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Abstract

Many software systems have to be designed and developed in a way that speci�c security

requirements are guaranteed. Security can be speci�ed on di�erent views of the software

system that contain di�erent kinds of information about the software system. Therefore, a

security analysis on one view must assume security properties of other views. A security

analysis on another view can be used to verify these assumptions. We provide an approach

for enabling the information transfer between a static architecture analysis and a static,

lattice-based source code analysis. This approach can be used to reduce the assumptions

in a component-based architecture model. In this approach, requirements under which

information can be transferred between the two security analyses are provided. We

consider the architecture and source code security analysis as black boxes. Therefore, the

information transfer between the security analyses is based on a megamodel consisting of

the architecture model, the source code model, and the source code analysis results. The

feasibility of this approach is evaluated in a case study using Java Object-sensitive ANAlysis

and Con�dentiality4CBSE. The evaluation shows that information can be transferred

between an architecture and a source code analysis. The information transfer reveals new

security violations which are not found using only one security analysis.
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Zusammenfassung

Viele Softwaresysteme müssen so konzipiert und entwickelt werden, dass bestimmte Si-

cherheitsanforderungen gewährleistet sind. Die Sicherheit kann auf verschiedenen Sichten

auf das Softwaresystem spezi�ziert werden, die unterschiedliche Arten von Informationen

über das Softwaresystem enthalten. Daher muss eine Sicherheitsanalyse auf einer Sicht

von den Sicherheitseigenschaften auf anderen Sichten ausgehen. Eine Sicherheitsanalyse

auf einer anderen Sicht kann zur Überprüfung dieser Annahmen verwendet werden. Wir

stellen einen Ansatz vor, der den Informationstransfer zwischen einer statischen Archi-

tekturanalyse und einer statischen, gitterbasierten Quellcodeanalyse ermöglicht. Dieser

Ansatz kann verwendet werden, um die Annahmen in einem komponentenbasierten Ar-

chitekturmodell zu reduzieren. In diesem Ansatz werden Voraussetzungen entwickelt,

unter denen Informationen zwischen Sicherheitsanalysen ausgetauscht werden können.

Wir betrachten die Architektur- und Quellcode-Sicherheitsanalyse als Black Boxes. Daher

basiert der Informationstransfer zwischen den Sicherheitsanalysen auf einem Megamodell,

das aus dem Architekturmodell, dem Quellcodemodell und den Ergebnissen der Quell-

codeanalyse besteht. Die Machbarkeit dieses Ansatzes wird in einer Fallstudie mit Java

Object-sensitive ANAlysis und Con�dentiality4CBSE evaluiert. Die Auswertung zeigt,

dass Informationen zwischen einer Architektur- und einer Quellcodeanalyse übertragen

werden können. Der Informationstransfer deckt neue Sicherheitsverletzungen auf, die mit

nur einer Sicherheitsanalyse nicht gefunden werden.
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1 Introduction

Security is a critical property of many software systems. Moreover, the security of soft-

ware systems has to be guaranteed before the deployment to avoid zero-day-exploits.

Guaranteed security is achieved by analyzing the security of a software system. A popular

approach for building software is model-driven software development. Model-driven

software development enables the developer to build software based on di�erent abstrac-

tion views. The developer can specify security on di�erent views each containing other

information about the software system. For example, security can be speci�ed on an

architecture model, in which the components are de�ned without the internal behavior.

Therefore, the developer has to make assumptions about the internal behavior that may

not hold. However, if the developer only speci�es security on the source code level, there

is, for example, no information about the deployment of the software system. Therefore,

using only one view results in an incomplete picture of the security of the software system.

Assumptions in one view can be veri�ed with security analyses on other views. In this

bachelor’s thesis, an approach to transfer information between an architecture analysis and

a source code analysis to reduce the assumptions in the architecture model is proposed. To

the best of our knowledge, there is currently no such approach. The architecture analysis,

respectively, the source code analysis is based on an architecture model respectively a

source code model, both with security speci�cations. The �rst goal of this bachelor’s thesis

is to de�ne requirements for analyses to enable the information transfer between them. The

second goal is to develop an approach for exchanging information between the analyses.

In this bachelor’s thesis, only static security analyses are considered. Furthermore, the

domain of the source code analyses is restricted to the domain of lattice-based security

analyses.

The expected bene�t of this bachelor’s thesis is that assumptions of an architecture

security analysis can be corrected with a source code analysis by transferring information

between them. Additionally, a new analysis can be designed to be ready to exchange

information with existing security analyses.

In chapter 2, the foundations for this approach to transfer information between security

analyses are introduced. The related work to this bachelor’s thesis is presented in chap-

ter 3. Chapter 4 gives an overview of the concept of this approach. Security analyses

have to ful�ll requirements to be ready to exchange information. These requirements

are described in chapter 5. If the analyses ful�ll all requirements, the analyses can be

connected. In chapter 6, it is presented how security analyses are connected. This ap-

proach to transfer information between two security analyses is evaluated in a case study

with Con�dentiality4CBSE and Java Object-sensitive ANAlysis. The instantiation of this

approach with Con�dentiality4CBSE and Java Object-sensitive ANAlysis is described

in chapter 7. The evaluation is described in chapter 8. The conclusion and future work are

presented in chapter 9.
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2 Foundations

The foundations of this bachelor’s thesis are presented in this chapter. The approach

to transfer information between security analysis uses models of the software system.

Therefore, model-driven software development is introduced in section 2.1. In section 2.2,

component-based software engineering is described because this approach considers only

component-based software systems. Section 2.3 introduced the Palladio Component Model

that is used in the case study for the evaluation. The assume-guarantee approach is

presented in section 2.4 since, for example, the architecture analysis guarantees a secure

software system assuming a secure implementation of the components. Security analyses

examine security properties which can be described as (hyper-)trace properties. Therefore,

(hyper-)trace properties are described in section 2.5. In section 2.6, the concept of security

lattices is shown because the source code analyses are restricted to the domain of lattice-

based security analyses. In this approach, two static security analyses are connected.

Therefore, security analyses are presented in section 2.7.

2.1 Model Driven So�ware Development

Model-driven software development (MDSD) is based on models for di�erent phases (e.g.

analysis, requirements analysis, design) and domains (e.g. software architect, programmer).

Models abstract from the �nal implementation, which makes them closer to the problem

domain than if it is implemented with a programming language [1].

2.1.1 Models and Metamodels

Models are used in many disciplines (e.g. physics) to describe a representation of reality.

According to Stachowiak’s “General Model Theory”, models have three properties. The

mapping property states that a model always represents a reality. The abstraction property

declares that not all properties of reality are represented but only those properties being

relevant to the model domain. The third property, pragmatism, declares that the model is

created for a speci�c purpose [2].

In MDSD, these three properties must be supplemented [3]. Models must additionally

be understandable since only abstracting away details is not su�cient. A software model

must be accurate concerning the properties being of interest to the system. For example, a

model of a decentralized computer system should specify how the di�erent computers

communicate. The accurate property is necessary to make predictions about the resulting

software. The last must-have property is that it must be signi�cantly cheaper to develop

such a model than programming the software directly. Furthermore, the goal of MDSD is

to use models as �rst-class development artifacts. For example, models can be used for

3



2 Foundations

source code generation or analyses of the software system. Therefore, a fundamental rule

system, which is called metamodel [4] is necessary to describe models. Figure 2.1 shows,

for example, the relationships between models and metamodels. The class diagram models

software from the real world. The class diagram is modeled by a class metamodel.

class metamodel class diagram software
models models

Figure 2.1: Relation between metamodels and models

Source code can also be viewed as a model with the de�nition of Stachowiak [2]. Source

code is an abstract view of a running software system, which is the reality in the context

of software development. Furthermore, using source code to model the software system is

pragmatic because the source code supplies a better understanding of the software system

than, for example, a sequence of binary digits.

2.1.2 Model Merging

Often, a modeling task is distributed to di�erent team members each working on a partial

view of the overall system. During the development, the di�erent models have to be

merged. Model merging is based on related operations, like comparing models, checking

their consistency, and �nding matches between them. These operators can be characterized

as algebraic operators [5].

The merge operator is de�ned by Brunet et al. [5] as:

merge :<>34; × <>34; × A4;0C8>=Bℎ8? → <>34; (2.1)

The relationship speci�es how the models as a whole relate to one another and also de�nes

mappings between the elements of the models, for example, a mapping of stereotypes

in Uni�ed Modelling Language (UML) to annotations in the source code model. The

relationship also represents a connector between two models. It preserves information as

well as structure. It maps the source model to the target model and vice versa. A possible

implementation of the merge operator would be to describe each model as a graph and

each mapping in the relationship as a binary relation between two sets of model elements.

The two model graphs and the binary relation are forming an interconnection diagram

� = 〈"1, "2, '〉. The algorithm of merge then uni�es the elements in "1 and "2 which

are in the same equivalence group induced by '. If an element of one model is not in ', it

falls in its equivalence group.

The merge operator is supported by the match and the di� operation:

match :<>34; × <>34; → A4;0C8>=Bℎ8? (2.2)

di� :<>34; × <>34; → CA0=B 5 >A<0C8>= (2.3)

The match operation produces the relationship which can be used for the merging. It �nds

commonalities between the two models. The result of match may be under-determined

4



2.1 Model Driven Software Development

because there are maybe multiple possible relationships between models [6]. The di�
operation does not provide a relationship but a possible transformation from one model to

the other. A transformation is a sequence of edit actions [5].

2.1.3 Model Transformation

In section 2.1.2, a model transformation is described as a sequence of edit actions. In this

section, the description is explained in more detail. Model transformations are relations

between models in the same or di�erent modeling languages [7]. Therefore, a model trans-

formation from model A to model B can also be de�ned as a sequence of edit actions [5].

A model transformation is correct if it ful�lls the three requirements representation, syn-
tactic correctness and semantic correctness [7]. A model transformation can be classi�ed as

endogenous or exogenous [8]. An endogenous transformation is between two models with

the same metamodel. Whereas, an exogenous transformation is between two models with

di�erent metamodels. For example, if class names in an UML class diagram are changed,

then the model transformation between the unchanged and changed UML class diagram

is endogenous because both are based on the UML metamodel. Whereas, if C# source code

is generated from the UML class diagram, it is an exogenous transformation because one

model is based on the UML metamodel and the other on the C# metamodel. In the case

of an exogenous model transformation, a relationship between the two metamodels is

needed [9].

A subset of model transformations is the set of bi-directional model transformations. A

bi-directional model transformation is a transformation from model A to model B that is

reversible without specifying an extra transformation from model B to model A [10]. A

bi-directional model transformation can be described by a triple graph grammar [11].

2.1.4 Model Sewing and Waving

The merge operation on two models presented in section 2.1.2 can be divided into di�erent

kinds of merging, for example, weaving and sewing [12]. Weaving two models provide

tight integration of the two models. Weaving merges the two metamodels based on a

weaving speci�cation. For example, if both metamodels have one common metamodel

element, an example weaving speci�cation de�nes that the models are woven based on

the common element. The woven metamodel has all metamodel elements from both

metamodels, but only once the common metamodel element. The woven model is based

on the woven metamodel. The two models are also woven together based on the weaving

speci�cation. Sewing provides a loose coupling of the two models based on mediators. A

mediator supplies a description of how the two models are sewed. An example mediator

between two models updates certain model elements in the second model if one model

element in the �rst model is changed. The mediator is based on the two metamodels and

is initialized with the two models.

5



2 Foundations

2.1.5 Triple Graph Grammars

Triple Graph Grammars are a technique for de�ning the correspondence between two

di�erent types of models in a declarative way [13]. A triple graph grammar consists of

three graphs. Two graphs describe the two domain models, one graph for each domain

model. There are no direct connections between the two domain graphs. The relation

between the two domain graphs is established by the third graph, a correspondence graph.

A node of the correspondence graph connects sets of nodes of the two domain graphs. A

node of the correspondence graph represents a rule under which nodes of the two domain

models can be connected [14]. If two nodes of the correspondence graph are dependent

on each other, then there is an edge between the two nodes.

2.2 Component-Based So�ware Engineering

A de�nition of a software component is stated in [15] as follows:

A software component is a unit of composition with contractually speci�ed

interfaces and explicit context dependencies only. A software component can

be deployed independently and is subject to composition by third parties.

Thus, a component speci�es dependencies and interfaces on which the component can be

called. However, what is part of the context is vague [16]. Furthermore, a component has

not to specify any internal structure.

Multiple components can be combined into a component-based software system, where

the di�erent components are exchanging information over the de�ned interfaces of the

components [17]. The message exchange between two components can be, for example, re-

alized by a method call or an HTTP request. The source code metamodel of a programming

language supporting component-based software development, like Java, C# or Haskell,

consists at least of classes and methods where methods are always part of classes [18].

A method has a signature and a body. The source code skeleton of a component-based

software system consists of the de�ned interfaces to exchange information between the

components. An interface bundles a set of methods [15].

The primary objective of component-based software engineering is to develop a software

system as an assembly of parts (components). Those parts then can be easily reused,

maintained, and upgraded [17].

2.3 Palladio Component Model

The Palladio Component Model (PCM) is a software architecture simulation approach [19].

The two key features of the PCM are the parameterised component quality of system

speci�cation and the developer role concept [20, p. 12]. The PCM provides di�erent

views of the software system, like the allocation, repository, resource environment, and

system view.

In this bachelor’s thesis, the repository view is used. The repository view is used to

specify the component architecture of a software system [20, p. 46]. In the repository
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model the components, interfaces (incl. operation signatures), and data types are speci�ed.

The components are modeled with BasicComponents, the interfaces with OperationInter-
face, and the operations with OperationSignature. The data types can be realized with

BasicDataTypes, CollectionDataTypes, and CompositeDataTypes. Additionally, the interfaces

are connected to components with ProvidedRole and RequiredRole.

2.4 Assume-Guarantee Approach

Formal veri�cation is important for safety-critical software systems. The problem for

concurrent software of industrial complexity is the exponentially increasing number

of reachable states in the software system. Two approaches to solve this issue is ab-

straction [21] and compositional reasoning [22, 23]. The main concept of compositional

reasoning is the assume-guarantee approach [22]. The idea is to verify each component

independently by assuming its environment and then discharge the assumption on the

collection of components.

There are a variety of assume-guarantee proof-rules, for example, the non circular rule

AG-NC:

"1 | |"0 4 ( "2 4 "�

"1 | |"2 4 (
(2.4)

where "1 | |"2 is the concurrent system to be veri�ed. The veri�cation is based on the

speci�cation ( , and 4 is a notion of conformance between the system and the speci�cation.

The rule states, if "2 satis�es the assumption "� and the combination "1 | |"� conforms

( , then also "1 | |"2 conforms ( . The main drawback of these rules is that the assumption

has to be manually crafted [24].

The assume-guarantee approach is also used for veri�cation of architecture models [25].

The architecture model includes interfaces, interconnections, and speci�cations for com-

ponents but not their implementation. When reasoning over the architecture model, "� is

the assumption about a correct implementation of the components. The model "1 is the

architecture model, which can be veri�ed independently from components implementation.

For a complete veri�cation of the software system, the implementation of the di�erent

components has to be veri�ed.

2.5 (Hyper-)Traceproperties

Security properties of a software system can be uni�ed with trace properties. A security

property either holds or does not hold. Therefore, if the security property holds, the trace

property holds respectively. If the security property does not hold, the trace property does

also not hold [26].

The software system is modeled as a labelled transition system (lts) model. A lts is

a triple ((,) ,→), where ( is a set of states, ) is a set of labels (actions) and → is a

set of labeled transitions. A transition from state (1 to (2 by the action U is written

as ((1, U, (2) ∈→ or equivalently (1
U−→ (2 [27]. A trace is de�ned as a sequence of
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abstract states. For instance, the abstract states can encode the initialization of �elds with

methods [26]. The set of abstract states are denoted by Σ. Traces may be �nite or in�nite

traces over Σ, categorized into sets:

Ψ�n = Σ∗ (2.5)

Ψinf = Σl (2.6)

Ψ = Ψ�n ∪ Ψinf (2.7)

The set Σ∗ is the set of all �nite sequences over Σ, and respectively Σl is the set of all

in�nite sequences over Σ. Each �nite trace can be represented by an in�nite trace by

in�nitely adding the �nal state at the end of the �nite trace. For a trace C = B0B1... with

B8 ∈ Σ and an index 8 ∈ N, the indexing notation is de�ned as:

C [8] = B8
C [..8] = B0B1...B8
C [8 ..] = B8B8+1..

A trace property is a set of in�nite traces and the set of all trace properties is Prop = P(Ψinf )
where P is the power set. A set of traces) satis�es the trace property % , denoted by) |= %
if all traces of ) are in P:

) |= % ⇔ ) ⊂ %

Hyperproperties are de�ned accordingly. Hyperproperties are the intersection of hyper-

liveness and hypersafety properties. A hyperproperty is a set of sets of in�nite traces.

Therefore, the set of all hyperproperties is:

�% = P(P(Ψinf )) = P(Prop) (2.8)

Analogue to the a trace property, a set of traces ) satis�es the hyperproperty H, if ) is a

subset of � :

) |= � ⇔ ) ⊂ � (2.9)

2.6 Lattice-Based Security Property

A lattice-based security property is a security property that is based on a security lattice.

A security lattice 〈(,→, ⊕〉 is a �nite partially ordered set of security classes [28].→ is a

�ow relation between pairs of security classes. The relation is transitive and re�exive. The

security classes are usually assigned to objects. In the context of software engineering,

such objects can be, for example, classes, methods, or �elds. If information �ows from

object G to an object ~, then there is also an information �ow from the security class of

G to the security class of ~ [29]. If there is a relation from security class A to security

class B, then information is allowed to �ow from the objects with security class A to the

objects with security class B. However, information is not allowed from security class A
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public

classified A classified B

highly classified

Figure 2.2: Example lattice with the four security classes highly classi�ed, classi�ed A,

classi�ed B and public

to security class B. The least-upper-bound operator ⊕ [28] combines two classes into the

least upper bound class of the two classes. In the small example of the security classes A

and B, the least upper bound of A and B would be A because the relation can be expressed

as � ≤ � and A is therefore above B.

A lattice can be displayed as a directed graph without cycles. An example lattice

in the form of a directed graph is shown in �gure 2.2. There are four security classes

highly classified, classified A, classified B and public. Someone with the security level highly
classified is allowed to read all information. A person with security level classified A can

only read information with the security class classified A or public, but not information with

security class classified B. The least-upper-bound of classified A and classified B is classified
A ⊕ classified B = highly classified, because information can �ow from highly classified to

classified A as well as to classified B.

If a lattice-based security property holds for a software system, then there are only

information �ows that are contained in the lattice [30].

2.7 Static Security Analyses

In MDSD, the models are not only used for exchanging information about the software but

can also be used for static analyses of the software system in di�erent states of development.

The analyses can be run on di�erent views on the software system. For example, UMLSec

is a security analysis based on an architecture view on the software [31], whereas the KeY

framework can be used for analyzing a source code model [32].

Static analysis tools examine the model of the used software. If the source code view

is used, the source code model can be compiled but not executed. As an example, the

security analysis Java Object Sensitive ANAlysis (JOANA) uses a source code model in its

compiled form [33]. The tools search for a �xed set of patterns or rules [34]. For instance,

a static analysis based on the source code can search for private API keys with grep. Static

security analyses can be opposed to dynamic security analyses that are analyses used in
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production to, for example, recognize an attacker in the network. The advantage of static

analyses is these can be run before deploying the software or be part of a CI/CD Pipeline.

Furthermore, a static security analysis examines a security property. A security property

can be modeled as (hyper-)trace property [35].

Static security analyses for component-based applications are often using an assume-

guarantee approach [36]. The analysis is run for each component independently, and

then an analysis using only the components interfaces is run. One could argue assuming

component A and component B have no information leaks, and there is no insecure

information �ow between both components, it is guaranteed that the software is free of

information leaks. In architecture analyses, the assumption about the components has

to be made, which may be wrong, like seen in chapter 1. Such wrong assumptions are

leading to false reports [37].

Static security analysis covers many areas of security. Possible areas of static analyses are

looking for private information in the source code, like an API key or checking for reported

vulnerabilities in dependencies. Another important static analysis is the information �ow

control (IFC). IFC guarantees that no information �ows from high input to low output [28].

Examples for static security analyses on the architecture view are Access Analysis on

PCM [38] and UMLSec on UML [31]. On the source code view, there are JOANA [39],

KeY [32] or Reactive Information Flow Control for Java (JRIF) [40]. There are also some

analyses which combine an architecture and a source code view like IFlow [41]. Ac-

cess Analysis and its underlying analysis model is presented in section 2.7.1. JOANA is

introduced in section 2.7.2.

