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1 Introduction

An important part of the LHC physics program consists in the exploration of phenomena

that occur at distances that are between a hundred and a thousand times smaller than

the size of the proton. Thanks to the celebrated properties of Quantum Chromodynamics

(QCD) such as asymptotic freedom and factorization, physics at such distances can be

described using perturbation theory, where elusive quarks and gluons play the role of

fundamental physical degrees of freedom.



Corrections to this perturbative picture are expected to be small, suppressed by ratios
of the non-perturbative QCD parameter Aqcp ~ 0.3 GeV and the typical energy scale
Q@ of the process (or observable) under consideration. This hard scale @ typically ranges
from a few tens to a few hundred GeV. It follows that these non-perturbative effects
may change perturbative predictions by a relative amount proportional to (Aqcp/Q)" ~
(0.01)™ — (0.001)™ which, depending on the value of @ and of the exponent n, varies from
a percent for n = 1 and @ ~ 30 GeV to a permille and even smaller values for larger values
of Q and n.

Perturbative predictions for cross sections and distributions, on the other hand, are
controlled by powers of the strong coupling constant as(Q) ~ 0.1 for @ ~ 30 — 100 GeV.
Currently, perturbative computations are often performed to second or even third order in
the expansion in ay, leading to theoretical predictions for hard processes which are typically
accurate to within one to ten percent [1]. Further development of methods for perturbative
calculations in QCD may improve the precision of such theoretical predictions, perhaps
by about an order of magnitude. If this happens even for a few selected processes and
observables, perturbative predictions at this precision will have to be supplemented with
non-perturbative corrections provided that O((Aqcp/Q)™) contributions with n = 1 exist
for a particular process or observable. On the other hand, non-perturbative corrections
with n > 1 are too small to be of any relevance for most hard processes at the LHC.

For color-singlet decay rates, deep-inelastic scattering structure functions and inclusive
decays of heavy quarks [2], it is well-known that operator product expansion techniques al-
low one to conclude that fully inclusive observables do not receive linear power corrections.
However, it is currently not known how to generalize these results to more differential ob-
servables and to the case of hadron-hadron collisions. Indeed, at present there is no full
theory of non-perturbative corrections to short-distance processes at lepton and hadron col-
liders. It is then not possible to predict the exponent n for a generic process or observable,
let alone compute the contribution of O((Aqcp/Q)™) terms precisely. However, it is well-
understood that one source of non-perturbative corrections is present within perturbation
theory itself. Indeed, the appearance of the Landau pole in the strong coupling constant
leads to an intrinsic ambiguity when integrating over soft momenta. Since such an ambi-
guity will have to cancel with contributions that arise from physics beyond perturbation
theory, it can be used as an estimate of, at least, some non-perturbative contributions.

It is well-known that the ambiguity related to the appearance of the Landau pole
can be studied within the approximation of a large (and negative) number of massless
fermion species (see ref. [3] for a review). This approach is particularly simple if no gluons
appear in a given process at leading order. Indeed, in such cases the appearance of linear
power corrections can be investigated by computing O(«y) corrections to the process (and
observable) under consideration that originate from virtual exchanges and real emissions
of massive gluons, in the limit of a small gluon mass A, see ref. [3].! The presence of terms
that are linear in A implies that a particular observable receives leading power corrections
that are of the type O(Aqcp/Q), while their absence can be interpreted as an indication
that non-perturbative corrections are further suppressed.

1Since by assumption the underlying process does not contain gluons, this does not lead to any issue
with gauge invariance.



In the context of high-energy collider physics, early studies of linear power correc-
tions were mostly focused on studying shape variables in electron-positron collisions [4—
14],2 on the heavy-quark mass definition [16, 17], on the Drell-Yan process [18-20] and on
jets [21, 22]. Recently, first attempts were made to extend such studies to more complicated
processes that could be considered as proxies for realistic processes at hadron colliders. In
particular, appearances of linear power corrections in top production and decay processes
and in the transverse momentum distribution of the Z bosons produced in photon-hadron
collisions were studied in refs. [23, 24], respectively. In both cases, calculations were per-
formed numerically for finite values of the gluon mass A. The presence or absence of linear
power corrections was established by a numerical extrapolation to vanishing values of .

In the case of the Z transverse momentum distribution studied in ref. [24], no evi-
dence of linear power corrections was found. Although this result is fully sufficient for
phenomenological purposes, it is interesting to understand if the presence or absence of
such linear corrections in hard processes can be deduced on more general grounds. This
is what we set out to do in this paper. Unfortunately, we are not yet able to perform an
analysis of fully realistic processes since we have to restrict ourselves to cases where there
are no gluons at leading order. Apart from this rather substantial restriction, we keep our
discussion general. Whenever we are interested in a process that does contain gluons at
leading order (e.g. the Z transverse momentum distribution, or ete™ event shapes in the
three-jet region) we follow the approach of ref. [24] and use photons as proxies for hard
gluons. Our main findings can be stated as follows:

e no linear powers of A arise from virtual corrections in generic hard processes with
massless partons;

e observables that are inclusive with respect to momenta of colored final state particles
do not receive O(A) and, therefore, O(Aqcn/Q) power corrections. Observables of
this type include e.g. total cross sections as well as kinematic distributions of colorless
particles.

From these findings it immediately follows that no linear power corrections appear in the
inclusive Drell-Yan cross section [18] and in the rapidity distribution of the Drell-Yan
pair [19], at least away from the kinematic boundaries. Similarly, they also imply that the
Z transverse momentum distribution computed in the simplified model of photon-hadron
collisions studied in ref. [24] also does not receive linear power corrections, even if rapidity
cuts on the Z boson are applied.

Our results have interesting implications for event-shape studies in e™e™ annihilation.
Recently, this topic has received renewed attention in relation to the extractions of the
strong coupling constant «; from event shapes. Indeed, it was argued in ref. [25] that a
better control on non-perturbative corrections is crucial for a reliable determination of a.?

%For recent work in this context, see e.g. [15].

3We stress that the power corrections we are discussing here are not related with the so called next-
to-leading-power soft corrections (see e.g. refs. [26, 27] and references therein). In the latter, the next-to-
leading power refers to the power of a resummation variable, rather than to the power of a non-perturbative
correction.



In particular, in ref. [25] the standard approach to computing power corrections, that
consists in extrapolating them from the two-jet to the three-jet region, was criticized. By
considering shape variables like the C-parameter that exhibit two Sudakov regions (one
near the two-jet limit and the other at the three-jet symmetric point), the authors of
ref. [25] argued that the coefficient of the linear power correction near the two-jet region
cannot be reliably extrapolated to the three-jet one. With our formalism, we can compute
the coefficient of the power corrections in the three-jet region for several shape variables,
irrespective of the presence of Sudakov regions.*

This paper is organized as follows. In section 2 we study non perturbative corrections
in a toy model, namely the production of two scalar color-charged particles in the decay of
a massive vector boson. Within this toy model, we argue that the decay rate in this case
is free of linear O(Aqcp/@Q) corrections. Rather than presenting new results, the purpose
of this section is to illustrate basic features of our approach and to provide arguments that
can be generalized to more complex cases. Such generalization is discussed in section 3,
which is devoted to more complex processes with additional hard particles in both the
initial and final states. There, we generalize arguments given in section 2 and argue that
also in more complex cases linear O(Aqcp /@) terms are not present for observables that
are inclusive with respect to QCD radiation.

In sections 4 and 5 we consider the implications of our result for the calculation of shape
variables in ete™ annihilation. In particular, in section 4 we discuss a specific observable,
namely the C-parameter, and show how our formalism can be applied to compute non-
perturbative corrections to it in an approximation where the splitting of a massive gluon
into a qq pair is neglected. In section 5 we present a general framework for dealing with a
broader class of shape variables. Using this framework, we compute linear power corrections
to both the thrust and the C-parameter distributions and compare these results with
a numerical calculation at finite A, extrapolated to A — 0. We find consistent results,
confirming our analytical findings. We conclude in section 6.

This paper also contains several appendices. In appendix A we describe the computa-
tion of integrals relevant for our study. In appendix B, we detail the analytic calculation
of the various integrals that we use in our analysis of the C-parameter in section 4. In
appendix C, we report technical details of the calculation of shape variables in the large-
ny limit that we discuss in section 5. Finally, in appendix D we study non-perturbative
corrections to the C-parameter in the two-jet limit.

2 A toy model: vector-boson decay to scalars

In this section, we consider the decay of a spin-one boson into two colored charged scalars
¢. Our goal is to understand linear power corrections in this model and present arguments
that, on the one hand, can be easily verified in this simple case and, on the other hand, are
sufficiently general to be applicable in more complex situations. Because of this, we refrain

“We stress however that at the present stage we are only able to obtain robust results for processes

+

of the form e"e™ — ¢q + 7, i.e. using photons as proxies for gluons. We will speculate on the full QCD

generalization in section 5.



as much as possible from using the exact form of the various matrix elements relevant for
this calculation, and instead focus on their general structure.
We investigate power corrections to the process

V(q) = ¢(p1) + o(p2). (2.1)

Following the discussion in the introduction, we do this by computing O(as) corrections
to this process in a QCD-like theory where the gluon has a small mass A, and by checking
whether or not such corrections contain terms that are linear in A. To keep our analysis as
simple as possible, in this section we only consider the total decay rate.® We will discuss
more complicated processes and observables in section 3. As stated earlier, we only consider
the case of massless scalars, p} = p3 = 0.

We begin with the analysis of virtual corrections. There are two contributions that need
to be studied — the wave-function renormalization constant for the external ¢ particles
and the one-loop matrix element. We start with the former. We work in dimensional
regularization, define the space-time dimension as d = 4 — 2¢, and use the Feynman gauge
for simplicity. The scalar’s self-energy reads

Y(p?) = (61 p* + 02 A2)B(p, \) + terms that do not depend on p?, (2.2)

where
dik 1
Bp.Y) = [ (2m)d (k2 = 2%)(k + p)?’

and o012 are two constants whose specific form is irrelevant for our discussion. Using

(2.3)

Feynman parameters, B(p, A\) can be written as

€ 1 —e
B(p, ) — 1(41;()3/2/0 dea= [N - p2(1-2)] . (2.4)

This representation makes it apparent that

)\2 8B(p7 )‘)

—2e
B(pa )‘)|p2=0 ~ A ) 8]92

L A2 (2.5)
p =

which in turn implies that the wave-function renormalization constant Z,; does not contain
terms that are linear in A.

We then move to the one-loop matrix element. There are three diagrams that con-
tribute to it. Using the Passarino-Veltman reduction [28], one can express this matrix
element through four scalar integrals. Omitting color indices for simplicity, we schemati-
cally write

Mi1o0p(P1,02, ) =c¢ (p1,p2, >\2> C(p1,p2,A) + b1 <p1,p2,)\2> B(p1,A)
+ bo (phm, )\2> B(p2, \) + b3 (p1,p27 /\2) B(p1 + p2,0) (2.6)
+a(p17p27>\2) A()\)7

5Tt is well-known [3] that the total decay rate does not receive linear power corrections. However, as we

have stressed in the introduction, we study this process as a first step towards establishing more general
results.



where B(p, \) is given in eq. (2.3) and the other loop integrals are defined as®

d*k 1 / dk 1

) 2 0 G AN T @ (21)

Clen, e A) :/ (@2m) (K2 — X%

As indicated in eq. (2.6), the coefficient functions ¢, by 2 3 and a are rational functions of \?;
this is a direct consequence of how the Passarino-Veltman reduction proceeds. It remains
to consider the scalar integrals. Eq. (2.5) implies that B(p12,\) ~ A~2¢. Also, dimensional
analysis dictates that A ~ A\272¢. These integrals cannot then generate odd powers of \
upon expansion in both € and A. The case of the scalar triangle C is less trivial. However,
it is easy to see that it admits the following representation

i L da
C(php??)‘) = (47_‘_)2/(; q2$+A2

2
In qTf - m] . (2.8)

Although it is straightforward to complete the integration over z and express C' in terms
of polylogarithmic functions, this is not necessary as the above representation makes it
obvious that the function C' does not contain odd terms in the small-\ expansion.

We then conclude that the behavior of the renormalized one-loop virtual amplitude in
the limit of small X is described by the following formula”

2 2
00 (P1, P2, A) = wi(p1, p2) In? % + wa(p1,p2) In % +w3(p1,p2) + O(N%).  (2.9)
The logarithmic divergences in A2 are the usual soft-collinear singularities, that are canceled
by analogous contributions in the real emission terms. Apart from that, eq. (2.9) implies
that the dependence on \ in virtual corrections starts at O(A2?). We conclude that for the
process V — ¢¢ virtual corrections do not induce any linear sensitivity to infrared physics.
As the next step, we need to analyze the real-emission contribution

V(g) = ¢(p1) + o(p2) + g(k), (2.10)
with k? = A2. The amplitude of this process can be written as

(2p1 + k) et
(p1+ k)2
(2p2 + k) et

_WMo(plapz + k) + e, M5 (p1, 2, k)} )

The two first terms on the right hand side describe emissions by external particles while the

M(p1,p2,k) —gssz{ Mo(p1 + k, p2)

(2.11)

third one describes “structure-dependent” radiation. In eq. (2.11), g is the strong coupling,
TY, is the generator of the SU(3) color algebra in the fundamental representation and e is
the polarization vector of the gluon. Also, Mg(p1,p2) is the color-stripped matrix element
with no extra emissions, while the structure of Mj will be discussed in the following.®

5We note that since C(p1,p2,A) is finite we can evaluate it directly in d = 4.

"For brevity, we refer to all possible O(A™ In™ \) terms as O(\") terms.

8 A straightforward calculation shows that Mo (p1,p2) = e(p2 —p1)u€l, where ey is the polarization vector
of the decaying vector boson and e is its coupling to the scalars. Also, M = 2¢l),.



