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Abstract: Bushfires pose a severe risk, among others, to humans, wildlife, and infrastructures. Rapid
detection of fires is crucial for fire-extinguishing activities and rescue missions. Besides, mapping
burned areas also supports evacuation and accessibility to emergency facilities. In this study, we
propose a generic approach for detecting fires and burned areas based on machine learning (ML)
approaches and remote sensing data. While most studies investigated either the detection of fires
or mapping burned areas, we addressed and evaluated, in particular, the combined detection on
three selected case study regions. Multispectral Sentinel-2 images represent the input data for the
supervised ML models. First, we generated the reference data for the three target classes, burned,
unburned, and fire, since no reference data were available. Second, the three regional fire datasets
were preprocessed and divided into training, validation, and test subsets according to a defined
schema. Furthermore, an undersampling approach ensured the balancing of the datasets. Third,
seven selected supervised classification approaches were used and evaluated, including tree-based
models, a self-organizing map, an artificial neural network, and a one-dimensional convolutional
neural network (1D-CNN). All selected ML approaches achieved satisfying classification results.
Moreover, they performed a highly accurate fire detection, while separating burned and unburned
areas was slightly more challenging. The 1D-CNN and extremely randomized tree were the best-
performing models with an overall accuracy score of 98% on the test subsets. Even on an unknown
test dataset, the 1D-CNN achieved high classification accuracies. This generalization is even more
valuable for any use-case scenario, including the organization of fire-fighting activities or civil
protection. The proposed combined detection could be extended and enhanced with crowdsourced
data in further studies.

Keywords: remote sensing; classification; burned area mapping; fire detection; deep learning;
Sentinel-2 images; self-organizing maps; undersampling; imbalanced dataset; convolutional neural
network

1. Introduction

In recent years, large-scale bushfires have tended to occur more frequently [1]. The
most recent, large-scale, and heavily media-covered fire event occurred in the 2019/2020
bushfire season in south-eastern Australia. These fires burned several million hectares of
land [2]. Bushfires affect the ecological, social, and economic environment significantly [3,4].
Detecting active fires quickly and on a larger scale is a critical task in the context of natural
hazard management. Reliable and rapid detection of fires, for example, improves the
coordination of fire-extinguishing activities and rescue missions.

Although burned area detection is not directly linked to immediate life-saving ac-
tivities, mapping such burned areas supports a long-term evaluation of ecological and
economic damages [5,6]. Burned areas often remain impassable for traffic or rescue vehi-
cles [7] and threaten inhabitants several days after the actual fire has passed.
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Most studies have not considered the distinction between burned areas and areas
covered with actual bushfires, but focused on the detection and mapping of either one of
them (burned area [8,9]; active fire [10,11]). In some studies, areas with active fires and
burned areas were declared as one single class compared to the class Unburned [12,13].

In contrast, we attached importance to this distinction between burned areas and areas
covered with actual fires. The main reason for this clear distinction is that either of the
characteristics poses different challenges concerning risk management or rescue mission
planning. In addition, when investigating the accessibility of road networks during and
after bushfires, the information about whether an area is burned or contains fires constitutes
an essential factor. While roads within a fire area are impassable, roads within a burned
area might be usable to a certain degree. A Burned area is referred to as an area that
happens to be a place of a bushfire a short time ago. A short time ago means, in this context,
several days after the first detected fire ended and its influence on the landscape is still
apparent [14]. An area with Fire means a burning fire is present, which can be either the
main fire front or even a small area of smoldering brushwood [11].

The detection of fire and burned area can be achieved with remote sensing data, as we
observed an increasing availability of these data in recent years. Many different approaches
have already been applied for either active fire detection (mostly rule-based approaches) or
burned area mapping (data-driven or rule-based approaches). In this study, we wanted
to concentrate on investigating and evaluating several different machine learning (ML)
approaches for a combined fire and burned area detection. The task of detecting active
fires and burned areas based on ML approaches with remote sensing data includes several
challenges. In the following, we briefly describe the main challenges that we addressed:

• Combined detection of active fire and burned area: We focused on detecting active fires and
burned areas in one, combined data-driven approach. In existing studies, different
approaches have been used for the two sub-tasks [15], if a distinction was performed
between burned area and active fire. We developed a methodology to detect active
fires and burned areas in one go using the same ML approach for both sub-tasks;

• Configuration of a generic concept: The concept is setup to enable a generic detection
of fire areas and burned areas. Thus, we can distinguish fire and burned area inci-
dents worldwide on an appropriate scale with the given methodological approach
independently of prior or detailed knowledge of the appearance of either class in the
investigated region. This novel workflow enables facile detection of both relevant
areas in one go, which can be used for further risk management or other applications;

• Selection of appropriate ML approaches: Many ML approaches would be eligible to carry
out the task of fire and burned area detection. We investigated and evaluated the
applicability of several ML approaches and selected the best-performing for a possible
application;

• Generation of reference data: Reference data are required for the training and testing
steps of ML approaches. Since appropriate reference data were not available for active
fires nor burned areas, large-scale reference data were generated. This generation was
also set up as a generic concept that can be used for reference data manufacturing in
any fire and burned area detection application worldwide;

• Detection at a high spatial resolution: For subsequent risk analysis, fire and burned
area detection needs to be possible with very high accuracy, requiring a high spatial
resolution of the chosen satellite data. Several types of remote sensing data can be
used, but we relied on optical remote sensing data since they generally provide a
higher spatial resolutions than, for example, thermal data [16]. The analysis was
accomplished with the use of Sentinel-2 data, which provide a spatial resolution of
10 m in several bands [15]. With a spatial resolution of 10 m, we can ensure a much
more accurate prediction of fires and burned areas affecting structures (such as roads)
in these small dimensions.

Section 1.1 gives a short overview of related studies that address fire or burned area
detection and propose several different supervised learning approaches for this purpose.
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We briefly describe the study area, the data basis, and the ML methodology in Section 2.
The results (Section 3) of the data derivation and the classification are explained, followed
by an application of the generated workflow on an independent, unseen area. Finally, we
discuss the results (Section 4) and conclude the study with a resume (Section 5).

1.1. Research Background

Currently, existing studies cover either the topic of active fire detection or burned
area mapping (see, for example, [16–18]). Therefore, we structured the related work
into two parts: an overview of studies dealing with active fire detection and studies
dealing with burned area mapping. A variety of remote sensing techniques have been
used for both topics. First, the remote sensing data differ, covering different spectral
wavelengths. Second, the applied approaches vary, although relying on the same remote
sensing data. For both tasks, we describe the data used in different studies, on the one
hand, and the methodological approaches to evaluate these data, on the other. Tables 1–3
summarize the related studies. We organized the studies according to the instruments
used for recording reflection in different band lengths within different sections of the
electromagnetic spectrum. Bands in certain electromagnetic spectrum sections were used
in the analysis of the respective studies, while other bands provided by the same mission
instrument were not used in some cases. This overlap may lead to sensors, e.g., the
Moderate Resolution Imaging Spectroradiometer (MODIS), being named in the Thermal
and Optical categories in our overview.

Fire detection and burned area detection rely on different principles, since the spectral
reflectance differs in all sections of the electromagnetic spectrum for the two tasks. There-
fore, the data used vary between the tasks. While thermal data are an obvious choice for
fire detection (see Table 1), they are not helpful for burned areas after cooling down. In the
case of burned area mapping, change detection approaches are more commonly applied.
Change detection can be carried out using several different data such as Synthetic Aperture
Radar (SAR) or optical data such as the Satellite Pour l’Observation de la Terre (SPOT;
Satellite for Observation of Earth) [19] satellite.

When focusing on active fire detection, longwave thermal sensors are the most
widespread data source [16,20,21]. Commonly used sensors are MODIS, the Visible In-
frared Imaging Radiometer Suite (VIIRS), the Advanced Very High Resolution Radiometer
(AVHHR), the Geostationary Operational Environmental Satellite (GOES), the Spinning
Enhanced Visible and InfraRed Imager (SEVIRI), and others (see Table1). While the ap-
proach with thermal data is relatively slightly susceptible to errors due to the nature of
the fire, most sensors providing thermal data have a low resolution. Examples are the
MODIS and VIIRS sensors with spatial resolutions of 250 m to 1000 m [22] and 375 m to
750 m, respectively. A higher resolution is offered by optical multispectral sensor data.
In this category, the Landsat sensor is exploited for the task of fire detection [10,23]. The
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor’s
short-wave infrared (SWIR) bands [24], as well as its thermal bands [11] are used for fire
detection.