2.7.1 Access Analysis and Confidentiality4CBSE

Access Analysis is an architecture security analysis that uses Con�dentiality4CBSE. The

Con�dentiality4CBSE project aims to specify and analyze con�dentiality for component-

based software [42]. Con�dentiality4CBSE extends the PCM, as introduced in section 2.3,

with security speci�cations.

A Con�dentiality4CBSE security model of a software system is based on two models, the

con�dentiality model and the adversary model [38]. In the con�dentiality model, DataSets
are de�ned. A DataSet is a group of data combined into one data class. A DataSet can

represent a security level. The ParametersAndDataPair groups DataSets and assigns them

to a parameter. Furthermore, locations and tamper protections for the component-based

software system can be speci�ed in the con�dentiality model. Those two are speci�ed in

the same way as the security level. In the adversary model, the Adversaries are de�ned.

Adversaries are actors who can interact with the system. An individual Adversary consists

of the DataSets that the Adversary is allowed to know and its name.

The con�dentiality model elements are assigned to model elements of PCM models

with stereotypes. For example, in the PCM repository model, methods of interfaces are

assigned the stereotype InformationFlow. In this stereotype, the corresponding Parameter-
sAndDataPairs are speci�ed, indicating the security level of the method.

Access Analysis uses a set of Prolog rules to determine the security of the software

system. The highest rules is isInSecureWithRespectTo which has other rules as condition.

The modeled software system with its security model is transformed into Prolog code
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on which the de�ned rules are applied. The result of Access Analysis is a proof tree. All

determined proof trees are displayed in text form that is printed in text form. The number

of proof trees can be determined with the keyword isInSecureWithRespectTo(.

2.7.2 Java Object-sensitive ANAlysis

JOANA is a non-interference analysis of Java source code. JOANA uses the model ele-

ments Source, Sink, and EntryPoint to examine the source code. These model elements are

connected to the Java source code. A possible mechanism to assign the model elements to

the Java source code is through annotations. A method or its parameters can be annotated

as Source, Sink, or EntryPoint. An EntryPoint is an entry point into the software from which

the software is analyzed. A Source and Sink consists of a tag and a security level. An En-
tryPoint consists of a tag, security levels and a security lattice, as introduced in section 2.6.

The lattice of an EntryPoint consists of a list of may �ow annotations. JOANA has also a

declassi�cation mechanism.

JOANA is run from an EntryPoint. A call tree is built starting with the method with

EntryPoint. JOANA searches in the call tree for invalid information �ows. JOANA is

designed to annotate the main method of a program with an EntryPoint. However, other

methods can be an EntryPoint too. The problem is that using an arbitrary method as

EntryPoint does not guarantee that every �eld and parameter is initialized. Therefore,

JOANA provides an uninitialized �elds helper for this case.

In �gure 2.3a, an excerpt of an annotated Java source code is shown. The method gener-

ateTicket is annotated with an EntryPoint. The EntryPoint contains the latticeHigh→ Low
and the tag 1. The method String getTicket() is annotated as Source, which assigns

String getTicket() the security level high. The method printTicket(String) is annotated as

Sink, which assigns printTicket(String) the security level Low. If JOANA is run on this

source code excerpt, an illegal information �ow is found. The result of the JOANA analysis

is presented in �gure 2.3b. The result contains the EntryPoint which is used to �nd the

illegal information �ow. The result contains all detected invalid �ows. In the presented

example, only one invalid �ow is found. An invalid �ow has a source and a sink which

both are speci�ed in the result. The structure of a JOANA result is shown in �gure 2.4.

The result contains an entry for the EntryPoint from which the analysis is run. The tag

entry speci�es the tag of the EntryPoint and the examined Sinks and Sources. If the analysis

�nds invalid �ows the entry found_flows is set to true otherwise to false. JOANA can

�nd direct and indirect information �ows. The entry only_direct_flow speci�es which

kind of �ows are searched. The found �ows are divided by hyphens. A �ow consists of

four entries. The �rst entry type indicates the type of the �ow, for example, illegal.

The second entry is attacker_level. An invalid �ow in JOANA is between a Source and

a Sink. Therefore, the �ow contains entries for source and sink. If the Source or Sink
are annotated to a parameter, the type is edu.kit.joana.api.sdg.sdgformalparameter

otherwise it is edu.kit.joana.api.sdg.sdgmethod. The source and sink entry contains

the entries class, name, selector, return, parameters, and source_level or sink_level.

The annotated method is speci�ed by name, parameter, return, and selector entries. If

the annotation is of the type edu.kit.joana.api.sdg.sdgformalparameter, then it has

also the entry index which indicates the parameter index of the annotated parameter.
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1 public class TicketHandling {

2 @EntryPoint(tag = "1", levels = {"Low","High"},

3 lattice = {@MayFlow(from ="High", to = "Low")})

4 public void generateTicket() {

5 String ticket = getTicket();

6 printTicket(ticket);

7 }

8 @Source(tags = {"1"}, level = "high")

9 private String getTicket() {

10 ...

11 return ticket;

12 }

13 @Sink(tags = {"1"}, level = "low")

14 private void printTicket(String ticket) {

15 ...

16 }

17 }

(a) Example for the JOANA annotations in a Java source code excerpt

1 entry_point_method: void TicketHandling.generateTicket()

2 tag: 1

3 found_flows: true

4 only_direct_flow: false

5 flow:

6 -

7 type: illegal

8 attacker_level: Low

9 source:

10 kind: edu.kit.joana.api.sdg.sdgformalparameter

11 method:

12 class: TicketHandling

13 name: getTicket

14 selector: getTicket()Ljava/lang/String

15 return: String

16 parameters:

17 index: 1

18 type: java.lang.Object

19 source_level: High

20 sink:

21 kind: edu.kit.joana.api.sdg.sdgmethod

22 class: TicketHandling

23 name: printTicket

24 selector: printTicket(S)V;

25 return: void

26 parameters:

27 - String

28 sink_level: Low

29 -

(b) JOANA result of the source code excerpt

Figure 2.3: Annotated source code with corresponding JOANA result
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1 entry_point_method:

2 tag:

3 found_flows:

4 only_direct_flow:

5 flow:

6 -

7 type:

8 attacker_level:

9 source:

10 kind: edu.kit.joana.api.sdg.sdgmethod

11 class:

12 name:

13 selector:

14 return:

15 parameters:

16 -

17 source_level:

18 sink:

19 kind: edu.kit.joana.api.sdg.sdgformalparameter

20 method:

21 class:

22 name:

23 selector:

24 return:

25 parameters:

26 -

27 index:

28 type:

29 sink_level:

Figure 2.4: Structure of a JOANA result
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3 Related Work

In this chapter, the work related to this bachelor’s thesis is presented. We are not aware of

any approach for exchanging information between security analyses on an architecture

view and a source code view. In section 3.1, an approach to generate source code with

con�dentiality annotations is presented. In section 3.2, the IFlow analysis is presented,

which combines a formal and a source code model. In section 3.3, the iObserve approach

is introduced. In section 3.4, the VITRUV approach is described. section 3.5 presents an

approach to connect an architecture model with a source code model. In section 3.6, an

approach for a transition from a model to a formalism to a result is presented.

3.1 Palladio Component Model with Confidentiality Model to
Java with JML Proof Obligations for KeY

Yurchenko et al. [43] propose a framework to generate Java source code with Java Modelling

Language (JML) proof obligations. The JML proof obligations can be veri�ed with the KeY

framework [32]. They use PCM with Con�dentiality4CBSE, as introduced in section 2.7.1.

The Java method stubs are generated from the PCM instance with a generator based on

Xtend. The generator produces Java annotations from the con�dentiality speci�cation.

Those annotations are translated to JML proof obligations. The method stubs are manually

completed.

The JML proof obligations are veri�ed with KeY. The source code and the model are

held consistent with the VITRUVIUS framework.

In comparison to the approach of Yurchenko et al. [43], this bachelor’s thesis presents a

more general approach because our approach is not only restricted to PCM with con�den-

tiality model and KeY. Furthermore, Yurchenko et al. [43] do not consider the results of

KeY. Whereas, in this bachelor’s thesis, the architecture model is adapted based on the

results of the source code analysis.

3.2 IFlow

IFlow is a security analysis specialized on IFC [44]. IFlow is using a model-driven approach,

which is shown in �gure 3.1. The starting point is an abstract UML model. It contains

a static view, capturing the software structure using class diagrams and also a dynamic

view to specify the communication between the components. Both views have security

annotations. The annotations restrict the information �ow and can be automatically

checked with formal veri�cation.
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Figure 3.1: The IFlow approach [44]

In the next step, Java code is generated from the architecture models. The component

structure, as well as their communication and calls to manual methods, are generated in

this step [45]. IFlow provides a Java framework to which the code skeleton is linked. The

frameworks abstracts from system-speci�c Application Programming Interfaces (APIs)

enabling the developer to use IFC tools like JOANA. The code skeleton is manually

implemented. The �nal code is examined with IFC tools to verify a correct implementation.

The UML model is transformed into a formal model based on an abstract state ma-

chine (ASM) used for the interactive theorem prover KIV. The developer can verify infor-

mation �ow (IF) properties beyond simple noninterference, such as constraints on data

declassi�cation [46].

If the code skeleton is implemented following rules, the results of the interactive theorem

prover and the IFC on the source code have a re�ne relationship [47].

To distinguish this work from this bachelor’s thesis, IFlow does not consider the transfer

of results of the supplier analysis back to an analysis on the architecture view. In IFlow,

there are no analyses on the architecture view at all.

3.3 iObserve

The iObserve approach of Heinrich et al. [48] has the target to combine operation-level

adaption and development-level evolution by establishing a correspondence model between

the architecture and run-time models. A megamodel integrates design-time models, code

generation, monitoring, and run-time model updates [49]. The run-time models are

updated with the monitoring data.

The run-time architecture correspondence model (RAC) de�nes a language to describe

the relationship between a measurement meta-model and a run-time prediction element.

One relation is a unidirectional mapping between one or more monitoring records and a

certain PCM element. New monitoring data triggers a change event which updates the

PCM element [50].

The iObserve approach projects the results of monitoring data of the deployed software

system back into the architecture analysis model. Whereas, in this bachelor’s thesis,

static security analyses are considered. Furthermore, a general approach to exchange

information between security analyses is developed.
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3.4 VITRUVIUS Approach

The VITRUVIUS approach developed by Klare et al. [51] is an approach for keeping

di�erent views on the software system consistent. The VITRUVIUS approach is based

on the orthographic software modelling (OSM) paradigm. They propose a concept for a

virtual single underlying model (VSUM) metamodel, which has an internal structure of

connected metamodels. However, if it is viewed externally, it appears as one monolithic

metamodel. The di�erent views are created from an instance of the VSUM.

The VITRUVIUS approach achieves consistency preservation between di�erent views

by introducing two new consistency preservation languages based on an incremental

and delta-based approach. The languages rely on a correspondence model between the

instances of the individual metamodels of the VSUM. The correspondence model contains a

list of correspondences. A correspondence is between two lists of model elements and has a

tag to identify the correspondence. Furthermore, the correspondence can depend on other

correspondences. If one view is changed, the instance of the individual metamodel from

which the view is created is changed. Those changes are propagated to other dependent

metamodels in the VSUM with the help of the correspondence model.

The VITRUVIUS approach proposes an approach for preserving consistency between

di�erent views while the changes are made by a developer. However, in this bachelor’s

thesis, there must not be any changes in the source code view that could be propagated

back to the architecture view. Only the results of the analysis on the source code view are

propagated to the architecture view.

3.5 Connection of Architecture and Source Code Model

Approaches to connect an architecture model with a source code model exist. Koners-

mann [52] presents an approach for a concrete mapping between an architecture and a

source code model. Konermann introduces metamodel notations to de�ne formal mappings

between architecture and source code model elements. Tooling to create bidirectional

transformations between an architecture and source code model based on the metamodel

notations is implemented. In his evaluation, the connection between the PCM and Java

source code model is shown.

Kramer et al. [53] have a similar approach to connect an architecture model with

contracts and a source code model with a bidirectional model transformation which uses a

concrete mapping between the two meta models. Their objective is to use the bidirectional

model transformation in combination with a change detection system to propagate changes

between the two models. They have also shown that the approach is feasible for PCM and

Java source code model.

The approaches of Konersmann and Kramer et al. do not consider analyses that are

run on the di�erent models. They consider only mechanisms to preserving consistency

between di�erent models. Therefore, the approaches do not consider the projection of the

source code analysis results back into the architecture model.
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3.6 Transition from Model to Formalism to Result

Information �ow analyses are based on a formalism, for example, Prolog. Hahner et al. [54]

proposed a domain-speci�c language to de�ne data �ow constraints in an architecture

model. The domain-speci�c language abstracts from the underlying formalism. Their work

provides a mapping between the domain-speci�c language and formalism. The mapping

is used to transform the domain-speci�c language to a formalism. A formalism can be

used to analyze the data �ow of the architecture. They also provide a transformation from

the analysis results in the formalism analysis to the domain-speci�c language to present

the results to the developer.

Hahner et al. develop an approach to transform data �ow constraints in a domain-

speci�c language into a formalism, and the results back into domain-speci�c language [55].

In this bachelor’s thesis, an architecture model with security speci�cation is transformed

to a source code model with a security model instead of a formalism. Furthermore, Hahner

et al. transform the results of the analysis back into the domain-speci�c language only to

display them. Whereas, in this bachelor’s thesis, the source code analysis results are used

to adapt the security speci�cation of the architecture model.
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In this chapter, the overview of the approach proposed in this bachelor’s thesis is presented.

The chapter is divided into two sections. In section 4.1, the concept of the approach to

transfer information between two security analyses is described. In section 4.2, a running

example for a software system with an architecture and a source code model, both with

security speci�cations, is presented. This example software system is used through the

whole bachelor’s thesis as a running example.

4.1 Approach to Transfer Information between Static
Security Analyses

The goal of this bachelor’s thesis is to enable the information transfer between security

analyses on architecture models and source code models. In this section, the approach is

presented from a high-level view.

Component-based software systems are considered. In section 2.2, a component is

described as a unit of composition with interfaces and explicit context dependencies. In

this bachelor’s thesis, the components in the architecture model are modeled as black

boxes. Black-box components are components with known interfaces but unknown

internal implementation. Therefore, only the component, its interfaces, and the relations

between the components are modeled in the architecture model. In this bachelor’s thesis,

source code is also seen as a model because source code ful�lls the six model properties

from section 2.1. The source code model contains information about the internal behavior

of the components. Consequently, the source code model has more information about the

internal behavior of the components than the architecture model [56].

Security analyses are run on a software model, for example, an architecture or a source

code model, with a security model. A structural software model with a security model

is called a analysis model. In this bachelor’s thesis, the security model assigns a security

speci�cation to structural software model elements. Therefore, the structural software

model and the security model are woven together based on the common structural software

model elements, as introduced in section 2.1.4. In this approach for information transfer

between architecture and source code, there are two analysis models. One is based on

the architecture model, the other one on the source code model. The security analysis

on the architecture model has to make assumptions about the components’ behaviors

since the components are black boxes. Therefore, it also assumes the security aspects

concerning the internal behavior of the components. These assumptions are veri�ed with
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the results of a matching security analysis on the source code model. Since the source-code

security analysis veri�es the assumptions of the architecture security analysis, the source-

code security analysis is called supplier analysis. Respectively, the architecture security

analysis is called client analysis. Therefore, the architecture analysis model is called the

client analysis model. The source code analysis model is called the supplier analysis model
because the analysis run on the supplier analysis model provides results with which the

client analysis model is veri�ed. This approach to connect security analyses treats the

analyses as black boxes. Only the input, the analysis models, are given, and the output of

the supplier analysis is used to adapt the client analysis model. Therefore, no changes in

the analyses themselves have to be made.

The architecture and the source code model are not providing run-time information

about the software system because neither of both models is deployed [57]. As soon as the

source code model is deployed on a running system and the model is supplemented with

run-time information, it is transformed into a run-time model. In this bachelor’s thesis,

the source code model is not deployed. Therefore, no dynamic security analyses can be

used, and only static security analyses are considered.

In �gure 4.1, the general concept of the approach to exchange information between

static security analyses is shown. The supplier analysis model skeleton is generated from

the client analysis model. The supplier analysis model skeleton is a source code skeleton

with corresponding security information. Therefore, not the complete source code model

can be generated from the client analysis model, especially not the implementation of

the interface methods. Only a source code skeleton is generated from the client analysis

model because it contains the component interfaces with its method signatures but not the

internal behavior. Furthermore, the client analysis model contains the security speci�cation

for the interfaces and the interface methods. Therefore, the security speci�cation of the

source code skeleton can be generated. Since the source code skeleton and the security

speci�cation of it can be generated from the client analysis model, the supplier analysis

model skeleton can be generated from the client analysis model.

The generation produces a correspondence model which maps the model elements of the

client analysis model to the model elements in the supplier analysis model skeleton [58].

The correspondences exist between the architecture model and the source code model

and between the two security models. The client analysis model skeleton is manually

completed because the client analysis model contains no behavioral information about the

software system. It must be noted that the generation process is only necessary for the

creation of the correspondence model. If the supplier analysis model already exists, the

correspondence model can also be manually created.

The analysis of the supplier analysis model produces supplier analysis results. The

replacement of one or more of the assumptions in the client analysis model is achieved by

projecting back the results of the supplier analysis into the client analysis model. The back-
projection adapts the client analysis model based on the results of the supplier analysis [59].

The supplier analysis model is seen as the ground truth in this bachelor’s thesis. Otherwise,

an automatic back-projection is not possible. The back-projection is comparable with

the iObserve approach presented in section 3.3. The workload speci�cation in the design

model is adapted based on monitoring data from a run time model. The back-projection

requires a correspondence model between the client and supplier analysis model elements.
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Client Supplier

Client Analysis 
Model

Supplier 
Analysis Model

Client Analysis 
Results

Supplier Analysis 
Results

Supplier Analysis 
Model Skeleton

generation completion

back-projection
analysisanalysis

Figure 4.1: Schema of connecting a client analysis with a supplier analysis

The supplier analysis results cannot be automatically linked to the client analysis model

elements without a correspondence model. A client analysis and a supplier analysis are

called coupled if a correspondence model between the analysis models of the two analyses

is initiated and a back-projection of the supplier analysis results is possible.

The back-projection �rst determines the correct security speci�cation on the inter-

face method in the supplier analysis model and then adapts the corresponding security

speci�cation in the client analysis model. The process to determine the correct security

speci�cation is speci�c to the domain of the analyzed security property. In this bachelor’s

thesis, this approach to couple security analyses is shown for the domain of lattice-based

security properties, which are introduced in section 2.6.

4.2 Running Example

In this section, a running example is introduced to illustrate the approach to couple two

security analyses. The software system, used in this example, provides the possibility to

exchange information between di�erent parties. The three parties are schools, clinics,

and persons. The three parties can interact with the software system over the compo-

nents School, Clinic and PersonUI. The PersonUI component provides the three interfaces

EducationalDataExchange, CreditCardExchange and MedicalDataExchange. The component

PersonUI requires the interface SchoolEducation which is provided by School. The compo-

nent School requires the interface SchoolEducationExchange. The component Clinic requires

the interfaces CreditCardExchange and MedicalDataExchange and provides the interface In-
ternalLogistics.

The client analysis examines if the software system complies with a role-based access

control schema. The client analysis model assumes that each interface method has a
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Component Interface Method

Type Parameter

requires

provides

provides
0..*

0..*
0..*

0..*

1

1

Security
Level

Security
Class

Figure 4.2: Client analysis metamodel for the running example

certain security level. The supplier analysis checks whether every information �ow is

in the lattice ! or not [60]. Therefore, the analysis reports an invalid information �ow

if information �ows from object A with security level x to object B with security level

y and G → ~ is not in the lattice !. The architecture model contains only components,

which provide and require Interfaces. The provided Interfaces can consist of Methods,

which have a return type and parameters. The client security model only consists of

SecurityClasses and SecurityLevels. The SecurityClass provides general information about

the system, like the kind of encryption used. Each architecture model element except

the model element Type can have a SecurityClass. The SecurityLevel of a model element

determines between which objects information can �ow. Only Methods of Interfaces can

have a SecurityLevel in this running example. The architecture model combined with the

client security speci�cation forms the client analysis model. The metamodel of the client

analysis model is depicted in �gure 4.2.

The used source code model has Classes, Interfaces, Methods, Parameters, and Variables.

The Methods, the Parameters, and the Variables can have a Type. A Class can implement

multiple Interfaces. The security speci�cation of the source code has the form of anno-

tations. An annotation identi�es a method with a security level. The metamodel of the

supplier analysis model is displayed in �gure 4.3.

The supplier analysis produces results. The supplier analysis result metamodel is shown

in �gure 4.4. Each Result consists of the invalid �ows and the number of invalid �ows.

Each Flow consists of a sequence of FlowStates. The sequence is at least 2 FlowStates long

because a Flow is between at least two elements. A FlowState consists of the Method which

is called, the Class of the Method and SecurityLevel of the Method.

