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Abstract

Representations of sequential data are commonly based on the assumption
that observed sequences are realizations of an unknown underlying stochas-
tic process. Usually, the determination of such a representation is construed
as a learning problem and yields a sequence model. In this context, the model
must be able to capture the multi-modal nature of the data, without blurring
between single modes. For modeling the underlying stochastic process, com-
monly used neural network-based approaches either learn an implicit repre-
sentation by using stochastic inputs or units, or learn to parameterize a proba-
bility distribution. As such, these models usually incorporate Monte Carlo or
other approximation techniques in order to perform parameter estimation and
probabilistic inference. This even holds true for regression-based approaches
based on Mixture Density Networks, which still require Monte Carlo simu-
lation for performing multi-modal inference. Thus, a research gap in fully
regression-based approaches for parameter estimation and probabilistic in-
ference emerges.

Towards this end, this thesis proposes a probabilistic extension to Bézier
curves (𝒩-Curves), as a basis for effectively modeling continuous-time
stochastic processes with a bounded index set. The proposed stochastic pro-
cess model is denoted as the𝒩-Curve model and is based on Mixture Density
Networks (MDN) and Bézier curves with Gaussian random variables as con-
trol points. Taking an MDN-based approach is in line with recent attempts
to address the problem of quantifying uncertainty as a regression problem
and yields a generic model, which is generally applicable as a basic model
for probabilistic sequence modeling. Key advantages of the model include
the ability of generating smooth multi-mode predictions in a single inference
step, which avoids the need for Monte Carlo simulation. Further, being based
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Abstract

on Bézier curves, the model can, in theory, be scaled up to high dimensional
sequence data by embedding the control points in a high dimensional space.
In order to approach theoretical limitations imposed by the restriction to a
bounded index set, a conceptual extension to the 𝒩-Curve model, capable
of modeling infinite stochastic processes, is presented. Essential properties
of the proposed approach and its extension are illustrated by several toy
examples considering a sequence synthesis task.

With the original 𝒩-Curve model being sufficient for most real-world appli-
cations, a thorough evaluation is conducted on different multi-step sequence
prediction tasks for evaluating the capabilities of the model applied to real-
world data. First, themodel is evaluated against commonly used generic prob-
abilistic sequence models on a human trajectory prediction task, proving the
capabilities of the𝒩-Curve model, as the model outperforms other the mod-
els in this comparison. A qualitative evaluation investigates the behavior of
the model in a prediction context. Further, difficulties in assessing the per-
formance of probabilistic sequence models in a multi-modal setting are dis-
cussed. In addition, the model is applied to a human motion prediction task,
assessing the claimed scalability of the model to higher-dimensional data. In
this task, the model outperforms commonly used simple and neural network-
based baselines and performs on par with different state-of-the-art models on
several occasions, proving its capabilities in this higher-dimensional example.
Further, difficulties in covariance estimation and the smoothing property of
the 𝒩-Curve model are discussed.
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Kurzfassung

Repräsentationen sequenzieller Daten basieren in der Regel auf der Annah-
me, dass beobachtete Sequenzen Realisierungen eines unbekannten zugrun-
deliegenden stochastischen Prozesses sind. Die Bestimmung einer solchen Re-
präsentation wird üblicherweise als Lernproblem ausgelegt und ergibt ein Se-
quenzmodell. DasModell muss in diesemZusammenhang in der Lage sein, die
multimodale Natur der Daten zu erfassen, ohne einzelne Modi zu vermischen.
Zur Modellierung eines zugrundeliegenden stochastischen Prozesses lernen
häufig verwendete, auf neuronalen Netzen basierende Ansätze entweder eine
Wahrscheinlichkeitsverteilung zu parametrisieren oder eine implizite Reprä-
sentation unter Verwendung stochastischer Eingaben oder Neuronen. Dabei
integrieren dieseModelle in der Regel Monte Carlo Verfahren oder andere Nä-
herungslösungen, um die Parameterschätzung und probabilistische Inferenz
zu ermöglichen. Dies gilt sogar für regressionsbasierte Ansätze basierend auf
Mixture Density Netzwerken, welche ebenso Monte Carlo Simulationen zur
multi-modalen Inferenz benötigen. Daraus ergibt sich eine Forschungslücke
für vollständig regressionsbasierte Ansätze zur Parameterschätzung und pro-
babilistischen Inferenz.

Infolgedessen stellt die vorliegende Arbeit eine probabilistische Erweiterung
für Bézierkurven (𝒩-Kurven) als Basis für die Modellierung zeitkontinuier-
licher stochastischer Prozesse mit beschränkter Indexmenge vor. Das vorge-
stellte Modell, bezeichnet als𝒩-Kurven –Modell, basiert auf Mixture Density
Netzwerken (MDN) und Bézierkurven, welche Kurvenkontrollpunkte als nor-
malverteilt annehmen. Die Verwendung eines MDN-basierten Ansatzes steht
im Einklang mit aktuellen Versuchen, Unsicherheitsschätzung als Regressi-
onsproblem auszulegen, und ergibt ein generischesModell, welches allgemein
als Basismodell für die probabilistische Sequenzmodellierung einsetzbar ist.
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Kurzfassung

Ein wesentlicher Vorteil des Modells ist unter anderem die Möglichkeit glat-
te, multi-modale Vorhersagen in einem einzigen Inferenzschritt zu generieren,
ohne dabei Monte Carlo Simulationen zu benötigen. Durch die Verwendung
von Bézierkurven als Basis, kann das Modell außerdem theoretisch für be-
liebig hohe Datendimensionen verwendet werden, indem die Kontrollpunk-
te in einen hochdimensionalen Raum eingebettet werden. Um die durch den
Fokus auf beschränkte Indexmengen existierenden theoretischen Einschrän-
kungen aufzuheben, wird zusätzlich eine konzeptionelle Erweiterung für das
𝒩-Kurven – Modell vorgestellt, mit der unendliche stochastische Prozesse
modelliert werden können. Wesentliche Eigenschaften des vorgestellten Mo-
dells und dessen Erweiterung werden auf verschiedenen Beispielen zur Se-
quenzsynthese gezeigt.

Aufgrund der hinreichenden Anwendbarkeit des 𝒩-Kurven – Modells auf
die meisten Anwendungsfälle, wird dessen Tauglichkeit umfangreich auf ver-
schiedenen Mehrschrittprädiktionsaufgaben unter Verwendung realer Daten
evaluiert. Zunächst wird das Modell gegen häufig verwendete probabilisti-
sche Sequenzmodelle im Kontext der Vorhersage von Fußgängertrajektorien
evaluiert, wobei es sämtliche Vergleichsmodelle übertrifft. In einer qualitati-
ven Auswertung wird das Verhalten des Modells in einem Vorhersagekontext
untersucht. Außerdem werden Schwierigkeiten bei der Bewertung probabi-
listischer Sequenzmodelle in einem multimodalen Setting diskutiert. Darüber
hinauswird dasModell imKontext der Vorhersagemenschlicher Bewegungen
angewendet, um die angestrebte Skalierbarkeit des Modells auf höherdimen-
sionale Daten zu bewerten. Bei dieser Aufgabe übertrifft das Modell allgemein
verwendete einfache und auf neuronalen Netzen basierende Grundmodelle
und ist in verschiedenen Situationen auf Augenhöhe mit verschiedenen State-
of-the-Art-Modellen, was die Einsetzbarkeit in diesem höherdimensionalen
Beispiel zeigt. Des Weiteren werden Schwierigkeiten bei der Kovarianzschät-
zung und die Glättungseigenschaften des𝒩-Kurven – Modells diskutiert.
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Notation

This chapter introduces the notation and symbolswhich are used in this thesis.

General notation

Scalars italic Roman and Greek lowercase letters 𝑎, 𝛼
Sets bold calligraphic Roman uppercase letters 𝓓
Sequences calligraphic Roman uppercase letters 𝒮
Vectors bold Roman lowercase letters x
Matrices bold Roman uppercase letters R
Random variables italic Roman uppercase letters 𝑋

Probability Distributions

𝒩 Gaussian normal distribution
Ξ Gaussian mixture distribution
𝑝(⋅), 𝑞(⋅) probability density functions
𝑝𝜃(⋅), 𝑞𝜙(⋅) probability density functions parameterized by 𝜃, 𝜙

Numbers, Indexing and Conventions

ℕ natural numbers

xi



Notation

ℕ0 natural numbers including zero (non-negative
integers)

ℝ real numbers
ℝ+
0 non-negative real numbers (including zero)

𝑡 indexing for points in time
𝑖, 𝑗, 𝑘 indexing for objects, measurements and points
𝑁,𝑀,𝐾 quantities
0 zero vector
I identity matrix

Parametric Curves and Sequence Modeling

𝒢𝑇 stochastic process with index set 𝑇
𝑇, 𝑇𝑁 index sets
𝓟,𝓟𝒩 set of (Gaussian) curve control points
𝐵𝓟(𝑡), 𝐵𝒩(𝑡) (probabilistic) parametric curve function
𝑏𝑖,𝑁(𝑡) Bernstein polynomials
𝜓,Ψ 𝒩-Curve (mixture)
𝜇𝜓(𝑡) 𝒩-Curve mean function
Σ𝜓(𝑡) 𝒩-Curve covariance function
𝜋 mixture weights
𝑝𝜓𝑡 (𝑥),𝑝Ψ𝑡 (𝑥) curve point probability density function
̃𝑡 meta-time index
𝑡𝑐 curve-time index
𝑚(𝑡) meta-time mapping
𝑚𝑐(𝑡) curve-time mapping
𝓓 (training/test) dataset
v sequence encoding
𝜃 model parameters
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1 Introduction

Sequential data, or rather timely ordered information, arises in the context of
many different applications, like for example risk assessment in autonomous
driving or in data-driven behavior analysis. In general, it is possible to reduce
the majority of such use-cases to more abstract inference tasks, like sequence
prediction. With real-world data being subject to noise and detection or an-
notation errors, the use of a probabilistic sequence model is favorable, as such
models also take uncertainty in the data into account.

(a) Trajectory prediction (b) Out-of-distribution detection

Figure 1.1: Exemplary sequence modeling tasks on different levels of abstraction: 2D trajectory
prediction in a constraint setting and out-of-distribution detection built upon the de-
rived probabilistic sequence model when training the prediction model. Both tasks
can contribute to a superordinate risk assessment application. The prediction task
(1.1a) is concerned with future trajectory prediction (red, green and blue distribu-
tions) given an observed trajectory (solid cyan). In such a structured environment, a
sequence model is learned, which is capable of capturing statistically relevant paths
through the given scene. As the sequence model provides a model for the underlying
data distribution, out-of-distribution detection can be performed given a trajectory
(1.1b). In this example, moving on the pathway is valid under the model, but moving
onto the grass is highly unlikely. The validity under the model is color-coded from
red (not valid) to blue (valid). Figure 1.1b is taken from [Har17].
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1 Introduction

The determination of such a probabilistic sequence model is commonly layed
out as a learning problem, where the model parameters are estimated from
given data samples. This formulation as a learning problem goes along with
the current dominance of deep learning approaches in a range of differ-
ent fields related to sequential data. However, working with uncertainties
and associated probability distributions, most current deep learning-based
approaches for probabilistic sequence modeling rely on the calculation of
intractable probability density functions. Because of that, variational or
sample-based approximations are generally required during training and
inference in such models. Although there exist regression-based approaches,
which try to avoid the need for such expensive approximations during
training, they still require Monte Carlo methods for inference.

Following this, a common ground for current sequence modeling approaches
can be observed in their need for Monte Carlo methods during inference.
Thus, a research gap in regression-based approaches for multi-modal prob-
abilistic inference emerges.

Towards this end, the primary goal of this thesis revolves around the formu-
lation of a fully regression-based probabilistic sequence model. In addition,
common drawbacks of existing models should be avoided, i.e.

1 The necessity of Monte Carlo or approximate Bayesian methods
during either training or inference

2 Common sequential approaches to sequence generation are often
uncontrolled and are prone to artifact generation,

Following this, this thesis proposes a probabilistic extension for parametric
curves for use in probabilistic sequence modeling and provides an implemen-
tation of the resulting model based on regression neural networks. The moti-
vation for basing the approach on parametric curves is driven by the following
expectations: First, modeling full curves enables instant multi-step inference
without iteration and the need for Monte Carlo methods. Further, generated
sequences are constrained by the underlying parametric curves. This, in turn,
is expected to help stabilizing training. In addition, artifact generation dur-
ing inference should be mitigated. Finally, modeling a stochastic process in
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1.1 Contributions

terms of a probabilistic parametric curve yields a compact representation of
said stochastic process.

1.1 Contributions

In compliance with the aforementioned primary objectives, the main contri-
butions provided in this thesis revolve around a novel probabilistic sequence
model, built on a probabilistic extension to parametric curves. As such, the
contributions can be ascribed to three categories: theory, algorithms and eval-
uation.

Theory: A probabilistic extension to Bézier curves and Bézier splines capable
of modelingmulti-modal stochastic processes is derived. In this extension, the
Bézier curve’s control points are assumed to be Gaussian, thus inheriting the
stochasticity to the curve points by linear combination, resulting in a model
for a continuous-time stochastic process. Discrete-time stochastic processes
can be represented by discretizing such a probabilistic curve. Multi-modality
is achieved, by combining multiple probabilistic curves into a mixture.

Algorithms: A learning- and regression-based approach for applying these
probabilistic parametric curves in different sequence modeling tasks, specifi-
cally synthesis and prediction, is proposed. The approach is based on a Mix-
ture Density Network, which outputs the parameters for (a mixture of) proba-
bilistic parametric curves. This enables multi-step sequence generation with-
out iteration or the need for Monte Carlo methods. Several toy examples
assess different aspects and qualities of the approach.

Evaluation: An extensive evaluation of the proposed model is provided for the
task of human trajectory prediction on real-world datasets. In addition, the
common approach to evaluation in human trajectory prediction is examined
with an attempt to provide insight into the suitability of the methodology for
different task setups. Emphasis is put especially on commonly used perfor-
mance measures. Finally, scalability of the approach is proven in a higher-
dimensional scenario given by human motion prediction.
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1 Introduction

Additional contributions to the field of human trajectory prediction exceeding
the topical scope of this thesis are given by:

1 A learning-based normalization for sequential data, which can be used
as a data preprocessing method [Hug20b].

2 An approach for estimating the complexity of a given benchmark
dataset accompanied by a ranking of commonly used datasets
[Hug21].

3 A complementary benchmark, aiming at a fine-grained evaluation of
trajectory prediction models, using a hierarchy of tasks [Hug20a].

1.2 Outline

The thesis is structured as follows: Chapter 2 provides a brief overview on the
most common probabilistic sequence models most state-of-the-art deep learn-
ing models are built upon. This background chapter also serves the purpose
of supporting the aforementioned claim for the revealed research gap. Chap-
ter 3 provides the derivation of a probabilistic extension for Bézier curves
and Bézier splines, including discussions on choices made for the approach
and comparisons with related probabilistic sequence models. Closely con-
nected to Chapter 3 is the proposed implementation of the probabilistic curve
model given in Chapter 4. Besides implementation details, e.g. the structure of
the model, several toy examples are provided, assessing different aspects and
qualities of the model. Chapter 5 provides a real-world evaluation of the pro-
posed model, using a low-dimensional and a higher-dimensional task, given
by human trajectory prediction and human motion prediction. Finally, Chap-
ters 6 and 7 conclude the thesis and give hints to potential future research
directions.
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2 Sequence Modeling

In the context ofmachine learning, the task of sequencemodeling is, in general,
concernedwith determining (stochastic) models able to represent, process and
generate sequential data from a given data basis. When uncertainties about
the data are taken into account, the sequence model aims to provide an either
implicit or explicit representation of the underlying probability distribution.

To enable a more nuanced view on sequence modeling, this general task can
be subdivided into three closely related sub-tasks, namely sequence encoding,
synthesis and prediction. While sequence encoding is concernedwith reducing
a given sequence into a compact representation, e.g. a single vector, sequence
synthesis and prediction aim at generating sequential data. Sequence synthe-
sis, on the one hand, is concerned with the generation of sequences according
to an underlying probability distribution, potentially conditioned on a specific
input. On the other hand, sequence prediction combines both tasks by first
requiring to encode a given input sequence (the observation) in order to gen-
erate a prediction for future data points of the observed sequence. As such,
sequence prediction can be regarded as a variant of conditional sequence syn-
thesis, where the synthesis model is conditioned on another sequence. Most
applications in the context of sequence modeling can be ascribed to at least
one of these three more general inference tasks. A schematic of each task is
given in Figure 2.1.

5



2 Sequence Modeling

venc

(a) Encoding

vgen

(b) Synthesis

venc vgen

(c) Prediction

Figure 2.1: Schematic of sequence modeling sub-tasks sequence encoding, synthesis and predic-
tion. As an example, a sequence of 2D points is considered. In sequence encoding,
the sequence model takes in a given sequence and encodes it into a specific repre-
sentation, e.g. a vector venc. A sequence synthesis model optionally takes a specific
input, e.g. a vector vgen, and generates a sequence. Sequence prediction combines
the two, as the sequence prediction model needs to encode a sequence it is given
(green), in order to synthesize a continuation of that sequence (blue).

With the prevalence of noise and uncertainties in real-world data, statistical
sequence models are employed for tackling either of the sequence modeling
tasks. For determining a statistical sequence model, it is assumed that each
sequence 𝒮 = {x𝑡}𝑡∈𝑇 in a specific dataset is a realization of an unknown
stochastic process 𝒢𝑇 = {𝑋𝑡}𝑡∈𝑇 with index set 𝑇 and random variables 𝑋𝑡
following some probability distribution. Typically, 𝑇 either corresponds to
ℕ0, ℝ+

0 or some interval [𝑎, 𝑏], indicating a discrete-time, continuous-time
or finite (continuous-time) stochastic process, respectively. Commonly, these
statistical sequence models are either probabilistic sequence models or stochas-
tic process models. While the latter are themselves variants of stochastic pro-
cesses (e.g. Gaussian processes [Ras06]), probabilistic sequencemodels process
and generate probability distributions, thus providing a model for the under-
lying stochastic process. Thereby, the probabilistic sequence model itself can
be either probabilistic or even deterministic.

Following this, this thesis focuses on learning-based probabilistic sequence
models for (conditional) sequence synthesis, including sequence prediction.
A sequence model then generates a distribution over the sequence to be syn-
thesized instead of a single (maximum likelihood) sample. The remainder of
this section provides an overview of the most important probabilistic models
in this context. Given the prevalence of deep learning-based models among
current state-of-the-art approaches, the overview is limited to such models
only. For an overview of machine learning models beyond deep learning, e.g.

6



2.1 Neural Sequence Processing

state space models, such as recursive bayesian estimators [Sär13] or autore-
gressive models, like the autoregressive moving-average model [Box15], the
reader may be referred to comprehensive surveys on the topic, e.g. [Rud20b].
Although this survey focuses on a prediction task, most mentioned models
are more universally applicable.

2.1 Neural Sequence Processing

To preface the overview, it is important to mention that deep learning-based
probabilistic sequence models are commonly built around an underlying neu-
ral sequencemodel, which is in charge of processing sequences at hand. While
feed-forward networks (e.g. the Multilayer Perceptron [Mur91]) can be used
in a setting of fixed length sequences or when applying a sliding window ap-
proach, dedicated sequence models are usually preferred. Common choices
for the underlying sequence model are Recurrent Neural Networks (abbrev.:
RNN, [Rum86]) and their variants, Temporal Convolutional Networks (abbrev.:
TCN, [Bai18]) and Transformer Networks (abbrev.: TF, [Vas17]).

2.1.1 Recurrent Neural Networks

Recurrent Neural Networks are feed-forward networks with additional re-
current connections along the time axis, enabling it to iteratively process se-
quences and carry information about past inputs. As such, RNNs, and espe-
cially its Long Short-Term Memory (abbrev.: LSTM, [Hoc97]) and Gated Re-
current Unit (abbrev.: GRU, [Cho14]) variants, are widely used. While vanilla
RNNs are prone to gradient-related problems during training, especially van-
ishing gradients [Pas13], aforementioned variants incorporate gating mecha-
nism to cope with such problems. From an operational point of view, RNNs
are usually build as either 1-to-1 or sequence-to-sequence (abbrev.: seq2seq,
sometimes also denoted as encoder-decoder, [Sut14]) RNNs. On the one hand,
a 1-to-1 RNN processes a given sequence one element at a time and generates
an output at each time step. This approach is generally applicable. Opposed
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2 Sequence Modeling

to that, seq2seq RNNs are more tailored towards conditional sequence syn-
thesis, where a given sequence is encoded first using an encoder RNN. The
resulting encoding is then decoded by another RNN – the decoder – in or-
der to generate an output sequence. Overall, both variants yield comparable
performance considering a range of sequence modeling tasks, with the GRU
performing slightly better in many cases [Chu14][Joz15]. However, when the
network is built as a sequence-to-sequence model, the LSTM outperforms the
GRU variant [Bri17].

As a final note, due to RNNs employing an autoregressive structure, i.e. us-
ing their own output at time 𝑡 as input at time 𝑡 + 1 during inference, tech-
niques for managing the network input during training should be discussed.
The most commonly used approach is given by the teacher forcing approach
[Goo16]. Teacher forcing is a technique for training recurrent neural net-
works, that, at time 𝑡 uses the ground truth x𝑡 as input, rather than themodel’s
output from the previous time step ŷ𝑡−1. As such, the actual network input
signal is replaced with a teacher signal. This approach helps reaching con-
vergence faster, at the cost of the network only eventually learning to cope
with its own imperfect output. A way to tackle this problem, is to start the
training process using teacher forcing and then slowly transitioning into an
auto-conditioning scheme, where the actual network output is fed back in the
subsequent time step [Ben15].

2.1.2 Temporal Convolutional Networks

Temporal Convolutional Networks are a special variant of Convolutional Neu-
ral Networks (abbrev.: CNN, [LeC95]) for sequential data, popularized by the
WaveNet model in the context of audio synthesis [Oor16]. The model con-
sists of dilated causal convolutions. While dilated convolutions [Hol90] are
incorporated in order to capture long range dependencies, causal convolutions
[Oor16] ensure that the temporal order of a given sequence is taken into ac-
count. An advantage of the TCN over the RNN is its inherent parallelism
on the one hand and a more stable training on the other hand. As the TCN
processes multiple time steps at once instead of sequentially, convolutions
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2.1 Neural Sequence Processing

can be done in parallel. A more stable training of the TCN can be attributed
to more stable gradients. On the downside, the TCN is less flexible in pro-
cessing sequences of variable length. Although it is possible to process vari-
able length sequences by sliding the convolutional kernels, thememory of the
model is limited by the filter kernel’s width and the dilation rate, whereas the
RNN may, in theory, establish dependencies up to the first sequence element.
Looking at a range of different sequence modeling tasks, the TCN is able to
outperform LSTMandGRUmodels [Bai18] or at least perform similar [Bec18].

2.1.3 Transformer Networks

Transformer Networks originated from the field of natural languagemodeling
as a replacement for the commonly used RNN-based sequence-to-sequence
models. Since its emergence, Transformers also gained traction in other ap-
plication domains, most notably speech processing, where Transformers con-
sistently outperform RNN-basedmodels [Kar19, Wan21]. Compared to RNNs,
which process sequences recursively, the Transformer aims to get rid of re-
currence and always considers the entire input sequence. As such, the most
important concept Transformers are build around are positional encoding and
attention. While the positional encoding enriches input sequence elements
with information about their position within the given sequence, the atten-
tion mechanism is in charge of determining which parts of the input sequence
are of importance for the calculation of each element in the target sequence.
Further, using an attention mechanism, enriched information is available for
sequence generation, when compared to RNN-based sequence-to-sequence
models, where the sequence decoder is only provided with an encoded rep-
resentation of the input sequence. Besides that, Transformers are in general
more stable during training, but also seem to be more prone to overfitting,
which indicates problems with generalization [Zey19]. Additionally, in its
original formulation, the Transformer model is restricted to fixed-length se-
quences. This restriction, is tackled by the Transformer-XL extension [Dai19],
which re-introduces a notion of recurrence and extends on the positional en-
coding concept.

9



2 Sequence Modeling

2.2 Probabilistic Sequence Models

This section provides an overview of deep learning-based probabilistic se-
quence models commonly used as a basis for task-specific model adaptations.
These models can roughly be put into three categories: Bayesian, regression-
based and transformative approaches. For each category, the most relevant
representatives are examined.

2.2.1 Bayesian Approaches

In deep learning-based Bayesian approaches, a deterministic neural network
is turned into a probabilistic model by treating all its parameters as random
variables. A prominent example for this class of approaches is given by Bayes-
ian Neural Networks (abbrev.: BNN, [Bis95]). In these models, inference and
parameter estimation are built around Bayes’ theorem. As such, the neural
network outputs an arbitrary predictive probability distribution

𝑝(y|x,𝓓) = ∫
𝜃
𝑝(y|x, 𝜃′)𝑝(𝜃′|𝓓)𝑑𝜃′ (2.1)

by propagating the units’ output distributions through the network. For pa-
rameter estimation, the posterior distribution

𝑝(𝜃|𝓓) =
𝑝(𝓓𝑦|𝓓𝑥,𝜃)𝑝(𝜃)

∫𝜃 𝑝(𝓓𝑦|𝓓𝑥,𝜃′)𝑝(𝜃′)𝑑𝜃′
∝ 𝑝(𝓓𝑦|𝓓𝑥,𝜃)𝑝(𝜃) (2.2)

of the network parameters, given a set of data samples, needs to be deter-
mined. Here, 𝜃 denotes the model parameters, 𝓓 the training dataset split
into input data 𝓓𝑥 and target data 𝓓𝑦 , and x and y denote specific input
and target vectors, respectively. Due to intractable probability distributions
arising from non-linear transformations, usually either Monte Carlo methods
[Nea92] or approximate inference is required for both training and inference.
Common techniques used for approximate inference include variational in-
ference (also known as Bayesian Backpropagation, [Blu15]), inference based
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on expectation propagation [Her15] and Monte Carlo Dropout [Gal16]. In or-
der to extend BNNs for probabilistic sequence modeling, Bayesian Recurrent
Neural Networks (abbrev.: BRNN, [For17]) were introduced. For the BRNN,
the variational Bayesian Backpropagation scheme is adapted for Backpropa-
gation Through Time [Wer90].

In summary, BNN-based approaches provide a fully probabilistic framework
for sequence modeling. In addition to that, major advantages of such models
are also given by their robustness to overfitting and the ability to provide in-
formation about model uncertainty. As a drawback, such models are difficult
to train, due to the requirement of approximate inference making the train-
ing computationally more intensive and potentially less stable. Further, the
need for approximate inference also yields a significant computational over-
head when generating predictions. As a final note, considering the need for
approximate inference, the Bayesian Perceptron [Hub20] is worth mention-
ing. The Bayesian Perceptron is a specific novel probabilistic formulation of
the Perceptron [Ros58], which provides closed-form parameter propagation
and estimation, thus eliminating the need for Monte Carlo Methods and ap-
proximate inference. However, a recurrent extension for sequence modeling
building on this approach is not yet available.

Despite not being probabilistic sequence models according to the definition
given earlier in this section, Gaussian process models are worthmentioning in
the context of deep learning-based Bayesian approaches. This is due to their
corresponding relationship, in that the function computed by a deep neural
network is a function drawn from a Gaussian process [Lee18]. Conversely, a
GP corresponds to a neural network with an infinite number of units in its
hidden layer [Nea96, Wil97].

Gaussian Processes (GP) and Gaussian process regression [Ras06] provide a
well-established model for probabilistic sequence modeling and especially
prediction. Given a collection of sample points of a non-linear function
𝑓(⋅) ∶ ℝ𝑚 → ℝ, a mean function 𝑚(⋅) and a covariance function 𝑘(⋅,⋅)
(kernel), the GP yields a multivariate Gaussian prior probability distribution
over function space. The Gaussian distribution can be used to determine a
conditional predictive distribution over the next element in a sequence given
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preceding observations. By embedding this 1-step prediction model into
a sequential Monte Carlo simulation, multiple time steps can be predicted
[Ell09]. Deep Gaussian Processes (abbrev.: DGP, [Dam13]) extend on the GP
framework in order to constitute non-Gaussian, and therefore more complex,
models. A DGP is a hierarchy of multiple GPs using non-linear mappings
between each layer of the hierarchy. However, the resulting probability
densities are intractable and thus require an approximate solution, which can
be achieved e.g. by variational approximation [Cam15]. A special case of
the DGP, which implements an autoregressive structure comparable to that
of an RNN, is given by Recurrent Gaussian Processes (abbrev.: RGP, [Mat16]).
Here, the priors of latent variables in each hidden layer follow an autore-
gressive structure. Following this, a recurrent variational approximation
scheme, which uses a state space model-based approach, is introduced for
inference. Besides having a computation intensive inference scheme, GP-
based approaches grant good control over generated sequences, by explicitly
modeling the kernel functions, thus controlling the prior over functions
representable by the model through a regularization over the entire value
range. This gives an advantage over most competing neural network-based
approaches that generate sequences in a mostly unconstrained fashion. It
should be noted, however, that GP-based approaches are rarely used in most
application domains currently dominated by deep learning-based models.

2.2.2 Regression-based Approaches

One of themain areas of application for neural networks is given by regression
tasks, due to their ability to learn arbitrarymappings from a given domain into
a targeted co-domain. As such, neural networks can be used for probabilis-
tic modeling when treating the task of uncertainty estimation as a regression
problem. The neural network is then in charge of learning a mapping from
a given set of samples onto the parameters of a probability distribution es-
timating the generating distribution. Following this, the negative data log
likelihood is optimized during training:

ℒ = − log𝑝𝜃(x). (2.3)
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Themost widely used regression-based neural network for probabilistic mod-
eling is given by Mixture Density Networks (abbrev.: MDN, [Bis94, Bis06]),
which map the output of their last layer onto the parameters of a mixture
distribution. The prevalent choice for the mixture distribution is given by
the Gaussian distribution, although Laplace distributions have also been used
withMixture Density Networks [Bra19]. For building a probabilistic sequence
model using MDNs, a common choice is the Recurrent Mixture Density Net-
work (abbrev.: R-MDN) model as proposed in [Gra13]. Here, an MDN is
stacked on top of an LSTM network. The recurrent structure is then used
for encoding the observed sequence as well as for generating predictions.

