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Abstract
Weprove that scalar-valued sparse domination of amultilinear operator implies vector-valued
sparse domination for tuples of quasi-Banach function spaces, forwhichwe introduce amulti-
linear analogue of the UMD condition. This condition is characterized by the boundedness of
the multisublinear Hardy-Littlewood maximal operator and goes beyond examples in which
a UMD condition is assumed on each individual space and includes e.g. iterated Lebesgue,
Lorentz, and Orlicz spaces. Our method allows us to obtain sharp vector-valued weighted
bounds directly from scalar-valued sparse domination, without the use of a Rubio de Fran-
cia type extrapolation result. We apply our result to obtain new vector-valued bounds for
multilinear Calderón-Zygmund operators as well as recover the old ones with a new sharp
weighted bound. Moreover, in the Banach function space setting we improve upon recent
vector-valued bounds for the bilinear Hilbert transform.

Keywords Sparse domination · Multilinear · UMD · Muckenhoupt weights · Banach
function space · Bilinear Hilbert transform

Mathematics Subject Classification Primary 42B25; Secondary 46E30

1 Introduction

Vector-valued extensions of operators prevalent in the theory of harmonic analysis have been
actively studied in the past decades. A centerpoint of the theory is the result of Burkholder
[7] and Bourgain [5] that the Hilbert transform on L p(R) extends to a bounded operator on
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L p(R; X) if and only if the Banach space X has the so-called UMD property. From this
connection one can derive the boundedness of the vector-valued extension of many operators
in harmonic analysis, like Fourier multipliers and Littlewood–Paley operators.

In the specific case where X is a Banach function space, i.e. a lattice of functions over
somemeasure space, very general extension theorems are known. These follow from the deep
result of Bourgain [6] and Rubio de Francia [45] on the connection between the boundedness
of the lattice Hardy–Littlewood maximal operator on L p(Rd ; X) and the UMD property of
X . The boundedness of the lattice Hardy–Littlewood maximal operator often allows one to
use the scalar-valued arguments to show the boundedness of the vector-valued extension of
an operator, using very elaborate Fubini-type techniques. Moreover it connects the extension
problem to the theory of Muckenhoupt weights. Combined this enabled Rubio de Francia
to show a very general extension principle in [45], yielding vector-valued extensions for
operators on L p(Rd) satisfying bounds with respect to these Muckenhoupt weights to any
UMD Banach function space. This result was subsequently extended by Amenta, Veraar and
the first author in [1] to a rescaled setting and by both authors in [36] to a multilinear setting.
In this latter result, sufficient conditions were given to extend a bounded multilinear operator

T : L p1(Rd , w1) × · · · × L pm (Rd , wm) → L p(Rd , w)

to a bounded multilinear operator

˜T : L p1(Rd , w1; X1) × · · · × L pm (Rd , wm; Xm) → L p(Rd , w; X),

where each of the (quasi-)Banach function spaces X j satisfies some rescaled UMD condition
and each weight w j some Muckenhoupt condition.

From the point of view of weights, it was made clear by Li, Martell, and Ombrosi in
[31] that rather than assuming a condition on each individual weight, it is more appropriate
to consider the multilinear weight classes characterized by the multisublinear analogue of
the Hardy Littlewood maximal operator, introduced by Lerner, Ombrosi, Pérez, Torres, and
Trujillo-González in [29]. Subsequently, through the extrapolation theorems of the second
author [40] and Li,Martell,Martikainen, Ombrosi, andVuorinen [30], it was shown that these
weight classes allow one to handle vector-valued extensions with Banach function spaces
outside of the class of UMD spaces, such as �∞. However, these methods do not exceed the
example of iterated Lq -spaces.

Our main goal is to prove a multilinear extension theorem in which we use the multilinear
structure to its fullest. Just as for the weights, we will impose a condition on the tuple of
Banach function spaces (X1, . . . , Xm) rather than a condition on each X j individually. In
parallel to the weighted theory, we will introduce this condition using the boundedness of a
certain rescaled multisublinear Hardy-Littlewood maximal operator. In the linear case this
condition reads as follows:

∥

∥ ˜M(1,1)( f , g)
∥

∥

L1(Rd ;L1(�))
� ‖ f ‖L p(Rd ;X)‖g‖L p′ (Rd ;X∗)

for all f ∈ L p(Rd ; X), g ∈ L p′
(Rd ; X∗) and some p ∈ (1,∞), where ˜M(1,1) is the

bisublinear lattice maximal operator introduced in Sect. 3. In Sect. 4 we will show that this
condition is equivalent to the UMD condition for Banach function spaces and motivated by
this result, we will call our multilinear analog a multilinear UMD condition, although our
definition only makes sense for tuples of Banach function spaces.

Both the Banach function space extension principle from [1,36,45] and the iterated
Lq -space extension principle using the extrapolation results in [30,40] use the weighted
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boundedness of a multilinear operator

T : L p1(Rd , w1) × · · · × L pm (Rd , wm) → L p(Rd , w)

to deduce the weighted boundedness of its extension

˜T : L p1(Rd , w1; X1) × · · · × L pm (Rd , wm; Xm) → L p(Rd , w; X).

Initiated by the sparse representation and domination results for Calderón–Zygmund oper-
ators of Hytönen [20] and Lerner [26], such weighted bounds for an operator T are in
recent years often deduced from a sparse domination result for T . So to deduce the weighted
boundedness of the vector-valued extension ˜T of an operator T one typically goes through
implications (1) and (3) in the following diagram

Sparse domination for T

Sparse domination for ˜T

Weighted bounds for T

Weighted bounds for ˜T

(1)

(4)

(2) (3)

in which arrows (1) and (4) are well-known and unrelated to the operator T , see e.g [28,31,32,
40]. In this paper we will deduce the weighted boundedness of the vector-valued extension
˜T of T through implications (2) and (4) in this diagram. In particular we will show that
scalar-valued sparse domination implies vector-valued sparse domination (implication (2))
with respect to tuples of spaces satisfying our multilinear UMD-condition. Such a result was
established by Culiuc, Di Plinio, and Ou in [13] for �q -spaces with q ≥ 1, which in particular
satisfy our multilinear UMD condition. We point out that even in the linear case m = 1 the
result of obtaining vector-valued extensions of operators in UMD Banach function spaces
from sparse domination without appealing to a Rubio de Francia type extrapolation theorem
is new.

The advantage of the route through implications (2) and (4) over the route through impli-
cations (1) and (3) is that for general tuples of quasi-Banach function spaces the Fubini-type
techniques needed for implication (2) are a lot less technical than the ones needed for impli-
cation (3). Moreover implication (4) yields quantitative and in many cases sharp weighted
estimates for ˜T , while the weight dependence in the arguments used for implication (3) is
not easily tracked and certainly not sharp. A downside of our approach through implications
(2) and (4) is the fact that we need sparse domination for T as a starting point, while one
only needs weighted bounds in order to apply (3). It therefore remains an interesting open
problem whether (3) also holds under our multilinear UMD-condition, rather than a UMD
condition on each individual space as in [36].

Our main result relies on the following two key ingredients:

• The equivalence between sparse form and the L1-norm of the multisublinear maximal
function. This equivalence seems to have been used for the first time in [13] by Culiuc,
Di Plinio, and Ou.

• A sparse domination result for the multisublinear lattice maximal operator under the
multilinear UMD condition assumption. For this we extend the idea of Hänninen and the
first author in [19], where a linear version of this result was obtained.

Combining these ingredients, we obtain the following theorem in the linear case:
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Theorem 1.1 Let T be an operator such that for any f , g ∈ L∞
c (Rd) there exists a sparse

collection of cubes S such that
∫

Rd
|T f | · |g|dx ≤ CT

∑

Q∈S
〈 f 〉1,Q〈g〉1,Q |Q|

Let X be a UMD Banach function space over a measure space (�,μ) and suppose that for
any simple function f ∈ L∞

c (Rd ; X) the function ˜T f : Rd → X given by

˜T f (x, ω) := T ( f (·, ω))(x), (x, ω) ∈ Rd × �

is well-defined and strongly measurable. Then for all simple functions f ∈ L∞
c (Rd , X) and

g ∈ L∞
c (Rd) there exists a sparse collection of cubes S such that

∫

Rd
‖˜T f ‖X · |g|dx �X CT

∑

Q∈S

〈‖ f ‖X
〉

1,Q

〈|g|〉1,Q |Q|.

Note that if T is linear, then for any simple f ∈ L∞
c (Rd) we have ˜T f = (T ⊗ IX ) f , which

is always well-defined and strongly measurable.
Theorem 1.1 can be generalized to operators that are sparsely dominated by forms

∑

Q∈S
〈 f 〉r ,Q〈g〉s′,Q |Q|,

for 0 < r < s ≤ ∞, in which case we have to replace the UMD condition on X by the
rescaled UMDr ,s condition, see Sect. 4. A rescaled UMD condition was already used in
the previous work [36] where the condition that ((Xr )∗)(s′/r)′ has the UMD property was
imposed. However, the condition X ∈ UMDr ,s we impose in this work is seemingly weaker
if r ≥ 1 and we refer to Proposition 4.5 for a comparison.

For the multilinear version of this result we require the UMD
r ,s condition imposed on
an m-tuple of Banach spaces 
X = (X1, . . . , Xm), which will be introduced in Sect. 4. This
yields the following more general version of Theorem 1.1, which is our main result.

Theorem 1.2 Let 
r ∈ (0,∞)m, s ∈ (1,∞] and let T be an operator defined on m-tuples of
functions such that for any 
f , g ∈ L∞

c (Rd) there exists a sparse collection S such that

∫

Rd
|T ( 
f )| · |g|dx ≤ CT

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉r j ,Q
⎞

⎠ 〈g〉s′,Q |Q|.

Let 
X be an m-tuple of Banach function spaces over a measure space (�,μ) such that

X ∈ UMD
r ,s and suppose that for all simple functions 
f ∈ L∞

c (Rd , 
X) the function ˜T ( 
f ) :
Rd → X given by

˜T ( 
f )(x, ω) := T ( 
f (·, ω))(x), (x, ω) ∈ Rd × �

is well-defined and strongly measurable. Let X := ∏m
j=1 X j . Then for all simple functions


f ∈ L∞
c (Rd , 
X) and g ∈ L∞

c (Rd) there exists a sparse collection of cubes S such that

∫

Rd
‖˜T ( 
f )‖X · |g|dx � 
X ,
r ,s CT

∑

Q∈S

⎛

⎝

m
∏

j=1

〈‖ f j‖X j 〉r j ,Q
⎞

⎠

〈‖g‖X∗
〉

s′,Q |Q|.
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Note that we only allow Banach function spaces in Theorem 1.2. However, in the multilinear
setting it is natural to expect estimates also for quasi-Banach function spaces. We are able to
consider these spaces by the more general Theorem 5.1, which is facilitated by introducing
a rescaling parameter. For a discussion on this we refer the reader to Sect. 6.

By the known sharp weighted bounds for the sparse forms we can deduce vector-valued
weighted bounds as a corollary from our main result, which is the extension theorem we
were after. Note that these bounds are new even in the case 
w ≡ 1.

Corollary 1.3 Assume the conditions of Theorem 1.2 and additionally suppose that T is
either m-linear or positive-valued m-sublinear. Then for all p ∈ (0,∞]m with 
p > 
r and
1
p := ∑m

j=1
1
p j

> 1
s , and all 
w ∈ A 
p,(
r ,s) we have

∥

∥˜T ( 
f )
∥

∥

L p
w(Rd ;X)

� 
X , 
p,q,
r ,s CT [ 
w]
max

{

1

r

1

r − 1


p
,
1− 1

s
1
p − 1

s

}


p,(
r ,s)
m

∏

j=1

‖ f j‖L p j
w j (R

d ;X j )

for all 
f ∈ L 
p

w(Rn; 
X).

This paper is organized as follows:

• In Sect. 2 we discuss the preliminaries on product quasi-Banach function spaces, sparse
forms, and multilinear weight classes.

• In Sect. 3 we introduce a rescaled multilinear analogue of the Hardy-Littlewood property
and prove sparse domination of the multisublinear Hardy-Littlewood maximal operator
using this condition.

• In Sect. 4 we introduce a limited range multilinear UMD property for tuples of quasi-
Banach function spaces.

• In Sect. 5 we state and prove our main results.
• In Sect. 6 we discuss how our results can be applied in the quasi-Banach range as well

as prove new vector-valued bounds for various operators.

Notation

We considerRd with the Lebesguemeasure dx and write |E | for the measure of a measurable
set E ⊆ Rd . For r ∈ (0,∞), a function f ∈ Lr

loc(R
d) and a measurable E ⊆ Rd of positive

finite measure we use the notation

〈 f 〉r ,E =
(

1

|E |
∫

E
| f |r dx

) 1
r

.

Moreover, we denote by 〈 f 〉∞,E the essential supremum of | f | in E . We let 1E denote the
characteristic function of E .

Throughout the paper we write Ca,b,··· to denote a constant, which only depends on the
parameters a, b, · · · and possibly on the dimension d and multilinearity m. By �a,b,··· we
mean that there is a constant Ca,b,··· such that inequality holds and by �a,b,··· we mean that
both �a,b,··· and �a,b,··· hold.

Convention 1.4 For a vector 
p ∈ (0,∞]m we denote its coordinates by p1, · · · , pm and set
1
p := ∑m

j=1
1
p j
. We denote max 
p := max{p1, · · · , pm} and

L 
p(Rd) := L p1(Rd) × · · · × L pm (Rd).
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For 
q ∈ (0,∞)m we write 
p ≤ 
q if p j ≤ q j and 
p > 
q if p j > q j for 1 ≤ j ≤ m. We
define arithmetic operations on 
p and 
q coordinate wise, e.g. 
p/
q := (p1/q1, . . . , pm/qm),
and similarly 
p α = (pα

1 , . . . , pα
m) for α > 0.