The described software system can be modeled with the client analysis metamodel. The

software system model is shown in �gure 4.5. The security levels of the client analysis

model are partly not �tting to show the back-projection for these incorrect security levels.

For example, the security level of getCreditCardInfo of the interface CreditCardDataExchange
is contact. The better �tting security level would be creditcard. However, contact is used

to better show the advantage of the back-projection in section 6.4.
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Figure 4.3: Supplier analysis metamodel for the running example
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Figure 4.4: Result metamodel for the running example
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<<component>>
School

<<component>>
Person

<<component>>
Clinic

<<interface>>
EducationalDataExchange

<<educational>>
EducationData getEducationData()
<<educational>>
void setEducationData(data)

<<interface>>
InternalLogistics

<<logistic>>
void addOrder(orderName, from, to)

<<interface>>
CreditCardDataExchange

<<contact>>
CreditCardData getCreditCardInfo()

<<interface>>
MedicalDataExchange

<<medical>>
MedicalData getOutstandingBills()

<<interface>>
SchoolEducation

<<educational>>
String getCertificate()

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>><<Requires>>

<<Requires>>
<<Requires>>

<<Requires>>

<<Provides>>

Figure 4.5: Client analysis model for the running example

The corresponding supplier analysis model skeleton is shown in �gure 4.6. The �gure

shows the supplier analysis model without any concrete syntax. Furthermore, the imple-

mentation of the methods is missing because the client analysis model does not contain

information about the internal implementation.

An excerpt of the manual implementation is shown as a sequence diagram in �gure 4.7.

The sequence diagram shows three interactions with the software system. In the �rst

interaction, a curriculum vitae is created. A certi�cate is needed for the curriculum vitae,

which is retrieved from School. The component School generates the certi�cates and

returns it to PersonUI. The methods createCV and generateCerticate are internal methods

of the components. Both have the security level {educational, contact}. In the second

interaction, the credit card score should be determined. The outstanding bills of the

person are used to determine how much the person owes to the clinic. This calculation

is used to determine the credit card score of the person. The method getCreditCardScore
has the security level creditcard. In the third interaction, the person is examined by the

clinic. Therefore, the clinic needs the credit card information of the person. The method

getCreditCardData accesses information about the tuition loan of the person. The method

examinePerson has the security level {educational, contact}. The method getTuitionLoan
has the security level creditcard. The supplier analysis is based on a security lattice. The

security level is displayed in �gure 4.8. For each element having an arrow to another

element, information can �ow from the �rst element to the second element.
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1 Class School:

2 Implements: SchoolEducation

3 Variables: EducationalDataExchange educationalDataExchange

4 Methods: <<educational>> String getCertificate()

5 Class Clinic:

6 Implements: InternalLogistics

7 Variables: CreditCardExchange creditCardExchange, MedicalDataExchange

medicalDataExchange

8 Methods: <<logistic>> void addOrder(ordnerName, from, to)

9 Class Person:

10 Implements: EducationalDataExchnage, CredittCardDataExchange, MedicalDataExchange

11 Variables: SchoolEducation schoolEducation

12 Methods:

13 <<educational>> EducationData getEducationData()

14 <<educational>> void setEducationData(data)

15 <<contact>> CreditCardData getCreditCardInfo()

16 <<medical>> MedicalData getOutstandingBills()

17 Interface SchoolEducation:

18 Methods: String getCertificate()

19 Interface EducationalDataExchange:

20 Methods:

21 EducationData getEducationData()

22 void setEducationData(data)

23 Interface CreditCardDataExchange:

24 Methods: CreditCardData getCreditCardInfo()

25 Interface MedicalDataExchange:

26 Methods: MedicalData getOutstandingBills()

27 Interface InternalLogistics:

28 Methods: void addOrder(ordnerName, from, to)

Figure 4.6: Supplier analysis model skeleton for the running example
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Person School Clinic

<<educational, contact>>
String createCV()

<<educational>>
String getCertificate() <<educational,contact>>

String generateCertificate()

<<creditcard>>
float getCreditCardScore()

<<medical>>
MedicalData getMedicalData()

<<educational, contact>>
String examinePerson()

<<creditcard>>
CreditCardData getCreditCardInfo

<<educational>>
int getTuitionLoan()

Figure 4.7: Excerpt of the implementation of the supplier analysis model as sequence

diagram

educational

medical

contact

educational,
contact

educational,
medical, contact

creditcard

educational,
creditcard

educational, medical,
creditcard, contact

Figure 4.8: Lattice for the supplier analysis in the running example
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5 Requirements for the Coupling of
Analyses

In chapter 4, the overview of the approach developed in this bachelor’s thesis is shown.

To couple an analysis on the architecture view with an analysis on the source code view,

the two analyses have to be compatible. These requirements under which a client analysis

model is compatible with a supplier analysis model are described in this chapter. The

requirements can be split into three groups. Requirements under which a correspondence

model can be created are the �rst group. These requirements are introduced in section 5.1.

In section 5.2, the requirements for compatible security properties are described. In sec-

tion 5.3, the third group of requirements for the result model of the supplier analysis is

described.

5.1 Existence of a Structural Correspondence Model

The connection between the client and supplier analysis model requires a structural

correspondence model as described in section 4.1. Therefore, the �rst requirement is

requirement of a structural correspondence model. The structural correspondence model

contains mappings between the model elements specifying the components in the archi-

tecture model and the model elements specifying the source code skeleton. The structural

correspondence model can be created if it is possible to generate the supplier analysis

model skeleton from the client analysis model. In the transformation process, a group of

client analysis model elements is used to generate a supplier analysis model element, as

described in section 2.1.3. The group of model elements in the client analysis model and

the model element in the supplier analysis model are forming a pair. All pairs from the

supplier analysis model skeleton generation are bundled into a structural correspondence

model.

In section 5.1.1, the requirements under which the generation of the supplier analysis

model skeleton is possible are described. The supplier analysis has to be run on a completed

analysis model. Therefore, the supplier analysis model skeleton has to be manually

completed. When completing the skeleton, the developer has to follow rules that are

described in section 5.1.2. These rules also have to be followed when extending the client

analysis model.

5.1.1 Structural Information

In this section, the requirement of structural information is described. If the requirement is

ful�lled, the supplier analysis model skeleton can be generated from the client analysis
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model. As introduced in section 4.1, the analyses are run on analysis models. An analysis

model is a composition of two models. An analysis model is formed by the structural

model and the security model of the software system [61, 62]. The security model holds the

security information about the software system. The structural model contains information

about the structure of the software system. As introduced in section 2.1.4, the model

operation weaving combines the security model and the structural model into one analysis

model. The weaving speci�cation is based on the common metamodel elements concerning

the structure of the software system. For instance, UMLSec is an extension of the UML

metamodel [31], therefore uses UML elements in its metamodel. SecurityCodeScan is

based on the programming languages C# [63] and therefore uses the elements of C# in its

metamodel.

In this approach to transfer information between the client and supplier analysis model,

the client structural model and the supplier structural model are connected by a model

transformation, as shown in �gure 5.1. As speci�ed in section 4.1, only component-

based software systems are considered. Therefore, the source code model can be divided

into the source code skeleton and the internal component implementation. The source

code skeleton speci�es the component interfaces and skeletons that are all the interface

methods of the component without the internal implementation. The internal component

implementation is, for example, the implementation of the interface methods or the internal

classes of the component. The client respectively supplier structural models are based on

a client respectively supplier structural metamodel. The two structural metamodels are

connected with a metamodel transformation.

In the client analysis model, the speci�cation of the components is contained in the

structural model, which is mapped to the source code skeleton in the supplier analysis

model. For a formal de�nition, let " be an analysis model, SM is the structural model of

" , and MM" is the metamodel of " .

The client analysis model is denoted by "client. It has the structural model SMclient

holding the structural information of the software system in the architectue view. The

supplier analysis model is denoted by "supplier. It builds upon the source code model

SMsupplier. We require {class,method, parameter} ∈ MMSM
supplier

because the used source

code model must be able to model a component-based software system [15]. The source

code model parts de�ning the source code skeleton �supplier ⊂ SMsupplier are a subset of the

complete source code model. For example, the internal implementation of the source code

skeleton is in SMsupplier but not in �supplier. The model elements �supplier are based on the

same metamodel as SMsupplier but do not have to use the complete metamodel.

The source code skeleton generation from the client structural model is possible if there

is a model transformation )structural with:

)structural : SMclient → �supplier (5.1)

If the transformation exists, the component classes, interfaces, and method de�nitions of

the supplier structural model can be created from the structural client model. Therefore, if

the transformation exists, the source code skeleton generation is possible.
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Client Supplier
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Figure 5.1: Composition of client and supplier analysis models, and the connection between

the structural models. The connection between the two security models is not

shown for the sake of simplicity.
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A model transformation, as introduced in section 2.1.3, requires a relation between the

metamodels of the structural models, which can also be expressed as a model transforma-

tion:

)structural,meta : MMSM
client
→ MM�

supplier
(5.2)

There are three cases for the mapping between elements of both metamodels. The �rst case

is a one-to-one mapping between model elements. In this case, the model transformation

uses a direct mapping between elements of both metamodels. For example, if the structural

client model is an UML class diagram, there is a one-to-one mapping between the classes

in the client analysis model and the classes in the supplier analysis model [15, 64]. The

second case is a =-to-one mapping. In the second case, multiple client metamodel elements

must be combined to create one supplier analysis model element. For example, in the

client analysis model, an UML component diagram [65] is used to specify which interfaces

a component has and an UML sequence diagram [66] on the component level holds

information about the existing methods of the components. The source code skeleton in

the supplier analysis model can only be generated if both diagrams are present. The third

case is a< × =-to-one mapping. In this case, the underlying structural model contains

multiple groups of metamodel elements from which a supplier analysis model can be

generated. For example, if the structural model contains UML class, component, and

sequence diagrams, the source code skeleton can be generated from the class diagram or

the pair of component and sequence diagrams. In this case, the structural correspondence

model has to contain all possible model element pairs used for the source code generation.

Otherwise, the back-projection cannot adapt the security speci�cations of all the elements

in the client analysis model that are a�ected by the violation of the security property.

It is not required that )structural,meta uses all metamodel elements of MMSM
client

. There-

fore, let *client be the set of metamodel element groups of MMSM
client

which are used

in )structural,meta. For example, if the metamodel of the source code is C# (Version be-

fore 8.0) and the structural client model is an UML class diagram, *client would be

{{class, operation, parameter}}. SMclient must instantiate at least one element of *client

because otherwise )structural is not possible besides the existence of )structural,meta. If no

element of *client is instantiated, SMclient does not model the necessary architecture in-

formation for generating �supplier. If the de�nition of )structural is not possible, the source

code skeleton cannot be generated from the client structural model. Therefore, there is

no mapping between the client structural model and the source code skeleton. If there

is no mapping, a structural correspondence model between the client analysis model

and the supplier analysis model cannot exist. If there is no structural correspondence

model between the client and the supplier analysis model, the back-projection is not

possible, because the back-projection requires a mapping between the two analysis models.

Therefore, if )structural does not exist, the client and the supplier analysis model cannot be

coupled. Otherwise, if )structural exists, a structural correspondence model between the

client structural model and the source code skeleton can be created.

In case of the running example, which is described in section 4.2, the structural model

of the client analysis model is the set of client analysis model elements excluding the

SecurityClasses and SecurityLevels. A client Component is transformed into a supplier Class.
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A client Interface is transformed into a supplier Interface. A client Method is transformed

into a supplier Method. A client Parameter is transformed into a supplier Parameter. A

client Type is transformed into a supplier Type. Furthermore, the connections between the

model elements have to be transformed. For example, the supplier Component provides

and requires Interfaces. The requires relationship is transformed into a Variable of the

supplier Class. The provided relationship is transformed into an implements relationship in

the supplier analysis model. The Methods de�ned in the provided Interface are transformed

into Methods of the supplier Class. Furthermore, based on the structural metamodel trans-

formation a structural model transformation can be constructed for the structural models.

For example, the client component School is transformed into the supplier class School. The

client interface SchoolEducation is transformed into the supplier interface SchoolEducation.

The client method String getCertificate() is transformed into the supplier method String
getCertificate(). The structural correspondence model created during)structural contains the

mappings:

• { Component School } - { Class School }

• { Interface SchoolEducation } - { Interface SchoolEducation }

• { Method String getCertificate() } - { Method String getCertificate() }

Therefore, a transformation between the two metamodels exists, and

{class,method, parameter} ∈ MMSM
supplier

holds. Furthermore, a structural corre-

spondence model can be initiated between the two structural models. Therefore, the

requirement of structural information in the supplier analysis model holds.

5.1.2 Consistency between Client and Supplier Analysis Model

In this section, the requirement of consistency is described. The source code skeleton

is generated from the client structural model. The source code skeleton then has to

be completed with the internal implementation of the components. The source code

generation establishes a connection between the client and supplier analysis model with

the created structural correspondence model [58]. During the completion of the source

code skeleton, the model elements contained in the structural correspondence model

cannot be changed without adapting the structural correspondence model. Otherwise, if,

for example, the signature of one interface method in the supplier analysis model is changed

without adapting the structural correspondence model, the structural correspondence

model contains an invalid mapping between model elements. If the back-projection cannot

�nd any corresponding model elements in the client analysis model, the back-projection is

no longer possible. If the back-projection is no longer possible, the two analysis models are

no longer coupled. Furthermore, if a new interface method is added during the completion,

the structural correspondence model does not contain the new interface method. Therefore,

the structural correspondence model is again in an invalid state, in which not all source

code skeleton elements are contained in the structural correspondence model. On the

other side, changes to model elements of the client or supplier analysis model, which

are not involved in )structural, are allowed because those elements are not contained in
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the structural correspondence model. Therefore, changes to the elements not involved in

)structural do not invalidate the structural correspondence model.

Now, the allowed changes to the client and the supplier analysis model after creating

the structural correspondence model are generalized. Let SMclient, SMsupplier, �supplier and

)structural be de�ned as in section 5.1.1. )structural produces the structural correspondence

model �structural during the transformation as described in section 4.1. Changes to models

are found with the di� operation which takes two models and returns a sequence of edit

actions to transform the �rst model into the second model as introduced in section 2.1.2. To

generalize the allowed changes to the client and the supplier analysis model, let S̃Mclient re-

spectively S̃Msupplier be structural model instances of the client analysis model respectively

supplier analysis model, after some changes to SMclient and SMsupplier. Therefore,�structural

already exists. Let di� (SMclient, S̃Mclient) ≠ ∅ respectively di� (SMsupplier, S̃Msupplier) ≠ ∅.
�supplier are the interface model elements of SMsupplier. The transformation )structural pro-

duces �̃structural when transforming S̃Mclient in �̃supplier. The changes to SMclient are allowed,

if the following two equations hold:

di� (�supplier, �̃supplier) = ∅ (5.3)

di� (�structural, �̃structural) = ∅ (5.4)

Equation (5.3) holds if no new interface method is added to the supplier analysis model.

Equation (5.4) holds if the unadapted structural correspondence model and the adapted

structural correspondence model are the same. This is the case if no new structural model

element is added to the client analysis model.

In the running example, the method setCreditCardInfo is added to the interface Edu-
cationalDataExchange of the supplier analysis model in the running example introduced

in section 4.2 forming S̃Msupplier. The addition of setCreditCardInfo is a change in the

interface of a component, therefore also �supplier is changed, implying �̃supplier. The two

models are no longer consistent because the setCreditCardInfo is only present in the sup-

plier analysis model but not in the client analysis model and the structural correspondence

model. Therefore, di� (�supplier, �̃supplier) ≠ ∅ applies. The class TeachersRoom is added to

the component School forming (̃"supplier. TeachersRoom does only communicate with the

interfaces provided by School and other internal classes of School. Therefore, �supplier is

not changed, therefore di� (�supplier, �̃supplier) = ∅ applies.

5.2 Connection of Security Properties

The goal of this bachelor’s thesis is to connect the two analyses by establishing a correspon-

dence model between the client and the supplier analysis model and by projecting back

the results of the supplier analysis into the client analysis, as described in section 4.1. The

back-projection adapts client analysis model elements that con�ict with the supplier analy-

sis results. Therefore, the security property analyzed by the supplier analysis has to be part

of the security property analyzed or assumed of the client analysis. If an analysis assumes

a security property, there are analysis model elements specifying the security property in

the analysis model [67]. For example, if an analysis examines whether the software only
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outputs encrypted information, the analysis needs an analysis model with a speci�cation

which methods return or require encrypted data [68]. If the client analysis model does not

assume any security property analyzed by the supplier analysis, the client analysis model

contains no information about the security property analyzed by the supplier analysis. If

the analysis model has no model elements specifying the security property of the supplier

analysis, the back-projection cannot calculate the correct security speci�cation. Therefore,

the back-projection cannot adapt any elements of the client security model. If the back-

projection fails, then the information transfer between the analysis models fails. Therefore,

the two analyses cannot be coupled. For example, the client analysis examines the security

property observational determinism [69], for what it assumes non-interference [70, 71].

The supplier analysis covers non-interference. Then, the assumptions of the client analysis

model regarding the speci�cations for non-interference can be veri�ed by the results of the

supplier analysis. However, the assumptions that the observational determinism property

holds for the internal structure cannot be veri�ed. The reason for this is that the supplier

analysis reveals nothing about observational determinism.

Static security analyses, as introduced in section 2.7, can be described as testing whether

a set of (hyper-)trace properties holds or not. As introduced in section 2.5, a trace property

de�nes a set of traces that ful�ll a given set of rules. Transferred to a software system, a

trace consists of system states (states) and method calls (actions) which combined form an

instance of an abstract state. If all possible execution traces through the software system

are in the de�ned trace property, the system ful�lls the security property induced by

the trace property [72]. The client analysis tests the execution traces through the client

analysis models, and the supplier analysis tests the execution traces through the supplier

analysis model.

5.2.1 Composition of Multiple (Hyper-)Trace Properties

One security analysis can test multiple security properties. Each security property can

be modeled as a trace property. Therefore, it is shown that multiple trace properties can

be encoded into one trace property which can then be tested by one analysis. It is also

shown that a corresponding decoding exists.

A trace property is de�ned as a set of traces and a hyperproperty as a set of sets of traces

that ful�ll certain rules, as introduced in section 2.5. Therefore, the set-builder notation

for expressing sets can be used [73]

" = {G ∈ � | �(G)} (5.5)

where " is the de�ned set, � is the domain of the set, and �(G) is a logical predicate

specifying the rules by which G is chosen. The domain for trace properties is Ψinf and for

hyperproperties Prop as introduced in section 2.5. For instance, the property guaranteed

service (GS) can be modeled with the set-builder notation [26]:

GS = {C ∈ Ψinf | ∀8 ∈ N : isReq(C [8]) ⇒ (∃ 9 > 8 : isRespToReq(C [ 9], C [8]))} (5.6)

The predicate isReq(B) identi�es all trace states, which are a request, whereas the predicate

isRespToReq(B′, B) identi�es, if B′ completes the request initiated in B .
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Now, the composition of two trace properties can be de�ned as the cut of two sets. Let �1

and �2 be trace properties, de�ned by:

�1 = {) ∈ Ψinf | �1() )} (5.7)

�2 = {) ∈ Ψinf | �2() )} (5.8)

Then, two trace properties are encoded into one by:

� = �1 ∩ �2 = {) ∈ Ψ8=5 | �1() ) ∧�2() )} (5.9)

The cut of two trace properties results in a set of traces which are in both hyperproperties.

For every other trace C ′ ∉ � , �1 or �2 does not hold. Each trace in � has to ful�ll the

logical predicates of both trace properties. Generalized for = trace properties

� =

=⋂
8=1

�8 = {) ∈ Ψinf |
=∧
8=1

�8 () )} (5.10)

where � [8] is the 8-th trace property. The encoding for = hyperproperties is achieved

accordingly:

� = enc(� ) =
=⋂
8=1

�8 = {) ∈ Prop |
=∧
8=1

�8 () )} (5.11)

A possible security analysis can cover multiple security properties, some of which are

trace properties and some of which are hyperproperties. For example, an analysis based

on UMLSec [31] can be constructed to analyze information �ow and access control. To

formulate one hyperproperty for the complete security analysis, a composition of hyper-

properties and trace properties must exist. The domain of trace properties is Ψinf and the

domain of hyperproperties is Prop = P(Ψinf ). Therefore, an element of Prop ful�lls a trace

property % , if % holds for all elements of ) ∈ Prop. The encoding of the trace property %

as hyperproperty hyper (%) is achieved with:

hyper (%) = {) ∈ Prop | ∀C ∈ ) : C |= %} (5.12)

= {) ∈ Prop | ∀C ∈ ) : �(C)} (5.13)

The trace properties have to be �rst encoded into hyperproperties and then combined

with equation (5.11) to combine trace properties and hyperproperties into one hyperprop-

erty. The decoding dec(%) of a trace property into a set of trace properties is achieved by

splitting the logical predicate at the top-level conjunctions. The reason for this is that the

(hyper-)trace properties are combined by the conjunction of the (hyper-)trace properties.

