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Abstract
We propose a new decomposition method to solve multistage non-convex mixed-
integer (stochastic) nonlinear programming problems (MINLPs). We call this algo-
rithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based
on solving dynamically improved mixed-integer linear outer approximations of the
MINLP, obtained by piecewise linear relaxations of nonlinear functions. ThoseMILPs
are solved to global optimality using an enhancement of nested Benders decomposi-
tion, in which regularization, dynamically refined binary approximations of the state
variables and Lagrangian cut techniques are combined to generate Lipschitz continu-
ous non-convex approximations of the value functions. Those approximations are then
used to decide whether the approximating MILP has to be dynamically refined and in
order to compute feasible solutions for the original MINLP. We prove that NC-NBD
converges to an ε-optimal solution in a finite number of steps. We provide promising
computational results for some unit commitment problems of moderate size.

Keywords Nested Benders decomposition · Mixed-integer nonlinear programming
(MINLP) · Global optimization · Non-convexities · Non-convex value functions

Mathematics Subject Classification 90C26 · 90C11 · 49M27

1 Introduction

We propose a new decomposition method to solve multistage non-convex mixed-
integer (stochastic) nonlinear programming problems (MINLPs), i.e., optimization
problems modeling a sequential decision making process. Continuous and integer
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decision variables and possibly non-convex objective functions and constraints are
allowed for any of the T stages.

If multistage (stochastic) problems are too large to be solved by off-the-shelf
solvers, then tailored solution techniques are required.One example are decomposition
algorithms making use of the specific sequential and block-diagonal structure of the
constraints. The problems are decomposed into a large number of smaller but coupled
subproblems which are solved iteratively. One of the most common decomposition
methods is Benders decomposition, introduced by Benders [6] for linear programs.
Since then, it has been enhanced to several more general cases, such as convex prob-
lems (generalized Benders decomposition (GBD) [19]), two-stage stochastic linear
problems (L-shaped method [49]) and multistage (stochastic) linear problems (nested
Benders decomposition (NBD) [8]). To mitigate the curse-of-dimensionality related
to NBD in the stochastic case, Pereira and Pinto introduced its sampling-based variant
stochastic dual dynamic programming (SDDP) [35], which was followed by various
extensions [23,37].

The basic principle of NBD is to use the dynamic programming formulation of a
given multistage problem. For each stage t ∈ {1, . . . , T }, a parametric subproblem
is considered. This subproblem contains only those constraints, variables and parts
of the objective function related to this specific stage, plus a value function deter-
mining the optimal value of all following stages for a given stage t solution. Since
the value functions are not known in advance, they are iteratively approximated with
linear cutting-planes. However, this approach requires the value functions to be con-
vex. Therefore, most decomposition methods for multistage problems cover linear
programs, as their value functions are guaranteed to be piecewise linear and convex.

However, in many applications, also integer variables or non-linearities occur nat-
urally. In such case, the value functions are no longer convex and may also no longer
be continuous. Therefore, the classical Benders approach fails, as it is impossible to
construct a tight convex polyhedral approximation [47].

Thus, more sophisticated approaches have been developed to use Benders-type
decomposition methods for non-convex MINLPs, mostly for the two-stage case. Li
et al. propose an extension of GBD to the non-convex case for two-stage stochastic
MINLPs with functions separable in integer and continuous variables [29,30]. In [28],
a branch-and-cut framework is presented, where in each node Lagrangian and gen-
eralized Benders cuts are constructed. Related methods are proposed in [26,33]. All
these methods have not been generalized to the multistage case yet.

To handle non-convexities in multistage problems, a common idea is to use convex
relaxations of the value function, e.g., by relaxing the integrality constraints forMILPs
or by convexifying nonlinear terms in a static manner. Dynamically convexifying
the non-convex value functions using Lagrangian relaxation techniques allows for a
polyhedral approximation by Lagrangian cuts [10,45,46]. None of these discussed
approaches can guarantee to compute an optimal solution for non-convex multistage
problems, though.

Only recently, some substantial progress has beenmade in generalizing the Benders
decomposition idea to multistage problems with non-convex value functions directly.
In [36], step functions are used, instead of cutting-planes, to approximate the value
functions, presuming their monotonicity.
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For themixed-integer linear case, the stochastic dual dynamic integer programming
(SDDiP) approach is proposed [55]. SDDiP is an enhancement of NBD and SDDP
which allows the solution of multistage (stochastic) MILPs in case of binary state
variables. Themethod is based on generating special Lagrangian cuts,which reproduce
the lower convex envelope of the value function. As the latter is piecewise linear and
exact at binary state variables, strong duality is ensured and the problem is solved to
global optimality in a finite number of iterations. SDDiP is applied to multistage unit
commitment in [54]. It is also applied to a problem containing non-convex functions
in context of hydro power scheduling by using a static binary expansion of the state
variables and a Big-M reformulation [22].

As long as the value functions are assured to be Lipschitz continuous and some
recourse property is satisfied, the requirement of binary state variables can be dropped,
as is shown by the Stochastic Lipschitz Dynamic programming (SLDP) method in [1].
Here, two types of non-convex Lipschitz continuous cuts are introduced: reverse-norm
cuts and augmented Lagrangian cuts.

In [52], Zhang and Sun present a new framework to solve multistage non-convex
stochastic MINLPs, generalizing both SDDiP and SLDP. Similarly to [1], nonlinear
generalized conjugacy cuts are constructed by solving augmented dual problems.
Moreover, as Lipschitz continuity is not assured for the value functions, a Lipschitz
continuous regularized value function is considered within the decompositionmethod.

In this article, we propose a newmethod to solvemultistage non-convexMINLPs to
proven global optimality, which we refer to as non-convex nested Benders decompo-
sition (NC-NBD). The method combines piecewise linear relaxations, regularization,
binary approximation and theSDDiPLagrangian cuts in a unique and dynamic fashion.
Its basic idea is to solve aMINLP by iteratively improvedMILP outer approximations,
which in turn are solved using a NBD-based decomposition scheme similar to that in
[52]. The binary and piecewise linear approximations are dynamically refined.

In particular, the original MINLP is outer approximated by MILPs, which are
iteratively improved in an outer loop. Those MILPs are obtained by piecewise linear
approximations of all occuring nonlinear functions, which is an established method in
global optimization [50]. In general, using MILP relaxations is a common approach
to global optimization solvers [27,32,53].

In an inner loop, the multistage MILPs are solved to approximate optimality in
finitely many steps. This is achieved using a NBD-based decomposition method. In a
forward pass through the stages, trial solutions for the dynamic programming equations
are determined. As Lipschitz continuity of the value functions is not guaranteed, this is
done solving a regularized forward pass problem, as proposed in [52]. For a sufficiently
large, but finite parameter, the regularization is exact [14,52], so that still the desired
MILP is solved.

In a backward pass through the stages, nonlinear non-convex cuts are constructed
to approximate the non-convex value functions of the MILP. To this end, we make
use of a binary approximation of the state variables in the subproblems. As proven
in [55], for MILPs with binary state variables we obtain (sufficiently) tight cuts by
solving Lagrangian dual problems. The constructed linear cuts are then projected back
to the original state space, yielding a nonlinear, non-convex, but Lipschitz continuous
approximation of the value functions. The binary approximation is refined dynamically
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within the inner loop if required. By careful construction, all existing cuts remain valid
even with such refinements.

Once the MILP approximation is solved to approximate optimality, the cut approx-
imation of the value functions is used in the outer loop to determine bounds for the
optimal value of the originalMINLP. If the bounds are sufficiently close, the algorithm
terminates with an ε-optimal solution. Otherwise, the piecewise linear approximations
are refined, and thus the approximatingMILP is tightened. Again, by careful construc-
tion it is ensured that all previously generated cuts remain valid.

To our best knowledge, the above concepts have not been combined in this dynamic
way to solve multistage non-convex MINLPs yet. In that regard, our work also differs
significantly from the aforementioned solution techniques.

Our proposed decomposition scheme uses the same regularization technique and
similar convergence ideas as in [52]. However, a fundamental difference is that we only
apply this technique to solve MILP outer approximations of the original MINLP. This
has the advantage that in our framework MINLPs have to be solved only occasionally.
In contrast, in [52], MINLPs are assumed to be solved by some oracle in each iteration
and cuts are generated directly for the MINLP, which is computationally challenging.
Moreover, contrary to our approach, the method in [52] does not require recourse
assumptions, but in return it only allows for state variables in the objective function.

In contrast to SDDiP [55] and SLDP [1], we solve MINLPs, and thus consider a
larger solution framework with an inner and an outer loop. However, even the inner
loop, in which MILPs are solved, differs from both approaches.

To solve MILPs with non-binary state variables using SDDiP, it is proposed to
apply a static binary approximation [22,55]. This way, the original MILP is replaced
by an approximating problem with only binary state variables. It can be shown that
for a sufficiently small approximation precision, i.e., an sufficiently large number
of binary variables, an ε-optimal solution of an MILP can be determined with this
approach under some recourse assumption [55]. However, for a given problem at
hand, it is not necessarily clear in advance how this precision has to be chosen, as
knowledge on a problem-specific Lipschitz constant is required. This becomes even
more challenging in our framework, where an MINLP is iteratively approximated by
MILPs, forwhich the required precisionmay change.On the contrary,withinNC-NBD
the binary approximation is refined dynamically if required.

More crucially, in NC-NBD the binary approximation is applied temporarily only
to derive cuts in the backward pass. These cuts are then projected back to the original
state space. This construction has a few key advantages: Firstly, it is ensured that cuts
remain valid even if the binary precision is refined later on. Secondly, the original
state variables remain continuous and are not limited to values which can be exactly
represented by the binary approximation. This, in turn, ensures that the true MILPs
are solved in the inner loop. Consequently, the generated cuts are valid for the value
functions of theseMILPs and, due to their relaxation property, also the originalMINLP.
Analogously, the obtained lower bounds are valid for the corresponding optimal values.
Importantly, this is not true for SDDiP with static binary approximation, where the
state space is permanently modified and only approximations of the true MILPs are
solved in the inner loop. In our approach to solve MINLPs, it is crucial to determine

123



Non-convex nested Benders…

guaranteed valid cuts for the value functions in both loops. Therefore, SDDiP cannot
be used effectively in this setting.

Our cut generation approach also differs from that in SLDP [1] (and also [52]),
where augmented Lagrangian problems are solved to determine nonlinear cuts. While
our method comes at the cost of introducing additional (binary) variables and con-
straints compared to those approaches, e.g., for the cut projection, we avoid solving
dual problems containing nonlinear penalization in the objective. Such penalization
may be disadvantageous as it prevents decomposition of the primal problems which
are solved in the solution process of the dual problem. Additionally, in contrast to
SLDP [1], we do not assume continuously complete recourse, but only the weaker
complete recourse, as we circumvent the requirement of Lipschitz continuity of the
true value functions by regularization.

The main contributions of this paper are as follows:
(1) We present the non-convex nested Benders decomposition (NC-NBD) method

to globally solve general multistage non-convex MINLPs. The method com-
bines piecewise linear relaxations, regularization, binary approximation and
cutting-planes techniques in a unique way. In contrast to existing approaches,
all approximations are improved dynamically where and when it is reasonable.
To our knowledge, this is the first decomposition method for general multistage
non-convex MINLPs.

(2) A crucial requirement using dynamic refinements is to ensure that all previously
determined cuts remain valid within the refinement process and have not to be
generated from scratch. We ensure this by a special cut projection and careful
choice of the MILP relaxations.