It is obvious that if the emitted gluon is resolved, the amplitude squared and the phase
space can be expanded in powers of A2. The situation is, however, more delicate in the soft
and collinear regions where a) the amplitude develops singularities in the A — 0 limit and
b) one becomes sensitive to restrictions on the phase space induced by the gluon mass that
can be linear in A. These regions are a potential source of linear power corrections and we
now study them in detail.

We begin by discussing the emission of a soft gluon. Simple power counting arguments
show that this region could give rise to linear power corrections. Indeed, consider a situation
where the gluon energy w is comparable to A, w ~ A. The phase space is proportional to
wdw BO(w — N), with 8 = /1 — A\2/w?. Since for small A the real emission amplitude is
expandable in powers of w starting with M ~ 1/w, linear terms in A could potentially be
generated. To see whether this is the case, we need to study both the matrix element and
the phase space in more detail. The power counting argument implies that linear power
corrections can only originate from next-to-leading terms in the small-w expansion of both
the matrix element squared and the phase space. We now discuss how to compute them.

We consider first the matrix element, and construct an expansion of the real-emission

amplitude in powers of k [29, 30]. We write
(2p1 + k) (2p2 + k)*

M(p1,p2, k) ZQST{E{{ TR (T k) Mo(p1, p2)

plf a./\/lo a pg 8/\/{0

(p1k) Opf (pok) Ops

We can determine MY if we require that the above expression satisfies the Ward identity

(2.12)

k* + M5 (p1,p2,0) + 0(16)} €p-

which means that upon replacing e# with £ in eq. (2.12) we should get zero. We find that
this is achieved if the following condition is satisfied

oMy OMy
ke — N0y Mak, =0, 213
ops opy ’ o
It follows that OM oM
Mo‘ _ 0 + 0. 2.14
3 op§ ops =

The amplitude expanded to first subleading order in k then reads

e J[@pi+ k) (22 + k)u}
M(p1,p2, k) = gsT15 {[ k2 (it h) Mo(p1,p2)
Pi,p 8/\/10 @ P2, 8./\/10 o (6/\/10 8M0> }
Kk — kY — | — — + O(k m,
(p1k) 9pt (p2k) Op opy  Opy )y

We now need to square this amplitude and integrate it over the phase space of the

(2.15)

three final state particles, working through next-to-leading approximation in the soft limit.
Although this can be done by choosing a particular parametrization of the three-particle
phase space, we do this in a way that can be generalized to more complex cases. Consider
the three-particle phase space

o+ (p) dp: 4 (p3) ﬂé—i— (k% = X2) (2m)*6W (g — p1 — p2 — k).
Y (2m)? > (2m)3

(2.16)

. dp
dLips(¢; p1,p2, k) = (277)13




To expose its dependence on A, we follow ref. [31] and introduce a Lorentz transformation
A that boosts the vector ¢ — k to the vector kg where k = /(q — k)?/q?. Specifically,

A (g — k)" = (q;f)qu- (2.17)

We also find it convenient to define
W= rkIAM,, (2.18)
for a generic momentum [. It is then straightforward to obtain
P+ ph =AM (pry +poy) = KA (g, — k) = g™ (2.19)
Since A is a Lorentz transformation, it follows that
d4p172 04 (pfg) = /€4d4]5172 0 (/@215%72) = /’i2d4ﬁ1,2 01 (]5%2) . (2.20)
This, together with
8W (¢ —p1—p2— k) =W (/‘JA_I(Q — D —152)> = 10" (g - p1 — o), (2.21)
allows us to re-write the phase space as

d*k

dLips(q; p1,p2, k) = dLips(q; p1, p2) ¥ W5+(k2 — A%)0[(q — k)?], (2.22)
where . .
. o d*p oy d*p B L
dLips(q; p1,p2) = ﬁ&r (1) ﬁ&r (53) 2m) 6™ (q — p1 — pa). (2.23)

We note that in eq. (2.22) the dependencies on the gluon momentum and its mass are
separated from the rest of the phase space.

We can now explicitly check whether or not soft gluons lead to contributions propor-
tional to A in the total rate. To this end, we need to consider

OR = Nil /dLlpS(Q7p17p27 k)’M(p17p27 k)’27 (224)

where N is an irrelevant normalization factor, expand the integrand through next-to-
leading order in small k& and integrate over k. To facilitate this, we perform the Lorentz
transformation discussed above. We write

d*k
(2m)?

op=N"" / dLips(g; p1, p2) 34 (> = X)0[(q — k)*] | M(KA ™ pr, kA o, B)[?. (2.25)
For soft gluons, the Lorentz transformation is small. To first order in k, it is straightforward
to obtain

_ kugqy — quky
Auul = 9w — : q? o+ O(k2)7 (2.26)



leading to

1 k kp; .
A (2.27)

We use ¢ = p1 + p2 and rewrite eq. (2.27) as
1 1
pl=p — Sk = Bk, Py =Py — Sk + Bk, (2.28)
where the antisymmetric tensor B*” reads

o et Ve L et /]
BH — plpZ~ ~p2pl . (229)
2(p1p2)
We now consider the matrix element M (p1, p2, k). From the discussion above it follows
that it is sufficient to consider the approximation eq. (2.15), that we now write in terms of
the momenta p;. To this end, we note that

(pr2+ k)% =K+ 2pl ok = 2 ok T 2k, B Ky, = 2(p1 2K), (2.30)
and
Zp‘f + kH = Qﬁ’f — 2B"Ek,,, 2p§L + k= 2]5‘2‘ + 2B* L, (2.31)
We also introduce the soft current
~p 1
=P _ P (2.32)

(prk)  (P2k)’

and use eq. (2.15) to write the expansion of the matrix elements in powers of k as

M(EA o1, kA po, k) = g TC {{J“ BHE, < )]M p1, P
(KA p1, kA" po, k) = gsT1, ) (ka) o(p1,P2)
A (8/\/10 OMy ) o (8/\/10 8/\/10) BB,

2 oS

[

D1 aMo o p2 8./\/10 o 8/\/10 8./\/10

p — k% — — — kY — — — —— +0(k
(p1k) OpY (D2k) Op3 Opry  Obay () cu

(2.33)

Computing the square of this amplitude is straightforward. One can replace the sum over
the gluon polarizations with —g#” since the Ward identity is satisfied. Contracting the soft
current J, with the various structures that appear in eq. (2.33), we obtain

Pl P2, (p1P2) Y
JH = = —JH = fJ“J =——==— J,B"k, =—1. 2.34
(p1k) (po2k) 27 °F (P1k)(p2k) g (2:34)

Using these results, we find that all derivatives of the leading order amplitude drop out

from the matrix element squared and we obtain

Z ‘M(KA_lﬁl, /iA_lﬁQ, k‘) ’2
col,pol

(2.35)

_ _ 2 92 2(p1p2) (k) (P2k) 9
= > IMo(pr, 52)Pg3Cr x k) (o) 1 i)~ Bu) +O(k%)] .

col



In eq. (2.35), we need to sum over the gluon polarizations but it is not necessary to sum
over the polarizations of the decaying particle.

We are now ready to ascertain whether soft gluon emission leads to linear power
corrections. To do this, we study the ratio

g
= 2CrR(?), (2.36)
OLO

where

2 d*k 22 21 2(P1P2) (Prk)  (P2k) 2
R(¢%) = [ Gyt 7 =1k 2 B2 [1= (B2 — (S8 4 0() | (23)
In principle, we need to integrate this formula over soft gluon momenta but it is actually
easier to integrate it over all possible values of k. Since the region of large gluon momenta
only gives rise to quadratic terms in A, it is safe to extend the integration region. The
computation of the integrals in eq. (2.37) is described in appendix A where it is proven
that they do not contain terms which are linear in A. We conclude that

2 2
R(¢?) = w? (g) In? % +wP(g)In % +w®(q) + 02). (2.38)
Eq. (2.38) implies that the emission of soft gluons does not generate O(\) contributions to
the total decay rate.

Since we work at next-to-leading order in the soft expansion, one may wonder whether
soft scalars give rise to linear terms in A. To study this situation, consider the matrix
element in eq. (2.11). We are interesting in its behavior in the limit p; — 0. Momentum
conservation then implies that both p, and k are large. Since €,k* = 0 and since M3 is
non-singular in the p; — 0 limit, we conclude that the matrix element is not singular for
p1 — 0. This, together with the fact that the phase space is proportional to E1dF;, allows
us to conclude that also this kinematic region cannot produce terms that are linear in A.

The last potentially problematic region is the hard-collinear one. For definiteness we
will consider the kinematic configuration where the gluon momentum is collinear to the
outgoing momentum p;. To study this region, we employ the Sudakov decomposition to
parametrize the gluon momentum k& and write

k=zp1+ Bp2s+ k.. (2.39)
Then, introducing sj2 = 2(p1p2), we write

. dz A%k
2z ,\2+Ei
5122

A4k 6, (k2 — \2) = %2 dz dB A2k | 04 (51228 — K2 — \2) . (2.40)

where in the last step we have integrated over 8 to remove the é-function. The z — 0,1
limits correspond to the soft-gluon and soft-scalar cases that we have already discussed. In
the hard-collinear region, k; should be integrated from zero to some value which is large
compared to the gluon mass and z should be integrated between some minimal value that

~10 -



is much larger than A\/q to z ~ 1. Inspection of propagators shows that they are quadratic

in A. Indeed,
= : - (2.41)
(pr+k)?  N2(1+2)+ kK (P24 k) sz A :

We conclude that the contribution of the hard-collinear region leads to an expansion in
powers of A\2/¢? and cannot produce terms that are linear in A wunless linear terms in
k| appear.

The presence of such linear terms in k| is, in principle, possible in processes where
more particles are involved. For example, suppose that there is another particle with
momentum ps3 in the process. Then considering the collinear region k||p; and writing the
Sudakov decomposition for ps = z3p1 + B3p2 + p31, we find

1 1
(p3+ k)2 siezB3+...+ki,ph

(2.42)

Since in the hard-collinear region si2z83 ~ 1 and k; ~ A, we can expand the above
propagator in powers of k| . If the integration over the directions of k£ is not restricted, all
odd powers of k| disappear.” Even powers of k|, on the other hand, correspond to even
powers of A. Hence also in this case the hard-collinear region does not give rise to linear
power corrections. Finally, we note that, since collinear radiation is local in momentum
space, this conclusion is general and applies to any process, regardless of its complexity.

To conclude, in this section we have studied the process V' — ¢¢(+¢g) and provided
general arguments showing that no contributions that are linear in the gluon mass can
appear. While this result is neither surprising nor new (see e.g. [3] for a generic discussion
of decay rates), we avoided using explicit formulas for the matrix elements and for the
phase space in the hope that the above arguments can be then easily generalized to more
complex processes and observables. Indeed, the next section is devoted to the discussion
of such generalization, for a broader class of processes which occur at both leptonic and
hadronic colliders.

3 General case

We now turn to the discussion of more general cases and study processes at lepton and
hadron colliders, with the usual caveat that we do not consider processes that involve
gluons at leading order.'® Although our discussion is general, for simplicity we focus on
cases where only two massless color-charged partons are present in the Born amplitude
(i.e. where there is only one emitting QCD dipole), while keeping the number of colorless
particles arbitrary. One of our motivations for studying this case is the analysis of the Z
transverse momentum distribution in photon-proton collisions in ref. [24] that we would
like to understand analytically. Also, we wish to develop a general formalism that allows
one to deal with non-perturbative corrections to a large class of event-shape variables.

9We note that this cancellation is not guaranteed if observables have a non-trivial dependence on kL / |E n
in the collinear limit. We will come back on this issue when discussing event-shape variables in section 5.
10As a consequence, the “hadron collider” may become a photon-proton collider as it is done in ref. [24].
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Compared to the discussion of section 2, if we consider “hadron” colliders we should
also study the renormalization of parton distribution functions (PDFs). However, at least
as long as the collinear factorization framework holds, PDFs renormalization is process-
independent, and can be then studied in deep-inelastic scattering. But there an operator
product expansion allows one to conclude on very general grounds that power corrections
start at O((Aqep/Q)?), and no linear terms are present.!! We then only need to discuss
virtual and real corrections, in analogy with what we did in section 2. We devote the next
two subsections to this.

3.1 Virtual corrections

To study O(A) contributions arising from virtual corrections, we need to consider both the
wave-function renormalization constant and the one-loop amplitude. However, a simple
calculation shows that even in the case of quarks the former can be expanded in powers of
A? and In ), so that it cannot give rise to linear power corrections. Hence, we only need to
investigate one-loop amplitudes.!?

We have discussed virtual corrections in the toy model of the previous section where
we argued that Passarino-Veltman reduction combined with explicit formulas for scalar
integrals that contribute to the one-loop matrix element for the V — ¢¢ process makes
it obvious that virtual corrections possess an expansion in powers of A> and logarithms of
A. To generalize this discussion, we note that the Passarino-Veltman reduction argument
remains valid also for more complex processes, but the scalar integrals that one obtains are
more complicated.

The analysis in the previous section was based on an explicit computation of the three-
point function C(p1,p2,A). To understand what happens in the case of more complex
integrals, it is useful to go back to that computation and ask whether an expansion of
the three-point function in powers of A can be constructed directly in the momentum
representation. The answer to this question is known [32]. To obtain such an expansion,
one writes the following identity'3

ddk
(2m)*

1
(k2 = X2)(p1 + k)% (p2 + k)%’

(3.1)

C(p1, —p2,\) = / 3+ T + 7|

where the three operators produce particular Taylor expansions of various propagators. '

1 An explicit calculation of the collinear counterterms that shows that this is indeed the case can be
found e.g. in ref. [18].

12The situation is more delicate for heavy quarks. Indeed, in this case it is well-known that the mass
renormalization counterterm can receive linear power corrections. see e.g. [3] for a review.

13We consider C(p1, —pa, A) rather than C(p1, p2, A) for convenience. Indeed, C(p1, —p2, A) is symmetric
under 1 <+ 2 exchange.