For mapping burned areas, an even wider variety of different data is used (see Table 2).
Several studies relied on SAR data such as Radarsat-2 [25], Sentinel-1 [25], and European
Remote Sensing (ERS)-2 [26]. For the task of near-real-time burned area detection, as in
our case, SAR data cannot be used, since satellite images from before the outbreak are
necessary to differentiate between several time steps. To facilitate the detection of burned
areas near real time, the detection with data in the optical spectrum is applied. Data in
the visible, near-infrared (NIR), and SWIR spectrum, such as Landsat [8,27], ASTER [28],
the Project for On-Board Autonomy-Vegetation (Proba-V) [14], and the National Oceanic
and Atmospheric Administration (NOAA) [29] satellites, have been used. Some of the
studies relied on Sentinel-2 data [5,25,30,31]. Just as for burned area detection, thermal
sensor data are also used for active fire detection. MODIS data [9] and VIIRS data [18] are
commonly used, while some studies used data from a combination of different sensors,
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such as Henry et al. [8] (MODIS and Landsat), Crowley et al. [12] (MODIS, Landsat, and
Sentinel), or Rashkovetsky et al. [32] (Sentinel-1/Sentinel-2/Sentinel-3/MODIS).

Table 1. Overview of the related work concerning fire detection. The following abbreviations are used:
ASTER—Advanced Spaceborne Thermal Emission and Reflection Radiometer; AVHHR—Advanced
Very High Resolution Radiometer; NOAA—National Oceanic and Atmospheric Administration;
MODIS—Moderate-resolution Imaging Spectroradiometer; VIIRS—Visible Infrared Imaging Ra-
diometer Suite; SEVIRI—Spinning Enhanced Visible and InfraRed Imager; GOES—Geostationary
Operational Environmental Satellite.

Sensor Methodological Approach Satellite Data and Studies

Thermal

Thresholding ASTER [11], AVHHR [33], NOAA-N [34]
Contextual Approach Himawari-8 [35], AVHHR [36]

Thresholding and Contextual
Approach

MODIS [21,37], VIIRS [16], SEVIRI [38],
theoretical [39]

Anomaly Detection GOES [40]

Optical
Thresholding Landsat-8 [10,23]

Contextual Approach ASTER [24]

Table 2. Overview of the related work concerning burned area detection. The following abbrevia-
tions are used: ERS—European Remote Sensing Satellite; MODIS—Moderate-resolution Imaging
Spectroradiometer; VIIRS—Visible Infrared Imaging Radiometer Suite; AVHHR—Advanced Very
High Resolution Radiometer; ASTER—Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer; Proba-V—Project for On-Board Autonomy-Vegetation; SPOT—Satellite Pour l’Observation
de la Terre.

Sensor Methodological Approach Satellite Data and Studies

SAR

Index-Based RADARSAT-2 [25], Envisat ASAR [41]
Change Detection ERS-2 [26,42]

Unsupervised Classification RADARSAT-2 [43]
Image Segmentation PALSAR [44]

Supervised Classification RADARSAT-2 [43]
Unsupervised Classification Sentinel-1 [45]

Thermal-Optical Bayesian Algorithm MODIS [9]
Adaptive Classification MODIS [46]

Thermal Via Active Fire/Multitemporal MODIS [47]
Via Active Fire VIIRS [18]

Optical

Index-Based Sentinel-2 [30], Landsat-4/-5/-7 [48,49],
Landsat-8 [27]

Index-Based + Contextual Sentinel-2 [50], Landsat-4/-5/-7 [51],
Landsat-8 [50,52], MODIS [53]

Object-Based
AVHRR [29], ASTER [28],

Sentinel-2 [5,50], Landsat-4/-5 [54],
Landsat-8 [50,55]

Via Active Fire + SVM PROBA-V [14]
Comparison of Methods Landsat [56]
Supervised Classification Landsat-5 [57,58], Sentinel-2 [31,59]

Change Detection SPOT [19]

Combination

Index-Based MODIS/Landsat-7/-8 [8]
Bayesian Updating of Land

Cover Landsat-8/Sentinel-2/MODIS [12]

Supervised Classification Sentinel-1/-2/-3/MODIS [32]
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Table 3. Overview of the related work concerning combined fire and burned area detection. The
following abbreviation is used: MIVIS—Multispectral Infrared and Visible Imaging Spectrometer.

Sensor Methodological Approach Satellite Data and Studies

Optical Index-Based Landsat-8/Sentinel-2 [15]

Combination
Thresholding MIVIS [60]

Comparison of Methods Theoretical [3]

A wide variety of methodological approaches exists for fire detection (see Table 1).
To evaluate data acquired from thermal sensors with regard to fire detection, two main
approaches are applied. On the one hand, some studies [16,20] relied on contextual
algorithms, which include detection via the absolute temperature. On the other hand, the
use of thresholds for thermal data is also wide-spread [34,38,61]. A third approach is the
use of contextual algorithms. Xie et al. [35] detected fires via the application of thresholds
in different spectral bands or their ratios/differences in a contextual approach. Contextual
algorithms mark pixels as fire if the temperature of a pixel differs significantly from the
temperature of the surrounding pixels [21,36]. This approach is also the basis for the
state-of-the-art MODIS fire product [21,37]. San-Miguel-Ayanz and Ravail [39] described
both absolute and contextual algorithms. Such approaches allow a clear detection of fire
areas due to their unique signature without the use of much processing.

Using higher-resolution optical remote sensing data, many diverse approaches exist for
active fire detection as well. The detection via indices’ calculation is a well-suited approach.
Different band combinations are applied in different studies (see, for example, [10,15,23]).
Ratio-based approaches are simple and often employed for the quick detection of fire in
high-resolution imagery, but can be rather unreliable.

Since burned areas are not characterized by a unique spectral signature as fire, more
sophisticated approaches such as object-based and supervised approaches need to be
applied for burned area detection (see Table 2).

Studies relying on SAR data mainly implemented texture comparisons of data ac-
quired before and after a burn for burned area mapping [25,26,42,44]. When focus-
ing on methodological approaches for detecting burned areas based on optical satellite
data, it appears that a variety of different approaches exist (see, for example, most re-
cently [27,30,31,55]). Many studies relied on band indices in the visible/NIR and SWIR
spectrum. While several studies [8,18,27,52] used the commonly applied (differenced)
normalized burn ratio ((d)NBR), others [19,30,51,62] investigated different indices such as
the normalized difference vegetation index (NDVI) or self-implemented indices. However,
some studies combined several of the above indices [5,50]. Furthermore, combinations of
indices with other approaches are common such as ratios combined with a subsequently
applied region-growing algorithm [49] or with a subsequently applied multi-index ap-
proach [48]. In addition to index applications, more sophisticated algorithms have also
been evaluated. Mallinis and Koutsias [56] summarized ten different classification tech-
niques that are well suited for burned area detection, including for example classification
approaches such as support vector machines (SVM) and logistic regression. Other investi-
gated classification approaches are maximum likelihood classification [57] and the Bayesian
(Bayesian updating of land-cover (BULC)) algorithm [12]. Besides, different ML and deep
learning (DL) approaches such as SVM [14], random forests (RFs) [53], and neural networks
(NNs) [31,46,59] have been suggested. These supervised classification approaches achieve
very high accuracies in mapping burned areas. Finally, also sole-object-based approaches
have repeatedly been applied for burned area detection [28,29,54,55].

Some studies focused on using already detected active fires in the final fire products
(e.g., the MODIS fire product) as a basis to continue with burned area mapping from
those data [14,18,53]. These approaches rely on the assumption of burned areas appear-
ing in the location where a fire occurred before. Such studies cannot be considered as
combined burned area and active fire detection approaches, as they address only burned
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area detection. However, very few studies (see Table 3) focused on the detection of active
fires and burned areas in one go using the same sensor data and detection technique.
Barducci et al. [60] relied on the spectral reflectance in the bands of the Multispectral In-
frared and Visible Imaging Spectrometer (MIVIS) for the detection of active fires and
burned areas. Cicala et al. [15] used several indices for both fire and burned area detection.

Concerning the regional study focus, all reviewed methods have been applied to
various investigation areas.

1.2. Subsumption of Our Study

To solve a combined active fire and burned area detection, we wanted to choose
one sensor, from which we could derive data to implement both tasks using one selected
approach. Though thermal data are well suited and state-of-the-art for fire detection [16,21],
we could not consider thermal remote sensing for our task, as the spatial resolution is
relatively low [22]. Higher-spatial-resolution data are provided by optical sensors such
as Landsat or Sentinel-2, which are suitable for active fire detection [10,23]. Burned area
detection is also possible with optical data [5,8]. Therefore, we decided to use the Sentinel-2
sensor’s data for our combined burned area and fire detection task.