(3) We prove that the proposed NC-NBD method converges to an ε-optimal solution
of P in a finite number of steps under some mild assumptions.

(4) We provide first computational results of applying NC-NBD to moderate-sized
instances of a unit commitment problem to illustrate its efficacy.

To enhance readability, we focus our discussions solely on deterministic MINLPs.
However, the presented NC-NBD idea can also be applied to stochastic programs with
stagewise independent and finite random variables.

The remainder of the paper is organized as follows.We present the considered prob-
lem formulation and assumptions in Sect. 2. Then, we introduce the NC-NBD with its
different steps in Sect. 3, before presenting convergence results in Sect. 4. Afterwards,
we provide computational results for instances of a simple unit commitment problem
in Sect. 5. We conclude with Sect. 6.

2 Problem formulation

We consider the following multistage non-convex MINLP problems

(P) v := min
x1,...,xT ,y1,...,yT

T∑

t=1

ft (xt , yt )

s.t. (xt , yt ) ∈ Mt (xt−1) ∀t = 1, . . . , T .
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Here t = 1, . . . , T denotes the different stages with the final stage T ∈ N. For each
stage t , the decision variables can be separated into mixed-integer state variables xt ∈
R
n1t+ ×Z

n2t+ and local variables yt ∈ R
n3t ×Z

n4t , with x0 = 0. We define nt := n1t + n2t
as the number of state variables. The sets Mt (xt−1) appearing in the constraints for
each stage t are defined by

Mt (xt−1) := {(xt , yt ) ∈ Xt × Yt : gt (xt−1, xt , yt ) ≤ 0, ht (xt−1, xt , yt ) = 0} .

Xt and Yt denote box constraints; X0 := {0}. As such, Xt and Yt are compact sets for
all stage-t variables. All functions ft : Xt × Yt → R, gt : Xt−1 × Xt × Yt → R

m1
t

and ht : Xt−1 × Xt × Yt → R
m2
t are well-defined on their domains.

To exploit its multistage structure, we solve (P) by some extension of NBD. NBD
makes use of the dynamic programming formulation of (P), where each stage-t sub-
problem, t = 1, . . . , T , can be denoted by

(Pt(xt−1)) Qt (xt−1) := min
xt ,yt ,zt

ft (xt , yt ) + Qt+1(xt )

s.t. (zt , xt , yt ) ∈ Mt

zt = xt−1,

with the value function Qt (·) of stage t and QT+1(·) ≡ 0. Note that xt links different
stages, i.e., xt is a decision variable for (Pt(xt−1)) and a parameter for (Pt+1(xt)).
For the first stage, we obtain that Q1(x0) = v with x0 ≡ 0. Importantly, subproblem
(Pt(xt−1)) is enhanced by introducing local copies zt of the state variables xt−1 and
the copy constraints zt = xt−1. Those copy constraints will prove crucial for the cut
generation later on. Taking into account the local copies, we define

Mt := {(zt , xt , yt ) : zt ∈ Xt−1, (xt , yt ) ∈ Mt (zt )} .

As the subproblems (Pt(xt−1)) are non-convexMINLPs, the value functions Qt (·)
may be non-continuous and non-convex, two detrimental properties for Benders
decomposition approaches. To ensure that the value functions Qt (·) are at least lower
semicontinuous (l.sc.), we make the following technical assumptions:

(A1). For all t = 1, . . . , T ,

(a) the functions ft are Lipschitz continuous on Xt × Yt ,
(b) the functions gt and ht are continuous on Xt−1 × Xt × Yt .

(A2) (Complete recourse). For any stage t and any x̄t−1 ∈ Xt−1, there exists some
(zt , xt , yt ) ∈ Xt−1 × Xt × Yt which is feasible for (Pt(x̄t−1)).

As all variables are box-constrained, the feasible set Mt (xt−1) of (Pt(xt−1)) is
bounded. With assumption (A1) and the recourse assumption (A2), all subproblems
(Pt(xt−1)) are feasible and bounded. Analogously, (P) is feasible with finite optimal
value v. Note that under assumption (A2)we can restrict to generating optimality cuts
in NC-NBD without the need to introduce Benders feasibility cuts.

We obtain our required l.sc. property of the value functions Qt (·).
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Lemma 2.1 Under assumptions (A1) and (A2) the value functions Qt (·) are l.sc. for
all t = 1, . . . , T .

Proof Fixing all integer variables, the l.sc. follows from Exercise 1.19 in [41]. As Xt

and Yt are bounded, only finitely many different values can be attained by the integer
variables. The minimum of finitely many l.sc. functions is l.sc. ��

In the next section, we introduce the NC-NBD method, which combines regular-
ization, piecewise linear approximations, binary expansion and special cutting-plane
techniques in a unique way to solve (P).

3 Non-convex nested Benders decomposition

3.1 The NC-NBD principle

The basic idea of the NC-NBD algorithm is to employ that MILP problems can be
solved exactly by enhancements of NBD under certain assumptions and that MINLPs
can be outer approximated by MILPs iteratively. Thus, the method consists of two
main components. The first component is an inner loop which is used to determine an
approximately optimal solution of some MILP outer approximation (̂P�) of problem
(P). This approximation is determined by piecewise linear relaxations of nonlinear
functions in (P). The second component is an outer loop which refines this outer
approximation iteratively (indexed by �) to improve the approximation of the optimal
value v of (P). The NC-NBD is summarized in Algorithm 1 and illustrated in Fig. 1.

The inner loop follows the general principle of NBD to solve (̂P�). It consists of
a forward and a backward pass through the stages t = 1, . . . , T in each iteration i .
In the forward pass, the stage-t subproblem (̂P�

t (xt−1)) is approximated in two dif-
ferent ways: The value function Q̂t+1(·) of the following stage is replaced by some
outer approximation Q�i

t+1(·). Moreover, a regularization is added to ensure Lips-
chitz continuity of the corresponding value functions. Thus, regularized subproblems
(̂PR,�i

t (xt−1)) are solved, as proposed in [52], yielding trial solutions x̂�i
t−1 and an

upper bound v̂
�i
for (̂P�).

In the backward pass, the approximations Q�i
t+1(·) of Q̂t+1(·) are improved itera-

tively by constructing additional cuts. As the value functions are possibly non-convex,
those cuts are nonlinear. Importantly, cuts for Q̂t+1(·) are also valid for Qt+1(·), as
the first is an outer approximation of the latter.

In the literature, different ways are proposed to obtain nonlinear optimality cuts
and to ensure that the inner loop converges to the optimal value v̂� of (̂P�). One
method is to generate reverse-norm cuts [1]. However, this only works if the value
functions themselves are Lipschitz continuous which is not guaranteed in our setting.
Another, more general method is to solve some augmented Lagrangian dual problem,
as proposed in [1,52].

We propose a third and newmethod, based on the SDDiP technique [55].We utilize
that we can generate sufficiently tight cuts by solving a Lagrangian dual in a lifted
space, where all state variables are binary. Thus, we (temporarily) approximate the
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Algorithm 1 NC-NBD
Input: Problem (P) satisfying (A1), (A2), tolerances ε > ε̂ > 0, scalar Kt for all t , initial bin. approx.

precisionβt ∈ (0, 1)Kt−1 , upper bounds v0 = +∞, lower bound v̂0, initialQ0
t (·) for all t and triangulations

T 0
γ for all γ ∈ Γ , � ← 0.

1: while v� − v̂� > ε do

2: Set � ← � + 1, i ← 1. Set Q�,1
t (·) ← Q�−1

t (·), v̂�,0 ← v̂�−1, v̂
�,0 ← v̂

�−1
.

� PIECEWISE LINEAR RELAXATION REFINEMENT

3: Refine the piecewise linear approx. of all γ ∈ Γ to obtain T �
γ by longest-edge

bisection of the simplex corresponding to
(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T .

4: Determine an outer approximation (̂P�) of (P) by using a MILP model and
appropriate shifts for the piecewise linear approximations.

� INNER LOOP

5: Solve subproblem (̂PR,�i
1 (x�i

0 ,Q�i
2 )). Store the optimal point (̂z�i1 , x̂�i

1 , ŷ�i
1 ).

6: while v̂
�i − v̂�i > ε̂ do

� FORWARD PASS

7: for stages t = 2, ..., T do
8: Solve subproblem (̂PR,�i

t (x̂�i
t−1,Q

�i
t+1)) satisfying (A3). Store the optimal

point (̂z�it , x̂�i
t , ŷ�i

t ).

9: v̂
�,i = min

{
v̂

�,i−1
,
∑T

t=1

(
f̂t (̂x�i

t , ŷ�i
t ) + σt‖x̂�i

t−1 − ẑ�it ‖
)}

.

10: end for

� BINARY APPROXIMATION REFINEMENT

11: if Forward Pass solution in i equals that in i − 1 then

12: Set Kt j ← Kt j + 1 for all t and j . Set βt j = Uj

(∑Kt j
k=1 2

k−1
)−1

.

13: end if

� BACKWARD PASS

14: for stages t = T , ..., 2 do
15: Determine the best binary approx. x̂ i

B,t−1 = Bt−1λ
i
t−1 of the state x̂

�i
t−1.

16: Solve subproblem (D�i
Bt (λ

i
t−1,Q

�,i+1
t+1 )). Store the optimal multiplier π�i

t and

the corresponding optimal value c�i
t of the Lagrangian dual function.

17: Construct the cut φ�i
Bt (λt−1) = c�i

t + (π�i
t )�λt−1 in the binary state space.

18: Model the optimal value function φ�i
t of projecting φ�i

Bt to the original space
by MILP constraints using the KKT conditions.

19: Set Q�,i+1
t (xt ) = max{Q�i

t (xt ), φ�i
t (xt )}.

20: end for

� FIRST STAGE UPDATE

21: Solve subproblem (̂PR,�i
1 (x�i

0 ,Q
�,i+1
2 )). Store the optimal point (̂z�i1 , x̂�i

1 , ŷ�i
1 ).

22: Update v̂�,i to the optimal value Q̂
�i
1

(0,Q�,i+1
2 ).

23: i ← i + 1.
24: end while
25: Set v̂� ← v̂�i , v̂

� ← v̂
�i
, Q�

t (·) ← Q�i
t (·) for all t = 2, ..., T .

� OUTER LOOP PROBLEMS

26: for stages t = 1, . . . , T do
27: Solve subproblem (P�

t (x�
t−1,Q

�
t+1)). Store the optimal solution (z�t , x

�
t , y

�
t ).

28: end for
29: v� = min

{
v�−1,

∑T
t=1 ft (x�

t , y
�
t )

}
.

30: end while
Output: ε-optimal solution

(
(z�t , x

�
t , y

�
t )

)
t=1,...,T of (P).
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Inner Loop
(solving ( ̂P ) iteratively,
generating cuts for Qt)

Outer Loop
(solving (P ) iteratively

using cuts from inner loop,
refining MILP ( ̂P ))

ε-optimal
solution of (P )

Outer Loop
Problem
Solved?

Piecewise Linear
Relaxations
Refinement

Problem (P ) satisfying
(A1) and (A2)

Outer
Approximation ( ̂P )

Forward Pass

Binary
Expansion
Decision

Binary Approx.
Refinement

Backward Pass

Inner Loop
Problem
Solved?

Solve Outer
Loop Problems

yes

no

no

yes

yes

no

Fig. 1 Conceptual overview of NC-NBD

state variables with binary ones, construct cuts in the binary space and then project
those cuts back to the original space. As we show, these projections can be modeled by
mixed-integer linear constraints in the original space. By careful construction, these
cuts remain valid even if the binary approximation is refined in later iterations.

