l0 ∈ [0.0001,0.3]m, outer scale L0 ∈ [0.01,100.0]m and

exponents α ∈ [3.1,3.9] are used. Modulation transfer functions MT Fsp/pl,LE additionally depend on

spatial frequencies ν ∈ [0,10000]m−1. and differential tilt variances σ2
∥ and σ2

⊥ depend on separations

d ∈ [0,0.015]m. There is a typical tradeoff between accuracy and computation time. Hence, for all

simulations a grid size N = 1000 is chosen, in order to provide relative errors ∆q < 10−2 for most cases.

Adaptive integration schemes such as Romberg-Integration (Owren [2011]) are not used because of poor

parallelizability due to unpredictable durations for different input parameters.

Additionally, σ2
∥ and σ2

⊥ need to be differentiable with respect to model parameters for applications in

chapter 6. Some software libraries e.g. Google’s tensorflow offers automatic differentiation (Neidinger

[2010]), i.e. it computes numerical derivatives efficiently which renders paper-and-pencil computations

of analytical derivatives obsolete. However, tensorflow needs a fixed numerical scheme to use this auto-

matic differentiation.
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3.3. Convergence of numerical integration

Figure 3.3.: log10(∆q) for relative errors ∆q = (q(N)− q(5000))/q(5000) of different quantities q depending on
number of integral subdivisions N. 95%-confidence bands are shown. Min and max values are shown as dashed
lines. log10(Mean computation time in ms) for single calls are shown on the right vertical axis (black line).
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4.1. Wave propagation by split-step beam propagation

A method suitable to analyze the propagation of optical waves through atmospheric turbulence is the

split-step beam propagation method (Belmonte [2000]).

In classical electrodynamics, the electromagnetic field propagating in media is governed by the macro-

scopic Maxwell’s equations:

∇ ·D = ρ (4.1)

∇ ·B = 0 (4.2)

∇×E =−∂B
∂ t

(4.3)

∇×H = j f ree +
∂D
∂ t

(4.4)

The electrical fields E,D and magnetical fields H, B are related by

D = ε0E+P = ε0(1+χe)E = εE (4.5)

B = µ0H+M = µ0(1+χm)H = µH (4.6)

with material-dependent polarization P and magnetization M. In general the electrical susceptibility χe

and χm are (3,3)-matrices, e.g. for birefringent materials polarization and magnetization can be depen-

dent on the orientation between fields E, H and the crystal axes of the material. However most materials,

e.g air, are isotropic and susceptibilities χe, χm can be treated as scalars and hence the permittivity ε

and the permeability µ . Now atmospheric air can be assumed to be free of charges and currents, i.e.

ρ = j f ree = 0. Combining equations 4.3 and 4.4 gives

∇×∇×E =−εµ
∂ 2E
∂ t2 (4.7)

This can be simplified to

∇(∇ ·E)−∆E =−εµ
∂ 2E
∂ t2 (4.8)
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Now equation 4.1 can be simplified to

∇ ·D = ∇ε ·E+ ε∇ ·E = 0 (4.9)

If we assume that spatial changes of permeability ε can be neglected, i.e. ∇ε = 0, we have

∇ ·E = 0 (4.10)

Now equation 4.8 can be simplified to the wave equation:

∆E+ εµ
∂ 2E
∂ t2 = ∆E+

n2

c2
0

∂ 2E
∂ t2 = 0 (4.11)

Here we set εµ = n2/c2
0, where n is the refractive index and c0 =

√
1

ε0µ0
is the vacuum speed of light.

With an approach of a monochromatic field

E = E(x,y,z)eiωt (4.12)

and temporal frequency ω = k/c0, the wave equation yields

∆E+ k2n2E = 0 (4.13)

Here k = 2π

λ
is the free-space wave number. In air the refractive index is approximately 1 and has small

variations n1 caused by temperature and pressure variations. So we rewrite the refractive index as

n = 1+n1 (4.14)

Then the wave equation gives

∆E+ k2(1+n1)
2E = 0 (4.15)

4.1.1. Paraxial wave equation

In order to further simplify the wave equation for faster numerical evaluation, another ansatz can be made

for the electical field:

E(x,y,z) =U(x,y,z)exp(ikz) (4.16)

36



4.1. Wave propagation by split-step beam propagation

with an envelope U(x,y,z) slowly varying in propagation direction z. Then we can assume∣∣∣∣∂ 2U
∂ z2

∣∣∣∣≪ ∣∣∣∣∂U
∂ z

2ik
∣∣∣∣ (4.17)

and for small perturbations n1

(1+n1)
2 = 1+2n1 +n2

1 ≈ 1+2n1 (4.18)

With these assumptions, the wave equation for the envelope U gives

2ik
∂U
∂ z

+∆xyU+2k2n1U = 0 (4.19)

∆xy =
∂ 2

∂x2 +
∂ 2

∂y2 is the transversal Laplace operator. The free space operator can be expressed in spatial

frequencies κx and κy:

SF = exp
(
−i

∆z
4k

(κ2
x +κ

2
y )

)
(4.20)

4.1.2. Split-step beam propagation method

Now the wave equation can be discretized in propagation direction z. If Un is the solution at z = zn then

the solution zn+1 = zn +∆z can be written exactly as

Un+1 = exp
[
− i

2k

(
∆z∆xy +2k2

∫ zn+1

zn

dzn1(x,y,z)
)]

Un +O(∆z3) (4.21)

The so-called Markov assumption can be used, that the wave fluctuations are independent from the

refractive index fluctuations n1. This is equivalent to n1 being delta-correlated in propagation direction

z. Then terms which refer to field derivatives and refractive index are additively separable. The solution

can be approximated with third order accuracy in the step size ∆z:

Un+1 = SFSP,nSFUn +O(∆z3) (4.22)

with the free space operator

SF = exp
(
− i

2k
∆z
2

∆xy

)
(4.23)

and phase screen operators

SP,n = exp
[
−ik

∫ zn+1

zn

dz n1(x,y,z)
]

exp [−ϕn(x,y)]
(4.24)
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For numerical simulation 2D Fast Fourier Transform (FFT) is convenient to switch between space and

frequency domain. The workflow of a single split step is illustrated in figure 4.1

Figure 4.1.: Single split step: Input beam profile Un at z = zn is converted to output profile Un+1 at z = zn +∆z.
Images show corresponding intensity profiles I = |U |2 of complex fields U .

An input beam profile U0 can be propagated along a path L to give the output profile Un by multiple

successive split-steps. Uncorrelated 2D phase screens can be generated by inverse Fast Fourier transform

(IFFT) of filtered 2D complex Gaussian random fields (Fleck et al. [1976]). However, such phase screens

are periodic and cannot properly represent low-frequency contributions below the lowest frequency in

the discrete IFFT spectrum, while most turbulence spectra have significant low-frequency contributions.

This condition is illustrated in figure 4.2.
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4.1. Wave propagation by split-step beam propagation

Figure 4.2.: A discrete (I)FFT spectrum can only represent a turbulence spectrum at a limited number of equidistant
spatial frequencies. Most models for turbulence spectra have high contributions at low frequencies, which cannot
be represented by the (I)FFT spectrum

Spa�al
frequency

Power
spectral density

Discrete FFT spectrumTurbulence
spectrum

missing
low-frequency
contribu�ons

This fact leads to an underestimation of total noise variance in the generated phase screens and hence a

reduced effect of turbulence on the beam profile. A method to alleviate this problem, is the addition of

subharmonics (Lane et al. [1992]), which are sinusoids based on integer fractions of the lowest frequency

in the discrete spectrum. For investigation of wind effects, phase screen extension techniques have been

introduced (Assémat et al. [2006],Vorontsov et al. [2008]). For low discretization error in the split-step

method (equation 4.21) a low separation ∆z is desirable. However, phase screens can only approximately

be treated uncorrelated if the separation is much larger than the outer turbulence scale ∆z ≫ L0 (Markov-

Assumption). This is illustrated in figure 4.3
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4. Methods

Figure 4.3.: Beam propagation along a distance L: A final complex field Un(x,y) is calculated by multiple iter-
ations of the single step (4.22). For the phase screen operators {SP,i}i=1..n a sequence of varying phase screens
{ϕi(x,y)}i=1..n is used.

Fortunately, there are methods that can calculate correlated 2D phase screens and combine many ad-

vantages of the mentioned techniques. In the next section two methods for phase screen generation are

presented. In cases where the Markov assumption (∆z ≫ L0) holds, the inverse discrete Fourier trans-

form of Gaussian noise with addition of subharmonics Lane et al. [1992] can be used for the generation

of uncorrelated 2D phase screens. If the Markov assumption fails, the sparse spectrum (SS) method can

be used to calculate correlated 2D phase screens by analytical integration of 3D refractive index random

fields. With this method noise patterns of the refractive index can be easily rotated or shifted in arbitrary

3D directions.

4.2. Generation of uncorrelated 2D phase screens

2D phase screens can be generated by using inverse discrete Fourier transforms (DFT). If the phase is

calculated via integration over the refractive index along the axis of propagation as in the phase screen

operators (equation 4.24), i.e.

ϕ = k
∫ zn+1

zn

n(x,y,z) dz, (4.25)

then its equivalent power spectrum Φϕ(κ) (Belmonte [2000]) can be calculated as

Φϕ(κx,κy) = 2πk2
∆zΦn(κx,κy) (4.26)
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4.2. Generation of uncorrelated 2D phase screens

with slab size ∆z = zn+1 − zn. A complex field of standard normal distributed pseudorandom numbers

(ai + ibi)i representing a flat spectrum can be filtered by a factor√
Φϕ(κx,κy)∆κx∆κy (4.27)

The resulting complex field

ϕ̃(x,y) = DFT
[
(ai + ibi)

√
Φϕ(κx,κy)∆κx∆κy

]
(4.28)

can be splitted into real and imaginary parts and gives two independent phase screens ϕ1(x,y) and

ϕ2(x,y).

4.2.1. Addition of subharmonics

Phase screens generated by discrete Fourier transforms have the drawback, that they are periodic. Fur-

thermore, they can not properly represent low-frequency contributions of the continuous power spectral

density Φn(x,y,z). One method to mitigate these problems is the addition of subharmonics (Lane et al.

[1992]). The basic idea is to subdivide the lowest spatial frequency κmin = κsampling/N in the finte dis-

crete Fourier (DF) spectrum recursively, and add sinoids at these frequencies weighted by the power

spectrum Φϕ(κ). The procedure is depicted in figure 4.4.

Figure 4.4.: Subharmonic division: The zero component κ = 0 is subdivided by an integer fraction in horizontal
and vertical direction, here by 3. Weights of the subharmonics of level p are calculated depending on the extend
in Fourier space ∆κ

(p)
x/y = ∆κx,y/3p. ∆kx/y are the smallest spatial frequencies in the discrete Fourier transform
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4. Methods

With the phase field from the inverse discete Fourier transform ϕ(x,y) and the subharmonics θSH(x,y),

the total phase is given by

ϕSH(x,y) = ϕ(x,y)+θSH(x,y) (4.29)

These subharmonics can be refined by multiple levels of recursion.

θSH(x,y) =
Np

∑
p=1

θ
(p)
SH (x,y) (4.30)

The subharmonics are calculated as

θ
(p)
SH =

1

∑
m=−1

1

∑
n=−1

[a(m,n, p)+ ib(m,n, p)]

× exp
(

1
3p

[
2πi
Nx

m · x+ 2πi
Ny

n · y
]) (4.31)

The coefficients a(m,n, p) and b(m,n, p) are sampled from a Gaussian distribution such that variances

are given by the corresponding

〈
a2(m,n, p)

〉
=
〈
b2(m,n, p)

〉
=
∫

κx,max(m,p)

κx,min(m,p)
dκx

∫
κy,max(n,p)

κy,min(n,p)
dκyΦϕ(κx,κy)

≈
(

∆κx

3p

)(
∆κy

3p

)
Φϕ(κx(m, p),κy(n, p))

(4.32)

with means

κx
(p) =

κx,max(m, p)+κx,min(m, p)
2

(4.33)

κx
(p) =

κy,max(n, p)−κy,min(n, p)
2

(4.34)

and boundaries

κx,max(m, p) =
(

1
3

)p−1−m−1
2 ∆κx

2
(4.35)

κx,min(m, p) =
(

1
3

)p−1+m+1
2 ∆κx

2
(4.36)

κy,max(n, p) =
(

1
3

)p−1− n−1
2 ∆κy

2
(4.37)

κy,min(n, p) =
(

1
3

)p−1+ n+1
2 ∆κy

2
(4.38)
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4.2. Generation of uncorrelated 2D phase screens

The center component m = n = 0 is excluded on each subharmonic level p, i. e.

a(0,0, p) = b(0,0, p) = 0 (4.39)

4.2.2. Phase structure function of uncorrelated 2D phase screens

The Markov phase structure function of uncorrelated 2D phase screens (Charnotskii [2016]) is given by

D(MA)
ϕ (r) = 8π

2k2
∆z
∫

∞

0
κΦn(κ) [1− J0(κρ)] (4.40)

It is identical to the plane wave structure function Dpl(r,L) (equation 3.18).

4.2.3. Validation of phase screens

Derived and measurable quantities on propagated fields degraded by turbulence highly depend on correct

features of the generated phase screens such as variance or spatial correlation within phase screens and

over subsequent phase screens. A priori, this is not self-evident since generated phase screens are discrete

and finite. They may also suffer from deficiencies of the generation process, e.g. periodicity of the DFT

or sparsity.

In order to validate generated phase screens a default configuration of simulation parameters shown in

table 4.1 is used. Device specifications are adopted from a real camera and objective used for validation

later on.

Based on this default simulation parameters, phase screens with varying inner scale l0, outer scale L0

and exponent α are generated based on two models, the generalized modified von Kármán Spectrum

(GMVKS) and the generalized modified atmospheric spectrum (GMAS). In figures 4.5, 4.6 and 4.7

phase screens for varying outer scale L0, inner scale l0 and exponent α are shown. It can be seen that for

increasing outer scale L0 turbulence eddies get larger, as less low-frequency contributions are filtered.

A similar effect has the inner scale l0. Turbulence eddies get larger as l0 increases. A high exponent α

leads to stronger filtering of high spatial frequencies, which makes turbulence eddies also larger.
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Table 4.1.: Default simulation parameters for single wave propagation

Parameter Value
Wavelength λ in nm 550
Field width/height wx/y in m 0.4
Field size horizontal/vertical Nx ×Ny in pixel 512x512
Phase screen size horizontal/vertical 2048x2048
Phase screen width ∆z in m 15
Propagation length L in m 150
# phase screens for single propagation Nz 10
Turbulence spectra GMAS and GMVKS
Turbulence strength C2

n/(m
−2/3) 10−13

Exponent α 11/3
Inner scale l0 in m 0
Outer scale L0 in m 100
Subharmonic pattern 3x3
# Subharmonic recursions 10
# simulated frames Nps 200
Focal length in m 0.8
Aperture form Circular
Aperture diameter in m 0.086
Pixel pitch px,y in µm 2.9
Physical separation of point sources
horizontal/vertical ∆qx/y in cm

1.5
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4.2. Generation of uncorrelated 2D phase screens

Figure 4.5.: Phase screens for varying outer scale L0 and GMVKS: (a) L0 = 0.1m, (b) L0 = 1m, (c) L0 = 10m,
(d) L0 = 100m. The outer scale L0 limits low frequency contributions. A decreasing outer scale L0 is related to
decreased low frequency contributions.
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4. Methods

Figure 4.6.: Phase screens for varying inner scale l0 and GMVKS: (a) l0 = 0.001m, (b) l0 = 0.01m, (c) l0 = 0.02m,
(d) l0 = 0.1m.
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4.2. Generation of uncorrelated 2D phase screens

Figure 4.7.: Phase screens for varying exponent α and GMVKS: (a) α = 3.1, (b) α = 3.4, (c) α = 11/3, (d)
α = 3.9.
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In figure 4.8 analytical plane wave structure functions from equation 3.18 are compared with numerical

structure functions calculated from Nz = L/∆z = 10 phase screens for a single beam propagation (sample

k) by

Dhor,k(x j) =
∑

Nz
n ∑k (ϕkn(xi,0)−ϕkn(x j,0))

2

Ntotal
(4.41)

Dvert,k(y j) =
∑

Nz
n ∑k (ϕkn(0,yi)−ϕkn(0,y j))

2

Ntotal
(4.42)
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with x j = j∆x, y j = j∆y and the grid spacings ∆x and ∆y. The total size of summands is given by

Ntotal = Nz(Ngrid − j) (4.43)

with the extended phase screen grid size Ngrid = 2048. The standard errors of the numerical structure

functions are estimated as

σDhor/vert ≈
√

D2
hor/vert −Dhor/vert

2
, (4.44)

where the averages are applied over Nps = 200 statistically independent samples of phase screen stacks.

The standard error of the mean structure function is then given as

σDhor/vert
=

σDhor/vert√
Nps

(4.45)

In figure 4.8 the numerical structure functions Dhor/vert are compared with the analytical structure func-

tion from equation 3.18 for different outer scales L0. Also shown are 95% confidence bands (±1.96σDhor/vert
)

numerical structure functions as colored regions. The sample structure functions are in good accordance

with the analytical structure function from equation. For low outer scale L0 (figure 4.8) there are drops

of the numerical structure functions. The reason for this is the lack of low-frequency subharmonic

contributions and the periodicity of phase screens based on pure discrete Fourier transform of filtered

Gaussian noise random fields. Since the used phase screens for beam propagation are smaller image

crops (512x512) of the extended phase screens (2048x2048), correlations between adjacent borders are

not critical for single beam propagations and PSF calculations. Depending on the available memory

larger phase screens could be calculated to alleviate correlation effects to any degree.