In contrast to the revised fire detection approaches, we used indices in the first
step [15] and then worked with supervised approaches to improve the correctness of fire
area detection and achieve a trustworthy fire map to be further used in the applications.
Supervised approaches have also been applied in burned area detection and have achieved
good results [12,31]. Therefore, we focused on the use of similar approaches in our study.
Since many different supervised approaches were applied in the previous studies, we did
not focus on a single approach, but tested several different ones.

In contrast to the studies that achieved a combined fire and burned area detec-
tion [15,60], we applied a more sophisticated supervised approach to simultaneously
detect active fires and burned areas. This can achieve higher accuracy than could be
possible from only an index calculation or thresholding.

2. Datasets and Methodology

Since detecting active fire and mapping burned areas based on Sentinel-2 data com-
prise a supervised classification task, we conducted an appropriate workflow [63]. Figure 1
shows our applied combined classification framework of fire and burned areas structured
into different levels. First, the data are described in the dataset level covering the exemplary
study regions (Section 2.1) and the extracted datasets (Section 2.2). More specifically, the
input data (Section 2.2.1), namely Sentinel-2 data, OpenStreetMap (OSM) fire data vector
files, and land cover data, are summarized. The generated reference data are described next
(Section 2.2.2) covering the feature level in Figure 1. Note that we refer to the combination
of input features and desired output data as a data point. At the data level, the generated
datasets were processed and split (see Section 2.2.4), which was necessary for the ML
models’ training and evaluation. Finally, the selected ML models, their optimization, and
the model evaluation metrics are stated in Section 2.3. These parts are included in the
model level of the classification framework.
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OSM fire data Landcover

Reference Data
Generation

Dataset 
Preprocessing

Dataset
Splitting

ML Model

Evaluation

Final Model

Data Level

Model Level

Feature  Level
Fire Feature
Generation

Dataset Level SE Australia California C Spain

Sentinel-2

Figure 1. Visualization of the combined classification framework of fires and burned areas divided
into the dataset level, the data level, the feature level, and the model level. The following abbreviations
are used: SE—southeast; C—central; ML—machine learning.

2.1. Selected Study Regions

Since we aimed to develop a generic approach including supervised ML models for fire
detection and burned area mapping, the selection of the study area had to meet two main
criteria. First, the study area should include different regions worldwide characterized by
big fires in the last few years. Second, a variety of land use and land cover classes should be
part of these selected regions. Therefore, we relied on two big fires in two different regions
and countries: California (United States of America (USA)) and the southeast (SE) of
Australia (States of Victoria, Australian Capital Territory, and New South Wales). Figure 2
visualizes the locations of the fires used for the training, validation, and testing of the ML
approaches. Detailed information about the distribution of the training, evaluation, and
test data subsets concerning the different regions is given in Section 2.2.4. The specific fire
sites were selected as well distributed within the regions matching the second-mentioned
criterion. In sum, four areas in California and five areas in Southeast Australia, mainly
containing different land cover classes, were used in the ML process. Besides, to evaluate
the generalization abilities of the selected ML models, an additional study area was selected
located in the central region of Spain (see Figure 2). Here, one area was chosen for the
testing process.
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Figure 2. Visualization of the selected areas in the USA (top left) and Australia (top right) used for
the training, validation, and testing of the ML approaches and the areas used as the unknown test
dataset in central Spain (bottom left). Data basis: © 2018 GADM. Projection: WGS84.

2.2. Data Basis, Generated Datasets, and Their Preparation

As mentioned before, the framework in Figure 1 structures the task into four levels by
following a typical ML pipeline. In this subsection, we focus on the data and feature levels.
First, we describe the input data (Section 2.2.1). The feature level contains the feature
extraction necessary for the reference generation (Section 2.2.2), which is described next.
After the reference generation, the preprocessing and the dataset splitting at the data level
are necessary before being input into the ML model.

2.2.1. Input Features

We relied on three types of input data. Firstly, OSM data were used, which were
acquired from national agencies. These data were only used to generate the reference
showing unburned and burned area, which was necessary for training and testing of a
model (see Section 2.2.2 for more details). Fire OSM data were not available in a generalized
database. Therefore, the data were acquired for every region of interest from the responsible
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governmental agency, e.g., CalFire (CA, USA) or data.gov.au (Australia). These data
are provided in vector files, showing the extent of a fire (burned) area. For example,
CalFire provides a multi-agency statewide database of fire history. Timber fires of ≥10
acres, brush fires of ≥30 acres, and grass fires of ≥300 acres are included. The database
provides information about wildfire history, prescribed burns, and other fuel-modification
projects [64]. For each fire perimeter, metadata such as the fire name, id, size, and objective
are included by the responsible authority. Such data have been used as reference data in
various studies (e.g., [32]). The vector data vary, depending on which agency they are
provided by, concerning the temporal resolution and availability. For example, some vector
files capture the outermost extent of accumulated burned area for one time step and current
data are available every couple of hours (e.g., three hours for data.gov.au). Other vector
files capture the extent of one fire event that might have occurred for several days in a row,
but data are only available once.

Secondly, we employed optical remote sensing data in the form of Sentinel-2 data.
The information in the Sentinel-2 bands was the main feature used for the classification
of the fire classes. We used Sentinel-2 data to benefit from the high resolution of 10 m,
given for at least 4 of its 13 spectral bands. The selected scenes are made available on the
satellite mission’s download platform (Copernicus Open Access Hub) and via a Python
application programming interface (API), called SentinelAPI. Newer Sentinel-2 products
are provided as Level-2A bottom-of-atmosphere (BOA) directly. The different bands have
different spatial resolutions of 10 m, 20 m, and 60 m. In Level-2A products, the cirrus Band
10 is omitted, as it does not contain surface information, so in summary, 12 spectral bands
were used in this study. All bands were resampled to a 10 m resolution.

Finally, a land cover product was also acquired from an API. The land cover product
was used as an additional input feature since different underlying land cover classes
change the spectral reflectance of the classes of Fire, Burned, and Unburned. For example,
a burned forest has a different spectral signature than a burned grassland. Thus, the ML
approaches can learn during the training that several different burned land cover classes
still correspond to the class Burned despite their spectral differences. The worldwide-
available product Copernicus Global Land Cover Layers (CGLS-LC100) Collection 3 with a
100 m resolution was used [65]. It is available from 2015 to 2019, as well as being updated
yearly. The product is assessed via the GoogleEarthEngine Python API [66] and provides
several bands for which the discrete classification is used, which includes 23 primary classes.
The land cover classes are defined according to the CORINE (Coordination of Information
on the Environment) Land Cover class definition. They are consistent over the entire globe.
The product is derived from the PROBA-V 100 m time series. The land cover data were
interpolated to a 10 m resolution by nearest-neighbor interpolation to retain discrete class
values. Thus, its resolution corresponds to the resolution per pixel of the Sentinel-2 data.
From the combination of the above input features, we obtained 13 input features in sum,
containing 12 Sentinel-2 bands ignoring Band Number 10 and 1 land cover feature for
each selected Sentinel-2 pixel. Note that the OSM data were only used for generating the
reference data and not as input features for the ML approaches.

2.2.2. Generated Reference Data

When applying supervised ML approaches, appropriate and sufficient reference data
are needed. For our study’s aim, it was indispensable to have a reference dataset that
allowed differentiating the classes of unburned areas, burned areas, and areas of actual
fire. However, for this specific classification, no benchmark dataset was available at the
required resolution (a high spatial resolution of 10 m for Sentinel-2 data) for the target
classes of Fire, Burned, and Unburned. Therefore, we created a respective dataset with
all data points containing single pixels of the Sentinel-2/land cover image with 13 input
features (attributes) and the corresponding labels of the target class. In the following, we
summarize the steps to generate the reference data (labels), before describing them in detail
below. Figure 3 shows Steps 1 to 4:
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1. Select a specific region of interest inside the study region (Section 2.1) by applying a
bounding box, for which information on burned and unburned areas provided by
OSM data is available;

2. Detect an active fire area based on spectral indices. The detected pixels are labeled as
Fire;

3. Detect a burned area based on OSM data. The detected pixels are labeled as Burned;
4. Finally, label the rest (neither fire nor burned) of the pixels within the bounding box

as Unburned or Non-classified.