In this way, we circumvent solving an augmented Lagrangian dual, which may be
even more expensive than solving the classical Lagrangian dual, as with the additional
nonlinear term in the objective, the primal problems lose their decomposability. In
return, we require more (binary) variables and constraints in the Lagrangian duals and
for an MILP representation of our cuts than the approach in [1].

In principle, theMILPs as they occur in the inner loop could also be solved by using
SDDiP with a static binary approximation of the state variables [55]. As discussed in
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Sect. 1, this approach has some properties which prevent an efficient integration into
our algorithmic framework, though.

As we show in the next section, for a sufficiently fine binary approximation, the
obtained cuts in the NC-NBD provide a sufficiently good approximation at the trial
solutions x̂�i

t−1. Additionally, the cut approximations Q�
t (·) are generated in such a

way that they are Lipschitz continuous. This is sufficient to ensure convergence to a
globally optimal solution of (̂P�).

At the end of the backward pass, a lower bound v̂�i is determined. If v̂
�i

and
v̂�i are sufficiently close to each other, an approximate globally minimal point(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T of (̂P�) has been identified and the inner loop is left. Other-

wise, further cuts have to be constructed or the binary approximation has to be refined.
We discuss this decision in more detail in Sect. 3.3.6.

Once the inner loop is left, subproblems (Pt(xt−1,Q
�
t+1)) are solved to determine

trial points x�
t−1 and an upper bound v� to v for the original problem (P). If this upper

bound is sufficiently close to v̂�, the solution
(
(z�t , x

�
t , y

�
t )

)
t=1,...,T is approximately

optimal for problem (P). If not, the MILP relaxation (̂P�+1) is created by refining
(̂P�) in the neighborhood of

(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T and a new inner loop is started.

As for the inner loop, it is crucial that with these refinements in the outer loop
all previously generated cuts remain valid. Otherwise, the cut approximationQ�

t+1(·)
would have to be built from scratch, counteracting the idea of a dynamic solution
framework. In the following subsections, we show how such persistent validity can
be achieved by careful design. Note that, even though we make use of the same
regularization idea, our framework with nested loops and dynamic refinements also
differs from the method presented in [52].

We explain the different steps of NC-NBD in more detail in the following subsec-
tions, before we discuss convergence results in Sect. 4. As long as the index � is not
needed for the discussions of the inner loop, we omit it for notational convenience.
Moreover, we note that several of the considered subproblems require the introduc-
tion of additional decision variables, e.g., for piecewise linear approximation or cut
projection. For reasons of clarity and comprehensibility, by the terms optimal point or
optimal solution we refer to the projection of their actual optimal points to the space
Xt−1 × Xt × Yt , which we are interested in.

3.2 Piecewise linear relaxations

In the outer loop of NC-NBD, all nonlinear functions γ ∈ Γ in problem (P) are
approximated by some piecewise linear functions. This is achieved by determining
a triangulation of their domain, which in our box-constrained setting is always pos-
sible. Then, the piecewise linear functions can be defined on the simplices of this
triangulation using the function values of γ at their vertices. For a thorough discus-
sion and state-of-the-art approaches to construct piecewise linear approximations and
triangulations, see [18,39,40].

The piecewise linear approximations can then be reformulated as mixed-integer
linear constraints using auxiliary continuous and binary variables. In the literature,
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several modeling techniques have been proposed, such as the convex combination
model, the incremental model and some logarithmic variants [4,18,38,51]. Later on,
we draw on refinement and convergence ideas from [9], which work for several of
these models, such as the generalized incremental model [9] or the disaggregated
logarithmic convex combination model [51].

By shifting the approximations appropriately, it can be ensured that the obtained
MILP (̂P j ) is indeed a relaxation of the original problem (P) [18]. Alternatively, one
can construct piecewise linear underestimators and overestimators, yielding tubes for
nonlinear equations [25].

Applying the piecewise linear approximations to problem (P), we obtain theMILP
outer approximation with copy constraints

(̂P) v̂ := min
x1,...,xT ,y1,...,yT

z1,...,zT

T∑

t=1

f̂t (xt , yt )

s.t. (zt , xt , yt ) ∈ M̂t ∀t = 1, . . . , T

zt = xt−1 ∀t = 1, . . . , T .

For reasons of clarity, we denote the piecewise linear relaxations of ft (·), gt (·) and
ht (·) by f̂t (·), ĝt (·) and ĥt (·), although they are modeled using auxiliary constraints
and variables. The set M̂t is defined by replacing the functions gt (·) and ht (·) in Mt

or Mt (xt−1), respectively, with ĝt (·) and ĥt (·).
The dynamic programming equations for t = 1, . . . , T are given by

(̂Pt(xt−1)) Q̂t (xt−1) := min
zt ,xt ,yt

f̂t (xt , yt ) + Q̂t+1(xt )

s.t. (zt , xt , yt ) ∈ M̂t

zt = xt−1.

For the MILP subproblems (̂Pt(·)), we obtain the following properties.

Lemma 3.1 Under assumption (A2), subproblem (̂Pt(·)) has complete recourse and
the value function Q̂t (·) is l.sc. for all t = 1, . . . , T .

The complete recourse follows from the complete recourse of (Pt(·)) by construction.
The l.sc. then follows from Theorem 3.1 in [31].

3.3 The inner loop

In the inner loop of NC-NBD, the MILP subproblems (̂Pt(xt−1)) are considered. As
stated before, we omit the index � for its discussion.

The copy constraints are crucial for all problems solved in the inner loop. In the
forward pass, to ensure Lipschitz continuity, we consider regularized subproblems.
The regularization is based on relaxing and penalizing the copy constraints. In the
backward pass, to generate cuts, a special Lagrangian dual subproblem is solved
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based on dualizing the copy constraints. This is effective, since combinedwith a binary
expansion of the state variables, the copy constraints yield a local convexification [55].

3.3.1 Regularization

Lipschitz continuity of the value functions is difficult to ensure in the general non-
convex case. However, as shown recently in [52], for l.sc. value functions, it is possible
to determine some underestimating Lipschitz continuous function by enhancing the
original subproblem with an appropriate penalty function ψt . In contrast to the more
general regularization approach in [52], we require only so-called sharp penalty func-
tions ψt (xt−1) = ‖xt−1‖ to regularize the subproblems (̂Pt(xt−1)), for some norm
‖·‖.
Definition 3.2 (Regularized subproblem and value function) Let σt > 0 for t =
2, . . . T , σ1 = 0 and define

(̂PR
t (xt−1)) Q̂R

t (xt−1) := min
zt ,xt ,yt

f̂t (xt , yt ) + σt‖xt−1 − zt‖ + Q̂R
t+1(xt )

s.t. (zt , xt , yt ) ∈ M̂t .

(̂PR
t ) is called regularized subproblem and Q̂R

t (·) regularized value function.
By recursion, this approach yields the regularized optimal value v̂R := Q̂R

1 (x0) for
the first stage. Lemma 3.1 implies that under assumption (A2), the function Q̂t (·) is
l.sc. Then, the regularized value function Q̂R

t (·) has the following properties.

Lemma 3.3 (Proposition 2 in [52]) For all t = 1, . . . , T we have:

(a) Q̂R
t (xt−1) ≤ Q̂t (xt−1) for all xt−1 ∈ Xt−1,

(b) Under assumptions (A1) and (A2), the regularized value function Q̂R
t (·) is

Lipschitz continuous on Xt−1.

As also stated in [52], using sharp penalty functions as in Definition 3.2, the penal-
ization is exact for sufficiently large (but finite) σt > 0. For such σt , the problems (̂P)

and (̂PR) have the same optimal points and v̂R = v̂. This result goes back to [14],
in which augmented Lagrangian problems are analyzed for MILPs. It is shown that
using sharp penalty functions and a sufficiently large augmenting parameter, strong
duality holds. As this result holds for any value of the dual multipliers, it is also valid
for the regularized subproblems.

Lemma 3.4 (Proposition 8 in [14])Using sharp penalty functionsψt , there exist some
σ̄t > 0 such that the penalty reformulation in (̂PR

t (xt−1)) is exact for all σt > σ̄t .

Lemma 3.4 indicates that using the regularized subproblems within our decompo-
sition method NC-NBD, we obtain convergence to v̂ in the inner loop. To exploit this,
we take the following assumption:

(A3). All σt > 0 are chosen sufficiently large such that Lemma 3.4 is satisfied.

If (A3) is not satisfied, σt has to be increased gradually in the course of the NC-NBD
method to ensure convergence.
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3.3.2 Forward pass

In the forward pass of the inner loop we solve approximations of the regularized
subproblems (̂PR

t (xt−1)).
For iteration i , the stage-t forward pass problem is defined as follows

(̂PR,i
t (x̂ it−1,Q

i
t+1))

Q̂
R,i
t

(̂xit−1,Q
i
t+1) := min

zt ,xt ,yt
f̂t (xt , yt ) + σt‖x̂ it−1 − zt‖ + Qi

t+1(xt )

s.t. (zt , xt , yt ) ∈ M̂t ,

for the trial state variable x̂ it−1, with x̂
i
0 ≡ 0. FunctionQi

t+1(·), in some sense, approx-

imates the value functions Q̂
R,i
t+1

(·,Qi
t+2) and Q̂

i
t+1

(·,Qi
t+2). This approximation is

constructed in the backward pass, see Sect. 3.3.4. As those value functions are non-
convex, the cut approximation Qi

t+1(·) is required to be nonlinear and non-convex.
However, as we show later, it can be expressed with mixed-integer linear constraints
by lifting the problems to a higher dimension. Therefore, in addition to xt , yt and
zt , the forward pass problem contains further decision variables, which are hidden in
Qi

t+1(·) and the piecewise linear relaxations f̂t , ĝt and ĥt .
Note that expressing Qi

t+1(·) by mixed-integer linear constraints with
bounded integer variables, the same reasoning as in Lemma 3.1 can be applied to

show that Q̂
i
t
(̂xit−1,Q

i
t+1) is l.sc. and therefore, Q̂

R,i
t

(̂xit−1,Q
i
t+1) is Lipschitz con-

tinuous.
Even with a mixed-integer linear representation of Qi

t+1(·), subproblem

(̂PR,i
t (x̂ it−1,Q

i
t+1)) is a MINLP due to the regularization. For ‖·‖1 or ‖·‖∞, it can be

modeled by MILP constraints using standard reformulation techniques for absolute
values, though.

The optimal point (̂zit , x̂
i
t , ŷ

i
t ) of each subproblem (̂PR,i

t (x̂ it−1)) is stored and x̂ it
is passed to the following stage. Since

(
(̂zit , x̂

i
t , ŷ

i
t )

)
t=1,...,T satisfies all constraints of

(̂PR), after all stages have been considered, an upper bound v̂ on the optimal value
v̂R of the regularized problem can be determined by

v̂
i = min

{
v̂
i−1

,

T∑

t=1

(
f̂t (̂x

i
t , ŷ

i
t ) + σt‖x̂ it−1 − ẑit‖

)}
.

With assumption (A3) and Lemma 3.4, this is also an upper bound to v̂.

3.3.3 Backward pass–Part 1: binary approximation

The aim of the backward pass of an inner loop iteration i is twofold: Firstly, a lower
bound v̂i on v̂ is determined. Secondly, cuts for Qt (·) are derived to improve and
update the current approximation Qi

t (·).
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As mentioned before, we use a dynamically refined binary approximation of the
state variables and then apply cutting-plane techniques from the SDDiP algorithm
[55]. This approximation is based on static binary expansion [21].