In figure 4.9 comparisons of the analytical structure functions for different parameters L0,l0 and α for

the spectrum GMVKS are shown. The structure functions are expressed in units of the common factor

16π2k2C2
n . While there is only a slight shift of the structure functions for different inner scales l0, increas-

ing outer scales L0 and exponents α let the structure function become larger. From the slight influence

on inner scale l0 < 1 cm on the asymptotic value limr→∞ Dϕ(r) = 2σ2
φ

with the total phase variance σ2
φ

it

can be expected, that also measurable quantities resulting from beam propagations through these phase

screens will have a slight dependendy on inner scale l0.
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4.2. Generation of uncorrelated 2D phase screens

Figure 4.8.: Comparison of analytical phase structure functions Dϕ(r,0) and sample structure function D(x,0)
and D(0,y) based on horizontal/vertical separations for varying outer scale L0 and GMVKS: (a) L0 = 0.1m, (b)
L0 = 1m, (c) L0 = 10m, (d) L0 = 100m. Colored regions are 95%-confidence bands of the sample structure
functions Dhor/vert . The analytical Markov structure function (black line) is mainly in the confidence bands of the
numerical structure functions (red and blue line).
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4. Methods

Figure 4.9.: Analytical Markov phase structure function D(MA)
ϕ (r,0) for varying turbulence parameters l0 (a), L0 (b),

and α (c) based on the model GMVKS. Default values are C2
n/m3−α = 10−13, l0 = 0.01m, L0 = 1.0m, α = 11/3

and L = 150m.
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4.2. Generation of uncorrelated 2D phase screens

Figure 4.10.: Phase structure function for varying inner scale l0 and GMVKS: (a) l0 = 0.001m, (b) l0 = 0.005m,
(c) L0 = 0.01m, (d) l0 = 0.1m.
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4. Methods

Figure 4.11.: Phase structure function for varying exponent α and GMVKS: (a) α = 3.1, (b) α = 3.4, (c) α = 11/3,
(d) α = 3.9.
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Figures 4.10 and 4.11 show that good accordance can also be achieved for different inner scales l0

and exponents α . Therefore, the number of subharmonics recursions Nrecursion = 10 used for the phase
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4.3. Generation of correlated 2D phase screens

screen generation is sufficient for deviations between simulated and analytical structure functions within

statistical uncertainty.

4.3. Generation of correlated 2D phase screens

4.3.1. 3D random fields

The use of uncorrelated phase screens as described in the previous section can be inappropriate if the

Markov assumption is not met, i.e. that the outer scale L0 ≫ ∆z. Fortunately, the outer scale L0 typically

ranges about few meters up to an altitude of h = 30 km as shown in chapter 2, making this restriction

obsolete when propagation light signals over several 100 meters to kilometers. However for short paths

under strong turbulence the neglection of correlation of adjacent phase screens can lead to an overesti-

mation of integrated phase variance. For these cases, methods are required, which take the correlation of

phase screens in the direction of propagation into account.

Correlated 3D random fields and correlated 2D phase screens can be generated by using the sparse

spectrum (SS) method (Charnotskii [2011, 2016, 2020]) This method calculates a 3D random field, e.g.

one representing the refractive index of turbulent air by a composition of plane waves:

n(x,y,z) = Re
Nwaves

∑
n=1

an exp(ipnx+ iqny+ isnz) (4.46)

with random complex amplitudes an and random wave vectors kn = (pn,qn,sn) The complex amplitudes

an are zero-average statistically independent random variables with second moments

⟨ana∗m⟩= wnδnm (4.47)

⟨anam⟩= 0 (4.48)

If Pn(p,q,s) is the probability density for the n-th wave vector, the covariance function for n(x,y,z) is

given as

Bn(x,y,z) = ⟨n(x0,y0,z0)n(x0 + x,y0 + y,z0 + z)⟩ (4.49)

=
1
2

∫ ∫ ∫
d pdqds

N

∑
n=1

wnPn(p,q,s)cos(pnx+qnx+ snx) (4.50)

The general covariance function for a specific refractive index power spectral density Φn(p,q,s) is given

by

Bn(x,y,z) =
∫ ∫ ∫

d pdqdsΦn(p,q,s)cos(px+qy+ sz) (4.51)
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So the field n(x,y,z) will have the desired covariance function if

1
2

wnPn(p,q,s) = Φn(p,q,s) (4.52)

This is the principal equation of the SS technique. For isotropic power spectral densities Φn(p,q,s) =

Φn(K), the random wave vectors κn = (pn,qn,sn) can be sampled from a uniform distribution in direc-

tion. The integrand in equation 4.50 can be transformed to spherical coordinates

Pn(p,q,s)d pdqds = Pn(K,ϕ,θ)K2dK cosθdθ dϕ (4.53)

Then the principal equation gives

1
2

N

∑
n=1

wnPn(K) = 4πK2
Φn(K) (4.54)

A desired spectral interval KMIN ≤ K ≤ KMAX can be covered by an N subinterval partition

KMIN = K0 ≤ K1 ≤ . . .≤ KN−1 ≤ KN = KMAX (4.55)

Then the weights and probabilities based on the principal equation are given by

wn = 8π

∫ Kn

Kn−1

K2dKΦn(K) (4.56)

Pn(K) =
K2Φn(K)∫ Kn

Kn−1
K2dKΦn(K)

(4.57)

4.3.2. Correlated 2D phase screens

Correlated 2D phase screens can be calculated by integration of the 3D random field n(x,y,z) over a slab

∆z in propagation direction z:

ϕ j(x,y) = k
∫ j∆z

( j−1)∆z
dz n(x,y,z), j = 1,2, . . . ,Ns (4.58)

where Ns is the number of phase screens to be calculated. Inserting equation 4.46 and analytic integration

gives

ϕ j(x,y) = Re
Nwaves

∑
n=1

b j,n exp(ipnx+ iqny) (4.59)

b j,n =
2kan

sn
sin
(

sn
∆z
2

)
exp
(

isn

(
j− 1

2

)
∆z
)

(4.60)
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4.3. Generation of correlated 2D phase screens

For small components sn in z-direction, equation (4.60) gets numerically unstable. To remedy this prob-

lem for small sn, a Taylor series expansion can be used:

b j,n = 2kan∆zs2
n +O(s3

n) (4.61)

The Sparse Uniform (SU) method (Charnotskii [2020]) is an extension which uses the approach in equa-

tion 4.59, but uses uncorrelated coefficients b j,n for the generation of uncorrelated 2D phase screens. The

spectral weighting of these coefficients is then determined via integration over 2D spectra.

4.3.3. Phase structure function of correlated 2D phase screens

The radial-symmetric Non-Markov structure function for a separation r = |⃗r1 − r⃗2| in a single 2D phase

screen ϕ j(x,y) (Charnotskii [2016]) is given by

D(NM)
ϕ (r,0) = 16π

2k2
∫

∞

0
dK Φn(K)

∫ 1

0

dt
t
[1− cos(K∆zt)]

[
1− J0(Kr

√
1− t2

]
(4.62)

The covariance between two correlated 2D phase screens ϕ j(x,y) and ϕk(x,y) with index distance m =

| j− k| is given by

B(NM)
ϕ (0,m∆z) = 8πk2

∫
∞

0
dK Φn(K)

∫ 1

0

dy
y2 [1− cos(Ky∆z)]cos(Kym∆z) (4.63)

Then the corresponding longitudinal phase structure function gives

D(NM)
ϕ (0,m∆z) = 16πk2

∫
∞

0
dKϕn(K)

∫ 1

0

dy
y2 (1− cos(Ky∆z))(1− cos(Kym∆z)) (4.64)

For the Kolmogorov spectrum this integral diverges at the low-number limit and only the structure func-

tion can be calculated as

Dϕ(0,m∆z) = cLC2
n(∆z)8/3

×
[

1
2
(m+1)8/3 +

1
2
(m−1)8/3 − 1

2
m8/3 −1

]
,

(4.65)

where

cL = 16π ·0.033 ·
(

3
5

)2

· 3
8
· 3

2
·Γ
(

1
8

)
sin

π

6
≈ 0.225 (4.66)

A comparison of different phase screens based on the Kolmogorov spectrum for varying phase screen

thicknesses ∆z and number of plane waves Nwaves is shown in figure 4.12
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Figure 4.12.: Comparison of phase screens for varying phase screen thickness ∆z and number of plane waves Nwaves
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It can be seen that high frequency contributions are decreasing for increasing thickness ∆z. This can be

explained by low pass filtering of plane waves with high longitunal components sn due to integration in

the longitudinal direction z. Equation 4.60 shows that each plane wave is decreased by a factor

sin
(
sn

∆z
2

)
sn

(4.67)

This means that integration of the 3D random field in longitudinal direction z as done in equation 4.58

leads to high degradation of plane waves with close orientation to the integration direction z (high sn).

Therefore, phase screens with high slab sizes, e.g. ∆z = 10 reveal lower high-frequency contributions

compared to lower slab sizes. There are also visible artifacts of single plane waves for low number of

waves and also when slab size increases.
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4.3.4. Validation of phase screens

Similar to the comparisons of uncorrelated phase screens in section 4.2.3, uncorrelated phase screens

generated by the sparse spectrum method are compared for varying turbulence parameters based on

the simpler spectrum GMV KS. In figure 4.13 phase screens generated by N = 1024 plane waves and

dz = 15m in a field of 0.4m×0.4m are shown for varying outer scale L0. Again it can be observed that

high outer scales L0 filter out low spatial frequencies.

In figure 4.14 the phase screens for varying exponent α are shown. For both variations single plane

wave artifacts are visible which may be alleviated with a very high number of plane waves N > 16384.

However, computation would take much longer than using uncorrelated phase screens with subharmonics

and render the benefits of correlated phase screens questionable.

57



4. Methods

Figure 4.13.: Phase screens for varying outer scale L0 and GMVKS: (a) L0 = 0.1m, (b) L0 = 1m, (c) L0 = 10m,
(d) L0 = 100m. The outer scale L0 limits low frequency contributions. A decreasing outer scale L0 is related to
decreased low frequency contributions.
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4.3. Generation of correlated 2D phase screens

Figure 4.14.: Phase screens for varying exponent α and GMVKS: (a) α = 3.1, (b) α = 3.4, (c) α = 11/3, (d)
α = 3.9.
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Then again a comparison of sample structure functions (equations 4.41 and 4.42) to analytical expres-

sions (equations 4.62 and 4.64) is done. Nps = 200 statistically independent stacks of phase screens

are generated using the default configuration (table 4.1). In figure 4.15 the transversal phase structure

function Dϕ(r,0) for varying outer scale L0 is shown for horizontal direction D(x,0) and vertical direc-

tion D(0,y), while figure 4.16 shows the corresponding longitudinal phase structure function Dϕ(0,m∆z)

representing correlation between phase screens in a stack. A good agreement between sample structure

functions and analytical structure functions can be observed. Compared to the structure functions for

uncorrelated phase screens (figure 4.8), there are no dips of structure function for the lowest outer scale
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L0 = 0.1m at maximum separations of 1.6 m in figure 4.15. These separations correspond to opposing

borders of the generated phase screens. Hence there is no periodicity of phase screens even for little

low-frequency noise.

60



4.3. Generation of correlated 2D phase screens

Figure 4.15.: Comparison of analytical transversal Non-Markov phase structure function D(NM)(r,0) and sample
phase structure function Dϕ(r,0) for varying outer scale L0 and GMVKS: (a) L0 = 0.1m, (b) L0 = 1m, (c) L0 =
10m, (d) L0 = 100m. Colored regions are 95%-confidence bands of the sample structure functions Dhor/vert . The
analytical Non-Markov structure function (black line) is mainly in the confidence bands of the numerical structure
functions (red and blue line).
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Figure 4.16.: Longitudinal phase structure function Dϕ(0,m∆z) for varying outer scale L0 and GMVKS: (a) L0 =
0.1m, (b) L0 = 1m, (c) L0 = 10m, (d) L0 = 100m.
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Obviously, for outer scales L0 smaller then the phase screen thickness ∆z = 15m the longitudinal phase

structure function Dϕ(0,m∆z) achieves saturation for very low screen separations m ≥ 1, while only for

L0 = 100m there is significant correlation for m ≤ 3, since D(0,m∆z) = 2(Cov(0)−Cov(m∆z)) (see

equation 3.14).
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In figure 4.17 the analytical radial Non-Markov phase structure function D(NM)
ϕ (r,0) is compared for

different inner scales l0, outer scales L0 and exponents α based on the spectrum GMVKS. Default values

are C2
n = 10−13 m3−α , l0 = 0.01m, L0 = 1.0m, α = 11/3 and L = 150m. It is normalized to a common

prefactor 16π2k2C2
n with the wave number k, the phase screen thickness ∆z, the exponent factor A(α)

of the spectrum GMVKS (equation 2.16). The relevant turbulence parameter ranges are chosen from

data fits based on experimental data and shown in a later chapter. The influence of turbulence model

parameters on the Non-Markov phase structure function D(NM)
ϕ (r,0) is very similar to that on the Markov

phase structure function (figure 4.9). It can be observed that inner scale l0 has slight influence on the

Non-Markov phase structure function Dϕ(NM)(x,y) for inner scales l0 < 0.01m. An increasing inner

scale l0 also increases the GMV KS spectrum cutoff and hence the upper bound of the phase structure

function D(NM)
ϕ (r,0) is reduced. As the outer scales L0 limits the low-frequency contributions of the

spectrum GMVKS, it has the opposite effect on the phase structure function compared to the inner scale

l0. An increasing outer scale L0 decreases the low-frequency cutoff and therefore increases the upper

bound of Non-Markov phase structure function D(NM)
ϕ but also saturation sets in at higher separations.

For varying exponents the upper bound of phase structure function has a local maximum at α ≈ 3.45

for the specified default values. In figure 4.18 the same comparison is shown for the longitudinal Non-

Markov phase structure function ∆
(NM)
ϕ (0,m∆z). As the default outer scale L0 = 1m is much lower

than the phase screen thickness ∆z, the Markov assumption (L0 ≪ ∆z) holds, phase screens are almost

uncorrelated and the longitudinal phase structure function D(NM)
ϕ (0,m ·∆z) is saturated for separations

m ≥ 1 in the variations of l0 and α . Similar to the radial component, for increasing outer scale L0 the

longitudinal phase structure function D(NM)
ϕ (0,m ·∆z) increases as well as separations m where saturation

sets in.

63



4. Methods

Figure 4.17.: Analytical radial Non-Markov phase structure function D(NM)
ϕ (r,0) for varying turbulence parameters

l0 (a), L0 (b), and α (c) based on the model GMVKS. Default values are C2
n = 10−13 m3−α , l0 = 0.01m, L0 = 1.0m,

α = 11/3 and L = 150m
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4.3. Generation of correlated 2D phase screens

Figure 4.18.: Analytical longitudinal Non-Markov phase structure function D(NM)
ϕ (0,m ·∆z) for varying turbulence

parameters l0 (a), L0 (b), and α (c) based on the model GMVKS. Default values are C2
n = 10−13 m3−α , l0 = 0.01m,

L0 = 1.0m, α = 11/3, L = 150m and ∆z = 15m.
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Figure 4.19.: Phase structure function for varying exponent α and GMVKS: (a) α = 3.1, (b) α = 3.4, (c) α = 11/3,
(d) α = 3.9.
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4.4. Calculation of point spread function

So how can the wave propagation involving random phase modulations by generated phase screens be

used to obtain the point spread function corresponding to a point source, i.e. the profile of optical

intensity in the sensor plane? In order to calculate point spread functions resulting from turbulence

degradation, the wave propagation approach can be used on point sources. A point source can be modeled

as a 2D Gaussian windowed sinc function with quadratic phase (Schmidt [2010]):

U0(x,y) = λLβ
2 exp

(
− jk

2L
(x2 + y2)

)
sinc(βx,βy)exp

(
β 2

16
(
x2 + y2)) (4.68)

Here β = D̃/(λL) and D̃ is the width of amplitude field at the pupil plane where a uniform amplitude is

desired. It should be greater than the aperture D but smaller than the phase screen width Wx or height Wy.

One possibility to get a best-focus PSF(x,y) in the focal plane, is filtering the resulting profile Un(x,y)

by an aperture mask a(x,y) and a collimation-type phase compensation to allow the lens operation to

focus the image on the focal length (Hardie et al. [2017]):

p(x,y) = a(x,y)Un(x,y)exp
(
− jπ(x2 + y2)

λL

)
(4.69)

However, when input beam profiles U0(x,y) narrow compared to the grid size are used, rippling effects

can occur as shown in figure 4.20. This intensity profile is then filtered by a circular aperture.