For an m-tuple of quasi-Banach function spaces 
X = (X1, · · · , Xm) and we will write
X := ∏m

j=1 X j , for 
p ∈ (0,∞) and for a vector of m weights 
w = (w1, · · · , wm) (see
Sect. 2.2) we write w := ∏m

j=1 w j . Moreover we will use the shorthand notation

L 
p

w(Rd ; 
X) := L p1

w1
(Rd ; X1) × · · · × L pm

wm
(Rd ; Xm)

and L 
p
loc(R

d ; 
X) is defined similarly.We say 
X is 
r -convex for 
r ∈ (0,∞)m if X j is r j -convex
for 1 ≤ j ≤ m.

2 Preliminaries

2.1 Product quasi-Banach function spaces

Let (�,μ) be a σ -finite measure space. An order ideal X ⊆ L0(�) equipped with a quasi-
norm ‖ · ‖X is called a quasi-Banach function space if it satisfies the following properties

• Compatibility: If ξ, η ∈ X with |ξ | ≤ |η|, then ‖ξ‖X ≤ ‖η‖X .
• Weak order unit: There is a ξ ∈ X with ξ > 0 a.e.
• Fatou property: If 0 ≤ ξn ↑ ξ for (ξn)

∞
n=1 in X and supn∈N‖ξn‖X < ∞, then ξ ∈ X and

‖ξ‖X = supn∈N‖ξn‖X .
If ‖ · ‖X is a norm then X is called a Banach function space.

A quasi-Banach function space X is called order-continuous if for any sequence 0 ≤
ξn ↑ ξ ∈ X we have ‖ξn − ξ‖X → 0. As an example we note that all reflexive Banach
function spaces are order-continuous. Order-continuity of X ensures that the Bochner space
L p(Rd ; X) for p ∈ (0,∞) coincides with themixed-norm space of all measurable functions
Rd × � → C such that

∥

∥x �→ ‖ f (x, ·)‖X
∥

∥

L p(Rd )
< ∞,

which is again a quasi-Banach function space. Moreover if X is an order-continuous Banach
function space, then its dual X∗ is also a Banach function space. For an introduction to
Banach function spaces we refer the reader to [34, Section 1.b] or [4].

We call a quasi-Banach function space p-convex for p ∈ (0,∞) if for any ξ1, · · · , ξn ∈ X
we have

∥

∥

∥

∥

∥

∥

(

n
∑

k=1

|ξk |p
)1/p

∥

∥

∥

∥

∥

∥

X

≤
(

n
∑

k=1

‖ξk‖p

)1/p

.

Often a constant is allowed in the defining inequality for p-convexity, but as shown in [34,
Theorem 1.d.8] X can always be renormed equivalently such that this constant equals 1. The
p-concavification of X for p ∈ (0,∞) is defined as

X p := {|ξ |p sgn ξ : ξ ∈ X
} = {

ξ ∈ L0(�) : |ξ |1/p ∈ X
}

equipped with the quasinorm ‖ξ‖X p := ‖|ξ |1/p‖p
X . Note that ‖ · ‖X p is a norm if and only

if X is p-convex. In particular for f ∈ L p
loc(R

d ; X) and a set E ⊆ Rd of finite measure

123



Sparse domination implies vector-valued sparse domination

the p-convexity of X ensures that 〈| f |〉p,E is well-defined as a Bochner integral. See [34,
Section 1.d] and [24] for a further introduction to p-convexity and related notions.

Form quasi-Banach function spaces X1, · · · , Xm over the same measure space we define
the product space

m
∏

j=1

X j :=
⎧

⎨

⎩

ξ : |ξ | ≤
m

∏

j=1

ξ j for some 0 ≤ ξ j ∈ X j , 1 ≤ j ≤ m

⎫

⎬

⎭

,

which can easily seen to be a vector space and for ξ ∈ ∏m
j=1 X j we define

‖ξ‖∏m
j=1 X j

:= inf

⎧

⎨

⎩

m
∏

j=1

‖ξ j‖X j : |ξ | ≤
m

∏

j=1

ξ j , 0 ≤ ξ j ∈ X j , 1 ≤ j ≤ m

⎫

⎬

⎭

.

We call 
X = (X1, · · · , Xm) an m-tuple of quasi-Banach function spaces if X1, · · · , Xm

are quasi-Banach function spaces over the same measure space and the product
∏m

j=1 X j

equippedwith the norm ‖ · ‖∏m
j=1 X j

is also quasi-Banach function space.We refer to [8,37,46]
for background on product Banach function spaces. Let us give a few examples:

Proposition 2.1 Let (�,μ) be a σ -finite measure space.

(i) For any quasi-Banach function space X we have X · L∞(�) = X.
(ii) Lebesgue spaces: L p(�) = ∏m

j=1 L
p j (�) for 
p ∈ (0,∞]m.

(iii) Lorentz spaces: L p,q(�) = ∏m
j=1 L

p j ,q j (�) for 
p ∈ (0,∞)m, 
q ∈ (0,∞]m.
(iv) Orlicz spaces: L	(�) = ∏m

j=1 L
	 j (�) for Young functions	 j and	−1 = ∏m

j=1 	−1
j .

In all these cases the (quasi)-norm of the product is equivalent to the usual (quasi)-norm.

Proof The first claim follows directly from the definitions. For (ii), (iii), and (iv), the inclusion
∏m

j=1 X j ⊆ X with X respectively equal to L p(�), L p,q(�), and L	(�) and X j respectively

equal to L p j (�), L p j ,q j (�), and L	 j (�), follows from the generalized Hölder’s inequality
‖ ∏m

j=1 ξ j‖X �
∏m

j=1 ‖ξ j‖X j valid for these spaces, see [41,42].
For the converse in (ii) and (iii) in the case that q = q1 = · · · = qm = ∞, let ξ ∈ L p(�)

or ξ ∈ L p,∞(�) respectively. If p = p1 = · · · = pm = ∞, the result follows from (i).

Otherwise, we set ξ j := |ξ |
p
p j . Then ξ j ∈ L p j (�) or ξ j ∈ L p j ,∞(�) respectively, |ξ | =

∏m
j=1 ξ j , and

∏m
j=1 ‖ξ j‖L p j (�) = ‖ξ‖L p(�) or similarly in the weak case, proving the result.

The converse for (iv) is proven analogously with ξ j := 	−1
j (	(|ξ |)).

Finally, for (iii) in the case qk < ∞ for some 1 ≤ k ≤ j we take s > 0 such that
X j := L p j /s,q j /s(�) are all Banach spaces. Then Xk is reflexive, which means that we can
identify the product space

∏m
j=1 L

p j /s,q j /s(�) with an iterated complex interpolation space

by [8]. So
∏m

j=1 L
p j /s,q j /s(�) = L p/s,q/s(�) by [47, Theorem 1.10.3 and 1.18.6]. The

assertion now follows by rescaling. ��

2.2 Sparse forms andmultilinear weight classes

In this section we briefly outline some of the results on dyadic grids and sparse collections
of cubes that we will use. For proofs of these result and other relevant properties we refer
the reader to [28]. Furthermore we will introduce multilinear weight classes and state some
weighted results, for which we refer the reader to [40]. We note these results also hold in
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the more general setting of spaces homogeneous type, provided one uses the right notion of
dyadic cubes in this setting, see [22].

By a cube Q ⊆ Rd we mean a half-open cube whose sides are parallel to the coordinate
axes. We define the standard dyadic grid as

D :=
⋃

k∈Z

{

2−k([0, 1)d + m
) : m ∈ Zd}.

An important property pertaining to cubes is the fact that there exist 3d translates (Dα)3
d

α=1 of
D such that for each cube Q ⊆ Rd there exists an α and a cube Q′ ∈ Dα such that Q ⊆ Q′
and |Q′| ≤ 6d |Q|. This so-called three lattice lemma will allow us to reduce our arguments
to only having to consider dyadic grids.

A collection of cubes S is called sparse if there is pairwise disjoint collection (EQ)Q∈S
of measurable sets satisfying EQ ⊆ Q and |EQ | ≥ 1

2 |Q|. Note that the constant 1
2 in the

estimate |EQ | ≥ 1
2 |Q| is not essential in the arguments and could be replaced by anη ∈ (0, 1).

What is important is that this constant stays fixed throughout the arguments.

Definition 2.2 For 
r ∈ (0,∞)m and 
f ∈ L
r
loc(R

d) we define the m-sublinear Hardy-
Littlewood maximal operator

M
r ( 
f )(x) := sup
Q

m
∏

j=1

〈 f j 〉r j ,Q 1 Q(x), x ∈ Rd

where the supremum is taken over all cubes Q ⊆ Rd . Similarly, for a collection of cubes D
we define

MD

r ( 
f )(x) := sup

Q∈D

m
∏

j=1

〈 f j 〉r j ,Q 1Q(x), x ∈ Rd .

A weight w is a measurable function w : Rd → (0,∞). For a weight w and p ∈ (0,∞] we
define the weighted Lebesgue space L p

w(Rd) as the space of those measurable functions f
satisfying ‖ f w‖L p(Rd ) < ∞. Note that if p ∈ (0,∞), then L p

w(Rd) is the L p space overRd

with respect to the measure w pdx . It should be noted that our definition of L p
w(Rd) is often

denoted by L p(w p) in the literature when p < ∞. The advantage of our definition is that
we also obtain a sensible definition when p = ∞, which does play a role in the theory.

Definition 2.3 Let 
r ∈ (0,∞)m , s ∈ (0,∞] and let 
p ∈ (0,∞]m with 
r ≤ 
p and p ≤ s. Let

w be a vector of m weights. We say that 
w is a multilinear Muckenhoupt weight and write

w ∈ A 
p,(
r ,s) if

[ 
w] 
p,(
r ,s) := sup
Q

⎛

⎝

m
∏

j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q

⎞

⎠ 〈w〉 1
1
p − 1

s
,Q < ∞,

where the supremum is taken over all cubes Q ⊆ Rd .

These weight classes characterize the weak boundedness of the Hardy-Littlewood maximal
operator in the sense that [ 
w] 
p,(
r ,∞) �d ‖M
r‖L 
p


w(Rd )→L p,∞
w (Rd )

. In the case where we have

the strict inequalities 
r < 
p this improves to a strong bound. More precisely, we have the
following result, which is shown in [40, Proposition 2.14].
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Proposition 2.4 Let 
r ∈ (0,∞)m and 
p ∈ (0,∞]m with 
r < 
p. Then for all 
w ∈ A 
p,(
r ,∞)

‖M
r‖L 
p

w(Rd )→L p

w(Rd )
� 
p,
r [ 
w]

max

{

1

r

1

r − 1


p

}


p,(
r ,∞)
.

We wish to elaborate on the intimate connection between the multisublinear Hardy-
Littlewood maximal operator and sparse forms. Indeed, for 
r ∈ (0,∞)m we have the
equivalence

‖M
r ( 
f )‖L1(Rd ) � sup
S

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉r j ,Q
⎞

⎠ |Q|, (2.1)

which is valid for all 
f ∈ L
r
loc(R

d), where the supremum is taken over all sparse collections
S, see [13, Remark 1.5]. Applying (2.1) withm = 2, r1 = r2 = 1 allows us rewrite the sparse
domination results in Theorem 1.1 in terms of multisublinear maximal functions, which is
an essential step in its proof.

For the sparse domination in our main result (Theorem 5.1), our sparse domination is in
fact written in terms of a multisublinear maximal function. We emphasize how one can view
this in terms of sparse forms, being a particular case of (2.1), in the following proposition:

Proposition 2.5 Let 
r ∈ (0,∞)m, q ∈ (0,∞), and s ∈ (q,∞]. Then for all 
f ∈ L
r
loc(R

d)

and g ∈ L

1
1
q − 1

s
loc (Rd)

‖M(


r , 1
1
q − 1

s

)( 
f , g)‖Lq (Rd ) �q,r ,s sup
S

⎛

⎝

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉r j ,Q
⎞

⎠

q

〈g〉q 1
1
q − 1

s
,Q

|Q|
⎞

⎠

1
q

,

where the supremum is over all sparse collections S.
Proof Note that the left-hand side can be written as

∥

∥M(


r
q ,

1
q

1
q − 1

s

)(| f1|q , . . . , | fm |q , |g|q)∥∥
1
q

L1(Rd )

while the right-hand side can be written as

⎛

⎝sup
S

∑

Q∈S

⎛

⎝

m
∏

j=1

〈| f j |q〉 r j
q ,Q

⎞

⎠ 〈|g|q〉 1
q

1
q − 1

s
,Q

|Q|
⎞

⎠

1
q

Thus, the result follows as a special case of (2.1). ��
We point out that pointwise domination of an operator by a sparse operator of course implies
that this operator also satisfies sparse domination in form. Since we will use this fact several
times, we record it here.

Proposition 2.6 Let 
r ∈ (0,∞)m, q ∈ (0,∞) and let T be an operator defined on m-tuples
of functions such that for 
f ∈ L
r

loc(R
d) there exists a sparse collection S such that

∣

∣T ( 
f )(x)
∣

∣ ≤ CT

⎛

⎝

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉r j ,Q
⎞

⎠

q

1Q(x)

⎞

⎠

1
q

, x ∈ Rd .
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Then

‖T ( 
f ) · g‖Lq (Rd ) �q CT ‖M(
r ,q)( 
f , g)‖Lq (Rd )

for all g ∈ Lq
loc(R

d).