Binary expansion can be applied component-wise to some vector xt . Some integer
component xt j ∈ {

0, ...,Uj
}
can be exactly and uniquely expressed as

xt j =
Kt j∑

k=1

2k−1λtk j

with variables λtk j ∈ {0, 1} and Kt j = log2Uj� + 1. Some continuous component
xt j ∈ [0,Uj ] can be expressed by discretizing the interval with precision βt j ∈ (0, 1).
We then have

xt j =
Kt j∑

k=1

2k−1βt jλtk j + rt j

with Kt j = log2
(
Uj
βt j

)
� + 1 and some error rt j ∈

[
−βt j

2 ,
βt j
2

]
.

For vector xt , this yields Kt = ∑nt
j=1 Kt j number of binary variables. Defining

an (nt × Kt )-matrix Bt containing all the coefficients of the binary expansion and
collecting all binary variables in one large vector λt ∈ B

Kt , the binary expansion then
can be written compactly as xt = Btλt + rt .

Based on this definition, to generate cuts, for each stage t and iteration i , a binary
approximation of x̂ it−1 is used, i.e., it is replaced by Bt−1λ

i
t−1. Note that the approx-

imation is not necessarily exact for continuous components of x̂ it−1. Therefore, the
cuts are not necessarily constructed at the trial point x̂ it−1 but at the deviating anchor
point x̂ i

B,t−1 := Bt−1λ
i
t−1.

In the backward pass, we start from the following subproblem, where due to the
binary approximation of the state variables,we also adapt the copy constraint toλit−1 =
zt with variables zt ∈ [0, 1]Kt−1 .

(̂Pi
Bt(λ

i
t−1,Q

i+1
t+1)) Q̂

i
Bt

(λit−1,Q
i+1
t+1) := min

xt ,yt ,
zt ,zt

f̂t (xt , yt ) + Qi+1
t+1(xt )

s.t. (zt , xt , yt ) ∈ M̂t

zt = Bt−1zt

zt ∈ [0, 1]Kt−1

zt = λit−1.

Remark 3.5 Subproblem (̂Pi
Bt(λ

i
t−1,Q

i+1
t+1)) is equivalent to subproblem

(̂Pi
t (x̂

i
B,t−1,Q

i+1
t+1)) because zt = Bt−1zt = Bt−1λ

i
t−1 = x̂ i

B,t−1.

Asymptotically, i.e., for an infinitely fine binary approximation, the anchor point
converges to the actual trial point.
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Lemma 3.6 We have limβt−1→0 x̂ iBt−1 = x̂ it−1.

With Lemma 3.6, asymptotically, the cuts are constructed at x̂ it−1. While this is
not directly useful in practice, since it requires an infinite number of binary variables,
it also implies that for componentwise sufficiently small βt−1 ∈ (0, 1), the cuts are
constructed very close to x̂ it−1. As NC-NBD constructs Lipschitz continuous cuts, this
guarantees a sufficiently good approximation of the value function at x̂ it−1, as we show
in Sect. 4.

Importantly, in our framework the binary approximation is only applied temporarily
to derive cuts, while the state variables xt−1 in the forward pass remain continuous.
In other words, the anchor points determine where cuts can be constructed, but do not
limitwhere they can be evaluated. This is a crucial difference to applying a static binary
expansion, as suggested in the original SDDiP work to solve MILPs with continuous
state variables [55].

Moreover, let us emphasize again that applying such static approximation is not
appropriate in our inner loop, as the obtained lower bounds are not guaranteed to be
valid for v̂ or v. Similarly, the obtained cuts are not guaranteed to be valid for Q̂t (·) or
Qt (·), and therefore cannot be re-used within the outer loop. Our proposed inner loop
method does not share these issues. We follow a dynamic approach where the binary
precision is dynamically refined if required and, as we show later, all cuts remain valid
with later refinements.

3.3.4 Backward pass–Part 2: cut generation

As proposed in [55], the copy constraint is dualized to generate cuts. Applied to our
context, the following Lagrangian dual subproblem has to be solved

(Di
Bt(λ

i
t−1,Q

i+1
t+1)) max‖πt‖∗≤lt

Li
Bt (πt ,Q

i+1
t+1) + π�

t λit−1,

where Li
Bt (·) denotes the Lagrangian function for πt defined by

Li
Bt (π

i
t ,Q

i+1
t+1) := min

xt ,yt ,zt ,zt
f̂t (xt , yt ) + Qi+1

t+1(xt ) − π�
t zt

s.t. (zt , xt , yt ) ∈ M̂t

zt = Bt−1zt

zt ∈ [0, 1]Kt−1

and ‖·‖∗ denotes the dual norm to the norm used in the regularized forward pass
problems (̂PR,i

t (x̂ it−1,Q
i
t+1)).

A linear (optimality) cut in binary space {0, 1}Kt−1 is then given by

φBt (λt−1) := Li
Bt (π

i
t ,Q

i+1
t+1)︸ ︷︷ ︸

=:cit

+(π i
t )

�λt−1, (1)
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whereπ i
t is anoptimal solutionof theLagrangaindual subproblem (Di

Bt (λ
i
t−1,Q

i+1
t+1)).

Those Lagrangian cuts are introduced in [55] and identified to be finite, valid and tight
in the SDDiP setting. In our setting, we obtain the following validity result.

Lemma 3.7 Let Q̂Bt (·) denote the MILP value function of stage t with additional
binary approximations. Then,

(a) for all λt−1 ∈ [0, 1]Kt−1

Q̂Bt (λt−1) ≥ φBt (λt−1),

(b) for all xt−1

Q̂t (xt−1) ≥ φBt (λt−1)

for any λt−1 ∈ [0, 1]Kt−1 , such that xt−1 = Bt−1λt−1.

Lemma 3.7 a) follows directly from the validity proof for the SDDiP cuts, which
does also hold for λt−1 ∈ [0, 1]Kt−1 instead of λt−1 ∈ {0, 1}Kt−1 (see Theorem 3 in
[55]). Part b) then follows using similar arguments as in Remark 3.5. Hence, φBt is, in
fact, a valid cut in [0, 1]Kt−1 . This enables us to obtain valid under-approximations also
for those points, which are not exactly approximated by the current binary expansion.
As it refers to an outer approximation, Q̂t (·) underestimates the original MINLP value
function Qt (·). Thus, the obtained cuts are valid for Qt (·) as well.

Contrary to [55], but following [52],we bound the dual variableπt in theLagrangian

dual subproblem. Therefore, tightness for Q̂
i
Bt

(·,Qi+1
t+1) is not guaranteed. However,

the cuts are at least guaranteed to overestimate the value function Q̂
R,i
Bt

(·,Qi+1
t+1) atλ

i
t−1.

This value function is obtained by regularizing Q̂
i
Bt

(·,Qi+1
t+1) in the binary space using

the same norm as in the forward pass problem. By careful choice of the regularization

factor, then, also the regularized value function Q̂
R,i
t

(·,Qi+1
t+1) in the original space is

overestimated at xi
B,t−1. This result is formalized in the following lemma.

Lemma 3.8 Assume that we use ‖·‖1 for regularization and its dual norm ‖·‖∞ for
bounding the dualmultipliers. Then, as long as lt ≥ σt‖Bt−1‖, where the latter denotes
the induced matrix norm of Bt−1, we have

φBt (λ
i
t−1) ≥ Q̂

R,i
Bt

(λit−1,Q
i+1
t+1) ≥ Q̂

R,i
t

(xi
B,t−1,Q

i+1
t+1).

Proof See Appendix A. ��
Remark 3.9 The induced matrix norm ‖Bt−1‖ depends on the chosen precision of the
binary approximation. It can be bounded from above independent of the precision,
e.g., ‖Bt−1‖1 ≤ Ut−1,max with Ut−1,max the largest component of the upper bounds
in Xt−1.
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3.3.5 Backward pass–Part 3: cut projection

Solving the forward pass problems (̂PR,i
t (x̂ it−1,Q

i
t+1)) and the backward pass dual

problems (Di
Bt(λ

i
t−1,Q

i+1
t+1)) requires expressing the cut approximation Qi

t+1(·) in
the original state variables xt . Recall that the computed cut φB,t+1(·) is a function of
[0, 1]Kt .

According to Lemma 3.7 a), the obtained cuts φB,t+1(·) are not only valid for all
binary points, but for all values in [0, 1]Kt . Allowing for λt ∈ [0, 1]Kt in the binary
approximation, there exist infinitelymany combinations of λt to exactly describe some
point xt ∈ Xt , though. Therefore, following from Lemma 3.7 b), one cut in binary
space entails infinitely many underestimators of Qt+1(·) at xt in the original space
Xt . Including infinitely many inequalities in Qt+1(·) is computationally infeasible.
Instead, we consider the pointwise maximum of the projection of the cuts to Xt .
That way, only the best underestimation for each point xt is taken into account. In
doing so, we obtain a nonlinear, i.e., piecewise linear, cut in the original state space.
For simplicity, in the following, by cut projection we always mean the pointwise
maximum of the actual projection.

The projection of some cut φB,t+1(·) to Xt can be described as the value function

φt+1(xt ) := max
λt

{
ct+1 + (πt+1)

�λt : Btλt = xt , λt ≤ e, λt ≥ 0
}

(2)

of a linear program where e denotes a vector of ones of dimension Kt . The dual
problem to (2) yields

φD
t+1(xt ) := min

ηt ,μt

{
ct+1 + x�

t ηt + e�μt : B�
t ηt + Iμt ≥ πt+1, μt ≥ 0

}
. (3)

Note that the dual feasible region does not depend on xt and has a finite number of
extreme points. Therefore, the cut projection is piecewise linear and concave.

As problem (2) is feasible and bounded for any xt ∈ Xt , this also holds for the dual
problem (3). Therefore, in a dual optimal solution, ηt and μt are bounded. Note that
this bound may change with the binary approximation precision βt , though, and that,

if we would generate tight cuts for Q̂
i
t+1

(·,Qi+1
t+2), those cuts may become infinitely

steep close to discontinuities. However, as we can bound πt in the Lagrangian dual
subproblem independent of βt , see Remark 3.9, and thus construct cuts which at least

overestimate the regularized value function Q̂
R,i
t+1

(·,Qi+1
t+2) at the anchor point xi

B,t ,
such cases should be ruled out.

We formalize this by assuming the existence of a global bound for ηt .

(A4). There exists some ρt > 0, such that for all t = 1, . . . , T , any binary precision
βt and any xt , the optimal dual variable ηt in problem (3) can be bounded, i.e.,
‖ηt‖ ≤ ρt .

For example, if we obtain cuts which are, in fact, tight for Q̂
R,i
t+1

(·,Qi+1
t+2) at x

i
B,t

and consider only basic solutions in the Lagrangian dual, the gradient of the cuts
is bounded by σt+1. With Assumption (A4) it follows that the linear cuts φB,t+1(·)
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derived in the binary space yield a nonlinear, but Lipschitz continuous projection
φt+1(·) in the original space.

To express this projection by mixed-integer linear constraints, we use the KKT
conditions to problems (2) and (3). To emphasize that these conditions are considered
for the projection of one specific cut r (the index denoting the r -th cut constructed),
we index all occurring variables and coefficients by r .