Compared to Bayesian approaches, using a deterministic model, such
regression-based approaches are generally much simpler in terms of infer-
ence and computational cost, while still generating probabilistic output. On
the downside, these approaches only give a point-estimate for the parameters
of a preset target probability distribution. This limits the modeling capabil-
ities of the approach and also does not allow to make assumptions about
model uncertainty in a direct way. Drawbacks specific to R-MDNs are on
the one hand given by the fact that generating multi-modal probabilistic
predictions generally requires expensive Monte Carlo simulation [Hug18].
On the other hand, MDNs are prone to mode collapse [Mak19], where the
model collapses into generating only slight variations of a single mode.

A more detailed introduction to MDNs is given in Section 4.1.

2.2.3 Transformative approaches

Transformative approaches transform samples of a simple probability distri-
bution into a sample-based representation of a more complex probability dis-
tribution. As such, transformative approaches combine deterministic neural
networks with stochastic inputs in order to define a generative model. The
most important models in this category are given by Variational Autoencoders
and Generative Adversarial Networks.
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Variational Autoencoders (abbrev.: VAE, [Kin14]) are a class of deep gener-
ative models with latent variables. In latent variable models, the unknown
generating distribution 𝑝(x) is modeled in terms of latent variables z ∼ 𝑝𝜃(z)
with prior distribution 𝑝𝜃(z). According to Bayes’ theorem, 𝑝(x) and 𝑝𝜃(z)
are linked by themappings 𝑝𝜃(x|z) (likelihood) and 𝑝𝜃(z|x) (posterior), which
are computed explicitly. Following this, the generally intractable posterior
needs to be approximated. For this approximation, the VAE follows a varia-
tional inference approach, approximating 𝑝𝜃(z|x) with the variational poste-
rior 𝑞𝜙(z|x). Putting each part of the latent variable model together, in VAEs
𝑞𝜙(z|x) and 𝑝𝜃(x|z) are defined in terms of deterministic neural networks,
denoted as the recognition model and the generative model. The networks are
arranged similar to autoencoders [Hin94], with the latent space as the bottle-
neck. As a consequence, the generative process of the VAE works by trans-
forming a set of latent variable samples z𝑖 ∼ 𝑝𝜃(z) drawn from the prior
distribution 𝑝𝜃(z) using the generative model 𝑝𝜃(x|z). The prior distribution
𝑝𝜃(z) is commonly defined as 𝒩(0,I). Training the VAE is made possible by
using the variational lower bound (also known as the evidence lower bound)

log𝑝(x) ≥ −KL(𝑞𝜙(z|x)‖𝑝𝜃(z)) + 𝔼𝑞𝜙(z|x) [log𝑝𝜃(x|z)] (2.4)

in conjunction with the reparameterization trick [Kin14], which enables joint
gradient-based training of the entire network. It should be noted, that Nor-
malizing Flows [Rez15] can be used in a VAE in order to replace the learned
approximate posterior 𝑞𝜙(z|x). Normalizing Flows are a chain of invertible
mappings, that can be used to transform samples of one probability distribu-
tion into another. In the context of VAEs, Normalizing Flows provide a frame-
work for building a more flexible and complex variational approximation of
the posterior 𝑞𝜙(z|x) through an iterative procedure [Kin16, Hua18].

In order to extend on the concept of VAEs for sequence modeling, two
approaches have emerged: the Seq2seq Conditional VAE and the Variational
Recurrent Neural Network. Seq2seq Conditional VAEs [Bow16] build on the
concept of conditional VAEs (abbrev.: CVAE, [Soh15]), which employ a
conditional generating distribution 𝑝(x|v) conditioned on some input v.
This results in the conditional latent prior 𝑝𝜃(z|v) and conditional mappings
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𝑝𝜃(x|z,v) and 𝑞𝜙(z|x,v). Following this, for sequence modeling, each sample
x ∼ 𝑝𝜃(x|z,v) resembles a full sequence. Further, in the case of sequence
prediction, a given observed sequence needs to be encoded into v, in order
to condition the CVAE’s generative model on the given sequence. Hence,
in seq2seq CVAEs, a CVAE is combined with a seq2seq RNN, where the
RNN encoder is used to encode the observation into v and the RNN decoder
resembles 𝑝𝜃(x|z,v), generating the target sequence from v and z. Following
this, the seq2seq CVAE generates a distribution over sequences of a specific
length. Opposed to the composite approach of seq2seq CVAEs, the Variational
Recurrent Neural Network (abbrev.: VRNN, [Chu15]) explicitly models the de-
pendencies between latent variables of subsequent time steps. Following this,
the VRNN embeds an RNN into a CVAE, which is at time 𝑡 conditioned on the
RNN’s previous hidden state h𝑡−1. For sequence synthesis, the VRNN then
operates as a 1-to-1 model, generating a sequence of probability distributions
rather than a probability distribution over sequences.

To summarize, VAE-based probabilistic sequence models provide compara-
ble modeling capabilities to Bayesian approaches, while eliminating expen-
sive approximations during inference, due the transformative approach. On
the downside, because of imperfect reconstructions due to the injected noise
when generating samples, training results can become less consistent.

Generative Adversarial Networks (abbrev.: GAN, [Goo14]) are another type of
generative model, learning an implicit¹ model of the unknown generating dis-
tribution 𝑝(x). While the generative model component in GANs is very sim-
ilar to that of VAEs in that samples of a simple distribution are transformed
into a sample-based representation of a more complex distribution using a de-
terministic neural network, the network structure and approach to estimating
the parameters of the generative model is vastly different. In order to bypass
the need to solve or approximate an intractable posterior distribution, GAN
training is framed as a supervised learning problem, using a combination of
two neural networks: the generative model itself (denoted as generator) and

¹ Implicit density models do not compute 𝑝(x), but allow sampling from the underlying distri-
bution using the model.
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a discriminator. Both models are jointly trained playing a zero-sum game,
where the generator tries to generate samples from the unknown data dis-
tribution 𝑝(x), which the discriminator is incapable of classifying as real or
fake. As such, the generator 𝐺 and the discriminator 𝐷 play the two-player
minimax game

ℒ = min
𝐺

max
𝐷

(𝔼x∼𝑝(x) [log𝐷(x)] + 𝔼z∼𝑝(z) [log (1 − 𝐷(𝐺(z)))])⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑉(𝐺,𝐷)

(2.5)

with value function 𝑉(𝐺,𝐷). The generator’s stochastic input distribution
𝑝(z) is commonly defined as the multivariate standard Gaussian𝒩(0, I).

Similar to VAE-based approaches, the GAN can be extended for probabilistic
sequence modeling by combining a conditional variant of the GAN [Mir14]
with seq2seq RNNs [Yu17, Gup18]. Following this, the conditional genera-
tor 𝐺(z,v) is combined with a seq2seq RNN and the conditional discriminator
𝐷(x,v) is combined with an RNN sequence encoder. With the similarities to
the VAE in the generative model, GANs provide similar benefits without the
need for variational inference during training. Despite this, GANs tend to be
hard to train because of vanishing gradient problems and the GANs prone-
ness to mode collapse. While these problems are addressed by variations of
the GAN building on the Wasserstein distance [Arj17, Gul17] or by incorpo-
ratingmultiple versions of the discriminator into the generator’s loss function
[Met17], balancing parameter updates between the generator and the discrim-
inator still poses a challenging problem, as the discriminator converges faster
than the generator on many occasions [Ham20].

2.3 Placement of this Thesis

Looking at the overview of commonly used (probabilistic) sequence models
for handling sequential data under uncertainty, a research gap in regression-
based approaches for multi-modal probabilistic inference is revealed. Follow-
ing this, this thesis aims to provide a fully regression-based probabilistic se-
quence model with respect to model training and inference using the model.

16
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The targeted placement of this thesis among other sequence models is given
in Table 2.1.

Table 2.1: Targeted placement of this thesis among other (probabilistic) sequence models.

Model
Approach

Regression (Approximate) Bayesian
Training Inference Training Inference

BNN 7 7

DGP 7 7

VAE 7 7

GAN 7 7

R-MDN 7 7a
This thesis 7 7

a In a multi-modal setting
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3 Concept

Throughout this chapter, a probabilistic sequence model for representing
stochastic processes is formulated, which aims to avoid the necessity of
Monte Carlo approaches. To achieve this, first and foremost a sequence
model for fixed-length sequences will be introduced in Section 3.1, covering
the most application-relevant case. This covers continuous-time as well as
discrete-time stochastic processes with bounded index set in an unimodal
and a multi-modal setting. The model is then extended for the representation
of infinite stochastic processes in Section 3.2 by lifting some conceptual
limitations present in the former variant of the model.

The general idea behind the proposed probabilistic sequence model is to cir-
cumvent Monte Carlo sampling. Therefore, the model needs to represent full
sequences instead of iteratively building them. Following this, a probabilistic
extension to a certain type of parametric curves, Bézier curves in this case,
is derived, granting a suitable representation of sequential data in arbitrary
dimensions. The probabilistic sequence model is then built on these proba-
bilistic Bézier curves.

3.1 The𝒩-Curve Model

This section proposes a Bézier curve defined by stochastic control points ca-
pable of describing a continuous-time stochastic process 𝒢𝑇 = {𝑋𝑡}𝑡∈𝑇 on a
closed range with Gaussian random variables 𝑋𝑡 ∼ 𝒩(𝝁𝑡, 𝚺𝑡) and index set
𝑇 = [0, 1]. This concept is further extended for modeling random variables
following a Gaussian mixture distribution.
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Starting with plain Bézier curves, a Bézier curve (e.g. [Pra02, Far02]) of de-
gree 𝑁deg

𝐵𝓟(𝑡) =
𝑁deg

∑
𝑖=0

𝑏𝑖,𝑁deg(𝑡)p𝑖 (3.1)

is a blended curve constructed as a linear combination of 𝑁deg + 1 𝑑-
dimensional control points 𝓟 = {p0,p1, ...,p𝑁deg } using the Bernstein basis
polynomials [Lor13]

𝑏𝑖,𝑁(𝑡) = (𝑁𝑖 )(1 − 𝑡)𝑁−𝑖𝑡𝑖 (3.2)

as blending functions. The Bernstein basis polynomials are non-negative and
satisfy ∑𝑖 𝑏𝑖,𝑁(𝑡) = 1. Each curve point x𝑡 = 𝐵𝓟(𝑡) is determined by the
curve’s positional parameter 𝑡 ∈ [0, 1], where 𝑡 = 0 corresponds to p0 and
𝑡 = 1 to p𝑁deg , respectively. The positional parameter can also be interpreted
as a time parameter when looking at the curve points as a timely-ordered
sequence of points. An example for a 2-dimensional Bézier curve of degree
𝑁deg = 4 for 𝑡 ≤ 0.88 with corresponding Bernstein basis polynomials is
depicted in Figures 3.1a and 3.1b, respectively.
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𝑥

𝑦 p0

p1

p2

p3

p4

x0.88

(a) Exemplary 2-dimensional Bézier curve of
degree𝑁deg = 4 for 𝑡 ≤ 0.88.

𝑡

𝑏 𝑖
,𝑁
(𝑡
)

𝑡=0.88

(b) Bernstein basis polynomials 𝑏𝑖,4(𝑡) for
4’th degree blending.

Figure 3.1: Illustrating the connection between the Bernstein basis polynomials and Bézier curve
construction. The Bernstein polynomial values control the weighting of control
points for calculating curve points. The colors of the control points in figure (a) are
associated with the weight curve of the same color in figure (b). Weights of control
points for each curve point are dependent on the positional parameter 𝑡. Figure (a)
shows a curve constructed up to 𝑡 = 0.88, the remainder is indicated as a dashed
line. Corresponding weights for 𝑡 = 0.88 are indicated by circular markers in figure
(b).

Considering the objective of modeling a stochastic process, the curve points
along this parametric curve have to be stochastic. A schematic of such a prob-
abilistic Bézier curve is illustrated in Figure 3.2. Here, Figure 3.2a illustrates
a discrete 2-dimensional Bézier curve as the starting point. Figure 3.2b indi-
cates uncertainty associated with each curve point as a shaded region around
the curve. It has to be noted, that this presentation of uncertainty is for il-
lustration purposes only. Uncertainties of multiple time steps are overlayed
while only considering uncertainty orthogonal to the actual curve. Thus, it
does not reflect the real probability distribution when integrating over the
positional parameter.
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𝑥

𝑦

(a) Exemplary 2-dimensional Bézier curve of
degree𝑁deg = 4.

𝑥

𝑦

(b) Schematic extension of a Bézier curve
incorporating curve point uncertainty.

Figure 3.2: Illustration of the starting point ((a): discrete Bézier curve) and goal ((b): probabilis-
tic Bézier curve) of this section for a Bézier curve of degree 𝑁deg = 4. Uncertainty
associated with each curve point is indicated by a shaded region around the curve,
representing 𝜎 and 2𝜎 regions. Note: The presentation of uncertainty is for illus-
tration purposes only and does not reflect a real probability distribution integrated
over the curve’s positional parameter.

In order to define a probabilistic extension for Bézier curves, such that gener-
ated curve points are stochastic and follow some probability distribution, it is
necessary for the control points to be stochastic as well. This is due to every
curve point being a linear combination of the curve’s control points. Thus,
an important question is given by the choice of a suitable probability distri-
bution for the control points. A common choice is given by the Gaussian
distribution, which is commonly used in machine learning and statistics due
to its mathematical properties. On the one hand, the popularity of the Gaus-
sian distribution can be explained through the central limit theorem [And10],
which states that the sumof independent randomvariables converges towards
a Gaussian distribution. Further, among all real-valued distributions with a
given mean and variance, the Gaussian distribution is the distribution of max-
imum entropy [Con04]. On the other hand, the most notable mathematical
property for defining a probabilistic Bézier curve is the fact that the linear
combination of Gaussian random variables is again Gaussian.

Following this, for describing a stochastic process 𝒢𝑇 in terms of a parametric
curve, each curve point should follow a Gaussian distribution. Thus, a Gaus-
sian Bézier curve 𝜓, denoted as 𝒩-Curve, is proposed. The 𝒩-Curve extends
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on Equation (3.1) and defines the control points𝓟𝒩 = {𝑃0, 𝑃1, ...𝑃𝑁deg } to fol-
low a Gaussian distribution with 𝑃𝑖 ∼ 𝒩(𝝁𝑖, 𝚺𝑖) ∀𝑃𝑖 ∈ 𝓟𝒩. The set of mean
vectors is denoted as 𝜇𝓟 = {𝝁0, 𝝁1, ..., 𝝁𝑁deg } and the set of covariance ma-
trices Σ𝓟 = {𝚺0, 𝚺1, ..., 𝚺𝑁deg }, respectively. Thus, the 𝒩-Curve is defined by
a tuple 𝜓 = 𝓟𝒩 = (𝜇𝓟, Σ𝓟). As curve points are defined through a lin-
ear combination of the control points, the stochasticity is inherited from the
control points to the curve points {𝑋𝑡}𝑡∈[0,1]. This is due to the fact, that for
A𝑋 + B𝑌 with 𝑋 ∼ 𝒩(𝝁𝑥, 𝚺𝑥) and 𝑌 ∼ 𝒩(𝝁𝑦, 𝚺𝑦) follows¹

A𝑋 + B𝑌 ∼ 𝒩(A𝝁𝑥 + B𝝁𝑦,A𝚺𝑥A𝑇 + B𝚺𝑦B𝑇).

Thus, the curve function

𝐵𝒩(𝑡, 𝜓) = (𝜇𝜓(𝑡), Σ𝜓(𝑡)) (3.3)

with

𝜇𝜓(𝑡) =
𝑁deg

∑
𝑖=0

𝑏𝑖,𝑁deg(𝑡)𝝁𝑖 (3.4)

and

Σ𝜓(𝑡) =
𝑁deg

∑
𝑖=0

(𝑏𝑖,𝑁deg(𝑡))
2
𝚺𝑖, (3.5)

defines the parameters of a (multivariate) Gaussian probability distribution for
each 𝑡 ∈ [0, 1]. Each 𝑑-dimensional curve point𝑋𝑡 then follows the respective
Gaussian distribution 𝒩(𝜇𝜓(𝑡), Σ𝜓(𝑡)) at index 𝑡. The Gaussian probability

¹ Following the definition as provided in The Matrix Cookbook [Pet08].
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density at index 𝑡 is given by

𝑝𝜓𝑡 (x) = 𝑝 (x|𝜇𝜓(𝑡), Σ𝜓(𝑡))
= 𝒩(x|𝜇𝜓(𝑡), Σ𝜓(𝑡))

= 1
|2𝜋Σ𝜓(𝑡)|

1
2

exp {−12 (x − 𝜇𝜓(𝑡))⊤ (Σ𝜓(𝑡))−1 (x − 𝜇𝜓(𝑡))} .

(3.6)

An example for a Gaussian curve point constructed from Gaussian control
points for 𝑡 = 0.5 is depicted in Figure 3.3. The intermediate control point 𝑃1
influences 𝑋𝑡 the most, which leads 𝑋𝑡 to adopt a skewed covariance ellipse.
Due to the covariance matrices being interpolated, the other control points,
𝑃0 and 𝑃2, contribute to 𝑋𝑡 by making the covariance ellipse more spherical.

𝑥

𝑦

𝑋𝑡

𝑃0 ∼ 𝒩0(𝝁0, 𝚺0)

𝑃1 ∼ 𝒩1(𝝁1, 𝚺1)

𝑃2 ∼ 𝒩2(𝝁2, 𝚺2)

Figure 3.3: Example for a Gaussian curve point 𝑋𝑡 on an 𝒩-Curve with 3 Gaussian control
points for 𝑡 = 0.5. The covariance matrix of 𝑋𝑡’s Gaussian distribution is a combi-
nation of the control point covariance matrices.

So far, a stochastic process model for a continuous index set 𝑇 = [0, 1]
has been defined. In contrast to this, many real-world applications require
discrete-time stochastic processes handling sequential data. For handling

24



3.1 The𝒩-Curve Model

such use-cases, the 𝒩-Curve model can be used to model Gaussian distribu-
tions at 𝑁 discrete points in time with 𝐵𝒩(𝑡, 𝜓) using 𝑁 equally distributed
values for 𝑡, yielding a discrete subset

𝑇𝑁 = { 𝑣
𝑁 − 1|𝑣 ∈ {0, ..., 𝑁 − 1}} = {𝑡1, ..., 𝑡𝑁} (3.7)

of the index set 𝑇. Thus, each process index (curve parameter) 𝑡𝑖 ∈ 𝑇𝑁 cor-
responds to its respective sequence index at time 𝑖 ∈ {1, ..., 𝑁}. It has to
be noted, that using equidistant values for 𝑡 does not necessarily result in
equidistant curve points. The distribution of the curve points along the curve
depends on the positions of the control points. This is illustrated in Figure 3.4.

𝑥

𝑦

𝑃0

𝑃1

𝑃2

(a) Example for equidistant curve points
(Δ1 = Δ2 = Δ3 = Δ4 = Δ5 ≈ 2.3).

𝑥

𝑦

𝑃0

𝑃1

𝑃2

(b) Example for decreasing distance between
curve points (Δ1 ≈ 3.2, Δ2 ≈ 2.7,
Δ2 ≈ 2.3, Δ4 ≈ 1.8 and Δ5 ≈ 1.4).

Figure 3.4: Illustration of the impact of control point positioning on the distribution of curve
points along the curve. Figures (a) and (b) show two exemplary Bézier curves
with one shifted control point and identical shape. Note that the shape is not im-
pacted by shifting 𝑃1, as it lies on the straight line between 𝑃0 and 𝑃2. Curve
points (black circular markers) are calculated using the same discrete index set
𝑇𝑁=6 = {0, 0.2, 0.4, 0.6, 0.8, 1} of equally distributed values for 𝑡.

Finally, the Gaussian random variable 𝑋𝑡𝑖 at time 𝑖 is given by

𝑋𝑡𝑖 ∼ 𝒩(𝐵𝒩(𝑡𝑖, 𝜓)) = 𝒩(𝜇𝜓(𝑡𝑖), Σ𝜓(𝑡𝑖)) (3.8)

with 𝑃0 = 𝑋𝑡0 and 𝑃𝑁deg = 𝑋𝑡𝑁 as exact start and end conditions. Figure 3.5
depicts a 2-dimensional example for an 𝒩-Curve with 5 control points. The
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mean curve and control points with respective covariance ellipses are shown
in Figure 3.5a. Gaussian random variables 𝑋𝑡 along the 𝒩-Curve given dif-
ferent values for 𝑡 are illustrated in Figure 3.5b. The influence of the most
dominant control point for each curve point 𝑋𝑡 is clearly visible in the covari-
ances, adapting towards respective control point covariances. Note that the
parametric curve interpolates the mean vectors of all Gaussian distributions
through time.

𝑥

𝑦

(a) Gaussian control points and continuous
mean curve of a 2-dimensional𝒩-Curve.

𝑥

𝑦

(b) Gaussian random variables along the
𝒩-Curve for 𝑡 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

Figure 3.5: Example for modeling a finite discrete-time stochastic process using an 𝒩-Curve.
The stochastic process consists of random variables corresponding to a discrete sub-
set of 𝑇 = [0,1].

As a final aspect to consider, the 𝒩-Curve model can easily be extended for
modeling multi-modal stochastic processes. While Gaussian probability dis-
tributions are a sufficient representation for unimodal sequence data, many
real-world problems require a multi-modal representation. For this, a com-
mon approach is to use a Gaussian mixture probability distribution

Ξ ({𝜋𝑘}𝑘∈{1,...𝐾} , {(𝝁𝑘, 𝚺𝑘)}𝑘∈{1,...𝐾}) , (3.9)

defined by𝐾 weighted Gaussian components and probability density function

𝑝(x) =
𝐾
∑
𝑘=1

𝜋𝑘𝒩(x|𝝁𝑘, 𝚺𝑘) , with
𝐾
∑
𝑘=1

𝜋𝑘 = 1 and 𝜋𝑘 ≥ 0. (3.10)
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3.1 The𝒩-Curve Model

In the same way, the concept of 𝒩-Curves can be extended to a mixture
Ψ = (𝜋, {𝜓1, ..., 𝜓𝐾}) of 𝐾 weighted𝒩-Curves with normalized weights 𝜋 =
{𝜋1, ..., 𝜋𝐾}. The stochastic curve points 𝑋𝑡 at index 𝑡 ∈ 𝑇 then follow a
Gaussian mixture distribution

𝑋𝑡 ∼ Ξ (𝜋, {𝐵𝒩(𝑡, 𝜓𝑘)}𝑘∈{1,...,𝐾}) . (3.11)

Accordingly, the probability density at 𝑡 ∈ 𝑇 induced by Ψ is given by

𝑝Ψ𝑡 (x) =
𝐾
∑
𝑘=1

𝜋𝑘𝒩(x|𝜇𝜓𝑘(𝑡), Σ𝜓𝑘(𝑡)), (3.12)

with 𝜇𝜓𝑘(𝑡) and Σ𝜓𝑘(𝑡) given by the 𝑘’th 𝒩-Curve, i.e. (𝜇𝜓𝑘(𝑡), Σ𝜓𝑘(𝑡)) =
𝐵𝒩(𝑡, 𝜓𝑘). Following this, each stochastic curve point can be multi-modal and
each mode of the modeled stochastic process follows a separate𝒩-Curve. As
such, the𝒩-Curve mixture provides the evolution of 𝑋𝑡 along multiple paths
through time. An example for an𝒩-Curve mixture is depicted in Figure 3.6.

𝑥

𝑦

𝑋𝑡

𝜓1

𝜓2

Figure 3.6: Example for a multi-modal stochastic curve point 𝑋𝑡 for 𝑡 = 0.5 given by an 𝒩-
Curve mixture consisting of 2 𝒩-Curves 𝜓1 and 𝜓2. Both 𝜓1 and 𝜓2 are defined
by 3 Gaussian control points. The curve point 𝑋𝑡 follows a 2-component Gaussian
mixture distribution.
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3.1.1 Rationale behind choosing Bézier curves

Among related parametric curves with alternative formulations (e.g.
Pythagorean-hodograph curves [Far08]) or basis polynomials (e.g. La-
grange bases [War79, Jef88] or the power basis [Sto89]), Bézier curves are
the most widely used type of blended curves in various fields, especially in
computer-aided design (e.g. [Fit14]), animation (e.g. [Haa18, Izd20]) and
path planning (e.g. [Jol09, Tha19]). Besides their popularity, Bézier curves
offer some valuable properties for the 𝒩-Curve model. First and foremost,
Bézier curves are numerically stable, as well as easy to calculate, control and
manipulate. Every control point contributes to every curve point, which
makes curve construction more intuitive and reasonable. An example for
how the manipulation of a single control point impacts the entire curve is
given in Figure 3.7.

𝑥

𝑦

(a) 2-dimensional Bézier curve of degree 4.

𝑥

𝑦

(b) Impact of relocating a single
(intermediate) control point.

Figure 3.7: Illustration of global control, i.e. every control point affects every curve point, in
Bézier curves. The initial curve is depicted in red and the modified curve in green.

In addition, Bézier curves provide a compact representation of the entire curve
in terms of a set of control points. This, in turn, allows the description of a
whole sequence of random variables, requiring only few stochastic control
points. Further, Bézier curves can be scaled up to higher dimensions easily
by increasing the dimensionality of the control points. Besides that, Bézier
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3.1 The𝒩-Curve Model

curves provide a commonly used building block for splines, which are seg-
mented curves consisting of multiple parametric curves. The ability to com-
bine Bézier curves into splines is relevant for a recurrent extension of the𝒩-
Curve model as discussed in Section 3.2. Figure 3.8 provides basic examples
for scalability and Bézier splines.

𝑥

𝑦

𝑧

p0

p1p2

p3

(a) Exemplary 3-dimensional Bézier curve
of degree 4.

𝑥
𝑦 p00

p01

p02 p10

p11

p12 p20

p21
p22

(b) Exemplary Bézier spline with 3 Bézier
curve segments.

Figure 3.8: Basic examples for Bézier curve scalability (3.8a) and Bézier curves as a building block
for Bézier splines consisting of Bézier curve segments (3.8b). Scalability is illustrated
by increasing the control point dimension to 3, resulting in a 3-dimensional Bézier
curve.

In the context of regression-based deep learning approaches to probabilistic
sequence modeling, a model based on Bézier curves is expected to have a pos-
itive impact on the training and inference process. Due to the modeled mean
sequence being constraint by an underlying parametric curve and the omis-
sion of an iterative generation approach, the generation of outliers within the
sequence can be avoided. This, in turn, reduces the effect of error propagation
present in iterative approaches under the presence of outliers.

3.1.2 A potential caveat: Non-linear Covariance
Blending

When combining control points into curve points, the control points are
weighted using the Bernstein basis polynomials (see Equations (3.4) and
(3.5)). While the control point mean vectors are linearly interpolated when
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calculating a curve point mean vector, non-linear weighting is introduced
for the covariance matrices in Equation (3.5), due to the control points being
Gaussian random variables. This, in turn, leads to an effect that prevents
the 𝒩-Curve model from maintaining a constant variance along the curve.
Instead it is scaled down for curve points with 0 < 𝑡 < 1, resulting in a
squeezing effect.

This effect is easiest to see, taking an 𝒩-Curve with 2 control points, resem-
bling a straight line, as an example. Setting the variance of both control points
to 1, the variance of intermediate points is parabolic because of the non-linear
covariance weighting. This is illustrated in Figure 3.9.

𝑥

𝑦 𝑃0 𝑃1

Figure 3.9: Illustration of non-linear variance interpolation using a simple 1-dimensional 𝒩-
Curve with 2 control points. Both control points 𝑃0 and 𝑃1 have a variance of 1.
The shaded region around the curve depicts 1, 2 and 3 times the variance for each
curve point. It can be seen, that the evolution of the variance along the curve is
parabolic.
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3.1 The𝒩-Curve Model

Recalling Equation (3.5), in Σ𝜓(𝑡) = ∑𝑁
𝑖=0 (𝑏𝑖,𝑁(𝑡))

2 𝚺𝑖 , the Bernstein coeffi-
cients need to be squared when blending the covariance matrices, due to

cov[𝑎𝑋] = 𝔼[(𝑎𝑋 − 𝔼[𝑎𝑋])(𝑎𝑋 − 𝔼[𝑎𝑋])𝑇]
= 𝑎2 ⋅ cov[𝑋].

(3.13)

Following this and 𝑏𝑖,𝑁(𝑡) < 1 for 0 < 𝑡 < 1, the normalization property
∑𝑁

𝑖=0 (𝑏𝑖,𝑁(𝑡))
2 < 1 does not hold. Obvious attempts to mitigate this effect

involve the addition of intermediate control points or an adjustment of in-
termediate control point variances. First, adding intermediate control points
with constant variance does only amplify the squeezing effect, due to the in-
creasing number of weights being involved, leading to ∑𝑀

𝑖=0 (𝑏𝑖,𝑀(𝑡))
2 <

∑𝑁
𝑖=0 (𝑏𝑖,𝑁(𝑡))

2 for 𝑀 > 𝑁. Second, adjusting intermediate control point
variances can only mitigate the squeezing effect for selected curve points,
making it at least viable for discrete-time stochastic processes in theory. The
effect of both approaches on the variance along the curve is depicted in Figure
3.10.

𝑥

𝑦 𝑃0 𝑃1 𝑃2 𝑃3
𝑃4

(a) Exemplary 1-dimensional𝒩-Curve using
3 intermediate control points with
variance 1.

𝑥

𝑦 𝑃0 𝑃1
𝑃2

(b) Exemplary 1-dimensional𝒩-Curve using
one intermediate control point with
increased variance.

Figure 3.10: Illustration of different approaches trying to mitigate the squeezing effect in 𝒩-
Curves due to non-linear variance blending. In both subfigures, a simple 1-
dimensional 𝒩-Curve is depicted. Respective first and last control points have a
variance of 1. The shaded region around the curve depicts 1, 2 and 3 times the
variance for each curve point. It can be seen, while adding multiple intermediate
control points with the same variance amplify the squeezing effect, increasing in-
termediate control point variances can help mitigate the effect.
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Although, in theory, this effect seems like a major drawback of the𝒩-Curve
model, especially in the continuous-time case, it is less relevant in practice,
due to the prevalence of discrete sequence data. In addition, real-world data
is commonly suspect to noise, which makes the constant variance case dis-
cussed in this subsection less likely to appear. In order to provide more in-
sight into this effect and its impact in the context of sequence modeling, it is
discussed further in the context of experiments conducted on real-world data
in Section 5.1.5.4.