Proof By Proposition 2.5 we have

‖T ( 
f )g‖Lq (Rd ) ≤ CT

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉r j ,Q
⎞

⎠

q

1Q

⎞

⎠

1
q

g

∥

∥

∥

∥

∥

∥

∥

Lq (Rd )

= CT

⎛

⎝

∫

Rd

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉r j ,Q
⎞

⎠

q

1Q |g|q dx
⎞

⎠

1
q

= CT

⎛

⎝

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉r j ,Q
⎞

⎠

q

〈g〉qq,Q |Q|
⎞

⎠

1
q

�q CT ‖M(
r ,q)( 
f , g)‖Lq (Rd ),

for all g ∈ Lq
loc(R

d), as desired. ��
Next we note that vector-valued sparse domination can be written in two equivalent ways.

The first way uses duality in X , which is useful as it allows one to apply Fubini’s theorem.
The second is domination with the norm of X on the inside, which is the form that is usually
used in the literature.

Proposition 2.7 Let 
r ∈ (0,∞)m, q ∈ (0,∞), s ∈ (q,∞] and let 
X be an m-tuple of
quasi-Banach function spaces over a measure space (�,μ) such that X is q-convex and
order-continuous. Let ˜T be an operator defined on an m-tuple 
f ∈ L
r

loc(R
d ; 
X)with ˜T ( 
f ) ∈

L0(Rd ; X). Then the following are equivalent:

(i) For all g ∈ L∞
c (Rd ; ((Xq)∗)

1
q )

∥

∥˜T ( 
f ) · g∥

∥

Lq (Rd ;Lq (�))
≤ C

∥

∥M(


r , 1
1
q − 1

s

)(‖ 
f ‖ 
X , ‖g‖
((Xq )∗)

1
q
)
∥

∥

Lq (Rd )
.

(ii) For all g ∈ L∞
c (Rd)
∥

∥‖˜T ( 
f )‖X · g∥

∥

Lq (Rd )
≤ C

∥

∥M(


r , 1
1
q − 1

s

)(‖ 
f ‖ 
X , g)
∥

∥

Lq (Rd )
.

Proof For (ii)⇒(i), note that

‖˜T ( 
f ) · g‖Lq (�) =
(∫

�

|˜T ( 
f )|q |g|q dμ
) 1

q ≤ ∥

∥|˜T ( 
f )|q∥∥
1
q
Xq

∥

∥|g|q∥∥
1
q

(Xq )∗

= ∥

∥˜T ( 
f )
∥

∥

X‖g‖
((Xq )∗)

1
q

so that
∥

∥˜T ( 
f ) · g
∥

∥

Lq (Rd ;Lq (�))
≤ ∥

∥‖˜T ( 
f )‖X · ‖g‖
((Xq )∗)

1
q

∥

∥

Lq (Rd )
. Since for g ∈

L∞
c (Rd ; ((Xq)∗)

1
q ) we have ‖g‖

((Xq )∗)
1
q

∈ L∞
c (Rd), applying (ii) with g replaced by

‖g‖
((Xq )∗)

1
q
proves (i).
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For (i)⇒(ii) we note that by duality (see e.g. [23, Proposition 1.3.1]) we have

∥

∥‖˜T ( 
f )‖X · g∥

∥

Lq (Rd )
= ∥

∥‖|˜T ( 
f )|q‖Xq · |g|q∥∥
1
q

L1(Rd )

= ∥

∥|˜T ( 
f )|q |g|q |∥∥
1
q

L1(Rd ;Xq )

= sup
‖h‖L∞(Rd ;((Xq )∗)1/q )

=1

∥

∥|˜T ( 
f )|q · |g|q · |h|q∥∥
1
q

L1(Rd ;L1(�))

= sup
‖h‖L∞(Rd ;((Xq )∗)1/q )

=1

∥

∥˜T ( 
f ) · gh∥

∥

Lq (Rd ;Lq (�))
.

(2.2)

Since gh ∈ L∞
c (Rd ; ((Xq)∗)

1
q ) for any g ∈ L∞

c (Rd) and h ∈ L∞(Rd ; ((Xq)∗)
1
q ) of norm

1 with ‖gh‖
((Xq )∗)

1
q

≤ |g|‖h‖
L∞(Rd ;((Xq )∗)

1
q )

= |g|, it follows from (i) that

∥

∥˜T ( 
f ) · gh∥

∥

Lq (Rd ;Lq (�))
≤ C

∥

∥M(


r , 1
1
q − 1

s

)(‖ 
f ‖ 
X , ‖gh‖
((Xq )∗)

1
q
)
∥

∥

Lq (Rd )

≤ C
∥

∥M(


r , 1
1
q − 1

s

)(‖ 
f ‖ 
X , g)
∥

∥

Lq (Rd )
.

By combining this result with (2.2) we have proven (ii). ��
In the following result we will deduce weighted bounds from domination by the multi-

sublinear Hardy–Littlewood operator. To this end we introduce some terminology.

Definition 2.8 Let 
X be an m-tuple of quasi-Banach function spaces over a measure space
(�,μ). Let 
Y , V be m + 1 quasi-normed linear subspaces of L0(Rn; 
X) and L0(Rn; X)

respectively and let T : 
Y → V . We say that T is m-linear if it is linear in each of its
components. We say that T is m-sublinear if it is positive-valued and subadditive in each
of its components, i.e., the function T ( 
f ) takes values in the positive functions, and for all
j ∈ {1, . . . ,m}
T ( f1, . . . , f j−1, f j + g j , f j+1, . . . , fm) ≤ T ( 
f ) + T ( f1, . . . , f j−1, g j , f j+1, . . . , fm)

for all 
f ∈ 
Y , g j ∈ Y j .

Wewill generally consider operators that are eitherm-linear orm-sublinear, whichwe shorten
by saying that the operator is m-(sub)linear. We point out that the modulus of any m-linear
operator is m-sublinear.

Proposition 2.9 Let 
r ∈ (0,∞)m, q ∈ (0,∞), s ∈ (q,∞] and let 
X be an m-tuple of
quasi-Banach function spaces over a measure space (�,μ) such that X is q-convex and
order-continuous. Let˜T be anm-(sub)linear operator initially defined for all simple functions

f ∈ L∞

c (Rd ; 
X). Suppose that
∥

∥‖˜T ( 
f )‖X · g∥

∥

Lq (Rd )
≤ CT

∥

∥M(


r , 1
1
q − 1

s

)(‖ 
f ‖ 
X , g)
∥

∥

Lq (Rd )
. (2.3)

for all simple 
f ∈ L∞
c (Rd ; 
X), g ∈ L∞

c (Rd). Then for all 
p ∈ (0,∞]m with 
r < 
p and
p < s, all 
w ∈ A 
p,(
r ,s), ˜T has a unique extension satisfying

‖˜T ( 
f )‖L p
w(Rd ;X) � 
p,q,
r ,s CT [ 
w]

max

{

1

r

1

r − 1


p
,
1
q − 1

s
1
p − 1

s

}


p,(
r ,s)
m

∏

j=1

‖ f j‖L p j
w j (R

d ;X j )
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for all 
f ∈ L 
p

w(Rd ; 
X).

Proposition 2.9 is essentially a consequence of Proposition 2.4 and, in certain cases,
the quantitative multilinear extrapolation result in [40]. The reason we might have to use
extrapolation is because sparse domination by forms yields, a priori, weighted bounds for
the range of exponents where one can dualize the operator. Typically, in the multilinear case,
this does not yield the full range of exponents where the operator satisfies weighted bounds.
To recover this full range of exponents, we will use the following version of the extrapolation
theorem in [40]:

Theorem 2.10 Let 
r ∈ (0,∞)m, q ∈ (0,∞), s ∈ (q,∞] and let 
t ∈ (0,∞]m satisfy

t ≥ 
r and q ≤ t ≤ s. Suppose we are given 
p ∈ (0,∞]m satisfying 
p > 
r , q ≤ p < s,


w ∈ A 
p,(
r ,s), and 
f ∈ L 
p

w(Rn), g ∈ L

1
1
q − 1

p

w−1 (Rn). Then there is a 
W ∈ A
t,(
r ,s) such that

⎛

⎝

m
∏

j=1

‖ f j‖Lt j
W j

(Rn)

⎞

⎠ ‖g‖
L

1
1
q − 1

t
W−1 (Rn)

≤ 2
m2
q

⎛

⎝

m
∏

j=1

‖ f j‖L p j
w j (R

n)

⎞

⎠ ‖g‖
L

1
1
q − 1

p

w−1 (Rn)

(2.4)

and

[ 
W ]
t,(
r ,s) � 
p,
r ,s,
t [ 
w]
max

{

1

r − 1


t
1

r − 1


p
,
1
t − 1

s
1
p − 1

s

}


p,(
r ,s) . (2.5)

Proof This follows from an application of [40, Theorem 3.1] with rrr = ( 
r
q , ( sq )′), qqq =

(

t
q , ( t

q )′), ppp = (

p
q , (

p
q )′),www = ( 
wq , w−q), and fff = (| 
f |q , |g|q). ��

Next, we prove an extension lemma for multi(sub)linear operators, which will be needed
in the proof of Proposition 2.9. In the case m = 1, a bounded (sub)linear operator satisfies
a reverse triangle inequality type estimate and thus, in particular, is uniformly continuous.
Therefore, if it takes values in a complete space, it extends to an operator on the closure
of its domain. For m > 2 this uniform continuity needs to be replaced by a local uniform
continuity. This again suffices to extend the operator to the closure of its domain. While this
result is straightforward, we include it here for convenience of the reader.

Lemma 2.11 Let 
Y be an m-tuple of quasi-normed vector spaces, let Z be a quasi-Banach
function space, and let U j ⊆ Y j be a dense subspace for each j ∈ {1, . . . ,m}. If T : 
U → Z
is bounded and satisfies the pointwise a.e. estimate

|T ( 
f ) − T (
g )| ≤
m

∑

j=1

|T ( f1, . . . , f j−1, f j − g j , g j+1, . . . , gm)|

+ |T (g1, . . . , g j−1, g j − f j , f j+1, . . . , fm)|
(2.6)

for all 
f , 
g ∈ 
U, then T uniquely extends to a bounded operator 
Y → Z with a comparable
bound.

If T is m-(sub)linear, then it satisfies (2.6) and its extension, again denoted by T , is an
m-(sub)linear operator as well.
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Proof By the compatibility of the normon Z with pointwise estimates, (2.6) and boundedness
of T yields for 
f , 
g ∈ 
U

‖T ( 
f ) − T (
g )‖Z �
m

∑

j=1

‖T ( f1, . . . , f j−1, f j − g j , g j+1, . . . , gm)‖Z

+ ‖T (g1, . . . , g j−1, g j − f j , f j+1, . . . , fm)‖Z

�
m

∑

j=1

⎛

⎜

⎜

⎝

m
∏

l=1
l �= j

(‖ fl‖Yl + ‖gl‖Yl )

⎞

⎟

⎟

⎠

‖ f j − g j‖Y j .

(2.7)

Now, if 
f ∈ 
Y and ( f kj )k∈N is a sequence inUj converging to f j in Y j for all j ∈ {1, . . . ,m},
then (2.7) implies that (T ( 
f k))k∈N is aCauchy-sequence in Z . The first assertion then follows
by defining T ( 
f ) to be the limit of this sequence in Z . Note that this is well-defined since it
follows from another application of (2.7) that this limit does not depend on the approximating
sequences of the f j . For the bound we have

‖T ( 
f )‖Z ≤ β lim inf
k→∞ ‖T ( 
f k)‖Z ≤ βc

m
∏

j=1

lim sup
k→∞

‖ f kj ‖Y j ≤ β

⎛

⎝

m
∏

j=1

α j

⎞

⎠ c
m

∏

j=1

‖ f j‖Y j .

where c, α j , and β are respectively the bound for T , the quasi-triangle inequality constant
of Y j , and the quasi-triangle inequality constant of Z .

If T is m-sublinear, then it follows from iterating the inequality

T ( 
f ) ≤ T (g1, f2, . . . , fm) + T ( f1 − g1, f2, . . . , fm)

for all f j in the first term on the right for j = 2 to j = m, that

T ( 
f ) ≤ T (
g ) +
m

∑

j=1

T ( f1, . . . , f j−1, f j − g j , g j+1, . . . , gm).

By symmetry, we obtain

T (
g ) ≤ T ( 
f ) +
m

∑

j=1

T (g1, . . . , g j−1, g j − f j , f j+1, . . . , fm)

and by combining these two estimates we obtain (2.6). If T is m-linear, these first two
inequalities are actually equalities, so we can proceed analogously. The final assertion is a
consequence of the fact thatm-(sub)linearity is a pointwise property and that convergence in
Z implies local convergence inmeasure (see e.g. [4, Theorem 1.4]), and thus a.e. convergence
on a subsequence. ��
Note that if Z = L p

w(Rn) for a weight w and a p ∈ (0,∞], then by continuity of the
(quasi-)norm ‖ · ‖L p

w(Rn), the extension T will have the same bound as the original T .
Since we are working with weights that are not necessarily locally integrable, it is not a-

priori clear that the simple functions of compact support are dense in the weighted Lebesgue
spaces. We prove that this density result does indeed hold.