−πr
t+1 − νrt + μr

t + (Br
t )

�ηrt = 0 (4)

Br
t λ

r
t − xt = 0 (5)

λrt ≥ 0 (6)

λrt − e ≤ 0 (7)

νrt , μ
r
t ≥ 0 (8)

−(νrt )
�λrt = 0 (9)

(μr
t )

�(λrt − e) = 0. (10)

The complementary slackness constraints (9) and (10) are nonlinear, but compo-
nentwise can be expressed linearly using a Big-M formulation (alternatively, SOS-1
constraints may be used):

λrtk ≤ M1kω
r
tk, νrtk ≤ M2k(1 − ωr

tk), ωr
tk ∈ {0, 1} (11)

λrtk − 1 ≥ M3ku
r
tk, μr

tk ≤ M4k(1 − urtk), urtk ∈ {0, 1} (12)

For all components k, we can chooseM1k = 1 andM3k = −1 due to λtk ∈ [0, 1].
Moreover, using (A4), we are able to obtain explicit choices for M2k and M4k as
well.

Lemma 3.10 Under (A4), there exist explicit, finite bounds for νrtk and μr
tk .

Proof See Appendix B. ��

The cut approximationQi+1
t+1(·) is then defined as the maximum of all cuts φr

B,t+1 =
crt+1+(πr

t+1)
�λrt where the variable λrt satisfies the linearizedKKT conditions (4)–(8)

and (11)–(12) for the r -th cut. With Assumption (A4), it is Lipschitz continuous.

Lemma 3.11 The cut approximationQt+1(·) is Lipschitz continuous in Xt with Lips-
chitz constant ρt .

The cut projection requires to introduce the variables λrt , ν
r
t , μ

r
t , w

r
t , u

r
t , η

r
t and

constraints (4)–(8) and (11)–(12) for each cut r . In particular, each cut is associated
with a variable λrt ∈ [0, 1]Kr

t where Kr
t corresponds to the number of binary variables

at the time of the cut’s generation. This increases the problem size considerably, as the
number of variables and constraints to be added per cut is inO

(
nt log

( 1
βt

))
. In return,

it ensures that cuts do not have to be generated from scratch after each refinement.
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3.3.6 Stopping and refining

At the end of the backward pass, a lower bound v̂i is determined by solving the first-
stage subproblem (̂Pi

1 (0,Qi+1
2 )). Here, no Lagrangian dual is solved, since no cuts

have to be derived. The lower bound is non-decreasing because the cut approximation
is only improved.

If the updated bounds are sufficiently close to each other, i.e., if

v̂
i − v̂i ≤ ε̂

for some predefined tolerance ε̂ > 0, an approximately optimal point of problem (̂P)

has been determined.We show in the following section that this is the case after finitely
many iterations i .

If the gap between the bounds does not meet the stopping criteria yet, two cases
are possible: In the first case, the algorithm has not determined the best possible
approximation for the given binary approximation precision, yet. New cuts have been
determined in iteration i such that the lower bound v̂i has been updated, and the
forward solution will change in iteration i + 1 as the previous one is cut away.

In the second case, despite not meeting the stopping criterion, the forward solution
does not change at the beginning of iteration i + 1. This case is related to the binary
approximation. It can occur if the binary approximation is too coarse and therefore, for
all t , the determined cuts at x̂ i

Bt donot improve the approximation at x̂ it .Moreover, it can
occur if in subsequent iterations the same cuts are constructed, since x̂ iB,t−1 = x̂ i+1

B,t−1.
Finally, it can also occur if all possible cuts have been generated: For a fixed binary
approximation, there exist only finitely many points x̂Bt . If we restrict the Lagrangian
dual subproblem to basic solutions, then only finitely many different cuts can be
determined [55].

In the second case, at the beginning of the backward pass of iteration i , the binary
approximation is refined. The refinement is computed by increasing Kt j by +1 for all
components j and all stages t with

βt j = Uj
∑Kt j

k=1 2
k−1

.

For simplicity, we refine in Algorithm 1 all stages and components equally by +1. Note
that each refinement requires the introduction of an additional vector λt , as described
in the previous subsection.

As all previously generated cuts have been projected to the original space Xt , they
remain valid and have not to be recomputed when refining the binary approximation.
This is computationally important.
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3.4 The outer loop

3.4.1 The outer loop problem

Once the inner loop is left, we set v̂� := v̂�i , v̂
� := v̂

�i
and Q�

t (·) := Q�i
t (·) for all

t = 2, ..., T . Note that v̂
�
is not guaranteed to be a valid upper bound for v because

v̂� ≤ v. Moreover, we set
(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T := (

(̂z�it , x̂�i
t , ŷ�i

t )
)
t=1,...,T .

To approximate the optimal value v of (P), we solve subproblems

(P�
t (x�

t−1,Q
�
t+1)) Q�

t
(x�

t−1,Q
�
t+1) := min

zt ,xt ,yt
ft (xt , yt ) + Q�

t+1(xt )

s.t. (zt , xt , yt ) ∈ Mt

zt = x�
t−1

in a forwardmanner for t = 1, . . . , T with x�
0 ≡ 0 and x�

t := xt , where xt is an optimal
solution of (P�

t (x�
t−1,Q

�
t+1)) for t . Here, we exploit that the cut approximationQ�

t (·),
constructed in the inner loop, is valid for Qt (·) by design as well. By solving these
subproblems, we obtain a feasible solution

(
(z�t , x

�
t , y

�
t )

)
t=1,...,T for (P) and we can

determine a valid upper bound for v as v� = min
{
v�−1,

∑T
t=1 ft (x�

t , y
�
t )

}
.

The subproblems (P�
t (x�

t−1,Q
�
t+1)) are non-convexMINLP problems. Thismeans

that in order to solve the original non-convex problem (P), easier, but still non-convex
subproblems have to be solved to optimality for each stage t in each outer loop iteration
�. This might be a hard challenge by itself. We make the following assumption for the
remainder of this article:

(A5). An oracle exists that is able to solve subproblems (P�
t (x�

t−1,Q
�
t+1)) to global

optimality.

In case that no such global optimization algorithm is available, one can solve appro-
priate inner approximations of (P�

t (x�
t−1,Q

�
t+1)), which are improved in the course

of the algorithm.
If v� − v̂� ≤ ε, then NC-NBD terminates and

(
(z�t , x

�
t , y

�
t )

)
t=1,...,T is an ε-optimal

solution for (P). Otherwise, the cut approximationsQ�
t+1(·) are not sufficiently good

underestimators for the true value functions, even though they give a good approxima-
tion of Q̂�

t (·). This implies that the piecewise linear relaxations have to be improved.
Instead of refining them everywhere, they are refined dynamically where it is promis-
ing, i.e., in a neighborhood of the approximate optimal solution

(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T

of (̂P�). In refining the piecewise linear relaxations in its neighborhood, the current
solution can be excluded in the next inner loop and the lower bound v̂� improves.

Remark 3.12 Instead of v̂�, an even better lower bound for v is given by the optimal
value of the first stage subproblem (P�

1 (x�
0,Q

�
2)).
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3.4.2 Refining the piecewise linear relaxations

The refinement consists of two steps: (1) the piecewise linear approximations are
refined and (2) the corresponding MILP (̂P�) is updated – in such a way that the new
MILP (̂P�+1) again yields a relaxation of (P).

Different strategies are possible to achieve this. For a thorough overview, we refer
to [18]. In the following, we make use of a specific adaptive refinement scheme for
triangulations from [9] for any nonlinear function γt ∈ Γt . The given piecewise lin-
ear approximation at iteration � is defined by a triangulation T of Xt−1 × Xt × Yt
(or a subspace) and the corresponding function values of γt . Instead of refining this
triangulation everywhere now, the main idea is to only refine it in a neighborhood of(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T . Therefore, first, the simplex in T containing this point is iden-

tified. It is then divided by a longest-edge bisection, yielding a refined triangulation,
for which a new MILP model can be set up. As proven in [9], this refinement strategy
has some favorable properties with respect to convergence, see Sect. 4.2.

It is important that the obtained relaxation (̂P�+1) is tighter than (̂P�) so that
the corresponding value functions improve monotonically. This is required to ensure
that previously generated cuts remain valid in later iterations. For concave functions,
this is always satisfied using the presented refinement strategy. For other functions,
e.g., convex ones, a more careful determination of the relaxation is required or the
MILP models for earlier relaxations have to be kept instead of being replaced. For our
theoretical results, it is sufficient that such monotonically improving relaxations can
always be determined.

After refining the piecewise linear relaxations, a new iteration � + 1 is started,
beginning with the inner loop.

4 Convergence results

In this section, we prove the convergence of the NC-NBD algorithm. We start proving
the convergence of the inner loop to an optimal solution of (̂P�) based on some results
on the binary refinements. Afterwards, we prove that the outer loop converges to an
optimal solution of the original problem (P).

4.1 Convergence of the inner loop

As explained in Sect. 3.3.3, within NC-NBD the cuts are not generated at the trial
points x̂ it−1, but instead at anchor points x̂ i

B,t−1 := Bt−1λ
i
t−1. This means that the

generated cuts, and with that also the cut approximationsQt (·), implicitly depend on
the binary approximation precision βt .

However, Lemma 3.6 implies that x̂ it−1 and x̂ i
B,t−1 should become equal asymp-

totically in the refinements of the binary approximations. Therefore, asymptotically,

the cuts are guaranteed to overestimate Q̂
R,i
t

(̂xit−1,Q
i+1
t+1) and, due to their Lipschitz

continuity, for some sufficiently small precision, they are at least εBt -close. This, in
turn, leads to convergence of the inner loop, as we formalize and prove below.
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Prior to this, let us introduce two useful ideas. Firstly, using the Lipschitz continuity
results fromLemma3.3, page 12 andLemma3.11,we canbound the cut approximation
error in x̂ it−1 as follows:

Lemma 4.1 With Assumption (A4), for any iteration i and stage t it follows

Qi+1
t (̂xit−1) − QR,i

t
(̂xit−1,Q

i+1
t+1) ≥ −(LR

t + ρt )‖x̂ it−1 − x̂ i
B,t−1‖.

Proof See Appendix C. ��

Secondly, for any stage t and any fixed binary approximation, if we restrict to
basic solutions in the Lagrangian duals, only finitely many different realizations of cut
approximations Qt (·) can be generated. Thus, after a finite number of iterations, the
binary approximation is refined. Assuming that the inner loop does not terminate for
ε̂ = 0, we can then observe infinitely many such refinements. Hence, with j → ∞,
we also get βt → 0 for all t = 1, . . . , T .

Now, we address convergence of the inner loop of NC-NBD to an optimal solution
of (̂P). First, we provide a preliminary result, which can be proven by backward
induction using Lemmas 3.11 and 4.1.

Lemma 4.2 Suppose that the inner loop does not terminate for ε̂ = 0. Then, the infinite
sequence of forward pass trial solutions (̂xi )i∈N possesses some cluster point x̂∗ with
a corresponding convergent subsequence (̂xi j ) j∈N. This subsequence satisfies

lim
j→∞Q

i j
t (̂x

i j
t−1) ≥ Q̂R

t (̂x∗
t−1). (13)

Proof See Appendix D. ��

Using this result, convergence can be proven.

Theorem 4.3 Suppose that the inner loop does not terminate for ε̂ = 0. Then, the
sequence (̂vi )i∈N of lower bounds determined by the algorithm converges to v̂ and
every cluster point of the sequence of feasible forward pass solutions generated by the
inner loop is an optimal solution of (̂P).