Figure 4.20.: Example of rippling effects in beam profile In(x,y) = |Un(x,y)|2 for a propagated point source. Aper-
ture masking filters only pixels in the aperture area.
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The best-focus PSF is achieved when there is a flat profile at the aperture in the case of no turbulence. A

new approach for field correction can achieve this. A filter A0(x,y) has to be found so that

Ũ (no turb)
n,0 (x,y) = A0(x,y)U

(no turb)
n,0 (x,y)

=

{
(x,y) ∈ Aperture const

else 0

(4.70)

A filter A0(x,y) with this property can be chosen as

A0(x,y) =

 Un,0 > cUmax
Umax

Un,0(x,y)

else 1
(4.71)

where

Umax = maxxy(U
(no turb)
n,0 (x,y)) (4.72)

and c = 0.01 is a small factor to exclude pixels not corresponding to the aperture. A flat profile at the

aperture in the case of zero turbulence is associated with the absence of high-order aberrations, often

described by Zernike modes (Noll [1976]). Then for a simulation with non-zero turbulence the same

filter can be used to give a corrected field

Ũ turb
n,0 (x,y) = A0(x,y)U

(turb)
n,0 (4.73)

It is an advantage, that the filter A0(x,y) has to be calculated only once and can be cached for a specific

setting of aperture and computational field. The incoherent PSF (Goodman [2005]) can then be found by

Fourier optics as

PSF(x,y) =
(∣∣P(u,v)2∣∣)∣∣

u= x
λL ,v=

y
λL
, (4.74)

where P(u,v) = FŨ (turb)
n,0 (x,y). This procedure is shown in figure 4.21
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4.4. Calculation of point spread function

Figure 4.21.: Workflow of PSF calculation: 1. A beam profile emulating a point source is propagated through a
sequence of phase screens. 2. The resulting profile Un(x,y) is masked by a circular aperture. 3. Fourier optics
gives the point spread function P(u,v). 4. A rescaling of frequencies x = u/(λ f ) and y = v/(λ f ) gives the point
spread function P(x,y) in the sensor plane
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This procedure can then be repeated for different lines of sight to give the point spread function PSF(αx,αy,x,y)

for a point source at horizontal and vertical viewing angles (αx,αy). Similar approaches were used in for-

mer anisoplanatic turbulence simulations (Bos and Roggemann [2012],Hardie et al. [2017]). For small

viewing angles the planes of turbulence phase screens for different point sources can be assumed to be

parallel to each other. Then the phase screens for single point sources can be cropped from larger phase

screens at different positions s(x,y) relative to its centers, i. e.

sx/y,i = ∆sx/y,0 +∆sx/y(N − i) (4.75)

for the i-th phase screen of N total phase screens. The physical shift per phase screen is given by

∆sx/y = αx/y∆z (4.76)

∆sx/y,0 =
∆sx/y

2
(4.77)

with the phase screen thickness or wave propagation step size ∆z. For the horizontal direction this is

shown in figure 4.22.
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4. Methods

Figure 4.22.: Spatial subsampling of phase screens: PSFs for different viewing angles are calculated by subsam-
pling of different regions of interest (colored boxes) of same phase screens ϕn(x,y) via bilinear interpolation
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Also additional transversal wind effects can be included by adding physical shifts

∆swind,x/y =
vcross

f
i, (4.78)

depending on the cross-sectional wind speed vcross, the camera frame rate f and the image sequence ID

i. Caching of larger phase screens and subsampling of these screens for different point targets can be

comparably much faster than calculating new phase screens for each point target, e.g the sparse spectrum

(SS) method. However, this approach is strongly memory-limited depending on the field of view to be

simulated.

4.5. Turbulence simulation via non-uniform filtering

The generated point spread functions (PSFs) are the impulse responses of single point sources. If one

is interested in the degradation of arbitrary input scenes, filtering of pristine input images by these point

spread functions is required. Uniform filtering with single point spread functions is sufficient when field

of views θ < θ0 with the isoplanatic angle θ0 (equation 3.32) are used (isoplanatic imaging). Otherwise,

a non-uniform filtering procedure with spatially varying PSFs is required. Fast shift-variant blur (FSV)

(Miller et al. [2019]) was proposed, which uses spatially varying interpolations of multiple versions of
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4.5. Turbulence simulation via non-uniform filtering

the pristine image filtered by different PSFs. However, this approach requires caching of these filtered

versions. In the following a more general memory-efficient approach is presented.

4.5.1. Generation of local point spread functions

If a set of PSFs PSF(x′,y′,x− x′,y− y′) has been calculated for a specified field of view and matching

the spatial sampling frequency of a camera sensor, an arbitrary input scene I(x,y) can be non-uniformly

filtered to give a turbulence-degraded image O(x,y):

O(x,y) = ∑
x′

∑
y′

PSF(x′,y′,x− x′,y− y′)I(x′,y′) (4.79)

However, computation of point spread functions for each pixel of the input image I(x,y) can be com-

putationally very expensive. Computational effort can be drastically reduced by calculation of PSFs on

an equidistant grid overlaying the image and interpolation between adjacent grid PSFs for each image

pixel. If the image has dimensions (Nx,Ny) and the equistiant grid has dimensions (Mx,My), where

Mx = (Nx −1)/kx and My = (Ny −1)/kx then a pixelwise PSF can be calculated by linear interpolation

PSF(x′,y′,∆x,∆y) = (1− fy) [(1− fx)PSFi, j(∆x,∆y)+ fxPSFi+1, j(∆x,∆y)]

+ fy [(1− fx)PSFi, j+1(∆x,∆y)S+ fyPSFi+1, j+1(∆x,∆y)] ,
(4.80)

with

∆x = x− x′ ∆y = y− y′, (4.81)

and the indices

i =
⌊

x′

kx

⌋
j =
⌊

y′

kx

⌋
(4.82)

and the factors

fx =
x′

kx
−
⌊

x′

kx

⌋
fy =

y′

ky
−
⌊

y′

ky

⌋
, (4.83)

where ⌊.⌋ is the floor-function, rounding the argument to the closest smaller integer. An example for a

13x13 image with skip factors kx = ky = 3 is depicted in figure 4.23.
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4. Methods

Figure 4.23.: Example of PSF interpolation for 13x13 image. PSF(1,2,∆x,∆y) is calculated based on four adjacent
point spread functions PSF0,0,PSF0,1, PSF1,0 and PSF1,1 according to equation 4.80

𝑃𝑆𝐹0,0 𝑃𝑆𝐹1,0

𝑃𝑆𝐹1,1

𝑃𝑆𝐹0,1

Pixel grid

PSF grid

𝑃𝑆𝐹(1,2,Δx,Δ𝑦)

Methods for fast shift-variant blur (Miller et al. [2019]) can be used to accelerate imaging simulation for

long time sequences by Eigenvalue decomposition of the generated point spread functions and using a

limited number of components with the highest magnitudes. Then the degraded image can be formed by

spatially nonuniform superposition of uniformly filtered versions of the pristine image with the Eigen-

vectors as filter kernels. However, this requires modeling the spatial correlation of the spatially varying

weights of the filtered versions depending on the turbulence model. Additionally, for strong turbulence

instantaneous PSFs with multimodal intensity profiles can occur, which is shown in the next chapter.

There is no guarantee, that a fixed limited number of Eigenvalue components can represent these PSFs

without significant loss of accuracy. In figure 4.24 turbulence simulations for a radial sinusoidal pattern

with varying period and turbulence strengths based on the default configuration (table 4.1) is shown.

15x15 PSF grids are calculated and equidistantly mapped on the 512x512 16bit input image. Therefore

the input image represents a target of physical width and height of l = (14 · 1.5)cm = 21cm at a range

of L = 150m. The dynamic range is uniquely set to [0,65535]. It can be observed that the modulation
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4.5. Turbulence simulation via non-uniform filtering

Figure 4.24.: Turbulence-degraded frames of radial sinusoidal pattern with varying pattern period in pixel and
varying turbulence strengths C2

n/(m
−2/3). Color range is set uniquely to [0,65535].
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at higher spatial frequencies are more affected by turbulence strength C2
n than lower spatial frequencies.

There are visible spatial variations of degradation only in transitions between low and high turbulence

strengths C2
n . Based on precalculated PSF grids, arbitrary input images can be processed. A CUDA

implementation of the presented non-uniform image filtering enables the generation of video sequences

of 512x512 images with about 20 frames per second on a RTX 2080 Ti.
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4. Methods

4.5.2. Rescaling of point spread functions to sensor units

The PSF images calculated by Fourier transform of the transmission field at the aperture as shown in

figure 4.21 are given in units of

δx,y = λ f δu,v (4.84)

δu,v =
nx/y

Wx,y
, (4.85)

where nx,y are the grid sizes for computational field used for wave propagation. Wx,y are the physical

dimensions of the computational field. Point spread functions PSFsensor(∆x,∆y) in units of sensor pix-

els can be calculated by downsampling or area interpolation on the simulated point spread functions

PSFopt(∆x,∆y)

PSFsensor(∆x,∆y) =
∫ tx(∆x+1)

tx∆x

∫ ty(∆y+1)

ty∆y
Popt(x,y) dxdy, (4.86)

with the scaling factors

tx,y =
px,y

δx,y
(4.87)

and the pixel pitches px,y.
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5. Evaluation of simulated images

5.1. Uncorrelated 2D phase screens

For reliable simulations of PSFs that can be used for image-based turbulence simulation it is important

to validate properties of the PSFs for which analytical expressions exist. Unfortunately many figures of

merit are only given as integral representations involving the turbulence power spectral density Φn(κ)

and cannot be solved analytically for advanced spectra such as GMVKS and GMAS. If this is the case,

the corresponding integrals are solved numerically by trapez integration in the following. Long-exposure

MTFs and short-exposure MTFs, the Strehl ratio S and the aperture-averaged scintillation index σ2
I (D)

represent shape properties of single PSFs, while the differential tilt variance DTV (∆x,∆y) represents

spatial correlation between spatially separated PSFs in a grid of PSFs.

5.1.1. Validation of modulation transfer function

Based on the default configuration (4.1) multiple simulations of beam propagation with subsequent PSF

calculation are made based on statistically independent stacks of phase screens. A long-exposure PSF

is calculated by pixelwise averaging of single PSFs, whose centroids are slightly shifted against each

other depending on turbulence strength C2
n . A short-exposure PSF is calculated by pixelwise averag-

ing of a set of corrected PSFs, where centroids are shifted to be unique as described in section 3.2.10.

These shifts of centroids are related to tip/tilt correction. Then 2D fast Fourier transforms (FFTs) are ap-

plied on long-exposure and short-exposure PSFs. This gives the corresponding optical transfer functions

(OTFs). Taking the moduli of the complex OTFs gives the modulation transfer functions (MTFs). Then

corresponding spatial frequencies in the image plane can be found by the frequency step per pixel

∆νx/y =
fmax,x/y

Nx/y
=

1
Nx/y px/y

νx/y = ∆νx/y · (x/y) (5.1)

with pixel pitches px/y, column x and row y of the MTF images. In figure 5.1 horizontal and vertical

profiles MT FL,total(νx,0) and MT FL,total(0,νy) of the 2D long-exposure MTFs MT FL,total(νx,νy) for

varying turbulence strength C2
n based on the model GMVKS are shown. The optical cutoff frequency

shown as dashed vertical line is given by

νcuto f f =
D

λ f l
(5.2)
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5. Evaluation of simulated images

with the diameter D, wavelength λ and focal length f l. Also shown are the theoretical Fried MTFs

(equation 3.54) based on the Kolmogorov spectrum (GMVKS with α = 11/3, l0 = 0 and L0 → ∞) and

the spherical wave and plane wave MTF (3.72). Joint MTFs including diffraction are shown, since a

comparison in the vicinity of the cutoff frequency νcuto f f and above is pointless due to an arbitraryly bad

signal-to-noise ratio of the numerical sample MTFs for high frequency ν .
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5.1. Uncorrelated 2D phase screens

Figure 5.1.: Long-exposure MTF for varying turbulence strengths C2
n and GMVKS: (a) C2

n = 10−16 m−2/3, (b)
C2

n = 10−15 m−2/3, (c) C2
n = 10−14 m−2/3, (d) C2

n = 10−13 m−2/3. The cutoff frequency νcuto f f is shown as vertical
line.
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5. Evaluation of simulated images

The spherical MTF and (theoretical) Fried MTF are almost identical, minor differences can only be

attributed to outer scale effects (L0 = 100m), which are not considered in the Fried MTF. The diffraction

MTF representing the turbulence-free case is shown as upper bound. Obviously, for this configuration

turbulence has no significant impact for turbulence strengths C2
n ≤ 10−15 m−2/3. It can also be observed

that plane wave MTFs tend to drop faster than spherical wave MTFs. This can be explained by the

fact, that phase noise accumulated through beam propagation and received by the aperture is weighted

by optical intensity. However, for spherical waves the intensity profile is very narrow in the vicinity of

the emitting point source, while for plane waves all accumulated phase noise is uniformly weighted, if

accumulated power fluctuations are neglected.

In figure 5.2 the corresponding numerical short-exposure MTFs and analytical Fried MTFs (equation

3.55) are shown. There is also very good agreement between numerical and analytical MTFs. The good

accordance of both, i.e. long-exposure and short-exposure MTFs, implies also a good match of their

ratios

R(νx,νy) =
MT FLE(νx,νy)

MT FSE(νx,νy)
(5.3)
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5.1. Uncorrelated 2D phase screens

Figure 5.2.: Short-exposure MTF for varying turbulence strengths C2
n and GMVKS: (a) C2

n = 10−16 m−2/3, (b)
C2

n = 10−15 m−2/3, (c) C2
n = 10−14 m−2/3, (d) C2

n = 10−13 m−2/3.
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5. Evaluation of simulated images

5.1.2. Validation of differential tilt variance

Besides the correct features of the single PSFs, e.g. long-exposure and short-exposure MTFs, for aniso-

planatic imaging it is also crucial for PSFs representing separated point sources to have proper spatial

correlation. For this purpose a grid of 15x15 PSFs representing an equally sized grid of point sources is

simulated based on the default configuration (table 4.1). Depending on the physical separation of point

sources simulations are done on shifted crops (512x512) from the extended phase screens (2048x2048)

as described in section 4.4. Nps = 200 frames with statistically independent stacks of phase screens

are simulated. In figure 5.3 smaller image subareas with 10x10 grids of PSFs for two high turbulence

strengths C2
n = 10−13 m−2/3 and C2

n = 10−12 m−2/3 are depicted. Subareas are shown for better visibility

of single PSFs. For realistic spacings between adjacent PSFs the 512x512 images of PSFs have to be

cropped. The angular subtense AS between two adjacent point sources as seen from a camera is given by

ASx/y =
∆qx/y

L
, (5.4)

with the physical separation of point sources ∆qx/y and the propagation length L. So the relevant subarea

of the PSF image has dimensions

wx/y =
ASx/y

IFOVx/y
(5.5)

with the instantaneous field of views

IFOVx/y =
px/y

f l
(5.6)

with the pixel pitches px/y and focal length f l.

80



5.1. Uncorrelated 2D phase screens

Figure 5.3.: Image section with 10x10 PSFs for two turbulence strengths: (a) C2
n = 10−13 m−2/3, (b) C2

n =
10−12 m−2/3. Shapes of PSFs vary spatially. PSFs are correlated between different positions depending on dis-
tance.
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5. Evaluation of simulated images

For analysis of single PSFs in the grid, this image cropping is not convenient as there may be overlapping

effects for high turbulence strengths C2
n .

For the original PSF images centroids can be estimated by

cx =
∑xy xPSF(x,y)

∑xy PSF(x,y)
(5.7)

cy =
∑xy yPSF(x,y)

∑xy PSF(x,y)
(5.8)

These centroid shifts can be easily converted in units of viewing angle:

cx/y/rad = IFOVx/ycx/y/sensor pixel (5.9)

Then they can be identified as tips/tilts and used to calculate diffential tilt variances as described in

section 3.2.9. The numerical differential tilt variance based on the centroid shifts can be estimated by

DTVx/y(∆ix,∆iy) =
∑ix,iy,iz

(
cx/y(ix, iy, iz)− cx/y(ix +∆ix, iy +∆iy, iz)

)2

N
(5.10)

ix and iy are horizontal and vertical grid indices, ∆ix and ∆iy horizontal and vertical separations. iz ∈
[0,Nz−1] is the frame index. N = (Nx−|∆ix|)(Ny−|∆iy|)Nz is the number of summands. Then the index

differences can be converted into physical separations

∆x = ∆ix∆qx (5.11)

∆y = ∆iy∆qy (5.12)

The error on the mean DTV is estimated as

σDTVx/y
=

√√√√DTV 2
x/y −DTVx/y

2

Nps
, (5.13)

where averages are taken over Nps = 200 statistically independent frames. The corresponding analytical

differential tilt variance is evaluated from numerical integration of equation 3.50. In figure 5.4 numerical

DTVs parallel to the axis of separation DTVx(∆x,0) and vertical to the axis of separation DTVy(∆x,0)

are compared with the corresponding analytical DTVs.
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5.1. Uncorrelated 2D phase screens

Figure 5.4.: Differential tilt variance (DTV) for varying turbulence strengths C2
n and GMVKS with 95%-confidence

bands: 1. Parallel: DTVx(∆x,0), 2. Perpendicular DTVy(∆x,0), (a) C2
n = 10−15 m−2/3, (b) C2

n = 10−14 m−2/3, (c)
C2

n = 10−13 m−2/3, (d) C2
n = 10−12 m−2/3.
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Obviously, numerical and analytical DTVs match well within the given uncertainty.
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5. Evaluation of simulated images

5.1.3. Validation of scintillation index

The aperture-averaged scintillation index σ2
I (D) (equation 3.42) represents fluctuations of integrated

irradiance. It can be numerically calculated from images of simulated PSFs based on the default con-

figuration (table 4.1). The average power Pi for the PSF sample i can be summation over the entire PSF

image:

Pi = ∑
x,y

PSFi(x,y) (5.14)

Then the aperture-averaged scintillation index is calculated as

σ
2
I,num(D) =

P2

P2 −1, (5.15)

where averages are taken for Nps = 200 independent PSF samples. In figure 5.5 the sample aperture-

averaged scintillation index σ2
I,num(D) is compared to the spherical wave and plane wave aperture-

averaged scintillation indices (equations 3.43 and 3.44) and the Kolmogorov aperture-averaged scintilla-

tion index (equation 3.45). Also shown is the Rytov variance σ2
R indicating the corresponding fluctuation

regime. The largest range of shown turbulence range lies in the weak fluctuation regime. Obviously, all

aperture-averaged scintillation indices are approximately proportional to the turbulence strength C2
n or

the Rytov variance σ2
R and differ only by a constant factor. This is evident, since the turbulence strength

C2
n occurs as constant factor in the integral representations of the scintillation indices. Yet this is not

generally true. For strong turbulence conditions σ2
R ≈ 2 the aperture-averaged scintillation indices reach

a maximum and even decrease for higher turbulence strengths C2
n (Andrews and Phillips [2005]). How-

ever, for realistic levels of turbulence strength C2
n < 10−12 m−2/3 (Yatcheva et al. [2015]) this domain is

not reached under the specified settings.
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5.1. Uncorrelated 2D phase screens

Figure 5.5.: Aperture-averaged scintillation σ2
I (D) dependent on turbulence strengths C2

n for the turbulence spec-
trum GMVKS
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5.1.4. Validation of Strehl Ratio

Another figure of merit to validate is the Strehl ratio (equation 3.30) Here single PSFs are simulated

based on the default configuration, but for different turbulence strengths C2
n . Then the numerical Strehl

ratio is calculated as

SRnum =
maxxy(PSFturb(x,y))
maxxy(PSF0(x,y))

, (5.16)

with a long-exposure PSFturb(x,y) for a certain turbulence strength C2
n and PSF0(x,y) for no turbulence.