Lemma 2.12 Let w be a weight, p, q ∈ (0,∞) and X a q-convex quasi-Banach function
space. Then the simple functions in L p

w(Rn; X) ∩ L∞
c (Rn; X) are dense in L p

w(Rn; X).
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Proof First suppose that p, q ≥ 1 and fix f ∈ L p
w(Rn; X). By [23, Corollary 1.1.21] and the

dominated convergence theorem there exists a sequence of simple functions ( fk)k∈N such
that fk → f in L p

w(Rd ; X), and fk(x) → f (x) and ‖ fk(x)‖X ≤ ‖ f ‖X for a.e. x ∈ Rd .
Setting (gk)k∈N = ( fk 1B(0,k))k∈N it follows that gk ∈ L p

w(Rn; X) ∩ L∞
c (Rn; X) for all

k ∈ N and gk → f in L p
w(Rn; X) by the dominated convergence theorem, proving the

lemma.
Now consider the case p < 1 and/or q < 1. Fix n ∈ N so that 2n p, 2nq > 1. For f ∈

L p
w(Rn; X) we can pick a positive g ∈ L2n p

w2−n (Rn; X2−n
) with g2

n = | f |. By our previous

result we can find a positive sequence of simple functions (gk)k∈N in L2n p

w2−n (Rn; X2−n
) ∩

L∞
c (Rn; X2−n

) converging to g. Setting fk := g2
n

k sgn( f ) ∈ L p
w(Rn; X) ∩ L∞

c (Rn; X) we
compute

| fk − f | = |g2nk − g2
n | = |gk − g|

n−1
∏

l=0

|g2lk + g2
l |

so that by Hölder’s inequality

‖ fk − f ‖L p
w(Rn;X) ≤ ‖gk − g‖

L2n p

w2−n (Rn;X2−n
)

n−1
∏

l=0

‖g2lk + g2
l‖

L2n−l p

w2−(n−l) (Rn;X2−n−l
)
.

Since ‖g2lk + g2
l‖ is bounded in k, we conclude that fk → f in L p

w(Rn; X). ��
We are now ready to prove Proposition 2.9.

Proof of Proposition 2.9 Set 1
t j

:= τ
r j

with 1
τ

=
1
r − 1

s + 1
q

1
q

> 1. Noting that

1

t
= τ

r
=

1
r

1
r + 1

q − 1
s

1

q
∈

(

1

s
,
1

q

)

,

1
r1

1
r1

− 1
t1

= . . . =
1
rm

1
rm

− 1
tm

=
1
q − 1

s
1
t − 1

s

= 1

1 − τ
,

and
[

( 
W ,W−1)
]

(


t, 1
1
q − 1

t

)

,

((


r , 1
1
q − 1

s

)

,∞
) = [ 
W ]
t,(
r ,s),

for 
W ∈ A
t,(
r ,s), it follows from (2.3) and Proposition 2.4 that
∥

∥‖˜T ( 
f )‖X · g∥

∥

Lq (Rd )
≤ CT

∥

∥M(


r , 1
1
q − 1

s

)(‖ 
f ‖ 
X , g)
∥

∥

Lq (Rd )

�
t,
r CT [ 
W ]
1

1−τ


t,(
r ,s)

⎛

⎝

m
∏

j=1

‖ f j‖Lt j
W j

(Rd ;X j )

⎞

⎠ ‖g‖
L

(

1
q − 1

t

)−1

W−1 (Rd )

(2.8)

for all 
W ∈ A
t,(
r ,s) and all simple f j ∈ L
t j
W j

(Rd)∩ L∞
c (Rn), g ∈ L

( 1q − 1
t )

−1

W−1 (Rd)∩ L∞
c (Rn).

By Lemmas 2.11 and 2.12, ˜T has a unique extension satisfying this estimate for all 
W ∈
A
t,(
r ,s), 
f ∈ L
t


W (Rd ; 
X), and g ∈ L
( 1q − 1

t )
−1

W−1 (Rd).
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Now let 
p ∈ (0,∞]m with 
r < 
p and p < s, 
w ∈ A 
p,(
r ,s), and 
f ∈ L 
p

w(Rn; 
X),

g ∈ L
( 1q − 1

p )−1

w−1 (Rd). It follows from applying Theorem 2.10 with f j replaced by ‖ f j‖X j ,

that there is a 
W ∈ A
t,(
r ,s) such that
⎛

⎝

m
∏

j=1

‖ f j‖Lt j
W j

(Rn;X j )

⎞

⎠ ‖g‖
L

1
1
q − 1

t
W−1 (Rn)

≤ 2
m2
q

⎛

⎝

m
∏

j=1

‖ f j‖L p j
w j (R

n;X j )

⎞

⎠ ‖g‖
L

1
1
q − 1

p

w−1 (Rn)

and

[ 
W ]
t,(
r ,s) � 
p,
r ,s,
t [ 
w]
(1−τ)·max

{

1

r

1

r − 1


p
,
1
q − 1

s
1
p − 1

s

}


p,(
r ,s) .

Then it follows from (2.8) that
∥

∥‖˜T ( 
f )‖X · g∥

∥

Lq (Rd )

�
t,
r CT [ 
W ]
1

1−τ


t,(
r ,s)

⎛

⎝

m
∏

j=1

‖ f j‖Lt j
W j

(Rd ;X j )

⎞

⎠ ‖g‖
L

(

1
q − 1

t

)−1

W−1 (Rd )

� 
p,q,
r,s,
t CT [ 
w]
max

{

1

r

1

r − 1


p
,
1
q − 1

s
1
p − 1

s

}


p,(
r ,s)

⎛

⎝

m
∏

j=1

‖ f j‖L p j
w j (R

d ;X j )

⎞

⎠ ‖g‖
L

(

1
q − 1

p

)−1

w−1 (Rd )

.

The assertion now follows from the duality

∥

∥T ( 
f )
∥

∥

L p
w(Rd ;X)

= ∥

∥‖T ( 
f )‖qX
∥

∥

1
q

L
p
q
wq (Rd )

= sup
‖g‖

L

(

1
q − 1

p

)−1

w−1 (Rd )

=1

∥

∥‖˜T ( 
f )‖X · g∥

∥

Lq (Rd )
.

��

3 Themultisublinear lattice maximal operator

In this section we will introduce and study properties of the multilinear lattice maximal
operator, which will play a major role in the proof of our main theorem. We will start by
reviewing the case m = 1. Let X be a Banach function space and let D be a finite collection
of cubes in Rd . For any f ∈ L1

loc(R
d ; X) we define

˜MD f (x) := sup
Q∈D

〈

f
〉

1,Q 1Q(x), x ∈ Rd .

where the supremum is taken in the lattice sense. We say that X has the Hardy–Littlewood
property and write X ∈ HL if for some p ∈ (1,∞)

‖ ˜M‖p,X := sup
D

∥

∥ ˜MD∥

∥

L p(Rd ;X)→L p(Rd ;X)
< ∞,

where the supremum is taken over all finite collection of cubesD. This property is independent
of the exponent p and the dimension d (see [18]) and even the operator norm ‖ ˜M‖p,X can
be bounded by a constant independent of the dimension d (see [15]).
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As an example we note that (iterated) L p-spaces for p ∈ (1,∞] have the Hardy–
Littlewood property. Moreover by a deep result of Bourgain [6] and Rubio de Francia [45,
Theorem 3] we have that both X and X∗ have the Hardy–Littlewood property if and only
if X has the so-called UMD property. We will elaborate on the connection between the
Hardy–Littlewood property and the UMD property in Sect. 4.

If X is an order-continuousBanach function spacewith theHardy–Littlewoodproperty and
p ∈ [1,∞), we define the lattice Hardy–Littlewood maximal operator for f ∈ L p(Rd ; X)

by

˜M f (x) := sup
Q

〈

f
〉

1,Q 1Q(x), x ∈ Rd .

where the supremum is taken in the lattice sense over all cubes Q ⊆ Rd . To see that ˜M f :
Rd → X is strongly measurable, let Dn be a finite collection of cubes for each n ∈ N such
that Dn ⊆ Dn+1 and such that

˜M f (x) = sup
n∈N

˜MDn f (x), x ∈ Rd .

By the Hardy–Littlewood property of X we know that supn∈N‖ ˜MDn f ‖L p,∞(Rd ;X) < ∞ (see
[18, Theorem 1.7]). Thus using the Fatou property of X it follows that ˜M f (x) ∈ X for a.e.
x ∈ Rd . Moreover since X is order-continuous,

(

˜MDn f (x)
)

n∈N converges to ˜M f (x) for
a.e. x ∈ Rd . As ˜MDn f is a simple function for each n ∈ N, we can conclude that ˜M f is
strongly measurable, i.e. ˜M f ∈ L0(Rd ; X).

Let us now turn to the multisublinear, rescaled generalization of the lattice Hardy–
Littlewood maximal operator that we will need for our main result. Take 
r ∈ (0,∞)m

and let 
X be an 
r -convex m-tuple of quasi-Banach function spaces. For 
f ∈ L
r
loc(R

d ; 
X)

and a finite collection of cubes D in Rd we define the multilinear analog of ˜MD as

˜MD

r ( 
f )(x) := sup

Q∈D

m
∏

j=1

〈

f j
〉

r j ,Q
1Q(x), x ∈ Rd ,

where the supremum is taken in the lattice sense. Note that ˜MD
(1) = ˜MD .

Definition 3.1 Let 
X be an m-tuple of quasi-Banach function spaces and take 
r ∈ (0,∞)m .
We say that 
X has the 
r -Hardy–Littlewood property and write 
X ∈ HL
r if 
X is 
r -convex and
for some 
r < 
p ≤ ∞ we have

‖ ˜M
r‖ 
p, 
X := sup
D

∥

∥ ˜MD

r

∥

∥

L 
p(R; 
X)→L p(R;X)
< ∞,

where the supremum is taken over all finite collection of cubes.

As in the linear case, the definition of HL
r is independent of the exponent p and the
dimension d . The independence of d can be shown using the method of rotations (see e.g.
[18, Remark 1.3]), and the independence of p will follow from Corollary 3.6 below.

The multilinear Hardy–Littlewood property has the following properties:

Proposition 3.2 Let 
X be an m-tuple of quasi-Banach function spaces and take 
r ∈ (0,∞)m.
If X

r j
j ∈ HL for 1 ≤ j ≤ m, then 
X ∈ HL
r .
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Proof Fix a finite collection of dyadic cubes D. Let r j < p j ≤ ∞ be such that
‖ ˜M‖

p j /r j ,X
r j
j

< ∞ for 1 ≤ j ≤ m. For 
f ∈ L 
p(Rd , 
X) we have by Hölder’s inequal-

ity

∥

∥ ˜MD

r 
f ∥

∥

L p(Rd ;X)
≤

m
∏

j=1

∥

∥ ˜MD(| f j |r j )
∥

∥

1/r j

L p j /r j (Rd ;Xr j
j )

≤
m

∏

j=1

‖ ˜M‖1/r j
p j /r j ,X

r j
j

‖ f j‖L p j (Rd ;X j )
.

Thus taking the supremum over all 
f of norm 1 and all finite collection of cubes D yields

X ∈ HL
r . ��
We point out that Proposition 3.2 does not provide a necessary condition. Indeed, for

m = 3 we can take X1 = �2(�∞), X2 = �∞(�2) and X3 = �2(�2). It is shown in [39,
Proposition 8.1] that X2 does not satisfy the Hardy-Littlewood property. However, noting
that X3 = (X1 · X2)

∗, it follows from Proposition 4.8 below that 
X ∈ HL(1,1,1).
Take 
r , 
p ∈ (0,∞]m with 
r ≤ 
p, assume that 
X ∈ HL
r and that X is order-continuous.

We define the multisublinear lattice maximal operator

˜M
r ( 
f )(x) := sup
Q

m
∏

j=1

〈

f j
〉

r j ,Q
1Q(x), x ∈ Rd ,

for 
f ∈ L 
p(Rd ; 
X), where the supremum is taken in the lattice sense over all cubes Q ⊆ Rd .
As in the case m = 1, the order-continuity of X ensures that ˜M
r ( 
f ) ∈ L0(Rd ; X).

We will show a sparse domination result for ˜M
r , which is key in the proof of our main
result. Sparse domination in the case m = 1 was studied in [19]. Here we will adapt the
arguments from [19] to the case where m > 1. As a first step we will show a weak endpoint
for ˜MD


r .

Lemma 3.3 Let 
X be an m-tuple of quasi-Banach function spaces, take 
r ∈ (0,∞)m and
suppose 
X ∈ HL
r . Then we have for 
r < 
p ≤ ∞

sup
D⊆D finite

∥

∥ ˜MD

r

∥

∥

L
r (Rd ; 
X)→Lr,∞(Rd ;X)
� 
p,
r ‖ ˜M
r‖ 
p,X

Proof Fix D ⊆ D finite and take 
f ∈ L
r (Rd ; 
X). By scaling we may assume that
‖ f j‖Lr j (Rd ;X j )

= 1 for 1 ≤ j ≤ m. For λ > 0 and 1 ≤ j ≤ m define

S j := {

Q ∈ D : Q maximal (w.r.t inclusion) such that
〈‖ f j‖X j

〉

r j ,Q
> λr/r j

}

and set Oj := ⋃

Q∈S j
Q = {MD

r j (‖ f j‖X j ) > λr/r j }. For a fixed P ∈ D and 1 ≤ j ≤ m we
have if P \ Oj �= ∅, then

〈 f j 〉r j ,P 1P =
〈

f j 1Oc
j
+

∑

Q∈S j :
Q⊆P

f j 1Q
〉

r j ,P
1P

=
〈

f j 1Oc
j
+

∑

Q∈S j

〈 f j 〉r j ,Q 1Q
〉

r j ,P
1P

using the disjointness of the cubes in S j and
〈〈 f j 〉r j ,Q 1Q

〉

r j ,P
= 〈 f j 1Q〉r j ,P , Q ⊆ P
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in the second equality. Taking the product over 1 ≤ j ≤ m and the supremum over P ∈ D
we can estimate

˜MD

r ( 
f ) ≤ sup

P∈D

m
∏

j=1

⎛

⎝

〈

f j 1Oc
j
+

∑

Q∈S j

〈 f j 〉r j ,Q 1Q
〉

r j ,P
1P +〈 f j 〉r j ,P 1Oj

⎞

⎠

≤ ˜MD

r (
g ) + b

where

g j := g1j + g2j := f j 1Oc
j
+

∑

Q∈S j

〈 f j 〉r j ,Q 1Q, 1 ≤ j ≤ m.

and b : Rd → X is the sum of all terms of the product over 1 ≤ j ≤ m except ˜MD

r (
g). By

the disjointness of the cubes in S j we have ‖g j‖Lr j (Rd ;X j )
= ‖ f j‖Lr j (Rd ;X j )

= 1. Moreover
since

supp b ⊆
m
⋃

j=1

Oj =
m
⋃

j=1

{

MD
r j (‖ f j‖X j ) > λr/r j

}

and since MD
r j is weak Lr j -bounded we have

∣

∣‖b‖X > λ
∣

∣ ≤
m

∑

j=1

∣

∣MD
r j

(‖ f j‖X j

)

> λr/r j
∣

∣ ≤ m

λr
.