Note that with a similar argument it can be shown that the inner loop terminates as
soon as Qi

t (̂x
i
t−1) ≥ Q̂R

t (̂xit−1) for all t = 2, ..., T .
Considering that the inner loop is integrated into an outer loop improving theMILP

approximations of (P), infinite convergence is not directly useful.Moreover, infinitely
many binary refinements are not computationally feasible. However, we can deduce
that an approximately optimal solution of (̂P) is determined in a finite number of
iterations.

Corollary 4.4 For any stopping tolerance ε̂ > 0, the inner loop stops in a finite number
of iterations with an ε̂-optimal solution of (̂P).
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4.2 Convergence of the outer loop

We start our convergence analysis of the outer loop with a feasibility result for the
solutions determined in the inner loop, which follows from the convergence results in
[9]. The main idea is that, as the domain is bounded for all functions γ ∈ Γ , using a
longest-edge bisection, after a finite number of steps, all considered simplices become
sufficiently small (since in the worst case all simplices have been refined sufficiently
often).

Lemma 4.5 ([9]) Using longest-edge bisection for the piecewise linear relaxation
refinements within NC-NBD yields optimal solutions

(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T for (̂P�) in

the inner loop, which

(a) are approximately feasible for (P) after a finite number of steps �,
(b) become feasible for (P) asymptotically in the number of refinements �.

Next we show that with decreasing the feasibility error also the deviation in the
optimal value between (̂P�) and (P) can be controlled.

As a preliminary result, we obtain that for sufficiently small feasibility toler-
ances ε̂γ for all γ ∈ Γ , there exists a neighborhood of the optimal solution
x̂� := (

(̂z�t , x̂
�
t , ŷ

�
t )

)
t=1,...,T of problem (̂P�) containing a feasible point x̃� :=(

(̃z�t , x̃
�
t , ỹ

�
t )

)
t=1,...,T of (P). This follows primarily from the continuity of all func-

tions in (P).

Lemma 4.6 For any δ > 0, there exists some �̂ ∈ N such that for all � ≥ �̂ there exists
some feasible point x̃� of (P) with

‖̃x� − x̂�‖2 ≤ δ.

Applying Lemma 4.6 yields the following result with respect to the deviation in the
optimal value between (̂P�) and (P).

Theorem 4.7 There exists some ˆ̂� ∈ N such that for all � ≥ ˆ̂� we have

0 ≤ v − v̂� ≤ ε.

Proof The proof makes use of the Lipschitz continuity of ft , Lemma 4.5 and
Lemma 4.6 to bound v − v̂� from above by L f δ + ∑T

t=1 ε̂ ft (with ε̂ ft deduced from
ε̂γ with γ = ft ). The assertion then follows with ε := L f δ +∑T

t=1 ε̂ ft . For a detailed
proof see Appendix F. ��

We obtain the central convergence result for NC-NBD:

Theorem 4.8 NC-NBD has the following convergence properties:

(a) Assume that for all � the MILP (̂P�) is solved to global optimality in a finite
number of steps. Then, if NC-NBD does not terminate with ε = 0, the sequence of
lower bounds (̂v�)�∈N converges to v and the outer loop solutions converge to an
optimal solution of (P).
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(b) Let ε = ε̂ > 0. Then, if NC-NBD does not terminate, it converges to an ε̂-optimal
solution of (P).

(c) For any ε > ε̂ > 0, NC-NBD terminates with an ε-optimal solution of (P) after
a finite number of steps.

Proof See Appendix G. ��

5 Computational results

We illustrate the adequacy of using the NC-NBD to solve multistage non-convex
MINLPs by applying it to moderate-sized instances of a unit commitment problem.
NC-NBD is implemented in Julia-1.5.3 [7] based on the SDDP.jl package [12],
which provides an existing implementation for SDDP. More implementation details
are presented in Appendix H.

The considered unit commitment problem is formally described in detail in
Appendix I. Importantly, the considered problem contains binary state variables, but
also continuous state variables, such that a binary approximation of the state vari-
ables is required in the backward pass of NC-NBD. Additionally, all instances contain
a nonlinear function in the objective. In the base instances, we consider a concave
quadratic emission cost curve in the objective. In the valve-point instances, addition-
ally, we consider a non-convex fuel cost curve with a sinusoidal term. In both cases,
we analyze instances with 2 to 36 stages and 3 to 10 generators, resulting in 6 to 20
state variables. More details on our parameter settings and the complete test results
for all instances are presented in Appendix I.

The results show that NC-NBD succeeds to solve multistage non-convex MINLPs
with a moderate number of stages and state variables to (approximate) global optimal-
ity. It converges to the globallyminimal point for each of the instances and, considering
our 1% tolerance, terminates with valid upper and lower bounds for v.

For the base instances, we observe long computation times of several minutes
compared to state-of-the-art solvers for MINLPs, which solve the problems in a few
seconds, though.We address some of the reasons and possible solutions for this behav-
ior at the end of this section. As the results for problems with a small number of state
variables, but many stages look most promising, for our valve-point instance tests we
focus on such instances.

For these instances, the sinusoidal terms in the objective exclude many existing
general purpose solvers from application. A sample of the obtained results is presented
inTable 1, for the complete ones, seeAppendix I. The results show thatNC-NBD is less
efficient than existing solvers for problems with few stages, but becomes competitive
with a larger number of stages. Especially for the instanceswith 36 stages, conventional
solvers have difficulties closing the optimality gap while NC-NBD manages to solve
the instances in reasonable time.

These results confirm that NC-NBD should be best suited for multistage problems
with a large number of stages, but a relatively small number of state variables, as the
obtained subproblems remain sufficiently small even for a larger number of iterations,
while general purpose solvers may start to struggle due to the combination of many
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Table 1 Solution times in sec. for valve-point instances with three different demand time series

T # of Gen. Demand LINDOGlobal Couenne NC-NBD

10 3 v1 201 29 1074

16 3 v1 135 273 760

24 3 v1 – 4427 1408

24 3 v2 1562 647 771

24 4 v1 – 349 1220

24 4 v2 2603 – 4191

36 4 v1 – – 6816

36 4 v2 2733 7501 3646

36 4 v3 – – 3497

stages and nonlinear terms. Therefore, NC-NBD may also be useful for stochastic
programs where the deterministic equivalent becomes computationally infeasible for
monolith approaches. To investigate this is left for future research.

While some of the test results look promising, we still see substantial potential for
improvement. This should also help to make NC-NBDmore efficient and competitive
for problems with a larger number of state variables. It is a known drawback of SDDiP
[55], which is inherited by NC-NBD, that existing methods to solve the Lagrangian
dual problemsmay take extremely long to converge.To someextent, this couldpossibly
be mitigated by additionally using different cut types such as strengthened Benders
cuts [55], thus, only constructing tight cuts every few iterations. Yet, developing more
efficient solution methods is an important open research question.

Additionally, with each projected cut, the considered subproblems become con-
siderably larger. While we implemented a simple cut selection scheme to reduce the
subproblem size, more sophisticated approaches may be required to keep the subprob-
lems tractable for applications with many state variables.

Finally, so far,we assume that the outer loopMINLPs are solved to global optimality
(A5) directly. In a more efficient implementation of NC-NBD, these subproblems
should be approximated as well.

6 Conclusion

Wepropose the non-convexnestedBenders decomposition (NC-NBD)method to solve
multistage non-convex MINLPs. The method is based on combining piecewise linear
relaxations, regularization, binary approximation and cutting-plane techniques in a
unique and dynamic way.We are able to prove that NC-NBD is guaranteed to compute
an ε-optimal solution for the originalMINLP in afinite number of steps.Computational
results for some moderate-sized instances of a unit commitment problem demonstrate
its applicability to multistage problems.

We require all constraints to be continuous and the objective function to be Lips-
chitz continuous, which are common assumptions in nonlinear optimization. We also
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assume complete recourse for the multistage problem. Moreover, the regularization
factors are assumed to be sufficiently large to ensure exact penalization in the regular-
ized subproblems. If this is not the case, the factors can be increased gradually within
NC-NBD.

In contrast to previous approaches to solve multistage non-convex problems, we do
not require the value functions to be monotonic in the state variables [36] and allow
the state variables to enter not only the objective function, but also the constraints.
The latter avoids the assumption of oracles to handle indicator functions [52].

In NC-NBD, we combine dynamic binary approximation of the state variables,
cutting-plane techniques tailor-made for binary state variables and a projection from
the binary to the original space. This way, we are able to obtain non-convex, piece-
wise linear cuts to approximate the non-convex value functions of multistage MILPs.
Using some additional regularization, this is even possible if those value functions are
not (Lipschitz) continuous. Together with piecewise linear relaxations, this yields
non-convex underestimators for the non-convex value functions of MINLPs. All
approximations are refined dynamically and, by careful design, it is ensured that all
cuts remain valid even with such refinements.

The proposed method can be enhanced to solve stochastic MINLPs as well. In
particular, a sampling-based approach like in SDDP could be used. In such case some
adaptions have to be made with respect to the refinement criteria (forward solutions
may remain unchanged for several iterations until the right scenarios are sampled) or
the convergence checks, though.

While the presented version of NC-NBD already uses approximations which are
dynamically refined, different strategies may be even more dynamic and efficient in
practice. For instance, the piecewise linear relaxations could be refined dynamically
in the inner loop as well.

The main drawback of NC-NBD is that the considered subproblems can become
severely large, since for binary approximation, for piecewise linear approximations
and for cut projection, a high number of additional variables and constraints may
have to be introduced. This can become problematic, especially, if a very high binary
expansion precision is required to approximate the value functions sufficiently good
in the forward solutions. Recent results show that the number of binary variables K
required grows linearly with the dimension nt of state variables and logarithmically
with the inverse of the binary precision βt [55].

Therefore, in its current form, NC-NBD is best applicable to multistage MINLPs
which are too large to solve in their extensive form, but for which each subproblem is
sufficiently small and contains only a few nonlinear functions.
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A Proof of Lemma 3.8

Proof We start proving the second inequality. We have

Q̂
R,i
t

(xi
Bt−1,Q

i+1
t+1) = min

zt∈Xt−1
Q̂

i
t
(zt ,Q

i+1
t+1) + σt‖xiBt−1 − zt‖

= min
zt∈[0,1]Kt−1

Q̂
i
t
(Bt−1zt ,Q

i+1
t+1) + σt‖Bt−1(λ

i
t−1 − zt )‖

≤ min
zt∈[0,1]Kt−1

Q̂
i
t
(Bt−1zt ,Q

i+1
t+1) + σt‖Bt−1‖‖λit−1 − zt‖

= min
zt∈[0,1]Kt−1

Q̂
i
Bt

(zt ,Q
i+1
t+1) + σt‖Bt−1‖‖λit−1 − zt‖

= Q̂
R,i
Bt

(λit−1,Q
i+1
t+1).

The inequality follows from ‖Bt−1‖ being the induced matrix norm to the used
vector norm. The last equality is obtained by choosing the same norm and αt :=
σt‖Bt−1‖ as regularization factor in (̂PR,i

Bt (λi
t−1,Q

i+1
t+1)).

To show the first inequality, we construct a dual vector componentwise by

π̂t j :=
{
lt , if λit−1, j = 1

−lt , if λit−1, j = 0.

This vector is feasible, as it satisfies ‖π̂t‖∞ ≤ lt . By feasibility and by definition of
the Lagrangian dual (Di

Bt(λ
i
t−1,Q

i+1
t+1)) it follows

φBt (λ
i
t−1) ≥ min

zt∈[0,1]Kt−1
Q̂

i
Bt

(zt ,Q
i+1
t+1) + π̂�

t (λit−1 − zt ). (14)

Moreover, by construction we have π̂t j (λ
i
t−1, j − zt j ) = lt |λit−1, j − zt j | in each com-

ponent j . Inserting this into (14) and choosing lt ≥ αt , we obtain the first inequality.