As the number of samples Nps increases, maxima and center values of the numerical long-exposure PSFs

converge to each other, as the theoretical long-exposure PSF is radially symmetric. Here again Nps = 200

is used.

In figure 5.6 the Strehl ratio is shown for different turbulence strengths C2
n . It is compared to the analytical

Strehl ratio (equation 3.30) by using the spherical wave and plane wave fried parameters r0 (equations

3.28 and 3.27). As expected the numerical Strehl ratio and the spherical wave Strehl ratio match well,
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5. Evaluation of simulated images

there are only slight differences for increasing turbulence strength C2
n . The plane wave Strehl ratio is

lower than the spherical wave Strehl ratio. This is related to the fact that a PSF is the Fourier transform

of an MTF and a more sloping plane wave long-exposure MTF leads to a broader PSF with a lower

maximum or center value. The Rytov variance σ2
R (equation 3.37) indicates, that the shown range of

turbulence strengths C2
n is mainly in the regime of weak fluctuation.

Figure 5.6.: Strehl ratio S dependent on turbulence strength C2
n for the turbulence spectrum GMVKS

10 2 10 1 100
Rytov variance 2

R = 1.23C2
nk7/6L11/6

10 15 10 14 10 13 10 12

C2
n[m 2/3]

10 2

10 1

100

St
re

hl
 ra

tio
 S

Strehl ratio plane
Strehl ratio spherical
Strehl ratio numerical

5.2. Correlated 2D phase screens

The same validation procedures as for uncorrelated 2D phase screens were applied for PSFs based on

phase screens generated by the sparse spectrum (SS) method (section 5.1). Sample figures of merit

are calculated in the same manner as for uncorrelated phase screens. Again Nps = 200 statistically

independent stacks of phase screens are calculated and simulations done on the default configuration 4.1.

General analytic expressions for these figures of merit do not yet exist for 3D correlated phase noise.

Hence sample results are compared with the same analytical expressions for uncorrelated 2D noise used

in section 5.1.
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5.2. Correlated 2D phase screens

5.2.1. Validation of modulation transfer function

In figures 5.7 and 5.8 long-exposure and short-exposure modulation transfer functions (MTFs) based on

phase screens generated by the sparse spectrum method are shown. Sample MTFs for varying turbu-

lence strength C2
n are compared to the theoretical Fried MTFs (equations 3.56 and 3.57) as well as the

spherical and plane MTF (equation 3.72). Sample MTFs and analytical MTFs match well except for

the short-exposure MTF at highest turbulence strength C2
n = 10−13 m−2/3. This deviation could be due

to undersampling of high frequencies in the SS phase screens which are not cancelled out by centroid

shifting.
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5. Evaluation of simulated images

Figure 5.7.: Long-exposure MTF for varying turbulence strengths C2
n and GMVKS: (a) C2

n = 10−16 m−2/3, (b)
C2

n = 10−15 m−2/3, (c) C2
n = 10−14 m−2/3, (d) C2

n = 10−13 m−2/3.
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5.2. Correlated 2D phase screens

Figure 5.8.: Short-exposure MTF for varying turbulence strengths C2
n and GMVKS: (a) C2

n = 10−16 m−2/3, (b)
C2

n = 10−15 m−2/3, (c) C2
n = 10−14 m−2/3, (d) C2

n = 10−13 m−2/3.
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5. Evaluation of simulated images

5.2.2. Validation of differential tilt variance

For Nps = 200 samples of 15x15 PSF grids based on SS phase screens with Nwaves = 1024 DTV (equa-

tion 5.10) can be calculated. This is shown in figure 5.9. Compared to the case of uncorrelated phase

screens (figure 5.4) uncertainties of the sample DTV values are high. A reason for this could be under-

sampling due to the low number of plane waves Nwaves = 1024 compared to the number of sinusoids in

the FFT method with subharmonics Nuncorrelated = NFFT +Nsubharmonics, where NFFT = 2048×2048 and

Nsubharmonics = 80. This hypothesis is supported by the observation of single significant plane waves in

the generated SS phase screens (figure 4.12). Plane waves with strong alignment with the axis of propa-

gation (high sn in equation 4.67) are highly degraded and hence increase the relative sample variances of

the summed remaining plane waves. Nevertheless, sample DTV values scale with increasing turbulence

strength C2
n .
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5.2. Correlated 2D phase screens

Figure 5.9.: Differential tilt variance (DTV) for varying turbulence strengths C2
n and GMVKS: (a) C2

n =
10−15 m−2/3, (b) C2

n = 10−14 m−2/3, (c) C2
n = 10−13 m−2/3, (d) C2

n = 10−12 m−2/3.
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5. Evaluation of simulated images

5.2.3. Validation of scintillation index

Simulations based on SS phase screens for varying turbulence strengths C2
n show the linear relationship of

aperture-averaged sample scintillation indices and corresponding analytical expressions (equations 3.45,

3.44 and 3.43). Compared to sample scintillation index (SI) values for uncorrelated 2D phase screens

(figure 5.5) the sample SI values in figure 5.10 are a factor about 4 higher and reveal more fluctuations.

The increased SI values may be attributed to the stronger influence of individual plane waves in the SS

phase screens. similar to DTV.

Figure 5.10.: Aperture-averaged scintillation index dependent on turbulence strengths c2
n for the turbulence spec-

trum GMVKS
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5.2.4. Validation of Strehl ratio

Simulations are done based on correlated SS phase screens for varying turbulence strengths C2
n to com-

pare sample Strehl ratios (SR) to the corresponding analytical expression (equation 3.30). Besides higher

fluctuations compared to the case of uncorrelated phase screens (figure 5.11) the sample SR values fit

well with the analytical spherical SR values.
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5.3. Implementation and benchmarks

Figure 5.11.: Strehl ratio dependent on turbulence strengths c2
n for the turbulence spectrum GMVKS
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5.3. Implementation and benchmarks

Besides accuracy of simulation, computation time is also a crucial factor for possibly large sample sizes

and statistically robust simulations. The generation of phase screens using multiple FFTs or superpo-

sition of multiple plane waves used for the sparse spectrum (SS) method can highly benefit from the

parallel computation capabilities of GPUs. The same applies for the entire split-step beam propagation.

For this reason C++ libraries are developed , which use the CUDA framework from NVIDIA. In table

5.1 benchmark results are shown for a GTX 1080 Ti for the generation of 2048x2048 SS phase screens

depending on the number of plane waves Nwaves. Compared to the superposition of plane waves dura-

tions for weight and wave vector initialization are neglectable. In figure 5.2 durations for the split-step

simulation with 2D uncorrelated phase screens are shown. Obviously the generation of SS phase screens

is the bottleneck in the simulation for Nwaves > 128, so benefits of the SS method must justify the addi-

tional costs. In the previous sections based on the chosen simulation parameters the FFT method with

subharmonics shows better compliance with theoretical results than the SS method with Nwaves = 1024.

So if the Markov assumption ∆z ≪ L0 is not violated, the FFT method can be preferred. For a PSF grid
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5. Evaluation of simulated images

Table 5.1.: Computation times of the generation of 10 SS phase screens with 2048x2048 pixels on a GTX 1080 Ti
depending on number of waves Nwaves

Nwaves Duration in ms
128 121±130
256 240±40
1024 1039±4
4096 6110±30

Table 5.2.: Other durations for 2D uncorrelated phase screens and simulation on a GTX 1080 Ti

Method Computation time in ms
Generation of 10 phase screens (ps) (2048x2048) 75±4
Single Propagation with 10 ps (512x512) 10±1
PSF calculation (512x512) 10±40

the number of required single propagations and PSF calculations scale with the number of PSFs. A good

speedup can be achieved by batch processing of multiple propagations and PSF calculations, although

this approach is limited by GPU memory. In this thesis extended 2048×2048 phase screens are gener-

ated for both approaches to use common modules for sub sampling on these phase screens. However,

it has to be considered that the SS method can extend phase screens arbitraryly in contrast to the FFT

method by sampling sinusoids at different spatial coordinates. A monolithic software design with phase

screens as large as the 512× 512 computational field could perform better, if a low PSF grid size is

needed.

5.4. Comparison: Inverse Fourier method with subharmonics versus sparse spectrum

(SS) method

Both investigated methods for phase screen generation, the Inverse fast Fourier transform (IFFT) method

with addition of subharmonics described in section 5.1 and the SS method desribed in section 5.2 show

good agreement to theoretical expressions in terms of long-exposure and short-exposure MTFs. This can

be seen in figures 5.1 and 5.2 for the IFFT method and figures 5.7 and 5.8 for the SS method. Within

95%-confidence bands, the differential tilt variance (DTV) also shows good accordance to theoretical

expressions for different turbulence strengths C2
n(figure 5.4 versus figure 5.9). However, the SS method

shows significantly higher statistical fluctuations compared to the IFFT method. Similarly, for the SS

method, there are higher fluctuations around the theoretical values for the aperture-averaged scintillation

index (figure 5.5 versus figure 5.10) and the Strehl ratio (5.6 versus 5.11). One reason for this could be

the sparsity of spectrum, i.e. the much lower number of sinusoids (1024) in the SS method compared

to the dense equidistant grid of sinusoids for the IFFT method (2048x2048) along with the NlevelsNSH
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5.4. Comparison: Inverse Fourier method with subharmonics versus sparse spectrum (SS) method

subharmonics with the number of subharmonic recursions Nlevels = 10 and the number of subharmonics

per recursion NSH = 3×3−1 = 8.

Hence, the IFFT method seems to be preferable for simulations of perturbed point grids which are suit-

able for validation of experimental data in terms of long-exposure and short-exposure MTFs as well as

DTV. While the SS method has the intrinsic ability to extend phase screens by shifting spatial coordi-

nates, for the IFFT method, spatial and temporal translations of phase screens, e.g. for investigation of

wind effects, are are possible by techniques for phase screen extension based on covariance with border

values(Assémat et al. [2006]). The translation of phase screens (Taylor frozen turbulence) is a common

way of modeling temporal variations of air refractive index (Andrews and Phillips [2005]), if wind effects

are the dominant source of these variations. However, the investigation of wind effects by translation of

phase screens are not within the scope of this work, since temporal correlation of derived figures of merit

are often unknown in terms of theoretical expressions. Aggravatingly, there may be strong spatial and

temporal variations of wind direction and strength along the optical path in an experiment, leading to lots

of scenarios to be simulated. For all these reasons, only the IFFT method is used for the following exper-

imental validation of the turbulence simulation. The experimental settings are chosen so that temporal

correlation of measured figures of merit can approximately be neglected.
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6. Evaluation of observed degraded images

6.1. Experimental acquisition of turbulence degraded imagery

For validation of simulated point spread functions (PSFs), field measurements were done on multiple

days in a nature reserve. As target two LED mini-matrices were used, each with 28x18 LEDs and dimen-

sions of 42cm x 27cm. The lefthand LED mini-matrix was at a color temperature of T = 6500K, while

the righthand LED mini-matrix was at a color temperature of T = 3000K. For simplified power supply

they were soldered together at the shorter side in the vertical direction. An uninterruptible power supply

(UPS) with an AC voltage U = 230V was used. Due to technical specifications of the LED matrices

and to increase operating time limited by the UPS capacity, a lab power supply with current limiter was

used to provide the LED matrices with a DC voltage U = 24V and a current I = 4A. The LED matrices

were mounted on a tripod at a height of 2m above ground. Devices for data acquisition were mounted

on a wooden plate about 10cm above ground. Each day of measurement they were placed approximately

150m from the target. These devices are a monochrome telescope camera ZWO ASI290MM Mono with

a telezoom objective Wallimex Pro 650 mm-1300 mm, which is connected to a laptop via USB3. An

impeller anemometer Holdpeak HP-886A is placed next to the objective in transversal direction, i.e. per-

pendicular to the line of sight. It is also connected to the laptop via USB and can measure temperature,

relative humidity and wind speed with one readout per second. An overview of the device specifications

is given in table 6.1. The experimental scene is shown in figure 6.2. The main advantage of an active

LED array target over passive targets is a relatively constant bright illumination leading to very good

signal-to-noise ratios in the acquired camera data. Brightness drifts due to sun and cloud movements are

significantly reduced.

Two color temperatures, T = 6500K (blue) and T = 3000K (orange) are used in order to check for dif-

ferences in the point profiles or corresponding MTFs for varying average wavelengths. For determining

average wavelengths, spectrometer measurements were made. These measurements are shown in figure

6.1. Also shown are the L1-normalized spectral irradiances weighted by relative responsivity of the used

camera sensor.

The relative responsivity R(λ ) of the camera sensor "ASI 290MM mono" can be approximated by

R(λ/nm) =

{
λ/nm < 600 1− 0.4

200(600−λ/nm)

else 1− 0.9
400(λ/nm−600)

(6.1)
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6. Evaluation of observed degraded images

Figure 6.1.: Lumitronix LED spectrum measured by QWave spectrometer and weighted by ASICAM 290MM
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6.1. Experimental acquisition of turbulence degraded imagery

For the telezoom objective an optical transmittance of unity is assumed over the shown spectral range.

To clarify the differences for strong and weak turbulence conditions in terms of spatial fluctuations, two

recorded example images are shown in figure 6.3, one for a summer day at 8/22/2020 and T 30◦C and

another for a winter day at 12/18/2020 and T = 6◦C.

Table 6.1.: Device specifications

Camera

ZWO ASI290MM Mono
Sensor: 1/2.8" Monochrome CMOS
Bit depth: 14bit
Resolution: 2.13 Megapixels
Diagonal: 6.46 mm
Image Array: 1936x1096
Pixel Size: 2.9um
Max Frame Rate at Full Resolution: 170 FPS

Objective
Wallimex Pro
Focal length: 650 mm-1300 mm
Aperture diameter: 8.6 cm

Target

Two Lumitronix LED mini-matrices (soldered)
LED elements: 28 (horizontal) x 18 (vertical) each
Dimensions: 42cm (horizontal) x 27 cm (vertical) each
Color temperatures:
T = 6500K (left hand), = 3000K (right hand)
Average wavelengths:
λ blue = 567nm (left hand) , λ orange = 593nm (right hand)

Anemometer

Holdpeak HP-866A
Accuracies:
Wind: ±2%±0.5m/s
Temperature: ±1.5 ◦C
Relative humidity: ±3%
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6. Evaluation of observed degraded images

Figure 6.2.: Experimental scene at 48°59’55"N 8°17’05"E: A telezoom objective Wallimex Pro 650 mm-1300 mm
is plugged to a monochrome telescope camera ZWO ASI290MM. For data acquisition the camera is connected to
a laptop via USB3. The camera is pointing to a target of 56x18 LEDs in about 150 m

Target

Camera
Objec�ve
Laptop

Line of sight
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6.1. Experimental acquisition of turbulence degraded imagery

Figure 6.3.: Example images of the (2*28)*18 LED target degraded by air turbulence at ground: 1. Warm summer
day at 8/22/2020 (Top) at 30◦ C, 2. Cold winter day 12/18/2020 at 6◦ C(Bottom)

6.1.1. Experimental settings

Measurements with the LED grid are made on several days in 2020 and 2021. As no continuous power

supply was available for the LED grid, recording time was limited to about 1 hour each day by use an

uninterruptible power supply. The integration time was chosen such that the signals for single LEDs
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6. Evaluation of observed degraded images

are not saturated and the distribution of camera pixel values covers about half of the grayscale range. It

ranges between the minimal integration time tmin = 32 µs and tmax = 100 µs. A short integration time is

also important to prevent motion blur caused by temporal fluctuations caused by turbulence. 16 bit raw

monochrome video sequences are captured with a nominal frame rate of 8 Hz. A fixed focal length of

f l = 0.8m is used. A varying number of sequences Nseq was recorded for different days due to limited

battery capacity for the LED matrix and different time requirements for experimental setup.