Next we estimate the L∞-norm of 
g. For 1 ≤ j ≤ m we have by the Lebesgue differentiation
theorem that

‖g1j‖X j = ‖ f j‖X j 1Oc
j
≤ MD

r j

(‖ f j‖X j

)

1Oc
j
≤ λr/r j .

and, using the disjointness of the cubes in S j , the r j -convexity of X j , and the maximality of
the cubes in S j , we have

‖g2j‖X j =

∥

∥

∥

∥

∥

∥

∥

⎛

⎝

∑

Q∈S j

〈 f j 〉r jr j ,Q 1Q

⎞

⎠

1
r j

∥

∥

∥

∥

∥

∥

∥

X j

≤ 2d/r j

⎛

⎝

∑

Q∈S j

〈‖ f j‖X j 〉r jr j ,Q̂ 1Q

⎞

⎠

1
r j

≤ 2d/r j λr/r j ,

where Q̂ is the dyadic parent of Q ∈ S j . Thus we have ‖g j‖L∞(Rd ;X j )
�r j λr/r j .

Combining the estimates for 
g and b we obtain for 
r < 
p < ∞
∣

∣

∣

∥

∥ ˜MD

r ( 
f )

∥

∥

X > 2λ
∣

∣

∣ ≤
∣

∣

∣

∥

∥ ˜MD

r (
g)∥∥X > λ

∣

∣

∣ + ∣

∣‖b‖X > λ
∣

∣

≤ ‖ ˜M
r‖ 
p,X

∏m
j=1‖g j‖p

L p j (Rd ;X j )

λp
+ m

λr

� 
p,
r ‖ ˜M
r‖ 
p,X

∏m
j=1‖g j‖

r j
p j

p

Lr j (Rd ;X j )
λ

(

1
r j

− 1
p j

)

pr

λp
+ 1

λr
≤‖ ˜M
r‖ 
p,X

2

λr

and the case where p j = ∞ for some (or all) 1 ≤ j ≤ m is similar. Taking the supremum
over 
f ∈ L
r (Rd ; 
X) and all finite collections of cubes D ⊆ D yields the conclusion. ��
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Using this lemma we now come to the main theorem of this section, which establishes
sparse domination of the multisublinear lattice maximal operator. Recall that sparse domina-
tion is equivalent to domination by a multisublinear maximal operator, see Proposition 2.6,
and recall Convention 1.4 for the definition of r and X .

Theorem 3.4 Let 
X be an m-tuple of quasi-Banach function spaces, take 
r ∈ (0,∞)m and
q ∈ [r ,∞). Suppose that 
X ∈ HL
r and that X is an order-continuous q-convex quasi-Banach
function space. Then for any 
f ∈ L
r

loc(R
d ; 
X) and g ∈ Lq

loc(R
d) we have

∥

∥‖ ˜M
r ( 
f )‖X · g∥

∥

Lq (Rd )
� 
X ,
r

∥

∥M(
r ,q)

(‖ 
f ‖ 
X , g
)∥

∥

Lq (Rd )
,

In particular, we have
∥

∥ ˜M
r ( 
f )
∥

∥

Lq (Rd ;X)
� 
X ,
r

∥

∥M
r
(‖ 
f ‖ 
X

)∥

∥

Lq (Rd )
.

Note that X is Theorem 3.4 is automatically r -convex, since X j is r j -convex for 1 ≤
j ≤ m. If X is q-convex for q > r we get a sparse domination result with a smaller sparse
operator, which in turn yields better weighted bounds (see also Corollary 3.6).

Proof We will first show that ˜MD

r is sparsely dominated for any finite collection of dyadic

cubesDwith an estimate independent ofD, fromwhichwewill deduce the claimed estimates
for ˜M
r . Let 
f ∈ L
r

loc(R
d ; 
X), fix a finite collection of dyadic cubes D ⊆ D and set

A0 := sup
D⊆D finite

∥

∥ ˜MD

r

∥

∥

L
r (Rd ; 
X)→Lr,∞(Rd ;X)
,

which is finite by Lemma 3.3. For a cube Q ∈ D, we define its stopping children chD(Q) to
be the collection of maximal cubes Q′ ∈ D such that Q′

� Q and
∥

∥

∥

∥

∥

∥

∥

sup
P∈D

Q′⊆P⊆Q

m
∏

j=1

〈 f j 〉r j ,P

∥

∥

∥

∥

∥

∥

∥

X

> 21/r A0

m
∏

j=1

〈‖ f j‖X j

〉

r j ,Q
. (3.1)

Let S1 be the maximal cubes in D, define recursively Sk+1 := ⋃

Q∈Sk chD(Q) and set

S := ⋃∞
k=1 Sk .

Fix Q ∈ S and let EQ := Q\ ⋃

Q′∈chD(Q) Q
′. Define the set

Q∗ :=
⎧

⎨

⎩

x ∈ Rd : ∥

∥ ˜MD

r ( 
f 1Q)(x)

∥

∥

X > 21/r A0

m
∏

j=1

〈‖ f j‖X j

〉

r j ,Q

⎫

⎬

⎭

.

Then by the definition of A0 we have

|Q∗|1/r ≤ 1

21/r

∏m
j=1‖ f j 1Q‖Lr j (Rd ;X j )
∏m

j=1

〈‖ f j‖X j

〉

r j ,Q

= 1

21/r
|Q|1/r . (3.2)

Moreover, for Q′ ∈ chS(Q) and x ∈ Q′, we have by (3.1)

∥

∥ ˜MD

r ( 
f 1Q)(x)

∥

∥

X ≥

∥

∥

∥

∥

∥

∥

∥

sup
P∈D:

Q′⊆P⊆Q

m
∏

j=1

〈 f j 〉r j ,P

∥

∥

∥

∥

∥

∥

∥

X

> 21/r A0

m
∏

j=1

〈‖ f j‖X j

〉

r j ,Q
,
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so x ∈ Q∗ and thus Q′ ⊆ Q∗. Using the disjointness of the cubes in chD(Q) and (3.2), we
get

∑

Q′∈chS (Q)

|Q′| ≤ |Q∗| ≤ 1

2
|Q|.

So |EQ | ≥ 1
2 |Q|, which means that S is a sparse collection of dyadic cubes.

Next, we check that ˜MD

r ( 
f ) is pointwise dominated by the sparse operator associated to

S. For each P ∈ D we define

πS(P) := {Q ∈ S : Q minimal such that P ⊆ Q},
which allows us to partition D as follows

D =
⋃

Q∈S

{

P ∈ D : πS(P) = Q
}

Fix Q ∈ S, x ∈ Q and let Q′ ∈ D be the minimal cube such that x ∈ Q′ and πS(Q′) = Q.
If Q′

� Q we have by the definition of Q′ that
∥

∥

∥

∥

∥

∥

∥

sup
P∈D:

πS (P)=Q

m
∏

j=1

〈 f j 〉r j ,P 1P (x)

∥

∥

∥

∥

∥

∥

∥

X

=

∥

∥

∥

∥

∥

∥

∥

sup
P∈D:

Q′⊆P⊆Q

m
∏

j=1

〈 f j 〉r j ,P

∥

∥

∥

∥

∥

∥

∥

X

≤ 21/r A0

m
∏

j=1

〈‖ f j‖X j

〉

r j ,Q
1Q(x).

If Q′ = Q the same estimate follows directly from the r j -convexity of X j for 1 ≤ j ≤ m.
Using the fact that ‖·‖�∞ ≤ ‖·‖�q and the q-convexity of X we can conclude for any x ∈ Rd

∥

∥ ˜MD

r ( 
f )(x)

∥

∥

X =

∥

∥

∥

∥

∥

∥

∥

sup
Q∈S

sup
P∈D:

πS (P)=Q

m
∏

j=1

〈 f j 〉r j ,P 1P (x)

∥

∥

∥

∥

∥

∥

∥

X

≤
⎛

⎜

⎝

∑

Q∈S

∥

∥

∥

∥

∥

∥

∥

sup
P∈D:

πS (P)=Q

m
∏

j=1

〈 f j 〉r j ,P 1P (x)

∥

∥

∥

∥

∥

∥

∥

q

X

⎞

⎟

⎠

1/q

≤ 21/r A0

⎛

⎝

∑

Q∈S

m
∏

j=1

〈‖ f j‖X j

〉q
r j ,Q

1Q(x)

⎞

⎠

1/q

.

which is a pointwise sparse domination result for ˜MD

r . Using the Fatou property of X we

know that
∥

∥ ˜MD

r ( 
f )(x)

∥

∥

X ≤ sup
D⊆D :D finite

∥

∥ ˜MD

r ( 
f )(x)

∥

∥

X , x ∈ Rd ,

so our claim for ˜MD

r instead of ˜M
r follows from Proposition 2.6. Our claim for ˜M
r then

follows from the three lattice lemma. The final statement follows by taking g = 1Rd . ��
Remark 3.5 Note that the proof of Theorem3.4 actually proves a pointwise sparse domination
result for ˜MD


r . Indeed, under the assumptions of Theorem 3.4 we have that for any finite
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collection of dyadic cubes D ⊆ D and 
f ∈ L
r
loc(R

d ; 
X) there exists a sparse collection of
cubes S ⊆ D such that

∥

∥ ˜MD

r ( 
f )(x)

∥

∥

X �X ,r

⎛

⎝

∑

Q∈S

m
∏

j=1

〈‖ f j‖X j

〉q
r j ,Q

1Q(x)

⎞

⎠

1/q

x ∈ Rd .

Using Proposition 2.9, Theorem 3.4 and the density of simple functions we can now
directly conclude weighted estimates for ˜M
r . In particular this proves the p-independence
of the 
r -Hardy–Littlewood property.

Corollary 3.6 Let 
X be an m-tuple of quasi-Banach function spaces, take 
r ∈ (0,∞)m and
q ∈ [r ,∞). Suppose 
X ∈ HL
r and assume X is an order-continuous q-convex quasi-Banach
function space. Then for 
p ∈ (0,∞]m with 
r < 
p and p < ∞ and any w ∈ A 
p,(
r ,∞)

∥

∥ ˜M
r
∥

∥

L 
p

w(Rd ; 
X)→L p

w(Rd ;X)
� 
X , 
p,q,
r [ 
w]

max

{

1

r

1

r − 1


p
,
p
q

}


p,(
r ,∞)
.

We point out that the condition p < ∞ here is necessary. Indeed, it is shown in [18, Remark
2.9] that ˜M is not bounded on L∞(R; �2).

Remark 3.7 The arguments presented in this section also go through in a space of homoge-
neous type instead of Rd with the Lebesgue measure, provided one uses the dyadic cubes
from e.g. [22]. Furthermore, for the dyadic counterpart of ˜M
r one can also work on Rd with
any locally finite measure μ, see [19] for details.

4 A limited rangemultilinear UMD property for quasi-Banach function
spaces

A Banach space has the UMD property if the martingale difference sequence of any finite
martingale in L p(�; X) is unconditional for some (equivalently all) p ∈ (1,∞), i.e. if for
( fk)nk=0 any finite martingale in L p(�; X) for some (equivalently all) p ∈ (1,∞) and a
probability space (�, ¶) and all scalars |ε0| = |εn | = 1 we have

∥

∥

∥

∥

∥

n
∑

k=1

εkd fn

∥

∥

∥

∥

∥

L p(�;X)

�
∥

∥

∥

∥

∥

n
∑

k=1

d fn

∥

∥

∥

∥

∥

L p(�;X)

, (4.1)

where (d fk)nk=1 is the difference sequence of ( fk)
n
k=0. The least admissible constant in (4.1) is

denoted byβp,X . The class ofUMDBanach function spaces includes for example all reflexive
Lebesgue, Lorentz and Musielak–Orlicz spaces. As the UMD property implies reflexivity,
L1 and L∞ do not have the UMD property. For an introduction to the UMD property we
refer the reader to [23,43].

As already noted in the previous section, for Banach function spaces the UMD property
is intimately connected to the Hardy–Littlewood property. As shown by Bourgain [6] and
Rubio de Francia [45, Theorem 3], a Banach function space X has the UMD property if and
only if both X and X∗ have the Hardy–Littlewood property. This connection between the
Hardy–Littlewood property and the UMD property is made quantitative in [25], where it is
shown that ‖ ˜M‖p,X � (βp,X )2.

Motivated by this connection between the Hardy–Littlewood property and the UMDprop-
erty and using the extension of the Hardy–Littlewood property to the rescaled, multilinear
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setting from Sect. 3, we will now define a limited range, multilinear version of the UMD
property for m-tuples of quasi-Banach function spaces.

Definition 4.1 Let 
X be an m-tuple of quasi-Banach function spaces, take 
r ∈ (0,∞)m

and s ∈ (r ,∞]. We say that 
X has the (
r , s)-UMD property and write 
X ∈ UMD
r ,s if
X = ∏m

j=1 X j is an order-continuous Banach function space and ( 
X , X∗) ∈ HL(
r ,s′).
Note that while the UMD property is well-defined in terms of martingale difference

sequences for any Banach space, our limited range multilinear version is only given for
quasi-Banach function spaces and has no immediate connection to martingales. It would be
interesting to have an equivalent characterization of either the limited range or the multilinear
generalization (for example in terms of martingale difference sequences) that does not use
the lattice structure of 
X .
Remark 4.2 In the linear case the class UMD2,∞ has already been implicitly used in [44] in
connection to the so-called Littlewood–Paley–Rubio de Francia property for Banach function
spaces. Indeed, although [44, Theorem 3.1] assumes X2 to have the UMD property, the proof
only uses X2, X∗ ∈ HL, which by Proposition 4.3 is equivalent to X ∈ UMD2,∞.