Bureau of Land Management, Esri, HERE, Garmin, USGS, NGA, EPA, USDA, NPSBureau of Land Management, Esri, HERE, Garmin, USGS, NGA, EPA, USDA, NPSBureau of Land Management, Esri, HERE, Garmin, USGS, NGA, EPA, USDA, NPS

Spectral Index OSM vector file OSM vector file

Label: BurnedBufferFireInvestigated Area
Bounding Box 

Label: Fire Label: Burned

Burned
Unburned

Non-classified
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Figure 3. Visualization of Steps 1 to 4 of the reference generation. Base map: ESRI ArcGIS Pro.
Projection: WSG84.

First, Step 1 requires the available and downloaded OSM data providing information
about fire areas or burned areas. Then, according to its size and the date of fire appearance,
a specific fire site was chosen inside the Section 2.1 study regions from the OSM data.
Simultaneously, we obtained the corresponding Sentinel-2 data of the selected region of
interest several days after the set fire start date, providing reference data for burned areas.
We also examined if actual fires were present in the available Sentinel-2 images, providing
reference data for currently burning areas. For visual fire detection, false-color images of
the NIR (Band 8a) and SWIR (Band 11 and Band 12) bands are most helpful. Thus, fires
are well-detectable in the first days after the fire incident started. Concluding Step 1, we
relied on areas that were detected as fire or burned areas visually and used these areas for
further processing. We define a specific bounding box within this region of interest in Step
1. The corresponding Sentinel-2 image and OSM data were subsetted to the extent of this
bounding box. All data points, respectively pixels, within this bounding box were labeled
in the following steps.

For an automatic active fire detection in Step 2, several indices can be applied accord-
ing to other studies (see Section 1.1). In pre-studies, we evaluated most of the proposed
indices to select the most appropriate index for our task, the fire detection with Sentinel-2
data. We relied on the so-called Active Fire Detection (AFD) Index 3 (HAFD3), according
to Cicala et al. [15]. This index is regarded as most beneficial for the detection of highly
energetic fires. At the same time, it is also useful for blazing, glowing, and therefore,
less-energetic fires. It is calculated as follows:

HAFD3 =
B12

B8A
+

B12

B11
+ α

B8A
B11

(1)

where 0 ≤ α < 1 and B for band. α was derived experimentally for each investigated
region (Spain: 0.9, California: 0.5, Australia: 0.5).
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The indexing was applied for all pixels inside the bounding box created in Step 1.
We subsequently applied thresholding. If the pixels’ values were higher than the experi-
mentally derived threshold of 5, we labeled these pixels as Fire. The rest of the pixels inside
the bounding box remained unlabeled in this step.

In Step 3, we selected the pixels that covered the burned area. Therefore, we referred
to the OSM data vector files as a reference for burned areas. To ensure that the pixels of
the Fire and Burned/Unburned areas were not blended accidentally, we set a buffer zone
around the vector file. The buffer size depended on the actual size of the OSM data vector
file for the fire in question. About a 100 m to 300 m buffer size was usually applied. Pixels
within the OSM area, but outside the buffer were then labeled as Burned areas. They were
also reviewed, not to be accidentally labeled as Fire by comparison with the fire labels of
Step 2.

Finally, in the last step, we needed to label the remaining pixels inside the bounding
box area that had not been labeled yet. A pixel was already labeled as Fire if it was classified
as fire by the AFD-3 index according to Step 2. A pixel was already labeled as Burned if
it was located within the OSM boundary, not classified as fire, and not located within the
buffer zone according to Step 3. The label Non-classified was provided for pixels located
within the buffer and not labeled as fire. For these pixels, we could not be sure to which
class they truly corresponded from the references that were available to us. We discarded
these pixels to obtain only pure data points as the input for our models. Eventually, we
labeled pixels outside the OSM boundary and outside the buffer as Unburned.

For classification improvement and generalization purposes, we included pixels of
the Unburned classes that covered water and settlement areas. These particular pixels were
characterized by spectral differences and occurred only in a reduced number. The main
reason was that fires and burned areas appeared primarily in forested regions in which
these two land cover classes were relatively rare.

2.2.3. Dataset and Imbalance

As we selected different study areas mentioned in Section 2.1, several subsets of
data points per region existed. In the next step, we combined all subsets into one dataset
containing 9 million data points.

The created datasets were between-class imbalanced concerning the target classes
of Fire, Burned, and Unburned area (see Figure 4). Overall, fewer pixels appeared in the
satellite images as fire pixels, as active fires happen to occur for a short amount of time.
While the state of non-burned area exists continuously, the state of burned area exists at
least as long as it takes for local vegetation to regrow. This fact led to the class of Fire being
underrepresented in the dataset. The imbalance might led to a non-optimized result for
the Fire class. However, this is the most valuable class to be predicted for the aim of fire
management and should not be neglected. Besides, more data points were required for the
Unburned and Burned classes, as the underlying land cover classes had a higher impact on
the spectral reflectance for these classes to be distinguished in contrast with the Fire class.
The spectral reflectance of fire pixels was not influenced as much by the underlying land
cover class since the reflectance of fire is unique in Bands 8A, 11, and 12.

Apart from the between-class imbalance, an imbalance between land cover classes
within the three target classes existed. Some land cover classes occurred much more
frequently than others in general. Figure 5 shows an exemplary distribution of the data
points per land cover class within the target class of Fire. Even moderate levels of class
imbalance have an impact on the performance in classification problems [67,68]. To reduce
the imbalance of the dataset, we applied undersampling [69] as a preprocessing step (see
Section 2.2.4).
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Figure 5. Distribution of data points of the whole dataset combined from all study regions per target
class Fire and land cover class on a logarithmic scale.

2.2.4. Dataset Preparation, Splitting, and Undersampling

After generating the reference data and defining the datasets, we prepared the dataset
and split it for the ML application (see Figure 6). By dividing this dataset into three equal
subsets (Subset 1 to 3), we decreased the computational cost during the training phase
of the ML approaches. A second aspect of this initial splitting is given in Section 2.2.3,
explaining the between-class imbalance of the dataset. We split the basic dataset randomly,
but guided this to ensure that every subset consisted of approximately the same number of
data points per land cover class. This process was essential since some land cover classes
were less represented.
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Subset 2

Subset 1Subset 1

California 1 …Australia 1

Dataset

Subset 1 Subset 2

Uset 1

ML Training

Areas

Undersampling

Subset 1 Subset 2 Subset 3

Train

Uset 2 Uset 3

Uset 1

ML Valida�on

ML Test I

V T

S1 V

S1 T

ML Test II

Spain 1ML Test III

Subset 2 Subset 3

Spli�ng Train Train

Example for Training, Op�miza�on and Evalua�on on Subset 1

Training

Op�miza�on 

Evalua�on

Uset 1 Uset 2 Uset 3

California 2

Train Train V TTrain TrainTrain V TTrain

Figure 6. Flow diagram summarizing the dataset preparation applied in this study with the ML
process example illustrated for Uset 1. The following abbreviations are used: Uset—undersampled
set; V—validation set; T—test set; S—Subset; ML—machine learning.

Furthermore, an independent splitting of the subsets into the training, validation,
and test datasets was necessary when evaluating each model’s classification performance.
Therefore, we randomly split each subset dataset into three sets with a ratio of 60:20:20
(see Figure 6). Standard ML guidelines were followed with the chosen split ratio (see e.g.,
Kattenborn et al. [70]), and the randomized split guaranteed an independent distribution
of the subsets. The training dataset was reserved for the respective ML model’s training,
while the evaluation of the model was conducted on the test dataset. Besides, the model’s
hyperparameters were optimized on the validation dataset.

Next, we applied a selected undersampling approach. Undersampling approaches are
efficient to deal with in-between class imbalance [69]. To ensure a more balanced dataset,
the subsets’ training sets were formed by deleting instances of the majority class [71]. Since
the datasets comprised many data points, even for minority classes (see Section 2.2.3),
the undersampling approach was appropriate for balancing the dataset. Note that the
undersampling approach was only applied for the three training subsets to ensure the
validation/test set reflected the original distribution of the data points. Basic random
undersampling might deteriorate the existence of data points of rare land cover classes, as
potentially helpful information in the ignored examples might be neglected. Therefore, we
selected an informed undersampling approach concerning the land cover classes.

As a result, an undersampled training dataset of each original training subset was
created by randomly undersampling only data points of the majority land cover classes
inside the majority targets, unburned and burned classes. We refer to these three under-
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sampled training subsets as Uset 1 to 3 (see Figure 6). Data points of the regular land
cover classes were undersampled until they reached a threshold of N data points, similar
to an EasyEnsemble approach [69]. Then, we chose an experimentally derived threshold
per land cover class per target class (only on the Unburned and Burned data points).