Table 6.2.: Record information about captured video sequences

Date Day time Range L in m Temperature in ◦C Humidity in % Nseq

2020/08/22 16:55 - 17:47 149.4±0.5 24.7 - 30.3 36.8 - 62.6 129
2020/08/26 18:22 - 18:28 115.7±0.1 22.3 - 28.4 28.3 - 44.6 15
2020/09/08 11:35 - 12:23 105.7±0.8 19.4 - 23.3 42.8 - 64.3 143
2020/09/11 18:33 - 19:00 91.3±0.3 19.7 - 22.5 60.7 - 70.9 73
2020/09/15 17:45 - 18:11 107.9±0.2 23.3 - 35.7 38.5 - 64.1 89
2020/11/06 13:45 - 14:09 109.4±0.9 9.9 - 11.5 49.3 - 55.2 56
2020/11/07/1 09:04 - 09:57 107.1±0.1 2.7 - 5.3 70.7 - 79.7 102
2020/11/07/2 16:12 - 16:57 131.6±0.2 5.2 - 8.7 65.7 - 72.6 110
2020/11/09 16:05 - 16:40 131.7±0.4 8.3 - 11.4 68.4 - 76.9 106
2020/12/18 15:47 - 16:06 127.2±0.1 3.1 - 5.9 74.6 - 80.7 56
2020/12/26 16:37 - 16:59 154.0±0.2 0.9 - 3.3 71.0 - 75.1 54
2021/03/06 16:29 - 17:18 170.2±1.3 4.0 - 7.5 32.9 - 46.9 90
2021/03/08 09:58 - 11:07 182.1±1.9 0.9 - 4.9 50.7 - 64.1 201

6.1.2. Image evaluation on regions of interest

Acquired camera data of LED grid projections can be evaluated by manually setting regions of interest

(ROIs) with single centered LEDs. However, this approach can be very tedious if there is a large amount

of data or different positions of the grid in the field of view for different recording dates. A more

convenient way is to automatically calculate a grid of ROIs based on time-averages of video sequences.

Then local maxima can be determined by peak detection. Each local maxima can represent the center

of a square ROI. This procedure is shown in figure 6.4. A unique ROI size of 28x28 is chosen for all

recording dates, so that adjacent ROIs do not overlap. For strong centroid shifts the LED profiles might

be cutoff by the finite ROI size. This leads to a bias of the estimated centroids. In order to prevent this,

the ROI position is iteratively adapted per captured frame by centering on estimated centroid positions

until the ROI positions do not change anymore or have converged.

102



6.1. Experimental acquisition of turbulence degraded imagery

Figure 6.4.: Calculation of ROIs

(a) A video sequence is time-averaged

(b) Local maxima are determined by peak detection.

(c) A region of interest with centered local maximum is formed for all local maxima
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6. Evaluation of observed degraded images

As the used camera objective has an adjustable focal length between f l = 650mm and f l = 1300mm,

the objective tube to which the camera sensor is attached is freely rotatable. This makes it necessary to

manually adjust the alignment between the axes of the LED grid and the axes of the camera sensor for

each trial setup on different recording dates. However, the misalignment angle can be determined as the

angle between the connecting line of two corner maxima and the horizontal axis.

6.1.3. Calculation of LED footprint MTF

For evaluation of deviations between experimental and simulated long-exposure and short-exposure

MTFs, it is crucial to take the blur due to the extended LED footprint into account. For this purpose,

close captures of some LEDs with a Tamron objective in a distance of R ∼ 1m were made, where air

turbulence can be neglected. The physical length per pixel lpixel in the object plane can be found by cal-

culating image centroids for adjacent LEDs c1 and c2 and using the physical separation c = 0.41/27m

from the target specifications:

lpixel =
c

|c1 − c2|
. (6.2)

Then the sampling frequency in the object plane is given as

fS,ob ject =
1

lpixel
(6.3)

For analyzing a single LED footprint a square image section M ×M containing one LED is cropped.

Then the 2D FFT is calculated of this image crop. The minimal frequency step along the horizontal and

vertical axis is hence

∆ fob ject =
fS,ob ject

M
. (6.4)

During the experiments some misalignment between the LED grid and the camera field of view is un-

avoidable. For estimating best-case and worst case MTFs, 1D profiles of the 2D FFT are calculated

along integer step sizes (k, l), where k, l ∈ [0,5]. To avoid duplicates, only distinct fractions k/l are taken

into account. In figure 6.6 the close capture image of a single LED is shown and the corresponding

min, max and mean values of 1D profiles of the 2D FFT depending on object-plane spatial frequency

fob ject are shown. The measured footprint MTF depending on the object-plane spatial frequency fob ject

is unique for different recording dates since the LED signatures and separations are fixed. However, the

corresponding focal-plane spatial frequencies f f ocal vary for different recording dates, since the ranges

also vary. Focal plane spatial frequencies f f ocal can be obtained by

f f ocal =
R
f l

fob ject , (6.5)
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6.1. Experimental acquisition of turbulence degraded imagery

Figure 6.6.: Close capture of a single LED at distance R ∼ 1m by using a Tamron objective and ZWO ASICAM
290 MM Mono(left). Normalized log magnitude of 2D FFT of the close capture. The DC coefficient is centered.
White is associated with maximum and black with minimum (right). Min/max/mean values and 95% confidence
band of 1D profiles from the 2D FFT of the image depending on object-plane spatial frequency (bottom).
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6. Evaluation of observed degraded images

with the range R between camera and target and the focal length f l. As the range R increases, the LED

footprint MTF shown in figure 6.6 also becomes increasingly flat with respect to focal-plane spatial fre-

quency f f ocal . Therefore, the contribution of the LED footprint drops compared to other degradations.

Of course, the captured frame is also afflicted with degradations by detector footprint, optical diffrac-

tion, defocussing, etc. However, due to the extended LED footprint over several sensor pixels these

degradations are neglectable. The LED footprint MTF has to be taken into account when comparing

simulated intensity profiles of perfect point profiles degraded by turbulence with measured intensity pro-

files afflicted with the LED footprint. The additional blur due to the LED footprint could also be directly

included in the simulation. Though, this would aggravate the comparison of intensity profiles between

simulation and theoretical expressions e. g. for long-exposure and short-exposure MTF.

6.1.4. Calculation of modulation transfer function (MTF) ratios

So how strong is the dependency of measured LED profiles on the used spectral band? Is it possible to

detect significant differences from experimental data between the orange and blue spectrum and between

the horizontal and vertical direction?

The log ratio

R(λ ,νx,νy) = ln
(

MT FSE(λ ,νx,νy)

MT FLE(λ ,νy,νy)

)
(6.6)

described in section 3.2.10 is a figure of merit which is robust against other types of degradation such

as LED footprint, detector footprint and sampling, etc. The reason for this is the reduction of these

degradations in the fraction. For all calculated regions of interest, long-exposure and short exposure

MTFs for single point sources can be calculation by using the procedure described in section 3.2.10.

Instead of using entire frames, only square regions of interest ROIi j with wROI ×wROI pixels each and

wROI = 28 are used:

MT Fi j,SE(νx,νy) = FPSFSE(x,y) = F ⟨In,shi f ted(x,y)⟩n,x/y∈ROIi j , (6.7)

MT Fi j,LE(νx,νy) = FPSFLE(x,y) = F ⟨In(x,y)⟩n,x/y∈ROIi j , (6.8)

with the column index i ∈ [0,55] and row index j ∈ [0,17]. Spatial frequencies can be easily converted

between pixel space and and angular or focal plane place, by identifying the sampling frequency

νS,angular =
f l
px

(6.9)

νS,focal plane =
1
px

(6.10)
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6.1. Experimental acquisition of turbulence degraded imagery

with the pixel pitch px = 2.9 µm and the focal length f l = 0.8m. Then the spatial frequencies can be

converted as

νx/y[rad−1] =
wROI

νS,angular
νx/y[pixel−1] (6.11)

νx/y[m
−1] =

wROI

νS,focal plane
νx/y[pixel−1] (6.12)

Denoting the image section for ROIi j as In,i j(x,y) = In(x+ x0,i j,y+ y0,i j), where (x0,i j,y0,i j) are coordi-

nates of the left top corner of ROIi j, the long-exposure and short-exposure MTFs can be written as

MT Fi j,LE(νx,νy) =
∣∣DFTxyAveragezIn,i j(x,y)

∣∣ , (6.13)

MT Fi j,SE(νx,νy) = Averagez
∣∣DFTxyIn,i j(x,y)

∣∣ , (6.14)

with the pixel-wise average Averagez over the image sequence and the frame-based discrete Fourier

transform DFTxy. For averaging by Averagez, a fixed number of N = 100 frames is used. Single axis

profiles MT F(νx,0) and MT F(0,νy) for horizontal and vertical direction can be formed.

Then, these MTFs for single ROIs can be averaged over the respective LED minimatrix (orange or blue,

NROI = 504). In figure 6.7 the ROI-averaged log ratio ⟨R⟩ROI is shown for the orange and blue spectrum

with 95%-confidence bands are shown for a single video sequence at a hot summer day, 8/22/2020.

Since the calculated MTFs are highly dominated by background noise for high spatial frequencies, i.e.

νx/y > 2000m−1, there are also large fluctuations in the log ratio R. Hence, the spatial frequency νx/y is

cutoff, for MT FSE(νx/y)< 0.01 or MT FLE(νx/y)< 0.01.

Figure 6.7.: log ratio R for a single video sequence at 8/22/2020 based on N f = 100 frames. Mean values and its
95%-confidence bands are calculated by averaging over NROI = 28x18 = 504 ROIs. Expected log ratio R based
on Fried MTFs at the orange average frequency λ orange = 593nm are shown color-coded for varying turbulence
strengths log10 C2

n
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6. Evaluation of observed degraded images

Also color-coded are the expected log ratios R based on the analytical Fried MTFs (equations 3.56 and

equations 3.57) for varying turbulence strengths log10C2
n . However, the Fried MTFs are based on the

Kolmogov spectrum not taking into account effects of inner scale l0, outer scale L0 and non-Kolmogorov

power slope α . Besides different apparent turbulence strengths log10C2
n , also for other video sequences

of the same and other recording dates, the overlapping of confidence bands of the orange spectrum and

the blue spectrum can be observed. The difficulty to clearly distinguish log ratios R between both spectra

supports the conjecture that these two spectra with a difference of ∆λ = λ orange −λ blue = 26nm cannot

provide significant additional information for model parameter estimation compared to one spectrum

under the given conditions.

However, if the wavelength dependency is extracted from the analytical Fried MTFs (equations 3.56 and

equations 3.57) and the dependency on spatial frequencies νx and νy is neglected for a moment, a relation

R(λ ) = cλ
12/5 (6.15)

can be identified. Hence, for both spectra with average wavelengths λ orange = 593nm and λ blue = 567nm

a relative deviation of

∆Rtheo =
R(λ orange)−R(λ blue)

R(λ blue)
= 0.11 (6.16)

can be expected. Relative deviations of log ratio R can be calculated for the frame n comparing the

spectral bands

∆Rn,orange−blue =
Rn(λ orange)−Rn(λ orange)

Rn(λ orange)
, (6.17)

and comparing the direction

∆Rn,vert−hor =
Rn,vert −Rn,hor

Rn,hor
. (6.18)

In figure 6.9 the cummulative distribution function (CDF) of relative deviations ∆R for N = 100 video se-

quences at 3/8/2020 are shown. The confidence band [CDFsample(x)−ε,CDFsample(x)+ε] is determined

from the Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al. [1956]):

ε =

√
ln
( 2

α

)
2N

, (6.19)

where 1−α is the confidence level with α = 0.05. Indeed it can be observed that the theoretical deviation

∆Rtheo is close to the median of relative deviations ∆R, i.e. the ∆R, where the CDF is 0.5. Unfortunately,

there are also large fluctuations over multiple video sequences compared to ∆Rtheo. These fluctuations

might be reduced by increasing the number of LEDs or increasing the number of acquired frames N.

108



6.1. Experimental acquisition of turbulence degraded imagery

Figure 6.9.: Cummulative distribution function of relative deviation ∆R with 95%-confidence bands for N = 100
video sequences at 3/8/2021. Theoretical deviation ∆Rtheo is shown as vertical line.
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The occurence of these fluctuations can only be attributed to intrinsic ensemble statistics, since changing

turbulence conditions are annihilated in the relative errors ∆Rn,orange−blue, if R = cν2 as described in

section 3.2.10. A better separability between R can be achieved by using larger wavelength separations,

e.g. by using narrow-banded light sources at the lower and upper end of the visible range.

Obviously, distributions of ∆Rvert−hor are very similar for both spectra and ∆Rvert−hor is about 30% on

average. Hence, log ratios R are larger in the vertical direction compared to the horizontal direction. This

is also a general trend observed for the other recording dates.

Values for the log ratio R with low noise are only available for few discrete spatial frequencies (2 in

figure 6.7). Due to the limited number of degrees of freedom, model parameter estimation for current

turbulence models with 4 or 8 parameters (turbulence models GMVKS and GMAS) based on MTFs

suffers from overfitting and seems not to be reasonable. For increasing the number of significant values

of MTFs or the log ratio R, the frequency step ∆νx/y has to be decreased. It scales as

∆νx/y =
νS,angular

wROI
(6.20)

Therefore, either the ROI size wROI has to be increased, which also requires increased physical separa-

tions of adjacent LED elements, or the sampling frequency νS,angular is decreased by a smaller focal

length f l or a larger pixel pitch px.

6.1.5. Calculation of centroids

Turbulence degradation also leads to spatially varying local image shifts often denoted as image dancing.

The strength and spatial correlation of these shifts can be used for model parameter estimation, especially
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6. Evaluation of observed degraded images

the turbulence strength C2
n . Centroid shifts related to single LED elements are calculated as first central

moments of the respective regions of interest:

cx,i jk =
∑x,y∈ROIi j

xIk(x,y)

∑x,y∈ROIi j
Ik(x,y)

(6.21)

cy,i jk =
∑x,y∈ROIi j

yIk(x,y)

∑x,y∈ROIi j
Ik(x,y)

. (6.22)

i ∈ [0,27] is the horizontal LED grid index, j ∈ [0,17] is the vertical LED grid index and k is the frame

index in the video sequence. Ik(x,y) is the image for frame index k. Only the left LED grid with 28x18

elements is used for evaluation, since full data for the right LED grid is not available for all recording

dates. Then the centroids chor/vert,i jk aligned with the LED grid are calculated by inverse rotation by the

misalignment angle α: (
chor,i jk

cvert,i jk

)
=

(
cos(α) sin(α)

−sin(α) cos(α)

)(
cx,i jk

cy,i jk

)
(6.23)

These centroid shifts are in units of sensor pixels. They can be calculated in units of viewing angle by

chor/vert/rad = IFOV chor/vert/pixel, (6.24)

where IFOV = px/ f l is the instantaneous field of view, i.e. the angular subtense of a single pixel.

px = 2.9 µm is the pixel pitch. f l = 0.8m is the focal length. As centroids ci jk of different region of

interest have different center positions, for tip/tilt variations the time average ∑
Nz
k ci jk/Nz is subtracted,

which is approximately the ensemble average:

c̃i jk = ci jk −
Nz

∑
k

ci jk

Nz
(6.25)

A time sequence of centered centroid shifts c̃hor/vert,00k for the top left region of interest of a single video

sequence is shown in figure 6.11.
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6.1. Experimental acquisition of turbulence degraded imagery

Figure 6.11.: Example of centroids c̃00k for the top left region of interest for a single video sequence with 100
frames
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6.1.6. Mechanical stability of experimental setup

Foot steps in the vicinity of the experimental setup and wind effects may have caused mechanical vibra-

tions of camera and objective placed on the wooden plate. How great is the influence of these mechanical

vibrations on the centroid measurements? Over the several recording dates (table 6.2), angle of arrival

fluctuations of σθ = 5− 50 µrad could be observed. This obviously represents an upper limit for me-

chanical vibrations. If the object and the camera is supported by the wooden plate, vibrations can be

modeled so that one end of the camera-objective setup is fixed and the other end is freely movable. Then

the required physical shift variation σs under small angle approximation is given as

σs = σθ l, (6.26)

where l is the length of the camera-objective setup. This vibration scenario is depicted in figure 6.12.

With a length l = 0.5m, the angle of arrival fluctuations are associated with physical shift fluctuations of

111



6. Evaluation of observed degraded images

Figure 6.12.: The camera and objective are placed on a wooden plate about 20 cm above ground. The worst case
vibration in terms of angle of arrival fluctuations occurs when one end is fixed and the other is freely movable.
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σs = 10−100 µm. Assuming sinusoidal motion for vibrational modes

s(t) = s0 cos(ωt) (6.27)

a(t) = s̈(t) =−s0ω
2 cos(ωt) (6.28)

maximum accelerations amax = σsω
2 can be expected. During adjustments of the focal length and the

camera orientation vibrations in terms of few oscillations per second could be observed f ∼ 2Hz. A

precise measurement by an accelerometer would require sensitivities lower than amax < 0.01m/s2. and

susceptibility in the relevant frequency range.

A rough estimate of the influence of single vibrational modes is possible by means of the modulation

transfer function for a sinusoidal motion (Holst [2008]) given as

MT Fmotion(ν) = J0(2πθ0ν), (6.29)

where θ0 = s0/l is the amplitude of angular subtense of the sinusoidal motion. In figure 6.13 MT Fmotion is

shown for different amplitudes θ0 over the relevant frequency range used for MTF calculations. It can be

observed that MT Fmotion has only significant impact for amplitudes as high as θ0 = 10−5 rad. However, in

the temporal spectra of centroid shifts no significant peaks could be observed. Hence, vibrational modes

seem to be neglectable.