For example, if the hyperproperty � contains traces which ful�ll non-interference (�NI)

and observational determinism (�OD), then the decoding of � is the set {�NI, �OD}.
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5.2.2 Overlap of Hyperproperties

The traces through the two models have to be comparable to compare the hyperproperty

of the client analysis and the supplier analysis. A trace through the software system

consists of abstract states as introduced in section 2.5. In this subsection, the abstract

state contains at least the software state and the executed action, where action(C [8]) is the

action performed in the 8-th state of the trace and state(C [8]) is the software state of the

8-th state of the trace.

The client analysis model for a component-based software system only possesses in-

formation about the interfaces and communication between the components from which

the source code skeleton can be generated as described in section 4.1. The client analysis

model views a component as a black box as explained in section 4.1. The state of the

software system in the client analysis model can be expressed in more detail than in the

supplier analysis model because the internal structure of the components is addition-

ally known. However, if the source code skeleton is generated from the client analysis

model and implemented according to the requirements from section 5.1.2, the information

contained in the software state of the client analysis model can be generated from the

software state in the supplier analysis results. The set of possible actions in the client

analysis model consists of the interface methods of the components. We call them visible

actions. In the supplier analysis model, the set of possible actions is extended with the

manually implemented methods. The manually implemented methods are called invisible

actions because they can not be triggered directly from the outside of the component if

the requirement of consistency, described in section 5.1.2, is ful�lled. The execution of

an internal component method can only be a result of the execution of visible actions.

Therefore, a trace through the supplier analysis model can be expressed as a trace through

the client analysis model by removing all states with invisible actions. The reduction to

component interface methods is necessary because only those are in the correspondence

model and can be projected back into the client analysis model. The client analysis model

does not know the internal structure of the components. Therefore, the client analysis

model has no information about the invisible actions.

Let (client be the set of software states of the client analysis model with the actions

�vis,client. Accordingly, for the supplier analysis model, let (supplier be the software states of

the supplier analysis model. The supplier analysis model has visible actions�vis,supplier (the

interface methods) and invisible actions �in,supplier [27]. Therefore, all possible actions in

the supplier analysis are U B �vis,supplier∪�in,supplier. Furthermore, let6 be a transformation

from the software state of the supplier analysis model to the software state of the client

analysis model:

6 : (supplier → (client (5.14)

The transformation 6 is based on the structural correspondence model introduced in sec-

tion 5.1. The trace C is a trace through the supplier analysis model. The action of C [?] is

visible, the next visible action is performed in C [@]. Therefore, every state between ? and

@ has an invisible action. We de�ne �vis,supplier as the set of indices of states with visible

actions, which can be generated with 5 from the trace C :

5 (C) = �vis,supplier = {8 ∈ {1..|C |} | action(C [8]) ∈ �vis,supplier} (5.15)
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With the index set, a trace through the supplier analysis can be expressed as a trace through

the client analysis with the trace transformation ℎ with

Cclient = ℎ(Csupplier) =
∑

8∈�
vis,supplier

(6(state(Csupplier [8])), action(Csupplier [8]) (5.16)

where

∑
is the concatenation of the trace states. If Csupplier is not a single trace, but a set of

traces, ℎ transforms every trace independently in the set. Therefore, ℎ transforms a set

of supplier traces into a set of client traces. We can now compare the hyperproperties of

the supplier analysis (�supplier) with those of the client analysis (�client) by representing

the hyperproperty of the supplier analysis as a hyperproperty of the client analysis.

The hyperproperty �supplier can be presented as a hyperproperty in the client analysis

�supplier in client by:

�supplier in client = ℎ(�supplier) = {ℎ() ) | ) ∈ Prop ∧ �() )} (5.17)

�client and �supplier in client can be compared, because their traces are trough the same

model. Two security analyses can be coupled if they are partly covering the same secu-

rity properties. The requirements can be formalized, as the intersection of the covered

hyperproperties:

dec(�client) ∩ dec(�supplier in client) C �both ≠ ∅ (5.18)

In this approach, this requirement is called the requirement of overlapping (hyper-)trace
properties. If this requirement is ful�lled, the assumptions for �both in the client analysis

can be veri�ed with the results of the supplier analysis.

5.2.3 Transformation of the Metamodels

A hyperproperty requires extra information about the states of a trace. For example, the

trace property for guaranteed service, shown in equation (5.6), requires the information

on whether an action is a request or response. Such information is added to the client

and supplier analysis by supplementing the underlying model with a security model

forming an analysis model as described in section 5.1.1. The requirement of overlapping

hyperproperties has to be extended to connectable security models for the generation of

the supplier analysis model from the client analysis model. Therefore, the requirement of a
security correspondence model is introduced in this section.

A security model for a security analysis can be divided into model element sets. The

division is parallel to the division of the tested hyperproperty into multiple hyperproperties.

A model element can be part of multiple model element sets. If the two analyses are both

covering the hyperproperty �both and the corresponding model elements are "supplier,both

and "client,both, then the model transformation:

)security : "client,both → "supplier,both (5.19)

has to exist. )security exists if a transformation between the two security metamodels exists.

The security metamodel transformation is de�ned as:

)security,meta : MM"
client,both

→ MM"
supplier,both

(5.20)
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If)security,meta does not exist, then the supplier security model cannot be generated from the

client security model. Additionally, )security is necessary for the back-projection because

during the supplier security model generation a security correspondence model is created,

that is similar to the structural correspondence model, described in section 5.1. The

security correspondence model is, like the structural correspondence model, essential for

the back-projection of the supplier analysis results.

For example, the client analysis in the running example introduced in section 4.2 is

based on a client security model with a security class and a security level. The hyper-

property of the client and the supplier analysis is not known. However, the concrete

hyperproperty for the client analysis can be divided into the hyperproperty concerned

with the security level (e.g. IFC) and the hyperproperty concerned with the security class.

The supplier analysis hyperproperty is IFC. Therefore, there is an overlap between the

two hyperproperties. Furthermore, the security levels from the client analysis model can

be directly transformed into the security levels of the supplier analysis model. Since there

is an overlap of hyperproperties and a transformation between the security metamodels,

the security properties can be connected.

5.3 Requirements for the Supplier Analysis Results

In this bachelor’s thesis, the client analysis model is adapted based on the supplier analysis

results. The supplier analysis can have two results. The �rst case is that the analysis does

not detect any traces which are violating the security property. In this case, the results

do not have to be projected back into the client analysis because the assumptions in the

supplier analysis are correct. The second case is that the results contain that the security

property does not hold. In this case, the results have to be projected back because there is

at least one assumption in the client analysis model which is not correct.

The supplier analysis results have to ful�ll requirements on the results structure, de-

scribed in section 5.3.1. Furthermore, the supplier analysis results have to contain public

structural elements. This requirement is presented in section 5.3.2.

5.3.1 Required Structure of the Supplier Analysis Results

The �rst requirement is the requirement of result structure which is described in this section.

The supplier analysis examines a security property that can be represented as (hyper-)trace

property, as described in section 2.5. The supplier analysis results can be projected back if

the supplier analysis results contain information about the traces, which are violating the

security property. Therefore, a supplier analysis result is required to contain the traces

violating the security property. Information about the invalid traces is required because

client analysis model elements have to be adapted based on the supplier analysis results.

The back-projection needs information about the reasons why the security property does

not hold. This information is not present if the results only contain the information that

the security property does not hold for the supplier analysis model.

Client analysis model elements are adapted in the back-projection. As described in sec-

tion 4.1, the client and supplier analysis models contain a structural and a security model.
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Figure 5.2: Minimum required metamodel of the supplier analysis results

The back-projection adapts single client analysis model elements containing a structural

and a security model element. Therefore, the detected invalid �ows have to contain

structural and security information about the supplier analysis model elements.

A trace consists of a sequence of trace states modeling the software state. All trace

states have to identify a structural model element that is part of the invalid trace. The

kind of structural model element is speci�c to the two analyses. Furthermore, the security

speci�cation of a client analysis model element is adapted based on the supplier analysis

results. Therefore, it is required that a security speci�cation can be assigned to each

abstract state. If no such assign-function exists, the analysis cannot be executed because

the information concerning the security property is missing.

For example, the client analysis assumes that the security property guaranteed ser-

vice [26] holds for all component interface methods. The client analysis should be coupled

with a supplier analysis to verify and potentially correct these assumptions. In the supplier

analysis model, each method is assigned the security speci�cation request, response, or

internal. Internal is, in this context, de�ned as neither request nor response. Then, it is

tested whether every request entails a response in each trace through the supplier analysis

model. Therefore, the supplier analysis results have to contain the traces for which service

is not guaranteed. The traces consist of trace states which have to identify a supplier

structural element and a security speci�cation. In this example, the supplier structural

model element which has to be identi�ed is the method. The methods could, for example,

be identi�ed with unique IDs or fully quali�ed names. Furthermore, it must be possible

that a security speci�cation can be assigned to each trace state.

The requirements on the structure of a supplier analysis result can be represented as a

minimum required supplier analysis result metamodel. The result can be represented as a

model"result since it ful�lls the mapping, the abstraction, and pragmatism property de�ned

in section 2.1. An analysis result has a general structure, namely the result metamodel

MM"
result

. The minimal supplier analysis results metamodel is depicted in �gure 5.2. A

supplier analysis result has to contain information about the invalid traces. The traces

consist of trace states with at least the software state and the security speci�cation of

the software state. A supplier analysis result ful�lls the requirement of result structure if

a transformation )result from its metamodel to the minimal required results metamodel

exists.
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5.3.2 Required Public Structural Elements in the Supplier Analysis Results

In this section, the requirement of public structural element is described. It is already

required, that the result has to have information about the traces violating the security

property. As described in section 4.1, the client structural model is a component-based

architecture model with components as black boxes. Therefore, each invalid trace has to

contain at least one software state, which can be mapped to a supplier structural model

element generated from a client structural model element. Otherwise, the invalid trace is

based on the internal behavior of the component about which the client analysis model

does not know. Therefore, the assumption that the implementation of the supplier analysis

model is correct is violated.

If the supplier analysis examines a hyperproperty, then the supplier analysis result is a

set of traces, which invalidates the hyperproperty. The result is a set of traces because

the domain of a hyperproperty is Prop = P, as introduced in section 2.5. If the result

contains a set of traces instead of a single trace, then the correct security speci�cation is

not determined based on one trace but on the set of traces. Therefore, it is required that

at least one trace of the detected set of traces ful�lls the requirement of public structural
element.
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6 Connecting two Security Analyses

The information transfer between security analyses is possible if the analyses ful�ll the

requirements from chapter 5. Therefore, the security analyses are described as coupled.

The coupled security analyses form a megamodel, introduced in section 6.1. The central

part of the megamodel is the structural correspondence model described in section 6.2. If

the supplier analysis model skeleton is not already present, it is generated from the client

analysis model. The generation is presented in section 6.3. After the supplier analysis is

run, the supplier results are projected back into the client analysis model to complete the

information transfer. The back-projection is described in section 6.4.

6.1 Modeling the Coupling of Two Analyses as a Megamodel

Two static security analyses can be coupled if the requirements, shown in chapter 5

are ful�lled. The �rst requirement, requirement of a structural correspondence model
presented in section 5.1, states that it is possible to construct a correspondence model

between the underlying structural models. The requirement of a security correspondence
model, as described in section 5.2.3, is the second requirement. The third requirement is

requirement of result structure, introduced in section 5.3.1. The coupled system is described

as a megamodel consisting of an architecture view (client analysis) and a source code

view (supplier analysis), similar to the megamodel of the iObserve approach, introduced

in section 3.3. The client structural model is connected with the supplier structural model

by the structural correspondence model�structural. The two security models of the analyses

are connected with the security correspondence model �security. Furthermore, the supplier

analysis model is connected to the client analysis model by generating supplier analysis

results that are projected back into the client analysis model. The proposed megamodel is

shown in �gure 6.1.

The megamodel is based on the model operations sewing and weaving introduced in sec-

tion 2.1.4. The client structural model and the client security model are woven together to

produce the client analysis model. The supplier structural model and the supplier security

model are woven together to produce the supplier analysis model, as described in sec-

tion 4.1. The client analysis model and the supplier analysis model are sewed together

using mediators. The �rst mediator connects the client structural metamodel and the

supplier structural metamodel. The mediator is the structural metamodel transformation

structural correspondence metamodel. The initiated mediator between the two structural

models is the structural correspondence model. The second mediator connects the client

security metamodel and the supplier security metamodel. The mediator is the security

correspondence metamodel. The initiated mediator between the two security models is

the security correspondence model. Based on the two mediators, the client and supplier
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Figure 6.1: Formed megamodel by coupling an client and a supplier security analysis. The

transformation )proj from the supplier analysis results to the client analysis

model is the back-projection.

analysis model are sewed into one megamodel. Furthermore, the supplier analysis model

produces the supplier analysis results. The produce relation incorporates the supplier anal-

ysis results into the megamodel. The back-projection of the results represents a mediator

between the supplier analysis results and the client analysis model. Therefore, the client

analysis model can be sewed together with the supplier analysis results. The megamodel is

formed by the client analysis model, the supplier analysis model, and the supplier analysis

results.

6.2 Structural and Security Correspondence Model

Two correspondence models are used in this approach to couple two security analyses.

The �rst correspondence model is between the client structural model and the supplier

structural model. The second correspondence model is between the client security model

and the supplier security model. In section 6.2.1, the structure of the correspondence

models is presented. The creation of the correspondence models during the generation

process is explained in section 6.2.2.
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6.2.1 Structure of the Correspondence Models

As in the VITRUVIUS approach, presented in section 3.4, the correspondence model con-

tains correspondences between two groups of model elements. A triple graph grammar,

as introduced in section 2.1.5, can be used to describe rules under which a correspondence

between two sets of model elements is allowed. The correspondence model is established

between the client analysis model and the supplier analysis model. As described in sec-

tion 6.1, both analysis models consist of a structural model and a security model that are

woven together. Therefore, the correspondence model between the two analysis models is

divided into two correspondence models to separate concerns. The �rst correspondence

model is de�ned between the two structural models, as described in section 5.1.1. The

second correspondence model is de�ned between the two security models and is, therefore,

called the security correspondence model as described in section 5.2.3. The correspondence

models are used in the back-projection of the supplier analysis results.

As introduced in section 2.1.5, a triple graph grammar consists of two domain models

and a correspondence model, for example, the two structural models and the structural cor-

respondence model. The metamodel of a triple graph grammar is based on the metamodels

of the domain models. Based on a metamodel transformation, a triple graph grammar can

be constructed. Two graphs are the two domain metamodels. Each case of the metamodel

transformation can be represented as a node of the correspondence graph with edges to

all input metamodel elements and all output metamodel elements. In section 5.1.1 and sec-

tion 5.2.3 the two metamodel transformations)structural,meta and)security,meta are introduced.

Both metamodel transformations use a set of client analysis metamodel elements as input

and a supplier analysis metamodel element as output. Therefore, a triple graph grammar

can be constructed based on )structural,meta and )security,meta.

The triple graph grammar for the two metamodels is used as a metamodel for the

correspondence model. The correspondence nodes relate to all client analysis model

elements, which are used for the generation of a supplier analysis model element and the

generated supplier analysis model element.

A possible triple graph grammar for the structural metamodels of the running example

based on the structural metamodel transformation, de�ned in section 5.1.1, is shown

in �gure 6.2. Connections between model elements also have to be preserved during the

transformation. For example, the required relation between components and interfaces

is transformed into an implements relation between classes and interfaces. If a relation-

ship between two model elements exists and both model elements have an edge to a

correspondence node, then there is an edge between these two correspondence models.

The triple graph grammar for the two structural metamodels is used as a correspondence

metamodel for the two structural models. An excerpt of the correspondence model

initiated for the two structural models is depicted in �gure 6.3. The excerpt only shows the

correspondence for the component instance School with its provided interface instance

SchoolEducation.
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Figure 6.2: Possible triple graph grammar for the structural metamodel of the running

example with the structural metamodel transformation
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Figure 6.3: Excerpt of the correspondence model between the client and supplier structural

model of the running example

6.2.2 Creation of the Correspondence Models during the Supplier Analysis
Model Skeleton Generation

Both correspondence models are created during the generation of the supplier analysis

model skeleton. If both analysis models already exist and the requirement of consistency,

as described in section 5.1.2, holds, the correspondence models are generated during the

supplier-analysis-model-skeleton generation. However, the generated supplier analysis

model skeleton is not used after generation because the supplier analysis model already

exists.

At �rst, only the structural correspondence model and the structural transformation

)structural are considered. During the transformation, an exact matching between a set

of client structural model elements Eclient and one supplier structural model element

4supplier takes place. The matching is based on the structural metamodel transformation

)structural,meta. As described in section 6.2.1, the structural correspondence metamodel

is based on )structural,meta. Therefore, the matching which takes place during )structural is

added to the structural correspondence model. Let MME
client

be the set of the metamodel

elements which are used in Eclient and MM4
supplier

the metamodel element of 4supplier. The

set of MME
client

has an edge to a correspondence node which has also an edge to MM4
supplier

.

Therefore, the elements for MME
client

respectively MM4
supplier

in the structural correspon-

dence model are initiated with Eclient respectively 4supplier. Their correspondences are

added to the structural correspondence model. The same process is applicable to the

creation process of the security correspondence model during the supplier security model
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generation. The reason for this is that the security correspondence metamodel is based on

)B42DA8C~,<4C0 which is used for )B42DA8C~ .

During the generation of the supplier analysis model skeleton, multiple correspondences

are created and added to one of the correspondence models. If a client analysis model

element is involved more than once in)structural or)security, it has multiple edges to di�erent

correspondence nodes. If the same supplier analysis model element can be generated from

di�erent sets of client analysis model elements, it has edges to di�erent correspondence

nodes. Whenever )structural is used to generate a new supplier analysis model element, the

structural correspondence model is updated, and whenever )security is used, the security

correspondence model is updated.

6.3 Supplier Analysis Model Skeleton Generation

If the supplier analysis model does not already exist, the supplier analysis model skeleton is

generated from the client analysis model. In this process also the structural and the security

correspondence model is created. The supplier analysis model consists of a structural

model and a security model as described in section 4.1. As stated in section 4.1, the client

analysis model does not have the complete information about the internal implementation

of the components. Therefore, it is not possible to generate a complete supplier analysis

model from the client analysis model. The supplier analysis model skeleton consists of

the supplier structural model skeleton containing the structural data existing in the client

analysis model. Furthermore, the supplier security model skeleton only contains the

security information which can be generated from the client analysis model. A supplier

analysis model skeleton, for instance, only contains the interfaces and the components

implementing the interfaces. However, the implemented methods have empty bodies

because the exact internal implementation of the components is unknown.

To couple two security analyses, a structural metamodel transformation)structural,meta and

a security metamodel transformation)security,meta are required, as introduced in section 5.1.1

respectively section 5.2.3. The corresponding model transformation is constructed based

on the triple graph grammar, implied by a metamodel transformation [74]. The client

and the supplier analysis model can be represented as a directed graph, with the model

elements as nodes and their edges to each other. In the running example from section 4.2,

the interface SchoolEducation has an edge to the method getCertificate(), which has an edge

to its type and to its security level. SchoolEducation has also incoming edges from the

components School and Person. The graph of the client analysis mode is the input of the

generation process with the supplier analysis graph as output. The graph of the client

analysis model can be traversed. In the graph traversal, it is checked for each node if

)structural or )security can be applied. If one of the two transformations can be applied, a

new supplier model element is created in the output graph [75]. However, )structural,meta or

)security,meta can use multiple client analysis model elements as input to create one supplier

analysis model element. In simple graph traversal, only one-to-one matching is possible.

Therefore, a graph traversal is not su�cient to generate the client analysis model. One

possible solution for this case is pattern matching [76]. The patterns are provided by the

metamodel transformations)structural,meta and)security,meta. Each metamodel transformation
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de�nes all sets of model elements from which a supplier analysis model element can be

generated. Those input sets of the transformations are patterns that are searched in the

client analysis model. The patterns can also be viewed as graphs such as the client and

supplier analysis model. Therefore, the search for a pattern graph in the client analysis

model graph is a subgraph isomorphism problem [77]. For each pattern found in the

client analysis model, the corresponding supplier analysis model element is generated

with )structural or )security. Each time )structural or )security is applied, it is checked whether

the supplier analysis model element that would be generated is already in the generated

supplier analysis model skeleton or not. If it is already in the supplier analysis model

skeleton, it is not added to the supplier analysis model skeleton. Otherwise, there are

duplicates in the generated supplier analysis model skeleton. Each time)structural or)security
is used, the structural or the security correspondence model has to be updated with the

newfound correspondence. If the generated supplier analysis model element already

exists in the supplier analysis model skeleton, it is not added again, but the newly found

correspondence has to be added to the �tting correspondence model.