B Proof of Lemma 3.10

Proof Consider line (4) in the KKT conditions. By rearranging and taking norms on
both sides, we obtain

‖νt − μt‖ = ‖πt+1 + B�
t ηt‖ ≤ ‖πt+1‖ + ‖B�

t ηt‖ ≤ ‖πt+1‖ + ‖B�
t ‖‖ηt‖. (15)
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The inequalities follow with the triangle inequality and with the compatibility of the
matrix norm.

We can bound all three norms in (15) individually. In the Lagrangian dual, we
have ‖πt+1‖ ≤ σt+1‖Bt‖. With Remark 3.9, we can bound ‖B�

t ‖ and with Assump-
tion (A4), we have ‖ηt‖ ≤ ρt .

For example, using the ∞-norm, we obtain

‖νt − μt‖ ≤ ‖πt+1‖∞ + ‖B�
t ‖∞‖ηt‖∞ ≤ σt+1‖Bt‖1 + ‖Bt‖1ρt ≤ Ut,max(σt+1 + ρt ).

By the equivalence of norms, we obtain similar bounds using other norms. This
means that every entry of νt −μt is bounded by this constant. Moreover, since in each
component only νt or μt can be non-zero, this also implies that the components of νt
and μt are bounded by this constant. ��

C Proof of Lemma 4.1

Proof From the Lipschitz continuity of QR,i
t

we have

QR,i
t

(̂xit−1,Q
i+1
t+1) − QR,i

t
(̂xi

B,t−1,Q
i+1
t+1) ≤ LR

t ‖x̂ it−1 − x̂ i
B,t−1‖. (16)

Analogously, using Assumption (A4) and Lemma 3.11, for the cut approximation we
obtain

Qi+1
t (̂xi

B,t−1) − Qi+1
t (̂xit−1) ≤ ρt‖x̂ it−1 − x̂ i

B,t−1‖. (17)

Starting with (17) it follows

Qi+1
t (̂xit−1) ≥ Qi+1

t (̂xi
B,t−1) − ρt‖x̂ it−1 − x̂ i

B,t−1‖
≥ φi+1

Bt (λit−1) − ρt‖x̂ it−1 − x̂ i
B,t−1‖

≥ Q̂
R,i
t

(̂xi
B,t−1,Q

i+1
t+1) − ρt‖x̂ it−1 − x̂ i

B,t−1‖
≥ QR,i

t
(̂xit−1,Q

i+1
t+1) − (LR

t + ρt )‖x̂ it−1 − x̂ i
B,t−1‖.

The second inequality follows from the definition of Qi+1
t (·). The third inequality

follows from Lemma 3.8 and the last one is obtained using (16). ��

D Proof of Lemma 4.2

Proof The structure of the proof is inspired by the proof for Lemma 4 in [1].
As the inner loop does not terminate and X is compact, there exists an infinite

sequence of forward pass trial solutions (̂xi )i∈N with cluster points. Let x̂∗ ∈ X be
such cluster point and (̂xi j ) j∈N a subsequence of (̂xi )i∈N with lim j→∞ x̂ i j = x̂∗.

We show that lim j Q
i j
t (̂x

i j
t−1) ≥ Q̂R

t (̂x∗
t−1) holds by backward induction.
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For t = T + 1, this relation is trivially true, since no stage follows after T . Now,
assume it already holds for stage t + 1, i.e.,

lim
j
Q

i j
t+1(̂x

i j
t ) ≥ Q̂R

t+1(̂x
∗
t ).

We consider two subsequent indices in the subsequence (̂xi j ) j∈N.

Q
i j+1
t (̂x

i j
t−1) ≥ Q

i j−1+1
t (̂x

i j
t−1) ≥ Q

i j−1+1
t (̂x

i j−1
t−1 ) − ρt‖x̂ i jt−1 − x̂

i j−1
t−1 ‖,

where the first inequality follows from the monotonicity of Qt (·) in i and the second
inequality uses Lemma 3.11.

By adding zero, we obtain

Q
i j+1
t (̂x

i j
t−1) ≥ Q̂

R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) + Q

i j−1+1
t (̂x

i j−1
t−1 )

− Q̂
R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) − ρt‖x̂ i jt−1 − x̂

i j−1
t−1 ‖.

We can now also use the monotonicity of Q̂
R
t
(·) in i and apply Lemma 4.1 to obtain

Q
i j+1
t (̂x

i j
t−1) ≥ Q̂

R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) + Q

i j−1+1
t (̂x

i j−1
t−1 )

− Q̂
R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1+1
t+1 ) − ρt‖x̂ i jt−1 − x̂

i j−1
t−1 ‖

≥ Q̂
R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 )

− (LR
t + ρt )‖x̂ it−1 − x̂ i

B,t−1‖ − ρt‖x̂ i jt−1 − x̂
i j−1
t−1 ‖

(18)

Moreover, we expand

Q̂
R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) = f̂t (̂x

i j−1
t , ŷ

i j−1
t ) + σt‖x̂ i j−1

t−1 − ẑ
i j−1
t ‖ + Q

i j−1
t+1 (̂x

i j−1
t ) (19)

and

Q̂R
t (̂x

i j−1
t−1 ) = f̂t (x̃t , ỹt ) + σt‖x̂ i j−1

t−1 − z̃t‖ + Q̂R
t+1(x̃t ) (20)

with corresponding optimal points (̂z
i j−1
t , x̂

i j−1
t , ŷ

i j−1
t ) and (z̃t , x̃t , ỹt ).

Then with (20) it follows

Q̂R
t (̂x

i j−1
t−1 ) ≤ f̂t (̂x

i j−1
t , ŷ

i j−1
t ) + σt‖x̂ i j−1

t−1 − ẑ
i j−1
t ‖ + Q̂R

t+1(̂x
i j−1
t )

as the solution from (19) is feasible. Thus,

Q̂R
t (̂x

i j−1
t−1 ) − Q̂

R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) ≤ Q̂R

t+1(̂x
i j−1
t ) − Q

i j−1
t+1 (̂x

i j−1
t ).
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Rearranging yields

Q̂
R,i j−1

t
(̂x

i j−1
t−1 ,Q

i j−1
t+1 ) ≥ Q̂R

t (̂x
i j−1
t−1 ) + Q

i j−1
t+1 (̂x

i j−1
t ) − Q̂R

t+1(̂x
i j−1
t ). (21)

With inserting (21) in (18), we obtain

Q
i j+1
t (̂x

i j
t−1) ≥ Q̂R

t (̂x
i j−1
t−1 )

︸ ︷︷ ︸
(∗)

+Q
i j−1
t+1 (̂x

i j−1
t ) − Q̂R

t+1(̂x
i j−1
t )

︸ ︷︷ ︸
(#)

− (LR
t + ρt )‖x̂ it−1 − x̂ i

B,t−1‖︸ ︷︷ ︸
(+)

− ρt‖x̂ i jt−1 − x̂
i j−1
t−1 ‖

︸ ︷︷ ︸
(−)

We take limits on both sides. (∗) converges to Q̂R
t (̂x∗

t−1), since the function is
continuous. (#) becomes greater than or equal to zero by the induction hypothesis.
(+) tends to zero with Lemma 3.6 since with j to ∞, the binary precision βt goes to

0. (−) tends to zero as x̂
i j
t−1 and x̂

i j−1
t−1 both converge to x̂∗

t−1.
Thus, the induction is proven for t . As this result holds for any cluster point of

(̂xi )i∈N, the assertion follows. ��

E Proof of Theorem 4.3

Proof Consider the first stage optimal value v̂FP,i of the forward pass. By recursion
we obtain

v̂FP,i = v̂
i +

T∑

t=2

Qt (̂x
i
t−1) − Q̂

R,i
t

(̂xit−1,Q
i
t+1)

and hence

v̂FP,i ≥ v̂
i +

T∑

t=2

Qt (̂x
i
t−1) − Q̂R

t (̂xit−1) ≥ v̂R +
T∑

t=2

Qt (̂x
i
t−1) − Q̂R

t (̂xit−1). (22)

As in the proof of Lemma 4.2, let (̂xi j ) j∈N denote a convergent subsequence of
(̂xi )i∈N, with lim j x̂ i j = x̂∗. Applying (22) to this subsequence and taking limits on
both sides, yields

lim
j

v̂FP,i j ≥ v̂R + lim
j

(
T∑

t=2

Qt (̂x
i j
t−1) − Q̂R

t (̂x
i j
t−1)

)

≥ v̂R +
T∑

t=2

(
Q̂R

t (̂x∗
t−1) − Q̂R

t (̂x∗
t−1)

)

︸ ︷︷ ︸
=0

.
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The second inequality here stems from Equation (13). Using Lemma 3.4 and Assump-
tion (A3), yields lim j v̂

FP,i j ≥ v̂.
As v̂FP,i j is also a lower bound to v̂, we have lim j v̂

FP,i j ≤ v̂. Thus, lim j v̂
FP,i j =

v̂. Since this is true for any cluster point x̂∗ of (̂xi )i∈N, the inner loop converges to the
optimal value v̂. With a similar reasoning it follows that every such cluster point is an
optimal point of (P̂). ��

F Proof of Theorem 4.7

Proof Let x∗ := (
(z∗t , x∗

t , y
∗
t )

)
t=1,...,T be an optimal point of (P) and let

(
(̂z�t , x̂

�
t , ŷ

�
t )

)
t=1,...,T be an optimal point of its outer approximation (̂P�). Then, we

have

v − v̂� =
T∑

t=1

ft (x
∗
t , y

∗
t ) − f̂ �

t (̂x�
t , ŷ

�
t ) (23)

As (̂P�) is a relaxation of (P) this expression is clearly non-negative for all �. More-
over, analogously to the feasibility result in Lemma 4.5 for sufficiently large �, for all
t we have

0 ≤ ft (̂x
�
t , ŷ

�
t ) − f̂ �

t (̂x�
t , ŷ

�
t ) ≤ ε ft . (24)

We distinguish two cases: First, let
∑T

t=1 ft (x∗
t , y

∗
t ) ≤ ∑T

t=1 ft (̂x�
t , ŷ

�
t ), e.g.,

because (̂z�t , x̂
�
t , ŷ

�
t ) is feasible for (P). Then, inserting this into (23) and using (24)

it directly follows v − v̂� ≤ ∑T
t=1 ε ft .

Now let
∑T

t=1 ft (x∗
t , y

∗
t ) >

∑T
t=1 ft (̂x�

t , ŷ
�
t ). With Lemma 4.6, for any δ > 0,

there exists some �̂ ∈ N such that for all � ≥ �̂ there exists some feasible point
x̃� := (

(̃z�t , x̃
�
t , ỹ

�
t )

)
t=1,...,T of (P) with ‖̃x� − x̂�‖2 ≤ δ.

Clearly,
∑T

t=1 ft (x∗
t , y

∗
t ) ≤ ∑T

t=1 ft (̃x�
t , ỹ

�
t ). Therefore,

0 ≤
T∑

t=1

ft (x
∗
t , y

∗
t ) −

T∑

t=1

ft (̂x
�
t , ŷ

�
t ) ≤

T∑

t=1

(
ft (̃x

�
t , ỹ

�
t ) − ft (̂x

�
t , ŷ

�
t )

)
. (25)

With Assumption (A1) ft is Lipschitz continuous with some constant L ft > 0.
Thus,

∑T
t=1 ft is Lipschitz continuous with constant L f := ∑T

t=1 L ft and (25) can
be bounded from above by L f δ.