For future experiments possible vibrations might be reduced by putting additional weights on the wooden

plate to dampen vibrational modes.
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6.1. Experimental acquisition of turbulence degraded imagery

Figure 6.13.: logMT Fmotion dependent on different subtense amplitudes θ0. Only strong subtense amplitudes
θ0 ∼ 10−5 rad lead to significant degradation in the relevant frequency range ν < 2.5 ·104 m−1
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6.1.7. Calculation of differential tilt variance (DTV)

Based on the calculated centered centroid values chor/vert,i jk, the differential tilt variance in horizontal

and vertical direction can be calculated as

DTVhor/vert(∆i,∆ j,∆k) =
∑

Nx−∆i
i ∑

Ny−∆ j
j ∑

Nz−∆k
k

(
chor/vert,i jk − chor/vert,i+∆i, j+∆ j,k+∆k

)2

N(∆i,∆ j,∆k)
(6.30)

The sum over i, j, and k is applied for all indices for which chor/vert,i jkchor/vert,i+∆i, j+∆ j,k+∆k exists. The

number of summands is hence given by

N(∆i,∆ j,∆k) = (Nx −|∆i|)(Ny −|∆ j|)(Nz −|∆k|) (6.31)

with Nx = 28, Ny = 18 and Nz = 100. DTV can be calculated in units of the physical separation by using

the LED grid specifications

∆x = c∆i (6.32)

∆y = c∆ j (6.33)

∆z =
1
f

∆k (6.34)

with c = 0.4/27m and the average frame rate f ≈ 7Hz for the respective video sequence.
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6. Evaluation of observed degraded images

Figure 6.14.: Differential tilt variances DTVhor/vert(∆x,∆y,0)/rad2 depending on horizontal and vertical separations
∆x/m and ∆y/m
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(a) Horizontal differential tilt variance DTVhor(∆x,∆y,0)
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(b) Vertical differential tilt variance DTVvert(∆x,∆y,0)
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6.2. Estimation of the most likely turbulence model parameters

In figure 6.14 2D projections DTVhor/vert(∆x,∆y,0) depending on horizontal and vertical separation

∆x and ∆y are shown. Obviously both components are not radially symmetric. However, various

numerical evaluations on the parallel component σ2
|| by equation 3.50, i.e. the horizontal component

DTVhor(∆x,0,0) and the vertical component DTVvert(0,∆y,0), have shown, that it is always larger than

the perpendicular component σ2
⊥, i.e. the vertical component DTVhor(0,∆y) and the horizontal compo-

nent DTVvert(∆x,0). These assymmetric shapes of DTVhor/vert(∆x,∆y,0) were observed on all recording

dates. In the following only the parallel components σ2
|| and perpendicular components σ2

⊥ are used for

the estimation of most likely turbulence model parameters, which are required for comparable turbulence

simulations.

6.2. Estimation of the most likely turbulence model parameters

Single-axis projections of the differential tilt variances DTVhor/vert(∆x,∆y,0) can be fitted by the ana-

lytical expressions σ2
∥ [Φn(κ)] and σ2

⊥[Φn(κ)] (equation 3.49) as functionals of the turbulence spectrum

Φn(κ)≡ Φn(κ,z) or functions of the turbulence parameters z.

Least squares fits with the loss functions

fhor(x|zhor) = ∑
i

[
σ

2
||(∆xi|zhor)−DTVhor(∆xi,0,0)

]2

+∑
i

[
σ

2
⊥(∆xi|zhor)−DTVvert(∆xi,0,0)

]2
fvert(x|zvert) = ∑

i

[
σ

2
||(∆yi|zvert)−DTVvert(0,∆yi,0)

]2

+∑
i

[
σ

2
⊥(∆yi|zvert)−DTVhor(0,∆yi,0)

]2
(6.35)

can be applied to find turbulence parameters zhor and zvert for horizontal and vertical axes based on the

measurements x. The separations are

∆xi = ∆yi = i ·∆0 (6.36)

with ∆0 = 0.41/27m. x is the set of measurements:

x = {DTVhor/vert(∆xi,0,0),DTVhor/vert(0,∆yi,0)}i (6.37)

For minimization of the loss function, Google’s tensorflow is used. As this framework can use CPUs/GPUs

with unique code, calculations are done on GPU. Moreover, it can do automatic differentation, which ren-

ders manual calculation of derivatives for steepest descent methods obsolete. The adaptive method Adam

(Kingma and Ba [2014]) with Niteration = 2000 and learning rate η = 0.001 is used, which is enough to

ensure a final relative change of loss function less than 1% in most cases.
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6. Evaluation of observed degraded images

Unfortunately, the analytical expressions σ2
∥ and σ2

⊥ are integrals which are not analytically solvable for

the turbulence spectra GMVKS and GMAS. Hence, numerical integration (trapezoid rule) is applied and

an integral transformation κ = tan(t) for forming a definite integral with respect to spatial frequency κ:

∫
∞

0
dκ f (κ) =

∫ π

2

0
dt (1+ tan2 t) f (tan(t)) (6.38)

An example fit with the spectrum GMVKS is shown in figure 6.16.

Figure 6.16.: Example of Differential tilt variance (DTV) fit to experimental data for a single video sequence with
100 frames
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If normal distributed residuals between analytical and measured values are assumed, the loss functions

are related to a multivariate Gaussian likelihood function Lhor/vert(x|z) by

fhor/vert(x|z) =−2lnLhor/vert(x|z). (6.39)
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6.2. Estimation of the most likely turbulence model parameters

Bayes theorem states

L(z|x) = L(x|z) f (z)
g(x)

(6.40)

with prior distribution f (z) and posterior distribution g(x). If a flat prior distribution f (z) = const is

assumed, the propability density function L(z|x) with respect to the true parameters z is proportional

to the likelihood function L(x|z). This distribution can be approximated to be locally Gaussian in the

vicinity of the mean value z

L(z|x)≈ c× exp
(
−1

2
(z− z)TC−1

z (z− z)
)

(6.41)

f (z|x) =−2lnc+(z− z)TC−1
z (z− z) (6.42)

with the covariance matrix Cz of the turbulence parameters z. If non diagonal elements in the covariance

matrix Cz are neglected, confidence intervals can be found by searching single parameters zi, where

|z− z| = kσi and σ2
i = Cz,ii (k = 1.96 for 95% integrated propability). This is equivalent for searching

bounds zi,upper and zi,lower for each parameter i, where

f (zupper/lower|x) = fmin + k2 (6.43)

In figure 6.17 1D grid scans of the loss function f (z|x) for the single parameters L0, l0, α and C2
n for a

single DTV fit based on the spectrum GMVKS are shown. The range for the outer scale L0 is cropped to

higher values. As the turbulence strength C2
n occurs as constant factor in the analytical DTV (equation),

the loss function f (z|x) is strictly parabolic for C2
n . Not surprisingly the outer scale L0 is in general larger

than the inner scale l0.
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6. Evaluation of observed degraded images

Figure 6.17.: 1D grid scans of the loss function f (z|x) (DTV fitting function) for single turbulence parameters
parameters L0,l0, C2

n and α for a single video sequence based on the spectrum GMVKS. 95%-confidence intervals
of parameters (vertical black lines) and modal values f (zmin|x) = fmin (red dashed lines) are shown. The upper
bound for outer scale L0 is cutoff for better illustration.
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This fitting procedure was applied for N = 1112 video sequences over 12 recording dates (table 6.2)

to obtain an equal number of parameter sets for the turbulence models GMVKS and GMAS. For the

spectrum GMVKS initial parameters were chosen as C2
n = 10−17 m3−α , L0 = 0.1m, l0 = 0.00001m,

α = 11/3. For the spectrum GMAS additional parameters a = 1.802, b = 0.254 and β = 7/6 are adopted

from Gao et al. [2015].
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6.2. Estimation of the most likely turbulence model parameters

In the next sections, a subset of these retrieved model parameters is used to feed simulations, which are

then compared to analytical expressions and experimental data with respect to several metrics, i.e. differ-

ential tilt variances DTVhor/vert(∆x,∆y), long-exposure and short exposure modulation transfer functions

MT FLE/SE(νx,νy) and the aperture-averaged scintillation index σ2
I (D).

Comparison of DTV

Now the simulator can be fed by these retrieved turbulence parameters. The resulting DTV values for

Nps = 200 frames of a 11x11 PSF grid can then be compared to corresponding experimental data. In

figure 6.18 distributions of relative errors between simulation, experiment and analytical data is shown:

∆DTVhor/vert,Ana−Sim =
DTVhor/vert,Ana −DTVhor/vert,Sim

DTVhor/vert,Sim
, (6.44)

∆DTVhor/vert,Exp−Sim =
DTVhor/vert,Exp −DTVhor/vert,Sim

DTVhor/vert,Sim
. (6.45)

Two dates, 2020/08/22 and 2021/03/06, were chosen to obtain results for very different temperature

ranges. DTVx,y(0,0) = 0 is excluded since their relative errors is obviously not well-defined. Since

the relative errors are not centered around zero, there is bias between between simulation and analyti-

cal/experimental data. On average the simulated values are slightly higher than the analytical and exper-

imental values. However, as DTV is proportional to turbulence strength C2
n , this bias can be reduced by

scaling the turbulence strength C2
n in the simulation by a factor 1+r, where r is the average relative error.

Figures 6.19a and 6.19b also show that this bias is simular between both dates. Only the distribution of

relative errors is more dense for 2021/03/06, which may be attributed to lower turbulence strengths on

that date. This can also be seen in the order of magnitude difference in the DTV plots (figures 6.19c

and 6.19d). Recording settings as equal as possible for different dates were used to ensure comparibility.

The integration time was varied between tint ∈ [32 µs,100 µs] to use about half of the sensor’s dynamic

range under different lighting conditions and to prevent saturation. Tests for temporal correlation of

centroid shifts have shown that these integration times are much smaller than significant changes due to

turbulence (1/e decay at few tens of milliseconds). This is important to prevent temporal low pass fil-

tering of the centroid shifts. On the one hand the statistical fluctuations of the experimental DTV values

could be decreased by capturing more frames. This may result in lower relative errors. On the other

hand turbulence conditions can become instationary over long recording times e.g. due to changing wind

conditions, cloud movements, etc.
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6. Evaluation of observed degraded images

Figure 6.18.: DTV relative errors of simulations based on turbulence model parameters of 15 video sequences and
single examples for two recording dates 2020/08/22 and 2021/03/06
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(a) 2020/08/22: Distribution of relative errors for parallel
components DTVx(∆x,0) and DTVy(0,∆y)
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(b) 2021/03/06: Distribution of relative errors for parallel
components DTVx(∆x,0) and DTVy(0,∆y)
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(c) 2020/08/22: DTVx(∆x,0) for turbulence parameters based
on a single video sequence
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(d) 2021/03/06: DTVx(∆x,0) for turbulence parameters
based on a single video sequence

For a better overview of the variety of relative errors, the same simulations can be repeated for various

recording dates with a smaller grid size 9x9 for faster calculations based on the data for the orange

LED matrix with λ = 593nm. For each model parameter set corresponding to one video sequence

N = 200 frames of perturbed point grids are simulated. Again the spectrum GMVKS is used due to

lower complexity than GMAS. In figure 6.19 box plots for relative errors between the DTV of simulated

point grids and analytical DTV are shown for 1D profiles DTVhor/vert(∆x,0) and DTVhor/vert(0,∆y). The

red lines show the medians, the boxes show the range between third and first quartil, in which 50% of

the values in the respective dataset are. This range is often denoted as interquartile range (IQR). The

whiskers, which look like error bars, extend the IQR by 1.5 IQR at maximum on the lower and upper end

respectively, but are limited by the largest and smallest values in the respective dataset. Values outside the

range of whiskers are shown as outliers. It can be observed that the interquartile ranges are fluctuations

around zero and remain under ±50%. For different profiles DTVhor/vert(∆x,0) and DTVhor/vert(0,∆y).
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6.2. Estimation of the most likely turbulence model parameters

Figure 6.19.: Box plots of relative errors of DTV simulated versus analytical for several recording dates. DTV
values are calculated for N = 50 simulations based on retrieved model parameter sets from DTV fits, one per
video sequence. Each simulation generates Ns = 200 frames of perturbed 9x9 point grids.
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(b) DTVvert(0,∆y)
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(c) DTVvert(∆x,0)
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(d) DTVhor(0,∆y)

Then the relative errors between DTV values from recorded video sequences and DTV values from the

simulated point grids can be compared. This comparison is depicted in figure 6.20.

Here the fluctuations are slightly higher and more outliers with positive relative errors can be observed.

These values are related to higher experiment-based DTV values than simulation-based DTV values. A

reason for these outliers might be temporal drifts of turbulence conditions within the recording time of

one video sequences, i.e. about 12 seconds each. This can result in biased DTV values which are not

well fit by the turbulence model Φn(k,z). Future experiments may clarify if shorter capture times lead

to a lower number of outliers. Additional enhancements on the fitting procedure may also reduce the

number of outliers.

In summary, turbulence model parameters can be estimated from DTV values from experimental data

which can be fed to the turbulence simulation providing perturbed point grids with comparable DTV

values and also in good agreement with theoretical values. For using the turbulence simulation for

image degradation of arbitrary scenes as described in section 4.5, the similarity of DTV values or the
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6. Evaluation of observed degraded images

Figure 6.20.: Box plots of relative errors of DTV simulated versus experimental for several recording dates. DTV
values are calculated for N = 50 simulations based on retrieved model parameter sets from DTV fits, one per video
sequence. Each simulation generates Ns = 200 frames of perturbed 9x9 point grids.
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(d) DTVhor(0,∆y)

variance of centroid shifts is crucial for degraded frames to have proper intensity and spatial correlation

of local image shifts. Under the given conditions, MTFs or MTF ratios do not provide enough degrees

of freedom for model fits based on the models GMVKS and GMAS. However, they enable a course

estimate of turbulence strength C2
n for the Kolmogorov spectrum, which is a special case of GMVKS and

GMAS, where l0 = 0, L0 = ∞ and α = 11/3.

Comparison of MTF

Do the very same turbulence model parameters retrieved from DTV fits also provide good accordance

for long-exposure and short-exposure MTFs? To answer this question, simulations of single perturbed

point sources were done on the same recording dates. 50 model parameter sets per day are used, each

retrieved from a single video sequence. Low values for MTFs severely suffer from high relative statistical

fluctuations e.g. due to ensemble statistics or camera noise in the recorded data. For the image forming

122



6.2. Estimation of the most likely turbulence model parameters

process, they have negligible impact anyway. Hence, for comparison, only values MT FSE/LE > MT Fthres

with MT Fthres > 0.01 are taken into account. For ease of comparison and to obtain a higher spatial

frequency resolution and number of relevant spatial frequencies, detector subsampling as described in

section 4.5.2 is ommited in the simulations.

The relative deviations

∆MT FSE/LE,Ana−Sim =
MT FSE/LE,Ana −MT FSE/LE,Sim

MT FSE/LE,Sim
(6.46)

over several recording dates between theoretical MTF values and the corresponding MTF values of

simulated point sources is shown in figure 6.21.

Figure 6.21.: Box plots of relative errors of MT F simulated versus analytical for several recording dates. MT F
values are calculated for N = 50 simulations based on retrieved model parameter sets from DTV fits, one per video
sequence. Each simulation generates Ns = 1000 frames of single perturbed point sources.
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(a) MT FSE(νx,0)
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(b) MT FSE(0,νy)
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(c) MT FLE(νx,0)
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(d) MT FLE(0,νy)

The relative deviations of short-exposure MTFs (top row in figure 6.21) are biased about 25%. For most

recording dates the median of relative deviations for long-exposure MTFs is located near 0. Positive

biases are equivalent to higher theoretical MTF values compared to those for the simulated point sources.
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6. Evaluation of observed degraded images

2020/09/08 seems to form entirely an outlier with lower MTFs values for simulated point sources in

general. As shown in a following section 6.5, measurements at noon on this day had very high turbulence

strengths C2
n ∼ 4 · 10−13 m3−α . This can lead to high fluctuations and an exceedance of optical power

beyond the simulation field. Then the real intensity profiles are effectively clipped. This windowing

effect smears the corresponding MTF and leads to lower MTF values. To mitigate these effects, higher

simulation field sizes wx/y or convergence-based adaptive procedures may be used if needed. In contrast,

measurements at 2020/11/07/1 revealed comparably weak turbulence strengths C2
n ∼ 10−14 m3−α and

have very low variances of deviations ∆MT FSE/LE . Also a general trend of a variance of ∆MT FSE/LE

increasing with turbulence strength C2
n can be observed. Then the relative errors between MTFs from

recorded video sequences and MTFs from the simulated point sources can be compared:

∆MT FSE/LE,Exp−Sim =
MT FSE/LE,Exp −MT FSE/LE,Sim

MT FSE/LE,Sim
(6.47)

The mean MTFs over 504=28x18 LED elements of the orange LED grid with λ orange = 593nm are used

as MT FSE/LE,Exp to provide a more robust estimate compared to MTFs related to single LED elements.

The mean LED footprint MTF as described in section 6.1.3 is multiplied to the long-exposure and short

exposure MTFs calculated from simulated point sources. For different recording dates the object-plane

spatial frequencies fob ject are converted to the corresponding focal-plane spatial frequencies f f ocal de-

pending on the range R as provided in table 6.2. Then linear interpolation is used evaluate the LED

footprint MTF at the focal-plane spatial frequencies of the simulation

fi = i∆ f ∆ f =
wx/y

Nx/yλ orange f l
i ∈ [0,Nx/y/2], (6.48)

, with the simulation field width/height wx/y = 0.4m and the focal length f l = 0.8m and the simulation

field size Nx/y = 512. This comparison is depicted in figure 6.22. Obviously, the deviation ∆MT FExp−Sim

is biased over several recording dates about −25%. This is equivalent to experimental MTFs lower

than the simulated MTFs. A reason for this may be residual effects of degradation MT Fresidual not yet

considered in the simulation. The values of

MT Fresidual =
MT FExp

MT FSim
= ∆MT FExp−Sim +1 (6.49)

can be ordered by spatial frequencies νx and νy.