6.4 Back-Projection of the Supplier Analysis Results

After the supplier analysis model skeleton is supplemented with the internal structure

of the component, the supplier analysis is run to produce supplier analysis results. The

supplier results are projected back into the client analysis model for the information

transfer back to the client analysis model. In this approach, the back-projection )proj is

de�ned as:

)proj : "result ×�structural ×�security → "client (6.1)

The back-projection )proj uses the supplier result model "result, the structural correspon-

dence model �structural, and the security correspondence model �security to produce new

client analysis model elements. The client analysis model elements are bundled by "client.

The client analysis model is updated with "client.

The back-projection is split into two steps. The �rst step is to determine the adapted

security speci�cation on the public method of the result trace. The second step is to adapt

the client analysis model. If the supplier analysis does not �nd any security violation, the

assumptions of the client analysis examined by the supplier analysis hold, and nothing has

to be projected back. However, if at least one invalid trace through the supplier analysis is

detected, the result is projected back.

In section 5.3, the transformation )result is introduced. It transforms any result which

contains information about the invalid traces into a simpli�ed result. The metamodel of

the simpli�ed result is depicted in �gure 5.2. The simpli�ed result consists of a list of

invalid traces. Each trace consists of trace states. Each trace state contains information

about the executed action and its security speci�cation.

In this approach, as introduced in section 4.1, the ground truth is the implementation.

The client analysis model only assumes the security properties which are examined by the

supplier analysis. The security model of the supplier analysis model skeleton is generated

from the client analysis model. Therefore, the security model of the supplier analysis model
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Figure 6.4: A result trace has to contain at least one public software state, in this case, the

visible action. Furthermore, each trace has to contain a security speci�cation.

The security speci�cations are combined into the correct security speci�cation

of the visible action. The visible action is converted to a client structural

model element with the structural correspondence model. The correct security

speci�cation is transformed into a client security model element with the

security correspondence model.

skeleton also contains the assumptions of the client analysis model. The assumptions are

veri�ed with the supplier analysis. If the supplier analysis �nds invalid traces through the

supplier analysis model and there are trace states with public actions in the invalid traces,

the assumption of the security speci�cation of this public action is wrong. The security

speci�cations of the public actions are wrong because the internal implementation of the

components is assumed to be correct. For each public action that is not contained in any

invalid trace, the security speci�cation is correct.

The schema of the back-projection of one invalid trace is shown in �gure 6.4. First,

the back-projection has to determine the adapted security speci�cation on the visible

actions of the result trace. These adapted security speci�cations are used to adapt the

client analysis model. The back-projection is comparable with the approach of iObserve,

as introduced in section 3.3. The monitoring events in the run-time model are used as

ground truth on which the workload speci�cation in the architecture model is adapted.

As described in section 4.1, the security domain of the supplier analyses is the domain

of lattice-based security properties, introduced in section 2.6. At �rst, it is assumed that

the supplier analysis only examines one lattice-based security property. If the supplier
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6.4 Back-Projection of the Supplier Analysis Results

analysis examines multiple lattice-based security properties, the supplier analysis result is

split into single results for the di�erent security properties. The single results for each

analyzed security property are projected back independently.

6.4.1 Determining the Adapted Security Specification for One Invalid Trace

The supplier analysis model skeleton of the running example, introduced in section 4.2, is

manually implemented. An excerpt of the implementation is described in section 4.2. If the

supplier analysis is run on this implementation excerpt, three invalid traces are detected,

shown in �gure 6.5.

<<educational>>
String getCertificate()

<<educational, contact>>
String generateCertificate()

public private

(a) First reported invalid trace through the supplier analysis model in the running example.

String getCertificate() is the public action.

<<creditcard>>
float getCreditCardScore()

<<medical>>
MedicalData getOutstandingBills()

publicprivate

(b) Second reported invalid trace through the supplier analysis model in the running

example. MedicalData getOutstandingBills() is the public action.

<<contact>>
CreditCardData getCreditCardData()

<<creditcard>>
int getTuitionLoan()

<<creditcard, educational>>
String examinePerson()

public private

private

(c) Third reported invalid trace through the supplier analysis model in the running

example. CreditCardData getCreditCardData() is the public action.

Figure 6.5: Invalid traces through the supplier analysis model reported by the supplier

analysis

In the following, a single invalid trace with = states but only one state B with a public

action is considered. Then, the security speci�cation of B has to be adapted so that the

new security speci�cation resolves the invalid trace. The trace state with the public action

can be determined with the structural correspondence model. A trace state is a public

trace state if its action is present in the structural correspondence model. In this approach

to couple security analyses, the adapted security speci�cation is calculated based on the

supplier analysis results. To calculate the adapted security speci�cation of B , only the

previous trace state and the next trace state of B in the invalid trace have to be considered.
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6 Connecting two Security Analyses

The reason for this is that the manual implementation is viewed as ground truth, as

described in section 4.1. Therefore, each internal information �ow to the previous trace

state or from the next trace state in the invalid trace must be correct. The previous trace

state of B is called the predecessor of B denoted with predB . The next trace state of B is called

the successor of B denoted with succB . The security level of B is denoted by scB . The adapted

security level of B is denoted by B̃2B . The notation scG → sc~ means that information may

�ow from the security level of state G to the security level of state ~. Accordingly, the

notation scG 9 sc~ means that information is not allowed to �ow from the security level

of state G to the security level of state ~.

The trace state B can have three di�erent positions in the invalid trace. The three

positions and possible strategies to determine the adapted security speci�cations for each

position are examined in sections 6.4.1.1 to 6.4.1.3 respectively.

6.4.1.1 The Public Trace State at the Beginning of the Invalid Trace

The �rst position is at the beginning of an invalid trace. Therefore, only hidden states of

the software are entered from B in the invalid trace. In this case, the predecessor of B does

not exist. An example for this case is depicted in �gure 6.5a. There is an invalid �ow from

educational to educational, contact which is not in the lattice of the supplier analysis model,

introduced in section 4.2. In section 2.6, the least-upper-bound operator is introduced as

an operation that outputs the �rst security level that relates to both input security levels.

The adapted security speci�cation for B on the �rst position can be determined with the

least-upper-bound operator of the lattice. The least-upper-bound operator is used because

the invalid trace is resolved. Furthermore, all information �ows to any software state

accessible from B remain valid because s̃cB → scB is in the lattice, which is a property of the

least-upper-bound operator. The input of the least-upper-bound operator is the security

level of the public action itself and the security level of its successor:

s̃cB = scB ⊕ scsuccB (6.2)

For the invalid trace seen in �gure 6.5a, the adapted security speci�cation of String
getCertificate() is

B̃2(CA8=664C�4AC8 5 820C4 () = 43D20C8>=0; ⊕ 43D20C8>=0;, 2>=C02C = 43D20C8>=0;, 2>=C02C (6.3)

However, this strategy does not always work. The �rst case in which this strategy does not

work is a missing de�nition for the least-upper-bound for the two security speci�cations.

That is not possible for the security lattice of the running example. To build a counter-

example, consider a security lattice with the following relations:

�→ �, � → � (6.4)

If the public state in the invalid trace has security level � and the successor has security

level � , then there is no security level that relates to � and � . In this case, the least-upper-

bound for � and � is not de�ned. The fallback strategy for this case is to use the security

level of the successor as the adapted security level of B:

s̃cB = scsuccB (6.5)
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6.4 Back-Projection of the Supplier Analysis Results

This strategy to determine the adapted security speci�cation for B has problems when

another software state ~, from which B is entered, exists and is not in the invalid trace.

The reason is that the adapted security level of B is higher than the old security level of

B . Therefore, it is possible that sc~ → s̃cB is not in the security lattice. This is the case,

if sc~ = scB . This problem also occurs with the fallback strategy. We view the manual

implementation of the supplier analysis as the ground truth in this approach to couple

security analyses. Therefore, a new invalid trace is reported after the adaption of scB . If

the supplier analysis is re-run, the manual implementation contains errors, which violates

the correctness requirement of the manual implementation.

6.4.1.2 The Public Trace State at the End of the Invalid Trace

The second possible position of B is at the end of the trace. Therefore, B is only entered

from hidden states. In this case, the successor of B does not exist. An example for this

case is shown in �gure 6.5b. There is an invalid �ow from creditcard to medical which is

not in the lattice of the supplier analysis model, introduced in section 4.2. The strategy

for determining the adapted security speci�cation, in this case, is to determine a security

speci�cation s̃cB with:

scpredB → s̃cB (6.6)

scB → s̃cB (6.7)

Therefore, information can �ow from predB to B with the adapted security level s̃cB . Fur-

thermore, information may �ow from each software state, which is not in the invalid

trace from which B can be entered, to B . However, this strategy does also have some

shortcomings. The �rst shortcoming is revealed in the second invalid trace of the running

example, shown in �gure �gure 6.5b. s̃cB should ful�ll the following two equations:

2A438C20A3 → s̃cB (6.8)

<43820; → s̃cB (6.9)

There is no security level which ful�lls these two equations. The fallback strategy for this

case is to use s̃cB = scpredB . Furthermore, if B enters another software state ~, it can be, that

s̃cB → sc~ is not in the lattice. The fallback stratey cannot solve this case. An intuitive

approach is to require, that also the equation s̃cB → scB holds for a adapted s̃cB . However,

if scpredB → s̃cB and s̃cB → scB can be ful�lled, then the invalid information �ow from predB
to B is not reported in the �rst place. The reason for this is, that the relations in a lattice

are transitive and scpredB → scB is also in the lattice. As mentioned in section 6.4.1.1, this

case must not appear in the supplier analysis results, because the internal implementation

is assumed to be correct.

6.4.1.3 The Public Trace State in the Middle of the Invalid Trace

The third position of B in an invalid trace is at the position 8 with 0 < 8 < =. Therefore, B

has a successor as well as a predecessor. The strategy for this case is to calculate a security
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level to which information can �ow from scpredB and from which information can �ow to

scsuccB :

scpredB → s̃cB (6.10)

s̃cB → scsuccB (6.11)

The reason for this strategy is that the information �ow scpredB → s̃cB → scsuccB is valid if

s̃cB holds the equations (6.10) and (6.11). However, a valid information �ow from every

other state which can enter B or to every state B can enter is no longer ensured. To ensure

this, additionally s̃cB → scB and scB → s̃cB has to be ful�lled, whereby a bidirectional

relation would exist between the two security levels. If s̃cB → scB could be ful�lled, the

initial information �ow would not have been reported because scpredB → s̃cB → scB is a

valid �ow. Therefore, only scB → scsuccB would have been reported. If scB → s̃cB could

be ful�lled, then also scB → s̃cB → scsuccB is a valid �ow. Therefore, only scpredB → scB
would have been reported. In �gure 6.5c, an example for this case is shown. The invalid

information �ow is:

43D20C8>=0;, 2>=C02C → 2A438C20A3 → 43D20C8>=0; (6.12)

Therefore, s̃cB has to ful�ll the following equations:

43D20C8>=0;, 2>=C02C → s̃cB (6.13)

s̃cB → 43D20C8>=0; (6.14)

A s̃cB which ful�lls the two equations is, for instance, {educational, contact} and educational.
It is possible that for an invalid information �ow no s̃cB can be found which corrects the

invalid information �ow. For example:

<43820; → 2>=C02C → 43D20C8>=0; (6.15)

contact cannot be replaced with any other security level, so that the invalid trace is

corrected.

6.4.1.4 Determining the Adapted Security Specification for a Trace with Multiple Public
Actions

The invalid trace could have multiple trace states with di�erent public actions. The set of

trace states with public actions in the invalid trace is called ( . The trace state B8 is at the 8-th

position of the invalid trace. To determine the adapted security levels for the trace states, it

is assumed that each B8 ∈ ( has a di�erent public action from all other trace states. Only the

successor and the predecessor are necessary to determine the adapted security speci�cation

of a trace state. Therefore, there are two possibilities for B8 . First, B8 has no trace states

with public actions as neighbors, formalized, succB8 ∉ ( and predB8 ∉ ( hold. In this case, to

determine the adapted security level for B8 the strategies from sections 6.4.1.1 to 6.4.1.3

can be used, because the security level of the neighbors are not adapted. The second case

is that B8 has at least one neighbor that contains a public action. Let � = { 9, . . . , :} be the
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6.4 Back-Projection of the Supplier Analysis Results

set of indices of the �rst sequence of trace states with public actions, whereby, B 9 ∈ ( ,

B 9+1 ∈ ( ,. . . , B: ∈ ( . This sequence of trace states is only reported if scB8 9 scB8+1 applies

∀8 ∈ � , 8 < 9 . If 9 > 1, then also scpredB 9 9 scB 9 holds. If : < = holds, then also scB: 9 scsuccB:
holds. Otherwise, multiple invalid traces are reported because there must be an invalid

information �ow from each trace state to the next trace state. To determine the adapted

security speci�cation for each trace state in the sequence, the adapted security level is

determined step by step. First, the adapted security level for B 9 is determined, then for

B 9+1 and so on. The adapted security level for B 9 is determined, by viewing B 9+1 as a trace

state with an internal action. Then, one of the three before-mentioned strategies is used

to determine the adapted security speci�cation for B 9 . To determine the adapted security

level for B 9+1, the adapted security level s̃cB 9 of B 9 is seen as correct. This is repeated for

each trace state in the sequence.

If the �rst sequence of trace states with public actions in the invalid trace is resolved, the

next sequence is resolved with the same strategy. This strategy can have cases in which it

does not work because it is based on the three strategies from sections 6.4.1.1 to 6.4.1.3,

which have edge cases, for which the correct security level cannot be determined. If this

approach to determine the security levels based on the supplier analysis results cannot

resolve all invalid traces, the user of this approach is noti�ed.

6.4.1.5 Determining the Adapted Security Specification for Multiple Traces with Multiple
Public Actions

The supplier analysis can �nd multiple invalid traces with multiple trace states with public

actions in each invalid trace. Each trace state with a public action can be in multiple

invalid traces. To determine the adapted security speci�cation for each public action in

the supplier result, an equation system is built. The trace state B<,8 is the 8-th state in the

<-th invalid trace. Let � be the set of all (<, 8) for which the trace state B<,8 has a public

action. For each B<,8 with (<, 8) ∈ � the following equations have to hold:

scpredB<,8
→ s̃cB<,8

(6.16)

s̃cB<,8
→ scsuccB<,8

(6.17)

The equations are based on the third strategy described in section 6.4.1.3. If the public action

of B<,8 is only used once and B<,8 is not part of a sequence, as described in section 6.4.1.4, and

8 = 1 respectively 8 = =< , then the strategy from section 6.4.1.1 respectively section 6.4.1.2

is used. For all other trace states B<,8 with (<, 8) ∈ � the equation system � can be built:

� = {scpredB<,8
→ s̃cB<,8

, s̃cB<,8
→ scsuccB<,8

| (<, 8) ∈ � } (6.18)

The equation system consists of two equations for each public trace state in the results. The

�rst equation for a public trace state is, that information may �ow from the security level of

the predecessor to the adapted security level of the public trace state. The second equation

for a public trace state is, that information may �ow from the adapted security level of the

public trace state to the security level of the successor. Then, the set" = {s̃cB<,8
| (<, 8) ∈ � }

solves the most equations of �.
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6.4.2 Adapting the Client Analysis Model

A client analysis model element consists of a structural and a security model, as described

in section 6.1. The security model of the client analysis model is adapted with the adapted

security speci�cation if the supplier analysis �nds a security violation. The adaption of

the security model of the client analysis model is a model update [78]. A model update

consists of the model elements which are updated and the updated model element. The

old model element is replaced with the new one.

If the supplier analysis does not �nd any invalid traces, the client analysis model is

not adapted. However, if the supplier analysis result contains invalid traces, then the

client analysis model is based on assumptions veri�ed to be wrong with the supplier

analysis. Therefore, the client analysis model has to be adapted with the determined client

analysis model elements based on the supplier analysis results. The set of adapted security

levels " is used to adapt the client analysis model. For each adapted security level in the

trace< at the position 8 s̃cB<,8
, the corresponding client structural model elements SMclient

to the action of the state B<,8 are found with the structural correspondence model. The

corresponding client security model elements Mclient for s̃cB<,8
are found with the security

correspondence model. The old security speci�cation of SMclient is updated with Mclient.

The model update of the client analysis model can then be triggered with the pair of the

old corresponding client analysis model elements and the new, adapted client analysis

model elements.

In the running example, the three invalid �ows seen in �gure 6.5 are reported. In sec-

tion 6.4.1.1, the adapted security level for the public trace state with the method getCer-
tificate is determined. The adapted security level for getCertificate is {educational, contact}.
The structural correspondence model is searched for the Method2Method correspondence

with getCertificate as supplier structural model element. The found Method2Method cor-

respondence contains the corresponding client structural element for getCertificate. The

annotation of the client structural model element getCertificate is resolved by searching the

client analysis model. The old client analysis model element is created by using the client

structural model element getCertificate and the found annotation of getCertificate. The new

adapted security level of the supplier structural element getCertificate is transformed to the

corresponding client security model element with the security structural correspondence

model. The new client analysis model element is created by combining the client structural

model element getCertificate with the corresponding client security model element to

the determined security level. A model update operation on the client analysis model is

triggered with the pair of the old and new client analysis model elements.
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The approach to couple two security analyses is instantiated with two concrete security

analyses. The initiation is used to evaluate the approach. We use the Access Analysis

of Kramer et al. [38] as client analysis. The information �ow analysis JOANA is used as

supplier analysis. The PCM repository model [79] is used as the client structural model.

Con�dentiality4CBSE is used as the client security model, as introduced in section 2.7.1.

The used supplier structural metamodel is a Java source code metamodel. The supplier

security metamodel is JOANA, described in section 2.7.2. JOANA uses annotations of Java

methods.

In section 7.1, the overview of the architecture of the implementation is presented. In

the following sections, it is shown that Con�dentiality4CBSE and JOANA can be coupled.

Furthermore, the used transformations to form the megamodel, described in section 6.1,

are presented. The generation of annotated Java source code is a two-step process. The

�rst step is to generate a reduced Java source code model, described in section 7.2, and a

JOANA security model, described in section 7.3. The second step is to generate annotated

source code from the two models, described in section 7.4. The advantage of this two-step

approach is that the generated models can be used in other model-driven approaches

like the back-projection. The last transformation used to form the megamodel is the

back-projection. The implementation of the back-projection is explained in section 7.5.

7.1 Architecture Overview

The approach is implemented as two eclipse plugins. One plugin contains the generation

capabilities for the annotated source code and the other for the back-projection. The

plugins are written in Java and Xtend [80]. The plugins can be found in the package

edu.kit.kastel.scbs.pcm2java4joana [81]. The architecture is shown in �gure 7.1. There

are three main packages on which these two plugins are based. The �rst package includes

the handlers, which orchestrate the plugin executions. The handler for the annotated source

code generation is in the class PCM2Java4JoanaHandler.java, and the handler for the back-

projection is in BackprojectionHandler.java. A user of the plugin triggers the handlers.

The second package consists of the model generators for generating the supplier analysis

model. The third package is concerned with the back-projection. The supplier results are

�rst parsed with the JoanaResultParser. Then, the adapted security level is determined

with the CorrectSecurityLevelFinder. The class ClientAnalysisModelUpdater uses the

found security levels to adapt the client analysis model.

In this approach, models for Java source code, JOANA, structural and se-

curity correspondences, and the supplier results are used besides the re-

quired client supplier analysis model. The models are based on the Ecore
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model from the eclipse modeling framework [82]. The models can be

found in the packages edu.kit.kastel.scbs.pcm2java4joana.sourcecode [83],

edu.kit.kastel.scbs.pcm2java4joana.correspondencemodel [84], and

edu.kit.kastel.scbs.pcm2java4joana.joana [85]. Besides the models, three helper pack-

ages are used. First, the helper package edu.kit.kastel.scbs.pcm2java4joana.models is

used for aggregated models. An example aggregated model is the abstract supplier analysis

model, which combines a source code model with a JOANA model and the correspondence

models. Secondly, the helper package edu.kit.kastel.scbs.pcm2java4joana.utils is

used, where utilities for the di�erent models are located. The third helper package is the

exceptions package edu.kit.kastel.scbs.pcm2java4joana.excceptions, which bundles

self-de�ned exceptions for the implementation.

7.2 Structural Transformation and Structural
Correspondence Model

In this section, the connection between the client structural model and the supplier struc-

tural model in the initiation with the analyses Access Analysis and JOANA are described.