The training of the ML models on these three datasets separately ensured the robust-
ness and reproducibility of the subsequently performed classification. After the applied
undersampling, the overall amount of data points for the two target classes, Unburned
and Burned, was still higher than for the target class Fire (see Figure 7). These differences
were not equalized, as they reflected the appearance of the classes in reality. Table A1 (see
Appendix A) gives the number of data points per class and their distribution after the
splitting and, in addition, after applying the undersampling approach. Note that we refer
to the dataset resulting from the undersampling as Usets. Each Uset was used once as a
training dataset during the ML models’ training. Figure 6 shows the workflow example
for Uset 1. After the training run with Uset 1, the same was carried out for Uset 2 and
Uset 3.

With the exemplary workflow, we ensured an extensive evaluation of the applied ML
approaches that focused on investigating the performance and generalization abilities on
different, locally distinct datasets. Besides, each trained model was validated three times:

• The Uset was used for training the ML approach, and the validation was conducted
with the validation set of the respective subset;

• Then, Test I testing was conducted with the test set of the respective subset;
• The total of the two other subsets was used as further test data in Test II. For example,

in the case of Uset 1, Subset 2 and Subset 3 were used as test datasets;
• For a completely independent evaluation in Test III, the dataset created for the selected

region of Spain, in the training and testing steps a so-far unseen region, served as an
additional test set.

In summary, all subsets (Test I and Test II) and the unknown Spain dataset (Test III)
were used for each evaluation process of the ML approaches depending on the training
on the respective Usets. Table 4 displays the number of data points of the respective test
datasets applied to evaluate the ML approaches trained on Uset 1 (see Figure 6).

Table 4. Number of data points (Sentinel 2 pixels) of the respective test datasets used for evaluation
the applied ML approaches. The numbers are exemplarily illustrated for the training on Uset 1
according to Figure 6.

Test I: S1 T Test II: Subset 2 Test II: Subset 3 Test III: Spain 1
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Figure 7. Distribution of data points of an undersampled subset (Uset 1) per target class after
balancing with a slightly lesser imbalance than the original.
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For some supervised classification approaches, further data processing was necessary.
For example, scaled input features are required for artificial neural networks (ANNs) and
highly recommended for SVMs. Thus, scaling was applied to the datasets beforehand for
any ANN and the SVM in Section 2.3.

2.3. Methods

In this subsection, we describe the model level including supervised ML models to
solve the underlying classification task (see Figure 1). As shown in Figure 1, the model
level represents the last level in the classification framework. The deployed ML models
are presented in Section 2.3.1. Subsequently, we summarize the evaluation metrics in
Section 2.3.2.

2.3.1. Machine Learning Models for Classification

As mentioned in Section 1.1 and Table 2, several supervised learning approaches exist
using Sentinel-2 input data to predict classes such as Fire, Unburned, or Burned success-
fully. These approaches comprise, for example, tree-based models, SVMs, or DL such
as convolutional neural networks (CNNs). However, the objective of this study was to
evaluate the classification performances of such ML approaches to predict all of the three
defined classes in one pass. Therefore, we selected shallow learning approaches such as
extremely randomized tree (ET) [72], AdaBoost [73], gradient boosting (GradientBoost) [74],
multi-layer perceptron (MLP) [75], supervised self-organizing map (SOM) [63,76–78], and
SVM with bagging [79]. Besides, we relied on a one-dimensional (1D) convolutional neu-
ral network (1D-CNN), which was similar to the DL approach of Riese and Keller [80].
The selected ML approaches were chosen since their robustness and strong classification
abilities have been proven in similar classification tasks and pre-studies (see [31,59,81]).
Table A2 in Appendix B summarizes all applied ML models with their respective hyperpa-
rameter settings. Note that we only applied scaling as preprocessing for the DL approaches
and BaggingSVM.

ET, AdaBoost, and GradientBoost were applied as tree-based classification models
and were associated with decision trees (DTs). Generally, they included a root and a leaf
node. Root and leaf nodes were then linked by branches. During the training of DTs, the
data of the respective dataset were split at every branch. With these splits, subsets were
generated, which highly correlated with the 13 input features. For example, RF is defined
by an optimum split, while ET relies on a random split, which reduces variance, according
to Geurts et al. [72]. Details on the structure and setup of the models were presented in the
corresponding studies [72–74].

Most of the SOMs are applied in an unsupervised manner as clustering
approaches [78,82]. For the underlying classification task, we relied on the supervised clas-
sification SOM introduced by Riese and Keller [63]. In sum, the supervised classification
SOM contains an unsupervised and a supervised SOM. The unsupervised SOM part selects
the best-matching unit for each data point. Selecting the data points was implemented
randomly. Then, the learning rate, neighborhood function, neighborhood distance weight
matrix, and class-change probability matrix were calculated. In contrast, the supervised
SOM connects the selected best-matching unit to a specific class. Note that the weights
of the supervised classification SOM consisted of a class. The SOM weight matrix was
modified, and the process was repeated until the maximum number of iterations was
reached. Details of the supervised classification SOM were given in Riese and Keller [77],
while the Python implementation can be found by Riese [83]. Besides, the hyperparameters
of the supervised classification SOM are presented in Table A2.

Another ML approach included in the model level was SVM. We propose an SVM en-
sembles approach with bagging. In this specific case, each SVM was trained independently
with randomly chosen training data points. Finally, these SVMs were aggregated into the
collective SVMbagging [79]. This proposition was advantageous since the standard SVM
storing the kernel matrix requires memory, which scales quadratically with the number of
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data points. So far, except for the classification SOM, the ML models were implemented
with the Python package scikit-learn [84].

As an ANN approach, we used MLP. MLP consists of a simple architecture with one
input, at least one hidden layer, and one output layer [85]. Each node, except the input
node, is a neuron that uses a nonlinear activation function. Backpropagation is applied for
training. Figure 8 shows the standard scikit-learn-implemented [84] MLP architecture
with the chosen hidden layer sizes of 5 and 2. The input layer consisted of 13 neurons
representing our 13 input features.

13x1

Label

5x1

2x1

Figure 8. Flowchart of the MLP architecture for the 13 input features during the training process.
The network includes two hidden layers. The implementation is a standard architecture with the
selected hidden layer size using scikit-learn [84].

Since CNNs have achieved good classification and regression results on remote sensing
images and spectral data [86,87], we also applied a CNN architecture. More precisely, we
employed a 1D-CNN since the generated reference data points were extracted pointwise. A
standard 2D-CNN, therefore, was not applicable. The idea to deal with pointwise reference
data with the help of a 1D-CNN was adapted from Riese and Keller [80]. Generally, a 1D-
CNN is resilient against any noise occurring in the Sentinel-2 data. Based on a 1D-CNN’s
deep layers, several features were created out of the 13 input features. The architecture
was similar to the one implemented in Riese and Keller [80]. However, it was adapted
during the training process and optimized for the task. Figure 9 shows the implemented
1D-CNN architecture. It consisted of two convolutional layers, one with a 64× 64 filter,
the other with a 32× 32 filter. Each convolutional layer was followed by a max-pooling
(MaxPooling) layer. Finally, two fully connected (FC) layers were implemented with 100
neurons each. In addition, the last FC layer was combined with a softmax activation
function. Except for this last activation function, the ReLU function was used (see also
Table A2). The Adam optimizer was used. The CNN’s hyperparameters were optimized
with a Hyperband tuner, which is a variation of random search. It is fast due to adaptive
resource allocation and early stopping [88]. The 1D-CNN was trained five times with the
best possible model. This model was chosen according to the highest validation accuracy,
which was calculated during the training process on the validation data. The results of the
five runs were averaged.
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13x1

Conv2 &
MaxPooling

FC1 FC2 Softmax
Label

... ...

Conv1 &
MaxPooling

64x64x1

32x32x1

100x1 100x1

Figure 9. Flowchart of the 1D-CNN architecture for the 13 input features during the training process.
The network includes convolutional (CONV), fully connected (FC), and max-pooling (MaxPooling)
layers. At the end of the network, a softmax function is applied.

2.3.2. Accuracy Assessment

For the evaluation of the models’ classification performances and the comparison of the
different results, we relied on several metrics. Concerning the reference data, the prediction
for a data point was either true positive (TP), true negative (TN), false positive (FP), or
false negative (FN). The applied metrics were implemented in the scikit-learn [84]
package. Besides, we had to consider that metrics were applied that could cope with an
imbalanced multiclass classification problem. For example, the balanced accuracy (BA)
defines such a metric suitable for imbalanced datasets. Overall accuracy (OA), Cohen’s κ
coefficient, precision, average accuracy (AA), and the F1-score are additional metrics that
are usually applied in classification problems. Note that i represents a respective data point.
All evaluation metrics were implemented in scikit-learn [84] and are summarized as
follows:

• OA represents the proportion of correctly classified test data points among all other
data points and is calculated according to Equation (2).