3.1.3 The𝒩-Curve Model as a Generative Model

For modeling a stochastic process, the 𝒩-Curve model provides a Gaussian
probability distribution for each point in time. At the same time, it provides a
probability distribution over parametric curves. Following this, the𝒩-Curve
model can be used as a generative model to either generate samples at specific
points in time or to generate (continuous) realizations of the stochastic process
itself. The latter can be achieved by sampling a set of Bézier curve control
points from an𝒩-Curve𝜓, or an𝒩-CurvemixtureΨ, respectively. In the case
of𝒩-Curve mixtures, a specific𝒩-Curve to draw a sample from is randomly
selected according to the weight distribution 𝜋 in a first step. A set of samples
drawn from an𝒩-Curve and amixture of𝒩-Curves is depicted in Figure 3.11.
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𝑥

𝑦

(a) Samples for 𝑋𝑡 along an𝒩-Curve for
𝑡 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

𝑥

𝑦

(b) Samples for 𝑋𝑡 along an𝒩-Curve
mixture for 𝑡 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

𝑥

𝑦

(c) Bézier curves sampled from an𝒩-Curve.

𝑥

𝑦

(d) Bézier curves sampled from an𝒩-Curve
mixture.

Figure 3.11: Illustration of the 𝒩-Curve model as a generative model for generating data for
specific points in time along the curve ((a) and (b)) and for generating full Bézier
curves according to the𝒩-Curve (mixture) control points ((c) and (d)).

3.1.4 Connection to Gaussian Processes

Generally speaking, Gaussian processes are a form of stochastic processes,
where the joint distribution of all stochastic variables {𝑋𝑡}𝑡∈𝑇 is a multivari-
ate Gaussian distribution. The joint distribution is obtained using an explicit
mean function and covariance function, commonly referred to as the kernel
of the Gaussian process (see also Section 2.2.1). Due to the joint distribution
being Gaussian, each individual stochastic variable, either obtained through
marginalization or conditioning, is again Gaussian. Following this, a funda-
mental similarity between the𝒩-Curve model and Gaussian processes can be
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observed, in that the 𝒩-Curve model provides a model for a stochastic pro-
cess {𝑋𝑡}𝑡∈𝑇 comprised of Gaussian random variables 𝑋𝑡 ∼ 𝒩(𝝁, 𝚺). Thus,
the question arises, if the underlying𝒩-Curves are a special case of Gaussian
processes using an implicit covariance function.

Following the definition of Gaussian processes [Mac03, Ras06], an 𝒩-Curve
would be classified as a Gaussian process, if for any finite subset {𝑡1, ..., 𝑡𝑘}
of 𝑇, the joint probability density 𝑝(𝑋𝑡1 , ..., 𝑋𝑡𝑘) of corresponding random
variables is Gaussian. This property is referred to as the GP property in the
following and can be shown to hold true for 𝒩-Curves, as these are, in fact,
an alternative formulation for Gaussian processes with specific mean and co-
variance functions.

In order to prove the GP property holding true for 𝒩-Curves, first recall,
that an 𝒩-Curve 𝜓 is defined in terms of a set 𝒫𝒩 of 𝑁deg independent 𝑑-
dimensional Gaussian control points 𝑃𝑖 ∼ 𝒩(𝝁𝑖,𝚺𝑖), which are defined as
column vectors, i.e.

𝑃𝑖 = (
𝑃𝑖1
⋮
𝑃𝑖𝑑
) . (3.14)

Using these control points, a sequence of Gaussian probability distributions
along the corresponding 𝒩-Curve has been defined (see Equation (3.3)). As
an alternative to this approach, the control points can also be stacked into the
((𝑁deg + 1) ⋅ 𝑑 × 1) control point random vector

P =
⎛
⎜
⎜
⎝

𝑃0
𝑃1
⋮

𝑃𝑁deg

⎞
⎟
⎟
⎠

, (3.15)
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consisting of independent Gaussian random variables, which is itself jointly
Gaussian. Further, a (𝑁 ⋅ 𝑑 × (𝑁deg + 1) ⋅ 𝑑) transformation matrix

C = (
B0,𝑁deg(𝑡1) … B𝑁deg,𝑁deg(𝑡1)

⋮ ⋱ ⋮
B0,𝑁deg(𝑡𝑁) … B𝑁deg,𝑁deg(𝑡𝑁)

) , (3.16)

with

B𝑖,𝑁deg(𝑡) = 𝑏𝑖,𝑁deg(𝑡)I𝑑, (3.17)

where I𝑑 is the 𝑑-dimensional identity matrix, can be derived using the Bern-
stein polynomials 𝑏𝑖,𝑁deg(𝑡𝑖)with 𝑡𝑖 ∈ 𝑇𝑁 (see Equation (3.7) for 𝑇𝑁 ), in order
to map the control point random vector P onto a random vector consisting of
𝑁 𝑑-dimensional Gaussian curve points, i.e.

X = C ⋅ P = (
B0,𝑁deg(𝑡1) ⋅ 𝑃0 +⋯+ B𝑁deg,𝑁deg(𝑡1) ⋅ 𝑃𝑁deg

⋮
B0,𝑁deg(𝑡𝑁) ⋅ 𝑃0 +⋯+ B𝑁deg,𝑁deg(𝑡𝑁) ⋅ 𝑃𝑁deg

) = (
𝑋1
⋮
𝑋𝑁

) .

(3.18)

AsX is obtained through a linear transformation of a Gaussian random vector,
it is jointly Gaussian as well. As a consequence, the corresponding probability
density function 𝑝(X) = 𝑝(𝑋1, ..., 𝑋𝑁) is a Gaussian probability density, thus
the GP property holds.

Next, the mean function and Gaussian process kernel induced by a given
𝒩-Curve will be derived. For simplicity, only the 1-dimensional case is re-
garded, which is also the common use case of Gaussian processes. Following
this, the control points 𝑃𝑖 are defined by the mean value 𝜇𝑖 and variance 𝜎2𝑖 .
While the mean function is equal to that of the𝒩-Curve itself (see Equation
(3.4)), the kernel 𝑘𝒫𝒩(𝑡,𝑡′) for two curve points 𝑋 = ∑𝑁deg

𝑖=0 𝑏𝑖,𝑁deg(𝑡)𝑃𝑖 and
𝑌 = ∑𝑁deg

𝑖=0 𝑏𝑖,𝑁deg(𝑡′)𝑃𝑖 at indices 𝑡 and 𝑡′ with 𝑡,𝑡′ ∈ [0,1], and respective
mean values 𝜇𝑋 = ∑𝑁deg

𝑖=0 𝑏𝑖,𝑁deg(𝑡)𝜇𝑖 and 𝜇𝑌 = ∑𝑁deg
𝑖=0 𝑏𝑖,𝑁deg(𝑡′)𝜇𝑖 is defined

as follows:
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𝑘𝒫𝒩(𝑡𝑖,𝑡𝑗) = 𝔼[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

= 𝔼 [(
𝑛
∑
𝑘=0

𝑏𝑘,𝑛(𝑡𝑖)𝑃𝑘 − 𝜇𝑋) (
𝑛
∑
𝑘=0

𝑏𝑘,𝑛(𝑡𝑗)𝑃𝑘 − 𝜇𝑌)]

= 𝜇𝑋𝜇𝑌 + 𝔼[
𝑛
∑
𝑘=0

(
𝑛
∑
𝑘′=0

𝑏𝑘,𝑛(𝑡𝑖)𝑏𝑘′,𝑛(𝑡𝑗)𝑃𝑘𝑃𝑘′)]

− 𝔼 [
𝑛
∑
𝑘=0

𝑏𝑘,𝑛(𝑡𝑖)𝜇𝑌𝑃𝑘] − 𝔼 [
𝑛
∑
𝑘=0

𝑏𝑘,𝑛(𝑡𝑗)𝜇𝑋𝑃𝑘]

= 𝜇𝑋𝜇𝑌 + 𝔼[
𝑛
∑
𝑘=0

𝑏𝑘,𝑛(𝑡𝑖)𝑏𝑘,𝑛(𝑡𝑗)𝑃2𝑘 ]

+ 𝔼 [
𝑛
∑
𝑘=0

(
𝑛
∑

𝑘′=0,𝑘′≠𝑘
𝑏𝑘,𝑛(𝑡𝑖)𝑏𝑘′,𝑛(𝑡𝑗)𝑃𝑘𝑃𝑘′)]

− 𝜇𝑌
𝑛
∑
𝑘=0

𝑏𝑘,𝑛(𝑡𝑖)𝜇𝑘 − 𝜇𝑋
𝑛
∑
𝑘=0

𝑏𝑘,𝑛(𝑡𝑗)𝜇𝑘.

By applying 𝔼[𝑃𝑖 ⋅ 𝑃𝑗] = 𝔼[𝑃𝑖] ⋅ 𝔼[𝑃𝑗], which follows from the independence
of the control points, and 𝔼[𝑃2𝑖 ] = Var[𝑃𝑖] + (𝔼[𝑃𝑖])2, follows the closed-
form solution

𝑘𝒫𝒩(𝑡𝑖,𝑡𝑗) = 𝜇𝑋𝜇𝑌 +
𝑛
∑
𝑘=0

𝑏𝑘,𝑛(𝑡𝑖)𝑏𝑘,𝑛(𝑡𝑗)(𝜎2𝑘 + 𝜇2𝑘)

+
𝑛
∑
𝑘=0

(
𝑛
∑

𝑘′=0,𝑘′≠𝑘
𝑏𝑘,𝑛(𝑡𝑖)𝑏𝑘′,𝑛(𝑡𝑗)𝜇𝑘𝜇𝑘′)

− 𝜇𝑌
𝑛
∑
𝑘=0

𝑏𝑘,𝑛(𝑡𝑖)𝜇𝑘 − 𝜇𝑋
𝑛
∑
𝑘=0

𝑏𝑘,𝑛(𝑡𝑗)𝜇𝑘.

(3.19)

It can be noted, that the diagonal elements of a covariance matrix obtained
by 𝑘𝒫𝒩(𝑡,𝑡′) correspond to the interpolated covariances of the given𝒩-Curve
as defined in Equation (3.5).
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3.1 The𝒩-Curve Model

Now, with the 𝒩-Curve model covering a specific subset of Gaussian pro-
cesses, the main commonalities and differences between both formulations
will be discussed briefly. Although both, Gaussian processes and the𝒩-Curve
model target a distribution over functions, or rather parametric curves in the
case of 𝒩-Curves, there is a key differences worth mentioning, in that both
approaches provide a different perspective on the task of distribution mod-
eling. While Gaussian processes pursue a bottom-up approach, especially
in Gaussian process regression [Ras06], 𝒩-Curves provide a top-down ap-
proach. As such, in Gaussian process regression, the relation between Gaus-
sian “curve points” is modeled explicitly using the covariance function. Then
treating these curve points as part of a partitioned joint distribution ensures
the GP property. In the 𝒩-Curve model, the distribution over functions is
achieved by modeling the curve-defining control points stochastically, which
dictate the relation between curve points implicitly. Thereby, the GP property
follows from the correlation between curve points, which emerges from geo-
metric constraints given by the underlying Bézier curve, i.e. the curve points
being linear transformations of the same set of stochastic control points.

In order to conclude this short section on the connection between𝒩-Curves
and Gaussian processes, a few illustrations are given, which compare com-
monly used Gaussian process kernels with different 𝒩-Curve kernels. After
that, a simple toy example, depicting the calculation of the posterior distri-
bution given a few observation of a target function, is provided. For these
examples, zero mean Gaussian processes are considered only.

Figure 3.12 illustrates a radial basis function (abbrev.: RBF, [Gör19]) kernel

𝑘rbf
𝜎,𝑙(𝑡,𝑡′) = 𝜎2 exp (−‖𝑡 − 𝑡′‖2

2𝑙2 ) , (3.20)

with 𝜎 = 1 and 𝑙 = 0.25, a linear kernel [Gör19]

𝑘lin
𝜎,𝜎𝑏,𝑐(𝑡,𝑡′) = 𝜎2𝑏 + 𝜎2(𝑡 − 𝑐)(𝑡′ − 𝑐), (3.21)

with 𝜎 = 𝜎𝑏 = 𝑐 = 0.5, and two 𝒩-Curve kernels 𝑘𝒫1(𝑡,𝑡′) and 𝑘𝒫2(𝑡,𝑡′). 𝒫1
consists of two unit Gaussians, i.e. 𝒩(0,1), and 𝒫2 consists of 9 zero mean
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Gaussian control points with standard deviations 𝜎0 = 𝜎8 = 1, 𝜎1 = 𝜎7 =
1.25, 𝜎2 = 𝜎6 = 1.5, 𝜎3 = 𝜎5 = 1.75 and 𝜎4 = 2. The standard deviation
increases towards the center of the control point set, in order to cope with
non-linear blending (see also Section 3.1.2). For each kernel, the covariance
matrix has been calculated for 20 equally spaced values ranging from 0 to 1.

(a) RBF kernel 𝑘rbf
𝜎=1,𝑙=0.25(𝑡,𝑡′). (b) Linear kernel

𝑘lin
𝜎=0.5,𝜎𝑏=0.5,𝑐=0.5(𝑡,𝑡

′).

(c)𝒩-Curve kernel 𝑘𝒫1(𝑡,𝑡′). (d)𝒩-Curve kernel 𝑘𝒫2(𝑡,𝑡′).

Figure 3.12: Covariance matrices for 20 equally spaced values in [0,1] obtained by using differ-
ent Gaussian process kernels.

When comparing the covariance matrices in figures (b) and (c), it can be seen,
that the results from the kernel based on a linear𝒩-Curve with unit Gaussian
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3.1 The𝒩-Curve Model

control points look similar to those based on the given linear kernel. In fact,
the covariance matrix calculated with 𝑘𝒫1 is equale to the covariance matrix
calculated with 𝑘lin

𝜎=0.5,𝜎𝑏=0.5,𝑐=0.5(𝑡,𝑡
′) when normalizing its values to [0, 1].

On the other hand, the covariance matrix obtained with 𝑘𝒫2 (figure (d)), which
is derived from a more complex𝒩-Curve, tends to be more comparable to the
covariance matrix calculated with 𝑘rbf

𝜎=1,𝑙=0.25(𝑡,𝑡′) (figure (a)).

In combination with a mean vector, 0 in this case, each covariance matrix
defines a prior distribution for a Gaussian process. Following this, Figure 3.13
depicts sample functions drawn from each prior distribution, again showing
the parallels between the kernels.

𝑥

𝑦

(a) RBF kernel 𝑘rbf
𝜎=1,𝑙=0.25(𝑡,𝑡′).

𝑥

𝑦

(b) Linear kernel
𝑘lin
𝜎=0.5,𝜎𝑏=0.5,𝑐=0.5(𝑡,𝑡

′).

𝑥

𝑦

(c)𝒩-Curve kernel 𝑘𝒫1(𝑡,𝑡′).

𝑥

𝑦

(d)𝒩-Curve kernel 𝑘𝒫2(𝑡,𝑡′).

Figure 3.13: Samples drawn from prior distributions using different Gaussian process kernels.
The 2𝜎 region around the mean value is depicted as a red shaded area.
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Finally, the Gaussian processes defined by the RBF kernel 𝑘rbf
𝜎=1,𝑙=0.25(𝑡,𝑡′) and

the 𝒩-Curve kernel 𝑘𝒫2 are used to approximate 𝑓(𝑥) = sin(8𝑥) on [0,1]
using 4 observed data points. Using these data points, the posterior distri-
bution of each Gaussian process can be calculated, which ideally tends to fit
the targeted function with an increasing number of observed data points. The
posterior distributions for both Gaussian processes are depicted in figure 3.14.

𝑥

𝑦

(a) RBF kernel 𝑘rbf
𝜎=1,𝑙=0.25(𝑡,𝑡′).

𝑥

𝑦

(b)𝒩-Curve kernel 𝑘𝒫2(𝑡,𝑡′).

Figure 3.14: Posterior distributions of Gaussian processes obtained by using different kernels
given 4 data points (circularmarkers) of a sine function (dashed line). The 2𝜎 region
around the mean value is depicted as a red shaded area.

3.2 Modeling Infinite Stochastic Processes

The 𝒩-Curve model as presented in the previous Section 3.1 is viable for
most real-world applications, which are generally concerned with sequences
of fixed or at least bounded length. Thus, using Bézier curves as a basis, the
representable curve complexity suffices the requirements of given sequen-
tial data. However, apart from the practicality of the 𝒩-Curve model, there
exists a conceptual limitation for modeling continuous-time stochastic pro-
cesses {𝑋𝑡}𝑡∈𝑇 . This limitation is given by the bounded index set 𝑇 = [0, 1],
which is imposed by the use of a Bézier curve basis. Because of this, infinite
continuous-time stochastic processes, i.e. with 𝑇 = ℝ+

0 , cannot be repre-
sented by the 𝒩-Curve model. Further, infinite discrete-time stochastic pro-
cesses {𝑋𝑡}𝑡∈𝑇𝑁 , which model open-ended sequences and are realized using
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3.2 Modeling Infinite Stochastic Processes

a discrete subset 𝑇𝑁 of 𝑇, are also affected by this limitation in a more sub-
tle way. Although the number of control points of an 𝒩-Curve is fixed, it is
still possible to extract an infinite number of curve points with infinitesimal
distance between subsequent curve points. However, as a sequence becomes
longer, it generally also expands in space. Thus a potentially more complex
underlying Bézier curve, i.e. a curve of higher degree, is required for achieving
an accurate approximation. While there is no theoretical limit to the number
of control points defining a Bézier curve, the approximation quality may suf-
fer from an increasing number of control points in practice. This is due to the
increased number of concurring control points, each contributing to every
curve point (global control).

In the context of parametric curves, a common approach to tackle increas-
ing curve complexity in terms of length and shape is the use of segmented
curves. Here, simpler curves of fixed degree are stitched together in order to
form a more complex curve, granting local control over curve segments. Thus,
the number of segments can be increased as required, without affecting the
entire curve. In the context of Bézier curves, such a curve is then called a
composite Bézier curve or Bézier spline [Reb21]. Following this, a Bézier spline
of degree 𝑁deg is defined in terms of a sequence of 𝑁𝑐 Bézier curve segments
𝒫 = {𝓟1, ...,𝓟𝑁𝑐 }, where each segment is defined by its own set of control
points 𝓟𝑖 = {𝑃𝑖0 , ..., 𝑃𝑖𝑁deg

}. Further, at least 𝐶0 continuity, i.e. 𝑃𝑖𝑁deg
= 𝑃𝑖+10 ,

holds for subsequent Bézier curve segments.

If necessary, additional smoothness requirements, e.g. 𝐶1 or 𝐶2 continuity,
can be added. Under 𝐶1 continuity, subsequent curve segments have identi-
cal tangents at the control point joining both segments. 𝐶2 continuous curves
additionally have identical curvature at this point [Bar95]. Under 𝐶0 conti-
nuity, Bézier splines grant local control, i.e. the curve can be altered on a
per segment basis without affecting other segments. This flexibility is re-
stricted when enforcing 𝐶1 or 𝐶2 continuity, as neighboring control points
of subsequent curve segments become dependent on one another. Geometri-
cally, 𝐶1 continuity can be enforced by making the second last control point
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𝑃𝑖𝑁deg−1 of a curve segment and the second control point 𝑃𝑖+11 of the subse-
quent curve segment collinear. For 𝐶2 continuity, these control points addi-
tionally have to have the same (euclidean) distance from the joining control
point 𝑃𝑖𝑁deg

= 𝑃𝑖+10 . Following this, local control can be granted to some de-
gree by using more than 4 control points in a segment. Examples for 𝐶0, 𝐶1

and 𝐶2 continuous segment intersections are given in Figure 3.15.
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Figure 3.15: Examples for Bézier splines consisting of three segments with varying continuity
constraints at segment intersections. Figure (a) depicts a 𝐶0 continuous Bézier
spline and (b) depicts a Bézer spline meeting 𝐶2 continuity at the intersection of
the first two segments and𝐶1 continuity at the intersection of the second and third
segment.

3.2.1 The Meta-time𝒩-Curve Model

Given the aforementioned conceptual limitations, the goal is to extend the
𝒩-Curve model for infinite stochastic processes and open-ended sequences,
i.e. a stochastic process with index¹ 𝑡 ∈ ℝ+

0 . For this purpose, the concept
of splines is incorporated into the model, thus combining𝒩-Curve segments
into a more complex probabilistic spline. In order to model an indefinite num-
ber of curve segments, a notion of control point evolution is introduced, by
defining the set of Gaussian control points as a function𝓟𝒩(𝑡) of time 𝑡. Due

¹ The index 𝑡 will again be interpreted as time for a more intuitive derivation of this extension.
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to each function value then defining an entire curve segment covering multi-
ple time steps, a (potentially) asynchronous timeline emerges. This timeline
is denoted as meta-time with index ̃𝑡 in the following. Subsequent values of
̃𝑡 then yield subsequent 𝒩-Curve segments on the probabilistic spline mod-

eling the stochastic process. This probabilistic spline will be denoted as a
meta-time 𝒩-Curve in the following. With the control point function repre-
senting a sequence of Gaussian control point sets, the meta-time𝒩-Curve is
defined as a sequence of connected 𝒩-Curve segments 𝜓 = {{𝑃 ̃𝑡

0 , ..., 𝑃 ̃𝑡
𝑁deg

}} ̃𝑡 ,
indexed by meta-time ̃𝑡 ∈ ℕ0. For associating a point in time 𝑡 with the cor-
responding 𝒩-Curve segment, the meta-time mapping 𝑚 ∶ 𝑡 → ̃𝑡 onto the
meta-timeline is introduced. In addition, with 𝑡 (and ̃𝑡) now exceeding the in-
dex range of an𝒩-Curve, another mapping 𝑚𝑐 ∶ 𝑡 → 𝑡𝑐 onto the curve-time
parameter 𝑡𝑐 ∈ [0, 1] is introduced in order to access the exact curve point on
a curve segment. This mapping is denoted as the curve-time mapping. Note,
that 𝑚𝑐 is technically defined as 𝑚𝑐 ∶ (𝑡, ̃𝑡) → 𝑡𝑐 , but as ̃𝑡 is derived from 𝑡
through 𝑚, the additional parameter can be omitted. Finally, in the context
of meta-time𝒩-Curves, 𝐶0 continuity is given by matching the mean vectors
and covariance matrices at the intersection of subsequent𝒩-Curve segments.
Aforementioned geometric restrictions for 𝐶1 and 𝐶2 continuity only apply
to control point mean values. Figure 3.16 gives an illustration of the different
timelines and the basic idea of the model extension.

43



3 Concept

𝑡
0

ℝ+
0

̃𝑡
0 1 2 3

ℕ0

𝑡𝑐 0 1 0 1 0 1 0 1

𝑚∶𝑡→ ̃𝑡

𝑚𝑐∶(𝑡, ̃𝑡)→𝑡𝑐

𝐵𝒩(𝑡,𝜓)

Figure 3.16: Illustration of the proposed extension of the𝒩-Curve model, basing stochastic pro-
cess modeling on probabilistic Bézier splines instead of single Bézier curves, thus
allowing to model infinite stochastic processes. Interpreting the stochastic pro-
cess index 𝑡 as time, multiple connected timelines emerge, namely meta-time ̃𝑡 and
curve-time 𝑡𝑐. Given a specific point in time 𝑡, the corresponding 𝒩-Curve seg-
ment is determined by the mapping 𝑚(𝑡) and the specific point on the segment
by 𝑚𝑐(𝑡). An exemplary resulting probabilistic spline 𝐵𝒩(𝑡,𝜓) is depicted at the
bottom.

With the introduced timeline mappings, the original formulation of the 𝒩-
Curve model can be extended into the meta-time𝒩-Curve model as depicted
in Table 3.1. Here, only the definition of the extended 𝒩-Curve is provided,
as the derivation of other formulas building on the curve definition, e.g. the
curve point probability density function (Equation (3.6)), is not directly af-
fected by these changes. Further, exemplary definitions are provided for both
the meta-time and the curve-time mapping. Potential definitions for these
mappings are discussed in Section 3.2.2.
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Table 3.1: Overview of changes made to the 𝒩-Curve model in order to derive the meta-time
𝒩-Curve model extension. For completeness, examples for the meta-time and curve-
time mappings are provided.

Targeted stochastic process
𝒩-Curve 𝒢𝑇 = {𝑋𝑡}𝑡∈[0,1]
Meta-time𝒩-Curve 𝒢𝑇 = {𝑋𝑡}𝑡∈ℝ+0

Curve (segment) definition
𝒩-Curve 𝜓 = {𝑃0, ..., 𝑃𝑁deg }
Meta-time𝒩-Curve 𝜓 = {{𝑃 ̃𝑡

0 , ..., 𝑃 ̃𝑡
𝑁deg

}} ̃𝑡∈ℕ0 , 𝜓( ̃𝑡) = {𝑃 ̃𝑡
0 , ..., 𝑃 ̃𝑡

𝑁deg
}

Curve points (see Equation (3.3))
𝒩-Curve 𝐵𝒩(𝑡, 𝜓) = (𝜇𝜓(𝑡), Σ𝜓(𝑡))
Meta-time𝒩-Curve 𝐵𝒩(𝑡, 𝜓) = (𝜇𝜓(𝑚(𝑡))(𝑚𝑐(𝑡)), Σ𝜓(𝑚(𝑡))(𝑚𝑐(𝑡)))

Mean function (see Equation (3.4))
𝒩-Curve 𝜇𝜓(𝑡) = ∑𝑁deg

𝑖=0 𝑏𝑖,𝑁deg (𝑡)𝝁𝑖
Meta-time𝒩-Curve 𝜇𝜓( ̃𝑡)(𝑡𝑐) = ∑𝑁deg

𝑖=0 𝑏𝑖,𝑁deg (𝑡𝑐)𝝁𝑖, 𝝁𝑖 ∈ 𝜓( ̃𝑡)
Covariance function (see Equation (3.5))

𝒩-Curve Σ𝜓(𝑡) = ∑𝑁deg
𝑖=0 (𝑏𝑖,𝑁deg (𝑡))2𝚺𝑖

Meta-time𝒩-Curve Σ𝜓( ̃𝑡)(𝑡𝑐) = ∑𝑁deg
𝑖=0 (𝑏𝑖,𝑁deg (𝑡𝑐))2𝚺𝑖, 𝚺𝑖 ∈ 𝜓( ̃𝑡)

Meta-time mapping
𝒩-Curve -
Meta-time𝒩-Curve ̃𝑡 = 𝑚(𝑡) = ⌊ 𝑡

𝑎
⌋

Curve-time mapping
𝒩-Curve -
Meta-time𝒩-Curve 𝑡𝑐 = 𝑚𝑐(𝑡) = 𝑡 − 𝑚(𝑡)

On a final note, the meta-time 𝒩-Curve model can be used in the context of
multi-modal stochastic processes by following the same approach as described
for the original 𝒩-Curve model using a mixture of meta-time 𝒩-Curves. In
this case, each mode of a stochastic process representation follows a separate
meta-time𝒩-Curve. The mixture weight distribution is defined on a per seg-
ment basis, i.e. 𝜋( ̃𝑡) = {𝜋 ̃𝑡

1, ...𝜋 ̃𝑡
𝐾} is given at meta-time ̃𝑡. Following this, a

potential benefit of meta-time𝒩-Curves is given by the fact, that it is possible
to alter the curve weights in eachmeta-time step. This allows for more control
about the number of required mixture components on a per-segment basis.
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3.2.2 Mapping Functions

In the context of the meta-time𝒩-Curve model, two mappings have been de-
fined, namely the meta-time mapping and the curve-time mapping, connect-
ing the introduced timelines. As there possibly exists a wide range of options
for defining either mapping, this section provides exemplary mapping defini-
tions, which are expected to be relevant for an actual implementation of the
model in the context of different sequence modeling tasks.

Meta-time mapping: Moving along the meta-timeline yields a sequence of𝒩-
Curve segments along a probabilistic spline. In this context, the meta-time
mapping maps a given point in time 𝑡 onto the meta-timeline, i.e. a natural
number ̃𝑡 ∈ ℕ0, in order to determine the corresponding 𝒩-Curve segment.
Following this, the goal is to define a consistent meta-time mapping from 𝑡
onto the set of natural numbers.

The first possible definition of this mapping is given by a fixed interval map-
ping

𝑚𝑎(𝑡) = ⌊ 𝑡𝑎 ⌋ . (3.22)

In this case, the meta-time ̃𝑡 is advanced at a fixed rate as 𝑡 increases, thus
traversing an infinite sequence of (distinct) 𝒩-Curve segments. While this
definition may result in premature segment changes, an interesting special
case is given for 𝑎 = 1, where the resulting meta-time 𝒩-Curve resembles
a probabilistic spline with segments connected at their endpoints. Besides
resulting in a well-defined segmented probabilistic curve, this further allows
a straightforward definition of 𝐶1 and 𝐶2 continuous segment intersections
via control point placement.

In cases, where periodic repetitions are expected in sequential data, another
definition is given by a periodic mapping

𝑚𝑎,𝑏,𝑝(𝑡) = ⎢
⎣
2 ⋅ 𝑎
𝜋 arcsin (sin (2 ⋅ 𝜋𝑝 ⋅ 𝑡)) + 𝑏⎥⎦ , (3.23)
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which can be based for example on a triangle wave. Here, 𝑡 is mapped onto
the same sequence of𝒩-Curve segments periodically, thus repeating the same
segment sequence over and over. The repetition frequency is controlled by 𝑝.
An alternative to the periodic mapping is given by a modulo reset mapping

𝑚𝑎,𝑘(𝑡) = ⌊ 𝑡𝑎 ⌋ mod 𝑘 (3.24)

with 𝑘 ≥ 1, which repeats the same segment sequence after every 𝑘 meta-
time steps. This mapping is basically built on a sawtooth wave. Similar to the
fixed interval mapping, these two definitions can be parameterized to yield
an endpoint-connected probabilistic spline.