The connection between the two structural models is based on the work of Konersmann,

described in section 3.5. The client analysis metamodel for the Access Analysis is the

PCM repository model extended with Con�dentiality4CBSE, as introduced in section 2.7.1.

Therefore, the client analysis metamodel contains structural information about the soft-

ware system. As described in section 2.3, the repository metamodel consists of among other

elements BasicComponent, OperationInterface and CompositeDataType. A BasicComponent
can provide or require OperationInterfaces. Therefore, the components have concrete in-

terfaces. An OperationInterface can have OperationSignatures, which de�ne methods of

the interface. Therefore, component-based software systems can be modeled with the

repository metamodel. A repository model which initializes at least one BasicComponent
contains structural information about the software system and ful�lls the requirement of
structural information, as introduced in section 5.1.1.

The supplier structural model is a Java model which uses the Java programming language

as metamodel. The Java programming language contains model elements for specifying

a component-based software system. Facade classes that implement the provided inter-

faces of a component are used to specify components in the Java model [86]. The Java

interfaces are used as provided interfaces of the components [87]. The used Java source

code metamodel contains a subset of the Java programming language because not every

element of the Java programming language is required. For example, inheritance of in-

terfaces from other interfaces is not required in this bachelor’s thesis. The Java source

code metamodel is used for the concrete transformation in this bachelor’s thesis. The

Java source code metamodel is described in section 7.2.1. A correspondence model is

created between the client structural model and the supplier structural model, described

in section 7.2.3. The structural correspondence model is based on the structural metamodel

transformation, introduced in section 7.2.2. The concrete structural transformation is

described in section 7.2.4.
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Figure 7.1: Architecture overview of the implemented approach
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7.2.1 Reduced Java Source Code Model

A Java metamodel based on the Ecore model is used because Ecore-based models can easily

be added to toolchains for model-driven software development. For simplicity, a reduced

Java metamodel is used because not all Java metamodel elements are necessary for the

transformation from a repository model to a Java model.

The reduced Java source code metamodel is illustrated in �gure 7.2.

The reduced Java source code metamodel can be found in the project

edu.kit.kastel.scbs.pcm2java4joana.sourcecode. The source code model can

contain TopLevelTypes like Classes and Interfaces. The Interfaces and Classes can contain

Methods. A Method can have Parameters and a (return) Type. The Type is the return

type of the Method. If the Type is null, then the return type is void. A Type can be a

BuiltInType, like int, String, or float, a ReferenceType, which contains a Class, Interface,

or a CollectionType, which has an InnerType. A Class can also contain Variables.

7.2.2 Structural Metamodel Transformation

The structural metamodel transformation generates supplier structural metamodel ele-

ments from client structural metamodel elements. A PCM repository BasicComponent is

transformed into a Class. A PCM repository Interface is transformed into a Java Interface.

The Methods, Parameters, and Types of the repository model are transformed into Java

Methods, Parameters, and Types. Java Methods are assigned to Interfaces and Classes. A

CompositeDataType is transformed into a Class with the inner declarations of Compos-
iteDataType as Variables. The ProvidedRoles between BasicComponents and Interfaces are

transformed into implements relations in the Java metamodel. The methods of a provided

Interface are added to the class corresponding to the BasicComponent of the ProvidedRole.

The required Interfaces of BasicComponents are transformed into instance Variables of the

Classes which are generated from the BasicComponent.

7.2.3 PCM-Java Correspondence Model

As described in section 6.2.1, the structural metamodel transformation)structural,meta implies

a triple graph grammar that is shown in �gure 7.3. A structural correspondence metamodel

can be derived from the triple graph grammar. As described in section 6.4, only the

component methods and their parameters are relevant for the back-projection because

only to these the stereotype InformationFlow can be applied. Therefore, the correspondence

between CompositeDataType and Class as well as between DataType and Type are irrelevant

for projecting the supplier analysis results back. Therefore, the structural correspondence

model does not have to contain these correspondences.
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Figure 7.2: Metamodel of the reduced Java source code model as Ecore model
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The used structural correspondence metamodel between the repository

and Java metamodel is depicted in �gure 7.4 and is located in the project

edu.kit.kastel.scbs.pcm2java4joana.correspondencemodel. The correspondence

between components and classes can have multiple Interface2Interface correspondences

because a component can require and provide multiple interfaces. An interface can

also contain multiple methods. Therefore, Interface2Interface can also have multiple

Operation2Method correspondences. Each method can have multiple parameters, thus

Operation2Method can have multiple Parameter2Parameter correspondences. All PCM

repository model elements are identi�ed with their ID and name.

A structural transformation can be de�ned between the PCM repository model and the

Java source code model [78]. Therefore, a structural correspondence model between the

client and supplier structural model exists. Furthermore, the requirement of a structural
correspondence model, described in section 5.1, is ful�lled. If the generated supplier analysis

model skeleton is implemented consistent with the client analysis model, as described

in section 5.1.2, then also the requirement of consistency is ful�lled.

7.2.4 Structural Transformation

The structural transformation)structural transforms model elements of the repository model

into model elements of the Java model. )structural is based on )structural,meta, introduced

in section 7.2.2, and is implemented in the class SourceCodeModelWithCorrespondence-

ModelGenerator.java.

Interfaces and CompositeDataTypes are �rst class entities because these are not depended

on other elements. First, the �rst class entities are transformed because because Interfaces

are needed for transforming ProvidedRoles and RequiredRoles of the BasicComponents. The

de�nition of an interface is, for example, public interface Example {}. To transform

the �rst class entities, �rst, the de�nitions of the �rst class entities are generated because

the �rst class entities can reference each other as a datatype. For example, a Composite-
DataType or Interface can be the return type of a method. After the de�nitions of the �rst

class entities are generated, the �eld de�nitions of the �rst class entities are added. In the

case of Interfaces, the added �elds are Methods. The Interface Methods are generated from

the provided OperationSignatures of the Interface. The �elds of a class generated from a

CompositeDataType are instance Variables which are generated from the InnerDeclarations

of the CompositeDataType. The transformation )structural transforms the BasicComponents
into facade classes using the �rst class entities. A BasicComponent has ProvidedRoles that

are referencing Interfaces. The referenced Interfaces are added to the list of implemented In-
terfaces of the transformed Class. A BasicComponent has RequiredRoles that are referencing

Interfaces. The referenced Interfaces are added to the transformed Class as Variables.

Each time a component, interface, method, or parameter is transformed into the cor-

responding supplier structural element, the correspondence is added to the structural

correspondence model, described in section 7.2.3.
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Figure 7.3: Triple graph grammar for the repository and Java model implied by the struc-

tural metamodel transformation
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Component2Class

 javaClass : Class

Interface2Interface

 javaInterface : Interface

Operation2Method

 javaMethod : Method

Parameter2Parameter

javaParameter : Parameter

StructuralCorrespondenceModel

PCMElement

id : EString

name : EString

PCMComponent

PCMInterface

PCMOperation

PCMParameter

[0..*] interface2interface[1..1] pcmcomponent

[0..*] operation2method[1..1] pcminterface

[0..*] parameter2parameter[1..1] pcmoperation

[1..1] pcmparameter

[0..*] component2class

[0..*] pcminterface

[0..*] pcmoperation

[0..*] pcmparameter

Figure 7.4: Structural correspondence metamodel as Ecore model
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7.3 Security Transformation and Security Correspondence
Model

The used client security metamodel is the metamodel of Con�dentiality4CBSE, introduced

in section 2.7.1. The metamodel of JOANA is used as the supplier security metamodel.

The shared trace property of Con�dentiality4CBSE and JOANA is non-interference. Both

analyses analyze the software system based on the security level of the methods and

parameters. If additionally, a security model transformation exists, then the requirement of
a security correspondence model, described in section 5.2, is ful�lled. The security meta-

model and model transformation are presented in section 7.3.2. The security metamodel

transformation is based on an Ecore model for the JOANA metamodel, presented in sec-

tion 7.3.1. Based on the security metamodel transformation, the security correspondence

model between Con�dentiality4CBSE and JOANA is created. This process is described

in section 7.3.3.

7.3.1 JOANA Model

The JOANA metamodel is based on the Ecore model, which is shown in �gure 7.5. The

JOANA metamodel can be found in edu.kit.kastel.scbs.pcm2java4joana.joana. As

described in section 2.7.2, JOANA is based on Source, Sink, and EntryPoint elements, which

are grouped by a common tag. We abstract from these three model elements for a better

management of the model. The model root is JOANARoot. It can have multiple FlowSpecifi-
cations. A FlowSpecification consists of an EntryPoint and Annotations with the same tag.

The annotation EntryPoint and Annotation are inheriting from FlowSpecificationElement,
because both can be assigned to methods of a class. An Annotation can also be assigned to a

parameter of a method. The elements Source and Sink are inheriting from Annotation. Each

FlowSpecificationElement has a tag which has to be the same for all FlowSpecificationEle-
ments in a �ow. The element EntryPoint has exactly one Lattice that contains relations

between SecurityLevels. A FlowRelation between two sets of SecurityLevels means that

information is allowed to �ow from the �rst set of SecurityLevels to the second set. JOANA

can only de�ne a �ow between two levels. However, it can be bene�cial to de�ne a

FlowRelation between two sets of SecurityLevels during the model generation. A set of

SecurityLevels can be combined into one security level. A set of SecurityLevels is combined

into one by sorting the security level names ascending and then merging the names into

one string. Therefore, FlowRelation de�nes a set of SecurityLevels as from and the sec-

ond set of SecurityLevels as to. Therefore, information can �ow from a method that has

the combined security level of SecurityLevels de�ned in from to a method that has the

combined security level of SecurityLevels de�ned in to.
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EntryPoint

Annotation

annotatedParameter : Parameter

FlowSpecificationElement

tag : EString
annotatedClass : Class
 annotatedMethod : Method

Sink Source

SecurityLevel

Lattice

FlowRelation

JOANARoot

FlowSpecification

JoanaElement

name : EString

[0..*] securitylevels

[1..1] lattice

[1..*] securitylevel

[0..*] flowrelation

[1..*] from

[1..*] to

[0..*] flowspecification

[1..1] entrypoint

[1..*] annotation

[1..1] lattice

[0..*] securitylevel

[0..*] annotation

Figure 7.5: JOANA metamodel as Ecore model
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7.3.2 Security Metamodel Transformation and Security Model
Transformation

The JOANA model is generated from the Con�dentiality4CBSE model. The security trans-

formation is implemented in the class AnnodationModelGenerator.java. As introduced

in section 2.7.1, �rst the DataSets have to be de�ned to specify con�dentiality with Con�-

dentiality4CBSE. The DataSets are assigned to methods and parameters by applying the

stereotype InformationFlow. The stereotype InformationFlow assigns a ParametersAndData-
Pair to a method of an interface. The element ParametersAndDataPair contains DataSets as

DataTargets.

The �rst generated JOANA model elements are the SecurityLevels. A JOANA SecurityLevel
is generated from one DataSet. A ParametersAndDataPair can assign a set of DataSets to a

method. Each set of DataSets is transformed into a SecurityLevel in the JOANA model.

The second generated JOANA model element is the Lattice. The pseudo-code for the

SecurityLevel generation and the Lattice generation is shown in �gure 7.6. There is no

security lattice de�ned in the client security model. Therefore, the Lattice is approximated

based on the power set of the DataSets. Information may �ow from a set of SecurityLevels
A to another set of SecurityLevels B if set B is a subset of A. For example, if there are two

DataSet instances Medical and CreditCard, then power set is:

{{}, {Medical}, {CreditCard}, {Medical,CreditCard}} (7.1)

The empty subset is ignored because it does not contain any SecurityLevel. The other sub-

sets are the SecurityLevels of the JOANA model. As described in section 2.6, each security

level has a relation to itself. A method that has the security level {Medical,CreditCard}
can also access information with the security level {Medical} or {CreditCard}. Therefore,

the lattice implied by the security levels in the example is:

Medical → Medical (7.2)

CreditCard → CreditCard (7.3)

Medical,CreditCard → Medical (7.4)

Medical,CreditCard → CreditCard (7.5)

However, the JOANA Lattice only contains the last two relations because each security

level has a relation to itself. The Lattice contains FlowRelations that are not used in the

supplier analysis model. Some of the FlowRelations in the Lattice could not be wanted by

the developer. Another option to generate the Lattice is to use the data set combinations

existing in the client security model for the security lattice. The problem is that it is

unknown if those are the only combinations that can be used. The adapted security

level could not be possible to determine in the back-projection with the limited set of

SecurityLevels.

The next step is to generate the Annotations for the generated supplier structural model

from the client security model. In the client security model, the methods and parameters

are annotated with the security level of the method or parameter. In the JOANA model, the

Annotations are subtyped by Sources or Sinks whereas the client analysis model contains
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1 Input: datasets

2 securityLevels = new List()

3 for dataset in datasets:

4 securityLevels.add(generateSecurityLevel(dataset))

5 powerSetOfSecurityLevels = generatePowerSet(securityLevels)

6 lattice = new Lattice()

7 for from in powerSetOfSecurityLevels:

8 for to in powerSetOfSecurityLevels:

9 if to != {} and from != to and isIn(to, from).

10 flowRelation = generateFlowRelation(from, to)

11 lattice.addFlowRelation(flowRelation)

Figure 7.6: Pseudo code for generating of the JOANA SecurityLevels and of the Lattice

no information about information sources or sinks. Therefore, the assignment of Sources

and Sinks to methods and parameters has to be approximated. An Annotation that has

neither a tag nor has been initiated as Sink or Source is called a blank annotation. Blank

annotations are used as temporary model elements from which later Sinks, Sources, and

EntryPoints are generated. In the �rst step, blank annotations are generated from the client

security model because, at this point, it is unknown whether an Annotation is a Source or

Sink. In the second step, the blank annotations are converted to Sources and Sinks using

an approximation schema.

For each applied stereotype InformationFlow in the client security model, JOANA blank

annotations are generated. The stereotype contains information to which method it is

applied and which ParametersAndDataPairs it has. A ParametersAndDataPair de�nes the

DataSets of the Method that are later used to generate the SecurityLevels of a Method.

Security information is speci�ed with stereotypes applied to interface methods in the

client analysis model. In the supplier analysis model, on the other hand, the security

information is speci�ed with annotations on methods of components. Therefore, for each

annotated method of an interface in the client analysis model, all components imple-

menting this method in the supplier analysis model have to be annotated. The JOANA

Annotations are generated in two steps from an applied InformationFlow stereotype. First,

all component methods implementing the method to which the stereotype is applied

have to be determined. Then for each component and its method, a JOANA Annotation
is generated. The Annotation contains the Class, the Method, and the SecurityLevel. If the

ParameterSource is a parameter name, the annotation also contains the Parameter speci�ed

in the ParameterSource. The pseudo-code for the generation of the blank annotations is

shown in �gure 7.7.

After all the blank annotations are generated, the FlowSpecifications with Sources, and

Sinks are generated. A FlowSpecification speci�es an EntryPoint and a set of Sources and

Sinks. Each interface method is an EntryPoint to the software system because the interfaces

specify how to interact with the other components. Therefore, each implementation of an

interface method is at least once an EntryPoint in a FlowSpecification. The interface methods

in the client analysis are not assigned to be Sources or Sinks. Therefore, it is unknown if

an implemented interface method in the supplier analysis model is a Source or Sink. Thus,

each combination of Sources or Sinks for the Annotations has to be tested. First, a blank
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1 Input: informationFlowStereotype

2 parametersAndDataPair = findParametersAndDataPair(informationFlowStereotype)

3 datasets = parametersAndDataPair.dataTargets

4 securityLevels = getJoanaSecurityLevelsForAversaries(datasets)

5

6 pcmOperation = informationFlowStereotype.getAppliedTo()

7 pcmInterface = pcmOperation.getInterface()

8 javaMethod = getCorrespondingMethod((pcmOperation)

9 javaInterface = getCorrespondingInterface(pcmInterface)

10 components = findComponentsWhichImplementInterface(javaInterface)

11

12 annotations = []

13 for component : components:

14 implementedMethod = getImplementedMethod(component, javaMethod)

15 if parametersAndDataPair.getParameterSource() != "\return":

16 implementedParameter = findParameterWithName(implementedMethod,

parametersAndDataPair.getParameterSource())

17 annotation = generateAnnotation(component, implementedMethod,

implementedParameter, securityLevels)

18 annotations.add(annotation)

Figure 7.7: Pseudo code for generating the annotations for applied stereotype Information-
Flow

annotation is assigned to be the EntryPoint for the FlowSpecification. The Lattice and the

SecurityLevels are required, which are determined before the blank annotation generation

to generate an EntryPoint from a blank annotation. Second, all possibilities for a source-sink

distribution are generated for the blank annotations. A source-sink distribution contains

two sets of blank annotations. The �rst set contains all blank annotations from which

Sources are generated. The second set contains all blank annotations from which Sinks are

generated. A FlowSpecification is created with the same EntryPoint for each source-sink

distribution. The FlowSpecifications are tagged with consecutive integers. For example,

there are two blank annotations A and B, where A is assigned to be the EntryPoint. Then,

all possible source-sink distributions for A and B are:

� : Source � : Source (7.6)

� : Source � : Sink (7.7)

� : Sink � : Source (7.8)

� : Sink � : Sink (7.9)

For each sink-source distribution, a FlowSpecification with the EntryPoint based on A is

generated. This process is repeated with each annotation as base for the EntryPoint. The

complete pseudo-code is shown in �gure 7.8. If the Annotation annotates a Parameter, then

this information is dropped because an EntryPoint annotates a complete Method.
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1 Input: blankAnnotations, securityLevels, lattice

2 flowSpecifications = []

3 tag = 0

4 for annotation : blankAnnotations:

5 sourceDistributions = generatePowerSet({0..(annotationsLeft.length - 1)}

6 for sourceDistribution : sourceDistributions:

7 entryPoint = generateEntryPoint(annotation, securityLevels, Lattice, tag)

8 sources = generateSources(blankAnnotations, sourceDistribution, tag) //

Generate sources for all elements which index is in sourceDistribution

9 sinks = generateSinks(blankAnnotations, sourceDistribution, tag) // Generate

sinks for all elements which index is not in sourceDistribution

10 flowSpecification = generateFlowSpecification(entryPoint, sources, sinks)

11 flowSpecifications.add(flowSpecification)

12 tag++

Figure 7.8: Generation of the �ow speci�cations for the blank annotations

7.3.3 Confidentiality4CBSE-JOANA Correspondence Metamodel

Based on the underlying security metamodel transformation, a security corre-

spondence metamodel can be created. The security metamodel transforma-

tion is de�ned in section 7.3.2. The implied security correspondence meta-

model is depicted in �gure 7.9. The security correspondence metamodel is

in the project edu.kit.kastel.scbs.pcm2java4joana.correspondencemodel. The

DataSet2SecurityLevel correspondence contains the DataSets which are converted to a

list of SecurityLevels. The ParametersAndDataPair2Annotation correspondence matches the

ParametersAndDataPair to the corresponding Annotation. However, because the informa-

tion about InformationFlow is not needed for the back-projection, the correspondence does

not contain the stereotype InformationFlow. The Con�dentiality4CBSE model elements

are identi�ed by their ID. Each time a DataSet is transformed into a SecurityLevel, a list

of DatatSets is transformed into a list of SecurityLevels or a ParametersAndDataPair and

InformationFlow are transformed into an Annotation, the correspondence is added to the

�tting security correspondence model.

7.4 Combining the Structural Transformation and Security
Transformation

The structural model transformation is described in section 7.2 and the security model

transformation is described in section 7.3. The models introduced in section 7.2 and �g-

ure 7.9 are based on ecore models. The structural model transformation produces a Java

source code model. The security model transformation produces a JOANA model. These

two models are combined into the supplier analysis model by generating annotated Java

source code. The generation of the annotated Java source code is implemented in the

class SupplierAnalysisModel2AnnotatedCodeGenerator.xtend. The generation of the an-

notated source code is implemented in Xtend [80]. Xtend is chosen for the source code

generator because it o�ers strings with template methods that are useful for source code
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DataSet2SecurityLevel

 securityLevels : SecurityLevel

ParametersAndDataPair2Annotation

 joanaAnnotation : Annotation

SecurityCorrespondenceModel

Conf4CBSEParametersAndD...

Conf4CBSEElement

id : EString

Conf4CBSEDataSet

[0..*] parametersanddatapair2annotation

[1..1] conf4cbseparametersanddatapair[1..*] conf4cbsedataset

[0..*] dataset2securitylevel

Figure 7.9: Security correspondence model between Con�dentiality4CBSE and JOANA as

Ecore model

generation. Template methods can be used to initiate String based on multiple model

elements. Additionally, traversing Ecore models with Xtend is more compact than with

Java.