1 Although this integral is finite in four dimensions, individual expansion terms may exhibit divergences
that we regularize dimensionally. In fact, it is known in this case that dimensional regularization is not
sufficient to regularize TIS) and T,g) separately. This subtlety is not important to us since it only affects
terms that contain logarithms of .
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Specifically,

1 RO | 1S -k
s =m =) I = =1,2. (3.2
MR j; <k2> C R G B2 2(pik) j; (2(pik:)> =12 (32)

It is obvious that the operator T:\Y produces terms that only contain even powers of \. To

see that this is also the case for T]S ’2), consider the j-th term in the expansion generated

by T,S )

[ i (3:3)
(2m)* (k% — A2)(2p1k)Itt (p2 + k) '
Using the Sudakov decomposition

k =apy + Bp2 + ki1, (3.4)

it is easy to see that upon rescaling k| — Ak and o — A2a, the j-th term in the sum scales
as (A\2)7, modulo logarithmic corrections. We conclude that the triangle C(py, —p2, \) can
be expanded in powers of A\? and no linear corrections can be generated, in agreement with
the explicit result of section 2.

We note that the reason why the three operators T ;’2, T]g),
expand the three-point function in powers of A is as follows. Starting from the Sudakov

1 = 1,2, are needed to

decomposition, it is possible to recognize [32] that only three kinematic configurations may
contribute to the expansion of the three-point function C in power of A\. They are
2 2

k A A
anfBe =3 N an i ki~ A Bl Bl kL~ (3.5)
S12 S12 512

where s19 = 2(p1p2). These three regimes correspond to the T;Z,Tlg) and T, ,ﬁ? operators,
respectively (see ref. [32] and references therein for more details).

We continue with the discussion of more complex scalar integrals. A typical case
that arises e.g. in the computation of corrections to the Z-boson transverse momentum
distribution is the four-point function that, in addition to the three propagators that appear
in C(p1, —p2, ), contains a further propagator that does not go on the mass-shell in any

of the singular limits (i.e. when k becomes soft or collinear to external particles). We write

d%k 1
(2m)® (k2 = X2)(p1 + k)% (p2 + k)2 (¢ + k)2’

D(p1,p2, p3, ) 2/ (3.6)

where p? = p3 = p3 = 0, ¢*> = (p2 + p3)? # 0. The expansion of D in powers of A proceeds
in the same way as for the three-point function. We find

d%k
D(p1,p2,p3,A) = /W [T; +T,§%) +T;§3)}

The way the three operators act on the off-shell propagator follows from the scalings of

1
(k> = A2)(p1 + k) (p2 + k)* (¢ + K)*

(3.7)

various Sudakov parameters in relevant regions, cf. eq. (3.5). Then, the operator 7} does

nothing to the last propagator whereas the operators Tlggl 2) produce its expansion in powers
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of a, k? and ki g or in powers of 3, k? and ki, ¢, respectively. It follows that the
operator T; generates an expansion in powers of A2. The action of the operator TIS) leads
to integrals of the following type

/ A9k {k?, (pok), k3 }
(2m)® (k2 — A2)(2p1k)! (p2 + k)% [¢® + 2(Qp2)(kpl)/(]31p2)]m’

(3.8)

where we made use of the fact that upon averaging over directions of £/ all odd powers

of g1, k| disappear. Also, numerator terms such as (k L qi)%

can be rewritten upon
azimuthal integration in terms of ki and qi. Upon rescaling o — MN2a, k| — Mk, we
observe that the integral in eq. (3.8) is proportional to (A?)7. The analysis of how the
operator Tg) acts on the integrand leads to the same conclusion. It follows that also the
box integral D(p1,p2,ps,\) can be expanded in powers of A2,

Using the Passarino-Veltman procedure, higher-point integrals can be reduced to boxes,
triangles, bubbles and tadpoles. The latter two can be straightforwardly expanded in
powers of A\? and In A, as shown in the previous section. Box and triangle integrals that
do not develop infrared and collinear singularities in the A — 0 limit can be expanded in
powers of A\? in a straightforward way. In fact, for such integrals, the first correction to the
A — 0 limit scales as O(A?). Integrals that do develop infrared and collinear singularities,
on the other hand, can be related to the box and triangle cases discussed above. We
therefore conclude that virtual corrections for generic processes with massless particles do

not generate linear power corrections.

3.2 Real radiation

We now discuss real corrections. Specifically, we consider a generic process I — F, where
I and F are short-hand notations for the collection of initial and final state particles,
respectively, and study the real-emission corrections I — F' + g where g is a gluon with
mass A\. We imagine that there are two and only two massless partons with QCD charges
each of which can be either in the initial or in the final state. We do not consider cases
when one of these partons is a gluon. On the other hand, we allow for an arbitrary number
of (massless or massive) QCD-neutral particles.

From the discussion in section 2, it follows that to expose the infrared sensitivity we
only need to consider singular kinematic configurations. Furthermore, in section 2 we ar-
gued that collinear emissions do not lead to linear power corrections.'® Since collinear
emissions are local in momentum space, the argument of section 2 holds for generic pro-
cesses. We then only need to consider soft radiation.

When discussing the toy model of section 2, we have argued that soft scalars do not
lead to linear power corrections. One may wonder if the same conclusion also holds for soft
quarks. To study this, consider a quark with momentum p* = E(1,7), where the energy
F is small, E — 0. The phase space volume element of a massless quark is proportional to
EdFE and the most singular contribution to any matrix element squared is proportional to

15This statement is valid as long as the observable under consideration satisfies certain properties upon

+

azimuthal integration, see section 5 for a discussion in the context of event shapes in e"e™ annihilations.
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E/(2(pk) + A?)? where one power of the energy in the numerator comes from the density
matrix of a soft quark. Hence, the contribution of the small-energy region arises from
energies that are proportional to A\? and is then given by

Emax E
/O EdE @) T~ +0(\?), (3.9)
where c is independent of A. We conclude that soft quarks cannot produce contributions
that are linear in \.

As a result, we reach the conclusion that we only need to investigate the emission of
soft gluons. From the discussion in section 2 it follows that it is sufficient to expand both
the matrix element and the phase space in the soft limit retaining the first subleading (i.e.
next-to-eikonal) terms. In the remainder of this section, we discuss how to do this for
processes which are more general than the one discussed in section 2. We need to consider
three distinct cases: the two QCD partons are in the final state (“final-final” dipole), one
parton is in the initial state and the other one is in the final state (“initial-final” dipole)
and, finally, both partons are in the initial state (“initial-initial” dipole). In what follows,
we study these three cases separately. For definiteness, we will always denote the momenta
of the partons that form the dipole as p; and po, irrespective of whether they are in the
initial or in the final state.

3.2.1 Final-final dipole

We consider a process where colorless particles with a total momentum p; produce final
state particles with momenta p1, p2,ps3,...,PN

pr—p1+p2+p3...+pN. (3.10)

Particles with momenta p; 2 have QCD charges;'% all other particles are colorless. We only
consider cases where the QCD-charged partons are massless, p? = p3 = 0. For ease of
notation, in this section we will assume that also the non-QCD final-state particles are
massless. To explore power corrections in this situation, we consider the emission of a
massive gluon with momentum k and mass A. Momentum conservation then reads

pr—pi+p2+p3...+py+Ek (3.11)

We note that since, by construction, there is only one gluon participating in the process,
the non-Abelian nature of QCD is immaterial and Ward identities are trivially satisfied.

As we discussed in section 2, to study soft-gluon emission it is convenient to construct
mappings of hard final state particles

Pi —>ﬁl :ﬁi({pj},k‘), 1=1.. .N, (3.12)

that preserve both the on-shell conditions p? = p?, i = 1... N, and the momentum con-
servation constraint

N N
pr=>Y_pi=> pi+k (3.13)
i=1 i=1

16\We remind the reader that p; and ps cannot be gluons.
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As we argued in section 2, since we are interested in linear power corrections, we only
require these mappings to first order in the gluon momentum k. We now discuss how to
construct them. Although we only need to find one particular mapping that satisfies the
above requirements, we keep our discussion general as different mappings may offer different
advantages and disadvantages when used in practical applications. One assumption is that
the mappings behave as

v =0 + K"k, + O(k3) (3.14)

for small gluon momentum, where the tensors K" are constructed using the momenta p;
and the metric tensor. The momentum-conservation constraint implies

S =P = S KMk, = kP (3.15)
We also require our mapping to satisfy the following form of the on-shell condition
= (14 X)p7, (3.16)
where )\; are analytic functions of momenta. Using eq. (3.14), we find
2p; K" by = N - (3.17)

We note that A\; ~ O(k).
We are now in position to express the phase-space element for final-state particles in
terms of the momenta p;. We write

dLips(pr; p1, - - - pN, k)

= [1:[ éﬂp;?, 5+(p12)] [dk] (2m) 45 <p] - sz - k) (3.18)

i=1
N d4p; _ a(p1,...,
- [1_1 STt )| fan) S oy (pf . zp> ,

with [dk] = d*k/(2m)? 6. (k* — A\%). We now make use of the fact that we only need this
expression to first order in k. Then, using a relation between the determinant and the
trace of a matrix that is nearly the identity matrix and the fact that A\; ~ k, we find

Sy (k* =\ J, (3.19)

dLips(pI;pla ce. 7pN7'I€) ~ dLlpS(pfaﬁh cee 7]3]\7) (271')3

where
O0K; py

—1—ZA +Z a~“ k. (3.20)

To proceed further, we need to specify the mapping explicitly. To this end, we focus
on the so-called dipole-local mappings, i.e. mappings where the momenta of the particles
that do not belong to the radiating dipole are not transformed. By assumption, the dipole
in our case is formed by the final state particles with momenta p; 2. Therefore, we choose
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K;=0fori=3,4...,N. Furthermore, we want to construct ng using only p; 2 and the
metric tensor. Then, writing the most general form of K, ,

K" = (aip By + bifh Py + cipi By + diphBY) + eigh”, (3.21)

and using eq. (3.15) together with the fact that the coefficients of the tensor do not depend
on k, we find the following constraints

ar+a2=0,b1+b3=0,c14+c2o=0,dy+dy=0, e1 +e3 = —1. (3.22)
The requirement that p; , K"k, o p7 leads to the following set of equations

a1 Py + d1 (P1jp2) + e1 o< p3, b1 (P1p2) + 155  pi,

- o B o o (3.23)
ba P + c2 (D1D2) + €2 o P3, a2 (P1D2) + da Py o Ps.

In total, egs. (3.22), (3.23) provide 9 equations for the ten unknowns a;, b;, ¢;, d;, e;. We
decide to express the solution in terms of e;. It reads

1
ai2 = b1,2 — 0, Cy = —C1 = ~+~61, d2 = —Cl1 = ~61~ s €9 = -1 - e1. (3.24)
(P1P2) (P1P2)
Denoting e; = —«, we finally obtain
KiLV — _ag;u/ _ (1 — Ck)ﬁlfﬁg — aﬁgﬁlf
(p1p2)~u o (3.25)
Kgu _ _(1 . Oé)g/“/ + (1 — a)plpg — Qpa Py )
(P1D2)
It is now straightforward to finalize the computation of the phase-space transformation.
We find - -
M= —2(1—a) 22K No = —20 P1F)
(P1P2) (P1P2) (3.26)
oK™ DY oKLY DY ’
= _(3—4a) L2 2 = (1—da) L
opy (P1P2) op; (p1P2)

With the help of these equations, the Jacobian of the transformation J in eq. (3.20) is

found to be

(P1k) — (P2k)
(P1p2)

The integration over k is restricted by the same condition that we discussed in section 2.

J=1+(1-2a) (3.27)

In particular, writing ¢ = p1 + P2 and using momentum conservation p; + po = q — k, we
find that the condition (¢ — k)? > 0 puts an upper bound on the possible values of k.
Before continuing, we now briefly comment on the form of the transformation eq. (3.25).
First, if we compare it with the analogous transformation in section 2, we immediately see
that the mapping used there corresponds to the symmetric case o = 1/2. This case is
particularly simple because the phase-space Jacobian does not receive linear corrections.
For the sake of generality, however, in this section we will keep « arbitrary. Second,
it is interesting to note that the mapping eq. (3.25) automatically satisfies nice infrared
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conditions. The soft limit is not particularly interesting, since for £k — 0 one has p; = p; by
construction. The collinear limit is however less trivial. In this case, if we formally replace
k with np1, we find p; = (1 —n) p1 and p2 = po, which is exactly what we expect from a
collinear-safe mapping. An analogous result holds for the k — 1 po case.!”

Having studied the phase-space transformation, we need to discuss the matrix element
and its integration. Since we only have one QCD dipole, the matrix element squared

summed over gluon and quark polarizations can be written in the following way

A({pi}, k) Bi({pi}, k) | Ba({pi}, k)

R P T S ("ENSE A Pea3E

(3.28)

The functions A, By 2 are polynomials in k. The limiting behavior of the function A follows
from the standard soft approximation. Hence, we can write

A{pi} k) = ao({pi}) + o ({pi} )k, + O(K?), (3.29)

where a/ ({p;}) is a four-vector that, in principle, depends on all vectors p;. To understand
the contributions proportional to By 2, we note that they can only appear from squares
of diagrams where a gluon is emitted and absorbed by the same line. Focusing on the
function B for the sake of definiteness, we can write

Bi({pi}, k) MV1)2]2T1" (o1 + B)yuprv (pr+£) . ], (3.30)

i+ k)22 7 [+ &

where we have used ) €,€;, = —g,,, to sum over gluon polarizations.'® A simple computa-
tion then gives

Bi({pi}, k) = N [bro({pi}) + b8y ({pi k] — (o1 + k)* 0y ({pi}) K- (3.31)

A similar calculation shows that By admits an analogous decomposition. The term pro-
portional to (p1 + k)% in eq. (3.31) removes the double pole in eq. (3.28); therefore, it
can be treated together with the term A/(p1 + k)?/(p2 + k)? in eq. (3.28). Finally, power
counting arguments show that contributions of the form A\%/[(p; + k)?]? are not required

17 Although for our purposes it is sufficient to consider a mapping of the form eq. (3.25), we note that
in principle we could have also employed less smooth mappings. For example, assume that K {‘ % can be
generically written as

K" = Kfﬁ + Kffi,

where K; | and K; | satisfy the conditions

KLy (gw - pl*““g&f}“”“) =0, K pr = K" pay =0,
Although KZ“J"_ could depend in a non-trivial way on (p1,2k), it is easy to see that this term leads to an odd
linear dependence on the transverse momentum component of k, which vanishes after azimuthal integration.
Because of this, it is then possible to show that all the arguments presented in this section would apply to
this case as well, with no significant modification.