OA =
TPi + TNi

TPi + TNi + FPi + FNi
; (2)

• κ measures the agreement between two raters, each f which classifies each data
point. It is considered a more robust measure since it considers the possibility of
agreement occurring by chance. The two terms included in Equation (3) are the
observed agreement among the raters p0 (which is the above-mentioned overall
accuracy (OA)) and the hypothetical probability of agreement by chance pc.

κ =
p0 − pc

1− pc
(3)

where:

pc =
1

N2 ·∑ hi. · h.i (4)

hi. and h.i represent the sum of the products of the row total and the column total sum
of each class, which can be calculated by summing the row and column values for
each class in the confusion matrix;
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• Precision (also correctness) predicts the positive values.

Precisioni =
TPi

TPi + FPi
; (5)

• Recall (also completeness) rates the TP and is necessary to calculate the F1-Score. Note
that we excluded the recall in the Results Section (see Section 3).

Recalli =
TPi

TPi + FNi
; (6)

• AA equals the weighted Recall in a multi-class classification problem. We therefore
only included the AA in the Results Section (see Section 3). The weighted Recall is
calculated from the classwise Recall calculated in the earlier step;

• The F1-Score is a metric of the test’s accuracy. It considers the Precision and Recall of
the test subset to compute the harmonic mean.

F1-Scorei = 2 · Precisioni · Recalli
Precisioni + Recalli

; (7)

• BA gives information about how well a class is classified by the respective ML model.
Moreover, it is class imbalance suitable since it takes into account the individual
classes’ sizes [89].

BA =
1

∑ ŵi
∑

i
1(ŷi = yi)ŵi (8)

where yi is the true label of the i-th data point, ŵi is the corresponding weight, and ŷi
is the predicted class label.

3. Results

In the following sections, we present the classification results. Section 3.1 focuses
on the overall classification performance of all applied ML models. Next, we show the
several models’ performances concerning the different created subsets and the classwise
performance of the models (see Section 3.3). Finally, Section 3.4 presents the generalization
evaluation of the ML models on an entirely unknown and geographically independent
dataset. Thus, we can investigate and assess the classification performances of our pre-
sented approach for a concurrent and combined fire and burned area detection in detail.
Note that comparing our approach’s classification results with other approaches was un-
feasible due to the lack of existing approaches combining fire and burned area detection on
one task (see Section 1.1).

3.1. Overall Classification Performance of the Models

Table 5 shows the prediction scores of the applied ML models on the selected Subset
2. In this case, the models were trained on Uset 3 (see Figure 6 for details). All selected
ML models achieved very high prediction scores. The 1D-CNN and ET showed the best
classification results with an OA above 97%. The supervised classification SOM produced
the least-accurate results with an OA of 87%, followed by AdaBoost with 91%. When
considering Cohen’s κ, all models’ values ranged from 73% to 94%, with a slightly stronger
differing value of 63% for the SOM approach. With 83% to 97% for all models, the precision
was similar to the models’ OA values and the F1-scores. The AA score also ranged in
similar values of 80% to 97% for all models. All models achieved high BA values (85%
to 98%), especially ET and the 1D-CNN outperformed the other models with 98% (see
Figure 10). The BA scores are also visualized in the normalized confusion matrices of
Figure 10.
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ET achieved the best accuracies in the metrics OA and precision, while the CNN
achieves the best results in the AA and BA. Further information concerning the confusion
matrices is presented in Section 3.3.

Table 5. Classification metrics in % of all ML models trained on Uset 3 and their prediction per-
formed on Subset 2 and compared to the reference data. The 1D-CNN scores were calculated as
the average of five runs. The bold values represent the best classification results, respectively. (OA:
overall accuracy, Prec: precision, AA: average accuracy, BA: balanced accuracy).

Model OA Kappa F1 Prec AA BA

AdaBoost 91.2 73.6 86.8 86.8 86.9 86.9
BaggingSVM 93.7 81.1 90.5 90.6 90.5 91.8

ET 97.9 93.6 96.8 96.8 96.3 97.5
GradientBoost 95.3 86.2 93.0 93.1 93.0 94.7

MLP 96.1 88.4 94.2 94.2 94.2 94.9
SOM 86.9 63.0 81.0 82.8 80.3 85.3

1D-CNN 97.6 92.9 96.4 96.5 96.4 97.7

3.2. Classwise Performance of the Models

The ML models’ classwise performance was evaluated on the test Subset 2, while
the models were trained on Uset 3 (according to scheme of Figure 6). We can investigate
the ML models’ classwise classification performance by displaying the confusion matrices
introduced in Figure 10. According to Figure 10, all models could distinguish the three
target classes well. The confusion of the classes Burned and Unburned by the SOM was
slightly higher than by other approaches, as shown in Figure 11. It achieved the lowest
classwise classification performance. In sum, the Fire class was classified the best by all
models, with a BA score from 95% to 99%. The ET model and the 1D-CNN achieved the
highest classwise accuracy when focusing again on the Burned and Unburned classes. ET
classified the Burned data points better than the 1D-CNN (97.07% compared to 95.07%).
However, for the unburned class, the 1D-CNN outperformed every other applied approach
with 98.31%.

As investigated in pre-studies, the models’ classwise accuracies would be slightly
lower, especially for the minority Fire class due to the imbalanced characteristics of the
original dataset. These results are also shown in Figure A1 in Appendix C, where all models
were trained on the training split of Subset 3 and evaluated on Subset 2 according to
ML Test II in Figure 6. According to the confusion matrices in Figures A1 and 10, the
models achieved marginally better classification results on the balanced dataset. ET’s and
AdaBoost’s classification results improved for all classes for the balanced dataset, while
BaggingSVM’s and 1D-CNN’s results improved in two of three classes. However, the
classification results for the class Fire improved through balancing in all models.

Although SOM’s classwise classification performance was moderate, SOM has one
advantage concerning the interpretation of the classification results. SOMs can visualize
the results of a classification in a two-dimensional (2D) output grid [76,78] as a clustering
approach. Thus, we can (visually) extract information about the distinction between the
three different classes in the dataset. Note that the other applied ML approaches cannot
visualize the interclass variance, respectively classwise, in a human intuitively interpretable
manner (2D grid). Figure 11 visualizes the distribution of the classes linked to each node
of the supervised classification SOM. As a result, we can recognize that the class of Fire is
located in the upper right corner of the 2D grid. Only a few data points occur outside this
corner. Besides, the data points of the Burned and Unburned classes are slightly more mixed
and cover the remaining parts of the SOM grid. We notice four main clustered parts of the
Unburned class, while one inhomogeneous area of the Burned class is given.
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AdaBoost BaggingSVM

ET GradientBoost

MLP SOM

1D-CNN

20 40 60 80

Relative Frequency·100

Figure 10. Normalized confusion matrices for the applied ML models. The prediction was performed
on Subset 2 and compared to the reference data. The ML models were trained on Uset 3.
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Figure 11. Visualization of the supervised classification SOM as the distribution of the classes linked
to each SOM node as the output.

3.3. Classification Performances Concerning Different Subsets

Since we obtained different subsets for the training, optimization (see Figure 6), and
evaluation of the ML models, we needed to compare the models’ classification results on
these subsets. Table 6 summarizes the AA scores of four selected models, which were
characterized by low computational costs. They were trained on either one of the three
Uset, while we evaluated their classification performances on the remaining Subsets.

In total, the four selected ML models achieved satisfying and similar classification
results on all Subsets. Regarding the ET model as the best classification model, the
maximum deviation was 0.9% between the training on different Usets and the test in the
remaining two Subsets. We note that training ET on Uset 2 and Uset 3 achieved higher
OA scores if evaluated on Subset 1. On the other hand, AdaBoost’s performance deviated
1.3% when training on Uset 1 instead of Uset 3 independently of the Test Subset. Note
that AdaBoost scored the lowest OA.

Table 6. Classification results of the four selected models on different training and test data subsets.
The values represent the AA in%. The bold value represents the best subset combination classification
results.