In figure 6.23 interquartile ranges of MT Fresidual are shown for the different recording dates. Also shown

are the optical cutoff frequency

νcuto f f =
D

λ f l
(6.50)
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6.2. Estimation of the most likely turbulence model parameters

Figure 6.22.: Box plots of relative errors of MT F simulated versus experimental for several recording dates. MT F
values are calculated for N = 50 simulations based on retrieved model parameter sets from DTV fits, one per video
sequence. Each simulation generates Ns = 200 frames of perturbed 9x9 point grids.
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(a) MT FSE(νx,0)
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(b) MT FSE(0,νy)
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(c) MT FLE(νx,0)
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(d) MT FLE(0,νy)

with diameter D = 0.086m and focal length f l = 0.8m as well as the detector MTF (Holst [2008])

MT Fdetector(νx) = sinc(π px/yνx) (6.51)

with the pixel pitch px/y[µm] = 2.9. The discrepancy due to the detector MTF is expectable, since de-

tector subsampling was ommited in the simulation. It can be observed that MT Fresidual are similar for

long-exposure and short-exposure MTFs in horizontal and vertical direction besides some outliers, the

hot summer day 2020/09/08 and 2020/11/09. The MT FSE/LE,residual(0,νy) for the vertical direction are

also slightly higher than MT FSE/LE,residual(νx,0) for the horizontal direction. The slighty worse horizon-

tal MTFs may be attributed to horizontal air flows leading to temporal averaging of moving turbulence

eddies during the detector integration time. Besides the MT Fresidual , which is similar for several dates,

there is also good agreement between analytical, simulated and experimental MTF values. Statistical

fluctuations may be further reduced by increasing the number of simulated frames N f . The trend of
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6. Evaluation of observed degraded images

Figure 6.23.: Interquartile ranges for MT Fresidual for long-exposure and short-exposure MT F values in horizontal
and vertical direction.
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(b) MT FLE,residual(0,νy)
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(c) MT FSE,residual(νx,0)
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(d) MT FSE,residual(0,νy)
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6.2. Estimation of the most likely turbulence model parameters

increasing biases for rising turbulence strengths C2
n can be encountered by using larger simulation field

sizes Nx/y, which also increases the spatial extent of the simulated PSFs and reduces the windowing effect

for wide PSF profiles. The discrepancy between MT FSE/LE,Exp values and MT FSE/LE values indicates,

that for matching a good characterization of the residual system components is required.

Comparison of aperture-averaged scintillation index

In the identical manner as for the MTFs, single perturbed point sources can be simulated for the compar-

ison of the aperture-averaged scintillation index

σ
2
I (D) =

〈
P2
〉

⟨P⟩2 −1 (6.52)

The analytical value can be calculated via numerical integration (equation 3.43). As the aperture-

averaged scintillation index σ2
I (D) is proportional to the turbulence length C2

n , which can vary over

several orders of magnitude, logσ2
I (D) values are compared. The relative deviations are again given as

∆ lnσ
2
I,exp−sim(D) =

lnσ2
I,exp(D)− lnσ2

I,sim(D)

lnσ2
I,sim(D)

(6.53)

∆ lnσ
2
I,ana−sim(D) =

lnσ2
I,ana(D)− lnσ2

I,sim(D)

lnσ2
I,sim(D)

(6.54)

The simulated values can be calculated by averages ⟨P⟩ and
〈
P2
〉

over the sum of pixel counts P of the

perturbed point source profile in the 512x512 simulation field. The scintillation index σ2
I,sim(D) is then

determined by averaging over all samples Ns = 1000:

σ
2
I,sim(D) =

〈
P2
〉

Ns=1000

⟨P⟩2
Ns=1000

−1 (6.55)

With the assumption of pixel counts approximately proportional to the received optical power per sensor

pixel, for the experimental values the integrated optical power P can be calculated by averaging pixel

counts over a single 28x28 region of interest (ROI). Futhermore, it is necessary to assume full coverage

of aperture-averaged optical power related to a single LED element by the 28x28 ROIs. For very strong

turbulence this assumption may be violated if significant irradiance contributions exceed the ROI or

adjacent LED elements lead to additional irradiance fluctuations due to overlapping effects.

Then the single-ROI scintillation index can be calculated by averaging over the number of frames N =

100 per video sequence:

σ
2
I,ROI,exp(D) =

〈
P2
〉

N=100

⟨P⟩2
N=100

−1 (6.56)
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6. Evaluation of observed degraded images

Finally these values can be averaged over the entire LED matrix of NROIs = 1008 elements, i.e. σ2
I,exp(D)=〈

σ2
I,ROI,exp(D)

〉
NROIs=1008

. In figure 6.24 box plots for the single comparisons simulated versus analytical

and simualted versus experimental are shown over 10 recording dates. An average bias of about 25%

for simulated vs analytical can be observed. This trend is also confirmed by the scatter plot for these

recording dates in the same figure. It was already observed in the validation of simulations with uncor-

related phase screens (section 5.1.3). In contrast, the relative errors simulated versus experimental are

much lower on average. This might be a hint for a multiplicative offset in the integral representation of

σ2
I (D) (equation 3.43). Also several outliers to high values can be observed in the experimental data.

128



6.2. Estimation of the most likely turbulence model parameters

Figure 6.24.: Box plots of relative errors of the log aperture-averaged scintillation index lnσ2
I (D) simulated versus

analytical (left) and experimental (right) for several recording dates. σ2
I (D) values are calculated for N = 50

simulations based on retrieved model parameter sets from DTV fits, one per video sequence. Each simulation
generates Ns = 1000 frames of single perturbed point sources.
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(a) ∆ lnσ2
I,exp,sim(D) (simulated versus analytical)
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(b) ∆ lnσ2

I,ana−sim(D) (simulated versus experimental)
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(c) Scatter plot of σ2
I (D) values for these 10 recording dates

A higher number of acquired camera frames N or simulated frames Ns may further reduce these fluctua-

tions. However, summations of pixel counts as integrated optical power P are also inflicted with camera

129



6. Evaluation of observed degraded images

noise. So how strong is the camera noise in the experiment? And how large is its influence on the result-

ing effective σ2
I (D) calculated from camera data? For Gaussian beam profiles a log-normal distribution

of center irradiance can be assumed under weak turbulence conditions (Andrews and Phillips [2005]).

With this assumption the real integrated power P can be modelled as lnP to be normal distributed with

⟨P⟩= 1 in arbitrary units. With the camera noise ε integrated over all pixels of a single ROI, the effective

scintillation index can be calculated as

σ
2
I,e f f =

〈
(P+ ε)2

〉
⟨P+ ε⟩2 −1 (6.57)

Detector noise can be modelled as Gaussian white noise with standard deviation σε . If the scintillation

index is assumed to be very low, i.e. σ2
I (D)≪ 1, the difference between the maximum integrated power

P and ⟨P⟩= 1 can be neglected. Then the signal-to-noise ratio of detector noise can be expressed as

SNR[dB] = log10

(
1

σε

)
·10 (6.58)

In figure 6.25 effective scintillation indices σ2
I,e f f (D) are calculated by Monte Carlo simulations. N = 100

values for P and ε are sampled for each σ2
I,e f f (D). The same number N = 100 values of σ2

I,e f f (D) are

generated for different noise level σε . Then a 95% confidence band is calculated for each noise level. It

can be seen, that the effective σ2
I,e f f can be severely biased if the signal-to-noise ratio SNR[dB] < 30 is

bad. This effect will be all the more pronounced, the smaller the real scintillation index σ2
I (D) is. The

camera noise level σε,exp in pixel counts can be estimated from camera data, by pixelwise calculation of

standard deviations in dark 128x128 image sections from image corners far from the LED projections

and averaging over all pixels in these image sections, i.e.

σε,exp =

〈√〈(
Ni jk −

〈
Ni jk
〉

i

)2
〉

i

〉
jk

(6.59)

with the image section data Ni jk, the frame index i and the row and column indices j and k. The maximal

value Pmax can be calculated from single frames containing all LED projections. Then the best case SNR

is given as

SNR[dB] = log10

(
Pmax

σε,exp

)
·10 (6.60)

The influence of different ROI sizes on the SNR can be investigated by applying pixel binning to the

camera data with different binning factors before noise and peak power estimation, i.e. reducing the

image dimensions by summing pixel counts within square blocks of sizes 2n ×2n with n ∈ [0,6]. This is

identical to the procedure of summing pixel values over regions of interest for the estimation of σ2
I (D). In

figure 6.26 also the SNR, the peak value Pmax and the noise level σε,exp depending on the binning factors

is shown for different recording dates based on a single video sequence captured on the respective date.
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6.2. Estimation of the most likely turbulence model parameters

While cold days, e.g. 2020/11/09, tend to have a high SNR[dB]≈ 40, warm days, e.g. 2020/08/22, have

a low SNR[dB] ≈ 27. It can be observed that peak level Pmax and noise level σε,exp are reduced with

increasing binning factor, as the image averaging leads to low pass filtering of the image content. Also

the noise level σε,exp strongly varies for different recordings dates, obviously with lower noise on cold

days.

Therefore, camera noise can be a limitation factor for some days. The signal-to-noise ratio may be further

improved by using better cameras with lower noise and a higher dynamic range. e.g. 16 bit per pixel

instead of 14 bit used by the ZWO ASICAM 290MM Mono camera. Also active cooling and protection

against direct sun exposure may be advisable. More powerful LEDs allow for shorter integration times

to make the best use of the camera’s dynamic range.

Figure 6.25.: Effective scintillation index σ2
I,e f f (D) for different real scintillation indices σ2

I (D) depending on
signal-to-noise ratio SNR[dB] associated with detector noise. A low SNR leads to biases of the effective scintilla-
tion index σ2

I,e f f (D) towards larger values.
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6. Evaluation of observed degraded images

Figure 6.26.: Signal-to-noise ratio SNR[dB], peak Pmax and noise level σε,exp depending on binning factor/ROI size
for different recording dates.
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In summary, 500 video sequences are compared with simulations and analytical expressions based on

the same turbulence parameters retrieved from DTF fits. 50 video sequences were used for 9 record-

ing dates (2 data sets for 2020/11/7). 1D projections of the differential tilt variance DTVhor/vert(∆x,∆y)

and the long-exposure and short-exposure modulation transfer functions MT FLE/SE(νxνy) in horizontal

and vertical direction were compared as well as the aperture-averaged scintillation index σ2
I (D). Within

the given uncertainties these metrics showed good agreement between simulated values and experimen-

tal/analytical values. The deviations simulated versus analytical tend to be lower for DTVs and MTFs

than the deviations simulated versus experimental. The deviations between simulated and experimen-

tal MTFs showed systematic biases indicating residual degradational effects represented by MT Fresidual ,

which are similar on several recording dates. It is noteworthy, that these deviations could be achieved,

although model parameter estimates were only based on DTV fits. It can be seen that MTF comparisons

are vulnerable to residual degradational effects. On the other hand, measurements of the scintillation

index σI,e f f (D) are susceptible to camera noise. In principle, the signal-to-noise ratio can be increased
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6.3. Cummulative distribution functions of turbulence parameters

by pixel binning over larger image sections. However, this also requires larger separations of LED ele-

ments. Hence, a lower number of LEDs can be placed in the camera’s field of view. Therefore, there is a

tradeoff between fluctuations due to ensemble statistics and camera noise.

6.3. Cummulative distribution functions of turbulence parameters

For simulation and modelling of optical phenomena in the the atmosphere, scientific community often

relies on turbulence models Φn(κ,z) representing refractive index fluctuations in the air as power spectral

densities. However, data distributions of these model parameters z is quite unknown, especially their de-

pendencies on environmental conditions such as terrain, daytime, weather, etc. Publicly available ground

data is very rare. Hence, for realistic image-based turbulence simulations also considering uncertainties

of model parameters z, prior knowledge of the frequency distributions of these turbulence parameters is

required.

6.3.1. Generalized modified von Kármán spectrum

In figure 6.27 the sample cummulative distribution functions CDFsample(x) of the parameters L0, l0,

α and C2
n for single turbulence parameters L0, l0, α and C2

n based on the spectrum GMVKS for the

parameter sets retrieved from the N = 1112 DTV fits are shown. The confidence band [CDFsample(x)−
ε,CDFsample(x)+ ε] is determined from the Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al.

[1956]):

ε =

√
ln
( 2

α

)
2N

, (6.61)

where 1−α is the confidence level with α = 0.05. It can be seen that parameters in the horizontal

direction have slightly lower values than in the vertical direction, especially the inner scale l0 and outer

scale L0. One possible explanation for this would be horizontal air flows contracting turbulence eddies

in the horizontal direction. Interestingly this also occurs when only video sequences where no wind

strength could be measured by the Anemometer are regarded. This may indicate that non-detectable

small air flows can influence isotropy of turbulence significantly. For inner scale there is a cluster point

at l0 = 0. This reflects a low sensitivity of DTV on inner scale l0 compared to other turbulence parameters.

As L0 ≪ dz compared to the default configuration for simulation (table 4.1), the use of 2D uncorrelated

phase screens is justified under specified settings.
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6. Evaluation of observed degraded images

Figure 6.27.: Sample cummulative distribution function of turbulence parameter resulting from N = 1112 DTV data
fits based on the spectrum GMVKS. 95%-confidence bands based on the Dvoretzky–Kiefer–Wolfowitz inequality
(Dvoretzky et al. [1956]) are shown.

0 2 4 6
Outer scale L0[m]

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2
Inner scale l0[m]

0.0

0.2

0.4

0.6

0.8

1.0

10 14 10 13 10 12

C2
n[m3 ]

0.0

0.2

0.4

0.6

0.8

1.0

3.25 3.50 3.75 4.00

0.0

0.2

0.4

0.6

0.8

1.0

horizontal
vertical

In table 6.3 sample means and standard deviations of the turbulence parameters for data fits in horizontal

and vertical direction px and py are shown. The sample means for inner scale l0 and outer scale L0 are in

good accordance with former experiments measuring inner scale l0 (Consortini et al. [2003]) and outer

scale L0 (Gladysz [2017]). In order to assess anisotropy of turbulence parameters, also parameter ratios

py/px are shown in figure 6.28. For the inner scale the ratio is set to 1 for very small l0 < 10−10 m as

ratios get numerically unstable. While the vertical vs horizontal ratios for turbulence strength C2
n , the

inner scale l0 and the outer scale L0 have similar empirical cummulative distribution functions, the ratio
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6.3. Cummulative distribution functions of turbulence parameters

Table 6.3.: Sample means and standard deviations of turbulence parameters based on spectrum GMVKS

Parameter Horizontal Vertical
Ratio
Vertical/Horizontal

Outer scale L0 in m 0.8 ± 1.3 1 ± 1.4 1.7 ± 1.6
Inner scale l0 in m 0.03 ± 0.08 0.06 ± 0.13 1.5 ± 1.8
C2

n in 10−13m3−α 1.1 ± 2.5 1.4 ± 2.9 1.6 ± 1.3
α 3.4 ± 0.4 3.4 ± 0.3 1.01 ± 0.05

for the exponent α is very narrow. This may justify anisotropic models (Cui et al. [2015]) that have a

fixed exponent but two-axis inner scales l0,x/y and outer scales L0,x/y.
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6. Evaluation of observed degraded images

Figure 6.28.: Cummulative distribution function of ratio vertical/horizontal of turbulence parameters resulting from
N = 1112 DTV data fits based on the spectrum GMVKS.
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6.3.2. Generalized modified atmospheric spectrum

The same procedure as for the spectrum GMVKS can be repeated for the spectrum GMAS (equation

2.10). The empirical cummulative distribution functions for the parameters C2
n , L0, and α shown in figure

6.29 are similar to those for GMVKS. The additional parameters a,b and α modify the spectrum for large

spatial frequencies κ . Obviously the inner scale l0 is not stuck at very low values, in the fits. This can

be explained by the fact, that the involving factor 1+a(κ/κl)+b(κ/κl)
β in equation 2.10 grows as the

inner scale l0 increases, while for the spectrum GMVKS the corresponding factor exp(−κ2/κ2
l ) decays
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6.3. Cummulative distribution functions of turbulence parameters

exponentially and just as well partial derivatives of the loss function L(z|x) with respect to the inner scale

l0 required for the DTV fits. Again the horizontal components are slighly lower in distribution than the

vertical components. In figure 6.30 the corresponding parameter ratios zy/zx are shown. While medians

of ay/ax, αy/αx, βy/βx are centered at 1, medians of the remaining parameters are significantly larger

than 1. Sample means for the GMAS parameters are shown in 6.4 Based on the losses f (z|x) achieved

in the DTV fits the additional parameters of the spectrum GMAS do not show significant improvements

compared to the spectrum GMVKS. However, evaluations of GMAS were much slower compared to

GMVKS due to case distinctions.
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6. Evaluation of observed degraded images

Figure 6.29.: Cummulative distribution function of turbulence parameters resulting from N = 1112 DTV data fits
based on the spectrum GMAS.
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6.3. Cummulative distribution functions of turbulence parameters

Figure 6.30.: Cummulative distribution function of ratio vertical/horizontal of turbulence parameters resulting from
N = 1112 DTV data fits based on the spectrum GMAS.
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6. Evaluation of observed degraded images

Table 6.4.: Sample means and standard deviations of turbulence parameters based on spectrum GMAS

Parameter Horizontal Vertical ratio y/x
Outer scale L0 in m 0.5 ± 0.7 0.6 ± 0.7 1.4 ± 1.2
Inner scale l0 in m 0.09 ± 0.2 0.1 ± 0.2 3.2 ± 4.7
C2

n in 10−13m3−α 0.4 ± 0.9 0.5 ± 1 1.3 ± 0.6
α 3.5 ± 0.6 3.5 ± 0.5 1.01 ± 0.07
a 2.1 ± 1.1 2.2 ± 1.1 1.1 ± 0.3
b 0.7 ± 1.3 0.9 ± 1.6 1.9 ± 2.9
β 0.8 ± 0.9 0.8 ± 1 1.6 ± 2.3

Here model parameter distributions based on DTV fits for the two models GMVKS and GMAS were

shown. For the common parameters C2
n ,L0,l0 and α both models have similar distributions.