8The sum over gluon polarizations for massive gluons contains a term kuk./ k2. However, this term can
be dropped because of the Ward identities that are valid in the (abelian) problem.
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since, due to the A2 suppression, the small k-region in these integrals only produces O()\?)
contributions.

What remains to do is to integrate the amplitude squared, expanded through first
order in k, over the gluon phase space, after the p — p transformation is performed. To
remap the matrix element squared, we use eq. (3.28) but we discard double poles, for the
reasons we just explained. Writing the propagators as

p1 k) (Dak
(pro+ k)2 = 2(pik) + (1 — 2a)A2 F 2(1 — 20) LR (P2k) (3.32)
(P1P2)
and expanding them to next-to-leading order in k ~ X, we obtain.
1 1 z? (1K) (Pak)
(P2 +k)?  (2pik) ( ( )2(pik) ( )(pik)(mpz) (3.33)

We now consider theoretical predictions for an observable that is inclusive with respect
to QCD radiation. It follows that

O(p1 +p2 + k;p3,...,pn) = O(P1 + D2; P3, - - -, PN)- (3.34)

For such observables, we can write

1 do B ) a4k
6dLipS(p[;ﬁ1’ . 7]5N) =N lgch |MO({pl})|2 / W 5+(k’2 - )\2)9[((] — k)Q]
2(p1p2) 22 A2
" G (5ah) ll Pt (2(251k‘) ) z(@k)ﬂ |

(3.35)

where N is an irrelevant normalization factor and the vector v* depends on momenta p;;
its exact form is not important for our purposes. We note that the upper bound on k-
integration follows from the constraint [(¢ — k)?]. In principle, since eq. (3.35) refers to
the expansion around the soft k ~ A region, the integration could have been restricted
accordingly. However, since our goal is to understand whether O(\) terms appear in the
differential cross section, we can extend the integration to all values of k since the region
where k is hard does not generate linear O(\) terms. A discussion of the integrals that
appear in eq. (3.35) is given in appendix A where we show that they can be written as a
power series in A2

We conclude that arbitrary differential cross sections that are inclusive w.r.t. the QCD
radiation are free of linear power corrections. On the other hand, if one computes an
observable that is sensitive to gluon momenta, linear sensitivity can appear.'® We discuss

this case in details in sections 4 and 5.

19The same holds for less-inclusive definitions of cross sections, like e.g. the so-called longitudinal cross

+

section in e”e” annihilation, which indeed receives linear power corrections [11].

~19 —



3.2.2 Initial-final dipole

In this section, we generalize the discussion of section 3.2.1 to the case where one of the
radiating partons is in the initial state and the other one is in the final state. This is
relevant for example for the production of a vector boson with non-vanishing transverse
momentum in hadronic collisions. At the Born level, we write

p1+p3s — p2 + prF, (3.36)

where we have assigned momenta in such a way that partons with momenta p; 2 form the
dipole and pp stands for the momenta of the colorless particles. Since our formalism in its
current form cannot deal with gluons in the Born process, we follow the same approach as
in ref. [24] and consider quark-photon collisions

q(p1) +(p3) — a(p2) + X(pr). (3.37)

We are interested in constructing a local dipole mapping that involves the partons p;
and po and that can be used to understand linear power corrections in this process. At
variance with the discussion of the previous section, when constructing the mapping for
the initial-state parton we require that the direction of its momentum does not change.
Then, writing the transformation for p; as

pi =Y + (kik)py, (3.38)
and using momentum conservation
p1—p2—k=p1— P2, (3.39)

we derive
Py = P + (r1k)py — k. (3.40)

Similar to the case of final-final dipoles, we require that the on-shell conditions are not
affected by the mapping. This is obviously the case for eq. (3.38) which implies

pi = (1+2(kik) + O(K?)) B, (3.41)
for any k1. The equation for p3 is more informative. We find
3 = D5 + 2(p1pa2) (k1K) — 2(pak) + O(K?). (3.42)
Hence, to satisfy the condition p3 o p3, we require
2[(p1p2)Ky — P Ky = 0. (3.43)
Since k1 is k-independent, it follows that

Ph

(P1p2)

S

(3.44)
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In summary, for an initial-final dipole we find the following momenta mappings

= (1 gy )t b= St (349
We note that also in this case this mapping is well-behaved in the soft and collinear limits.
Indeed, by construction, in the soft k — 0 limit one has p; — p;. If we formally replace k
with np1, we obtain p; = (1 + n) p1, p2 = p2. Similarly, for & — nps we obtain p; = py,
p2 = (1 —n)p2.

Next, we consider the phase-space transformation. The calculation proceeds exactly
as in the case of the final-final dipole in the previous section except that in the current
case, we only integrate over the momentum po. Since p3 = p2, the parameter Ao from the
previous section should be set to zero. Also, using the result for the Jacobian

d(p2) (p1k)
— =1+ —=, 3.46
9(p2) (P1P2) ( )
and the momentum conservation, we obtain
. o dk p1k
dLips(p1, p3; p2, pr, k) = dLips(p1, ps; P2, Pr) 2r)p 4 (K2 = X% (1 + ((]51?11]52))) , (347)

where p3 = p3. Similarly to what we saw in the final-final case, the integral over the gluon
momentum is constrained by the requirement (¢ — k)? < 0, where ¢ = p; — p2, which is
assumed in eq. (3.47).

To compute hadronic cross sections, we need to convolute the partonic phase space
and the matrix element squared with parton distribution functions. We write

dop = /dm1d$3 fo(z1) fry(23)

‘M(xlpl7$3p37p27"'7k)‘2 (348)

2Shadr 173

x dLips(z1 Py, z3P3; p2, pr, k)

9

where P; 3 are the momenta of the incoming hadrons, spagr = 2(P1P3) is the hadronic
center-of-mass energy squared and f,, are the quark and photon parton distribution
functions. We now interpret eq. (3.45) as a transformation rule for z;. Indeed, writing
p1 = x1P; and p; = Z1P; we find through linear order in k

(p2k)
(P2P1)

We then use the phase space transformation and obtain

T =I + =1+ &(k,D2). (3.49)

dog :/d:‘n’ld:ngfq (@1 +&(k,D2)) fy(x3) dLips(Z1 Py, x3P3; D2, pF)

d‘k 2 \2 (P1k) ‘M((i‘l+§)P17$3P3,152,--->k)|2
o 0107 0 (1 () e

Under the assumption that z; is a regular point, the above equation can be expanded in

(3.50)

&. Since { appears in the argument of the quark distribution function f, we write

fa (@14 €) = fo(@1) + fL(F1)E+ OK?). (3.51)
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Similarly, the amplitude can be expanded up to next-to-eikonal level in a way that is
analogous to what we have discussed in section 3.2.1. The only difference is the expansion
of the two singular propagators that now read

11 (_(ﬁzk)+ A2
(p1— k)2  2(hik) (P1p2)  2(p1k)

1 1 (p1k) A2
(2 + 12~ 200) (1 T o) 2@2@) O

Combining these results, we find that we again need to consider integrals that are identical

> + O\,
(3.52)

to the ones for the final-final case. As we have already said, all such integrals are discussed
in appendix A where it is shown that they can be expanded in powers of A2. We conclude
that also in this case there are no linear power corrections to kinematics distributions of
final-state QCD-neutral particles. Among other things, this implies that the transverse
momentum of a vector boson does not receive linear power corrections even if rapidity cuts
are imposed, at least in our simplified “hadron-photon” setup.

3.2.3 Initial-initial dipole

In this section, we consider the case where both radiating partons are in the initial state.
For concreteness, we study the Drell-Yan process

q(p1) + q(p2) — V(pv). (3.53)

Although it is well-known that the cross section of this process does not receive linear
power corrections [18], we study it using our formalism for completeness. We begin by
considering a suitable phase-space mapping for the process

a(p1) + q(p2) = V(pv) + g(k), (3.54)

where k% = A2. We focus on local mappings. We would like to preserve the directions of
both p; and ps, so we look for mappings of the form

p1 = (1+ (k1k)) p1,
p2 = (1 + (k2k)) P, (3.55)
pv = py + (k1k) p1 + (k2k) p2 — k.

We note that the above mappings automatically satisfy the momentum conservation con-
dition p; + p2 — (pv + k) = p1 + P2 — py and also preserve the on-shell condition for the
incoming partons. Requiring that the vector boson remains on the mass shell p%/ = }5%,,
we obtain

(k1K) + (K2k)) (P1D2) — (kp1) — (kp2) = 0. (3.56)
Clearly, this equation does not have a unique solution for the two vectors 2. However,
we can require that the transformation does not change the rapidity of the vector boson Yy
in the laboratory frame. Using P; 2 to denote momenta of the colliding hadrons, we find

vy _ (Bv) _ (Pipy) + (w2k)(Papa) — (P1k)

= Pav) ~ (Papv) + (rak) (Pan) — (Pok)’ (8.57)
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Hence, if we choose

PR SRS S S | (3.58)
(Pop1)  (P1p2) (Pip2)  (p1D2)
we find
P Pip
2y _ (Pipv)  (Pipv) (3.59)

~ (Ppv)  (Papy)
It is easy to check that the choice of k;-vectors in eq. (3.58) satisfies the on-shell conditions
eq. (3.56). Once again, eq. (3.58) leads to mappings which are well-behaved in the soft and
collinear limits.
We now consider the phase space. Since

d4
2yt 0 = m D6 1+ 2 —py — b)

d4 5 - -
= Wé (Pv m%/)(27f)45(4)(p1 + P2 — Dv),

(3.60)

there is no Jacobian factor in this case. However, similar to the initial-final case, we have
to consider changes in the momenta of the colliding partons. We interpret them as changes
in Bjorken z12. The corresponding formulas read

(Pok)
(P P2)

(Pik)
(PLP2)

+ O(k?) xo =129+ + O(k?). (3.61)

1 =1I1+

Then, similar to the initial-final case, we have to expand the parton distribution functions
in Taylor series to account for the difference between #12 and x12. The rest of the ar-
gument proceeds in full analogy with final-final and initial-final cases. The expansion of
the amplitude squared leads to integrals over the gluon momentum k that are identical to
the ones discussed in appendix A, where it is shown that they do not contain O(\) terms.
This allows us to conclude that the cross section and rapidity distribution of a color singlet
production at hadron colliders is free of linear power correction.

4 A first application to event-shape variables: the C-parameter

As we have mentioned, an interesting application of the framework developed in the pre-
vious sections is the study of non-perturbative corrections to e™e™ event-shape variables,
for generic kinematic configurations. In this section, we perform a semi-realistic analysis
of one of such variables, the so-called C-parameter. In the case of a vector boson with
momentum ¢ decaying into N massless final state particles with momenta pi,...,py, the
C-parameter reads

CUpi,....pn}q) =33 _ping)* (4.1)
! N ; (pig)(pjq)

We will also use the same definition for the case of massive final-state particles.
We are interested in computing power corrections to this observable in a situation that
approximates a three-jet configuration in ete™ annihilations. Since our formalism does not
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allow us to deal with processes that contain gluons at leading order, we follow the same
approach as in the previous section and use photons as proxies for hard gluons. We then
consider the process

V(a) = q(p1) + a(p2) +v(p3), (4.2)

and study O(Aqcp/Q) power corrections to the C-parameter eq. (4.1) that may arise in
this case. To this end, we follow the approach described in the previous sections and study
O(as) corrections to the process in eq. (4.2) in a theory where gluons are given a small
mass A.

We note that this way of computing O(Aqcp/Q) corrections to the C-parameter is not
fully justified since the definition of this observable involves momenta of all particles in the
final state. For this reason, if one pursues the standard approach to power corrections that
relates computations with large number of massless fermions to calculations with massive
gluons, a computation of the C-parameter for the five-particle final state becomes necessary.
We discuss such a computation in section 5. In this section we consider a simplified setup
where we neglect gluon splitting ¢* — ¢¢ and consider the massive gluon as a final state
particle. This allows us to directly apply ideas of the previous sections to a relatively
simple but non-trivial example and to provide a connection between the general arguments
of section 3 and numerical calculations of event shapes in section 5.

To compute O(ay) corrections to the process in eq. (4.2) we need to account for vir-
tual and real-emission contributions. We have argued in the previous section that virtual
corrections cannot produce linear terms in A; for this reason we discard them and focus
only on the real-emission ones. Hence, we consider the process

V(g) = q(p1) + @(p2) +v(p3) + g(k), (4.3)

with k2 = A\2. To define what needs to be computed, we consider the cumulative distribu-
tion of the C-parameter

1 o
S(e) = / dc’%. (4.4)

To determine the non-perturbative corrections to ¥(c) we need to calculate
2(e) = [ don0[C . pa,pa ki) — o], (45)
where dop is the differential cross section of the process in eq. (4.3)

dor = N~ 'dLips(g; p1, p2, p3, k) |IM(p1, p2, p3, k)| (4.6)

From our discussion in the previous section it follows that we only need to study
kinematic configurations where the gluon is soft. We then proceed as outlined in section 3,
remap the momenta p; — P; and expand the matrix element in the soft limit retaining
next-to-leading terms. To discuss modifications of the observable, we split C' into two
contributions

C(p1,p2,p3,k;q) = 3+ Cs(p1,p2,p3:9) + Cr(p1,p2, p3, k; q), (4.7)
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where

C3(p1,p2,13:9) = —3 Z _pips)” Cr(p1,p2,p3, k3 q) = —323: (kp)” (4.8)
521 Pia)(pia)” = (kq)(piq)
Then, it follows from eq. (4.7), that
Cs(p1, p2. p3; q) = Cs(P1, P2, P3; q) + vk, + O(k?), (4.9)

C(p1,p2, 03, k; q) = Cr(p1, Pa, Pa, ks q) + O(k?).

where v = v(p1, P2, P3; q) is a vector whose specific form will not be needed. Finally, to
account for changes in the C-parameter due to an emission of a soft gluon, we expand the
f-function to first order in k and write

Q[C(p17p27p37k;Q) - C] me[c(ﬁ17ﬁ27ﬁ37Q) - C}

o (4.10)
+ 6(C(p1, P2, P35 q) — ¢) [v"'ky + Cr(p1.p2, p3, k3 q)].