Model
Training Uset 1 Uset 2 Uset 3

Test Subset 2 Subset 3 Subset 1 Subset 3 Subset 1 Subset 2

AdaBoost 85.6 85.6 86.5 86.5 86.9 86.9
ET 96.6 96.6 97.5 96.7 97.5 96.7

GradientBoost 93.0 93.0 93.1 93.1 93.0 93.0
MLP 94.0 94.0 94.0 94.0 94.1 94.2

3.4. Application of Two Selected Models on an Unknown Dataset and Their Performances

We applied the two best classification models, ET and the 1D-CNN, in Test III. All
approaches showed very good results in Tests I and II. However, since the objective of
this study was to find a model to best classify fire and burned area, we could rely on only
the best two models for this third and last evaluation. With this evaluation, we assessed
our approach’s generalization abilities on an unknown dataset. This dataset consisted
of a regional area in Spain, Europe, as described in Section 2.2. Table 7 summarizes
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the classification performances of the two models. The 1D-CNN performed a better
classification than ET concerning all metrics. The OA scores were extremely high, with
99.6% for ET and 99.8% for the 1D-CNN.

Besides, we visualize the classification results of ET and the 1D-CNN, as well as the
reference data as maps in Figure 12. The results revealed that both models could accurately
classify the burned area within the incident region, which was defined by the vector file
boundaries. However, while the 1D-CNN generally corresponded better with the reference
map, ET misclassified a few Unburned pixels as Burned outside the incident area. As for the
class Fire, both ML models mapped these areas correctly, although they tended to classify
more data points as Fire than existed in the reference dataset.

Table 7. Classification metrics of ET, the 1D-CNN, and the NBR for comparison on the unknown
selected Spanish regional dataset in%. The bold value represents the best classification results.

Model OA Kappa F1 Prec AA BA

ET 99.6 79.1 93.7 94.3 93.4 82.3
1D-CNN 99.8 83.2 95.0 95.4 94.9 91.0

Figure 12. Visualization of the classification results of extremely randomized tree (ET) (top left) and
the 1D convolutional neural network (1D-CNN) (top right) on the independent test region in Spain.
The visualization of the generated reference data is given on the bottom. Projection: Transverse
Mercator.
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4. Discussion

In this section, we discuss the presented study and the achieved classification results.
First, we readdress the reference data generation for the combined detection of active fire
and burned area (see Section 2.2.2), representing the first major challenge. Subsequently,
we investigate the remaining challenges as stated in Section 1 according to the different
results in the same order as shown in Section 3 (see Sections 4.2–4.5).

4.1. Addressing the Challenge of Reference Data Generation for a Combined Detection

The supervised ML models require appropriate reference data to solve the classifi-
cation task and detect fire and burned areas with Sentinel-2 data. Since these data were
lacking, we needed to generate reference data. We relied on OSM data for generating
reference data, which seemed to be appropriate for the detection of fires and burned areas.
However, the selected OSM data need to correspond to the underlying and actual burned
area state of the Sentinel-2 satellite data. Therefore, the OSM data selection could be a
crucial aspect of the data pipeline (see Figures 1 and 3); it was also performed manually. An
additional challenging aspect was selecting the Sentinel-2 data used for the visual detection
of the fires based on the false-color composite of Bands 8A, 11, and 12.

The required OSM and Sentinel-2 data must be of high quality. In sum, the refer-
ence data generation was conducted in a semi-automated manner and not as an entirely
automated process and aimed at providing reference data for the combined detection
of active fires and burned areas. This approach represents a limiting step of our entire
workflow. Any classification results provided by the ML models can only be as precise as
the reference data themselves. The accuracy of the generated reference data can only be
evaluated visually. In our visual evaluation concerning the study’s generated reference
data, we found that the used reference data were feasible for the underlying classification
task. We received more than a few pixels labeled as Fire based on the applied index as a
side effect. However, this effect did not interfere with the classification performances of the
applied models.

4.2. Separation of the Classes Regarding the Models’ Overall Classification Performance

Overall, we noticed that some supervised ML models classified the three classes
Fire, Unburned, and Burned better than other models. Although all models achieved high
OA scores with more than 87%, a few models were outstanding with an OA score above
97%, such as ET and the 1D-CNN, referring to Table 5. ET represents a shallow learning
ensemble approach, and the 1D-CNN is a deep learning approach. From the overall high
classification metrics and the comprehensible 2D visualization of the SOM (see Figure 11),
we understand that the underlying task of detecting fires and unburned areas in a combined
approach is feasible based on the provided input features extracted from the Sentinel-2
data. When selecting the appropriate ML model, we suggest applying shallow learning
approaches such as ET since they require less computation time and are relatively simple
to train (less tuning of the required hyperparameters) compared to the deep learning
architecture of a 1D-CNN.

Concerning the various input features, the spectral information of the Sentinel-2 data
combined with information about the underlying land cover represents the basis for the
detection of fires and burned areas. For example, the spectral features were the most
important for fire detection, while the land cover information indicated the distinction
between burned and unburned areas. Figure 13 shows the feature importance of two
ensemble approaches, ET and GradientBoost. As for ET, Sentinel-2 Band 12 was the most
important feature, followed by Band 8A and Band 8. The additional land cover feature was
the fifth important one in this case. The other remaining Sentinel-2 features were medium
important.

For GradientBoost, the feature importance was more clearly ranked. The Sentinel-
2 Bands 12 and 8a were the most important ones, followed by Band 1, covering the
SWIR region and the land cover information. In conclusion, especially apparent in the
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GradientBoost, the SWIR bands and the land cover were the main important features. These
features were also used for the active fire index calculation and generally for fire and burned
area detection (see Section 1.1). The GradientBoost’s feature importance demonstrated
that the SWIR, in general, was most suitable for fire and burned area detection, and the
addition of the land cover feature was also valuable for the classification task. As explained
by the different architectures of ET and GradientBoost, ET used more or less all input
features. Without asking for a detailed further analysis of the different distributions of the
feature importance of the provided ensemble approaches, we can conclude that the applied
input features are sufficient to solve the underlying classification task with supervised ML
models.
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Figure 13. Exemplary feature importance for extremely randomized tree (ET) (top) and gradient
boosting (GradientBoost) (bottom).

4.3. Investigating the Classwise Separation on the Balanced Datasets

When focusing on the confusion matrices in Figure 10, we recognize that distinguish-
ing between burned and unburned areas is more challenging than classifying fires and
burned or unburned areas. However, the classification results were significantly good,
so that in sum, the classes could be separated sufficiently by the models. Besides, the
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2D grid of SOM (see Figure 11 in Section 3.2) impressively revealed the separability of
the three target classes with the provided input features. Although SOM was not the
best-performing classification model, it could separate burned and unburned areas. Evalu-
ating the classwise performance, the results of ET and the 1D-CNN were better than the
other models’, which corresponds to the overall accuracy findings (see Section 4.2). Both
approaches were capable of solving the classification task and detecting fires and burned
areas in one task.

Comparing the confusion matrices of the models calculated on the imbalanced, non-
undersampled dataset (Figure A1 in Appendix C), we saw that the results were very
similar to those on the undersampled dataset (Figure 10 in Section 3.2). In conclusion,
the imbalance was not a significant disadvantage in this classification task. However, the
undersampling approach enhanced the models’ classification once more. The similarity
between the models’ classification performances on the undersampled and imbalanced
datasets can be explained by the fact that unique spectral signatures characterized the
minority class Fire. This fact led to an easier classification even with a lower number of data
points. On the contrary, the classification between Burned and Unburned was more difficult
due to the similarity of the spectral signatures. Although we augmented the number of
features to allow an easier classification by using the land cover, we still achieved lower
accuracy metrics. By slightly balancing the dataset, we aimed to achieve higher accuracy
in the Fire class. The Fire class is crucial for a natural hazard scenario since it is most
endangering to human life. Note that we did not balance all three target classes to the same
amount of data points (see, for example, Figures 4 and 7). The number of data points for
Burned and Unburned was higher than in the Fire class, but based on the undersampling
approach, the number of data points of the initially dominant classes was reduced (see
Figure 7). We selected the optimal amount of data points per class for the underlying study
with the undersampling approach. The balanced accuracy, which represents a metric for a
class-imbalanced classification problem, showed high scores for our selected number of
data points. These scores are explainable by the relatively easy classification of the minority
class Fire.

4.4. Evaluating the Classification Performances Concerning Different Subsets

From the findings in Section 3.3, we drew the conclusions that we had enough data
points in each subset for solving the classification task with supervised ML models com-
bined with an undersampling approach. Furthermore, the models achieved satisfying
(>85.6%) and similar classification results on each combination of training and test subsets
(see Figure 6) with a maximum difference of 1.3 p.p. between training on Uset 1 and Uset
3 for AdaBoost (see Table 6). The variations between training GradientBoost and MLP on
different Usets were only 0.1 p.p., and therefore non-significant. Apart from AdaBoost,
ET showed a little higher variation between the achieved accuracies with 0.9 p.p. Since
ET showed the best results when evaluated on Subset 1 (trained on Uset 2 and Uset
3, respectively) and the worst when trained on Uset 1, created from Subset 1, it can be
assumed that Subset 1 contains data points that are easier to classify for the ET. Overall,
since all combinations of training and evaluation subsets achieved similar classification
performances, the choice of the subsets was less relevant than the choice of an appropriate
ML model (see Sections 3.1 and 3.2).