Curve-time mapping: After determining the current𝒩-Curve segment at time
𝑡, the current position within this segment needs to be determined. For this,
a curve-time mapping needs to be defined, mapping 𝑡 onto curve-time 𝑡𝑐 ∈
[0,1]. As this mapping is highly dependent on the specific definition of the
meta-time mapping𝑚, an exemplary curve-time mapping compliant with the
given variants of𝑚, which result in an endpoint-connected spline, is provided.
All these variants map a given time 𝑡 in a way, that a segment intersection
occurs whenever 𝑡 is a multiple of 1. Following this, the difference between
the value of 𝑡 for the first and last segment point is exactly 1 and intermediate
values are in [0, 1]. As such, the curve-time mapping can be defined as

𝑚𝑐(𝑡) = 𝑡 − 𝑚(𝑡). (3.25)

Learned mapping: On a final note, it is also possible to learn both mappings in
a constraint optimization setting. A potential benefit of this can be given by a
resulting efficient re-use of few base segments, especially when the mapping
can be conditioned on additional domain-specific input. On the downside,
depending on the constraints defined during optimization, spline properties
regarding 𝐶1 and 𝐶2 continuity might be lost.
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3.2.3 Modeling discrete-time stochastic processes

As a last point, this section provides some insight into how the concept of
meta-time 𝒩-Curves can be applied for modeling discrete-time stochastic
processes using different mapping variants. For this, only mapping variants
resulting in an endpoint-connected probabilistic spline are considered, being
expected to be the most relevant in an application context.

Recall in the 𝒩-Curve model, a discrete index set 𝑇𝑁 ⊂ 𝑇 is extracted from
the continuous index set 𝑇 = [0,1] using a predetermined sequence length 𝑁
(see also Section 3.1). Now, with 𝑇 = ℝ+

0 and sequences being unbounded
in length, it is necessary to define the sequence length 𝑁seg covered by each
𝒩-Curve segment along a meta-time𝒩-Curve. Following this, the difference
between subsequent stochastic process indices 𝑡𝑖 ∈ 𝑇𝑁 and 𝑡𝑖+1 ∈ 𝑇𝑁 is
dictated by 𝑁seg through Δ𝑡 = 1

𝑁seg−1
. Using this formulation, 𝑁 = 𝑁seg is a

necessary condition in the original 𝒩-Curve model. Opposed to that, in the
meta-time 𝒩-Curve model it is possible to have 𝑁 > 𝑁seg, which ultimately
allows modeling open-ended sequences through generating a stream of 𝒩-
Curve segments. The discrete index set 𝑇𝑁 can now be re-formulated as

𝑇𝑁 = {
𝑣
∑
𝑖=0

Δ𝑡|𝑣 ∈ {0, ..., 𝑁 − 1}} . (3.26)

The meta-time mapping 𝑚(𝑡𝑖) is now required to fill the additional role of
determining how many𝒩-Curve segments are required to model a sequence
of length 𝑁 given 𝑁seg. In the case of the fixed interval mapping

𝑚𝑎=1(𝑡𝑖) = ⌊𝑡𝑖⌋ ,

the 𝑁th element of a sequence lies on the 𝑚𝑎=1(𝑡𝑁)’th 𝒩-Curve segment.
Thus, the meta-time 𝒩-Curve model needs to generate

𝑚𝑎=1(𝑡𝑁) =
𝑁
𝑁seg
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segments compliant with given continuity constrains. With 𝑁 → ∞, this
results in an indefinite stream of distinct 𝒩-Curve segments, connected at
their endpoints. Looking at periodic mappings, e.g. themodulo reset mapping

𝑚𝑎=1,𝑘(𝑡𝑖) = ⌊𝑡𝑖⌋ mod 𝑘,

the meta-time 𝒩-Curve model needs to generate a maximum of 𝑘 segments
which are referenced in a loop via𝑚𝑎=1,𝑘 . Themaximum number of segments
is required when 𝑁 > (𝑘 − 1) ⋅ 𝑁seg. For 𝑁 → ∞, this results in an indefinite
repetition of the same 𝑘 𝒩-Curve segments. Finally, in both cases, specific
random variables along the meta-time𝒩-Curve are determined according to
𝑚𝑐 and the corresponding 𝒩-Curve segment.

3.3 Summary

The main contributions of this chapter are twofold. First, a probabilistic ex-
tension to Bézier curves (𝒩-Curves) was introduced, whichmodels sequences
of Gaussian probability distributions along a parametric curve. Thereby, an
𝒩-Curve is defined in terms of stochastic control points. Further, it has
been shown that 𝒩-Curves are a special case of Gaussian processes. Sec-
ond, a model building on mixtures of 𝒩-Curves was presented, which en-
ables the modeling of multi-modal stochastic processes. Using the 𝒩-Curve
model and its meta-time variant, finite and infinite, as well as discrete-time
and continuous-time stochastic processes can be modeled.
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This chapter provides an implementation for the𝒩-Curve model (see Section
3.1), based on Mixture Density Networks (MDN). Therefore, Section 4.1 first
extends on the introduction of Mixture Density Networks as given in Section
2.2.2 and then proceeds to define 𝒩-Curve Mixture Density Networks (ab-
brev.: 𝒩-MDN). The definition of the 𝒩-MDN is accompanied with several
toy examples, exploring the capabilities of the 𝒩-Curve model.

In addition to the 𝒩-MDN, this chapter provides a proof of concept for the
conceptual extension of the𝒩-Curvemodel, given by themeta-time𝒩-Curve
model as described in Section 3.2. As such, a recurrent extension of the 𝒩-
MDN is introduced and briefly evaluated on multiple toy examples in Section
4.2.

4.1 𝒩-Curve Mixture Density Networks

Defining a fully regression-based probabilistic sequence model is one of the
main objectives pursued in this thesis. Following this, an MDN for learn-
ing the parameters of an𝒩-Curve mixture (see Section 3.1) from discrete se-
quence data is proposed. An MDN is a feed-forward neural network

Φ(v) = ({𝜋𝑘, 𝝁𝑘, 𝚺𝑘}𝑘∈{1,...,𝐾}|v), (4.1)

that takes an input vector v and maps it onto the parameters of a 𝑑-
dimensional, 𝐾-component Gaussian mixture distribution. In order to ensure
that the MDN generates a valid set of mixture parameters, the partitioned
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network output

̂𝑦 = (�̃�1, ..., �̃�𝐾 , ̃𝝁1, ..., ̃𝝁𝐾 , �̃�1, ..., �̃�𝐾 , ̃𝝆1, ..., ̃𝝆𝐾),

with

�̃�𝑘 ∈ ℝ, ̃𝝁𝑘 ∈ ℝ𝑑, �̃�𝑘 ∈ ℝ𝑑 and ̃𝝆𝑘 ∈ ℝ
𝑑2−𝑑
2

is further transformed to meet parameter value requirements, i.e.

𝜋𝑘 = softmax(�̃�1, ..., �̃�𝐾)𝑘,

such that ∑𝑘 𝜋𝑘 = 1 and

𝝁𝑘 = ̃𝝁𝑘
𝜎𝑘,𝑖 = 𝑓𝜎( ̃𝜎𝑘,𝑖) > 0 ∀𝑖 ∈ {1, ..., 𝑑}

𝜌𝑘,𝑗 = 𝑓𝜌( ̃𝜌𝑘,𝑗) ∈ [−1, 1] ∀𝑗 ∈ {1, ..., 𝑑
2 − 𝑑
2 } .

Note that the covariance matrices 𝚺𝑘 are calculated from the standard devia-
tions and correlations in order to ensure positive definiteness. For the trans-
formations 𝑓𝜎 and 𝑓𝜌, there are several relevant options to consider. The orig-
inal formulation [Bis94] employed

𝑓𝜎(𝑥) = exp(𝑥) and 𝑓𝜌(𝑥) = tanh(𝑥) (4.2)

to transform 𝜎 and 𝜌 into respective value ranges. Both of these functions,
however, can lead the MDN into having numerical issues during training. In
the case of 𝑓𝜎 , the exponential function yields instable optimization results for
large input values due to its exponential growth. To cope with this, a shifted
version of the Exponential Linear Unit (abbrev.: ELU, [Cle15, Gui17])

𝑓𝜎(𝑥) = ELU(1,𝑥) + 1 (4.3)
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with

ELU(𝛼,𝑥) = {𝛼(𝑒
𝑥 − 1) for 𝑥 < 0

𝑥 for 𝑥 ≥ 0 (4.4)

and the softplus function (also referred to as SmoothReLU, [Dug01, Glo11,
Iso17])

𝑓𝜎(𝑥) = softplus(𝑥) = ln(1 + 𝑒𝑥) (4.5)

are commonly used in MDNs. These functions are similar to the exponen-
tial function for negative and small positive input values, but transition into
a linear function for larger input values. From an optimization point of view,
the softplus function may be preferred over the ELU, as the latter is non-
continuous in its derivatives [Sch20b]. Regarding the correlations 𝜌, using
the tanh function for 𝑓𝜌 can lead to vanishing gradients. Thus the softsign
function [Glo10, Iso17]

𝑓𝜌(𝑥) = softsign(𝑥) = 𝑥
1 + |𝑥| (4.6)

may be used instead, despite having more complex derivatives [Sza21]. A
schematic for an MDN generating a 2-dimensional Gaussian mixture distri-
bution is depicted in Figure 4.1.
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Input v

Neural Network

Linear Readout

Value
Mapping

...

�̃�1 ... �̃�𝐾 �̃�1 ... �̃�2𝐾 ̃𝜎1 ... ̃𝜎2𝐾 ̃𝜌1 ... ̃𝜌𝐾

softmax 𝑓𝜎 𝑓𝜎 𝑓𝜌 𝑓𝜌

𝜋1 ... 𝜋𝐾 𝜇1 ... 𝜇2𝐾 𝜎1 ... 𝜎2𝐾 𝜌1 ... 𝜌𝐾

Figure 4.1: Schematic of a Mixture Density Network generating a 2-dimensional Gaussian mix-
ture distribution. The outputs of a (feed-forward) neural network are linearly trans-
formed and mapped onto respective parameters value ranges in order to determine
the parameters, {𝜋𝑘, 𝝁𝑘, 𝚺𝑘}𝑘∈{1,...,𝐾}, of a Gaussian mixture distribution. The co-
variance matrices 𝚺𝑘 are given in terms of the standard deviations 𝜎𝑘,𝑖 and the cor-
relations 𝜌𝑘,𝑗. For illustration purposes, the mean vector values 𝜇𝑘,1 and 𝜇𝑘,2, as
well as the standard deviations 𝜎𝑘,1 and 𝜎𝑘,1 for each mixture component are not
displayed separately.

Following this, Mixture Density Networks can be adapted easily to output the
parameters of a 𝐾-component 𝒩-Curve mixture with 𝒩-Curves of degree
𝑁deg by generating the parameters {𝜓𝑘}𝑘∈{1,...,𝐾} = {(𝜇𝑘𝓟, Σ𝑘𝓟)}𝑘∈{1,...,𝐾} for all
𝐾 ⋅ (𝑁deg + 1) stochastic control points and the respective 𝐾 curve weights
{𝜋𝑘}𝑘∈{1,...,𝐾}. Advantages of using an MDN for learning the 𝒩-Curve mix-
ture parameters, rather than other algorithms (e.g. Expectation Maximization
[Dem77]), are twofold. First, MDNs allow its output distribution to be con-
ditioned on arbitrary inputs. Thus, the MDN provides an easy approach to
learn and process conditional 𝒩-Curve mixtures, allowing the model to be
used in a conditional inference framework. Second, the MDN can be incorpo-
rated easily into (almost) any neural network architecture without the need
to control the gradient flow. Besides that, there are two notable drawbacks of
MDNs to consider, namely mode collapse due to overfitting and instabilities
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during training [Mak19]. In the context of MDNs, mode collapse commonly
refers to a problem, where the MDN puts all weight on a single low-variance
component, regardless of the number of available components. While insta-
bilities during training can be mitigated by choosing appropriate functions
for 𝑓𝜎 and 𝑓𝜌, mode collapse is expected to be reduced by setting MDNs in the
context of𝒩-Curves, as modeling parametric curves instead of single points
is expected to yield more distinct modes.

The most commonly used loss function for training an MDN is the negative
log-likelihood [Bis94], which can also be adapted for training the 𝒩-Curve
Mixture Density Network from discrete sequence data. Let 𝓢 = {𝒮1, ..., 𝒮𝑀}
be a set of𝑀 realizations of a stochastic process with 𝒮𝑗 = {x𝑗1, ...,x

𝑗
𝑁} where

each x𝑗𝑖 with 𝑖 ∈ {1, ..., 𝑁} is a sample value for the respective random variable
𝑋𝑡𝑖 at time 𝑖 for 𝑡𝑖 ∈ 𝑇𝑁 (see Section 3.1). In order to simplify the training
procedure, Gaussian random variables along the 𝒩-Curve are treated as if
they were independent. Following this, the joint probability of the samples
x𝑗𝑖 in a sequence 𝒮𝑗 along an 𝒩-Curve 𝜓 factorizes into the unnormalized
Gaussian density

𝑝𝜓(𝒮𝑗) = 𝑝𝜓(x𝑗1, ...,x
𝑗
𝑁) =

𝑁
∏
𝑖=1

𝑝𝜓𝑡𝑖 (x
𝑗
𝑖 ). (4.7)

This is exploited when defining the loss function. It should be noted, that
this simplification can be justified, as the correlation between these Gaussian
random variables is enforced implicitly by the underlying𝒩-Curve and thus
by the stochastic control points, which are estimated during training.
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For a single sequence 𝒮𝑗 and an𝒩-Curve 𝜓 = Φ(v), the loss function is then
defined by the negative (unnormalized) log-likelihood

ℒ = − log 𝑝𝜓(x𝑗1, ...,x
𝑗
𝑁)

= − log(
𝑁
∏
𝑖=1

𝑝𝜓𝑡𝑖 (x
𝑗
𝑖 ))

= −
𝑁
∑
𝑖=1

log 𝑝𝜓𝑡𝑖 (x
𝑗
𝑖 )

= −
𝑁
∑
𝑖=1

log 𝑝(x𝑗𝑖 |𝜇𝜓(𝑡𝑖), Σ𝜓(𝑡𝑖))

(4.8)

of the sequence given an input vector v. Therefore, the loss for a set of 𝑀
sequences 𝓢 = {𝒮1, ..., 𝒮𝑀} is defined as

ℒ =
𝑀
∑
𝑗=1

(−
𝑁
∑
𝑖=1

log 𝑝(𝑥𝑗𝑖 |𝜇𝜓(𝑡𝑖), Σ𝜓(𝑡𝑖))) . (4.9)

Equation (4.9) can easily be extended for 𝒩-Curve mixtures. Given an 𝒩-
Curve mixture Ψ = Φ(v), the likelihood of a single training sequence 𝒮𝑗 is
now calculated as the weighted linear combination of the likelihood of 𝒮𝑗 for
each 𝜓𝑘 (see Equation (4.7)):

𝑝Ψ(𝒮𝑗) =
𝐾
∑
𝑘=1

𝜋𝑘𝑝𝜓𝑘(𝒮𝑗). (4.10)
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Thus, the loss for a set 𝓢 of 𝑀 sequences can be defined as

ℒ = 1
𝑀

𝑀
∑
𝑗=1

− log
𝐾
∑
𝑘=1

𝜋𝑘𝑝𝜓𝑘(𝒮𝑗)

= 1
𝑀

𝑀
∑
𝑗=1

− log
𝐾
∑
𝑘=1

𝜋𝑘
𝑁
∏
𝑖=1

𝑝𝜓𝑡𝑖 (x
𝑗
𝑖 )

= 1
𝑀

𝑀
∑
𝑗=1

− log
𝐾
∑
𝑘=1

exp(log𝜋𝑘 +
𝑁
∑
𝑖=1

log (𝑝𝜓𝑡𝑖 (x
𝑗
𝑖 ))) .

(4.11)

Then, the 𝒩-Curve Mixture Density Network (abbrev.: 𝒩-MDN) can
be trained using a standard gradient descent policy. Most commonly,
momentum-based gradient descent optimizers are employed. Popular choices
include Adam [Kin15] and RMSprop [Rud16]. It should be noted, that from an
optimization point of view, it is preferred to use the mean of the likelihoods
when long sequences or many samples should be processed, as the sum of
negative log likelihoods may result in large loss values and thus a less stable
optimization. Further, it is recommended to output the mean vectors relative
to the last element of the input sequence instead of their absolute values.
That way, the 𝒩-MDN learns a residual mapping, which have proven to be
easier to optimize and yield more accurate results [He16][Hug17]. Finally,
the loss function ℒ given in Equation (4.11) is arranged in a way, such that
the log-sum-exp trick [Pre07] can be applied. This trick prevents arithmetic
underflow by offsetting the values in the exponent, according to

log {∑
𝑖
exp {𝑧𝑖}} = log {∑

𝑖
exp {𝑧𝑖 − 𝑧max}} + 𝑧max.

In this implementation of the 𝒩-Curve (mixture) model, the input vector v
allows the model to be used in either a conditional or a non-conditional in-
ference setting. Examples for both settings include sequence prediction (con-
ditional) and the estimation of the data generating distribution given some
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dataset (non-conditional). Regarding the conditional case, the stochastic pro-
cess, and thus the𝒩-Curve mixture, depends on some input sequence 𝒮. This
sequence may be encoded into the input vector v using some encoder Enc(𝒮).
A common choice for sequence encoders are recurrent neural networks and
variants, such as the Long Short-Term Memory (LSTM) and the Gated Recur-
rent Unit (GRU). In the non-conditional case, v can be set to some constant
value. While, technically, this also gives a conditional𝒩-Curvemixture, there
is no variation in v, resulting in a constant mixture.

Subsections 4.1.1 – 4.1.4 provide several toy examples using synthetically gen-
erated data to showcase different features and the functionality of the pro-
posed implementation of the𝒩-Curve model, based on Mixture Density Net-
works. In order to remove as much complexity as possible, the input vector
v is set to be constant, thus creating a non-conditional sequence synthesis
setting. Following this, the𝒩-MDN learns to generate an𝒩-Curve mixture,
which estimates the underlying stochastic process generating the provided
data. For all of the toy examples, a PyTorch [Pas19] implementation of the
𝒩-MDN is used. The model is trained using the Adam optimizer with the
learning rate set to 0.01. All other parameters are left at PyTorch defaults.
With low-dimensional sequence datasets being small in size, there is no need
to perform batch optimization, as the entire dataset fits into memory. As such,
the entire training dataset is processed with each iteration of training. Dur-
ing training, the model is assumed to have reached convergence, when the
training loss stagnates for 10 iterations.

4.1.1 Estimating𝒩-Curve mixtures from noisy data

For testing the 𝒩-Curve Mixture Density Network’s capability of learning
the parameters of an 𝒩-Curve mixture from noisy sequence data, a simple
experiment is conducted. To enable a proper visualization of the results, this
example uses 2-dimensional data. Following this, an experiment is set up
as follows:

1 Define an arbitrary 2-component𝒩-Curve mixture Ψgt with 5
Gaussian control points per component by defining the weights 𝜋, as
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well as the mean vectors 𝜇𝑘𝓟 and covariance matrices Σ𝑘𝓟 for the
control points𝓟𝑘

𝒩 of each𝒩-Curve 𝜓𝑘 . The weights are set to
𝜋 = {0.75, 0.25} resulting in a biased training dataset.

2 Draw a set of𝑀 = 1000 Bézier curves from Ψgt.

3 Determine the discrete index set 𝑇𝑁=20 consisting of 20 (arbitrary, but
fixed) evenly distributed values for 𝑡 ∈ [0, 1] (see also Section 3.1) in
order to discretize each of the𝑀 Bézier curves into a set 𝓢 of sample
sequences.

4 Apply Gaussian noise to each sample sequence in order to create a
more realistic training dataset.

5 Train the𝒩-MDN using 𝓢 and check if the network is capable of
reconstructing Ψgt.

In this way, the stochastic control points defining the𝒩-Curve mixture have
to be estimated indirectly through a set of sample sequences. The ground
truth𝒩-Curve mixture Ψgt and a sample sequence is depicted in Figure 4.2.

𝑥

𝑦

(a) Sample Bézier curve.

𝑥

𝑦

(b) Discretized curve sample with added
noise.

Figure 4.2: Ground truth 𝒩-Curves 𝜓1 and 𝜓2 (red and green) starting at (0, 0) alongside a
sampled Bézier curve (blue). Both, (a) and (b), show the mean curve and the control
points with covariance ellipses for both 𝒩-Curves. In (a) the Bézier curve is illus-
trated as sampled from 𝜓1, while (b) shows the discretized version of the sample
curve with Gaussian noise applied.
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The training dataset 𝓢 and the evolution of the parameters defining the esti-
mated𝒩-Curve mixture Ψpred over several training iterations are depicted in
Figure 4.3. In order to make the quality of the estimation more comprehen-
sible, Figures 4.3c – 4.3f show the deviation of the estimated from the actual
parameters. The deviations are defined per control point 𝑃𝑘𝑖 as

Δ𝜇 = ‖𝝁𝑘pred,𝑖 − 𝝁𝑘gt,𝑖‖2
Δ𝜎 = 𝝈𝑘pred,𝑖 − 𝝈𝑘gt,𝑖
Δ𝜌 = 𝜌𝑘pred,𝑖 − 𝜌𝑘gt,𝑖 .

(4.12)
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𝑥

𝑦

(a)

iteration

𝜋 𝑘

(b)

iteration

Δ𝜇

(c)

iteration

Δ𝜎
𝑥

(d)

iteration

Δ𝜎
𝑦

(e)

iteration

Δ𝜌

(f)

Figure 4.3: Training dataset (a) and estimatedmixture parameters over the course of the training
((b) – (f)). (c): Euclidean distance between the estimatedmean vectors and the ground
truth. (d) – (f): Signed difference between estimated and ground truth standard devi-
ations and correlations, revealing the occurrence of under- and over-estimation. In
(c) – (f), values corresponding to the first and second mixture component are shown
as a solid and dashed line, respectively. The depicted colored lines correspond to the
control points {𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4} of each𝒩-Curve in the mixture.
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Looking at Figures 4.3b and 4.3c, it can be seen that the𝒩-MDN iswell capable
of estimating the actual component weights and control point mean vectors.
On the other hand, the model seems to over-estimate the standard deviations
slightly (Δ𝜎 ≈ 0.1) and there appears to be a rather large discrepancy between
the estimated and actual correlation values. A possible explanation for these
discrepancies can be found when looking at the covariance matrix from a ge-
ometric point of view. In general, the covariance matrix not only controls the
amount of dispersion in data drawn from a corresponding Gaussian distribu-
tion, but also the orientation of the principal axes of dispersion. As such, the
covariance matrix can be interpreted as a linear transformation defined by a
rotation matrix R and a diagonal scaling matrix S, such that 𝚺 = RSSR−1¹.
In the 2-dimensional case, the data dispersion can be visualized by an (ro-
tated) ellipse. The orientation of this ellipse is controlled by the covariance
matrix off-diagonal element Σ0,1 = Σ1,0 = 𝜎𝑥𝜎𝑦𝜌. Following this, when ei-
ther 𝜎 is over-estimated, the error in ellipse orientation can be compensated
by adapting the correlation 𝜌. Besides that, there likely exist multiple simi-
lar solutions to the covariance matrix defined by different correlation values
generating a similar set of samples. As such, the𝒩-MDN only finds a locally
optimal solution.

Finally, Figure 4.4 depicts the Ψpred at different stages during training, illus-
trating the process of estimating Ψgt. It can be seen, that the position of
the control points is estimated well. Further, the orientation preservation
assumption can be confirmed looking at Figure 4.4d. The orientation of the
estimated covariance ellipses is similar to the real ellipses, but the variances
are slightly over-estimated.

¹ The transformation matrices can be obtained by an Eigendecomposition.
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𝑥

𝑦

(a) Iteration 0.

𝑥

𝑦

(b) Iteration 1000.

𝑥

𝑦

(c) Iteration 5000.

𝑥

𝑦

(d) Iteration 10000.

Figure 4.4: Ground truth𝒩-Curvemixture (red and green) andmixture estimated from noisy se-
quence data (blue and purple) after 0 (random initialization), 1000, 5000 and 10000
iterations of training.

4.1.2 Handling heteroscedastic data

This example examines the capabilities of the𝒩-Curvemodel in handling het-
eroscedastic data, i.e. a stochastic processes with varying variance between
time steps. Using heteroscedastic data especially allows the examination of
the modeling accuracy when varying the number of𝒩-Curve control points.
In contrast to the previous toy example, this and further examples are only
concerned with curve points along the estimated 𝒩-Curve (mixture), repre-
senting the actual stochastic process.
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In order to keep the experiment as simple as possible, the dimensionality of
the data is set to 1. Thus, a dataset consisting of 1000 sample sequences is
generated using an unimodal, time-discrete stochastic process 𝒢𝑇 = {𝑋𝑡 ∼
𝒩(𝜇𝑖, 𝜎𝑖)}𝑡∈𝑇𝑁=11 with mean values moving along a parabolic curve and cor-
responding standard deviations changing between consecutive process in-
dices 𝑡𝑖 and 𝑡𝑖+1. The stochastic process alongside sampled process realiza-
tions is given in Figure 4.5.

𝑥

𝑦

(a)

𝑥

𝑦

(b)

Figure 4.5: Illustration of the training samples drawn from a heteroscedastic stochastic process.
(a): Ground truth discrete-time stochastic process 𝒢𝑇 = {𝑋𝑡}𝑡∈𝑇𝑁=11 . Standard
deviations (𝜎, 2𝜎 and 3𝜎) along 𝒢𝑇 are illustrated as a shaded region around the
mean curve. 3𝜎 for each 𝑋𝑡 is indicated by a horizontal dashed line. (b): Sample
sequences drawn from 𝒢𝑇.

Estimated 𝒩-Curves with 5 and 15 control points generated by an 𝒩-MDN
are depicted in Figure 4.6. It can be seen, that the 𝒩-MDN learns a smooth
mean curve and compensates variation in noise using the variance of the con-
trol points. With an increasing number of control points, an increasing num-
ber of variations in input noise can be compensated. This, however, comes
at the cost of a less accurate mean curve, due to the increasing degree of the
underlying polynomial curve. Note that the 𝒩-Curves still model a time-
continuous stochastic process, despite being given discrete data. Intermedi-
ate values are interpolated according to the Bernstein polynomials (see also
Section 3.1).
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𝑥

𝑦

(a)

𝑥

𝑦

(b)

Figure 4.6: Approximations of 𝒢𝑇 using 𝒩-Curves with 5 (a) and 15 (b) control points as gen-
erated by an 𝒩-MDN trained with noisy sequence data. Using more control points
increases the accuracy in modeling the variance of the stochastic process at the cost
of a less accurate mean curve. For reference, the training sequences (without con-
nections between subsequent points) are illustrated using black cross markers.

4.1.3 Presence of superfluous mixture components

When dealing with multi-modal sequence data, the actual number of modes
is usually unknown. Following that, this toy example is concerned with the
impact of superfluous 𝒩-Curve mixture components on the 𝒩-MDN train-
ing, as well as the resulting mixture model. For this experiment, a bimodal
discrete-time stochastic process 𝒢𝑇 = {𝑋𝑡}𝑡𝑖∈𝑇𝑁=10 with constant variance is
defined for generating a training dataset. Here, each random variable of the
process follows a bimodal Gaussian mixture distribution and realizations of
the process follow one of two paths with equal probability. The stochastic
process alongside process realizations is depicted in Figure 4.7.
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Figure 4.7: Illustration of the training samples drawn from a multi-modal stochastic process.
(a): Ground truth discrete-time stochastic process 𝒢𝑇 = {𝑋𝑡}𝑡∈𝑇𝑁=10 . Standard
deviations (𝜎, 2𝜎 and 3𝜎) along 𝒢𝑇 are illustrated as a shaded region around the
mean curves. 3𝜎 for each 𝑋𝑡 is indicated by a horizontal dashed line. (b): Sample
sequences for both modes drawn from 𝒢𝑇.

A training dataset consisting of a set of 100 realizations of the aforemen-
tioned stochastic process is now used to estimate an 𝒩-Curve mixture with
𝐾 = 6 components, i.e. 4 superfluous components, with 5 control points each.
Preferably, in the resulting model, the weights of all 4 unnecessary compo-
nents are driven towards 0 and the remaining𝒩-Curvesmodel the twomodes
of the stochastic process. The resulting 𝒩-Curve mixture components after
training the𝒩-MDN are depicted in Figure 4.8. The components are ordered
in descending order by their associated mixture weight 𝜋𝑘 .
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(f) 𝜋6 = 0.0002

Figure 4.8: Estimated 𝒩-Curve mixture with 𝐾 = 6 components generated by an 𝒩-MDN.
Two components ((a) and (b)) represent 𝒢𝑇 with accurate weighting. The weights
of superfluous components is driven towards 0 during training. The shape of these
components is thus not further optimized at some point (see figures (c) – (f)).

Looking at the estimated𝒩-Curve mixture, the𝒩-MDN behaves as expected.
During training it learns the weight distribution rather fast, leading to super-
fluous components being not further optimized in their shape. This can be
seen in Figure 4.9a. The remaining non-zero components (4.8a and 4.8b) accu-
rately model 𝒢𝑇 with minor over-estimation of the variances. Stripping away
the superfluous components, the resulting 𝒩-Curve mixture is depicted in
Figure 4.9b.
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Figure 4.9: Evolution of the weight distribution during training (a) and the resulting approxima-
tion of 𝒢𝑇 after removing low-weight components (b). The coloring in (a) matches
the components depicted in the previous figure (4.8). For reference, the training se-
quences (without connections between subsequent points) are illustrated using black
cross markers in figure (b).