We can write the right-hand side of (23) as

T∑

t=1

(
ft (x

∗
t , y

∗
t ) − ft (̂x

�
t , ŷ

�
t )

)
+

T∑

t=1

(
ft (̂x

�
t , ŷ

�
t ) − f̂ �

t (̂x�
t , ŷ

�
t )

)
.

Then, with (24) and the previous result it follows that v − v̂� ≤ L f δ + ∑T
t=1 ε ft .
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Choosing ε := L f δ + ∑T
t=1 ε ft proves the assertion. ��

G Proof of Theorem 4.8

Proof (a) From Theorem 4.7 it follows that if NC-NBD does not terminate for ε = 0,
infinitely many piecewise linear relaxation refinements occur and v̂� converges to
v. Using the premise, we have v̂� = v̂�. Therefore, v̂� converges to v. This also
implies that the cut approximations Q�

t+1(·) become tight at x�
t asymptotically.

Thus, the solutions
(
(z�t , x

�
t , y

�
t )

)
t=1,...,T converge to an optimal solution for (P).

(b) For sufficiently large �, as in the proof of Theorem 4.7, we have

T∑

t=1

ft (̂x
�
t , ŷ

�
t ) ≤

T∑

t=1

f̂ �
t (̂x�

t , ŷ
�
t ) +

T∑

t=1

ε ft .

Using this, and the termination of the inner loop, it follows

T∑

t=1

ft (̂x
�
t , ŷ

�
t ) ≤ v̂

� +
T∑

t=1

ε ft ≤ v̂� + ε̂ +
T∑

t=1

ε ft ≤ v + ε̂ +
T∑

t=1

ε ft .

For � approaching infinity, x̂� becomes feasible. Thus,

v ≤ lim
�

v� ≤ lim
�

T∑

t=1

ft (̂x
�
t , ŷ

�
t ) ≤ lim

�
v + ε̂ +

T∑

t=1

ε ft = v + ε̂.

Since, v� is bounded from above and non-increasing, the limit exists. This proves
the assertion.

(c) This follows directly from b).
��

H Implementation details

The NC-NBD method is implemented in Julia-1.5.3 [7] using the JuMP.jl package
[13] for optimization. The implementation is mainly derived from package SDDP.jl
[12], which is enhanced by extensions specific to NC-NBD. To model piecewise
linear approximations of multidimensional functions, we draw on Delaunay.jl
[43] to determine triangulations. All MILP subproblems are solved with CPLEX and
all MINLP subproblems are solved with appropriate MINLP solvers, both accessed
using GAMS.jl [17]. The Lagrangian duals are solved using Kelley’s cutting-plane
method or a Level Bundle method as implemented in SDDiP.jl [24]. To reduce the
size of the considered subproblems, a very basic Level cut selection technique is used
based on SDDP.jl. In our case, however, not only the previously visited trial points,
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but also the anchor points are used to determine dominated cuts. Our code is available
on GitHub [15].

All computations are performed on a machine with Intel(R) Xeon(R) E5-1630 v4
CPUand 128GBRAM.All benchmark runs using state-of-the-art solvers are executed
in GAMS 32.1.0.

I Unit commitment problem formulation and results

Weconsider a unit commitment problemwith thermal generators based on [2] for some
first tests of NC-NBD. To formulate this problem, we define the following elements:
Sets:

– G: set of thermal generators

Data:

– p f
g : price of fuel for generator g [EUR/MWh]

– psg: price of start up for generator g [EUR]

– p
s
g: price of shut down for generator g [EUR]

– pd : price for not meeting demand or load shedding [EUR/MWh]
– pe: tax on emissions from generators [EUR/kg]
– dt : demand at hour t [MWh]
– cg: maximum hourly generation of generator g [MWh]
– cg: minimum hourly generation of generator g [MWh]
– r g: ramp-up rate of generator g [MWh/h]
– r g: ramp-up rate of generator g [MWh/h]
– ag, bg, cg: coefficients of the emission cost curve
– vag , v

b
g, v

c
g, v

d
g , v

e
g: coefficients of the fuel cost curve

Decision Variables:

– xgt : electricity production from generator g at time t [MWh]
– ygt : binary variable modeling commitment of generator g at time t
– ygt : binary variable modeling start-up of generator g at time t
– y

gt
: binary variable modeling shut-down of generator g at time t

– dt , dt : variables modeling demand slack at time t

The objective is to minimize the total costs of electricity generation, which consists
of different cost components. For all instances, the objective function is nonlinear due
to a concave quadratic function modeling emission costs with ag < 0 for all g ∈ G
[11].

Additionally, we consider two different types of fuel cost function. In the first case
(base instances), the fuel cost function is linear

c f
gt (xgt , ygt ) = p f

g xgt , (26)
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with a static fuel price p f
g . In the second case (valve-point instances), we consider the

more sophisticated cost function

c f
gt (xgt , ygt ) = vag x

2
gt + vbgxgt + vcg ygt + vdg

∣∣ sin(veg(cg − xgt ))
∣∣, (27)

including a convex quadratic term and a sinusoidal term, modeling the so-called valve
point effect of steam turbines [34].

Then, the unit commitment model reads

(PUC ) min
∑

g∈G

T∑

t=1

c f
gt (xgt , ygt ) +

∑

g∈G

T∑

t=1

psg ygt +
∑

g∈G

T∑

t=1

p
s
g ygt (28)

+
∑

g∈G

T∑

t=1

peg
(
agx

2
gt + bgxgt + cg ygt

)
+

T∑

t=1

pd(dt + dt ) (29)

s.t.
∑

g∈G
xgt + dt − dt = dt , ∀t = 1, . . . , T (30)

xgt ≤ cg ygt , ∀g ∈ G, t = 1, . . . , T (31)

xgt ≥ cg ygt , ∀g ∈ G, t = 1, . . . , T (32)

xgt − xg,t−1 ≤ r g yg,t−1 + cg(1 − yg,t−1), ∀g ∈ G, t = 1, . . . , T
(33)

xg,t−1 − xg,t ≤ r g ygt + cg(1 − ygt ), ∀g ∈ G, t = 1, . . . , T (34)

ygt ≥ ygt − yg,t−1, ∀g ∈ G, t = 1, . . . , T (35)

y
gt

≥ yg,t−1 − ygt , ∀g ∈ G, t = 1, . . . , T (36)

xgt ≥ 0, ∀g ∈ G, t = 1, . . . , T (37)

dt , dt ≥ 0, ∀t = 1, . . . , T (38)

ygt , ygt , ygt ∈ {0, 1} , ∀g ∈ G, t = 1, . . . , T . (39)

In this model, both, the continuous generation variables xgt and the commitment
variables ygt , for all g ∈ G, t = 1, . . . , T , act as state variables. For the states at time
t = 0, we use some fixed inputs. (30) denotes the balance between generation and
demand. It also contains slack variables for unmet or overfulfilled demand, which are
penalized in the objective. By this construction, Assumption (A2) is satisfied. (31)–
(32) denote limits to the generator output, while (33)–(34) define ramping constraints.
Those ramping constraints require xgt to be a state variable. (33)–(34) are required to
model start-up and shut-down costs.

For our input data, we draw on unit commitment instances created by Frangioni
and published in the OR-Library [3]. The data is enhanced by own assumptions, as
it does not cover all inputs in our problem formulation. We consider a number T of
stages between 2 and 36 and a number G of generators between 3 and 10.

We solve all instances using NC-NBDwith a relative optimality tolerance of 1% for
the outer loop. AllMILP subproblems are solved exactly while the outer loopMINLPs
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Table 2 Bounds obtained for
base instances in 100 EUR

BARON NC-NBD NC-NBD NC-NBD
T G v UB LB Time (s)

2 5 587.4 587.4 586.5 8

2 10 1266.1 1266.4 1262.3 93

3 5 849.8 849.8 849.3 17

3 10 1830.5 1830.5 1816.3 1502

4 5 1110.2 1110.2 1106.8 25

5 5 1374.7 1374.7 1372.6 202

10 3 2593.6 2598.3 2587.5 325

24 3 7037.5 7037.5 7037.5 674

are solved to an optimality tolerance of 10−3. We use the lower bound provided by
the MINLP solver to ensure that still a valid lower bound is obtained in the outer loop.
The Lagrangian duals are solved with an optimality tolerance of 10−4. In case that
σt is not chosen large enough for some stage t from the beginning, it is increased
iteratively within the solution procedure once identified. For the base instances, we
use BARON [42,48] to solve the outer loop subproblem, for the valve-point instances
we draw on LINDOGlobal [44], as BARON does not support sinusoidal functions.
For the same reason, ANTIGONE [32], SCIP [16] and Gurobi [20] cannot be applied
to the valve-point instances, so that we refer to LINDOGlobal and Couenne [5] as
benchmarks.

The obtained upper bounds (UB) and lower bounds (LB) for the base instances are
summarized in Table 2 and compared with the optimal point obtained by BARON.

All test instances can be solved by benchmark solvers in a few seconds, thus,
outperforming NC-NBD. Still, these results can be regarded as a proof of concept for
applying NC-NBD to multistage non-convex MINLPs, as in each case, the globally
minimal point is succesfully approximated.

For the valve-point instances, we consider a larger number of stages, but only 3 or
4 generators, i.e., 6 or 8 state variables, to focus on cases, in which NC-NBD looks
most promising. For cases with many stages, we test differently scaled demand time
series, as this seems to have a considerable effect on solution times. All instances are
solved with a maximum solution time of two hours. The results are summarized in
Table 3. If a solver does not terminate within the time limit, this is indicated by “-”.

For a small number of stages, NC-NBD takes significantly more time than conven-
tional solvers. With a larger number of stages, this difference vanishes, though. For
36 stages, NC-NBD manages to solve all considered instances within less than two
hours, while LINDOGlobal and Couenne show more variance in computation time.
For one instance, when terminated after two hours, they still show a 5% optimality
gap.
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Table 3 Results obtained for valve-point instances in 100 EUR

T G Demand LINDOGlobal Couenne NC-NBD

10 3 v1 UB 3187.8 3178.0 3185.8

LB 3166.7 3161.2 3158.6

Time (s) 201 29 1074

16 3 v1 UB 5602.4 5584.1 5584.1

LB 5553.0 5584.1 5548.3

Time (s) 135 273 760

24 3 v1 UB 8593.4 8554.8 8554.8

LB 8446.3 8545.0 8498.6

Time (s) – 4427 1408

24 3 v2 UB 9518.0 9508.8 9509.7

LB 9428.5 9414.9 9432.4

Time (s) 1562 647 771

24 4 v1 UB 9977.2 9965.1 9964.8

LB 9848.3 9865.5 9867.5

Time (s) – 349 1220

24 4 v2 UB 8557.9 8587.1 8572.3

LB 8473.1 8310.9 8492.2

Time (s) 2603 – 4191

36 4 v1 UB 12,654.3 12,662.4 12,638.8

LB 11,960.6 11,981.0 12,547.8

Time (s) – – 6816

36 4 v2 UB 10,742.7 10,737.5 10,737.5

LB 10,651.7 10,737.5 10,630.4

Time (s) 2733 7501 3646

36 4 v3 UB 14,013.3 13,981.5 13,978.7

LB 13,678.2 13,767.1 13,879.1

Time (s) – – 3497
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