The generator iterates over the TopLevelTypes of the source code model. The package

of all generated TopLevelTypes is generated.code. All referenced TopLevelTypes are im-

ported if they are used as a Type in the children of the TopLevelType. If a child of the

TopLevelType uses a CollectionType, java.util.Collection is imported too. The Methods

of the Interfaces are not annotated with JOANA model elements. If a Class is generated,

also edu.kit.joana.ui.annotations.* is imported to use the JOANA annotations in the

source code. Each generated Class has a constructor with which all class Variables of the

Class can be set. For each class Variable getters and setters are generated. If a Class is

generated from a BasicComponent, the Methods of the implemented Interfaces are added

as method stumps to the Class. The method stubs do not contain any implementation

because the internal behavior is unknown in the client analysis model, as introduced in

section 4.1. JOANA annotations are generated for all Methods and Parameters for which a

FlowSpecificationElement can be found.

7.5 Back-Projection of the JOANA Results

The information transfer between two security analyses has two directions. First, informa-

tion is transferred from the client analysis to the supplier analysis to generate the supplier

analysis model skeleton and the correspondence model. Second, information is transferred

from the supplier analysis to the client analysis by executing the supplier analysis on the

supplier analysis model and projecting the supplier analysis results back into the client

analysis model. The generated supplier analysis model skeleton has to be implemented

by ful�lling the consistency requirement described in section 5.1.2. Therefore, no new

interface methods are added to a component. Then, the supplier analysis, in this case,

JOANA, is run on the supplier analysis model. JOANA is run for each entry point, and all
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results are added to one �le with the �le ending “.joanaresults”. If the supplier analysis

detects any invalid traces, the results that are written to the �le are projected back into

the client analysis model. As described in section 6.4, the results are �rst transformed into

a simpli�ed result model. This result transformation is presented in section 7.5.1. Based

on the simpli�ed results, the adapted security level is approximated, which is described

in section 7.5.2. The process of adapting the client security model is shown in section 7.5.3.

7.5.1 Result Transformation from the JOANA Results to the Simplified
Results

A JOANA result contains more information than the needed information for the back-

projection. The minimum required information in the supplier analysis is described

in section 5.3.1. A trace state has to contain information about the software state and

the security level of the software state. The software state is the executed action with its

class in JOANA. If a parameter is annotated, the parameter index is part of the software

state. A trace state also contains its position in the invalid trace to be able to determine

the adapted security speci�cation as described in section 6.4.1. Therefore, the requirement
of result structure is ful�lled.

The simpli�ed JOANA result model is depicted in �gure 7.10 and found in the project

edu.kit.kastel.scbs.pcm2java4joana.joana. The simpli�ed JOANA result consists of

a list of invalid traces. An invalid trace is a list of TraceStates. A TraceState contains its

index in the invalid trace, its class name, the security level name, and a parameter index. A

TraceState also contains a ResultMethod. The ResultMethod has a name, a return type, and

parameter types.

The result transformation from the JOANA result to the simpli�ed results is implemented

in the class JoanaResultsParser.java. It divides the results into single results for each

tag. The �rst entry of a JOANA result is entry_point_method. Therefore, the list of all

results can be split at this entry. Then, the �ows are extracted from every single result.

The �ows are in the single result entry with the key flow. Each �ow element in the �ows

is transformed into a trace state. The 8-th transformed �ow element has the trace state

index 8 . The class name is behind the key class in the JOANA trace state. The JOANA

results do not have enough information to build a complete Java method as presented

in section 7.2.1 because the types are not fully quali�ed. For example, if a method has the

return type List<String>, the return type in the JOANA result is java.util.List without

the InnerType. Therefore, the result metamodel has a method element in which the types

are only speci�ed by the type name. If only the method name is saved, the method cannot

uniquely be identi�ed inside the class. The method is generated with the name in the

result entry name. Only the types of the parameters of the method are speci�ed in the

entry parameters. If the JOANA annotation, with which the invalid trace is detected, is at

a parameter, the entry index speci�es the index of the parameter in the parameters of the

method.
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Result Trace
TraceState

tracePosition : EInt
traceClassName : EString
securityLevelName : EString
parameterIndex : EInt

ResultType
typeString 
: EString

ResultMethod
name : EString

[0..*] trace
[0..*] tracestate

[0..*] paramterTypes

[0..1] returnType

[1..1] resultmethod

Figure 7.10: Simpli�ed JOANA result model as an Ecore model

7.5.2 Determining the Adapted Security Level Based on the JOANA Results

Based on the JOANA results, the adapted security levels have to be determined to re-

solve the assumptions in the client analysis model. The approach to determine the

adapted security level based on the JOANA results is implemented in CorrectSecu-

rityLevelFinder.java.

The �rst step is to determine all public actions in the invalid trace. The public actions of

a trace can be determined with the structural correspondence model. For each trace state

in the invalid trace, it is tested whether the structural correspondence model contains a

Component2Class correspondence, where the class has the name of the trace class name

in the trace state. It is checked whether a method signature of the component methods

matches the method signature of the trace method. Two method signatures match if both

have the same name, the same return type, and the same parameter types in the same

order. If there is an invalid trace without a public component method, the back-projection

is aborted. The reason for this is that the supplier analysis model has security violations

that are not based on the assumptions of the client analysis model.

The second step is to create security level equations for all trace states with a public

component method. The pseudo-code for the security level equation creation is presented

in �gure 7.11. An equation consists of the own aggregated trace state as well as the

predecessors and the successors, as described in section 6.4. The aggregated trace state

includes a �ag to identify the TraceState as a public trace state. If it is a public trace state,

it also includes the Interface, which is implemented in the component. The Interface is

important because it can be implemented in multiple components, for which also public

trace states can exist in the JOANA results. If multiple components implement the same

interface method, the same interface method in the client analysis model is adapted with

multiple new security levels. Therefore, the security levels must be the same for all

methods implementing the same interface method. If two security levels for the same

interface method are di�erent, one of the security levels is overwritten by the other

during the back-projection. Therefore, the algorithm to determine the adapted security

71



7 Implementation in a Case Study

1 Input: joanaResult, structuralCorrespondenceModel

2

3 equationSystem = new EquationSystem()

4

5 for flow : joanaResult.traces:

6 for traceState : flow.traceStates:

7 implementedInterface = getImplementedInterfaceFor(traceState.traceClassName,

traceState.resultMethode, structuralCorrespondenceModel)

8 if implementedInterface == null: // trace state does not contain a public method

9 continue

10 existingSecurityLevelEquation = equationSystem.getEquationForInterface(

securityLevelEquation)

11 if existingSecurityLevelEquation == null:

12 securityLevelEquation = new SecurityLevelEquation()

13 securityLevelEquation.owner = traceState

14 securityLevelEquation.predecessors.add(getPredecessor(traceState, flow.

traceStates)

15 securityLevelEquation.successors.add(getSuccessors(traceState, flow.

traceStates)

16 equationSystem.addEquation(securityLevelEquation)

17 else:

18 existingSecurityLevelEquation.predecessors.add(getPredecessor(traceState,

flow.traceStates)

19 existingSecurityLevelEquation.successors.add(getSuccessors(traceState, flow.

traceStates)

Figure 7.11: Creation of the Security Level Equation System

levels has to determine only one new security level for each interface method in the

invalid traces. All security level equations are added to a security level equation system.

In the equation system, security level equations with the same method signature and

implemented interface are combined into one equation by merging their predecessors,

respectively, successors. Predecessors of a trace state are states in front of the trace state

in the invalid trace. Respectively, successors of a trace state are behind the trace state. As

described in section 6.4.1, the direct predecessors and successors are needed to determine

the adapted security level for a method.

In the last step to determine the adapted security levels, the security level equation

system is solved. The solver for the equation system is implemented in the class Equation-

System.java. As introduced in section 7.3.2, the generated lattice is de�ned on the power

set of all security levels. Therefore, the least-upper-bound operator is always de�ned

because the security level that is the combination of all data sets has a relation to all other

security levels. If a trace state only has internal successors, the solution is determined by

applying the least-upper-bound operator to all security levels of the successors and the

own security level. An internal successor is a trace state which has no public component

method. If a public trace state A has a public trace state B as successor respectively pre-

decessor, then B has A as predecessor respectively successor. Therefore, if the security

level of A is set, the security level of A as successor or predecessor of B is set too. This

problem is solved by using references to the public trace states in the equations. A back-
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1 Input: equationSystem, securityLevels

2

3 solve(0, equationSystem.equations, securityLevels, new Map<int, SecurityLevel), -1, new

Map<int, SecurityLevel))

4

5 function solve(index, securityLevelEquations, securityLevels, currentSolution bestScore,

bestSolution):

6 if index == securityLevelEquations.size:

7 score = calculateScore(securityLevelEquations, currentSolution)

8 if score > bestScore:

9 bestScore = score

10 bestSolution = currentSolution

11 return bestScore

12

13 for securityLevel : securityLevels:

14 currentSolution[index] = securityLevel

15 bestScore = solve(index + 1, securityLevelEquations, securityLevels,

currentSolution, bestScore, bestSolution)

16

17 return bestScore

Figure 7.12: Structure of the backtracking algorithm to determine the adapted security

levels

tracking algorithm is used for all other equations with public trace states as neighbors.

The structure of the backtracking algorithm is presented in �gure 7.12. It iterates over all

distributions of security levels. The number of predecessors and successors related to the

security level of an equation for each distribution and equation is calculated. This number

is called the score of a security level distribution. The possibility with the highest score

is considered the solution. The reason for this is that the highest score implies the most

resolved invalid traces. The determined security level for each equation is saved in the

security level equations. As described in section 6.4.1, this is only an approximation. The

determined security level for a single equation could lead to multiple new invalid traces.

It is also possible that not all invalid traces are resolved. The plugin noti�es the user what

the score is and what the best score could be. The user can then decide to back project the

determined security levels or resolve the trace himself.

7.5.3 Adapting the Client Security Model with the Adapted Security Levels

The client analysis model is updated with the solution of the equations system. This

update-logic for the client analysis model is implemented in the class ClientAnalysisMod-

elUpdater.java. The client analysis model has to be updated for each SecurityLevelE-

quation. The solution of the EquationSystem is saved in the SecurityLevelEquation as

the adapted security level.

One security level can be combined from multiple DataSets as described in section 7.3.2.

The DataSet2SecurityLevel correspondences for the determined security level are searched

in the security correspondence model. A DataSet2SecurityLevel correspondence contains
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the ID of the corresponding DataSet. When the corresponding IDs are determined, the

client analysis model is traversed to retrieve the data sets with the resolved ID. A method is

annotated with an Annotation instance. An Annotation is generated from a ParametersAnd-
DataPair. Therefore, the ParametersAndDataPair2Annotation correspondence for the trace

state is determined by comparing the annotated class, the annotated method signature, and

the annotated parameter. The client analysis model is traversed to �nd the ParametersAnd-
DataPair for the ID contained in the ParametersAndDataPair2Annotation correspondence.

The client analysis model is updated by setting the DataSets of the ParametersAndDataPair
to the resolved DataSets for the determined security level. The client analysis model update

is repeated for each SecurityLevelEquation.
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8 Evaluation

In this chapter, the feasibility of the approach to transfer information between an ar-

chitecture and a source code analysis is evaluated. The initiation of the approach with

JOANA and Con�dentiality4CBSE, presented in chapter 7, is used for the evaluation. The

evaluation questions are presented in section 8.1. The instantiated approach is applied to a

model of an example scenario which is introduced in section 8.2 to answer the evaluation

questions. The model is provided by a third party. The results of the evaluation are

presented in section 8.3 and discussed in section 8.4. In section 8.5, the threats to validity

are presented.

8.1 Evaluation Questions

The feasibility of the approach to transfer information between an architecture and a

source code analysis is evaluated by answering the following two evaluation questions.

(Q1) Does the supplier analysis �nd the invalid traces which are intentionally injected in

the supplier analysis model based on the generated supplier analysis model skeleton?

(Q2) Does the client analysis �nd the security violations which are found with supplier

analysis after the back-projection of the supplier analysis results?

In this evaluation, the supplier analysis model skeleton is generated from the client

analysis model. The supplier analysis model skeleton is completed with the provided

implementation. The �rst evaluation question item (Q1) is answered with yes if the

supplier analysis model can be compiled and the supplier analysis can �nd all the invalid

traces through the supplier analysis model which are intentionally placed in the supplier

analysis model.

The second evaluation question item (Q2) is answered with yes if the supplier analysis

results can be projected back into the client analysis model. Furthermore, the client analysis

has to �nd the security violations resulting from removing the assumptions in the client

analysis model.

8.2 Evaluation Scenario

In this section, the scenario used in the evaluation is presented. In section 8.2.1, the

provided client analysis model is described. The provided supplier analysis model is shown

in section 8.2.2. Both the client and the supplier analysis models, are provided by a third

party.
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8.2.1 Client Analysis Model of the Scenario

The evaluation scenario is a travel planner application [88]. The scenario models a modern

travel planner system and consists of the four parties User, Airline, TravelAgency, and

AirlineTechnicalService which interact with the system. The model base of the scenario

is the model for Access Analysis of Kramer et al. [89]. The model and the scenario

are extended with the party AirlineTechnicalService and the components AirlineLogger and

UserInterface. UserInterface is added because the original model of Kramer et al. uses

DelegationRoles. However, this approach needs a component for the user interaction

to analyze the complete program with JOANA. The used repository model is depicted

in �gure 8.1. The software system consists of six components. A user wants to book a

hotel or �ight with the TravelPlanner component. The user interacts with the application

via a UserInterface. The user uses a TravelAgency as a broker for the booking. The �ights

are sold by an Airline. The CreditCardCenter provides credit card data that is needed for the

booking. The AirlineLogger provides the possibility to log technical data that can be used

by the technical sta� of an airline. The communication between the components is realized

via provided and required interfaces. Additionally, data types are used for bundling data.

The client analysis �nds 130 security violations in the unadapted client analysis model

provided by a third party.

Each party should only be given the minimal needed amount of information. Only three

security levels are used in the original scenario of the travel planner scenario [88]. Kramer

et al. [89] use eight DataSets for a more �ner granular view of the software system. The

eight DataSets are:

• CreditCardInformation

• TravelData

• CreditCardInformationDeclassified

• FlightO�er

• Selection

• AirlineTechnicalInformation

• Comissioning

• UserDetails

The client security model contains the four parties User, Airline, TravelAgency, and Air-
lineTechnicalService as adversaries. The adversaries and the DataSets which they may

know are shown in table 8.1. The stereotype InformationFlow is applied to twelve of the

interface methods. InformationFlow assigns ParametersAndDataPairs to a method. The

assignment is presented in table 8.2.
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<<Interface>>
Comission

bool payCommission(int value, AirlineSpec airline)

<<Interface>>
BookingSelection

void bookSelected(FlightOffer flightOffer)
void getFlightOffers(RequestData requestData)

<<Interface>>
Booking

bool bookFlightOffer(int offerId, CreditCardDetails ccd_decl)

<<Interface>>
FlightOffers

FlightOffers getFlightOffers(RequestData requestData)

<<Interface>>
CreditCardConfiguration

void setCreditCard(CreditCardDetails ccd)
CreditCardDetails getCreditCard()

<<Interface>>
Declassification

void releaseCCD(AirlineSpec airline)

<<Interface>>
Confirmation

void confirmRelease(CreditCardDetails ccd, AirlineSpec airline)

<<Interface>>
Input

void getInput()
void getSingleSelection(FlightOffers flightOffers)

<<Interface>>
AirlineAdministration

void setAvailableFlights(FlightOffers flights)

<<Interface>>
DeclassificationConfirmation

void getDeclassifiedCCD()

<<Interface>>
DeclassificationReceiver

void DeclassifiedCCD(CreditCardDetails ccd_decl)

<<Interface>>
BookingConfirmation

void ok()

<<Interface>>
AirlineLogging

void log(string entry)

<<Interface>>
UserIdentityConfiguration

void setCredentials(string name, string password)

<<BasicComponent>>
TravelAgency

SEFFCompartment

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
Airline

SEFFCompartment

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
TravelPlanner

SEFFCompartment

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
CreditCardCenter

SEFFCompartment

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
UserInterface

SEFFCompartment

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<BasicComponent>>
AirlineLogger

SEFFCompartment

PassiveResourcesCompartment

ComponentParameterCompartment

ResourceRequiredRoles

<<Requires>>

<<Requires>>

<<Requires>>

<<Requires>>
<<Requires>>

<<Requires>>

<<Requires>>

<<Requires>>

<<Requires>>

<<Requires>>

<<Requires>>
<<Requires>>

<<Requires>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

<<Provides>>

Figure 8.1: Repository model of the scenario
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Adversary May Know Data

User CreditCardInformation, CreditCardInformationDeclassi�ed,

FlightO�er, Selection, TravelData, Comissioning, UserDetails

Airline CreditCardInformationDeclassi�ed, FlightO�er, Selection,

TravelData, Comissioning, AirlineTechnicalInformation

TravelAgency FlightO�er, TravelData, Comissioning

AirlineTechnicalService AirlineTechnicalInformation

Table 8.1: Adversaries and their data sets which the adversaries may know

Method Data Sets

setAvailableFlights : AirlineAdmin-

istration

FlightO�er

getSingleSelection : Input FlightO�er

getFlightO�ers : BookingSelection TravelData

bookSelected : BookingSelection Selection, FlightO�er, TravelData

setCreditCard : CreditCardCon�gu-

ration

CreditCardInformation

con�rmRelease : Con�rmation FlightO�er, Selection, TravelData, CreditCard-

Information

bookFlightO�er : Booking FlightO�er, Selection, CreditCardInformation-

Declassi�ed, TravelData

getFlightO�ers : FlightO�ers TravelData, FlightO�er

releaseCCD : Declassi�cation FlightO�er, Selection, TravelData

payCommission : Comission TravelData

log : AirlineLogging AirlineTechnicalInformation

setCredentials : UserIdentityCon�g-

uration

TravelData, UserDetails

Table 8.2: Methods to which the InformationFlow stereotype is applied with the combined

data sets from the ParametersAndDataiPairs of the stereotype InformationFlow.

The method is part of the interface which is de�ned behind the colon.

s
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Number Type Method Security Level

1 Source UserInterface.con�rmRelease CreditCardInformation

1 Sink Airline.bookFlightO�er CreditCardInformationDeclassi�ed

2 Source Airline.bookFlightO�er CreditCardInformationDeclassi�ed

2 Sink TravelAgency.payCommission CreditCardInformation

3 Source UserInterface.setCredentials UserDetails, TravelData

3 Sink AirlineLogger.log AirlineTechnicalInformation

4 Source TravelPlanner.getFlightO�ers TravelData

4 Sink AirlineLogger.log AirlineTechnicalInformation

Table 8.3: Intentionally placed invalid information �ows through the supplier analysis

model. An invalid information �ow is between a Source and a Sink. The method

is part of the class which is de�ned in front of the point.

8.2.2 Supplier Analysis Model of the Scenario

The provided supplier analysis model contains the complete implementation of the client

analysis model except for the JOANA annotations at the implemented interface methods

of the components. The supplier analysis model is implemented obeying the consistency

requirement introduced in section 5.1.2. Invalid information �ows between the components

are placed intentionally in the supplier analysis model. The invalid information �ows

are only known by the third party. The intentionally placed invalid information �ows

are shown in table 8.3. The �rst invalid �ow is a requirement from the IFlow Travel

Planner [88]. This information �ow requires declassi�cation. The second invalid �ow is

reported because the payment is only successful if the user has a MasterCard or VisaCard.

Therefore, TravelAgency can obtain credit card information. The third invalid �ow leaks

user information to the technicians of Airline because Airline uses a logger for technical

data also for other purposes like booking histories. The only di�erence between the third

and fourth invalid �ow is the Source of the �ow and its SecurityLevel, but the reason is the

same. The technical data logger is used for data other than technical data.

8.3 Results of the Evaluation Study

The results of the evaluation are presented in this section. The presentation is divided

into three parts. First, the results of the supplier analysis model skeleton generation are

described in section 8.3.1. Second, the results of the execution of the supplier analysis

are presented in section 8.3.2. Third, the results of the back-projection are depicted

in section 8.3.3.
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8.3.1 Results of the Supplier Analysis Model Skeleton Generation

The supplier analysis model skeleton is generated from the provided client analysis model.

The generated security levels are:

• CreditCardInformation

• TravelData

• CreditCardInformationDeclassified

• FlightO�er

• Selection

• AirlineTechnicalInformation

• Comissioning

• UserDetails

and all combinations of these (e.g. FlightO�erSelectionTravelData). The generated lattice

contains all possible combinations of the security levels corresponding to the data sets

of the client analysis model. The generated security lattice is based on the power set of

all security levels. The combined security level of all other security levels is at the top of

the lattice. Information can �ow from the combined security level of all other security

levels to every other security level. Information may �ow from a combination of security

levels to another combination of security levels if the second combination is a subset of

the �rst combination. The generated supplier analysis model skeleton contains 2.228.224

EntryPoints. The combined size of all generated �les is 18.2 GB. The complete generation

process needed 20 minutes with a Laptop with i7-8550U CPU, 16 GB DDR4 RAM, and

the Windows operating system. The eclipse IDE cannot open these �les. The �les of the

component implementation have over 100.000 lines of code.