As a final note, purposefully choosing 𝐾 > 𝐾real and relying on the optimiza-
tion driving superfluous components towards 0 might lead to several simi-
lar non-zero components when processing more complex datasets. In this
case, there are several possibilities to cope with this when required. The first,
and most straightforward approach, is implementing a post-processing step,
which collapses similar components into one by accumulating their weights
and averaging the curves. With respect to the training phase, proper regu-
larization could be employed, trying to enforce sparsity. The most commonly
used sparsity-inducing regularization is given by the 𝐿1 norm [Ng04] applied
to the mixture weight distribution. Lastly, the determination of 𝐾 itself can
be approached from a different perspective by trying to implement the idea
of the Infinite Gaussian Mixture Model [Ras99]. The basic idea of the infi-
nite GMM is applying a Bayesian modeling approach to model the mixture
parameters. As such, the mixture weights are modeled using a Dirichlet prior
distribution. While this approach removes the problem of choosing an appro-
priate value for 𝐾, it also introduces more complexity into the 𝒩-MDN and
its training. Additionally, estimating the parameters of an infinite GMM usu-
ally involves Monte Carlo methods or variational inference, making such an
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extension of the 𝒩-MDN counteract the intuition of designing a regression-
based probabilistic sequence model.

4.1.4 Comparison with SMC inference

One design choice for the 𝒩-Curve model is to move multi-step inference
into the training phase, thus allowing for an instant prediction of several time
steps. This is opposed to sequential monte carlo (SMC) approaches, which
model the transition between subsequent time steps and perform iterative in-
ference. In this experiment, the performance of the𝒩-MDN implementation
of the𝒩-Curve model is compared to an exemplary SMC approach. For this
comparison, an LSTM-MDN model embedded into a particle filtering cycle
[Hug18], denoted as ParticleLSTM in the following, is used for generating an
approximation for a discrete-time stochastic process. As the ParticleLSTM
expects discrete inputs and outputs a Gaussian mixture probability distribu-
tion, a new set of samples, also called particles, needs to be drawn from the
mixture distribution after each inference step. This is comparable to the re-
sampling step of particle filters [Dou09] and serves two purposes. First and
foremost, this approach keeps the number of particles constant, tackling ex-
ponential growth of particles when using a brute force approach. Second,
it enables the propagation of a sample-based representation of a probability
distribution through time using an LSTM-MDN.

For comparing the performance of the 𝒩-MDN and the ParticleLSTM in ap-
proximating a time-discrete stochastic process 𝒢𝑇 from noisy sequence data,
a training dataset is sampled from 𝒢𝑇 . In order to keep this experiment clear
and easier to evaluate, 𝒢𝑇 = {𝑋𝑡}𝑡∈𝑇𝑁=5 is defined to be an unimodal stochas-
tic process with finite index set 𝑇𝑁=5 = {0, 0.25, 0.5, 0.75, 1}. The stochastic
process and a training dataset sampled from 𝒢𝑇 are depicted in Figure 4.10.
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Figure 4.10: Illustration of the training dataset for comparing the 𝒩-MDN with an exem-
plary SMC approach. (a): Ground truth discrete-time stochastic process 𝒢𝑇 =
{𝑋𝑡}𝑡∈𝑇𝑁=5 alongside sample sequences. (b): Training data sampled from 𝒢𝑇. Se-
quential connections are left out in this illustration in order to provide a cleaner
illustration.

Using this training dataset, both models are trained until convergence is
reached. In this experiment, the𝒩-MDN generates a 1-component𝒩-Curve
mixture with 3 control points and the ParticleLSTM uses 𝑁𝑝 particles for
generating its prediction. An approximation of 𝒢𝑇 , given v = 0 as a constant
input, is then generated as follows: In case of the 𝒩-MDN, a single pass
through the network yields the parameters of an 𝒩-Curve. Accessing this
curve at 𝑡 ∈ {0, 0.25, 0.5, 0.75, 1} =∶ 𝑇𝑁=5 gives the stochastic variables
{𝑋𝑡}𝑡∈𝑇𝑁=5 approximating 𝒢𝑇 . For the ParticleLSTM, passing 𝑁𝑝 copies of v
through the network generates a Gaussian mixture distribution Ξ1 approx-
imating 𝑋1. Next, 𝑁𝑝 samples are taken from Ξ1 and fed into the network
again in order to approximate 𝑋2. This process is repeated for retrieving 𝑋3,
𝑋4 and 𝑋5. The resulting approximations of 𝒢𝑇 are depicted in Figure 4.11.
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𝑥

𝑦

(a)𝒩-MDN using 𝐾 = 1 component with 3
control points.

𝑥

𝑦

(b) ParticleLSTM using𝑁𝑝 = 1000 particles.

Figure 4.11: Resulting approximations of the stochastic process 𝒢𝑇. Both approaches yield sim-
ilar results with slight differences in the variances, especially for 𝑋3 and 𝑋4.

It can be seen, that both approaches lead to similar results. The most no-
table differences can be observed looking at the variances, where the𝒩-MDN
yields slightly less accurate results, which can be attributed to the use of a
compact representation with only 3 control points. The difference in vari-
ances is most visible for𝑋3 and𝑋4, where the non-linear weighting of control
point covariances yield a minor under-estimation of the actual variance val-
ues (see also Section 3.1.2). On the other hand, the mean curve generated by
the ParticleLSTM is less stable, which is most likely due to the uncontrolled
and stochastic nature of the iterative approach.

While the comparison of the resulting approximations confirms the viability
of the 𝒩-Curve model as an alternative to SMC approaches, additional as-
pects should be considered. By design, the 𝒩-Curve model moves the task
of multi-step inference into the training phase, thus eliminating the need for
Monte Carlo simulation during inference. Following this, Figure 4.12 depicts
the differences in training time (4.12a), inference time (4.12b), memory usage
(4.12c) and accuracy (4.12d) in order to reveal the impact of this design choice
on these aspects. In order to provide a measure for the approximation ac-
curacy, the error 𝐸 in terms of the euclidean distance of vectors combining
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mean and standard deviation values is averaged over all time steps, i.e.

𝐸 = 1
5

5
∑
𝑡=1

‖
‖(�̂�𝑡,𝑥 �̂�𝑡,𝑦 ̂𝜎𝑡,𝑥 ̂𝜎𝑡,𝑦)

⊤ − (𝜇𝑡,𝑥 𝜇𝑡,𝑦 𝜎𝑡,𝑥 𝜎𝑡,𝑦)
⊤‖
‖2 .

(4.13)

Here, ̂⋅ represents estimated values. In this formulation, the error function
aggregates the square differences of each factor. Although this approach ig-
nores the actual semantics of the mean and variance values, it should provide
a viable estimate for the accuracy of all approximated factors, due to their
common minimum error value and comparable squared value ranges. Note
that for this comparison, the reference values 𝜇𝑡,𝑥 , 𝜇𝑡,𝑦 , 𝜎𝑡,𝑥 and 𝜎𝑡,𝑦 are cal-
culated from the training dataset, as these are likely to differ slightly from the
actual ground truth values due to the training data being sampled randomly.
Further, for the ParticleLSTM, the statistics are provided for an increasing
amount of particles used for inference. Training and inference of each con-
figuration is performed 10 times, in order to generate more reliable results.
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(c) Peak GPU memory usage during inference.
Memory usage is consistent for each
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(d) Error in the estimate of 𝒢𝑇. The error is
unitless due to the comparison of vectors
composed of mean and standard deviation
values.

Figure 4.12: Comparison of the 𝒩-MDN and the ParticleLSTM focusing on different aspects
related to training and inference when increasing the number of particles used for
inference. Inference statistics are provided for 10 repetitions in order to show the
consistency of the SMC approach. In figures (b) – (d), the red line indicates the𝒩-
MDN baselines, the ParticleLSTM is compared to. In figures (a) and (d), the green
diamond markers indicate the mean values. The error in (d) is given by the average
deviation of the estimated mean and standard deviation values from a reference
provided by the training data.

Looking at Figure 4.12, the impact on the depicted factors is as expected.
Due to moving the multi-step inference into the training phase, more itera-
tions are required to reach convergence when compared to the ParticleLSTM,

73



4 Proposed Implementation

which only needs to learn the transition between subsequent time steps (see
4.12a). On the other hand, multi-step inference is achieved using a single
pass through the𝒩-MDN, resulting in faster inference. The time required to
approximate 𝒢𝑇 using the ParticleLSTM scales linearly with the number of
particles 𝑁𝑝 (see 4.12b). At the same time, the memory usage grows with an
increasing𝑁𝑝 . Looking at Figure 4.12c memory usage even grows superlinear
due to the heavy computations being implemented to run on the GPU, where
vectorization is required. This, in turn, has highermemory demand, especially
for parallelized particle re-sampling. As expected, Figure 4.12d shows that the
accuracy of the approximation increases with higher 𝑛𝑝 , surpassing the ac-
curacy of the 𝒩-MDN approximation at some point. Ultimately, it depends
on the specific use case whether faster but slightly less accurate or slower but
more accurate inference is more important.

4.2 Proof of Concept: Recurrent𝒩-Curve
Mixture Density Networks

In order to provide a proof of concept for the conceptual extension of the𝒩-
Curve model, the meta-time 𝒩-Curve model (see Section 3.2), an approach
which is capable of generating a steady stream of 𝒩-Curve segments is re-
quired. Additionally, dependencies between subsequent segments along a
generated probabilistic spline need to be taken into account, especially in 𝐶1

or 𝐶2 continuity cases. Following this, an autoregressive approach is well-
suited for this implementation. With combinations of recurrent neural net-
works andMixture Density Networks being a state-of-the-art sequencemodel
(see also Section 2.2.2), an LSTM network will be combined with the𝒩-MDN
(see Section 4.1) for this proof of concept. The resulting model is denoted as
recurrent𝒩-MDN. The recurrent𝒩-MDN operates on the meta-timeline and
targets the generation of an endpoint-connected probabilistic spline. This re-
stricts the timeline mappings presented in Section 3.2.2 to special cases with-
out overlapping curve segments. A schematic of the model architecture is
given in Figure 4.13.
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Figure 4.13: Schematic of the recurrent 𝒩-MDN illustrating the architecture with a loop (left
side) and unrolled over𝑁 steps of meta-time (right side). Outputs a𝒩-Curve seg-
ment at each meta-time step.

As illustrated, the same model input v is used in each meta-time step. The
reason for this is given by the fact, that feeding generated𝒩-Curve segments
back into the model would require a way of encoding an𝒩-Curve into v. In-
stead, by using constant input, the model relies on its recurrent connection
for evolving its output over time. As a technical detail, the model is designed
to generate a stream of residuals, i.e. Gaussian control point mean vectors are
always given as offsets to preceding control points. This has multiple advan-
tages. First, as mentioned in Section 4.1, using residuals instead of absolute
values is more stable during training and inference, as the target domain is
more restricted. Second, by defining segment control points in terms of pre-
vious control points, it is easier to take geometric restrictions into account for
enforcing 𝐶1 or 𝐶2 continuity as required. Regarding the loss function em-
ployed during training of the recurrent 𝒩-MDN, the negative log-likelihood
as defined in Equation (4.11) in Section 4.1 can be directly translated to this ex-
tension. This is due to the extraction of sequences from a meta-time𝒩-Curve
working basically in the same way as in 𝒩-Curves.

In summary, using an autoregressive model provides a straightforward ap-
proach for implementing the meta-time 𝒩-Curve model, with the capability
of infinite sequence generation. On the downside it should be mentioned,
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that the calculation of the 𝒩-Curve segment at meta-time ̃𝑡 requires the cal-
culation of all preceding segments. This is, however, also necessary inde-
pendent of the specific approach when 𝐶1 continuity is required, as it intro-
duces dependencies between subsequent segments. Although this approach
re-introduces a notion of iterative generation, constrains imposed by the un-
derlying parametric curve, which is a spline in this case, remain. Also, with
every stochastic process mode now being modeled by a probabilistic spline,
the need for Monte Carlo simulation is still avoided. Thus, the presented ap-
proach mostly complies with the objectives formulated in Chapter 1. The
only exception is given by multi-step sequence generation beyond𝑁seg steps,
which requires an iterative approach instead of being instantaneous.

4.2.1 Toy Examples

This section provides a brief evaluation of the capabilities of the meta-time
𝒩-Curve model through different toy examples. Similar to the toy examples
given in Section 4.1, the examples in this section focus on non-conditional
sequence synthesis. Thus v = 0 is set as the constant input of the recurrent𝒩-
MDN for each meta-time step. This reduces the information processed by the
recurrent𝒩-MDN to the information passed over time through the recurrent
connection. Further,𝒩-Curve segments will be defined by 5Gaussian control
points. Due to working with discrete-time ground truth stochastic processes
(see also Section 3.2.3), each segment is defined to cover sub-sequences of
length 𝑁seg = 20.

Three scenarios are considered for comparing the meta-time𝒩-Curve model
to the original 𝒩-Curve model. The targeted discrete-time stochastic pro-
cesses 𝒢𝑖𝑇 for each scenario are depicted in Figure 4.14. For training, a set of
𝑀 = 200 realizations is sampled from each stochastic process. The curve-time
mapping defined in Section 4.14 is used for all examples.
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Figure 4.14: Ground truth discrete-time stochastic processes 𝒢𝑖𝑇 with 𝑖 ∈ {𝑎,𝑏,𝑐} providing dif-
ferent scenarios for exploring the capabilities of themeta-time𝒩-Curvemodel. The
index setsa are defined as 𝑇 = 𝑇𝑁=58 for scenarios (a) and (b), and 𝑇 = 𝑇𝑁=96
for scenario (c), thus covering sequences consisting of 58 and 96 elements, respec-
tively. While 𝒢𝑎𝑇 is subject to varying variance between time steps, 𝒢𝑏𝑇 and 𝒢𝑐𝑇 have
constant variance. For all figures, Gaussian random variables along the stochastic
process’ mean curve are given with corresponding 2𝜎 covariance ellipses.

a The discrete index set notation 𝑇𝑁 follows the definition provided in Section 3.2.3.

The first scenario covers the case of a stochastic process with a complex mean
curve, in terms of length and shape. Following this, a parametric curve re-
quires an increased number of control points to approximate the sequence
properly. For this example, a fixed interval mapping with 𝑎 = 1 is used
and 𝐶1 continuity is enforced. With the training dataset consisting of se-
quences of length 𝑁 = 58 and each segment of the meta-time𝒩-Curve cov-
ering 𝑁seg = 20 elements, the recurrent 𝒩-MDN will generate 3 segments.
Thus, the segmented curve is defined by a total of 13 control points due to
subsequent segments having one control point in common. Following this,
the 𝒩-Curve model in comparison is defined with an equal number of 13
control points. The estimated original and meta-time𝒩-Curves generated by
a respective𝒩-MDN and recurrent𝒩-MDN are depicted in Figure 4.15.
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Figure 4.15: Approximations of 𝒢𝑎𝑇 using an𝒩-Curve (a) and a meta-time𝒩-Curve (b) as gen-
erated by an 𝒩-MDN and a recurrent 𝒩-MDN trained with noisy sequence data.
For the meta-time𝒩-Curve, a fixed interval mapping is used and 𝐶1 continuity is
enforced. In (b) 𝒩-Curve segments are highlighted by using different colors. 2𝜎
covariance ellipses are provided for all Gaussian random variables along the mean
curve.

While the meta-time 𝒩-Curve approximates the mean curve perfectly, the
estimated 𝒩-Curve deviates slighty at around 𝑥 = 2 and 𝑥 = 4, averaging
out a curved shape. A slight over-estimation of the variance at the begin-
ning and end of the approximation can be observed for both models. Besides
both models performing quite similar in their generated approximation, the
𝒩-MDN took 8 times more iterations to reach convergence compared to re-
current𝒩-MDN. This observation can most likely be attributed to single𝒩-
Curves of higher degree being harder to fit to given data due to the global
control property.

The second scenario covers a stochastic process with its mean curve including
sharp edges. In general, such curves cannot be represented by Bézier curves
due to their smoothness property. Using a segmented curve, on the other
hand, allows such edges by only targeting 𝐶0 continuity. Additionally, by
using segments of lower degree, Gibbs phenomenon [Jer13] can be circum-
vented. Apart from the training dataset, the setup for this scenario is similar
to the first scenario. The resulting approximations are depicted in Figure 4.16.
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Figure 4.16: Approximations of 𝒢𝑏𝑇 using an𝒩-Curve (a) and a meta-time𝒩-Curve (b) as gen-
erated by an 𝒩-MDN and a recurrent 𝒩-MDN trained with noisy sequence data.
For the meta-time𝒩-Curve, a fixed interval mapping is used. No smoothness con-
strains are applied. In (b) 𝒩-Curve segments are highlighted by using different
colors. 2𝜎 covariance ellipses are provided for all Gaussian random variables along
the mean curve.

As expected, the estimated 𝒩-Curve is unable to replicate the target mean
curve, but still provides a close approximation. As the 𝒩-Curve is of higher
degree, Gibbs phenomenon is quite noticeable in this example. Besides minor
fluctuations in the variances, the estimated meta-time 𝒩-Curve is accurate
with respect to its mean curve.

The third and final scenario regards a stochastic process whose mean curve
follows a sine wave. Because of the periodicity, a modulo reset mapping with
𝑎 = 1 and 𝑘 = 2 will be used for the meta-time 𝒩-Curve. Further, 𝐶1 con-
tinuity is enforced. Note that 𝑘 can only be assigned an appropriate value
due to knowledge about the structure of the targeted mean curve. As such,
𝒢𝑐𝑇 can be approximated with a meta-time𝒩-Curve, which repeats the same
two segments as many times as required. Following this, an 𝒩-Curve with
9 control points will be estimated for comparison. The results are depicted
in Figure 4.17.
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Figure 4.17: Approximations of 𝒢𝑐𝑇 using an𝒩-Curve (a) and a meta-time𝒩-Curve (b) as gen-
erated by an 𝒩-MDN and a recurrent 𝒩-MDN trained with noisy sequence data.
For the meta-time 𝒩-Curve, a modulo reset mapping is used and 𝐶1 continuity is
enforced. In (b) 𝒩-Curve segments are highlighted by using different colors. 2𝜎
covariance ellipses are provided for all Gaussian random variables along the mean
curve.

Looking at the estimated𝒩-Curve first, the approximation of 𝒢𝑐𝑇 is quiet ac-
curate apart from the beginning and ending portions. On the other hand, the
meta-time𝒩-Curve alternates between the two learned segments in order to
achieve a close approximation of 𝒢𝑐𝑇 . Further, in such scenarios, the curve
could be continued indefinitely, as indicated in Figure 4.17b (purple curve).

4.2.2 Handling underdetermined areas

As the meta-time𝒩-Curve model is based on segmented curves being calcu-
lated iteratively using an autoregressive approach, the existence of underde-
termined areas provides an aspect worth discussing. Such underdetermined
areas are defined as segments within a meta-time 𝒩-Curve, which are not
well estimated during training. The main causes for this are given by either
areas being sparely covered by the training dataset or insufficient model ca-
pacity. Besides the model output within these segments being less stable and
reliable in an application context, it also affects subsequent segments due to
error propagation in the autoregressive model structure. As a general ap-
proach for coping with underdetermined areas, a fallback mechanism can be
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integrated into the model. As such, the sequence model can rely on a basic,
domain-specific sequence model, which covers regions of high model uncer-
tainty. Besides the need of a potentially handmade fallback model, the model
uncertainty needs to be measured using such an approach. Following this, a
brief overview of techniques for measuring model uncertainty is given. An
evaluation of the practicality of the presented techniques for the meta-time
𝒩-Curve is thereby left out, being beyond the scope of this thesis

A prominent approach tomeasuringmodel uncertainty is given by transform-
ing a network into a Bayesian neural network (see also Section 2.2.1), which is
implemented usingMonte Carlo Dropout [Gal16, Gal17, Ken17]. In these vari-
ants of Bayesian neural networks, dropout [Sri14] is applied in conjunction
with multiple passes through the network in order to generate a distribution
over the network’s output. This distribution can then be used to measure the
model’s uncertainty by correlating it to the variance in the generated distri-
bution. A downside of employing such an approach is that a given sequence
model needs to be transformed into a Bayesian neural network, thereby also
inheriting their potentially unwanted properties and problems. An alterna-
tive to Bayesian neural networks is given by Prior Networks [Mal18]. While
Bayesian neural networks implicitly model distributional uncertainty, Prior
networks provide an explicit model for model uncertainty. This is achieved
by parameterizing a prior distribution over predictive distributions. Thus, the
Prior network approach also requires changes to a given model. Opposed
to that, an ensemble approach [Lak17, Hua17] can be pursued, avoiding the
need to change the model at hand. Here, an ensemble of the same model is
trained. As the training process itself is usually stochastic, the resulting en-
semble consists of several models generating slightly different outputs for the
same input. As such, using the entire ensemble, a distribution similar to that
of a Monte Carlo Dropout Bayesian neural network can be generated.

4.3 Summary

Overall, this chapter first provided a detailed introduction to Mixture Den-
sity Networks, focusing on their general structure and how their output is
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generated. Following this,𝒩-Curve Mixture Density Networks were defined
as a regression-based implementation for the𝒩-Curve model, which enables
multi-step inference only requiring a single forward pass through the net-
work. Using synthetically generated data, several toy examples show the
model’s capability of learning stochastic control points from noisy sequence
data and explore themodel’s behavior and capabilities under different circum-
stances. Finally, a comparison with an SMC-based approach was performed,
depicting the advantages of 𝒩-Curve Mixture Density Networks during in-
ference in terms of memory usage and inference time.

Additionally, a proof of concept for an implementation of the meta-time 𝒩-
Curve model was presented. The presented model relies on an autoregressive
structure in order to enable the representation of infinite stochastic processes.
In comparison to𝒩-Curve Mixture Density Networks, toy examples on syn-
thetically generated data indicate greater flexibility in terms ofmodeling capa-
bilities at the cost of requiring a more complex neural network model, which
is more expensive in terms of computation time during inference.
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This evaluation focuses on the 𝒩-Curve model and the 𝒩-MDN implemen-
tation as proposed in Sections 3.1 and 4.1. For this, the𝒩-Curve model is ap-
plied to two sequence prediction tasks. In both tasks, evaluated models need
to represent a stochastic process describing𝑁obs +𝑁pred time steps, such that
given 𝑁obs observations of a process realization, the remaining 𝑁pred steps
can be inferred.

In the first part of the evaluation, the𝒩-Curve model is applied to the task of
human trajectory prediction (Section 5.1). On the one hand, this task provides
easy to interpret and visualize results. As such, it gives a good foundational
evaluation of the general viability of the model. Further, although being sim-
ple in terms of data dimensionality, the task provides a lot of complexity with
human trajectory prediction being a highly multi-modal problem. In this re-
gard, human trajectory prediction provides an appropriate task for evaluating
the capabilities of the model.

Following the evaluation of the viability and capabilities of the 𝒩-Curve
model, its claimed capability of being scalable to arbitrary dimensions is
assessed. For this, the model is applied to the task of human motion predic-
tion. This task provides a high-dimensional example, being concerned with
modeling sequences of human poses (Section 5.2).

It is worth mentioning, that the meta-time𝒩-Curve model (Section 3.2), and
thus the recurrent 𝒩-MDN (Section 4.2), are excluded from this evaluation.
There are two main reasons for this. First, the toy examples in Section 4.2
indicate that the meta-time 𝒩-Curve model gains an edge over the original
𝒩-Curve model for very long sequences only. However, common evaluations
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conducted on real-world data are usually restricted to rather short time hori-
zons, i.e. short sequences. Second, the meta-time𝒩-Curve model is first and
foremost a conceptual extension to the 𝒩-Curve model, lifting some more
domain-specific limitations.

For convenience, the following notation, extending on the notation used in
previous chapters, is introduced for the scope of the evaluation. A dataset is
denoted as𝓓 = {𝒳1, ..., 𝒳𝑀} and consists of𝑀 sequences of fixed length𝑁 =
𝑁obs+𝑁pred with𝒳𝑖 = {x𝑖1, ...,x𝑖𝑁}. Each dataset can further be divided into a
training and test dataset, such that𝓓 =𝓓train∪𝓓test, with𝓓train∩𝓓test = ∅.
Finally, each sequence 𝒳𝑖 in a dataset 𝓓 is divided into an observed 𝒳𝑖,obs
(𝑁obs time steps) and target 𝒴 𝑖 (𝑁pred time steps) portion

𝒳𝑖 = 𝒳𝑖,obs ∪ 𝒴 𝑖

= {x𝑖1, ...,x𝑖𝑁obs⏟⎵⎵⏟⎵⎵⏟
observation

,x𝑖𝑁obs+1, ...x
𝑖
𝑁obs+𝑁pred⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

target

}

= {x𝑖1, ...,x𝑖𝑁obs⏟⎵⎵⏟⎵⎵⏟
observation

,y𝑖1, ...,y𝑖𝑁pred⏟⎵⎵⏟⎵⎵⏟
target

},

where the target portion is to be predicted.

5.1 Long-term Human Trajectory Prediction

With the emergence of autonomous driving and advances in the field of au-
tomated video surveillance, the task of human trajectory prediction gained
a significant amount of research interest in recent years. A trajectory is de-
fined as a sequence of locations in a regarded scene, with some velocity pro-
file attached to it. Predictions are then performed on sequences consisting
of subsequent 2D image coordinates or 3D world coordinates, generated by
e.g. a detection-tracking pipeline. Generally speaking, human trajectory pre-
diction can be subdivided in a number of more specific tasks, depending on
the time horizon for prediction, the point of view of recording and camera
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motion. Each of these aspects impacts observations, and such the respective
prediction models, in a different way.

Time Horizon: In autonomous systems, the prediction task can be divided into
short-term (0.5 up to 2 seconds) and long-term (up to 20 seconds) trajectory
prediction [Rud20b]. While short-term predictions are mainly used for im-
mediate decisions, such as collision avoidance, long-term prediction impacts
the long-term behavior of an autonomous system, e.g. by influencing its path
planning component. Considering short-term prediction, linear models com-
bined with local collision avoidance approaches, e.g. the social force model
[Hel95] or Optimal Reciprocal Collision Avoidance (abbrev.: ORCA, [Van11]),
are generally well suited. In the context of human trajectories, ORCA yields
more realistic motion patterns [Kot21]. In long-term trajectory prediction,
the trajectory shape is greatly influenced by the surrounding static environ-
ment and interactionswith other pedestrians. The extent of influence is highly
dependent on the ground resolution and annotation rate of a given dataset
[Hug21], as well as the pedestrian density.

Point of view: Most commonly, trajectory prediction datasets are recorded
from a bird’s eye view (top view), an elevated viewpoint with a tilted camera
(tilted view) or from a camera positioned on the ground, e.g. mounted to a
car (frontal view). While top view and surveillance datasets yield complete
trajectories, occlusions occur frequently in frontal view datasets. As a conse-
quence, prediction models need to be able to cope with missing inputs when
working with frontal view datasets. In addition, constant velocity trajectories
are distorted in frontal view datasets due to perspective distortion.

Camera motion: For top view and surveillance datasets, static cameras are a
common choice. As such, recorded trajectory data complies with the static ob-
served scene, potentially resulting in decision points, e.g. junctions, at specific
locations. With frontal view datasets, identical trajectories change in shape
with the ego-motion of the camera, when mounted to a car. In such cases,
datasets are usually transformed into an ego-motion compensated reference
frame (e.g. [Sch13]).
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Following this, the following evaluation focuses on long-term trajectory pre-
diction using bird’s eye view data, giving a suitable task for learning-based se-
quence prediction models. Given an observed trajectory𝒳obs = {x1, ...,x𝑁obs }
consisting of𝑁obs observed positions of a person, the subsequent𝑁pred future
positions need to be predicted.

5.1.1 Dataset Overview

With the rising interest in the topic of human trajectory prediction, a number
of datasets has emerged. These datasets aremost often created from annotated
videos, recorded from a specific point of view. An overview of commonly
used human trajectory datasets, categorized by the respective point of view,
is given in Table 5.1.
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Table 5.1: Non-exhaustive list of datasets appropriate for human trajectory prediction. Note
that the list of top view datasets also includes datasets providing real-world positions
instead of image coordinates. As data of persons moving on a flat plane is recorded,
these datasets are similar to top view datasets, except trajectory points are given in a
3D reference frame with constant elevation.

Point of View Datasets

Top view

BIWI Walking Pedestrians [Pel09]
Crowds by Example [Ler07]
Stanford Drone Dataset [Rob16]
Edinburgh Forum [Maj09]
inD Dataset [Boc19]
Thör Dataset [Rud20a]
CITR [Yan19]
DUT [Yan19]

Tilted view

Grand Central [Yi15]
PETS 2009 [Fer09]
VIRAT [Oh11]
Town Center [Ben11]
WILDTRACK [Cha18]

Frontal view

KITTI [Gei13]
nuScenes [Cae20]
JAAD [Ras17b, Ras17a]
Daimler [Sch13]

In the context of long-term human trajectory prediction, top view and sur-
veillance datasets are preferred due to the lack of occlusions and perspective
distortions. In addition, data recorded from a static scene imposes a structure
onto the dataset, which yields well-defined walking paths and decision points,
exposing the multi-modal nature of human trajectory prediction.

Finally, themost commonly used datasets for long-term human trajectory pre-
diction include the BIWI Walking Pedestrians (abbrev.: biwi), Crowds by Ex-
ample (abbrev.: crowds) and the Stanford Drone (abbrev.: sdd) datasets. These
datasets further consist of 2, 4 and 8 scenes, respectively. In the following,
these scene datasets will be referred to as dataset:scene, e.g. biwi:eth. In the
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case of the Stanford Drone Dataset, multiple, partially overlapping¹, record-
ings of the same scene are provided. The specific recording will be indicated
by a number added to the scene dataset abbreviation, e.g. sdd:hyang00.

5.1.2 State-of-the-art Human Trajectory Prediction
Models

Looking at state-of-the-art deep learning-based sequence prediction models
for long-term human trajectory prediction, these models can be divided into
aggregating and holistic models. Holistic models, on the one hand, model the
entire observed scene including all pedestrians by using a spatio-temporal
graph network, where each object in the scene is a unique node (e.g. [Moh20,
Sal20]). Opposed to that, the more prevalent aggregating models have sep-
arate processing pipelines for each type of input, which are fused together
at some point. For this class of models, a modular meta-architecture revolv-
ing around an underlying base sequence model can be defined, covering the
main components of each model. Additional types of inputs, also referred
to as additional cues, are discussed later in this section. A schematic of this
meta-architecture is depicted in Figure 5.1.