As a first result on the limited range multilinear UMD property we will show that our
nomenclature makes sense, i.e. that the UMD
r ,s property is actually related to the UMD
property for Banach function spaces. If X is a Banach function space, then X has the UMD
property if and only if X ∈ UMD1,∞. This follows directly from the result of Bourgain and
Rubio de Francia and the case m = r = s′ = 1, of the following proposition.

Proposition 4.3 Let 
X be an m-tuple of quasi-Banach function spaces and let 
r ∈ [1,∞)m

and s ∈ (1,∞]. The following are equivalent:

(i) 
X ∈ UMD
r ,s ;
(ii) 
X ∈ HL
r and (X1, . . . , X j−1, X j+1, . . . , Xm, X∗) ∈ HL(r1,...,r j−1,r j+1,...rm ,s′) for all

j ∈ {1, . . . ,m}.
Proof For (i)⇒(ii) we only prove 
X ∈ HL
r . The other results with j ∈ {1, . . . ,m} follow
from an analogous argument by interchanging the roles of X∗ and X j and the roles of s′ and
r j .

Let (�,μ) denote the underlying measure space over which the 
X are defined and fix

p ∈ (0,∞]m with 
r < 
p, 1 ≤ p < s and a finite collection of cubes D. By the pointwise
sparse domination result for MD


r , it follows from Proposition 2.6 that

‖MD

r ( 
f )g‖L1(Rd ) �
r ‖MD

(
r ,1)( 
f , g)‖L1(Rd )

for 
f ∈ L
r
loc(R

d), g ∈ L1
loc(R

d). Since ˜MD

r ( 
f )(x, ω) = MD


r ( 
f (·, ω))(x), combining this

with Fubini’s theorem we obtain for 
f ∈ L 
p
c (Rd ; 
X) and g ∈ L p′

(Rd ; X∗)
∣

∣

∣

∣

∫

Rd

∫

�

˜MD

r ( 
f )g dμ dx

∣

∣

∣

∣

≤
∫

�

‖MD

r ( 
f (·, ω))g(·, ω)‖L1(Rd ) dμ(ω)

�
r
∫

�

∥

∥MD
(
r ,1)( 
f (·, ω), g(·, ω))

∥

∥

L1(Rd )
dμ(ω)

= ∥

∥ ˜MD
(
r ,1)( 
f , g)

∥

∥

L1(Rd ;L1(�))
≤ ∥

∥ ˜MD
(
r ,s′)( 
f , g)

∥

∥

L1(Rd ;L1(�))

≤ ∥

∥ ˜M(
r ,s′)
∥

∥

( 
p,p′),( 
X ,X∗)

⎛

⎝

m
∏

j=1

‖ f j‖L p j (Rd ;X j )

⎞

⎠ ‖g‖L p′ (Rd ;X∗),
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where in the second to last step we used Hölder’s inequality with s′ ≥ 1 and (i) and Corol-
lary 3.6 in the last. Taking a supremum over all g ∈ L p′

(Rd ; X∗) with ‖g‖L p′ (Rd ;X∗) = 1

proves that 
X ∈ HL
r , as asserted.
The proof of (ii)⇒(i) relies on some combinatorics. To facilitate this, we set rm+1 := s′

and Xm+1 := X∗. Fix 
p ∈ (0,∞]m+1 with min 
p > max 
r , 
f ∈ L 
p(Rd ; 
X), and a finite
collection of cubes D. Note that

m+1
∏

j=1

〈 f j 〉r j ,Q 1Q =
m+1
∏

j=1

⎛

⎜

⎜

⎝

m+1
∏

k=1
k �= j

〈 fk〉rk ,Q 1Q

⎞

⎟

⎟

⎠

1
m

for all Q ∈ D so that

˜MD

r ( 
f ) ≤

m+1
∏

j=1

˜MD

q (
g )

1
m

with


q = (r1, . . . , r j−1, r j+1, . . . rm+1)


g = ( f1, . . . , f j−1, f j+1, . . . , fm+1)

Furthermore setting 
Y j = (X1, · · · , X j−1, X j+1, · · · , Xm+1), we have

m+1
∏

j=1

Y
1
m
j =

m+1
∏

j=1

m+1
∏

k=1
k �= j

X
1
m
k =

m+1
∏

j=1

X j = L1(�).

Thus setting A j := ‖ ˜M
q‖(p j ,...,p j ), 
Y j
, which is finite by Corollary 3.6, we have

∥

∥MD

r ( 
f )

∥

∥

L p(Rd ;L1(�))
≤

m+1
∏

j=1

∥

∥ ˜MD

q (
g) 1

m
∥

∥

L p j (Rd ;Y
1
m
j )

=
m+1
∏

j=1

∥

∥ ˜MD

q (
g)∥∥

1
m

L
p j
m (Rd ;Y j )

≤
m+1
∏

j=1

A
1
m
j

m+1
∏

k=1
k �= j

‖ fk‖
1
m

L p j (Rd ;Xk )
=

m+1
∏

j=1

A
1
m
j ‖ fk‖L p j (Rd ;Xk )

,

proving (i). The assertion follows. ��
Example 4.4 Let (�,μ) be a σ -finite measure space. In the case m = 1, it follows from
Proposition 4.3 that X ∈ UMDr ,s for 1 ≤ r < s ≤ ∞ if and only if Xr ∈ HL and
(X∗)s′ ∈ HL. This implies the following:

(i) If X = L p(�) with p ∈ (r , s), then X ∈ UMDr ,s .
(ii) If X = L p,q(�) with p, q ∈ (r , s), then X ∈ UMDr ,s .

(iii) If X = L	(�) is a Musielak-Orlicz space such that (ω, t) �→ 	(ω, t
1
r ) and (ω, t) �→

	∗(ω, t
1
s′ ) are Young functions satisfying the �2 condition, then X ∈ UMDr ,s . See

[17,33] for the UMD (and thus the HL) property of these spaces.

In [36] vector-valued extensions of multilinear operators in quasi-Banach function spaces
were constructed throughweighted techniques. In that work the condition that ((X

r j
j )∗)(s j /r j )′
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has the UMD property for 1 ≤ j ≤ m was imposed. In the next proposition we wish to
compare this assumption to our limited range multilinear UMD property.

Proposition 4.5 Let 
X be an m-tuple of quasi-Banach function spaces, let 
r ∈ (0,∞)m and

take 
r < 
s ≤ ∞. Suppose that X j is r j -convex, s j -concave and
(

(X
r j
j )∗

)(s j /r j )′ has theUMD

property for 1 ≤ j ≤ m. Then for all q ∈ (0, r ] we have 
Xq ∈ UMD 
r
q , sq

. In particular,


X ∈ UMD
r ,s if r ≥ 1.

Proof Note that 
Xq ∈ UMD 
r
q , sq

per definition means that

(Xq
1 , . . . , Xq

m, (Xq)∗) ∈ HL( 
r
q ,

(

s
q

)′) .

So by Proposition 3.2 it suffices to show (Xq
j )

r j
q = X

r j
j ∈ HL for j = 1, · · · ,m and

((Xq)∗)(s/q)′ ∈ HL. Since (s j/r j )′ ≥ 1, we know that (X
r j
j )∗ has the UMD property (see

[45, Theorem III.4]) and thus X
r j
j ∈ HL for j = 1, · · · ,m. To show ((Xq)∗)(s/q)′ ∈ HL we

note that by [36, Proposition 3.4] we have ((Xr )∗)(s/r)′ ∈ UMD. Then, by [36, Proposition
3.3(iii)] this implies that also ((Xq)∗)(s/q)′ ∈ UMD for all q ∈ (0, r ]. In particular, we have
((Xq)∗)(s/q)′ ∈ HL, as desired. The assertion follows. ��

the UMD
r ,s class is stable under iteration. Recall that for quasi-Banach function spaces X
and Y respectively over measure spaces (�1, μ1) and (�2, μ2) the mixed-norm space X(Y )

is given by all measurable functions f : �1 × �2 → C such that
∥

∥ω1 �→ ‖ f (ω1, ·)‖Y
∥

∥

X < ∞.

Proposition 4.6 Let 
r ∈ (0,∞)m and s ∈ (1,∞] and let 
X and 
Y be m-tuples of quasi-
Banach function spaces. If 
X , 
Y ∈ UMD
r ,s , then 
X( 
Y ) ∈ UMD
r ,s .

Proof Denote by (�1, μ1), (�2, μ2) the σ -finite measure spaces that 
X , 
Y are respectively
defined over and write

A1 := sup
D⊆D finite

∥

∥ ˜MD

r

∥

∥

L
r (Rd ; 
X)→Lr,∞(Rd ;X)
, A2 := sup

D⊆D finite

∥

∥ ˜MD

r

∥

∥

L
r (Rd ; 
Y )→Lr,∞(Rd ;Y )
.

Let D denote a finite collection of cubes and let 
f ∈ L∞
c (Rd ; 
X( 
Y )). By Fubini’s Theorem

and by applying Theorem 3.4 twice we obtain
∥

∥ ˜MD

r ,s ( 
f , g)∥∥L1(Rd ;L1(�1×�2))

=
∫

�1

∥

∥ ˜MD

r ,s ( 
f (·, ω1, ·), g(·, ω1, ·))

∥

∥

L1(Rd ;L1(�1))
dμ1(ω1)

� A2

∫

�1

∥

∥ ˜MD

r ,s (‖ 
f (·, ω1, ·)‖ 
Y , ‖g(·, ω1, ·)‖Y ∗ )

∥

∥

L1(Rd )
dμ1(ω1)

= A1
∥

∥ ˜MD

r ,s (‖ 
f ‖ 
Y , ‖g‖Y ∗ )

∥

∥

L1(Rd ;L1(�1))

� A1A2
∥

∥MD

r ,s (‖ 
f ‖ 
X( 
Y )

, ‖g‖X∗(Y ∗))
∥

∥

L1(Rd )
.

Thus, by Proposition 2.4 and a density argument we conclude that 
X( 
Y ) ∈ UMD
r ,s , as
desired. ��

Next we show that we can add L∞ spaces to existing UMD tuples to create new ones.
Note in particular that in the casem = 2, this following result implies that if X has the UMD
property, then (X , L∞(�)) ∈ UMD(1,1),∞.
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Proposition 4.7 Let 
r ∈ (0,∞)m and s ∈ (1,∞]. Let 
X be an m − 1-tuple of quasi-Banach
function spaces over a measure space �. If 
X ∈ UMD(r1,...,rm−1),s , then

(X1, . . . , Xm−1, L
∞(�)) ∈ UMD
r ,s .

Proof We first note that by Proposition 2.1(i) we have
( ∏m−1

j=1 X j
) · L∞(�) = X · L∞(�) =

X . Next, let D denote a finite collection of cubes and fix 
p ∈ (1,∞]m with pm = ∞ and

p > 
r , p < s. For 
f ∈ L 
p(Rd ; 
X), g ∈ L p′

(Rd ; X∗) we have

˜MD
(
r ,s′)( 
f , g) ≤ ˜MD

(r1,...,rm−1,s′)( f1, . . . , fm−1, g) ˜MD
rm ( fm).

Hence,

‖ ˜MD
(
r ,s′)( 
f , g)‖L1(Rd ;L1(�))

≤ ‖ ˜MD
(r1,...,rm−1,s′)( f1, . . . , fm−1, g)‖L1(Rd ;L1(�))‖ ˜MD

rm ( fm )‖L∞(Rd ;L∞(�))

≤ ‖ ˜M(r1,...,rm−1,s′)‖(p1,...,pm−1,p′), 
X

⎛

⎝

m−1
∏

j=1

‖ f j‖L p j (Rd ;X j )

⎞

⎠ ‖ fm‖L∞(Rd ;L∞(�))
‖g‖

L p′ (Rd ;X∗)
,

proving that (X1, . . . , Xm−1, L∞(�)) ∈ UMD
r ,s . The assertion follows. ��
To end this section we will give a family of examples in the form of iterated L p-spaces

that belong to the UMD
r ,s-class.

Proposition 4.8 Let 
r ∈ (0,∞)m and s ∈ (1,∞]. Let K ∈ N and let 
t 1, . . . , 
t K ∈ (0,∞]m
with 
t k > 
r and 1 ≤ tk < s for all k ∈ {1, · · · , K }. Let (�k, μk) for k ∈ {1, · · · , K } be
σ -finite measure spaces and for j ∈ {1, · · · ,m} we set

X j := Lt1j (�1; · · · ; LtKj (�K )).

Then 
X ∈ UMD
r ,s .

Proof By Proposition 4.6 it suffices to consider the case K = 1 and write 
t1 = 
t and

r1 = 
r . Write X j = Lt j (�) so that X = ∏m

j=1 X j = Lt (�) by Proposition 2.1(ii). Note

that since t1
r1

, . . . , tm
rm

, t ′
s′ ∈ (1,∞], we have X

r j
j = L

t j
r j (�) ∈ HL for all j ∈ {1, . . . ,m}

and (X∗)s′ = L
t ′
s′ (�) ∈ HL. Thus, it follows from Proposition 3.2 that 
X ∈ UMD
r ,s . The

assertion follows. ��
Themain interest in the above result is thatwe can go beyond assuming that each individual

X j has the UMD property. We can even consider examples such as �∞(�2), which by [39,
Proposition 8.l] does not even satisfy the Hardy-Littlewood property.