4.5. Investigating the Best Two Models’ Performances on an Unknown Dataset

The proposed approach for combined fire and burned area detection based on ML
models and Sentinel-2 data has the potential for generic applicability. We trained the ML
models on remote sensing and reference data of two different regions, California in the USA
and SE Australia, and we applied the two best-performing models without any further
post-training to an entirely unknown dataset of a region in Spain. Therefore, we could
investigate the generalization abilities. ET and the 1D-CNN showed significantly good
classification performances on the Spain dataset. Only small patches of mislabeled data
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points (pixel) occurred in 1D-CNN’s prediction. The ET model also misclassified these
data points. These misclassifications can be caused by an unknown underlying land cover.
The training subsets did not include this specific land cover since it was not present in
the regions of California and SE Australia. In such a case, an additional set of training
data points covering these specific areas could enhance the classification performance.
When focusing on the fire boundary provided by agencies, the 1D-CNN and ET correctly
classified all patches inside the boundary shape into Burned and Unburned.

In general, the classification performance of the 1D-CNN was better on the unknown
dataset than the performance of ET. The 1D-CNN generated a much smoother and less
patchy classification. The main reason for the mentioned aspects is that the 1D-CNN
derived low-level features and used not only the presented 13 input features as the ET
model.

When evaluating the models’ performances on the entirely unknown test dataset
(Test III), we had to consider the different metrics in addition to the OA. According
to the OA scores, both models performed well, but the scores of the additional metrics
decreased. The comparatively low BA score indicates, for example the lower number of
data points in the Fire class affected the models’ performances, especially on an unknown
dataset with varying land cover as given in the training dataset.

Especially, the CNN approach showed such high accuracies that the application in
a use-case scenario could be possible. Since such a use-case scenario might include the
organization of fire-fighting activities or population protection, it is crucial to achieve the
best results possible. We showed that the developed method can be used for generic fire
and burned area detection worldwide from the given reference data and achieves good
results.

5. Conclusions

In this study, we proposed and presented an approach for concurrent and combined
fire and burned area detection based on supervised ML models and satellite images (→
combined detection of active fire and burned area). We introduced the challenges associated
with such a combined detection of fire and burned area in Section 1 and discussed them in
the course of this study. We relied on the optical satellite data of the Sentinel-2 mission since
these data provide a high spatial resolution and are suitable for the task of the combined
detection in one data source (→ detection at a high spatial resolution). Furthermore, suitable
reference data covering fires, as well as burned and unburned areas were generated from
the Sentinel-2 data with OSM data (→ generation of reference data). The fire detection was
conducted via a selected index, and the burned area mapping was based on available
OSM vector data. Subsequently, we applied an undersampling approach as the data
preparation to achieve a more balanced dataset for training. The undersampling approach
showed suitable results to enhance the models’ classification of the minority, but crucial
class Fire. In general, all selected seven ML approaches achieved satisfying classification
results with, for example, an OA score of >88% on exemplary test subsets. As described in
Sections 3 and 4, the models performed highly accurate fire detection, while separating
burned and unburned areas was slightly more challenging. The main reason for this
challenge arose due to the latter classes’ spectral similarity. According to the ensemble
approaches’ feature importance, the SWIR bands were the most important features to
separate burned and unburned data points. In total, the 1D-CNN and ET were the best
performing models with an OA score of > 98% on the test subsets and were appropriate
models to conduct the task (→ selection of appropriate ML approaches). In particular, the
1D-CNN achieved high classification accuracies, even on an entirely unknown dataset (see
Sections 3 and 4.5). This generalization is even more valuable for any use-case scenario,
including the organization of fire-fighting activities or civil protection. Therefore, the
developed approach is applicable for a generic combined fire and burned area detection
in high-resolution remote sensing data of 10 m compared to existing approaches that aim
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either at the fire, e.g., [24,37], or burned area detection based on low-resolution remote
sensing data such as MODIS, e.g., [53] (→ configuration of a generic concept).

Our presented methodological approach can be considered a first approach towards a
combined detection of fires and burned areas in contrast to existing approaches that solve
this classification in two separate tasks. However, when critically investigating possible
restrictions, it becomes apparent that very high classification accuracy is necessary for a
small-scale operation, such as several small fires distributed in different areas. In such
a case, the Sentinel-2 input data are spatially too imprecise due to the 10 m resolution.
Moreover, additional reference data are required, which are labeled semi-automatically.
Therefore, a more precise fire boundary should be present. As another aspect, to enhance
the classification results of a specific area, data points of these areas should be included in
the training dataset. These data points should also involve their land cover information,
respectively. As mentioned before, adding more Fire data points with different underlying
land cover classes to the training dataset could increase the classification results when
evaluated on an unseen dataset. Furthermore, an oversampling approach could be con-
sidered in future studies. Since we relied on Sentinel-2 data as optical remote sensing
data, the cloud-free scenes and images state a limitation. Our proposed approach can
only be applied every two or three days, depending on the satellite coverage intervals and
cloud coverage. We could combine different optical satellite missions to avoid a time gap.
Nevertheless, we would have to accept the lower spatial resolution (see Section 1.1).

Another approach to further enhance our proposed combined detection would be to
include crowdsourced data that are freely available and up-to-date. Such approaches have
been used in several studies on various natural hazards, e.g., [90,91]. One disadvantage
of such data is that the needed geo-location is not always present; see, e.g., [92]. A com-
bination of the developed procedure for optical remote sensing fire detection and these
crowdsourced data could be a future improvement on near-real-time fire area monitoring.
Finally, in a future study, the proposed improvement can be implemented and analyzed
for the combined detection of fires and burned areas.

Author Contributions: All authors prepared the methodological concept of this study and the
original draft, as well as performed the editing of the manuscript. J.F. designed the software, curated
the data, and performed the investigation, formal analysis, and validation. J.F. and S.K. contributed
to the visualization of the data and results. S.K. initialized the research and provided didactic and
methodological inputs. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We thank Stefan Hinz, head of the Institute of Photogrammetry and Remote
Sensing at the Karlsruhe Institute of Technology, for the funding of this work. We acknowledge
support by the KIT-Publication Fund of the Karlsruhe Institute of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Distribution of the Data Points after Undersampling

Table A1. Number of data points in total (total) and per class in the train subsets and Usets (Fire,
Burned, and Unburned).

Subsets Total Fire Burned Unburned

Train 1 1,707,832 79,859 1,010,220 617,753
Uset 1 1,203,322 79,859 718,003 405,460
Train 2 1,707,835 79,860 1,010,222 617,753
Uset 2 1,203,327 79,860 718,006 405,461
Train 3 1,707,842 79,857 1,010,227 617,758
Uset 3 1,203,328 79,857 718,007 405,464
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Appendix B. Hyperparameters

Table A2. Hyperparameter setup for the classification approaches. The approaches were imple-
mented mostly in scikit-learn [84] and TensorFlow [93], while SOM was implemented according
to Riese and Keller [63].

Model Package Hyperparameter Setup

ET [72] scikit-learn n_estimators = 200; max_depth = 100
AdaBoost [73] scikit-learn n_estimators = 100; learning_rate = 1.0

GradientBoost [74] scikit-learn learning_rate = 0.1; loss =
"deviance"; n_estimators = 100; max_depth = 3

MLP [75] scikit-learn hidden_layer_sizes = (5, 2); activation =
"relu"; solver = "adam"

BaggingSVM [79] scikit-learn base_estimator = "SVC"; C = 0.7; γ = "auto"

SOM [63,77,78] other SOM size = 100× 100; NIt, Input = 1000; learning rates
αStart = 0.1

1D-CNN [80] TensorFlow

Keras sequential model:
epochs = 80; batch_size = 50; 2 convolutional layers
with {64, 32}; 1 dense layer with 100 neurons;
activation = "relu"

Appendix C. Performance on the Imbalanced Dataset
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Figure A1. Cont.
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Figure A1. Normalized confusion matrices for the investigated models. The prediction was per-
formed on the unbalanced Subset 2 and compared to the reference data. The ML models were
trained on the training split of Subset 3.
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