We now combine the required changes in the phase space, the matrix element and the
observable and write

()= N1 /dLipS(qsﬁhﬁ%ﬁs)/[dk]!/\/l(plapzyp?),k)’ZX (4.11)
{G[C(ﬁlaﬁ23ﬁ3; Q) - C]‘] + 5[C(ﬁ17ﬁ27]§3; q) - C} (/Ull«k;u + C/C) }
In the above formula
d*k
(2m)3

and J is the Jacobian of the transformation discussed in section 3. Using arguments

(k] = 26, (K — X2)6[(q — k)7], (4.12)

presented in section 3 we conclude that the only potential source of O(\) corrections to
Y(c) is the term C. Since Cy is proportional to the four-momentum of the soft gluon,
the amplitude | M (p1,p2, p3, k)[?
approximation. We find

in the relevant terms can be taken in the leading soft

ThX(c) = *CF/NdLlpS(q, {(p: 1S (C({Bi}sq) — &) IM (B, Po, B3) P Tale({Bi}s a3 N), (4.13)

where

d*k 2(p1p2) o
o 6+(k2—>\2)9[(q—k‘)z}mck(m,p%p&k)’ (4.14)

and the operator 7 is defined to extract the O(A) contribution from the function it acts

Ie(p1, P2, P3; 3 A) = 871'2/

upon.
We will now explain how the function I. can be computed. To this end, we use the
definition of Cy in eq. (4.7) and write

3
IC(ﬁl?ﬁQaﬁSaQa )‘) :32-[(?)7 (415)
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with

- 4 5.\2
1) = g2 2072 | g+ = X2)0l(a - k)ﬂ(,@ﬁg)(,m (4.16)

(gpi)
It is convenient to compute these integrals in the rest frame of ¢q. We find

o _ _Amp2)  (ap) e "
e Vi (Qﬁl)(Qﬁ2)/A dw B W, (4.17)

where 3 = /1 — \?/w? and wpax is an upper integration limit imposed by the condition
(¢ —k)? > 0. Since we are only interested in the linear dependence on ), the explicit form
of wmax 18 irrelevant. Also, we have defined

dQ (1 - pii - it;)°

w@ =
47 (1 7,877771)(1 *Bﬁﬁg)

(4.18)

where 71; and 7 are unit vectors that define the directions of the spatial components of
the momentum p; and of the gluon momentum k, respectively. The functions W can be
written as linear combinations of three integrals. They are

S (A 1
R Ar (1= Bii-m) (1 — Bii - iig)’
ko 1 ko 1
I pr— pu— 4-19
! Ar (1= Bii - i) dr (1= Bii-iig)’ (4.19)
sy,
Ip= [ ==,
0 47

Indeed, using the momentum conservation condition 32, E; 7i; = 0, one can write

2(1 — 2(1 —
w® — W@ — {1 _ (563)] Io + ﬂh,
T1T2 1T

4.20)
4Ly 2(22 + 23)(1 - 4 2 (
w® = 22 (21 +932)(2 953)([1 A (1 J2“’62)[1 N (961 +x2> L.
where x; = 2E1/\/q>2 = 2(piq) /4>
To compute Ic” we require the following integrals, see eq. (4.17):
Wmax
{Io,Il,Ilg} = /)\ dwﬁ X {10711,112}. (4.21)
Their calculation is described in appendix B, where we show that
T To = —%A, I =0, TiTis=0. (4.22)
Hence, the linear-A dependence of the functions W@ reads
() _ TAT=()
WY = 7W , (4.23)
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where

_ L 2 2(1 _ 2
7 _ 7@ _ 2(1 —a3) 1, 73 _ 2(x] + 952)(12 x3) (:cl + xz) (4.24)
T1T2 T1T2X73 xrs3
Putting everything together, we find
A P1D2) p1D2) — D1 Da)
Tl = —6m [ —— [(plfh)w(l) 1 D)) | (plfjg)(qf)?’)w(s)] . (4.25)
V¢ (gp2) (gp1) (gp1)(qp2)

We can use this result in eq. (4.13) to compute the O(\) correction to ¥(c). Finally, we
note that it is customary to present results for the non-perturbative corrections as a shift
with respect to the perturbative differential distribution. In our case, this reads

TS
do/de

5NP =

. o o o 4.26
[ dLips(g; p1, P2, P3)8 (C(P1, P2, P3) — ¢)|[M(P1, Pa, P3)|> Tale (4.26)

fdLipS(q;ﬁh]72,153)5(0(151,132,173) - C)|M(ﬁ17527ﬁ3)’2

g
=——CFp X
o

Eq. (4.26) allows one to immediately compute O(Aqcp/@) corrections to the C-parameter
for a generic three-jet configuration. However, as we have already said the analysis of this
section is only semi-realistic since we are neglecting g* — qq splitting. We deal with the
fully realistic case in the next section.

5 Event-shape variables: the general case

In the previous section, we explained how to simplify a computation of linear power cor-
rections to the C-parameter in a generic three-jet configuration using an improved un-
derstanding of potential sources of O(\) terms. However, the scope of the semi-analytic
computation described there is limited since we neglected the splitting of a massive gluon
into a ¢q pair. The goal of this section is to develop a general framework that will utilize
findings reported earlier in this paper and will allow us to compute linear power correc-
tions numerically for (almost) any shape variable in general kinematic configurations in a
straightforward way.

5.1 Shape variables in the v* — dd~ process in the large-ny approximation

To explain our approach, we consider the process v* — ddvy. We assume that only d-quarks
couple to photons and all other ny quarks only couple to gluons. In the large-ny limit, the
dominant corrections arise from the emission of virtual or real gluons dressed with fermion
bubbles [3], see figure 1. The solid blob in the gluon propagator in that figure implies that
fermion loops have been accounted for to all orders; its exact definition follows from the
recursion relation

cof@en - o - oo )m@en - 6D
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(v) (8) (aq)

Figure 1. A sample of the radiative corrections that need to be included in order to compute the
all-order a,(asny)™ corrections to the process v* — ddy.

As we already mentioned in the introduction, the large-n; prediction for an observable
O can be obtained by computing the NLO QCD corrections to its expectation value; such
computation, however, should be performed with a massive gluon. Before discussing how
the findings of the previous sections allow us to easily obtain predictions for a wide class
of observables, we introduce some notation. We denote the expectation value of O with
(O) and indicate with a superscript the perturbative order at which (O) is computed. For

0) represents the Born-level result, (O)(!) represents the O(a,) correction

example, (O)(
and so on. Finally, a subscript on O indicates the number of final-state particles that are
used for the calculation of the observable. To give a concrete example, we consider the
cumulative distribution of the C-parameter, see eq. (4.4). In this notation, the Born-level

result is denoted by
(0)© :N/dLiPS(q;phm,ps)!/\/l(p1,p2,p3)!203, (5.2)

where O3 = 0[C(p1,p2,p3;¢) — ¢|] and N is a normalization factor that we will specify
shortly. The calculation of O(as) corrections due to a gluon with mass A is instead de-
noted by

<O>§£) :N/dLlpS(q’pl7p25p3) 2% |:M(p17pQ)p?))MT—loop(ppr)p?)a )‘)i| 03
(5.3)

+N/dLipS(Q;p17p2,p3, k)| M (p1, p2, p3, k)| O341,

with O3 defined after eq. (5.2) and Os+1 = 0[C(p1,p2,p3. k;q) — ¢]. In what follows, we

choose to normalize our results to the LO rate for the process v* — dd, i.e.?°

Nt = [ dLips(a: prpo) M (1, pa) P = o (54)
Finally, we introduce the short-hand notation

d®3 = dLips(q; p1,p2,p3), dPsy1 = dLips(q;p1,p2,p3, k), (5.5)

20 As shown earlier, radiative corrections to the total cross section do not lead to linear terms.
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where k denotes the massive gluon with k2 = A\? and

B(®3) = |M(P1,p2,p3)|2>
VO (@3) = 2R [M(p1, 2, 08) M3 o0 (p1, 92,73, V)| | (5.6)
Réi\)(q)S—&-l) = |[M(p1,p2,p3, k).
The connection between the massive-gluon calculation and non-perturbative correc-
tions is well-known. One can write [3]

a0l

dA

KQ
20530

(0) = (0)® 4 (AQCD> 4o (5.7)

Q

where g = a(1), Po is the first coefficient of the S-function and k is an overall normal-
ization which depends on the resummation prescription. Ellipses in eq. (5.7) stand for
higher-order corrections, both perturbative and non-perturbative. A linear power correc-
tion is present in eq. (5.7) provided that the derivative of <O>g\1) with respect to A does
not vanish for A — 0. In what follows, we will discuss non-perturbative corrections to
various quantities. However, unless stated otherwise we will always present results for
)\d<0>gp/ d, without multiplying them by the other coefficients in eq. (5.7).

So far, we have only considered final states with a massive gluon. However, if the
definition of the observable O is sensitive to the presence of final-state quarks, then con-
tributions where a massive gluon splits into a ¢q pair have to be accounted for. A detailed
discussion of how to do this can be found e.g. in refs. [23, 24|, which use the same notation
that we have just introduced. Here, we limit ourselves to quote the final result. To account
for g* — qq splitting, one has to replace

(0 — (0 = Ty(\) + T (\) + TR (), (5.8)

in eq. (5.7), with [23, 24]

Ty(A) = N/dq’av(A)(%)Oa, (5.9)

Th(\) = N / 05,1 R (441)03:1, (5.10)
3

TR = N~ ;ZF A2 / dDy426 (X2 = (Il + 1)) Ryg(@3:2)[Os12 — Os4 (). (5.11)

In eq. (5.11), d®319 = dLips(q; p1, p2, p3, 11, [2) is the phase space for the process

v*(q) = d(p1) + d(p2) + v(p3) + q(l) + 4(l2), (5.12)

and Ry; is the corresponding matrix element squared

Ryg(®342) = [M(p1,p2,p3, 11, 1) [*. (5.13)

Also, O34 is the observable computed with the momenta of the ddvqq final state, while
O34 (2) is the observable computed using the momenta py,p2,p3 and k = I3 +lp. In our
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example, O32 = 0[C(p1,p2, p3,l1,12) — ¢] and Oz 9y = O[C(p1,p2,p3, 11 + 12) — ¢]. As we
have said, in general O can be any (infrared safe) function of the final-state kinematics.
The only requirement that we impose at this stage is that it should vanish in the two-jet
limit where the three-jet calculation diverges.

We note that egs. (5.9) and (5.10) exhibit logarithmic singularities in the A — 0 limit
that, however, cancel in the sum. Since eq. (5.8) should be finite in that limit, eq. (5.11)
should be finite as well; technically, this happens because the expression in the square
bracket in that equation vanishes in the soft limit. Also, we point out that for observables
inclusive with respect to ¢g* — ¢q splittings, the contribution shown in eq. (5.11) would
vanish and in this case the computation with massive gluons and the large-ny calculation
would be identical. However, since for observables that we are interested in final states
with a massive gluon never appear, the contribution shown in eq. (5.11) can be seen as
a required correction to the calculation with a massive gluon, where the difference in the
observable computed with the qq pair and with the massive gluon is added. In fact, as we
will see in more detail below, the term proportional to Oz () in eq. (5.11) and the one
proportional to Os41, eq. (5.10), cancel each other exactly.

A careful reader could have noticed that there are unregulated soft and collinear diver-
gences in contributions that we account for even if we make sure to stay in the 3-jet region
by, e.g. imposing a cut on the C-parameter. These singularities arise when the final state
photon is collinear to one of the primary quarks or when it is soft and, instead, the radiated
gluon (eventually decaying into the ¢g pair) is hard and at large angle. It should be clear
from the results of the previous sections that kinematic regions with a hard gluon cannot
produce linear power corrections and we ignore them here. A more extensive discussion of
how we treat these contributions is given in the next subsection and in appendix C, where
we also provide more details about the full large-ns calculation including its connection to
the all-orders perturbative expansion shown in figure 1.

5.2 Simplified computation of the linear term

The results presented in the previous subsection provide a simple recipe for studying non-
perturbative corrections to event shapes. Indeed, one has to perform a calculation with a
massive gluon, which eventually splits into a g¢ pair, and then extrapolate the result of
such computation to small values of A\. To do so, one requires the full matrix element for
the v* — de(q(j) process as well as virtual corrections to the v* — dd~ process. For this
reason, such a calculation is as complicated as any computation with a multiparticle final
state can be.

In this subsection we will explain how this procedure can be dramatically simplified
provided that the goal is to determine O()\) terms only. Indeed, we will show that in
order to determine linear power correction to a generic infrared-safe observable all that
needs to be known is the amplitude of the Born process v* — dd~, the eikonal current
for the emission of an off-shell soft gluon and the matrix element for its splitting into a
quark-antiquark pair.