Remark 4.9 By mimicking the proof of Proposition 4.8 we can also obtain a version of
Proposition 4.8 for Lorentz and Orlicz spaces. We point out however that it is not clear if
we can consider the appropriate endpoint cases outside of the range of UMD spaces. More
precisely, in the case of Lorentz spaces it is unknown whether L p,∞(�) for p ∈ (1,∞)

satisfies the Hardy-Littlewood property. Similarly it is unknown whether there are Orlicz
spaces that are not UMD, but satisfy the Hardy-Littlewood property. If there are such spaces,
we obtain more examples beyond the setting of individual UMD conditions that fall within
our range.
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5 Main results

In this section we state and prove our main results. We will first show that scalar-valued
sparse domination implies vector-valued sparse domination. In view of Proposition 2.5,
Theorem 1.2 is a consequence of the following result. Note that we introduce the parameter
q into the theorem here, which is essential in obtaining the full range of vector-valued
bounds, including the quasi-Banach range. We elaborate further on this in Sect. 6. Recall
Convention 1.4 for the definition of p, r and X .

Theorem 5.1 Let 
r ∈ (0,∞)m, q ∈ (0,∞), s ∈ (q,∞] and let T be an operator defined on
m-tuples of functions such that for any 
f , g ∈ L∞

c (Rd)
∥

∥T ( 
f ) · g∥

∥

Lq (Rd )
≤ CT

∥

∥M(


r , 1
1
q − 1

s

)( 
f , g)∥∥Lq (Rd )
. (5.1)

Let 
X be and m-tuple of quasi-Banach function spaces over a measure space (�,μ) such
that 
Xq ∈ UMD 
r

q , sq
. Furthermore suppose that for all simple functions 
f ∈ L∞

c (Rd ; 
X) the

function ˜T ( 
f ) : Rd → X given by

˜T ( 
f )(x, ω) := T ( 
f (·, ω))(x), (x, ω) ∈ Rd × �

is well-defined and strongly measurable. Then for all simple functions 
f ∈ L∞
c (Rd ; 
X) and

g ∈ L∞
c (Rd)

∥

∥‖˜T ( 
f )‖X · g∥

∥

Lq (Rd )
� 
X ,q,
r,s CT

∥

∥M(


r , 1
1
q − 1

s

)(‖ 
f ‖ 
X , g)
∥

∥

Lq (Rd )
. (5.2)

Note that if T is m-linear, then ˜T ( 
f ) is always well-defined and strongly measurable for
simple functions 
f ∈ L∞

c (Rd ; 
X) through the tensor extension.

Proof The proof essentially consists of applying Fubini’s Theorem twice and then using
the vector-valued sparse domination result for the multisublinear maximal operator. Let

f ∈ L∞

c (Rd ; 
X) and g ∈ L∞
c (Rd ; ((Xq)∗)

1
q ) be simple. Then for a.e. ω ∈ � we have

f j (·, ω), g(·, ω) ∈ L∞
c (Rd). Thus, using Fubini’s Theorem and (5.1), we have

∥

∥˜T ( 
f ) · g∥

∥

Lq (Rd ;Lq (�))
= ∥

∥ω �→ ‖T ( 
f (·, ω), g(·, ω)‖Lq (Rd )

∥

∥

Lq (�)

≤ CT
∥

∥ω �→ ‖M(


r , 1
1
q − 1

s

)( 
f (·, ω), g(·, ω))‖Lq (Rd )

∥

∥

Lq (�)

= CT
∥

∥ ˜M(


r , 1
1
q − 1

s

)( 
f , g)∥∥Lq (Rd ;Lq (�))
.

(5.3)

We set Xm+1 := ((Xq)∗)
1
q so that

m+1
∏

j=1

X j = (Xq · (Xq)∗)
1
q = L1(�)

1
q = Lq(�),

which is an order-continuous q-convex quasi-Banach function space. Then it follows from
the sparse domination result in Theorem 3.4 that

∥

∥ ˜M(


r , 1
1
q − 1

s

)( 
f , g)∥∥Lq (Rd ;Lq (�))
� 
X ,q,
r,s

∥

∥M(


r , 1
1
q − 1

s

)

(‖ 
f ‖ 
X , ‖g‖
((Xq )∗)

1
q

)∥

∥

Lq (Rd )
.
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By combining this with (5.3) and Proposition 2.7, the assertion follows. ��
We will now use Theorem 5.1 to deduce weighted boundedness for the vector-valued

extension of an operator T from a scalar-valued sparse domination result for T , which is new
even in the unweighted setting. In view of Proposition 2.5, Corollary 1.3 is a consequence of
the following result with q = 1.

Theorem 5.2 Let 
r ∈ (0,∞)m, q ∈ (0,∞), s ∈ (q,∞] and let T an m-linear or positive-
valuedm-sublinear operator satisfying (5.1) and let 
X satisfy the assumptions in Theorem5.1.
Then for all p ∈ (0,∞]m with 
p > 
r and p < s, and all 
w ∈ A 
p,(
r ,s) we have

∥

∥˜T ( 
f )
∥

∥

L p
w(Rd ;X)

� 
X , 
p,q,
r,s CT [ 
w]
max

{

1

r

1

r − 1


p
,
1
q − 1

s
1
p − 1

s

}


p,(
r ,s)
m

∏

j=1

‖ f j‖L p j
w j (R

d ;X j )

for all 
f ∈ L 
p

w(Rd ; 
X).

Proof This follows from combining Theorem 5.1 with Proposition 2.9. ��

Remark 5.3 As a consequence of the fact that the sparse domination of the lattice multisub-
linear maximal operator also holds in spaces of homogeneous type (see Remark 3.7), the
results in this section also hold in spaces of homogeneous type.

6 Applications

In this sectionweprovide a discussion regardingobtainingvector-valued estimates beyond the
Banach range. Furthermore, we provide applications of our result specifically to multilinear
Calderón-Zygmund operator and the bilinear Hilbert transform. We point out that our results
are applicable far beyond these examples as they include all operators satisfying sparse
domination, but we restrict ourselves to these examples as they highlight the utility of our
techniques in various settings.

6.1 Vector-valued estimates in the quasi-Banach range

In the multilinear setting it is a natural occurrence that an operator maps into a Lebesgue
space with exponents smaller than 1 and hence, no longer in the Banach range. For this
reason one also expects the vector-valued extensions of the operator to map into spaces in
the quasi-Banach range. However, in our multilinear UMD condition we assume that the
product of the spaces in a tuple is a Banach space. This is partly because we are obtaining our
estimates after a dualization argument which is usually possible in the quasi-Banach setting.
Thanks to the quantitative extrapolation result [40] this does not hinder us in obtaining sharp
bounds in the full range of exponents, but we are still hindered in how much convexity we
are allowed to assume on our spaces.

In this subsection we explain how the parameter q in our main theorems can be used to
recover the expected results in the quasi-Banach range, at the cost of a worse exponent in the
weighted estimate. We illustrate this in the following proposition:
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Proposition 6.1 Let 
r ∈ (0,∞)m, q0 ∈ (0,∞), and let T be an m-linear operator. Suppose
that for any f1, . . . , fm ∈ L∞

c (Rd) there exists a sparse collection S such that

|T ( 
f )| ≤ CT

⎛

⎝

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉q0r j ,Q

⎞

⎠ 1Q

⎞

⎠

1/q0

. (6.1)

Then for all 
p ∈ (0,∞]m, 
t ∈ (0,∞]m with 
r < 
p, 
t and p, t < ∞ and all 
w ∈ A 
p,(
r ,∞)

the tensor extension ˜T of T satisfies
∥

∥˜T
∥

∥

L
p1
w1 (Rd ;�t1 )×···×L pm

wm (Rd ;�tm )→L p
w(Rd ;�t ) � 
p,q0,
r ,
t CT [ 
w]γ
p,(
r ,∞)

, (6.2)

with

γ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max

{

1

r

1

r − 1


p
,

1
q0
1
p

}

if t ∈ [q0,∞);

max

{

1

r

1

r − 1


p
,

1
t
1
p

}

if t ∈ (r , q0].
The above result also holds for m-sublinear T as in Theorem 5.1. Of course, our methods go
much beyond the setting of �t -spaces, but we restrict our attention to this particular case for
now for the sake of clarity and for the sake of comparing our result to previous results in the
literature.

Proof Write 
X = (�t1 , . . . , �tm ). We consider the two cases separately.

For the case t ∈ [q0,∞), we note that 
Xq0 = (�
t1
q0 , . . . , �

tm
q0 ) ∈ UMD 
r

q0
,∞ by Propo-

sition 4.8. Thus, the result follows from an application of Proposition 2.6 and Theorem 5.2
with q = q0 and s = ∞.

In the other case t ∈ (r , q0]we have 
Xt = (�
t1
t , . . . , �

tm
t ) ∈ UMD 
r

t ,∞ by Proposition 4.8.

Note that the inequality ‖·‖�q0 ≤ ‖·‖�t implies that (6.1) holds with q0 replaced by t . Hence,
an application of Proposition 2.6 and Theorem 5.2 with q = t and s = ∞ proves the result.

��
Note that in case t ∈ [q0,∞) we did not need to assume the pointwise sparse domination

(6.1) in our proof, but it would have sufficed to assume domination in form. For example, if
we instead assumed that for an s ∈ (q0,∞] and any 
f , g ∈ L∞

c (Rd) there exists a sparse
collection S such that

∥

∥T ( 
f ) · g∥

∥

Lq0 (Rd )
≤ CT

⎛

⎝

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉r j ,Q
⎞

⎠

q0

〈g〉q0 1
1
q0

− 1
s

,Q
|Q|

⎞

⎠

1
q0

, (6.3)

then exactly as in the proof we obtain (6.2) for t ∈ [q0,∞) with

γ = max

{

1

r

1

r − 1


p
,

1
q0

− 1
s

1
p − 1

s

}

. (6.4)

However, at this point it is not clear how to deal with the cases t ∈ (r , q0]. In the case of
(6.1) we can simply apply the estimate ‖ · ‖�q0 ≤ ‖ · ‖�t to obtain the domination required to
complete the argument. However, if we only assume the sparse domination in form (6.3), it
is unknown whether we automatically also have (6.3) with q0 replaced by a smaller exponent
0 < q ≤ q0, meaning that it is not clear whether we have the flexibility to cover the cases
t ∈ (r , q0] or not without assuming that (6.3) also holds with q0 replaced by t .
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We point out that replacing q0 by 0 < q ≤ q0 qualitatively yields the same weighted
bounds, but the result is quantitatively worse in that it yields a worse exponent γ in the
bound. Thus, on all accounts it seems that the following conjecture should hold:

Conjecture 6.2 (Sparse form domination implies worse sparse form domination) Let 
r ∈
(0,∞)m, q0 ∈ (0,∞), and s ∈ (q0,∞]. Let T be an operator defined on m-tuples of
functions and suppose that for any f1, · · · , fm ∈ L∞

c (Rd) there exists a sparse collection S
such that

‖T ( 
f ) · g‖Lq0 (Rd ) �

⎛

⎝

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉r j ,Q
⎞

⎠

q0

〈g〉q0 1
1
q0

− 1
s

,Q
|Q|

⎞

⎠

1
q0

.

Then the same estimate also holds when we replace q0 by any q ∈ (0, q0].
We point out that even the simplest case m = 1, r = 1, q0 = 1, s = ∞ is unknown. For
specific cases of T one can usually verify the conjecture by going back to the proof of (6.3)
and insert the estimate ‖·‖�q ≤ ‖·‖�q0 at the right place in the proof. Examples where this is
the case include:

• In [35, Theorem 3.5] a general theorem to obtain sparse domination for an operator T
is shown. In this theorem a localized �r -estimate is imposed on T to deduce (6.3) with
q0 = r . The localized �r -estimate for T becomes weaker for smaller r , so [35, Theorem
3.5] also yields the result of Conjecture 6.2.

• One of the main results in [10] is (6.3) with q0 = 1 for rough homogeneous singular
operators T�, see also [27] for an alternative proof. Adapting the technique in [27], Con-
jecture 6.2 was verified for these operators in [9, Theorem 5.1], which has implications
for weighted norm inequalities for T� with so-called Cp-weights.

To conclude this subsection, we wish to compare our result with the result [40, Corollary
4.6]. Let 
r ∈ (0,∞)m , s ∈ (1,∞], and let T be an operator defined on m-tuples of functions
such that for any 
f ∈ L∞

c (Rd) there exists a sparse collection S such that

‖T ( 
f ) · g‖L1(Rd ) �

⎛

⎝

∑

Q∈S

⎛

⎝

m
∏

j=1

〈 f j 〉r j ,Q
⎞

⎠ 〈g〉s′ , Q
⎞

⎠ |Q|.

Then, by [40, Corollary 4.6], we find that for all exponents 
p ∈ (0,∞]m , 
t ∈ (0,∞]m with

r < 
p, 
t and p, t < s and all 
w ∈ A 
p,(
r ,s) we have

‖˜T ‖L p1
w1 (�t1 )×···×L pm

wm (�tm )→L p
w(�t )

� [ 
w]
max

{

1

r

1

r − 1


t
,
1− 1

s
1
t − 1

s

}

·max

{

1

r − 1


t
1

r − 1


p
,
1
t − 1

s
1
p − 1

s

}


p,(
r ,s) .