¹ In the sense of the observed real-world scenery.
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2-d positions
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Figure 5.1: Schematic of a meta-architecture for aggregating trajectory prediction models. Such
models contain at least some sequence model and optional building blocks for pro-
cessing additional cues, such as social or environmental context.

Each aggregating prediction model at least consists of a base sequence model,
which encodes input trajectories, the observation, and generates either sin-
gle trajectories or probabilistic predictions. Taking a range of state-of-the-art
deep learning-based prediction models into consideration, these models can
be boiled down to few base sequence models. An overview of commonly used
base sequence models is depicted in Table 5.2. Note that due to the existence
of many similar models, only representative examples for each base sequence
model are featured. For a comprehensive overview of existing human trajec-
tory prediction approaches, the reader may be referred to recent surveys, e.g.
[Rud20b]. Further, no distinction is made for variants of the same base model,
as these most commonly only differ slightly. Finally, endpoint-conditioned
prediction models (e.g. [Kit12, Man20]) are excluded from this overview, as
the endpoint is assumed to be unknown in the context of this evaluation.
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Table 5.2: Overview of commonly used base sequence models in human trajectory prediction
alongside representative prediction models. The most frequently used sequence mod-
els are given by Recurrent Mixture Density Networks (abbrev.: R-MDN, [Gra13]), vari-
ants of Generative Adversarial Networks (abbrev.: GAN, [Goo14]) and Variational Au-
toencoders (abbrev.: VAE, [Kin14]) combined with a sequence to sequence model
[Sut14], as well as Transformers [Vas17]. Transformers are only recently being studied
in the context of human trajectory prediction. It could be noted, that Temporal Con-
volutional Networks (abbrev.: TCN, [Oor16, Bai18]) are excluded from this overview,
as these are rarely used and yield similar performance to LSTM networks [Bec18].

Base Model Model
Additional cues

Social Environmental

R-MDN
Social LSTM [Ala16] 3 7

ParticleLSTM [Hug18] 7 7

Social Attention [Vem18] 3 7

GAN
Social GAN [Gup18] 3 7

SoPhie [Sad19] 3 3

Social Ways [Ami19] 3 7

VAE
DESIRE [Lee17] 3 3

LSTM-BMS [Bha18] 7 7

DAG-Net [Mon21] 3 7

Transformer
STAR [Yu20] 3 7

TF [Giu21] 7 7

AgentFormer [Yua21] 3 7

With reference to the introductory section on sequencemodeling (see Chapter
2), each of the base models listed in Table 5.2 provides certain benefits for the
task of human trajectory prediction. R-MDN and Transformer models on the
one hand are purely regression-based and thus easier to train. Additionally,
these models can be used to output an explicit probability distribution over fu-
ture trajectories by parameterizing a Gaussian mixture model. This, however,
comes at the cost of a more difficult approach to generate multi-modal pre-
dictions. When parameterizing a Gaussian mixture model, the model can for
example be embedded into a particle filter cycle [Hug18]. Another approach
construes the trajectory prediction problem as a classification task, where pos-
sible future predictions are covered by different classes [Giu21]. Opposed to
that, VAE and GAN are probabilistic models providing an implicit model of
the data distribution. Both models employ a generator network processing a
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stochastic input in addition to the encoded observation. As a consequence,
these models provide a straightforward approach to generating multi-modal
predictions by sampling.

In recent years, an increasing number of approaches emphasize the use of ad-
ditional cues. The most common additional cues are given by the social con-
text, i.e. neighboring pedestrians, and the environmental context, i.e. static
scene elements. Established approaches for incorporating social context are
commonly based on either grid-based pooling (e.g. [Ala16, Gup18]), graph
attention (e.g. [Vem18, Kos19, Hua19]) or graph convolution (e.g. [Moh20]).
Environmental context, on the other hand, is usually given by an encoding
of some reference image or video frame generated by a Convolutional Neural
Network (CNN).

As the𝒩-Curve model introduced in this thesis provides an alternative model
for the underlying base sequence model, such additional cues will not be
considered in the following quantitative and qualitative evaluation. Conse-
quently, the performance of the𝒩-Curve model is compared with the afore-
mentioned base sequence models. It should be noted, that when taking away
the additional cue components, most state-of-the-art models collapse onto
their underlying base sequence models, thus justifying a comparison based
on these base sequence models.

5.1.3 Evaluation Setup

In order to provide a comprehensive evaluation of the𝒩-Curve model in the
context of long-term human trajectory prediction and in comparison with
commonly used sequence models, the tasks of unimodal and multi-modal tra-
jectory prediction are considered. Therefore, the current standard approach
to evaluation in the literature is extended by using additional datasets and
performance measures, as it does not cover the task of multi-modal trajectory
prediction. Further, the evaluation will be performed on each selected dataset
in isolation, due to the removal of additional cues for the sequence models.
Without such additional cues, long-term prediction requires well-defined de-
cision points tied to static locations in the observed scene, in order to capture
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relevant walking paths. This is especially true for non-goal-driven prediction
approaches, as regarded in this evaluation. As a consequence, pooling to-
gether unrelated datasets into a common reference frame cannot be justified
and thus datasets are evaluated in isolation.

5.1.3.1 Selected Datasets

Under these conditions and in compliance with the current standard eval-
uation approach, the biwi:eth, biwi:hotel, crowds:zara01 and crowds:zara02
datasets are selected. The crowds:students dataset is left out, as it focuses
heavily on human-human interaction and as such does not provide well-
defined walking paths or decision points. As these datasets provide rather
simple scene geometry, additional scenes are taken from the Stanford Drone
Dataset. In order to keep the evaluation more concise, scene datasets with
varying complexity [Ami20, Hug21] are considered. Thus, the sdd:bookstore03
and sdd:hyang00 datasets are included in the evaluation. For these datasets,
only pedestrian trajectories are considered¹. Table 5.3 and Figures 5.2 and 5.3
depict samples from the datasets and relevant statistical details.

Table 5.3: Statistical details of human trajectory datasets selected for evaluation. It should be
noted, that the number of trajectories can deviate from those given in the literature,
as trajectories lying outside the image boundary after projection are dismissed. The
trajectory length denotes the number of points defining a specific trajectory.

Dataset
Image

Resolution # Trajectories
Average

Trajectory Length
biwi:eth 640x480 354 15.47 ± 8
biwi:hotel 720x576 378 17.22 ± 12.16
crowds:zara01 720x576 128 34.27 ± 17.11
crowds:zara02 720x576 204 47.09 ± 72.30
sdd:bookstore03 1322x1079 260 42.37 ± 40.14
sdd:hyang00 1455x1925 285 60.39 ± 44.99

¹ The Stanford Drone dataset provides trajectory data for a multitude of different agent types,
including for example pedestrians, bikers and skateboarders.
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(a) biwi:eth

(b) biwi:hotel

(c) crowds:zara01

Figure 5.2: Overview of human trajectory datasets selected for evaluation. Sub-figures depict a
reference image of the recorded scenery (left) and the overlayed dataset (right). Note:
For illustration purposes, the image and data scale is aligned for all datasets, for the
actual image resolutions see Table 5.3.
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(a) crowds:zara02

(b) sdd:bookstore03

(c) sdd:hyang00

Figure 5.3: Overview of human trajectory datasets selected for evaluation. Sub-figures depict a
reference image of the recorded scenery (left) and the overlayed dataset (right). Note:
For illustration purposes, the image and data scale is aligned for all datasets, for the
actual image resolutions see Table 5.3.
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Preprocessing: At first, all datasets originally provided in world space coordi-
nates are projected into image space using homographies. In the literature,
the annotation frequency of the datasets is usually set to 2.5 annotations per
second, which equals to the annotation rate of the BIWI Walking Pedestrians
dataset. Thus, the annotation frequency of all datasets included in the evalua-
tion is adjusted accordingly. Further, the evaluation is conducted on trajecto-
ries of a fixed length𝑁 = 𝑁obs+𝑁pred (see also Section 5.1.3.5). Following this,
all (sub-)trajectories of a given length are extracted from each respective data-
set in order to provide training and test datasets. Trajectories shorter than the
given length are not considered for evaluation. As a final data preprocessing
step, trajectories of non-moving or slow-moving persons are filtered out, as
statistical models are worse in modeling trajectories of slow-moving persons,
because their behavior becomes less predictable [Has19]. Thus, the dataset-
dependent required minimum speed¹ is calculated heuristically for a given
dataset 𝓓 containing all 𝑀 possible (sub-)trajectories of length 𝑁:

𝑠min =
max𝑖𝑚speed(𝑖) −min𝑖𝑚speed(𝑖)

𝑀
with

𝑚speed(𝑖) =
1

𝑁 − 1
𝑁
∑
𝑡=2

‖x𝑖𝑡 − x𝑖𝑡−1‖2.

(5.1)

Here, 𝑚speed(𝑖) denotes the average speed within the 𝑖’th trajectory 𝒳𝑖 ∈ 𝓓.

¹ The average euclidean distance between subsequent trajectory points.
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5.1.3.2 Performance Measures

In the standard evaluation approach, the designated performance measures
are given by the Average Displacement Error (abbrev.: ADE) and the Final Dis-
placement Error (abbrev.: FDE), defined as

ADE = 1
𝑀 ⋅ 𝑁pred

𝑀
∑
𝑖=1

𝑁pred

∑
𝑡=1

‖ŷ𝑖𝑡 − y𝑖𝑡‖2 (5.2)

and

FDE = 1
𝑀

𝑀
∑
𝑖=1

‖ŷ𝑖𝑁pred
− y𝑖𝑁pred

‖2 (5.3)

for a given prediction horizon 𝑁pred, a set 𝓨 = {𝒴1, ..., 𝒴𝑀} of 𝑀 ground
truth trajectories 𝒴 𝑖 = {y𝑖1, ...,y𝑖𝑁pred

} and corresponding predictions ̂𝒴 𝑖 =
{ŷ𝑖1, ..., ŷ𝑖𝑁pred

} generated by a given predictionmodel. TheADE is then defined
by the average L2 distance between the ground truth and a corresponding pre-
dicted trajectory, while the FDE is defined by the L2 distance between the final
ground truth and predicted trajectory points after the prediction horizon. In
the case of probabilistic sequence models, which generate a predictive dis-
tribution 𝑝(y{1,...,𝑁pred}|x{1,...,𝑁obs}), ̂𝒴 𝑖 corresponds to a maximum likelihood
prediction given the probabilistic output of the model.

As the ADE and FDE do not provide an adequate measure for assessing the
quality of (multi-modal) probabilistic predictions, another performance mea-
sure is required for this case. Due to the actual ground truth probability dis-
tribution for each time step being unknown, a common choice is given by the
Negative (data) Log-Likelihood (abbrev.: NLL, e.g. [Bha18, Iva19]), defined as

NLL = 1
𝑀 ⋅ 𝑁pred

𝑀
∑
𝑖=1

𝑁pred

∑
𝑡=1

− log𝑝(y𝑖𝑡|⋅). (5.4)
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Here, 𝑝(y𝑖𝑡|⋅) denotes the predictive distribution for the 𝑡’th trajectory posi-
tion as generated by the probabilistic sequence model. Note that the con-
ditional part of this distribution is not given explicitly, as it varies between
different models (see Section 5.1.3.5). It is worth mentioning, that sometimes
an oracle measure (e.g. [Lee17]) is used as a sample-based substitute for the
NLL. This measure does, however, introduce another hyperparameter, which
is why the NLL is preferred in the context of this evaluation.

5.1.3.3 Baselines

In order to provide reference values for comparison, a simple baseline is given
for each performance measure. In the case of the ADE and FDE, a simple pre-
diction model is given by a linear extrapolation calculated from a respective
observed trajectory. Here, the relative offset 𝛿𝑖 = x𝑖𝑁obs

− x𝑖𝑁obs−1 of the two
most recent observations is projected 𝑁pred steps into the future, as these po-
sitions are assumed to have the most impact on the future trajectory [Sch20a].
In the case of the NLL measure, a sample-based prediction can be generated
for each future position by using a shotgun approach [Paj18]. In this approach,
multiple future trajectories are generated by randomly altering the direction
and scale of the relative offset 𝛿𝑖 before projection. The altered offset for each
future trajectory is then given by R𝛼 ⋅ 𝛿𝑖 ⋅ 𝑠 with 𝛼 ∼ 𝒩(0, 𝜎𝛼), 𝑠 ∼ 𝒩(1, 𝜎𝑠)
and the matrix R𝛼 describing a rotation by 𝛼 degrees. This yields a unimodal
probabilistic prediction with a fixed variance for each predicted time step. In
the following, 𝜎𝛼 = 15° and 𝜎𝑠 = 0.1 are used. An exemplary prediction
using both approaches is depicted in Figure 5.4.
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(a) Linear extrapolation (b) Shotgun

Figure 5.4: Exemplary predictions generated by a linear extrapolation model and a shotgun
model. Predicted samples generated by the shotgun model around the mean lin-
ear prediction (green) are depicted in blue.

In addition to these two baselines, a simple LSTM baseline is provided. This
mainly has two reasons. On the one hand, the LSTMmodel is an integral com-
ponent of multiple sequence models included in the evaluation. On the other
hand, it is a widely used baseline next to the linear extrapolation approach.

5.1.3.4 Implementation Details

This section gives a brief overview on implementation details for the se-
quence models in comparison. The implementations are based on existing
approaches, which provide a publicly available implementation. These im-
plementations are adapted to use a common data pipeline. If necessary,
components for processing additional cues, such as social context, are re-
moved. The list of approaches the implementations are based on alongside
adaptations made is given in Table 5.4.
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Table 5.4: Sequence model implementations adapted for use in this evaluation.

Model Based on Adaptations

R-MDN
ParticleLSTM [Hug18],

-Own implementation

GAN
Social GAN [Gup18], Removed social context
Original implementationa Data pipeline

VAE
LSTM-BMS [Bha18], PyTorch re-implementation
Original implementationb Data pipeline

Transformer TF [Giu21],
Data pipelineOriginal implementationc

a https://github.com/agrimgupta92/sgan
b https://github.com/apratimbhattacharyya18/CGM_BestOfMany
c https://github.com/FGiuliari/Trajectory-Transformer

The remainder of this section provides some implementation details regard-
ing the prediction models in comparison, including the 𝒩-MDN. For each
model, respective loss functions, training details and the type of output as
generated by the model is depicted. Additionally, a simplified structure illus-
tration is given for each model. These illustrations also serve the purpose of
highlighting relevant hyperparameters of each model. The values chosen for
each hyperparameter and relevant general information is given at the end of
this section.

𝒩-MDN: For the task of human trajectory prediction, the𝒩-MDN is set into
a conditional setting. Thus, the MDN’s input vector v (see Section 4.1) needs
to hold information about the observed trajectory, in order to condition the
MDN’s output upon the observation. In accordance with a wide range of
human trajectory prediction models, an LSTM network is used for encoding
the observed trajectory. The conditional𝒩-MDN is illustrated in Figure 5.5.
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Observation
LSTM
[𝑑enc]

v MDN
[𝑛curves]
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Figure 5.5: Simplified illustration of the conditional 𝒩-MDN. Relevant hyperparameters de-
picted in blue are given by the hidden state dimension 𝑑enc of the LSTM encoder,
as well as the number of 𝒩-Curves 𝑛curves output by the MDN. Each generated 𝒩-
Curve is defined by 𝑛cpts Gaussian control points.

As𝒩-Curves model entire trajectories, an𝒩-Curve can be used to either only
model the future trajectory, or to model the observed trajectory together with
the future trajectory. Both options will be considered in the evaluation.

R-MDN:The SMC-based R-MDN variant used in this evaluation belongs to the
group of 1-to-1 sequence models (see Section 2.1.1), processing one trajectory
point at a time. As such, the model takes a discrete trajectory point as input
and outputs the parameters of a Gaussian mixture distribution modeling the
next trajectory point. In order to enable the model to generate a multi-modal
prediction, multiple points are sampled from the output distribution and fed
back into the model. To prevent exponential growth of samples, subsequent
output distributions are combined and re-sampled [Hug18]. A schematic of
this model is given in Figure 5.6

Observation
LSTM
[𝑑lstm]

MDN
[𝑛comps] Prediction Samples

Figure 5.6: Simplified illustration of the SMC-based R-MDN. Relevant hyperparameters depicted
in blue are given by the hidden state dimension 𝑑lstm of the LSTM network and the
number of mixture components 𝑛comps generated by the MDN.

During training, the commonly used teacher forcing approach (see Section
2.1.1) is used, as the model generates its prediction sequentially. With the
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model generating a sequence of conditional mixture distributions, the opti-
mization is based on the negative log-likelihood loss

ℒ =
𝑁obs+𝑁pred

∑
𝑡=2

− log𝑝(x𝑡|x𝑡−1, ...,x1), (5.5)

for a given training sample trajectory 𝒳 = {x1, ...,x𝑁𝑜𝑏𝑠+𝑁pred }.

GAN: For applying a GAN in the context of human trajectory prediction, a
sequence processing unit must be incorporated into the model. According to
[Gup18], a sequence-to-sequence LSTM (see Sections 2.1.1 and 2.2.3) is built
into the generator network and another LSTM encoder is built into the dis-
criminator network. The GAN encodes the observed trajectory and then adds
a random noise vector to the encoded representation in order to sequentially
generate a prediction. By performing multiple passes through the decoder
network using different noise vectors, a sample-based distribution of future
trajectories is generated. A simplified illustration of the GAN is depicted in
Figure 5.7.

Observation
LSTM
[𝑑enc]

z
[𝑑noise]

LSTM
[𝑑dec] Prediction

Discriminator
[𝑑discr_enc]

[𝑑ff]

Ground Truth

Figure 5.7: Simplified illustration of the GAN. Relevant hyperparameters depicted in blue are
given by the dimensionality of the noise vector 𝑑noise, the hidden dimension of the
generator’s LSTM encoder𝑑enc and decoder𝑑dec, as well as the discriminator’s LSTM
encoder 𝑑discr_enc and feed forward network 𝑑ff. The discriminator part (dashed
boxes) are only used during training. The noise vector z is sampled from𝒩(0,I).

Opposed to the R-MDN, an auto-conditioning approach (see Section 2.1.1) is
employed during training. For the loss calculation, 𝐾 samples { ̂𝒴1, ..., ̂𝒴𝐾}
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with ̂𝒴 𝑖 = {ŷ𝑖1, ..., ŷ𝑖𝑁pred
} are generated. The loss function consists of a va-

riety loss

ℒvariety = min
𝑖

𝑁pred

∑
𝑡=1

‖ŷ𝑖𝑡 − y𝑡‖2 (5.6)

combined with the GAN adversarial loss

ℒ = 𝔼y∼𝑝data(y) [log𝐷(y)] + 𝔼z∼𝑝(z) [log(1 − 𝐷(𝐺(z)))] . (5.7)

𝐷 and 𝐺 denote the discriminator and generator networks, respectively. The
variety loss is intended to encourage the GAN to generate diverse future tra-
jectory predictions for the same observed trajectory.

VAE: Similar to the GAN extension, a sequence-to-sequence LSTM is built into
the VAE in order to enable sequence processing. Further, prediction genera-
tionworks similar to the GANmodel by adding a random vector to an encoded
representation of an observed trajectory in order to generate multiple future
trajectories. A schematic of the VAE is depicted in Figure 5.8.

Observation
LSTM
[𝑑enc]

z
[𝑑latent]

LSTM
[𝑑dec] Prediction

Ground Truth LSTM
[𝑑lstm]

Figure 5.8: Simplified illustration of the VAE. Relevant hyperparameters depicted in blue are
given by the dimensionality of the latent space 𝑑latent and of the hidden state of the
LSTM encoder 𝑑enc and decoder 𝑑dec. In addition, the hidden state dimension 𝑑lstm
of the auxiliary LSTM encoder only active during training gives another hyperpa-
rameter. The random vector z is sampled from 𝒩(0,I) during inference, while the
parameters of the Gaussian distribution are determined by the auxiliary LSTM en-
coder during training.

During training, the LSTM decoder takes the encoded observation with the
added random vector as input for every prediction step. In this way, neither
teacher forcing, nor auto-conditioning schemes are necessary. At the same
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time, the model entirely relies on the progressing internal LSTM state to gen-
erate an appropriate prediction. Similar to the GAN, 𝐾 samples are generated
for the loss calculation. Here, the loss function consists of a variation of the
VAE’s standard ELBO (evidence lower bound) loss

ℒ = max
𝑖
{log𝑝(𝒴|z𝑖,𝒳obs)} − log𝑇 − 𝐷KL(𝑞(z|𝒳)‖𝑝(z|𝒳obs), (5.8)

with z𝑖 ∼ 𝑞(z|𝒳). This best of many samples variant of the ELBO contains a
variety loss component, comparable to that of the GAN implementation.

Transformer: Although the implementation chosen for this evaluation does
not provide a probabilistic prediction model, it is considered in this compari-
son, as it provides a strong contender to the established LSTM networks built
into many human trajectory prediction models. It is an attention-based se-
quence model, consisting of an encoder, which encodes the entire observed
trajectory into a single vector, and a decoder, which sequentially generates
one trajectory point at a time, given the encoding. A schematic of this model
is depicted in Figure 5.9.

Observation
Embed
[𝑑model]

Self-
Attention
[𝑛heads]

Feed
Forward

[𝑑ff]

𝑦enc

⟨0⟩ Embed
[𝑑model]

Self-
Attention
[𝑛heads]

Encoder-
Decoder
Attention
[𝑛heads]

Feed
Forward

[𝑑ff]
Prediction

Figure 5.9: Simplified illustration of the Transformer. Relevant hyperparameters depicted in
blue are given by the model dimension 𝑑model, the number of attention heads 𝑛heads
and the dimension of the feed forward network 𝑑ff. The encoder (top) and decoder
(bottom) networks share the same hyperparameters. In the decoder network, ⟨0⟩
denotes a start of sequence token used as input for the initial prediction step.

Similar to the R-MDN, a teacher forcing approach is used during training. As
the model generates a single future trajectory, the optimization can be based
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on the 𝐿2 loss function

ℒ =
𝑁pred

∑
𝑡=1

‖ŷ𝑡 − y𝑡‖2. (5.9)

Hyperparameters: The model’s hyperparameters are determined by running a
grid search around the parameters provided by the respective authors, using
those being most consistent across all datasets. For hyperparameters yielding
similar model results, the parameterization given by the respective authors is
favored. Output-related parameters for the𝒩-MDN and R-MDN are defined
separately in Section 5.1.4. A list of chosen hyperparameters for each model
is given in Table 5.5.

Table 5.5: Overview of chosen hyperparameters for each model in comparison.

Model Hyperparameters

𝒩-MDN
𝑑enc = 128
𝑛cpts = 5

R-MDN 𝑑lstm = 256

GAN

𝑑noise = 8
𝑑enc = 32
𝑑dec = 48
𝑑discr_enc = 32
𝑑ff = 64

VAE

𝑑lstm = 128
𝑑latent = 64
𝑑enc = 48
𝑑dec = 48

Transformer
𝑑model = 64
𝑛heads = 1
𝑑ff = 256

General Information: All models are trained using a stochastic gradient de-
scent policy and the ADAM optimizer [Kin15], using either mini-batches or
the entire training dataset at once (whichever worked best for the respective
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model). For prediction, 𝐾 = 300 samples are used for the sample-based pre-
dictors R-MDN, VAE and GAN.

5.1.3.5 Evaluation Methodology

For achieving a reliable evaluation, a 𝑘-fold cross-validation is performed on
each dataset, in order to copewith unfavorable random training and test splits.
In the following, 𝑘 = 5 folds are performed, as it gives a good trade-off be-
tween error bias and variance [Has09]. In compliancewith the goal ofmeasur-
ing the raw single dataset performance, all prediction models are re-trained
for each fold. As is common practice, prediction models are tasked to pre-
dict 𝑁pred = 12 steps (4.8 seconds) into the future, given an observation of
𝑁obs = 8 steps (3.2 seconds).

For generating a maximum likelihood prediction, the output of the probabilis-
tic prediction models in comparison need to be processed in different ways.
For the R-MDN, instead of propagating a set of particles, the mean vector of
the highest weighted mixture component is fed back into the model in each
time step. As the GAN and VAE models generate a set of sample trajectories,
the mean position for each time step is used. Finally, for the 𝒩-MDN, the
mean curve of the 𝒩-Curve with the highest mixture weight is used.

Looking at the NLL measure, which requires a probability density function
generated by each prediction model, sample-based output is processed by ap-
plying a kernel density estimation [Sco18] using a Gaussian kernel in order
to obtain probability density functions for each time step.

5.1.4 Quantitative Results

For the quantitative evaluation, multiple output-related configurations are
considered for the R-MDN and 𝒩-MDN models, controlling the number of
mixture components and the 𝒩-MDN model’s output mode (see Section
5.1.3.4). The configurations are depicted in Table 5.6.
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Table 5.6: Output-related configurations for the R-MDN and𝒩-MDN models in the evaluation.

Configuration Description
R-MDN𝑎 Outputs a single-component mixture of Gaussians (𝑛comps = 1).
R-MDN𝑏 Outputs a 3-component mixture of Gaussians (𝑛comps = 3).
𝒩-MDN𝑎 Models the observed and future trajectory, and outputs a single

𝒩-Curve (𝑛curves = 1).
𝒩-MDN𝑏 Models the observed and future trajectory, and outputs a mix-

ture of 3 𝒩-Curves (𝑛curves = 3).
𝒩-MDN𝑐 Models the future trajectory and outputs a single 𝒩-Curve

(𝑛curves = 1).
𝒩-MDN𝑑 Models the future trajectory and outputs a mixture of 3 𝒩-

Curves (𝑛curves = 3).

Tables 5.7 – 5.12 summarize the results of the quantitative evaluation, using
a per dataset 5-fold cross validation and the ADE, FDE and NLL performance
measures. Accordingly, respective averaged performance values with corre-
sponding standard deviation considering all 5 folds are depicted. It should be
noted, that the performance values are not comparable across datasets, due
to different image and ground resolutions. In order to make values compa-
rable, datasets would need to be projected into 3-dimensional world space.
Additionally, a re-sampling of trajectory points can be necessary in order to
match motion profiles.
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Table 5.7: Quantitative results of all approaches on the biwi:eth dataset for a prediction time
horizon of𝑁pred = 12 time steps (4.8 seconds). ADE and FDE errors are reported in
pixels. Lower is better for all performance measures.

Model ADE FDE NLL
Linear 21.80 ± 1.60 47.81 ± 5.41 -
Shotgun - - 10.07 ± 2.37
LSTM 13.44 ± 0.97 26.83 ± 2.52 -
Transformer 19.36 ± 2.16 35.81 ± 3.67 -
R-MDN𝑎 26.12 ± 17.42 46.28 ± 32.50 16.62 ± 3.67
R-MDN𝑏 16.11 ± 3.70 28.70 ± 7.72 2893.14 ± 5760.97
VAE 22.33 ± 1.82 37.45 ± 4.91 8.38 ± 0.16
GAN 11.42 ± 2.18 22.26 ± 4.48 1084.14 ± 988.79
𝒩-MDN𝑎 9.51 ± 0.67 17.41 ± 1.13 7.25 ± 0.13
𝒩-MDN𝑏 9.17 ± 1.28 17.15 ± 2.89 7.30 ± 0.30
𝒩-MDN𝑐 10.23 ± 1.07 18.61 ± 2.88 7.48 ± 0.41
𝒩-MDN𝑑 9.87 ± 1.03 18.28 ± 3.40 7.27 ± 0.17

Table 5.8: Quantitative results of all approaches on the biwi:hotel dataset for a prediction time
horizon of𝑁pred = 12 time steps (4.8 seconds). ADE and FDE errors are reported in
pixels. Lower is better for all performance measures.

Model ADE FDE NLL
Linear 26.65 ± 1.24 51.13 ± 3.29 -
Shotgun - - 9.87 ± 1.14
LSTM 17.91 ± 2.16 32.93 ± 4.50 -
Transformer 20.42 ± 1.48 34.35 ± 2.95 -
R-MDN𝑎 24.46 ± 4.92 43.52 ± 8.28 15.52 ± 2.93
R-MDN𝑏 19.01 ± 3.77 33.57 ± 6.71 12.20 ± 2.42
VAE 20.03 ± 4.14 35.61 ± 7.90 8.25 ± 0.31
GAN 15.48 ± 1.80 26.38 ± 3.15 20115.70 ± 38614.18
𝒩-MDN𝑎 16.64 ± 3.10 30.36 ± 7.56 8.26 ± 0.48
𝒩-MDN𝑏 15.46 ± 2.03 27.28 ± 3.75 7.96 ± 0.16
𝒩-MDN𝑐 13.76 ± 0.94 23.82 ± 1.90 7.86 ± 0.18
𝒩-MDN𝑑 15.30 ± 1.98 26.60 ± 4.22 7.85 ± 0.20
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Table 5.9: Quantitative results of all approaches on the crowds:zara01 dataset for a prediction
time horizon of𝑁pred = 12 time steps (4.8 seconds). ADE and FDE errors are reported
in pixels. Lower is better for all performance measures.

Model ADE FDE NLL
Linear 21.69 ± 0.40 46.98 ± 1.39 -
Shotgun - - 10.93 ± 0.89
LSTM 23.71 ± 9.30 49.93 ± 24.18 -
Transformer 27.30 ± 1.64 50.04 ± 2.67 -
R-MDN𝑎 20.15 ± 3.25 38.38 ± 6.77 14.76 ± 4.55
R-MDN𝑏 16.86 ± 0.34 31.18 ± 0.72 13.31 ± 2.26
VAE 19.21 ± 0.74 35.49 ± 1.47 8.24 ± 0.19
GAN 15.59 ± 0.41 30.11 ± 0.83 363.05 ± 456.18
𝒩-MDN𝑎 18.48 ± 0.51 35.97 ± 0.74 8.30 ± 0.03
𝒩-MDN𝑏 19.07 ± 0.68 36.49 ± 1.40 8.21 ± 0.06
𝒩-MDN𝑐 16.60 ± 0.44 32.12 ± 0.84 8.04 ± 0.04
𝒩-MDN𝑑 17.71 ± 0.43 34.17 ± 0.84 7.95 ± 0.05

Table 5.10: Quantitative results of all approaches on the crowds:zara02 dataset for a prediction
time horizon of 𝑁pred = 12 time steps (4.8 seconds). ADE and FDE errors are
reported in pixels. Lower is better for all performance measures.