To prove this statement, we proceed as follows. First we notice that the 5-body phase
space for the final state ddyqq can be factorized into a product of a 4-body phase space for
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the production of a virtual gluon together with a ddv final state and a 2-body phase space
that describes the decay of this gluon into a qg pair. We write

d®3420(X* — (11 + 12)*) = dLips(q; pr, p2, 13, l1, 12)8(A* = (i + 12)?)
1 (5.14)
= 5-dLips(g; p1, p2, 3, k) dPspit PES
with
d®spiie = dLips(k; 11, 12) - o

For ease of notation we did not indicate that d®yy;; depends on Iy and l3. Furthermore,
as we discussed in the preceding sections, the 4-body phase space for the ddvyg* final state
can be factorized into a 3-body phase space for ddy (the underlying Born configuration)
and a radiation phase space for the gluon

dLips(g; p1,p2, 3, k) = dLips(g; p1, D2, P3) dPrad- (5.16)

Again for ease of notation we do not show the dependence of d®,,q on p1.3 and k. As
explained in the previous sections, this factorization is performed by expressing the mo-
menta of the 4-body phase space as a function of the underlying Born four-momenta p;_ 3
and the gluon momentum k, see eq. (3.19). For convenience, we define d®,,4 to include
also the Jacobian of this momenta transformation. Finally, we identify

dLips(q; p1, P2, p3) = d®s. (5.17)

Using the notation introduced above, we now show that one can write (O}E\l) in eq. (5.8)

as follows
1 v
<O>E\1) _ O_O/dq)g{V)\Og +/d@radMW(k:,A)/d@sphtPs’;htOngg}. (5.18)

In this equation, M is the amplitude squared for the production of the ddyg* final state
stripped of the polarization vectors of the virtual gluon g*. Thus

S M EAD = — MM g, = RY ($541), (5.19)
A

where Ré’*\) is defined in eq. (5.6). The Ps’gl'it factor in eq. (5.18) is proportional to the

matrix element squared for the decay of a virtual gluon with mass A into a ¢q pair with
momenta /1 and ls. More precisely, we define it to be

v s Y
Pl = ptr(lw“lz’y ), (5.20)
so that the following equation holds

krEY
A2

/dq)splitpégfit = —g‘”’ + (521)
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Since, on the other hand,

4o TR » Y
TM;WU([YY“[Q’Y )= Réq)7 (5.22)
it also follows that \2
3T A v
T RYY = (2m) My, P, . (5.23)

This equation, combined with the normalization condition for PL in eq. (5.21), makes it
clear that the terms proportional to Ogz;1 and O3 (g in egs. (5.10) and (5.11) cancel out
and disappear from eq. (5.18).

To proceed further, we rewrite eq. (5.18) as

1 " y
<O>E\1) = O'o/dq)g{ /d(bradM,u,l/(ka)\)|:/d(bsp1itpsl;]it03+2 + O3 g" ]}

1
+ 1 [ aw, { [ A®raaMy (0 (—g™) + V,\} Os. (5.24)

g0

It is clear from the results of the previous sections that no linear power corrections can
arise from the second line of the above equation, that includes virtual corrections and real
emission contribution integrated over the radiation phase space. We therefore can write

7j\<0>f\1) =T oy /d‘l)s{ /d@rade(ka)\) {/d‘ﬁsplitpslgl/itOSJrQ + O3 QW] }, (5.25)

where the operator 7y, introduced in the previous section, extracts O(\) terms from the
expression that it acts upon. We note that the second line in eq. (5.24) has a finite A — 0
limit since virtual and integrated real corrections are combined there. Hence, since the
complete result is infrared finite, also the first line in eq. (5.24) should have a finite A — 0
limit. This implies that the quantity upon which 7y acts in eq. (5.25) starts at O(\?) and
contains higher-order terms in the A-expansion.

In principle, eq. (5.25) already provides a method for computing linear power correction
to shape variables that is much simpler than the full large-n; calculation. However, it can
be simplified even further. Indeed, an important simplification arises if we observe that in
eq. (5.25) the term in square brackets vanishes when k becomes collinear to the primary
quarks, as long as the shape variable is infrared and collinear safe. In fact, in this limit O34
becomes equal to Os, and the integral of P;;Tit becomes equal to —g"”. It seems reasonable
to assume that in the hard collinear limit the left-over of the collinear cancellation does
not yield terms linear in A. This is easy to see in the thrust case, where a hard collinear
splitting changes the momentum of the splitting parton by an amount that is proportional
to the square of the splitting angle, and the sum of the projections of the momenta of the
pair onto the thrust axis is equal to the projection of the total. We should, however, worry
that this may not be the case for all shape variables. Indeed, a generic shape variable may
involve terms

%k o
| mg kil rte) (5.26)
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where k | is the transverse momentum of the splitting, ¢ is its azimuthal angle, and f(¢)
is a function that does not vanish upon azimuthal integration. In this case, hard collinear
region may produce O(A) terms. In what follows, we assume that shape variables that we
consider do not give rise to such terms, i.e. that if any term linear in the absolute value of
the transverse momentum does arise, it vanishes upon azimuthal integration.

Given the above clarifications about admissible shape variables, we conclude that for
them linear power corrections can only arise from the emission of soft massive gluons.
However, as we pointed out already, the expression in the square bracket in eq. (5.25)
vanishes in the soft limit so that the full integral does not yield O(In \) terms. It follows
then that linear terms can only arise from the leading soft-singular part of M#”. Therefore
we can substitute

My (k, A) = B(®3) P (®3.41), (5.27)

where B is the Born matrix element, see eq. (5.6), and P/ (P311) is the soft factor that
arises from the product of eikonal currents that describe emission of a soft massive gluon
in the above process. Eq. (5.25) can then be rewritten as

(O =T, ao—l/dcbgB@g)
(5.28)
/d(bra P SOft) @3_"_1)

/dq)spht sp11t03+2 +gu 03

Since the term in the square bracket vanishes in the soft limit, in principle it is not necessary
to use an exact phase space to compute O(\) terms in eq. (5.28). However, for a numerical
computation it is often convenient to integrate over the exact phase space and in this case
additional issues arise since the soft factor P! (®341) may develop unwanted singularities
as we now explain. Indeed, P27 (®341) can be expressed in terms of the original momenta

I ) I
P (k) = 49:Cr <<p1+k:>2 <p2+k>2>((pl+k>2 GEp) B

or the momenta after the mapping

Y ) — Mo B B
Pl (k) 4gsop{<( o (ﬁ;k)>((ﬁlk) (M))}. (5.30)

If the integration over k is restricted to soft momenta, the two equations are equivalent.

However, if one uses the soft approximation outside its range of validity, spurious diver-
gences may appear. We now discuss two examples of this, and how we deal with it.
Consider the situation where p; becomes soft so that in the rest frame of p; + po (i.e. of
p1 + p2 + k) the gluon recoils against po and becomes collinear to py. Although this is not
a singular configuration of the full process, eq. (5.30) develops a collinear p1||k divergence,
even if the original p; and k are not collinear to each other. This singularity in eq. (5.30)
is spurious, and it would be removed by terms in the momentum mapping beyond the soft
approximation that we are neglecting. To remedy this situation, it is sufficient to restrict
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the integration over the radiation phase space, to exclude regions where p; or ps are soft.
We do this by inserting a 6-function into d®,q in eq. (5.28)

ADy0q = ADyog (n - W} , (5.31)

with 0 < 7 < 1.2! We will not show this -function in what follows but it is always assumed
to be present in d®,,q.

Similarly, care is needed to deal with kinematic regions where emitted photon is either
soft or collinear to one of the primary quarks, but the gluon is hard. This region also
contributes to shape variables in the three-jet regions, and its contribution is divergent.
However, since in this case the gluon must be hard, no linear terms in A can arise in this
case.?> We thus suppress this region multiplying the amplitude by the factor

1 1 1 -1
_ _ X | ————— + — -
(1 + k)2(P2 + k)2 L(P1+P3)%(P2+D3)® (D1 + k)2(P2 + k)2

: (5.32)

that dampens the photon-(anti)quark collinear singularity and approaches one if the gluon
is unresolved, so that it does not affect O(\) terms.

Finally, since the integration over k in eq. (5.28) is not restricted to the soft region,
there are, in principle, terms associated with hard gluons that contribute at O(\%). To
remove them, we write

7O = Tii! [ a@uB(@){| [ aBaaP™ | [ a0 Pl Onsa + 90

A=0
| [ 0P | [ a0 Pl Onse + 9 0n] |} (5.33)

We now note that, since the observable O is infrared safe, then O30 — Os1q if A — 0.
This allows us to rewrite this equation as

T0)) = Thog! / d®3B(®3) x { [ / APaa P [ / dPgpiit P Os 2 + g“”03”

{ / APraa P (=" ) (0341 — 03)] } (5.34)

Eq. (5.34) is our final result for the calculation of linear power corrections to shape variables.
Compared to a full large-ns calculation, the formula in eq. (5.34) is remarkably simple.
Indeed, it only requires the knowledge of the matrix element of the Born process and eikonal
factors that describe the soft emission of a massive gluon and its splitting into a ¢g pair.
We now proceed with the discussion of how to implement eq. (5.34) in a numerical pro-
gram. First, we note that the integration over radiation variables can be suitably arranged
so that the cancellation among the two terms in the curly brackets occurs locally enhancing

2'Tn the numerical implementation we use 7 = 1,/2.
2Including electromagnetic virtual corrections the divergence would cancel. But again these would
involve a hard gluon, and thus would not lead to any linear term.
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the efficiency of the numerical integration. To perform such an integration, we generate
random phase-space points in the d®3d®,,q phase space. We then compute the weight
associated with the phase-space Jacobians and the product of the Born amplitude squared
and the contracted soft factor P;(Lf,‘)ft)(—g“”). Given the ddvg* kinematic configuration, the
qq splitting kinematics is instead generated by a hit-and-miss technique, exploiting the nor-
malization of the Ps‘gfit
the shape variables, computed both for the 34 2 and for the underlying Born phase space.

factor. The integration weight is then used to fill the histograms of

Although it is obvious that O(\) power corrections cannot depend on the phase-
space mapping, such independence provides a non-trivial check on the implementation
of the numerical computation. Hence, we have used the following mappings in our
computer program:

(i) a mapping that preserves the direction of pi, i.e. such that p; o< p;. This corresponds
to the general mapping discussed in section 3.2.1 with o = 0;

(ii) a mapping that preserves the direction of the difference py —pj o Po—py in the dipole
rest frame. This corresponds to the general mapping discussed in section 3.2.1 with
a=1/2

(iii) a mapping that preserves the thrust direction of the dipole system in the dipole rest
frame. In fact, this mapping is not linear in k for small k. However, the non-linear
term cancels after the azimuthal integration over k, and thus also this mapping is
acceptable.

The above mappings are all of dipole-local type as defined in section 3. Besides these
mappings, we have also considered the so-called global mapping of ref. [33]. All these
mappings can be expanded linearly in k for small k, and we have checked that all of them
give compatible results when used for the computation of O(\) terms, as expected.

As a further check, we compare the two alternative formulae for the soft eikonal factors
egs. (5.29), (5.30) and found no significant differences.

5.3 Comparison with the result of section 4

As a first non-trivial check of the numerical approach based on eq. (5.34), we compute
the C-parameter distribution neglecting the splitting of the virtual gluon into a ¢q pair
and compare it with the result of section 4. To this end, we need to remove the g* — gq
splitting from eq. (5.34). This can be done by simply replacing Oz 42 with Os, (o) there,
which corresponds to the computation of the C-parameter using momenta pi,po, ps, k,
where k = 1 + lo, instead of p1,pe2,ps3,li,la. As in section 4, we adopt eq. (4.1) for
the definition of the C-parameter in the massive case. We then compute dxp defined in
eq. (4.26) both from a direct numerical integration of eq. (4.26) and from a general-purpose
numerical code based on eq. (5.34). In what follows, we refer to the approach based on
eq. (4.26) as semi-analytic, and to the one based on eq. (5.34) as numerical.

Results for dnp obtained with the two methods are reported in figure 2. While the
semi-analytic result is linear in A by construction, the numerical one also contains higher
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Figure 2. The non-perturbative shift onp for the C-parameter defined in eq. (4.26), stripped of
the A\/Q and « factor, computed with the semi-analytic result of eq. (4.26) (labeled SA), and using
the numerical implementation of eq. (5.34) (labeled NU). The splitting ¢* — ¢g is not included.
For the numerical calculation, we use @ = 100 GeV and three different values of .

powers of X\ so that the linear term only dominates in the A — 0 limit. This explains the
differences between the numerical results obtained with different values of A, and also the
residual differences between the semi-analytic and numerical results. We also notice that, as
we approach the endpoint regions ¢ = 0 and ¢ = 3/4,?® subleading powers of A become more
important, thus explaining the larger differences between the semi-analytic and numerical
results there. Overall, we observe good agreement between the results obtained with the
two methods.

5.4 Comparison with the full large-n; calculation

As a second test of our approach, we compute coefficients of O(\) terms for various ob-
servables using eq. (5.34) and compare them with the result of a full numerical calculation
performed in the large-n; approximation. This comparison is shown in figure 3 for the
differential distributions of the C-parameter and the thrust. In all cases, we perform the
computation for A = 0.5 GeV and A = 1 GeV. For the numerical approach based on
eq. (5.34), we use the mapping (ii) and eq. (5.29) for the soft amplitude in the numerical
implementation of eq. (5.34). Details of the full calculation are reported in appendix C.
Since the results shown in figure 3 are divided by A, the agreement between the A =
0.5 GeV and A = 1 GeV cases indicates that the dependence of the observable on A is
indeed linear and that eq. (5.34) captures the A-dependence correctly. For values of the C-
parameter ¢ < 0.15 and the thrust ¢ < 0.07, the results of the exact calculation performed
for two values of A\ deviate from each other and from the result obtained with the help
of eq. (5.34). This is an indication of the fact that higher powers of A\ become important
in these regions so that smaller values of A need to be used for these values of ¢ and ¢
to enable the extraction of O()) terms from the large-ny computation. Apart from this

ZThe value of the C-parameter ¢ = 3/4 corresponding to the symmetric configuration of three thin jets
of equal energy and equal angular separation.