Since

max

{

1

r

1

r − 1


p
,
1 − 1

s
1
p − 1

s

}

≤ max

{

1

r

1

r − 1


t
,
1 − 1

s
1
t − 1

s

}

· max

{

1

r − 1


t
1

r − 1


p
,

1
t − 1

s
1
p − 1

s

}

,

the exponent (6.4) we obtain from our method improves this result in the Banach range
t ∈ [1,∞). We point out that our method of improving this bound is exactly as was discussed
in [40, Remark 4.7].
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6.2 Multilinear Calderón–Zygmund operators

AmultilinearCalderón–Zygmund operators (see [11,28] for the definition) satisfies the sparse
domination (5.1) for q = 1 and r1 = · · · = rm = 1, s = ∞, see [11,14,28]. Moreover, it
is known that these operators have vector-valued extensions with respect to tuples 
X =
(�t1 , . . . , �tm ) where 
t ∈ (1,∞]m with t ∈ ( 1

m ,∞), see [30,40]. More precisely, multilinear
Calderón-Zygmund operators T satisfy an a.e. pointwise sparse domination result

|T ( 
f )| ≤ CT

∑

Q∈S

m
∏

j=1

〈 f j 〉r j ,Q 1Q .

Hence, by applying Proposition 6.1with q0 = 1wefind that for all 
p ∈ (0,∞]m , 
t ∈ (1,∞]m
with p, t < ∞ and all 
w ∈ A 
p,(
1,∞) we have

∥

∥˜T
∥

∥

L
p1
w1 (Rd ;�t1 )×···×L pm

wm (Rd ;�tm )→L p
w(Rd ;�t ) � 
p,q0,
r ,
t CT [ 
w]γ
p,(
1,∞)

with

γ =
{

max
{

p′
1, . . . , p

′
m, p

}

if t ∈ [1,∞);
max

{

p′
1, . . . , p

′
m,

p
t

}

if t ∈ ( 1
m , 1

]

.

As discussed in the previous subsection, in the case t ∈ [1,∞) our quantitative bound
improves the previously known ones. As a matter of fact, it is sharp, since the bound is the
same as the one in the scalar case.

By applying Propositions 2.5, 2.6, Theorems 5.1, and 5.2, the full result for the tensor
extension ˜T of an m-linear Calderón-Zygmund operator T we obtain is as follows:

Proposition 6.3 Let T be an m-linear Calderón–Zygmund operator. Let 
X be an m-tuple of
quasi-Banach function spaces over � such that 
Xq ∈ UMD 
1

q ,∞ for some q ∈ (0, 1]. Then
for all simple functions 
f ∈ L∞

c (Rd ; 
X) and g ∈ L∞
c (Rd), there exists a sparse collection

of cubes S such that

∥

∥‖˜T ( 
f )‖X · g∥

∥

Lq (Rd )
� 
X ,q CT

⎛

⎝

∑

Q∈S

⎛

⎝

m
∏

j=1

〈‖ f j‖X j 〉1,Q
⎞

⎠

q

〈‖|g|q‖(Xq )∗ 〉1,Q |Q|
⎞

⎠

1
q

.

Moreover, we have

‖˜T ( 
f )‖L p
w(Rd ;X) � 
X , 
p,q CT [ 
w]max

{

p′
1,...,p

′
m ,

p
q

}


p,(
1,∞)

m
∏

j=1

‖ f j‖L p j
w j (R

d ;X j )

for all 
p ∈ (1,∞]m with p < ∞, all 
w ∈ A 
p,(
1,∞), and all 
f ∈ L 
p

w(Rd ; 
X).

To optimize the weighted bound, for each tuple of spaces 
X one should determine the largest
q ∈ (0, 1] such that 
Xq ∈ UMD 
1

q ,∞. For q = 1 our bound coincides with the known sharp

bound in the scalar case, so in this case our bound is optimal.
Finally, we point out that by Proposition 4.5 we recover the results obtained in [36,

Theorem 5.2] where each X j was assumed to be a UMD space. In fact, we improve upon
these results both in that our new bounds are quantitative as well as that we are able to
handle more m-tuples of spaces. In conclusion, our result recovers the full known range of
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vector-valued extensions of multilinear Calderón-Zygmund operators as well as prove new
ones with new sharp weighted bounds.

Remark 6.4 In the linear case m = 1, the sharpness of the T (b) theorem in [38] enabled
Hytönen in [21, Theorem 3] to prove boundedness of the tensor extension of a Calderón–
Zygmund operator T on L p(Rd ; X) for general UMD Banach spaces X from scalar-valued
boundedness of T . It would be of great interest to develop techniques to extend more general
multilinear operators beyond the function space setting.

6.3 The bilinear Hilbert transform

The bilinear Hilbert transform is defined as

BHT( f1, f2)(x) := p. v.
∫

R
f1(x − y) f2(x + y)

dy

y
, x ∈ R.

As shown in [12], if r1, r2, s ∈ (1,∞) satisfy the property that there exist θ1, θ2, θ3 ∈ [0, 1)
with θ1 + θ2 + θ3 = 1 such that

1

r1
<

1 + θ1

2
,

1

r2
<

1 + θ2

2
,

1

s
>

1 − θ3

2
(6.5)

or equivalently

max

{

1

r1
,
1

2

}

+ max

{

1

r2
,
1

2

}

+ max

{

1

s′ ,
1

2

}

< 2,

then for all f1, f2, g ∈ L∞
c (R) there is a sparse collection S such that

‖BHT( f1, f2) · g‖L1(R) �
∑

Q∈S
〈 f1〉r1,Q〈 f2〉r2,Q〈g〉s′,Q |Q|.

It was later shown in [3] that for r1, r2, s ∈ (1,∞) satisfying (6.5) we also have the �q -type
sparse domination

‖BHT( f1, f2) · g‖Lq (R) �

⎛

⎝

∑

Q∈S
〈 f1〉qr1,Q〈 f2〉qr2,Q〈g〉q 1

1
q − 1

s
,Q

|Q|
⎞

⎠

1
q

(6.6)

for all q ∈ (0, s), verifying Conjecture 6.2 for this operator. Hence, by Proposition 2.5,
Theorem 5.1, and Theorem 5.2, we obtain the following result for the tensor extension B̃HT:

Proposition 6.5 Let r1, r2, s ∈ (1,∞) satisfy (6.5) and let (X1, X2) be a pair of quasi-
Banach function spaces � such that 
Xq ∈ UMD 
r

q , sq
for some q ∈ (0, 1]. Then for all simple

functions 
f ∈ L∞
c (R; 
X) and g ∈ L∞

c (R) there exists a sparse collection of cubes S such
that

∥

∥‖B̃HT( f1, f2)‖X · g∥

∥

Lq (R)
� 
X ,
r ,s

⎛

⎝

∑

Q∈S
〈‖ f1‖X1〉qr1,Q〈‖ f2‖qX2

〉r2,Q〈g〉q 1
1
q − 1

s
,Q

|Q|
⎞

⎠

1
q

.

(6.7)
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Moreover, we have

‖B̃HT( f1, f2)‖L p
w(R;X) � 
X , 
p,
r ,s [ 
w]

max

{

1
r1

1
r1

− 1
p1

,

1
r2

1
r2

− 1
p2

,
1
q − 1

s
1
p − 1

s

}


p,(
r ,s) ‖ f1‖L p1
w1 (R;X1)

‖ f2‖L p2
w2 (R;X2)

for all 
p ∈ (0,∞]2 with 
r < 
p and p < s, all 
w ∈ A 
p,(
r ,s), and all 
f ∈ L 
p

w(Rd ; 
X).

Note that in particular we find that for all r1, r2, s ∈ (1,∞) satisfying (6.5) and all 
X ∈
UMD
r ,s we have

‖B̃HT( f1, f2)‖L p(R;X) � 
X , 
p,
r ,s ‖ f1‖L p1 (R;X1)‖ f2‖L p2 (R;X2)

for all f j ∈ S (R; X j ).
We point out here that [3] actually proved the vector-valued sparse domination (6.7) in the

cases where the X j are iterated Lebesgue spaces with the same range of exponents we obtain
(see Proposition 4.8), through the helicoidal method. It is worth to note that Proposition 6.5
extends themain result of [3] to ourmore general vector spaces by only using the scalar-valued
sparse domination (6.6) as an input.

We wish to compare Proposition 6.5 with [36, Theorem 5.1]. First of all, in terms of
weights, Proposition 6.5 improves [36, Theorem 5.1] by considering more general bilinear
weight classes.As for the spaces, in [36,Theorem5.1], combinedwith [36, Proposition3.3(iii)
and Theorem 3.6], bounds in terms of pairs of quasi-Banach function spaces (X1, X2) are
obtained where there exist θ1, θ2 ∈ [0, 1) with θ1 + θ2 ∈ (0, 1] such that

1

r1
<

1 + θ1

2
,

1

r2
<

1 + θ2

2
,

1

s1
>

θ1

2
,
1

s2
>

θ2

2

and ((Xr1
1 )∗)(s1/r1)′ , ((Xr2

2 )∗)(s2/r2)′ ∈ UMD. To compare this to our spaces, we set θ3 :=
1 − θ1 − θ2 ∈ [0, 1) and note that

1

s
= 1

s1
+ 1

s2
>

θ1 + θ2

2
= 1 − θ3

2

so that (r1, r2, s) ∈ (1,∞) satisfies (6.5). Moreover, by Proposition 4.5 we find that for all
q ∈ (0, r ] we have 
Xq ∈ UMD 
r

q , sq
. Thus, Proposition 6.5 recovers the bounds from [36,

Theorem 5.1].
We point out that Proposition 6.5 implies bounds for many spaces that were not attainable

in [36], since we are no longer restricted to requiring a UMD property on each individual
space. In particular, we recover the bounds with respect to the spaces 
X = (�t1 , �t2) from
[40, Corollary 4.9] for t1, t2 ∈ (0,∞] with 
t > 
r , t < s.

To end this section, we compare our results to the results obtained by Amenta and Uraltsev
[2] and Di Plinio, Li, Martikainen, and Vuorinen [16]. In their work they prove vector-valued
bounds for BHT for triples of complex Banach spaces (X1, X2, X3) that are not necessarily
Banach function spaces, but that are compatible in the sense that there is a bounded trilinear
form� : X1× X2× X3 → C. Then the trilinear form BHF( f1, f2, f3) := 〈BHT( f1, f2) f3〉
has the vector-valued analogue

BHF�( f1, f2, f3) :=
∫

R
p. v.

∫

R
�( f1(x − y), f2(x + y), f3(x))

dy

y
dx,

whose boundedness properties can then be studied. We point out that the main result in [16]
considers estimates for the same tuples of spaces as in [2], but for a larger range of exponents.
Since ourmain interest is in the spaces, for simplicity we compare our result to themain result
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of [2]. To state the result we need to introduce the notion of intermediate UMD spaces. We
say that a Banach space X is a u-intermediate UMD space for u ∈ [2,∞] if it is isomorphic
to the complex interpolation space [E, H ] 2

u
, where E is a UMD space and H is a Hilbert

space and the couple (E, H) is compatible. For 
u ∈ [2,∞]m We say that a tuple of Banach
spaces 
X is 
u-intermediate UMD if X j is u j -intermediate UMD for 1 ≤ j ≤ m.

Theorem 6.6 ([2, Theorem 1.1]) Take 
u ∈ [2,∞]m and let 
X be a triple of 
u-intermediate
Banach spaces and let � : X1 × X2 × X3 → C be a bounded trilinear form. For all
p1, p2 ∈ (1,∞) with p ∈ (1,∞) satisfying

1 <
1

u1
min

{

u′
1

p′
1
, 1

}

+ 1

u2
min

{

u′
2

p′
2
, 1

}

+ 1

u3
min

{

u′
3

p
, 1

}

, (6.8)

we have

|BHF�( f1, f2, g)| � ‖ f1‖L p1 (R;X1)‖ f2‖L p2 (R;X2)‖g‖L p′ (R;X3)
(6.9)

for all f j ∈ S (R; X j ), g ∈ S (R; X3).

Even though we are not able to recover any of their results for spaces that are not Banach
function spaces, in the setting of Banach function spaces our results go much beyond theirs.
Indeed, consider a pair of complex quasi-Banach function spaces (X1, X2) over (�,μ). Then
we define

� : X1 × X2 × X∗ → C, �( f1, f2, g) :=
∫

�

f1 f2g dμ.

By an application of Fubini’s Theorem, we find that for all f j ∈ S (R; X j ), g ∈ S (R; X∗)
we have

|BHF�( f1, f2, g)| =
∣

∣

∣

∣

∫

R

∫

�

BHT( f1(·, ω), f2(·, ω))(x)g(x, ω) dμ(ω) dx

∣

∣

∣

∣

≤ ‖B̃HT( f1, f2)g‖L1(R;L1(�)).

(6.10)

Thismeans that the sparse domination result in Proposition 6.5 combinedwith Proposition 2.7
implies that whenever r1, r2, s ∈ (1,∞) satisfy (6.5) and 
X ∈ UMD
r ,s , we obtain (6.9) for
all 
p ∈ (0,∞]2 with 
r < 
p and p < s, as well as weighted bounds.

Since intermediate UMD spaces are themselves UMD spaces, any of our results where
X1 or X2 is not UMD improve on Theorem 6.6 in the function space setting. This includes
examples such as X1 = L∞(�), X2 = L2(�), or X1 = �2(�∞), X2 = �∞(�2), see
Proposition 4.8.

Next, let 
t ∈ (0,∞]2 with 
r < 
t , 1 ≤ t < s and consider the case

X1 = Lt1(�), X2 = Lt2(�), X∗ = Lt ′(�).

Then by (6.10) and Proposition 6.5 with q = 1 we obtain

|BHF�( f1, f2, g)| � ‖ f1‖L p1 (R;Lt1 (�))‖ f2‖L p2 (R;Lt2 (�))‖g‖L p′ (R;Lt ′ (�))
(6.11)

for all f j ∈ S (R; Lt j (�)), g ∈ S (R; Lt ′(�)) and 
p ∈ (0,∞]2 with 
r < 
p, p < s. This
is beyond the reach of Theorem 6.6, as Theorem 6.6 does not include Lebesgue space over
non-atomic measure spaces because of the restrictions in (6.8), see [2, Example 6.2.3].
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