Model ADE FDE NLL
Linear 28.08 ± 0.33 60.83 ± 0.73 -
Shotgun - - 14.97 ± 1.72
LSTM 34.14 ± 22.66 72.47 ± 52.74 -
Transformer 32.17 ± 2.94 58.25 ± 4.76 -
R-MDN𝑎 24.92 ± 1.98 48.18 ± 3.59 11.99 ± 1.37
R-MDN𝑏 21.72 ± 2.59 41.19 ± 4.65 11.67 ± 1.17
VAE 23.44 ± 0.76 43.45 ± 1.42 9.29 ± 0.27
GAN 20.01 ± 0.72 39.57 ± 1.35 26.33 ± 13.40
𝒩-MDN𝑎 22.34 ± 0.92 43.20 ± 2.03 8.54 ± 0.07
𝒩-MDN𝑏 24.74 ± 1.30 47.29 ± 2.90 8.49 ± 0.06
𝒩-MDN𝑐 20.41 ± 1.07 40.39 ± 2.35 8.33 ± 0.07
𝒩-MDN𝑑 21.41 ± 1.03 41.55 ± 2.45 7.98 ± 0.03
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Table 5.11: Quantitative results of all approaches on the sdd:bookstore03 dataset for a prediction
time horizon of 𝑁pred = 12 time steps (4.8 seconds). ADE and FDE errors are
reported in pixels. Lower is better for all performance measures.

Model ADE FDE NLL
Linear 28.39 ± 0.23 60.21 ± 0.67 -
Shotgun - - 18.03 ± 4.00
LSTM 27.91 ± 0.95 56.04 ± 1.75 -
Transformer 52.48 ± 14.88 97.00 ± 26.24 -
R-MDN𝑎 50.02 ± 13.19 93.60 ± 23.37 14.28 ± 2.55
R-MDN𝑏 27.58 ± 4.64 50.11 ± 8.56 23.47 ± 23.88
VAE 30.75 ± 1.04 55.93 ± 1.83 8.88 ± 0.09
GAN 19.10 ± 0.58 35.45 ± 0.96 33.18 ± 4.71
𝒩-MDN𝑎 25.24 ± 1.24 48.28 ± 2.80 9.13 ± 0.05
𝒩-MDN𝑏 25.33 ± 2.34 48.69 ± 5.28 9.06 ± 0.09
𝒩-MDN𝑐 22.31 ± 1.15 41.60 ± 1.58 8.89 ± 0.07
𝒩-MDN𝑑 19.43 ± 0.55 35.37 ± 1.10 8.46 ± 0.04

Table 5.12: Quantitative results of all approaches on the sdd:hyang00 dataset for a prediction
time horizon of 𝑁pred = 12 time steps (4.8 seconds). ADE and FDE errors are
reported in pixels. Lower is better for all performance measures.

Model ADE FDE NLL
Linear 36.25 ± 0.79 75.93 ± 2.09 -
Shotgun - - 16.33 ± 1.30
LSTM 40.52 ± 9.44 85.83 ± 23.63 -
Transformer 119.70 ± 0.68 222.18 ± 1.39 -
R-MDN𝑎 90.86 ± 23.89 168.85 ± 43.22 20.43 ± 4.03
R-MDN𝑏 44.18 ± 2.32 84.29 ± 4.17 13.46 ± 0.74
VAE 41.39 ± 2.53 82.21 ± 5.21 9.38 ± 0.09
GAN 28.84 ± 1.11 57.56 ± 2.92 20.48 ± 5.26
𝒩-MDN𝑎 35.83 ± 1.03 72.74 ± 2.49 9.82 ± 0.05
𝒩-MDN𝑏 37.62 ± 2.57 76.31 ± 6.07 9.80 ± 0.07
𝒩-MDN𝑐 34.30 ± 1.11 69.87 ± 2.37 9.63 ± 0.02
𝒩-MDN𝑑 29.68 ± 1.18 58.69 ± 3.13 9.11 ± 0.01
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Model Comparison: It can be seen, that in terms of the average and final dis-
placement errors (ADE and FDE), the𝒩-MDN performs on par with the best
performing model in comparison, i.e. the GAN model. At the same time, the
𝒩-MDN outperforms every other model in terms of the NLL performance
measure, with the VAE being the closest contender. It should be noted, that
both, the GAN and the R-MDN model, have a tendency to perform worse in
terms of NLL, which can be attributed to these model’s weakness to mode
collapse (see also Section 4.1). This is discussed in more detail in Section 5.1.5.
Among the𝒩-MDN variants, the models only modeling the future trajectory
seem to outperform those also modeling the observed trajectory. Further, us-
ing multiple components appears to be beneficial for more complex datasets.
This can be expected, as these datasets contain multiple decision points, lead-
ing to multiple distinct possibilities for future trajectories. Lastly, the Trans-
former model performs notably worse than the LSTM baseline, which indi-
cates that the model is not optimal for the specific task at hand in its original
form and thus may require some adaptations.

Baselines: As expected, the linear prediction model performs quite well in
terms of the average and final displacement error. This is due to a substan-
tial amount of (sub-)trajectories in each dataset, commonly around 50 to 60
percent [Hug21], representing a constant linear motion. Similarly, the shot-
gun baseline is only outperformed by 2 out of 4 models, namely VAE and𝒩-
MDN. This is due to the baseline’s incapability of modeling multiple modes
as required for more complex cases. Further, the variance of the prediction
is not adapted to the actual location of the observation in the scene, result-
ing in under- and overestimation. More sophisticated prediction models not
suffering from mode collapse are thus able to outperform this baseline.

Summary: In summary it can be said, that all probabilistic prediction models
perform similar in terms of the presented performance measures, making the
choice of model dependent on their respective properties. In this case, the
𝒩-MDN may be favored over other models due to it being fully regression-
based and thus more stable during training and inference, while at the same
time being less computationally heavy during inference.
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5.1.5 Qualitative Evaluation

This section provides some insight into the probabilistic models behavior and
the evaluation methodology itself. Following this, the problem of mode col-
lapse in R-MDN and GANmodels is discussed at first. After that, a qualitative
comparison of the probabilistic models considered in this evaluation is pro-
vided. Then, the quantitative evaluation of probabilistic prediction models is
discussed in more detail, focusing on how to measure probabilistic predic-
tion quality. Finally, different characteristics of the 𝒩-Curve model and its
𝒩-MDN implementation as discussed in Sections 3.1 and 4.1 are further in-
vestigated in the application context using real-world data.

5.1.5.1 R-MDN and GAN: Mode Collapse

The quantitative evaluation revealed that in some cases the R-MDN and GAN
models yield large NLL values. While this can be the case because of the
model generating bad predictions for certain inputs, this can oftentimes be
attributed to both models being vulnerable to mode collapse (MDN: [Mak19],
GAN: [Met17]), where the model outputs a narrow prediction due to only
generating slight variations of the same sample. Figure 5.10 depicts a well-
spread prediction, next to a bad prediction and a prediction indicating a case
of mode collapse in order to give a visual example of the latter. In this illus-
tration, exemplary predictions generated by a GAN trained on the biwi:eth
dataset are shown.
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(a) NLL: 7.70 (b) NLL: 2154.72 (c) NLL: 7320.78

Figure 5.10: Different predictions (blue) generated by a GAN trained on the biwi:eth dataset,
yielding a well-spread (a) and a bad (b) prediction, as well as a prediction indicating
a case of mode collapse (c). The observed trajectory is depicted in red. The negative
log-likelihood (NLL) is provided for each predicted distribution given the ground
truth trajectory depicted in green.

Figure 5.10a gives an example for a spread-out prediction with noticeable bias,
which also covers the actual future trajectory. A common failure case is then
given in Figure 5.10b, where the model generates a prediction with increasing
uncertainty, but misses the actual future trajectory. Finally, 5.10c provides
an example of a prediction, which indicates a case of mode collapse. In this
example, all samples generated by the model are basically the same, with only
minimal variation. While the failure case in Figure 5.10b yields a significantly
increased negative log-likelihood, the low variance in the prediction depicted
in 5.10c is increasing the error even further.

5.1.5.2 Comparison of Probabilistic Predictions

For a qualitative comparison of the probabilistic prediction models, three
examples are taken from the sdd:hyang00 dataset, as it provides a well-
structured scenery, where pedestrians mainly stay on designated walking
paths. These examples are depicted in Figure 5.11 and cover a range of
situations with an increasing number of distinguishable possibilities for
future trajectories.
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(a) (b) (c)

Figure 5.11: Examples (observation depicted with markers) taken from the sdd:hyang00 dataset,
providing examples for a straight prediction and multi-modal predictions at differ-
ent decision points, i.e. junctions, on the pathway.

In the example depicted in Figure 5.11a, prediction of a straight motion is to be
expected, as there are no decision points after the observed portion of the tra-
jectory. Example 5.11b provides an observed trajectory, which ends prior to a
decision point, where the observed person can either move straight or turn to
the right. Although, looking at the data, turning to the right is statistically less
likely, the observed trajectory shows a tendency of moving to the right, mak-
ing both options possible. At last, the example given in Figure 5.11c grants the
possibility of a potential trimodal prediction. In this case, however, the num-
ber of modes in the prediction is highly dependent on the local neighborhood
of the observed trajectory considered during model training, as it influences
the target distribution. This is discussed in more detail in Section 5.1.5.3.

The predictions by each model for each example are depicted in Figures 5.12,
5.13 and 5.14. For the R-MDN and 𝒩-MDN models, the R-MDN𝑏 and 𝒩-
MDN𝑑 variants are used as representatives. Predictions are illustrated as a
heatmap calculated from predicted samples of each time step 𝑡 ∈ {1,...,𝑁pred}.
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(a) R-MDN (b) VAE

(c) GAN (d)𝒩-MDN

Figure 5.12: Predictions generated by the probabilistic prediction models in comparison for an
example trajectory (red markers) taken from the sdd:hyang00 dataset. The actual
future trajectory is indicated as a dashed red line.

For the first example, all models, with the exception of the VAE, generate a
unimodal prediction going straight, as expected. While the R-MDN and the
GAN generate comparable results, the 𝒩-MDN generated a higher-variance
prediction. The VAE on the other hand wrongly predicts another possibility
of moving downwards in addition to the straight prediction. This may be
caused by the close proximity of the absolute positions to the junction, where
moving down is another option. This, in turn, indicates, that the model puts
more weight on the observed positions in isolation, rather than to the context.

114



5.1 Long-term Human Trajectory Prediction

(a) R-MDN (b) VAE

(c) GAN (d)𝒩-MDN

Figure 5.13: Predictions generated by the probabilistic prediction models in comparison for an
example trajectory (red markers) taken from the sdd:hyang00 dataset. The actual
future trajectory is indicated as a dashed red line.

The second example shows another form of mode collapse in the predictions
of the R-MDN and the GAN, where the statistically less relevant mode is sup-
pressed, thus the model’s prediction collapses onto a single mode. Again,
the 𝒩-MDN and VAE models generate predictions with a higher variance,
thereby also covering the possibility of turning to the right. Still, it is visible
from the heatmap, that moving straight is the dominant option.
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(a) R-MDN (b) VAE

(c) GAN (d)𝒩-MDN

Figure 5.14: Predictions generated by the probabilistic prediction models in comparison for an
example trajectory (red markers) taken from the sdd:hyang00 dataset. The actual
future trajectory is indicated as a dashed red line.

Consistent with the two previous examples, the R-MDN and GAN generate a
similar bimodal prediction for the final example, both ignoring the possibil-
ity of moving to the right. Ignoring this possibility could be attributed to the
observed trajectory being close to the left side of the pathway, making it less
likely moving to the right. Combined with the rather low-variance predic-
tions of both models, hinting at a smaller surrounding area being considered
for the conditional prediction, trajectories located closer to the right side of
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the pathway could not have had much influence on the model’s output dur-
ing training. Opposed to that, the VAE and𝒩-MDNmodels output a trimodal
prediction, where the third mode is more defined in the𝒩-MDN’s prediction.
At the same time, the VAE seems to over-estimate the pedestrian’s move-
ment speed when going straight, while the 𝒩-MDN rather under-estimates
it slightly, when compared to the R-MDN and GAN predictions.

5.1.5.3 Assessing the Quality of Probabilistic Predictions

In the quantitative evaluation section, the negative log-likelihood (NLL) has
been used as a measure of the quality of probabilistic predictions generated
by the R-MDN, VAE, GAN and 𝒩-MDN models. Although the NLL evalu-
ates a predictive distribution generated for a given observation using only a
single sample (the actual future trajectory), its application is justified under
the assumption, that similar observations result in similar predictive distri-
butions, thus evaluating the entire distribution. At the same time, wrong or
superfluous modes in the predictive distribution are not penalized. This is
one of the reasons for models, which generate distributions with higher vari-
ance, are often scored better. This is also the case for the oracle measure, as it
ignores all predictions that are not close to the ground truth [Paj18]. These dif-
ficulties in assessing the quality of probabilistic predictions might be a reason
for the standard evaluation approach for trajectory prediction models leaving
out such a measure, even though most state-of-the-art models are capable of
generating probabilistic predictions. Apart from these difficulties, the NLL
provides a reliable measure for probabilistic predictions, as it does not require
the actual ground truth distribution to be known.

Nonetheless, it would be interesting to compare the probabilistic models
under a more sophisticated measure, using an estimation of the conditional
ground truth distribution. Thus, this section aims to provide a toy example
on a real-world dataset for evaluating the R-MDN, VAE, GAN and 𝒩-MDN
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using the Wasserstein distance [Kol17]

𝑊𝑝(𝑃,𝑄) = ( inf
𝛾∈Γ(𝑃,𝑄)

∫‖𝑥 − 𝑦‖𝑝𝑑𝛾(𝑥,𝑦))
1
𝑝
, (5.10)

where 𝑃 and 𝑄 are probability distributions and Γ(𝑃, 𝑄) is the set of all
joint distributions 𝛾(𝑥, 𝑦) whose marginals are 𝑃 and 𝑄, respectively. The
Wasserstein distance, originally formulated in the context of optimal trans-
port [Kan39], is preferred over the KL-Divergence [Kul51] and metrics built
upon it (e.g. the Jensen-Shannon distance [End03]), as it also takes the metric
space into account. As such, it considers the work required to transport the
probability mass from a given distribution to a target distribution. Because
of this intuition, it is also known as the Earth Mover’s distance in the 1-
dimensional case. For dimensions 𝑑 > 1, there exists no closed form solution
for the Wasserstein distance. In this case, a commonly used approximation
is given by the sliced Wasserstein distance [Bon15, Kol19].

The following toy example focuses on the evaluation of the endpoint distri-
bution 𝑝(y𝑁pred |⋅), 𝑁pred steps into the future, generated by each probabilistic
prediction model, using the sliced Wasserstein distance. As a first step, the
conditional ground truth distribution needs to be determined for each trajec-
tory in the test dataset. This can be achieved by searching the training dataset
for trajectories, which are similar to each test dataset trajectory in their re-
spective observed portion. The conditional ground truth distribution can be
estimated by applying a Gaussian kernel density estimation, using the end-
points of similar training dataset trajectories. The steps required to determine
the conditional ground truth distribution for an exemplary test dataset trajec-
tory 𝒳∗ ∈ 𝓓test (Figure 5.15a) are depicted in Figure 5.15.
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(a) Exemplary test trajectory (b) Determined search box

(c) Set of similar trajectories (d) Estimated endpoint distribution

Figure 5.15: Example for estimating a conditional ground truth probability distribution of a tra-
jectory endpoint given a test trajectory’s first 8 points as observation. The exem-
plary test trajectory in this figure starts at the black circular marker. The observed
portion of the exemplary test trajectory ends prior to the junction, making a prob-
abilistic prediction of its true endpoint potentially multi-modal.

For finding similar trajectories of 𝒳∗ = {x∗1, ...,x∗𝑁obs+𝑁pred
}, an axis-aligned

rectangular search region around the test trajectory’s first point x∗1 is deter-
mined. While the longitudinal expansion 𝑒long is calculated to include the
first 3 trajectory points, the lateral expansion 𝑒lat considers the width of the
walking path and is set by hand. This assumes, that there is no bias in the
conditional ground truth distribution, if the observed trajectory is closer to
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either side of the walking path. The resulting search region is depicted in
Figure 5.15b.

As a next step, all training dataset trajectories starting within this region are
gathered. From this set of trajectories, only those complying with the general
movement direction

m∗ = 1
𝑁obs

𝑁obs

∑
𝑡=2

x∗𝑡 − x∗𝑡−1 (5.11)

and speed

𝑠∗ = 1
𝑁obs

𝑁obs

∑
𝑡=2

‖x∗𝑡 − x∗𝑡−1‖2 (5.12)

of the observed portion of the test trajectory are kept for the distribution es-
timation. Here, a movement direction deviation 𝜃dir of 10∘ and a speed devi-
ation Δ𝑠 of 25% is allowed. The resulting set of similar trajectories 𝓓∗

sim is
depicted in Figure 5.15c. Finally, the conditional endpoint distribution esti-
mated from the set of similar trajectories is illustrated in Figure 5.15d.

It has to be noted, that the resulting probability distribution is highly depen-
dent on the considered local neighborhood defined by 𝑒long and 𝑒lat and the
deviation parameters 𝜃dir andΔ𝑠. At the same time, it is not quite clear how to
choose these values properly. As such, the assumption made for this example
might be inaccurate. Further, it is even harder to define these parameters in
less structured datasets, making such an evaluation non-viable for large scale
evaluations including several datasets. In addition to this aspect, another ob-
stacle is the required amount of trajectories similar to an observed trajectory
in question. This is touched upon in more detail later in this section.

Aiming at a comparison of endpoint probability distributions, Figure 5.16 de-
picts sample-based predictions for the endpoint as generated by the sample-
based prediction models.
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(a) R-MDN (b) VAE (c) GAN

Figure 5.16: Sample-based endpoint predictions as generated by the R-MDN, VAE and GAN
models. Regions of high sample-density can be interpreted as modes in the ac-
tual probability distribution, whereas the sample-spread indicates the variance.

As described before, a probability density function is estimated from these
sample-based predictions by applying a Gaussian kernel density estimation.
The resulting probability densities, including the one generated by the 𝒩-
MDN, are depicted in Figure 5.17. In addition to the probability densities,
respective NLL scores given𝒳∗ andWasserstein distances given the estimated
ground truth distribution (see Figure 5.15d) are provided.
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(a) R-MDN (NLL: 124.65, Wasserstein:
116.66)

(b) VAE (NLL: 16.61, Wasserstein:
127.24)

(c) GAN (NLL: 200.31, Wasserstein:
144.21)

(d)𝒩-MDN (NLL: 11.46, Wasserstein:
91.10)

Figure 5.17: Predicted endpoint probability distributions as generated by the R-MDN, VAE, GAN
and 𝒩-MDN models. The NLL and Wasserstein distance values between each re-
spective predicted distribution and an estimated ground truth distribution (see Fig-
ure 5.15d) are provided.

Following this example on how to calculate the Wasserstein distance for an
exemplary trajectory, the same methodology is applied on the first fold test
dataset of the sdd:hyang00 dataset. For the evaluation on the whole dataset,
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a few things have to be noted. First, in practice¹, the Wasserstein distance is
calculated on a sample-based representation of the provided probability dis-
tributions. Thus, the actual sample-based representations are used for the
R-MDN, VAE and GAN models, and an equal amount of samples is drawn
from the distribution generated by the 𝒩-MDN. Opposed to that, the esti-
mated ground truth distribution is not re-sampled in order to obtain a larger
number of samples, as to not distort the actual distribution. Further, test tra-
jectories 𝒳𝑖 ∈ 𝓓test are only considered, if there are at least 30 similar tra-
jectories available, i.e. |𝓓sim| ≥ 30, according to the aforementioned method.
According to [Sil86], at least 19 samples are required in order to calculate
an accurate estimation of a bivariate Gaussian density using a kernel density
estimation. Due to the ground truth distributions in this evaluation poten-
tially being multi-modal, the number of samples should be increased. At the
same time, increasing the number of required samples potentially reduces the
number of available test trajectories, when there are not enough similar tra-
jectories available. Using |𝒳sim| ≥ 30, the size of the test dataset is reduced by
approximately 45%, thus providing a trade-off between obtaining an accurate
ground truth distribution and a reasonable test set size.

Following this, Table 5.13 depicts the mean Wasserstein distance calculated
using the sdd:hyang00’s first fold test dataset. For comparison, the NLL, as
calculated for the quantitative evaluation (see Section 5.1.4), is provided. For
completeness, the Wasserstein distance is also provided for the shotgun base-
line.

¹ In the context of this thesis, the implementation provided by the Python Optimal Transport li-
brary [Fla21] is used, which computes aMonte Carlo approximation of the 2-slicedWasserstein
distance.
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Table 5.13: Negative Log-Likelihood and Wasserstein distance calculated on the sdd:hyang00’s
first fold test dataset for each probabilistic prediction model in comparison. In case
of the Wasserstein distance, the predicted endpoint distribution is compared with an
estimation of the true endpoint distribution for each test trajectory. Lower is better
for both measures.

Model NLL Wasserstein
Shotgun 14.97 68.04
R-MDN 14.67 81.25
VAE 9.41 62.68
GAN 30.36 61.47
𝒩-MDN 9.12 51.62

Looking at the results, the ranking of the probabilistic models is, in parts,
consistent with the NLL-based ranking. The shotgun baseline still performed
well in this toy example, which is probably due to the presence of many cases,
where an unimodal prediction is sufficient. This also supports the shotgun
approach’ viability as a baseline for probabilistic trajectory prediction. Be-
sides that, a major difference is the GAN performing notably better under
the Wasserstein distance, which is likely to be attributed to the Wasserstein
distance not penalizing lower variance predictions as is the case for the NLL.
Still, the𝒩-MDN outperforms the other models in terms of the quality of the
probabilistic prediction. The results further indicate being more stable under
the use of the Wasserstein distance.

In summary, this toy example supports the viability of the proposed𝒩-Curve
approach in the context of human trajectory prediction. Further, it is sug-
gested, that the NLL can pose a viable performance measure for probabilistic
prediction, but it needs to be accompanied with a qualitative evaluation in or-
der to investigate on the reasonability of the predictions in terms of their vari-
ance. Finally, in cases, where the ground truth data distribution is available,
e.g. when using synthetically generated datasets, the Wasserstein distance
may be preferred over the NLL.
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5.1.5.4 𝒩-MDN: Additional Examples

This section focuses on few real-world examples, addressing different charac-
teristics of the 𝒩-Curve model and its 𝒩-MDN implementation, namely the
suppression of superfluous mixture components (see Section 4.1.3), modeling
different speeds using multiple mixture components and the squeezing effect
(see Section 3.1.2). In addition, the most common failure case occurring when
using the 𝒩-MDN is presented.

Starting off with superfluous component suppression, the prediction of a 3-
component 𝒩-MDN for an exemplary trajectory taken from the biwi:eth is
depicted in Figure 5.18. In this example, it can be seen, that in the model’s
output, two components have been suppressed, by assigning them a weight
of 𝜋𝑘 ≈ 0, leaving a single component for the prediction. This complies with
the desired behavior in this situation, as all persons moving towards the uni-
versity come together at the entrance. Additionally, all persons in the dataset
move with the same speed on average, making multi-modal prediction only
necessary in situations with multiple distinct possible future trajectories.

Figure 5.18: Exemplary prediction of a 3-component 𝒩-MDN, where 2 𝒩-Curves were sup-
pressed in favor of a single𝒩-Curve responsible for the prediction.
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On rare occasions, a low-weight, not well-optimized component appears in a
generated prediction. This is themost common failure casewhen using the𝒩-
MDN and is closely connected to the presence of superfluous components. An
example for this taken from the crowds:zara02 dataset is given in Figure 5.19.
In this example, the component depicted in green unexpectedly branches out
and reduces in speed greatly. While both incidents are valid under the pres-
ence of other nearby pedestrians being part of a collision avoidance behavior,
both actions combined are more likely to be an optimization artifact, where
a mixture component receives no more support from training samples from
some point onwards during training. Although the model is not exposed to
specific multi-agent data, isolated trajectories still reflect this behavior.

Figure 5.19: Exemplary prediction of a 3-component𝒩-MDN revealing a common failure case
of the prediction including a low-weighed not well-optimized mixture component
(green).

Besides using multiple mixture components in a prediction for modeling dis-
tinct future trajectories, these components can also be used to model similar
future trajectories, but at different speeds. Figure 5.20 gives an example taken
from the crowds:zara02 dataset, where the 𝒩-MDN uses all of its 3 mixture
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components for modeling different speed versions of the same future trajec-
tory in terms of its movement direction and curvature. As mentioned before,
having a higher person density than for example the biwi datasets, it may be
more likely to deviate from the average movement speed, in order to prevent
collisions with other pedestrians. This, in turn, likely causes the multi-modal
prediction covering different speeds.

Figure 5.20: Exemplary prediction of a 3-component𝒩-MDN,where each𝒩-Curves in themix-
ture models another version of the same trajectory, using a different movement
speed.

Finally, open questions concluding Section 3.1.2, include whether the squeez-
ing effect is relevant in real-world situations and if the model is able to gen-
erate constant variance predictions, when learned from data. Overall, the
squeezing effect can be rated as not relevant when using real-world data,
which is generally subject to noise. In this case, predicting into the future, the
variance usually increases with each time step. With respect to the constant
variance case, Figure 5.21 provides an example taken from the sdd:hyang00
dataset, where the𝒩-MDN outputs an unimodal prediction, which maintains
almost constant lateral variance. In this example, this is achieved by slowly
morphing an almost circular covariance ellipse towards a covariance ellipse
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with increased longitudinal variance. Here, the increase of the longitudinal
variance is a way of coping with uncertainties about the actual speed of the
observed trajectory. Observing both, the effect of an increasing longitudinal
variance over time while maintaining near constant lateral variance, show the
low relevance of the squeezing effect for real-world applications.

Figure 5.21: Exemplary prediction of a 𝒩-MDN maintaining a near constant lateral variance
while increasing longitudinal variance at the same time.

5.1.5.5 Implicit Input Attention

With the prediction generated by an𝒩-MDN being based on just the𝑁obs ob-
served positions, this section investigates the influence of each input on the
generated prediction, with respect to their position within the observed se-
quence. Recall, that an𝒩-MDN prediction is given in terms of a curve weight
distribution 𝜋, as well as a set of control point mean vectors 𝝁 and covariance
matrices 𝚺, which yield the predicted mean curve and the region of uncer-
tainty around it. Following this, it is especially interesting to see, if different
parts of a given input sequence are considered for generating 𝜋, 𝝁 and 𝚺.
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As there is no attention mechanism explicitly built into the 𝒩-MDN archi-
tecture, the model’s attention to different parts of a given sequence can be
calculated using the gradient of each generated output with respect to the in-
puts. Using PyTorch, its autogradmodule can be used for this, which calculates
the respective gradients by performing a backward pass through the network
given the generated output. Figure 5.22 depicts the resulting gradient-based
implicit attention maps for each dataset in the evaluation. For each dataset,
gradient magnitudes are averaged for each output, i.e. 𝜋, 𝝁 and 𝚺. As in
previous sections, the 𝒩-MDN𝑑 variant is considered.

Figure 5.22a, 5.22b and 5.22c depict the input attention on a per dataset ba-
sis for each of the model outputs separately. Figure 5.22a reveals that for
generating the mean vectors 𝝁, the most important input is given by the last
observed position with an additional, but weaker, contribution by the second
last element. This observation is in line with the findings given in [Sch20a].
Opposed to that, for determining the weights and covariance matrices, a mix
of multiple observations spread across the entire observed sequence is con-
sidered. The choice of which observations to rely on varies between datasets.
This is most likely due to random effects during training and the model being
trained for each dataset individually. Especially in the case of the covariance
matrix, it makes sense to incorporate multiple observations from a given se-
quence, as a noise estimation can be expected to be more accurate using more
data samples. Figure 5.22c depicts the input attention for each model output
averaged over all datasets and summarizes the aforementioned findings.
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Figure 5.22: Heatmap visualization of the models attention to each of the 𝑁obs = 8 observa-
tions when generating predictions in terms of curve weights 𝜋, mean vectors 𝝁
and covariance matrices 𝚺. Time steps 𝑡 are given relative to the last observation
at 𝑡 = 0. Inputs with no influence on the output are depicted in white and inputs
with the most influence (per row) are given in dark blue. In figures (a) – (c), the
datasets biwi:eth, biwi:hotel, crowds:zara01, crowds:zara02, sdd:bookstore03 and
sdd:hyang00 are depicted along the y-axis (a – f).

To accompany the heatmap visualizations, Figure 5.23 depicts the influence
of each observation on respective mean vectors and covariance matrices for
two exemplary input sequences. Both examples support the observation, that
for generating the mean vectors, the most recent observations are the most
important. Further, the covariance matrices are determined using several ob-
servations spread across the observed sequence.

130



5.1 Long-term Human Trajectory Prediction

(a)

(b)

Figure 5.23: Visualization of the influence of observations along a given input sequence for two
exemplary sequences. More important observations for determining the mean vec-
tors (left) and covariance matrices (right) are depicted with higher color intensity.

5.1.6 Summary

In summary, this section gave a detailed overview of the human trajectory
prediction task, commonly used datasets and state-of-the-art prediction mod-
els. The latter are most commonly variants of Recurrent Mixture Density
Networks, Variational Autoencoders and Generative Adversarial Networks.
This overviewwas followed by an extensive evaluation of the𝒩-Curve model

131



5 Evaluation

in comparison to these commonly used models, using different performance
measures and corresponding baselines. The performance measures include
the average and final displacement error for measuring the performance of
maximum likelihood predictions, as well as the negative log likelihood for
assessing the probabilistic prediction performance. In this evaluation, the𝒩-
Curve model shows competitive results, outperforming most other generic
probabilistic sequence models in the comparison.

5.2 Human Motion Prediction

The primary goal of this section is the evaluation of the scalability of the 𝒩-
Curve model to higher-dimensional data. For this, the task of human motion
prediction is considered. Note that in the literature, human trajectory predic-
tion (see the previous Section 5.1) is sometimes confused with human motion
prediction. To clarify, human trajectory prediction is concerned with human
movement along a trajectory through an observed scene based on observed
2- or 3-dimensional locations. Opposed to that, human motion prediction tar-
gets the motion of the human body when performing different actions and is
based on sequences of human poses.