The generated supplier analysis model skeleton is completed with the provided imple-

mentation. The supplier analysis model cannot be compiled with the JOANA IFC analysis

framework [90] because there is not enough RAM available to load 18.2 GB of data on the

used computer. Therefore, the JOANA analysis cannot be executed. Furthermore, it would

need around 2.5 days to execute the JOANA analysis sequentially for each EntryPoint
assuming an average analysis run-time of 2 seconds for each EntryPoint which is the time

observed during tests with other models.

An alternative generation approach is chosen to allow further evaluation. Not all source-

sink distributions for each EntryPoint are generated, as described in section 7.3.2. Only

one source-sink distribution is generated for each blank annotation as EntryPoint. The

generated source-sink distribution contains the blank annotation for which the EntryPoint
annotation is generated as Source and all other blank annotations as Sinks. This source-sink

distribution is in the set of all source-sink distribution. The needed time for the generation

is reduced to under a minute. The combined size of all generated �les is 2.5 MB. The

generated supplier analysis model skeleton is completed with the provided implementation.

As a result, the supplier analysis model can be compiled.
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1 function executeJoana() {

2 local joanaPath=$1;

3 local projectPath=$2;

4 local numberEntryPoints=$3;

5

6 for ((i = 0 ; i < $numberEntryPoints; i++)); do

7 java -jar $joanaPath \"classPath $projectPath\" \"sdgOptions

enableUninitializedFieldTypes\" \"sinks remove .*\" \"sources remove .*\" \"

run $i\ --out=\’$i.joanaresults\’\"

8 done

9

10 cat *.joanaresults > merged.joanaresults

11 }

Figure 8.2: Bash function to automatically run JOANA for all EntryPoints

8.3.2 Results of the Supplier Analysis

The JOANA analysis is executed for each EntryPoint of the supplier analysis model. The

JOANA IFC analysis framework does not provide the possibility to execute the analysis for

all EntryPoints at once. Therefore, the bash function seen in �gure 8.2 is used to execute

JOANA for all EntryPoints up to the index speci�ed as argument.

JOANA �nds 114 invalid traces with many duplicates. A duplicate trace is a trace for

which a second trace with the same source and sink exists. In total, 19 invalid traces

remain after removing the duplicates. These are shown in table 8.4. Each invalid �ow

consists of a Source and Sink. Both the Source, and Sink, are speci�ed with their class, their

method name, their security level, and the implemented interface of the method. The

used notation is class.method:interface. All methods in the sources and sinks are public

component methods. Traces 7, 14, and 18 are the intentionally placed invalid results. The

others are not intentionally placed.

Number Type Method Security Level

1 Source UserInterface.getSingleSelection:

Input

FlightO�er

1 Sink Airline.bookFlightO�er: Book-

ing

FlightO�er, Selection,

TravelData

2 Source UserInterface.getSingleSelection:

Input

FlightO�er

2 Sink UserInterface.con�rmRelease:

Con�rmation

CreditCardInformation,

FlightO�er, Selection,

TravelData

3 Source UserInterface.getSingleSelection:

Input

FlightO�er

3 Sink CreditCardCenter.releaseCCD:

Declassi�cation

FlightO�er, Selection,

TravelData
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Number Type Method Security Level

4 Source UserInterface.getSingleSelection:

Input

FlightO�er

4 Sink TravelPlanner.bookSelected:

BookingSelection

FlightO�er, Selection,

TravelData

5 Source UserInterface.getSingleSelection:

Input

FlightO�er

5 Sink TravelAgency.payCommission:

Comission

TravelData

6 Source TravelAgency.getFlightO�ers:

FlightO�ers

TravelData

6 Sink Airline.getFlightO�ers:

FlightO�ers

FlightO�er, TravelData

7 Source TravelAgency.getFlightO�ers:

FlightO�ers

TravelData

7 Sink AirlineLogger.log: AirlineLog-

ging

AirlineTechnicalInformation

8 Source TravelPlanner.getFlightO�ers:

BookingSelection

TravelData

8 Sink UserInterface.con�rmRelease:

Con�rmation

CreditCardInformation

9 Source TravelPlanner.getFlightO�ers:

BookingSelection

TravelData

9 Sink UserInterface.getSingleSelection:

Input

FlightO�er

10 Source TravelPlanner.getFlightO�ers:

BookingSelection

TravelData

10 Sink Airline.bookFlightO�er: Book-

ing

CreditCardInformationDeclassi�ed

11 Source TravelPlanner.getFlightO�ers:

BookingSelection

TravelData

11 Sink TravelPlanner.bookSelected:

BookingSelection

FlightO�er, Selection,

TravelData

12 Source TravelPlanner.bookSelected:

BookingSelection

FlightO�er, Selection,

TravelData

12 Sink Airline.bookFlightO�er: Book-

ing

CreditCardInformationDeclassi�ed

13 Source TravelPlanner.bookSelected:

BookingSelection

FlightO�er, Selection,

TravelData
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Number Type Method Security Level

13 Sink UserInterface.con�rmRelease:

Con�rmation

CreditCardInformation,

FlightO�er, Selection,

TravelData

14 Source UserInterface.con�rmRelease:

Con�rmation

FlightO�er, Selection,

TravelData

14 Sink Airline.bookFlightO�er: Book-

ing

CreditCardInformationDeclassi�ed

15 Source UserInterface.con�rmRelease:

Con�rmation

FlightO�er, Selection,

TravelData

15 Sink UserInterface.con�rmRelease:

Con�rmation

CreditCardInformation

16 Source UserInterface.con�rmRelease:

Con�rmation

CreditCardInformation

16 Sink TravelAgency.payCommission:

Comission

TravelData

17 Source Airline.bookFlightO�er: Book-

ing

FlightO�er, Selection,

TravelData

17 Sink Airline.bookFlightO�er: Book-

ing

CreditCardInformationDeclassi�ed

18 Source Airline.bookFlightO�er: Book-

ing

CreditCardInformationDeclassi�ed

18 Sink TravelAgency.payCommission:

Comission

TravelData

19 Source TravelPlanner.getFlightO�ers:

BookingSelection

TravelData

19 Sink Airline.getFlightO�ers:

FlightO�ers

FlightO�erTravelData

Table 8.4: Results of the JOANA analysis. An invalid information �ow always con-

sists of a source and a sink. The format of the method of an annotation is

class.method:interface.

8.3.3 Results of the Back-Projection of Supplier Analysis Results

The supplier analysis results only contain trace states with at least one public component

method. Therefore, the results can be projected back into the client analysis model. A

security level equation system is built based on the 19 invalid traces. The equation system

consists of 9 security level equations with 38 invalid relations. The algorithm to determine

the correct security levels �nds an approximated solution in which 24 of 38 invalid relations

are resolved. The solution is projected back into the client analysis model to adapt it. The
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adapted security levels are presented in table 8.5. For example, the security level of the

method log is adapted to be the DataSet TravelData.

If the client analysis is run on the adapted client analysis model, it �nds new security

violations. The number of security violations in the client analysis results are deter-

mined by searching the pretti�ed results for the keyword isInSecureWithRespectTo()

as described in section 2.7.1. The client analysis �nds 130 security violations on the un-

adapted client analysis model and 140 security violations on the adapted client analysis

model. The client analysis does, for example, �nd the invalid access of travel data by the

AirlineTechnicalService. The client analysis output changed from 7.611 to 9.629 lines.

Method Name Old Security Level New Security Level

getSingleSelection : Input FlightO�er CreditCardInformation,

TravelData, CreditCard-

InformationDeclassi�ed,

FlightO�er, Selection,

AirlineTechnical-

Information, Comissioning,

UserDetails

bookFlightO�er : Booking TravelData, FlightO�er, Se-

lection

TravelData, CreditCard-

InformationDeclassi�ed

FlightO�er, Selection,

AirlineTechnical-

Information, Comissioning,

UserDetails

con�rmRelease : Con�rma-

tion

CreditCardInformation,

TravelData, FlightO�er,

Selection

CreditCardInformation,

TravelData, CreditCard-

InformationDeclassi�ed,

FlightO�er, Selection,

AirlineTechnical-

Information, Comissioning,

UserDetails

releaseCCD : Declassi�ca-

tion

TravelData, FlightO�er, Se-

lection

FlightO�er

bookSelected : BookingSe-

lection

TravelData, FlightO�er, Se-

lection

CreditCardInformation,

TravelData, CreditCard-

InformationDeclassi�ed,

FlightO�er, Selection,

AirlineTechnical-

Information, Comissioning,

UserDetails

payCommission : Comis-

sion

TravelData FlightO�er
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Method Name Old Security Level New Security Level

getFlightO�ers : BookingS-

election

TravelData TravelData, CreditCard-

InformationDeclassi�ed,

FlightO�er, Selection,

AirlineTechnical-

Information, Comissioning,

UserDetails

log : AirlineLogging AirlineTechnicalInformation TravelData

getFlightO�ers : FlightOf-

fers

TravelData CreditCardInformation,

TravelData, FlightO�er,

Selection, AirlineTechnical-

Information

Table 8.5: Changed security levels of a method in the invalid information �ows. The

interface of a method is de�ned behind the colon.

8.4 Discussion of the Evaluation Results

The evaluation results are discussed in this section. The results concerning the �rst

evaluation question (Q1) are discussed in 8.4.1. In section 8.4.2, the discussion of the

results concerning the second evaluation question item (Q2) is presented. The threats to

the validity of our conclusions are described in section 8.5.

8.4.1 Discussion of the First Evaluation Question

The supplier analysis model skeleton can be generated from the client analysis model. The

approach to generate every source-sink distribution is not scalable because the generated

�le sizes of the components are between 2 GB and 5 GB. The completed supplier analysis

model cannot be compiled on the used computer because the used computer does not

have enough RAM to work with 18.2 GB of data at once. When the alternative generation

for the supplier analysis model skeleton is used, then the supplier analysis model can be

compiled. JOANA runs on the reduced supplier analysis model. If the reduced supplier

analysis model can be compiled, also the complete supplier analysis model can be compiled

under the requirement of a well enough equipped computer.

JOANA �nds 19 invalid traces through the reduced supplier analysis model. Three of

the intentionally placed invalid traces through the supplier analysis model are detected.

The third intentionally placed invalid information �ow is not detected. The reason for this

is that JOANA creates a call tree from the used EntryPoint and searches the call tree for

invalid information �ows as described in section 2.7.2. JOANA is designed to use the main

method as EntryPoint which initializes all �elds in the supplier analysis model. If a main

method is used as EntryPoint, JOANA can also �nd relations through the value assignment

in object instances. The object instances could not be initialized if an arbitrary method
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is used as EntryPoint. In this approach to couple Con�dentiality4CBSE and JOANA, no

main method is used because it cannot be generated from the client analysis model. This

is the reason why the third information �ow is not found because the origin of the invalid

information �ow is the assignment of data to an object instance.

JOANA does not only �nd the discoverable intentionally placed invalid information

�ows but also 16 more that are not intentionally placed. The invalid trace 6 is caused

by errors in understanding the functionality of JOANA annotations. The statement of a

JOANA developer that annotations of a method annotate the return value of a method is

wrong. In trace 6, both components implement the interface FlightO�er with its method

getFlightO�ers. Two ParametersAndDataPairs are applied to the method getFlightO�ers. The

�rst ParametersAndDataPair contains the DataSet TravelData and is applied to a parameter.

The second contains the DataSets TravelData and FlightO�er and is applied to the return

value of the method. The second ParametersAndDataPair is transformed to an annotation of

the complete method. JOANA translates an annotation of the method to annotations of all

parameters of the method. This contradicts our assumption that JOANA annotates the re-

turn value of the method, which is suggested by the semantics of JOANA. The consequence

is, if an implementation of the interface method calls itself or another implementation of

the interface method, it results in an invalid information �ow from TravelData to TravelData,
FlightO�er. Furthermore, traces 15 and 17 are traces between the same method in the same

class. Both methods have two parameters, both with an applied ParametersAndDataPair.
In both cases, information is not allowed to �ow from the security level of the �rst pa-

rameter to the security level of the second parameter or the other way around. JOANA

reports an invalid information �ow if the �rst ParametersAndDataPair is a Source and the

second ParametersAndDataPair is a Sink. If another source-sink distribution is generated,

this problem would not have occurred. However, the used client analysis model does not

provide any information about a source-sink distribution. The security transformation

could be adapted so that the developer could specify a source-sink distribution speci�c to

the client analysis model.

To conclude, the supplier analysis �nds three out of four intentionally injected invalid

information �ows in the supplier analysis. The fourth intentionally injected invalid infor-

mation �ow cannot be discovered because the main method is not generated. Therefore,

the �rst evaluation question item (Q1) can be answered with yes under the restriction that

all invalid information �ows can be discovered without a main method that initializes all

�elds. The 16 other information �ows could be false positives or true positives, but the

developer can �lter these invalid information �ows. The quality of the found information

�ows like traces 6, 15, and 17 depends on the used generation schema.

8.4.2 Discussion of the Second Evaluation Question

All found invalid information �ows contain at least one public component method. There-

fore, the back-projection can be executed. The back-projection �nds an approximated

solution for the supplier analysis run on the reduced supplier analysis model skeleton.

The client analysis model can be adapted with the approximated solution. The client

analysis �nds new invalid �ows. For example, the security level of the method log of

AirlineLogger is changed from AirlineTechnicalInformation to TravelData. The log method
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is intended to only log technical information for the airline. The client analysis �nds this

invalid access. Therefore, the second evaluation question is answered with yes. How-

ever, the back-projection does not guarantee a good solution because the used algorithm

does not know which of the original security levels are correct. For example, the log
method does not contain the DatSet AirlineTechnicalInformation anymore which is why the

information is lost. A better adaption would be, for example, the combination of the two

DataSets AirlineTechnicalInformation and TravelData. The increase of the result size by 27 %

is also explained this way. The approximation algorithm to �nd the correct security level

based on the supplier analysis results sometimes overapproximate the correct security

level. For example, the security level of the method bookFlightO�er is changed to the set

of all possible security levels except CreditCardInformation. However, bookFlightO�er does

not need the security level AirlineTechnicalInformation because there is no invalid trace

between bookFlightO�er and log. The method log is the only method with the security

level AirlineTechnicalInformation in the provided client analysis model. An algorithm that

would produce a better solution would need more information. If the algorithm had, for

example, the information that only the method log must have the security level Airline-
TechnicalInformation, the solution would be improved. However, this information is not

available in the client analysis model.

If the supplier analysis model is adapted with the new security levels and JOANA is

run on the adapted supplier analysis model, it would �nd new invalid information �ows

with the method log. The newfound invalid information �ow would not be the one

from TravelData to AirlineTechnicalInformation but the inverted �ow. However, the client

analysis �nds a security violation that the airline technicians can access users’ travel data.

Therefore, the developer can manually �x this invalid information �ow and can adapt the

supplier analysis model.

8.5 Threats to the Validity

In this section, the threats to the internal and external validity of the conclusions are

discussed.

Internal validity measures how the drawn conclusions are in a relationship to the

observations taken during the study. A threat to internal validity is if the conclusions are

a�ected by an unknown factor. The instantiation of the approach itself is a threat to the

internal validity of our conclusion because it is dependent on the developer. For example,

our instantiation does not scale with bigger client analysis models. If only one source-

sink distribution is generated, the approach scales with bigger client analysis models.

Furthermore, the third party, which provides the model for the scenario, extended the

models and included information �ow errors. The third party knows the approach of this

bachelor’s thesis that could have in�uenced the extension of the base models of Kramer et

al. [89]. Another threat to the internal validity is that the provided client analysis model

already contains security violations. The already existing security violations could cause

security violations in the supplier analysis model that are not intentionally injected.

External validity measures how the conclusions can be generalized to other entities.

The approach is only evaluated with one instantiation and one scenario. The instantiation
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with Con�dentiality4CBSE and JOANA shows that the approach is feasible. The feasibility

of an instantiation highly depends on the concrete implementation. While arguments are

given, why the approach can transfer information between two security analyses, it is

not shown that the approach can work for di�erent security models in di�erent scenarios.

A bigger case study can provide more certainty. Therefore, the external validity is also

threatened.
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In this bachelor’s thesis, an approach to transfer information between two security anal-

yses is developed. Static security analyses and component-based software systems are

considered. Furthermore, the supplier analyses are restricted to the domain of lattice-based

security analyses. The client analysis model is on the architecture view with components

as black boxes. The supplier analysis model is on the source code view. The client security

model is based on assumptions about the internal implementation of the components. Two

analyses that can exchange information with each other are called coupled. Two analyses

can be coupled if the following requirements are ful�lled:

1. A structural transformation from the client structural model to the supplier structural

model exists. The existence of a structural transformation implies a structural

correspondence model.

2. The generated supplier analysis model skeleton is implemented consistent with the

structural correspondence model. During the implementation, the developer must

not add a new method to an interface of a component.

3. The two analyses are concerned with a security property. A security property can

be modeled as (hyper-)trace property. The (hyper-)trace properties of the client and

supplier analysis overlap each other.

4. A security transformation between the client security model and the supplier secu-

rity model exists. The security transformation implies the existence of a security

correspondence model.

5. The supplier analysis results contain information about the found invalid traces.

An invalid trace consists of trace states. Each trace state has information about the

executed method and the security classes of the software state. Each invalid trace

has at least one trace state with a public component method.

If these requirements are ful�lled, the two analyses can be coupled. Two analyses are

coupled by combining the client analysis model, the supplier analysis model, and the

supplier analysis results into a megamodel. The client and the supplier structural model

are connected by a structural correspondence model. Furthermore, the client and the

supplier security model are connected by a security correspondence model. The two

correspondence models are created by generating the supplier analysis model skeleton

from the client analysis model. The supplier analysis model is connected to the supplier

analysis results by executing the supplier analysis on the supplier analysis model. The

supplier analysis results are used to verify the assumptions in the client analysis model. If

the supplier analysis does not �nd any invalid traces, then the assumptions in the client

analysis model are correct. If the supplier analysis �nds any invalid traces, then these
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traces are projected back into the client analysis model. Based on the detected invalid

traces, the correct security levels of the public actions in the results are approximate. The

client analysis model is updated with the determined security levels by using the structural

and security correspondence model.

The approach is evaluated by instantiating the approach in a case study with Access

Analysis and JOANA. The evaluation shows the feasibility of the approach. The evaluation

shows that the instantiation of the approach with Con�dentiality4CBSE and JOANA is

not scalable. However, the supplier analysis �nds three of four intentionally injected

invalid information �ows through the supplier analysis model. The fourth invalid trace

cannot be discovered because no main method is generated from the client analysis model.

The supplier analysis �nds 16 invalid information more than intentionally injected. The

back-projection of the invalid traces is successful because the client analysis model is

adapted. The client analysis �nds new security violations on the adapted client analysis

model. The internal validity and the external validity of the evaluation are threatened. The

internal validity is threatened because the feasibility of this approach is dependent on the

instantiation of the approach with two concrete security analyses. The external validity is

threatened because the approach is only evaluated in one instantiation with one scenario.

Due to the limitations of a bachelor’s thesis, not all possible options and considerations

could be inspected and analyzed for this approach. Therefore, the possible future work is

presented in the following.

Only static, lattice-based security analyses are considered for the supplier analysis.

The approach could be extended to cover di�erent static security analyses. An algorithm

for the determination of the correct security class has to be developed for other security

properties to support more static security analyses. Furthermore, only the architecture

and the source code view are considered. The approach could be extended to consider

automatic proof systems like KIV [91]. If more domains of security analysis on more views

on the software system are used, more assumptions of the client analysis model can be

veri�ed.

The feasibility is evaluated in one instantiation with one scenario. The approach

should be instantiated with more security analyses, e.g. UMLSec [31] or Paragon [92].

If the feasibility of other instantiations is evaluated, the external validity increases. The

instantiation with Con�dentiality4CBSE and JOANA could also be evaluated in other

scenarios that would increase the external validity. Furthermore, one could also evaluate

the practicability. The practicability of this approach can be measured by comparing the

e�ort between a manual and an automatic approach.

The generation of the JOANA security model can be improved by using the JOANA

CLI commands instead of the annotations because then the return type of a method

can be annotated. Furthermore, the generation schema of the source-sink distributions

could be improved. An improved source-sink distribution generation would increase

the quality of the supplier analysis results. It could also make the instantiation with

Con�dentiality4CBSE and JOANA more scalable. The back-projection algorithm of this

instantiation could be improved to give the developer the possibility to provide additional

information. Additional information could be the security levels of the client analysis

model that should stay the same, be increased, or decreased. An improved back-projection

algorithm would improve the quality of the adapted client analysis model.
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