— 36 —



4 4
10 T T T T T T T 10 T T T T T T
(A) (\=1.0 GeV) —— (A) (\=1.0 GeV) ——

g . (B) (\=1.0 GeV) —— 5 (B) (\=1.0 GeV) ——
5‘10 3 (A) (A=0.5 GeV) — 3 310 F (A) (A=0.5 GeV) —— 7
5= (B) (\=0.5 GeV) — 3 (B) (\=0.5 GeV) —
5. L. 2
= 10° F = 10° F E
< <
<} g

10' 10" F E
N 10° +
[0
G 11
wn
$ 1 H
S ook
a
3 08 !
S0 04

Figure 3. Non-perturbative shift in the differential distributions for the C-parameter (left) and
the thrust (right), obtained from eq. (5.34) (A), and from a full calculation in the large-n, limit
(B). Results are shown for the process v* — ddvy, with @ = 100 GeV and A = 1 GeV, A = 0.5 GeV.

caveat, figure 3 gives strong evidence that one can use eq. (5.34) to compute linear power
corrections to generic shape variables.

5.5 Non-perturbative correction as a shift in the shape variable

Having verified a simplified method for computing linear power corrections to generic shape
observables, we can now use it to derive non-perturbative corrections to them. We will
start with a brief overview of the history of such computations.

Non-perturbative corrections to shape variables in the two-jet limit have been con-
sidered in refs. [4, 5, 7-14, 25, 34, 35] (for a review see ref. [3]). These non-perturbative
corrections are usually employed together with the perturbative ones, as well as with resum-
mations, to extract the strong coupling constant « from data on e*e™ annihilation into
hadrons [36-40]. Non-perturbative corrections are usually fitted in the two-jet region and
then extrapolated to the three-jet region, where the value of the strong coupling constant
is determined. This approach relies on the assumption that non-perturbative corrections
in the three- and two-jet regions are the same.

In a recent paper [25], an attempt has been made to gain some insight into the be-
haviour of these power corrections away from the two-jet limit. The authors of ref. [25]
studied the C-parameter distribution, that, besides the Sudakov region at ¢ = 0, has a sec-
ond Sudakov region at ¢ = 3/4, corresponding to the symmetric three-jets configuration.
The presence of this second region allows for a calculation of non-perturbative effects using
techniques identical to the ones used for the two-jet region. It was found [25] that there is
significant difference between power corrections in two Sudakov regions. Moreover, it was
observed in ref. [25] that power corrections in the region where a; is measured strongly
depend on the model used to interpolate between the two Sudakov regions. Clearly these
results call for a better understanding of the dependence of non-perturbative corrections
on the three-jet kinematics.

- 37 —



In the previous sections, we have shown how to compute linear power corrections in
the three-jet region in a simplified model with dd~ final state. Hence, we are in the position
to compare our findings in this simplified setup with the approximate results of ref. [25].
Conversely, we should be able to reproduce the ratio of non-perturbative corrections in the
three-jet symmetric point to the non-perturbative corrections in the two-jet limit obtained
in ref. [25]; such a comparison should provide a further test of our numerical approach.

To set up the comparison, we follow the same approach as discussed in section 4 where
it was shown that the non-perturbative corrections to a cumulant of the C-parameter can
be computed as follows

e
do(c)/dc’

Although this result was derived in section 4 for a massive gluon in the final state, it is

dnp(c) = (5.35)

clear that it also holds if the ¢* — g splitting is accounted for.

The non-perturbative correction dxp(c) defined in eq. (5.35) can be computed directly
as a function of ¢ using numerical approach described earlier in this section. However, it
is customary to separate it into a normalization factor A that describes non-perturbative
corrections in the two-jet region and a c-dependent function (45(c) that parametrizes the
dependence of non-perturbative corrections on three-jet kinematics. Hence, we write

NP (c) = hgq(c). (5.36)

In principle, the non-perturbative correction in the two-jet region can be computed in
the same way as the one in the three-jet region. However, since the two-jet cross section is
proportional to §(c) in a fixed-order calculation, it is more convenient to relate h with the
average value of the C-parameter computed in the two-jet region. Indeed, since

do

= od(c+h), (5.37)

the average value of the C-parameter computed for two-jet events is just —h. Hence, we
can write

h=-TC)\, (5.38)

where because of the two-jet constraints the expectation value has to be computed starting
from the Born process v* — dd.

We compute h numerically for a multitude of different values of A; upon linear extrap-
olation to A = 0, we obtain

h=—9.21(1) (O‘Cf;) . (5.39)

This result is consistent with the value 1572/16 = 9.253 reported in ref. [41]; we attribute

the differences between numerical and analytic results to higher powers of A that are present

in the numerical computation.?*

247 similar computation for thrust yields 1.9457(8) as a linear slope in X at A = 0. We can extract
analytic result for this quantity, 57/8 = 1.9635, from refs. [5, 41]. Indeed, in ref. [5] the ratio of the non-
perturbative shifts to C-parameter and thrust was computed. This, together with the result of ref. [41] for
the C-parameter yields the value for the thrust slope quoted above.
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Figure 4. The function (45(c) for the C-parameter and for thrust ¢ = 1 — T, obtained using
Q =100GeV and A =2GeV, A = 1GeV, A = 0.5GeV and A = 0.1 GeV. The normalization factor
h was taken equal to —(\/Q)a, x 1572 /16 for the C-parameter, and —(\/Q)a, x 57/8 for thrust.

Having determined the normalization coefficient, we can now turn to the discussion
of the function (47 that parametrizes the dependence of non-perturbative corrections on
the C-parameter. We plot (4 in figure 4; these results are obtained with A = 2 GeV and
A = 1GeV. We note that for small values of C, (,3 approaches unity. This is explained
by the fact that soft emissions factorize independently. So, in the dominant region where
both the photon and the gluon are soft, the gluon behaves as if it was radiated by a ¢g
dipole (see appendix D).

Near the three-jet symmetric point, that corresponds to ¢ = 3/4, we find (45(3/4) =
0.226(2) for A = 0.1 GeV. This value is consistent with the one found in ref. [25], provided
that only the radiation of the quark dipole in the abelian limit is considered. We note,
however, that since the normalization used here and in ref. [25] differ, we can only compare
ratios of (-functions computed in [25]; in what follows we will always consider (rums(c) =
¢(c)/¢(0) when we quote results of ref. [25]. With this clarification, and after setting C'4 = 0
in eq. (18) of ref. [25], we find (1ms(3/4) = 0.224, consistent with our result.

5.6 Including radiation from the quark-gluon dipoles

The results described so far have been obtained for the v* — dd~y process and not for the
much more interesting case of v* — ddg. As we explained in the introduction, this is a well-
known limitation of the large-n; approach to computing non-perturbative corrections since
processes with gluons at the Born level cannot be dealt with in the theoretical framework
employed in this paper.

Although we do not currently know how to overcome this limitation, the structure of
the results that we obtained allows us to speculate that, perhaps, it is straightforward to
do so. Indeed, our final result shows that linear power corrections to shape variables are
captured by the soft approximation to the full matrix element of the v* — ddvy 4+ g process.
For the cases that we considered so far, the soft approximation originates from a color dipole
formed by the dd pair. It is tempting to speculate that for the real three-jet production
process 7* — ddg we can compute linear power corrections by simply considering the
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Figure 5. The functions (44(c) and (44(t) for the C-parameter and for thrust ¢ = 1 — T, obtained
using @ = 100 GeV and A =2GeV, A =1GeV, A =0.5GeV and A = 0.1 GeV. See text for details.

emission of an additional soft massive gluon by all the QCD dipoles dd, dg and dg that
are present in this case. We emphasize that we cannot prove this statement at this point,
but we believe that it provides a reasonable conjecture.

Since the contributions of the three dipoles simply add up, we can write

¢(e) = @) A 1 g 22, (5.40)
where we have exploited the fact that the dg and dg dipoles contribute equally. We have
defined (yy(z) in the same way as (4g(z) discussed in the previous sub-section, except
that we now assume that the radiating dipole is dg (or dg). We keep, however, the same
color factor and the same normalization h used for the ¢q case; hence the 1/Cr factors in
eq. (5.40).

In figure 5 we display the function (44 for the C-parameter and the thrust. We observe
that in both cases (44 approaches 0.5 for small ¢ and ¢. This is easily understood, since
in this limit ¢ in eq. (5.40) should be one by angular ordering arguments and, since (4q
approaches one, it follows that (, approaches 0.5 (see appendix D). In the symmetric
three-jet limit (44 approaches the same value as (4. This is a consequence of the fact that
in the symmetric limit the ¢q and gg dipoles are geometrically equivalent and, once the
color factors are removed, they should give the same results.

We notice that the precision of the numerical result for the gg dipole is inferior to
the ¢¢ one and also that near the symmetric point it is worse for thrust than for the C-
parameter. The first issue is probably related to the fact that the hard emitting gluon is
generally softer than the emitting quarks. Thus the effective @) of the emission is smaller
in the qg case, leading to larger non-perturbative effects, since they are proportional to
A/Q. Regarding thrust, we recall that it vanishes in the symmetric three-jet configuration
at Born level. This is different for the C-parameter, which approaches a constant there.

In figure 6 we plot ¢ defined in eq. (5.40) for the C-parameter and for thrust. The
results for the C-parameter can be compared to figures 1 and 3 of ref. [25]; we note again

that predictions of ref. [25] need to be rescaled so that they assume the value 1 at ¢ = 0.
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Figure 6. The functions ((c¢) and ((t) for the C-parameter and for thrust ¢ = 1 — T, obtained
using @ = 100 GeV and A =2GeV, A =1GeV, A =0.5GeV and A = 0.1 GeV. See text for details.

The normalized curves agree at the three-jet symmetric point, ¢ = 0.75, where our result
computed for A = 0.1 is 0.479(5), and the (re-scaled) result obtained in ref. [25] is 0.476; the
difference can be attributed to terms proportional to A2. Among the various extrapolations
of the function ¢ presented in ref. [25], their (}, 3 curve seems to be the closest to our result.

As a final comment, we notice that for both the C-parameter and the thrust, the
non-perturbative correction that we computed here is smaller than the one obtained by
extrapolating it from the two-jet region to a symmetric point, especially in the case of
the C-parameter. In ref. [25] a fit to a, using the C-parameter was given under various
assumptions about the shape of the function ((c). For the function ¢}, 3 that, as we said,
is closest to our results, the authors of ref. [25] extract the value of the strong coupling
constant s = 0.117(3). This result is in much better agreement with the world average
value a5 = 0.118(1) as compared to as = 0.112(2) obtained in ref. [37] using a more
conventional treatment of non-perturbative effects. It would be interesting to see if also
for the thrust a similar improvement can be achieved.

6 Conclusions

Understanding non-perturbative corrections to collider processes is an interesting problem
in theoretical particle physics that received surprisingly little attention in the recent past.
However, thanks to the rapid development of the precision physics program at the LHC a
case for a better control of non-perturbative effects in hadron collisions becomes stronger.
A possible way to investigate them is to make use of the asymptotic nature of QCD
perturbation theory and estimate these effects by studying the ambiguities of a purely
perturbative treatment. These ambiguities are related to the infrared pole in the running
of the coupling constant. For simple enough processes they can be identified by computing
O(a) corrections in an abelian version of QCD with a massive gluon, and extracting terms
that are non-analytic in A\?, where \ is the gluon mass. From a phenomenological point of
view, of particular importance are linear non-perturbative corrections O(Aqcp/Q). Their
presence is exposed by the appearance of O(\) terms in the massive gluon calculation.
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While many explicit computations within the massive gluon framework have been
performed in the past, we believe that there is a lack of general understanding of how to
approach computations of O(A) corrections to a generic scattering process or observable.
In a certain sense, this is not surprising since understanding of these O(\) terms requires a
theory of soft effects at next-to-leading power which is more complicated than the familiar
soft limit of scattering amplitudes and cross sections.

In this paper, we have shown that it is possible to demonstrate on rather general
grounds that many terms that arise at next-to-leading power from the expansions of both
phase spaces and matrix elements for typical processes and observables do not produce
O(A) terms. This result allows us to argue that certain (simplified) collider processes and
observables cannot receive linear power corrections. An interesting example of this is the
transverse momentum distribution of vector bosons in proton-photon collisions that even
if rapidity cuts are applied does not contain O(\) terms.

We have also shown that an improved understanding of how O(\) terms may arise
allows us to calculate non-perturbative corrections to shape variables away from Sudakov
regions both analytically and numerically. To this end, we have derived a formula that
allows us to compute linear power corrections to a generic shape variable in a three-jet
configuration. This remarkably simple formula only involves the matrix element of the
Born process and soft-radiation eikonal functions of color dipoles. As an application, we
have used our formalism to compute non-perturbative corrections to the C-parameter and
compared it with the result of ref. [25] which is based on an interpolation between the
two-jet limit (¢ = 0) and the three-jet symmetric point (¢ = 3/4). As expected, we have
found that we can reproduce the results of ref. [25] for ¢ = 0 and ¢ = 3/4. Between these
two points, our results are close to one of the interpolations presented in ref. [25] whereas
they differ significantly from a few other interpolations provided in that reference. This, of
course, is not unexpected since interpolations by their very nature are subject to significant
uncertainties.