Thus, in human motion prediction, a prediction model is tasked to generate a
sequence of human poses resembling some action performed by an observed
subject. The generation is thereby conditioned on a given initial observation
of the performed action. Each element in the sequences to process is given by
a human pose. Such human poses are commonly represented as a set of 3D
joint positions, which can be connected via a skeleton definition. The number
of 3D joints describing a human pose varies between datasets. To give an
example, in the Human3.6m dataset [Ion13], a human pose is described by 32
3D joints, yielding a 96-dimensional vector.
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5.2.1 Datasets

Looking at datasets which provide human pose sequences, the most com-
monly used ones include the CMU mocap database¹, the Human3.6m dataset
(abbrev.: h3.6m, [Ion13]) and the NTU RGB+D dataset [Sha16]. Among these
datasets, for the task of human motion prediction the h3.6m dataset is the
most widely used. This is due to existence of a standard evaluation protocol,
allowing to re-use previous results of different approaches tackling the pre-
diction task. Some details on the h3.6m dataset are given in Table 5.14. Figure
5.24 depicts an example of a pose sequence for the walking action taken from
the h3.6m dataset.

Table 5.14: Details of the Human3.6m dataset.

The Human3.6m dataset
Number of subjects 11
Pose representation 3D joint positions and angles (32 joints)
Recorded actions directions, discussion, eating, seated activities, greeting, tak-

ing photo, posing, making purchases, smoking, waiting,
walking, sitting on chair, talking on the phone, walking dog,
walking together

Sample rate 50Hz

Figure 5.24: Exemplary human motion sequence taken from the Human3.6m dataset. The left
arm and leg are depicted in blue. For illustration purposes, the sample rate is re-
duced to 12.5Hz.

¹ http://mocap.cs.cmu.edu/
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5.2.2 Evaluation Protocol

For enabling a repeatable and comparable evaluation, approaches presented in
the literature commonly follow the standard evaluation protocol provided in
[Fra15] and [Jai16]. According to this protocol, multiple data pre-processing
steps are performed prior to training and evaluation. First, the pose represen-
tation as provided in the h3.6m dataset is converted into an exponential map
representation of each joint using a specific pre-processing of global transla-
tion and rotation as specified in [Tay07]. Following the change in representa-
tion, the data is standardized by subtraction of the mean and division by the
standard deviation along each dimension. Then, dimensions with constant
values are dropped from the representation. The resulting pose representa-
tion then consists of 17 joints and a global translation component, yielding a
54-dimensional representation. Finally, the sequence sample rate is reduced
to 25Hz.

Using the pre-processed data, training is performed on a subset of actions us-
ing subjects S1, S6, S7, S8, S9 and S11. The action subset includes walking, eat-
ing, smoking, discussion, directions, greeting, phoning, posing, purchases, sitting,
sittingdown, takingphoto, waiting, walkingdog, walkingtogether. The test data-
set then contains actions performed by subject S5, collecting 8 sub-sequences
of specific actions using a fixed seed. The considered set of actions in the
test dataset is restricted to the representative actions walking, eating, smok-
ing and discussion. For prediction, a given model is tasked to predict up to
𝑁pred = 10 time steps (400 milliseconds) into the future, given an observa-
tion of 𝑁obs = 50 time steps (2 seconds) of a given action. The prediction
performance is then measured in terms of the mean angle error¹

𝑀𝐴𝐸 = 1
𝑀

𝑀
∑
𝑖=1

‖ŷ𝑖𝑡 − y𝑖𝑡‖2, (5.13)

¹ Using an euler angle representation, which can be calculated from the exponential map
representation
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calculated after 80, 160, 320 and 400 milliseconds, using 𝑀 samples of the
same action. With a sample rate of 25Hz, this corresponds to 𝑡 = 2, 𝑡 = 4,
𝑡 = 8 and 𝑡 = 10 time steps. This restriction to short-term prediction¹ is
introduced due to the stochasticity of humanmotion preventing a quantitative
evaluation of longer time horizons [Fra15].

5.2.3 Baselines and Comparison Models

For comparison, there are several commonly used simple and neural network-
based baselines. Common simple baselines are given by the Zero-velocity
model [Mar17], which constantly predicts the last observation, and a run-
ning average approach of the last 𝑛 observed poses. The running average ap-
proach will be abbreviated as Run. avg. n. Regarding neural network-based
baselines, the most prevalent models include the LSTM-3LR [Fra15], the ERD
[Fra15] and the SRNN [Jai16] models. While the LSTM-3LR is a three-layer
LSTMnetwork, the ERD and SRNNmodels aremore tailored towards learning
a meaningful representation of a given observation to base their prediction
on. The Encoder-Recurrent-Decoder model (abbrev.: ERD) is a type of RNN
that combines representation learning with learning temporal dynamics. To
achieve this, the input to the RNN is encoded into a representation, where
learning pose dynamics is easier. The Structural RNN (abbrev.: SRNN) on the
other hand aims to incorporate semantic knowledge about the data structure
into the model architecture. Following the fact, that a sequence of poses can
be represented by a (manually designed) spatio-temporal graph, the SRNN
provides an approach for transforming such a graph into a feedforward mix-
ture of RNNs.

Beyond these common baselines, recent approaches to human motion pre-
diction are commonly based on either Recurrent Neural Networks (e.g.
[Gho17, Gop19]), (sequence-to-sequence) Generative Adversarial Networks
(e.g. [Gui18, Kun19]) or Graph Neural Networks (abbrev.: GNN, e.g. [Mao19,

¹ Short-term prediction is defined as predicting less than 560ms into the future.
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Li20]). The latter thereby consider the actual configuration of the joints ac-
cording to the underlying skeleton. For the following quantitative evaluation,
representatives for each base architecture are selected.

In the group of Recurrent Neural Networks, besides the baselines presented
above, another interesting approach is given by the QuaterNet model [Pav18].
As opposed to the other approaches in this comparison, which regress joint ro-
tations using the exponential map representation, the QuaterNet model uses
a quaternion-based representation of joint rotations. This change in repre-
sentation targets the issue of discontinuities, which can occur when using
an exponential map representation. Further, joint position errors are consid-
ered in the training loss function, trying to incorporate the varying impact
of joints on the pose.

Looking at the GAN-based approaches, the Adversarial Geometry-aware
Encoder-Decoder (abbrev.: AGED, [Gui18]) and Bidirectional 3D Human Mo-
tion Prediction GAN (abbrev.: BiHMP-GAN [Kun19]) models are considered
in the quantitative evaluation. Both of these models rely on a seq2seq RNN
which is embedded in an adversarial training approach. The BiHMP-GAN
model, on the one hand, incorporates a pose embedding, comparable to the
ERD, and uses a bidirectional RNN architecture [Sch97] in its discriminator
network. On the other hand, the AGEDmodel exploits the intrinsic geometric
structure of 3D rotations during training of the generator, by using a geodesic
distance between joint rotations. This is opposed to the common approach of
using an euclidean distance between predicted and ground truth joint angles.

Finally, among GNN-based approaches, the Traj-GCN [Mao19] and the Ad-
versarial GCN (abbrev.: A-GCN, [Cui20]) models are included in the evalua-
tion. Both models are based on Graph Convolutional Networks (abbrev.: GCN,
[Kip17]) and thus encode spatial dependencies in human poses by treating a
pose as a generic graph. The Traj-GCN model proposes to work in trajectory
space instead of the traditionally used pose space, in order to encode tem-
poral information. Further, graph connectivity is learned automatically dur-
ing training. Similar to the second aspect, the A-GCN learns the connection
strength between nodes in the graph. Following this, poses are represented as
a dynamic graph, where natural connections between joint pairs are exploited
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explicitly. Beyond that, links between geometrically separated joints can be
learned implicitly. Using an adversarial training approach, the A-GCN could
also be put into the group of GAN-based approaches, thus blurring the line
between the groups. An overview of the presented baseline and comparison
models is depicted in Table 5.15.

Table 5.15: Overview of the baseline and comparison models considered in this evaluation.

Model Type Year
Zero-velocity [Mar17] Simple baseline 2017
Run. avg. n [Mar17] Simple baseline 2017
LSTM-3LR [Fra15] Neural baseline 2015
ERD [Fra15] Neural baseline 2015
SRNN [Jai16] Neural baseline 2016
QuaterNet [Pav18] RNN 2018
AGED [Gui18] GAN 2017
BiHMP-GAN [Kun19] GAN 2019
Traj-GCN [Mao19] GNN 2019
A-GCN [Cui20] GNN 2020

5.2.4 𝒩-Curve Model Setup

Following the common approach of processing pose sequences in an exponen-
tial map representation, training and prediction in the𝒩-MDN will be based
on this representation. With a focus on scalability, the generic version of the
model is used as in the human trajectory prediction evaluation (Section 5.1).
Therefore, model extensions tailoring the model towards the task of human
motion prediction are disregarded. Further, the use of a more domain-specific
loss function, i.e. the geodesic loss function proposed in [Gui18], is also not
considered. This is due to the fact, that it cannot be easily integrated into
the log-likelihood loss function for learning the mean vectors and covariance
matrices jointly.

For the evaluation, two variants of the𝒩-MDN generating unimodal predic-
tions are employed. For the first variant, denoted as 𝒩-MDN𝑎 , the hyperpa-
rameters (see also Figure 5.5) are set as 𝑑enc = 1024, 𝑛curves = 1 and 𝑛cpts = 4.
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A 4-layer LSTM is used as the sequence encoder. Further, the 𝒩-MDN is
parameterized to generate diagonal covariance matrices only. This is com-
mon practice due to covariance estimation becoming more difficult in higher-
dimensional data [Ha18, Raz20]. Mixture Density Networks are especially
afflicted by this, where the estimation of higher-dimensional covariance ma-
trices contributes to numerical instabilities [Rup17, Mak19]. Still, with the𝒩-
MDN processing full pose representations, it can be expected that dependen-
cies between dimensions are captured implicitly, regardless of the generated
𝒩-Curve only providing diagonal covariance matrices. In order to provide
more expressive covariance matrices, an additional variant of the𝒩-MDN is
evaluated. This variant is denoted as𝒩-MDN𝑏 and generates𝒩-Curves with
sparse covariance matrices, which model inter-joint correlations and the cor-
relations between the dimensions of the global translation. With each joint
and the global translation being represented by a 3-dimensional (sub-)vector
within the pose representation, resulting covariance matrices consist of 18
3𝑥3 block matrices. To prevent numerical instabilities, 𝒩-MDN𝑏 is realized
as an ensemble of 𝒩-MDNs, where each network models the 3 dimensions
of the global translation or a single joint, respectively. The outputs of each
network in the ensemble are then combined into the targeted 54-dimensional
𝒩-Curve. In this case, all joints are now modeled independently. Each 𝒩-
MDN in the ensemble is parameterized with 𝑑enc = 128, 𝑛curves = 1 and
𝑛cpts = 4, using a 1-layer LSTM as sequence encoder.

5.2.5 Quantitative Results

This section provides the quantitative results of the𝒩-MDN variants and the
comparison models on the test dataset according to the standard protocol.
The results for the simple and neural baselines are taken from [Mar17]. For
the comparison models, the results are gathered from their respective papers.
Thereby, only the overall best performing model variant, if there are any, is
considered. The joint angle errors are reported in Tables 5.16 and 5.17. It
should be noted, that the error standard deviation is commonly not reported
in the literature, thus the standard deviation is left out for all models in com-
parison.
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Table 5.16: Mean angle error (lower is better) for short-term human motion prediction on the
Human3.6m dataset for the representative actions walking and eating. Commonly
used simple and neural baselines are provided at the top and recent domain-specific
models in the middle.

walking eating
milliseconds 80 160 320 400 80 160 320 400
Zero-velocity 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86
Run. avg. 2 0.48 0.74 1.02 1.17 0.32 0.52 0.74 0.87
LSTM-3LR 0.77 1.00 1.29 1.47 0.89 1.09 1.35 1.46
ERD 0.93 1.18 1.59 1.78 1.27 1.45 1.66 1.80
SRNN 0.81 0.94 1.16 1.30 0.97 1.14 1.35 1.46
QuaterNet 0.21 0.34 0.56 0.62 0.20 0.35 0.58 0.70
AGED 0.22 0.36 0.55 0.67 0.17 0.28 0.51 0.64
BiHMP-GAN 0.33 0.52 0.63 0.67 0.20 0.33 0.54 0.70
Traj-GCN 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62
A-GCN 0.16 0.29 0.46 0.57 0.16 0.27 0.49 0.64
𝒩-MDN𝑎 0.25 0.41 0.64 0.73 0.22 0.36 0.61 0.75
𝒩-MDN𝑏 0.21 0.35 0.60 0.72 0.20 0.35 0.59 0.72
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Table 5.17: Mean angle error (lower is better) for short-term human motion prediction on the
Human3.6m dataset for the representative actions smoking and discussion. Com-
monly used simple and neural baselines are provided at the top and recent domain-
specific models in the middle.

smoking discussion
milliseconds 80 160 320 400 80 160 320 400
Zero-velocity 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04
Run. avg. 2 0.30 0.52 0.99 0.97 0.41 0.74 0.99 1.09
LSTM-3LR 1.34 1.65 2.04 2.16 1.88 2.12 2.25 2.23
ERD 1.66 1.95 2.35 2.42 2.27 2.47 2.68 2.76
SRNN 1.45 1.68 1.94 2.08 1.22 1.49 1.83 1.93
QuaterNet 0.25 0.47 0.93 0.90 0.26 0.60 0.85 0.93
AGED 0.27 0.43 0.82 0.84 0.27 0.56 0.76 0.83
BiHMP-GAN 0.26 0.50 0.91 0.86 0.33 0.65 0.91 1.00
Traj-GCN 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85
A-GCN 0.20 0.38 0.79 0.82 0.19 0.45 0.72 0.81
𝒩-MDN𝑎 0.26 0.49 0.95 0.93 0.30 0.65 0.94 1.04
𝒩-MDN𝑏 0.26 0.48 0.91 0.91 0.33 0.71 0.99 1.04

Looking at the results, the𝒩-MDN variants generally outperform the simple,
yet strong, baselines in this task. The neural baselines, which are themselves
more generic models, similar to the 𝒩-MDN, are outperformed by a large
margin. Expectedly, being a generic model, the𝒩-MDN falls a little bit behind
in comparison with the domain-specific models.

Comparing both variants of the𝒩-MDN, the results are very similar. Variant
𝑎 performs slightly better on the discussion action, whereas variant 𝑏 per-
forms slightly better on the other actions. Differences between the predic-
tions generated by both variants are further detailed in the qualitative results
Section 5.2.6.

In summary, the 𝒩-Curve models performs quite well on the given task, de-
spite being amore generic probabilistic sequencemodel. As such, themodel is
not specifically built to capture the underlying tree-like structure of the data,
nor does it employ a specialized loss function. An additional culprit contribut-
ing to less accurate predictions may be given by the smoothing behavior of
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the model, which is examined in more detail in Section 5.2.6. Finally, the
quantitative evaluation shows that the model scales well to modeling higher-
dimensional data.

5.2.6 Qualitative Results

For the qualitative evaluation, exemplary predictions generated by the 𝒩-
MDN variants are examined. Thereby, differences between both variants and
some insight into the behavior of the model is provided. Following this, Fig-
ures 5.25 – 5.28 depict exemplary predictions for all four actions in the test
dataset for both model variants.

Ground
Truth

𝒩-MDN𝑎

𝒩-MDN𝑏

Figure 5.25: Qualitative comparison of predictions generated by both variants of the𝒩-MDN on
the discussion action. 𝒩-MDN𝑎 generates diagonal covariance matrices. 𝒩-MDN𝑏
generates sparse covariance matrices, which model inter-joint correlations. For
illustration purposes, the sample rate is reduced to 12.5Hz. For each prediction, the
last 2 observed poses are depicted together with an prediction of 320 milliseconds
(4 time steps) into the future. The full ground truth sequence of poses is depicted
in the first row. The left arm and leg are depicted in blue (ground truth) or purple
(prediction), respectively. Regions of interest are highlighted.
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Looking at the discussion action depicted in Figure 5.25, a noticeable difference
between both 𝒩-MDN variants can be observed looking at the movement
of the left arm. While 𝒩-MDN𝑎 predicts a downward movement, 𝒩-MDN𝑏
generates a more accurate prediction. Apart from that, both variants generate
the samewrongmovement for the right arm, indicating that the actual motion
deviates from the average motion considering similar cases.

Ground
Truth

𝒩-MDN𝑎

𝒩-MDN𝑏

Figure 5.26: Qualitative comparison of predictions generated by both variants of the 𝒩-MDN
on the eating action. 𝒩-MDN𝑎 generates diagonal covariance matrices. 𝒩-MDN𝑏
generates sparse covariance matrices, which model inter-joint correlations. For
illustration purposes, the sample rate is reduced to 12.5Hz. For each prediction, the
last 2 observed poses are depicted together with an prediction of 320 milliseconds
(4 time steps) into the future. The full ground truth sequence of poses is depicted
in the first row. The left arm and leg are depicted in blue (ground truth) or purple
(prediction), respectively. Regions of interest are highlighted.
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Ground
Truth

𝒩-MDN𝑎

𝒩-MDN𝑏

Figure 5.27: Qualitative comparison of predictions generated by both variants of the𝒩-MDN on
the smoking action. 𝒩-MDN𝑎 generates diagonal covariance matrices. 𝒩-MDN𝑏
generates sparse covariance matrices, which model inter-joint correlations. For
illustration purposes, the sample rate is reduced to 12.5Hz. For each prediction, the
last 2 observed poses are depicted together with an prediction of 320 milliseconds
(4 time steps) into the future. The full ground truth sequence of poses is depicted
in the first row. The left arm and leg are depicted in blue (ground truth) or purple
(prediction), respectively. Regions of interest are highlighted.

The actions eating (Figure 5.26) and smoking (Figure 5.27) both show, apart
from a few joints, a static pose throughout the sequence. As such, only subtle
movements can be observed looking at the left arm. With respect to the pre-
dictions generated by both𝒩-MDN variants, these movements are seemingly
averaged out in some way and thus not captured by the model. This smooth-
ing effect is more visible when looking at single dimensions of the pose rep-
resentations, as depicted in Figure 5.31 towards the end of this section.
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Ground
Truth

𝒩-MDN𝑎

𝒩-MDN𝑏

Figure 5.28: Qualitative comparison of predictions generated by both variants of the𝒩-MDN on
the walking action. 𝒩-MDN𝑎 generates diagonal covariance matrices. 𝒩-MDN𝑏
generates sparse covariance matrices, which model inter-joint correlations. For
illustration purposes, the sample rate is reduced to 12.5Hz. For each prediction, the
last 2 observed poses are depicted together with an prediction of 320 milliseconds
(4 time steps) into the future. The full ground truth sequence of poses is depicted
in the first row. The left arm and leg are depicted in blue (ground truth) or purple
(prediction), respectively.

The action, which yields the most accurate prediction, is given by the walking
action depicted in Figure 5.28. This is most likely due to this action consisting
of more obvious motion of the entire body. Further, the walking action is
more periodic than for example the discussion action. As such, it is more
predictable and thus easier to model using a statistical model. In the given
example, the observed subject slowly turns to the right. This is also correctly
captured by both 𝒩-MDN variants. Besides that, it can be seen that both
variants capture the general trend in motion, but the predicted motion is not
as nuanced and pronounced as the actual motion. This is, again, most likely
due to the smoothing property of the model.

In order to gain more insight into the predictions generated by the 𝒩-MDN
variants, selected dimensions of the pose representation are depicted in the
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following. In this case, the mean prediction with corresponding standard de-
viation is provided. The standard deviation can be obtained via marginaliza-
tion from the covariance matrix at each predicted time step.

𝑡

𝑣

(a) discussion: Third dimension of the
representation of the left wrist.

𝑡

𝑣
(b) smoking: First dimension of the

representation of the left wrist.

Figure 5.29: Visualization of selected pose representation dimensions for the purpose of illus-
trating differences and similarities between𝒩-MDN variants. The green curve de-
picts𝒩-MDN𝑎 and the blue curve depicts𝒩-MDN𝑏. For both curves, the 𝜎 region
around the curve is indicated by a shaded region. The ground truth is depicted in
red. Time steps are depicted along the 𝑥 axis and the unit-less value 𝑣 of the se-
lected dimension is given on the 𝑦 axis.

As mentioned before, there is a noticeable difference in the predicted motion
of the left arm for the discussion action, when comparing both𝒩-MDN vari-
ants (see Figure 5.25). This can be seen looking at the third dimension of the
representation of the left wrist (see Figure 5.29a). While the𝒩-MDN𝑏 variant
(blue) follows the ground truth, the𝒩-MDN𝑎 variant (green) falsely predicts
an almost constant value. With respect to the subtle arm movements in the
smoking action (see Figure 5.27), it can be seen, that both model variants pre-
dict almost constant values for the leftwrist, whereas the ground truth slightly
deviates from the constant prediction (see Figure 5.29b).
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𝑡

𝑣

(a) discussion: First dimension of the global
translation.

𝑡

𝑣

(b) walking: First dimension of the
representation of the right knee.

Figure 5.30: Visualization of selected pose representation dimensions for the purpose of illus-
trating the capability of the 𝒩-MDN capturing general trends in human motion.
The green curve depicts 𝒩-MDN𝑎 and the blue curve depicts 𝒩-MDN𝑏. For both
curves, the 𝜎 region around the curve is indicated by a shaded region. The ground
truth is depicted in red. Time steps are depicted along the 𝑥 axis and the unit-less
value 𝑣 of the selected dimension is given on the 𝑦 axis.

Although the𝒩-MDN is not quite well-suited for capturing subtle motions in
a sequence of poses, it is well capable of capturing the general motion of an
observed subject. This can be seen in Figure 5.30. Here, exemplary pose rep-
resentation dimensions taken from the discussion and walking examples are
illustrated. In both cases, the𝒩-MDN variants generate𝒩-Curves following
the correct trend with respect to the ground truth.

Finally, the innate smoothing feature of the 𝒩-Curve model is quite notice-
able looking at the predictions generated by the 𝒩-MDN variants. By gen-
erating a compact representation, the𝒩-Curve model generally averages out
small variations in the data and thus primarily captures trends in the data.
The model thereby copes with small variations by varying the variance of the
control points accordingly. This smoothing effect is depicted in Figure 5.31.
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𝑡

𝑣

(a) eating: First dimension of the
representation of the hip.

𝑡

𝑣

(b) smoking: Third dimension of the global
translation.

Figure 5.31: Visualization of selected pose representation dimensions for the purpose of illus-
trating the smoothing property of the 𝒩-Curve model. The green curve depicts
𝒩-MDN𝑎 and the blue curve depicts 𝒩-MDN𝑏. For both curves, the 𝜎 region
around the curve is indicated by a shaded region. The ground truth is depicted in
red. Time steps are depicted along the 𝑥 axis and the unit-less value 𝑣 of the se-
lected dimension is given on the 𝑦 axis.

On a final note, the 𝒩-MDN𝑎 variant generally generates higher variances
than the 𝒩-MDN𝑏 variant. This may be due to 𝒩-MDN𝑎 having to cope
with larger variations in the data, as it processes full 54-dimensional pose
representations, whereas networks within the𝒩-MDN𝑏 ensemble only need
to deal with 3-dimensional data.

5.2.7 Summary

In this section, the scalability of the 𝒩-Curve model in terms of data dimen-
sionality was evaluated. For this, the task of human motion prediction, where
sequences of high-dimensional pose representations have to be modeled, was
considered. The results show, that the𝒩-Curve model is well-capable of rep-
resenting higher-dimensional data by increasing the dimensionality of the
stochastic control points accordingly. While the𝒩-Curve model outperforms
common baselines on the task, it falls a little bit behind in comparison with
recent domain-specific models. However, this was expected, as the𝒩-Curve
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model is a generic model, while the domain-specific models incorporate addi-
tional information about the data, such as the arrangement of joints by using
graph networks.
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Throughout this thesis, an approach for modeling stochastic processes with
bounded index sets, the𝒩-Curve model, based on a probabilistic extension of
Bézier curves (𝒩-Curves) has been presented. Thereby, a stochastic process
is defined by Gaussian mixture distributions, which evolve along a mixture
of 𝒩-Curves. By basing the 𝒩-Curve model on Bézier curves, a compact
representation of a stochastic process can be achieved. Together with its pro-
posed implementation based on Mixture Density Networks, the model pro-
vides a fully regression-based approach to probabilistic sequence modeling,
which does not rely on Monte Carlo techniques during inference, thus reach-
ing set goals. By using parametric curves and optimizing in function space
rather than the 𝑑-dimensional space of sequence values, the proposed model
is able to generate smooth continuous predictions in a single inference step.
Thereby, learning a probability distribution over parametric curves is in line
with Gaussian processes, which the underlying 𝒩-Curves provide a special
case for. Different properties of the model were examined by conducting sev-
eral toy examples on synthetically generated data.

The model has been evaluated extensively on the task of human trajectory
prediction, targeting the overall performance of the model in an application
context, which proved the viability and capabilities of the model. Looking at
the evaluation results, the𝒩-Curve model outperforms other generic proba-
bilistic sequence models on different error measures capturing unimodal and
multi-modal prediction performance. These models are commonly used as a
basis for more sophisticated, domain-specific models. Further, difficulties in
measuring multi-modal prediction performance were discussed. In the scope
of this discussion, a small experiment was conducted, in which the application
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of the Wasserstein metric as a performance measure was proposed. In addi-
tion to this broader evaluation, the model’s scalability to higher-dimensional
data has been shown by applying it to a human motion prediction task. While
the𝒩-Curve model outperformed common simple and neural network-based
baselines, being a more generic model, it generated slightly less accurate pre-
dictions in comparison to recent domain-specific models. Beyond the scala-
bility assessment, difficulties in covariance estimation in higher dimensions
and the smoothing property of the 𝒩-Curve model were discussed.

Finally, extending on the concept of𝒩-Curves, a conceptual extension to the
model, which is capable of modeling infinite stochastic processes, has been
presented. For this extension, denoted as the meta-time 𝒩-Curve model, a
proof of concept on synthetically generated data has been provided, showing
the overall viability of the approach in specific cases.
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This final chapter provides an overview of possible directions for future re-
search building on the findings of this thesis.

7.1 Tackle Practical Limitations

First of all, revealed practical limitations of the𝒩-Curve model could be tack-
led. Thereby, the most relevant limitations can be given by covariance es-
timation in higher dimensions and the assumed stochastic independence of
𝒩-Curve control points.

Covariance Estimation: As indicated in Section 5.2, estimating covariance ma-
trices in high-dimensional data oftentimes leads to numerical instabilities dur-
ing model training. This is mainly due to the increasing number of correla-
tions that have to be estimated and the necessary condition of covariance ma-
trices to be positive definite. As a result, oftentimes only diagonal covariance
matrices are employed. A first step towards tackling this problem was taken
by targeting sparse covariance matrices, in which only a few dimensions were
correlated. Beyond that, it might be interesting to investigate more advanced
approaches to covariance estimation (e.g. [Zho11, Che19]) and their applica-
bility to training Mixture Density Networks.

Stochastic Dependencies: For deriving a closed-form loss function for the (re-
current) 𝒩-MDN implementation, independence of 𝒩-Curve control points
was assumed (see Section 4.1). This independence can be sub-optimal when
using the𝒩-Curve model as a generative model (see Section 3.1.3), as Bézier
curves sampled from an𝒩-Curve not necessarily have a shape similar to the
mean curve. This can be obstructive when 𝒩-Curves, estimated from some
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dataset, should be used to enrich the dataset with more, synthetically gen-
erated, sequences similar to those present in the dataset. Following this, it
could be interesting to examine, how stochastic dependencies between con-
trol points can be incorporated into the model.

7.2 Model Extensions

Apart from these practical challenges, several model extensions could be ap-
proached, targeting different parts of the presented model.

Interpolation of Arbitrary Distributions: In the current formulation, the 𝒩-
Curve model interpolates Gaussian control points in order to obtain a se-
quence of Gaussian curve points. Following this, the question arises if it
would be possible to interpolate control points following arbitrary probability
distributions, in order to obtain a probabilistic curve with curve points then
following a combined arbitrary probability distribution. To achieve this, the
operation of combining multiple control points would need to be extended to
a more abstract or general concept, which allows the transformation of given
probability distributions. Moving towards this goal, a possible relevant ap-
proach might be given by Normalizing Flows (see Section 2.2.3), which can be
used to transform simple probability distributions into more complex distri-
bution by applying a chain of invertible mappings.

The Meta-time 𝒩-Curve model: In the scope of this thesis, the meta-time 𝒩-
Curve model (see Section 3.2) was introduced as a conceptual extension to
the 𝒩-Curve model, lifting some less application-relevant limitations of the
original model. However, the toy examples provided in Section 4.2 suggest
the viability of the meta-time 𝒩-Curve model, especially for modeling long
sequences or specifically structured sequential data. Following this, it would
be interesting to further explore the capabilities of this model. Looking at
the timeline mapping functions introduced in the model definition, it could
be especially interesting to examine the possibilities granted by employing
learned mapping functions.
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Alternative Formulation for Handling Multi-Modality: Currently, the 𝒩-
Curve model uses a mixture distribution approach for modeling multi-modal
stochastic processes. A downside of such an approach is given by the po-
tential blurring of modes when estimating the mixture parameters, as the
loss is calculated in terms of a linear combination of all 𝐾 mixture com-
ponents. Although mode collapse is mitigated by using Bézier curves as a
basis, less well-defined modes can still be a result of using a mixture distri-
bution approach. Thus, in order to achieve more clearly separated modes,
more emphasize could be put on the component selection by introducing a
notion of attention [Vas17, Dai19] into the model. In this case, an attention
mechanism could be used to decide which of the 𝐾 available 𝒩-Curves to
select or combine for a given input.

𝒩-Curve Gaussian Processes: Finally, it could be interesting to elaborate more
on the properties and potential advantages and disadvantages of the class of
Gaussian process kernels induces by an 𝒩-Curve in comparison with other
kernels. Additionally, it could be examined if and to what extend the 𝒩-
Curve model and its implementation would benefit from the incorporation of
concepts taken from Gaussian processes.
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