It has to be taken into consideration, that any finite sample of recorded or simulated frames of perturbed

point sources will always be inflicted with ensemble fluctuations. This inevitable also leads to fluctua-

tions of the estimated model parameters and their degree of isotropy. While in a simulation the sample

size can be arbitraryly increased for constant turbulence conditions, in experiments there is a tradeoff be-

tween stationary turbulence conditions and an increased number of recorded frames with lower ensemble

fluctuations. Therefore, the simulation offers the possibility to investigate the expectable intrinsic param-

eter fluctuations for any sample size.

6.4. Correlation between turbulence parameters

Measurements over several days have shown strong scattering of the meteorological data and the re-

trieved turbulence model parameters z. The low amount of data makes it difficult to highlight depen-

dencies between two quantities while fixing or binning the others. The knowledge of the interrelation of

measurable meteorological quantities such as temperature, humidity, wind speed, etc. and the turbulence

model parameters z is useful, since data acquisition of these quantities is much faster than the image

processing required for the DTV fitting approach. Hence, knowing these meteorologicl quantities would

allow more precise estimations of the distributions of model parameters z.

Nevertheless, a correlation matrix in figure 6.31 shows the correlation of parameters on the N = 1112

DTV fits based on the spectrum GMVKS. For all fitted turbulence model parameters and the collected

meteorological data, i.e. temperature, humidity and wind strength Pearson correlation coefficents r are

calculated. These are parameter correlations over multiple video sequences and must not be confused

with correlations between parameters for single DTV fits. Significant correlations with |r| > 1.96σr,

where

σr =

√
1− r2

n−2
(6.62)
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6.4. Correlation between turbulence parameters

are shown in frame boxes. Due to the logarithmic nature of the turbulence strength logC2
n is considered

instead of C2
n . It can be observed that for L0,α and C2

n strong correlations exist between vertical and

horizontal components. In contrast the inner scale l0 is not significantly correlated between axes as well

as with outer parameters. One reason may be that for low values the influence on DTV is neglectable.

There are strong correlations, positive ones between logC2
n and outer scale L0 and negative ones between

logC2
n and α . Significant correlations between model parameters and daytime hour, temperature, relative

humidity exist. However, the acquired data may be biased due to the limited coverage of different envi-

ronmental conditions, as these conditions are not intentionally controllable and measurements were done

over limited time windows. Projections of retrieved model parameters on single meteorological prop-

erties from more extended field trials could provide better insight in the relevance of single turbulence

model parameters. The parameter distributions in the previous section and the given correlation matrix

may serve as a basis for comparison with further data acquisition experiments. Prior knowledge about

turbulence model parameters and their dependency on measurable quantities, e.g. temperature, humidity

and wind strength, geo location and daytime, is required for realistic simulations based on these model

parameters.
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6. Evaluation of observed degraded images

Figure 6.31.: Correlation matrix of daytime hour, temperature, relative humidity, wind strength, and turbulence
parameters for horizontal and vertical direction based on DTV fits on N = 1112 video sequences with nominal
frame number of 100 and a framerate f = 7Hz: C2

n,hor/vert , αhor/vert , L0,hor/vert and l0,hor/vert
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6.5. Turbulence parameters versus date

In figures 6.32 and 6.33 the mean turbulence parameters resulting from the DTV fits for the GMVKS and

the spectrum GMAS depending on recording date are shown. It can be observed that some days have

strong anisotropic behaviour of inner and outer scales while other days, e.g. 2020/12/18 and 2020/12/26,

are highly isotropic. This anisotropy is most often associated with longer vertical scales l0 and L0 com-

pared to horizontal scales. For simulation this anisotropy can be taken into account by using anisotropic

spectra for phase screen generation. For both spectra means of common turbulence model parameters

l0, L0, α and C2
n are approximately in the same range. Anisotropy also seems to be lower for GMAS.

However, the losses in the DTV fits were slightly lower than for GMAS. So the additional parameters a,

b, β haven’t improved the quality of fits.

To summarize, fitting of analytical expressions of differential tilt variances (equation 3.49) to numerical

values (equation 5.10) calculated from recorded data can be used for estimation of turbulence model

parameters z of arbitrary 1D turbulence models Φn(κ,z). This is the first time, that a comparison of these
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6.5. Turbulence parameters versus date

turbulence parameters was performed on several days at the same location under different meteorological

conditions, i.e. daytime, temperature, humidity, for two current models, GMVKS and GMAS. The

common parameters C2
n , α , l0 and L0 exhibited similar trends over several days. While some days are

quite isotropic, i.e. have similar horizontal and vertical parameters, other days a highly anisotropic.

On those days vertical scales l0 and L0 are generally larger compared to the horizontal ones. This fact

confirms the necessity of anisotropic 2D turbulence models Φn(κx,κy,z) (Cui et al. [2015]).
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6. Evaluation of observed degraded images

Figure 6.32.: Means of turbulence parameters versus date for horizontal and vertical direction based on DTV fits for
GMVKS on N = 1112 video sequences with nominal frame number of 100 and a framerate f = 7Hz: C2

n,hor/vert ,
αhor/vert , L0,hor/vert and l0,hor/vert
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6.5. Turbulence parameters versus date

Figure 6.33.: Means of turbulence parameters versus date for horizontal and vertical direction based on DTV fits
for GMAS on N = 1112 video sequences with nominal frame number of 100 and a framerate f = 7Hz: C2

n,hor/vert ,
αhor/vert , L0,hor/vert and l0,hor/vert
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7. Summary and outlook

In this thesis an implementation of the split-step beam propagation method based on turbulence phase

screens was presented. Two methods for phase screen generation were compared, the FFT method with

subharmonics for 2D uncorrelated phase screens and the sparse spectrum (SS) method for the generation

of 2D correlated phase screens. Phase screens have been validated by the phase structure functions

and properties of generated point spread functions have been validated for well-known figures of merit,

i.e. long-exposure/short exposure modulation transfer functions (MTFs), Strehl ratio, differential tilt

variance. The simulations with the FFT method showed lower statistical fluctuations around the expected

analytical results than the sparse spectrum method for comparable computation times. Subsampling of

shifted phase screens can be used to generated spatially correlated point spread function (PSF) grids. In

general, these PSF grids can be used to simulate anisoplanatic turbulence degradation on multiple input

images.

A new robust approach using ratios of long-exposure and short-exposure MTFs of measured LED profiles

was able to give a rough estimate of turbulence strength C2
n based on the Kolmogorov spectrum. In field

trials projections of a LED matrix degraded by turbulence were recorded. It was shown that two spectra

in the visible range, T = 6500K (blue) and T = 3000K (orange), have significant expected differences

in the MTF ratios averaged over several video sequences, while statistical fluctuations were too high

to distinguish between both reliably for single video sequences due to the low wavelength difference

∆λ = λ orange −λ blue = 26nm.

Recorded video sequences of LED projections perturbed by air turbulence also allowed for determination

of most likely turbulence model parameters by DTV data fitting based on measured centroid shifts.

For each video sequence a single data set of model parameters could be calculated. For 1112 video

sequences over several recording dates with an amount of about 500GB raw data these model parameters

were calculated as well as their means and distributions. The calculated model parameter distributions

and variety of average values over several recording dates is unprecedented. In contrast to single-shot

simulations with known model parameters, these distributions also enable the assessment of uncertainties

of simulation results related to varying environmental conditions represented by variations of the model

parameters. The estimated model parameters were the key factor to feed turbulence simulations with the

best possible match to measured data.

The two investigated turbulence models, the generalized modified von Kármán spectrum (GMVKS) and

the generalized modified atmospheric spectrum (GMAS), showed similar model parameter distributions

for the common parameters C2
n , α , l0 and L0. Also similar are the distributions of parameter ratios vertical
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7. Summary and outlook

versus horizontal. For both models it was shown, that the turbulence strength C2
n , the outer scale L0 and

the inner scale l0 tend to be larger in the vertical direction than in the horizontal direction, while the

ratio vertical versus horizontal of the power slope α is close to 1. However, projections of the model

parameters on individual recording dates also show, that this anisotropy can strongly vary over several

dates. More extensive field trials and projections of retrieved model parameters on meteorological data

may help to identify the causes of this anisotropy and give adequate predictions of the strength of this

anisotropy under certain environmental conditions. Despite the additional parameters a,b and β mainly

modifying the high-frequency domain κ ≈ 1/l0, GMAS is not superior to GMVKS when comparing

loss functions in the DTV fits. On the contrary, evaluations on GMAS are more complex and slower than

those on GMVKS. As the refractive index of air n is dependent on temperature, pressure and humidity, the

diagnosed distributions of model parameters z for these two turbulence models Φn(κ,z) may be used for

validation of simulations or measurements of atmospheric microscale phenomena (Thunis and Bornstein

[1996]). Estimated values for the outer scale L0 ≈ 1m indicated that for the specified simulation settings

the assumption of uncorrelated phase screens holds and the FFT method with subharmonics can be safely

used.

For two different recording dates simulations based on estimated model parameters z showed good agree-

ment between simulation, theory and experiment with respect to differential tilt variance. A mean bias

of about 25% between simulation and experiment was observed which can be corrected by adapting tur-

bulence strength C2
n in the simulation accordingly. However, the data showed relatively low anisotropy

in the model parameters for the two recording dates.

A new aspect is the comparison between differential tilt variances (DTV), long-exposure and short-

exposure modulation transfer functions (MTFs) and the aperture-averaged scintillation index σ2
I (D) for

experimental, simulated and analytical data over several recording dates. The relative deviations between

simulated and experimental or analytical data was similar for different dates and their medians below

±50%.

The magnitude and variety of anisotropy observed in the distributions of retrieved model parameters

shows the need and potential for further model enhancements to be used in the simulation. For more

accurate modeling of strong anisotropy the differential tilt variance (DTV) fitting approach can be ex-

tended to anisotropic spectra. However, this increases the dimensionality of numerical integration and

hence significantly the computational effort.

A great advantage of the split-step beam propagation method over other simulation methods, e.g. us-

ing Zernike modes (Chimitt and Chan [2020]) or data-constrained algorithms (Miller et al. [2019]), is

the easy extensibility to other aperture forms such as telescope optics having obscurations. Also wind

effects can be easily integrated by shifting phase screens or resampling at shifted spatial coordinates

for the sparse spectrum method. A validated image-based turbulence simulation paves the path to find

interrelations between model parameters z and measurable quantities, for which analytical expressions
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are not available. Simulated speckle patterns may help to design features sensitive to individual model

parameters.

In practice, it is very difficult to adjust focus perfectly especially under strong turbulence conditions.

In the simulation, additional defocussing effects can be easily investigated by adding parabolic phase

modulations on the beam profiles arriving at the aperture plane.

In future experiments more metrics besides differential tilt variance could be measured and fitted to

further refine estimates of most likely turbulence model parameters. One possibility are long-exposure

and short-exposure MTFs. However, this requires a very good characterization of the other technical

and optical components contributing to image degradation. Especially camera vibration induced by

technical components or wind can lead to additional image shifts and hence deteriorate long-exposure

MTF. As most current metrics are functionals of the turbulence model also depending on the aperture

form, artificial aperture masking may help to increase the sensitivity to single model parameters. Random

walks of shifted phase screens can be used to simulate temporally correlated frames for high acquisition

frame rates where significant temporal correlation occurs. With this approach spatial correlation within

the resulting frames is conserved, since the spatial statistics of the phase screens remain unchanged.

Parameters controlling the random walks have to be adapted to obtain desired or measured temporal

spectra of PSF centroid shifts in the simulated video sequence.
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κy 1D vertical spatial frequency

λ Wavelength

λ Average wavelength

λ orange Averaged wavelength of the "orange" spectrum

λ blue Average wavelength of the "blue" spectrum

µ Permeability

µ0 Vacuum permeability

ν 1D spatial frequency in the sensor plane

νcuto f f Optical cutoff frequency

νx/y Horizontal/vertical spatial frequency

ϕn(x,y) n-th phase screen

Φn(κ) 1D refractive index power spectrum

Φn,GMAS(κ) GMAS refractive index power spectrum

Φn,GMV KS(κ) GMVKS refractive index power spectrum

Φn,Kolmogorov(κ) Kolmogorov refractive index power spectrum

Φn(K) 3D refractive index power spectrum
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Φϕ(κ) 1D phase power spectrum

θ0 Isoplanatic angle

θx/y(r) Tip/tilt angle of arrival at position r

θ Viewing angle

θSH(x,y) Subharmonics phase contribution

σ2
I (x,y) Scintillation index

σ2
I (D) Aperture-averaged scintillation index

σ2
I,sp Spherical wave scintillation index

σ2
I,pl Plane wave scintillation index

σ2
R Rytov variance

σ2
|| Parallel differential tilt variance

σ2
⊥ Perpendicular differential tilt variance

σε Camera noise level (standard deviation)

a GMAS turbulence parameter

A0(x,y) 2D rippling effect correction field

A(α) Turbulence spectrum prefactor

b GMAS turbulence parameter

B Magnetic flux density

Bn(x,y,z) 3D covariance

Cov(R) Covariance

c̃x Set horizontal centroid

c̃y Set vertical centroid

cx,n Horizontal centroid of frame n

cy,n Vertical centroid of frame n

cx,i jk Horizontal centroid of frame k in region of interest (i, j)

cy,i jk Vertical centroid of frame k in region of interest (i, j)

C2
n Turbulence strength

C2
n(z) Turbulence strength (path dependent)

D Aperture diameter

D Electrical flux density

D(MA)
ϕ (r) Markov phase structure function

D(NM)
ϕ (r,0) Non-Markov transversal phase structure function

D(NM)
ϕ (0,m ·∆z) Non-Markov longitudinal phase structure function

D(R),D(r1,r2,L) 3D structure function

Dsp(ρ,L) Spherical wave structure function

Dpl(ρ,L) Plane wave structure function

Dχ(ρ,L) Log-amplitude structure function
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DS(ρ,L) Phase structure function

DS,GMV KS(ρ,L) GMVKS phase structure function

DS,GMAS(ρ,L) GMAS phase structure function

Dphi(r) Phase structure function

DOC(r1,r2,L) Complex degree of coherence

DTV(x/y) Differential tilt variance

dν(K) Stieltjes differential

E Electrical field

f Frame rate

f l Focal length

fhor/vert(x|zhor/vert) Differential tilt variance loss functions

H Magnetic field

I Electrical current

I(x,y) 2D point source profile

In(x,y) Frame n

I1(z) Integral function for differential tilt variance

IT (z) Integral function for differential tilt variance

In,shi f ted(x,y) Centroid corrected frame n

IFOVx,y Instantaneous field of view horizontal/vertical

Jν(x) Bessel function of first kind

k Wave number

K 3D spatial frequency

Kν(x) Modified Bessel function of second kind

l0 Inner scale

L0 Outer scale

L Range

Lν(x) Laguerre function

M Magnetization

MT F Modulation transfer function

MT FLE,sp/pl(u) Spherical wave/ plane wave long-exposure modulation transfer

function

Nps Number of samples or simulated frames

Nx Number of columns

Ny Number of rows

Nz Number of phase screens for single beam propagation

n Refractive index

n1 Refractive index (turbulence contribution)
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n(r1),n(r2) Refractive indices at coordinates r1 and r2

OT F(νx,νy) 2D optical transfer function

OT Faperture(νx,νy) 2D aperture optical transfer function

OT Fdetector(x,y) 2D detector optical transfer function

OT Fstabilization(x,y) 2D stabilization optical transfer function

OT Fatm(x,y) 2D atmospheric optical transfer function

OT F0(ν) System optical transfer function (without turbulence)

OT FLE(ν),OT FLE(νx,νy) Long-exposure optical transfer function

OT FSE(ν),OT FSE(νx,νy) Short-exposure optical transfer function

OT FL,total(ν) Total long-exposure optical transfer function

OT FS,total(ν) Total short-exposure optical transfer function

O(i, j) 2D output image

P Polarization

P Aperture-averaged optical power

pn Sparse spectrum wave vector component in x direction

Pn(K)) Sparse spectrum propability distribution for interval n

px,y Pixel pitch

P(R) Pressure

PhT F Phase transfer function

PSF(x,y) 2D point spread function

PSFturb(x,y) 2D turbulence point spread function

PSF0(x,y) 2D zero-turbulence point spread function

PSFaperture(x,y) 2D aperture point spread function

PSFdetector(x,y) 2D detector point spread function

PSFstabilization(x,y) 2D stabilization point spread function

PSFatm(x,y) 2D atmospheric point spread function

qn Sparse spectrum wave vector component in y direction

R 3D spatial coordinates

r0 Fried parameter

SNR Signal-to-noise ratio

sn Sparse spectrum wave vector component in z direction

sx/y Horizontal/vertical phase screen shift

swind,x/y Horizontal/vertical phase screen shift due to wind

SF Free space operator

SP,n Phase screen operator of phase screen n

SR Strehl ratio

T Temperature
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U AC/DC Voltage

Un(x,y) Complex field after phase screen n

U,U(x,y,z) Longitudinally slowly varying envelope of electrical field

U(r1),U(r1) Complex electrical field

W Correlation factor

wn Sparse spectrum weight

wx/y Physical dimensions of simulation field

F Fourier transform
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Acronyms

CDF Cummulative distribution function

Cov Covariance

CUDA Compute Unified Device Architecture (NVIDIA software

framework for parallel computing on graphics processing

units)

DTV Differential tilt variance

FFT Fast Fourier transform

GMAS Generalized modified atmospheric spectrum

GMVKS Generalized modified Von Karman spectrum

GPU Graphics processing unit

IFFT Inverse Fast Fourier transform

LE Long-exposure

LED Light emitting diode

MTF Modulation transfer function

OTF Optical transfer function

pl Plane wave

PSF Point spread function

PhTF Phase transfer function

SE Short-exposure

SI Scintillation index

sp Spherical wave

SS Sparse spectrum

UPS Uninterruptible power supply
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