Our analysis is based on the large-ny approach to the study of non-perturbative cor-
rections; for this reason currently it cannot be applied to processes with gluons at the Born
level. It would be interesting to understand how to extend this formalism to deal with these
cases as well. Such an extension is, of course, very interesting for hadron collider processes.
Also, as we have shown, it may lead to improvements in the description of three-jet events
and to more reliable extractions of the strong coupling constant from e*e™ data. We look
forward to study this interesting problem in the future.
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A Soft integrals

In this appendix, we discuss integrals of the form

PN o] (P1p2) (kv) N
Ta) = [ i q”(mzﬂ)(mm{l’ 7 ’(kpm)}’ .

where [dk] = d*k 6 (k? — \2)/(27)% and v is a generic vector, ¢ = py + P2 and p7 = 0,
i = 1,2. To compute these integrals, in a way that works for all types of dipoles, it is

convenient to use Sudakov decomposition. We will discuss the computation for final-final
dipole but the calculation can be repeated for initial-final and initial-initial ones with small
modifications. We write

k=apr+Bp2+ki. (A.2)

Since 2(p1p2) = ¢%, we find

2
Ak o (K> = 22)0[(q—k)*] = %da dB d%k, 6(PaB — k2 —A2)0[¢* — ¢*(a+ B) +2?], (A.3)
and
2p1k) = ¢°B,  2(p2k) = ¢’ (A.4)
When we apply the Sudakov decomposition to all integrals in eq. (A.1), we find

(vk) = (Prv)a+ (P2v)B + (vkL). (A.5)

Since this is the only dependence on the k| -direction that appears in the integrals, the
last term in the above equation vanishes after azimuthal integration. Therefore, for the
integrals in eq. (A.1) the following replacement holds true

(vk) = (Pro)a + (P2v)B. (A.6)
It follows that to compute eq. (A.1) we require the following integrals

1
1672

[ aoasoiias el o gy L {1a 2 XL 2RI

af a a o?
To compute them, we need to know the integration boundaries. They are found from the
two f-functions in the above equation. Suppose that we first integrate over 5. Then,
2 )\2
q2—a<5<1—a+q—2. (A.8)
Boundaries for the subsequent « integration follow from the condition
2 22

A
S ocl-a+ A9
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which can be re-written as )
A
(a—1) <a - 2) < 0. (A.10)

It follows that the integration interval for « is

)\2
pel <a<l (A.11)

It is then straightforward to see that the various integrals shown in eq. (A.1) can be written
in terms of the following ones

/1 da [fl-o+r?/q¢? dg {1 A2 )\2/3 )\252 )\45}
— — < 1l,a,— .
A

22 @ Jxj(ga) B Ta’ ’

e (A.12)

This representation makes it completely obvious that the integrals in eq. (A.1) are actually
functions of A2

B Computation of the Z; integrals

In this appendix, we compute the integrals
Wmax
{10,11,112}:/)\ dwﬂ X {10,117112} (Bl)

introduced in section 4, see eq. (4.21). The I; integrals are defined in eq. (4.19), 8 =
2/1— )‘—z and wpayx is a kinematic bound whose precise form is not important.
w
We are interested in the small-\ expansion of the integrals in eq. (B.1). The Zy integral
does contain linear terms in A. Indeed

Ty = / " dw B Iy = / " dw B = waax — g/\ +O(\2) (B.2)
A A
We now study Z;. A simple calculation shows that
dQy 1 1. 145
L = =—Iln——. B.3
! Ar 1—Bii-7, 28 T1-5 (B.3)

Integrating by parts, it is then straightforward to obtain

1 Wmax 1 1 2 - >\2
Il _ 5/ dwln Lﬁ _1 [wmax n Wmax t Whax —9 w12nax _ )\2‘| , (B4)
A

1-p 2 Wmax — V W12nax —\?

which implies that for small X the integral Z; can be expanded in powers of A\2.
To understand whether Z;2 contains O(\) terms in the small-\ expansion, we need to
compute I15. To this end, we first combine the two propagators using Feynman parameters

1 a0 1
1122/ dz i - (B.5)
0 A (1 pii i)

where
n =z + (1 — )n. (B.6)
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Choosing the z axis along n and integrating over the relative angle we find

1 dzx 1 dx
I pr— —— 3 B.7
2 /0 1— (2772 /0 1—B2(1 —4a(1 — z)s},) (B1)

where s12 = sin(f12/2). Using the x — 1 — x symmetry of the integrand, it is then easy to

1 V11— B2cty + Bsio
Iy = In , (B.8)
25812\/1 — B2, \/1 — B2ciy — Bsia

where 3, = 1 — s3, = cos?(612/2). We can now investigate the small-A behaviour of Z;s:

\/ 1 — 32¢2, + Bsia (B.9)

Wmax
Ilg = / .
2512 \/1 - 52012 \/1 - 520%2 — Bs12

To compute this integral, we change variables w — 3, with

obtain

Bdp
and 8 — r with
Bs12 3%2(17"
\/1— 52612 0 (cfar? + s7,)3/2 ( )
We obtain
A T'max drr 1 +7r A 1 + Tmax

Tio = —+ = -2 max | » B.12
27 983, /0 (1 —r2)3/2 R 2535v/1 — 12« ( T > (B.12)

where Tmax = Bmax512/1/1 — B2axCrs and Bmax = /1 — AN2/w? .. Tt is straightforward to

show that the expansion of eq. (B.12) in A does not contain O(\) terms.

C Full calculation of the shape variables in the large-n; limit

In this appendix we describe computation of QCD corrections to the process v* — dd+~ in
the large-ny approximation. The exact result of the large-n; calculation can be expressed
as [23]

1 (o) boas
(0) = (0)O) — / () arctan %, (C.1)
boas Jo m™ dA 1+ byas log w2
where <O>E\1) is defined in eq. (5.8) and
T
je = ped, by =1L, (C2)
3T

By expanding eq. (C.1) in as, one obtains a factorial growth associated with a linear
renormalon. This leads to an ambiguity of the fully-resummed series corresponding to
eq. (5.7) (see appendix A of ref. [24]).
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For the full calculation, we start from eq. (5.8). The required amplitudes have been
analytically calculated using symbolic manipulation software MAXIMA [42]. The scalar
integrals needed for the computation of the virtual corrections have been calculated with
the COLLIER library [43]. The virtual contribution is infrared finite, since the gluon mass
regulates infrared singularities. We have used dimensional regularization to regularize and
extract ultraviolet divergences.

Integration over the phase space of final-state particles in the process v* — ddry diverges
in the two-jet limit. To ensure that numerical computations are restricted to a three-jet
region, we introduced a suppression factor

Fapp = C?, (C.3)

where C'is the C-parameter, that vanishes in the two-jet limit regulating the integral. This
factor is then divided out when computing distributions and cross sections with cuts. As
a result, we are able to obtain correct results as long as we do not attempt to compute
observables sensitive to the two-jet region.

The real corrections are obtained by adding the emission of a massive gluon in all
possible ways to the Born diagram. Integrating over its momentum, the real emission cor-
rections are affected by collinear divergences, that arise when the photon becomes collinear
to one of the primary quarks. These configurations can contribute to the three-jet cross
section if the radiated gluon is hard and not collinear. Such singularities are dealt with
routinely by the POWHEG-BOX framework [44], that we adopt for our calculation.

Singularities associated with soft or collinear gluons are regulated by the gluon mass A
and manifest themselves as terms proportional to log A raised to second or first power. Sim-
ilar logarithmic contributions, but with the opposite sign, arise from the virtual corrections,
such that the sum of real and virtual corrections is free of log A terms.

A carefully-constructed importance sampling near the singular regions is needed in
order to reliably estimate the A — 0 behaviour. We divide the real contribution into three

regions
R=RW + R® 4 RO, (C.4)
where
2 2
a1 _ fdv + de
R _f2+2+f2+2R’ (C.5)
dy J’y dg Jg
2
R® —— 2fd9 — R, (C.6)
Fiy 1, + Jag + 13
12
RO = "% R (C.7)
oy + 03, + Jag + 13
and B+ B
= BB C.8
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Here, k; and E; denote the four-momentum and the energy of the particle ¢. R is a short-
hand notation for the Réi‘) (®3,1) appearing in eq. (5.10). The different contributions R® in
eq. (C.4) correspond to different kinematic configurations of ddvg final state. For example
RM corresponds to the region where the final state photon becomes collinear to either
the d or d quark, whereas R®) and R® project on regions where emitted gluon becomes
collinear to d and d, respectively.

The contribution of region (1) is handled in the POWHEG-BOX [44], which implements
the required subtractions of IR singularities associated with configurations containing a
soft or a collinear photon. The remaining two regions are finite, but require dedicated
importance sampling of the region that becomes singular in the limit A — 0.

Finally, we compute the amplitude for the process v* — ddvygq. This contribution is IR
finite in the A — 0 limit, but is affected by QED singularity associated with the final state
photon. We thus proceed as for region (1) case, by evaluating it within the POWHEG-BOX
framework. We also computed the process v* — ddy at NLO with a massless gluon and
subtracted its result from the A-dependent one in order to isolate the linear term.

The shape variable distributions are obtained in a standard way, by computing each
contribution to sufficient accuracy so that after the cancellation of In? X, In A and \° terms
one can extract the A dependence with enough precision.

D On the two-jet limit of C

In this appendix we elaborate more on the two-jet limit of the cumulant of shape variables
within our framework. For simplicity, we focus upon the case of the C-parameter, following
the calculation of section 4.

We consider first the process v* — q(p1) + ¢(p2) + v(p3). Extending the notation of
section 4, we define the “double underlying” Born momenta p; and ps as follows:

o If p3 becomes collinear to Py, then p; ~ p; + Pps and P2 ~ Do,
e If p3 becomes collinear to po, then Py ~ Po + p3 and P ~ p1,
o If p3 becomes soft, then py ~ P2 and p; ~ pi.

We want to show that, in the two-jet limit, the non-perturbative correction of the cumulant
of C' becomes proportional to the non-perturbative correction to the average value of C' in
the v* — qq process. Three observations are needed to prove this:

o As c approaches zero, the Born cross section has two collinear-singular regions, when
the photon is collinear to either primary quark; a soft singular region, when the
photon is soft; and two soft-collinear regions, when the photon is both collinear
and soft.

e The correction to the C-parameter due to the emission of a soft gluon, i.e. the Cj
function of eq. (4.8), has a smooth limit if any pair of the 1, 2 and 3 particles become
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collinear, as well as if one of them becomes soft. In particular, if p3 becomes soft or
collinear to either p; or py we have

B N () PSS
Cul®k) =32 Gt~ 22 )y~ CHE2D (O

where we have written collectively {p1, p2, p3} = ®3 and {p1, p2} = Po.

o The eikonal factor in eq. (4.14) only depends upon the direction of the radiating
partons, and not upon the absolute value of their momenta.

For the ¢ggvy final state, we only have to consider the case of emission from the quark-
antiquark dipole. Our result for the non-perturbative correction, eq. (4.26) can be written
concisely as

_ TE() o J d238(C(23) — c) [IM(P3)[* Tale(P3)
5NP::_daﬂﬂj___§;C%>< [d®38(C(P3) — )| M(@3)]2 (D-2)
where
4 ~ o~
(@i ) =7 [ G500 - 0l(q - b B Ci@a k) (D3

and T, is an operator that takes out the term linear in A\ from the expression it is applied
to. For both the collinear and the soft limits of the Born configuration, the integrand in
eq. (D.3) becomes

(p1P2) (P1D2)
_\PAP2) o (g k) — —PP2) oy k). D.4
Guk) (52F) H 3R 7 Gy oty P2 ) (B4
Thus, in these limits
I(®35q;A) = Ie(P2; g5 M), (D.5)

that can be taken out of the integrand in eq. (D.2), yielding

Onp R =2 Cp X Talo(®a; g5 N). (D.6)
c—0 27

Eq. (D.6) can be immediately interpreted as the non perturbative correction to the average

value of C' in the two jet case. Note that ¢ — 0 does not imply that ps is either soft or

collinear. We could also have p; or py soft, or collinear to each other. What is important

is that for all dominant singular contributions in the amplitude I. can be taken out of

the integral.

We now consider the v* — qgg process, and use the conjecture for non-perturbative
corrections that we have described in the text. In comparison to the v* — ¢gv case, we
now have to consider gg dipoles as well. For the ¢(p1)g(ps) dipole, the eikonal factor in
eq. (D.4) becomes

(P1P3)

WC’k@g,k). (D.7)
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When p» is collinear to ps, it reduces to

(P1P3) _ (p1pe)
Gk (ak) R i) (o)

as before. However, when p; is collinear to ps it becomes zero. In this case then

Cr(®2, k), (D.8)

1 «
ONp R —— X — I.(Po;q; A). D.
N 2X27TCFX7;\C( 2,3 \) (D.9)
This result follows because the most enhanced regions when ¢ — 0 are the soft-collinear
ones, but only one of the two contributes, hence the factor of one half.
The above reasoning is corroborated by an explicit evaluation of the final result of

section 4, eq. (4.25). Setting®
x1=1—zx3, x2=1—(1-2)x3 (D.10)

in that equation, we find that

A
q

for both the soft 3 — 0 and the two collinear z — 0, z — 1 limits. To extend this result

to the quark-gluon dipole, we still start from eq. (4.25) but assume that 1 and 2 are the

quark and the gluon, and 3 is the antiquark. We now use the parametrization

x1=1—zx9, x3=1—(1—-2)x0. (D.12)

The singular regions of the Born amplitude are then given by zo — 0 and z — 0, z — 1.
In this case we find

Tl ~ —67 (/\2> x &, (D.13)
Ve

with & — 2 for z — 0, £ — 0 for z — 1, and & — 42? — 6z + 2 for 5 — 0. Restricting

ourself to the most singular regions, i.e. the soft-collinear ones, we see that indeed only one

of the two regions contributes, as we have said before.

We further remark that the soft-collinear approximation is enough to get these results,
that can thus be considered consequences of angular ordering. In the quark-antiquark
dipole case, the result follows also from the full soft factorization that applies in abelian
theories. In this case we expect that the limit is reached earlier. This is not the case for the
qg dipole, since the Born level gluon and gluon emitted by the gg dipole do not factorize
simultaneously in the soft limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

25We recall that z; = Z(ﬁiq)/q2, T, 4+ x92 + 23 = 2.
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