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Abstract: Radar data may potentially provide valuable information for precipitation quantification,
especially in regions with a sparse network of in situ observations or in regions with complex
topography. Therefore, our aim is to conduct a feasibility study to quantify precipitation intensities
based on radar measurements and additional meteorological variables. Beyond the well-established
Z–R relationship for the quantification, this study employs Artificial Neural Networks (ANNs) in
different settings and analyses their performance. For this purpose, the radar data of a station in Upper
Bavaria (Germany) is used and analysed for its performance in quantifying in situ observations. More
specifically, the effects of time resolution, time offsets in the input data, and meteorological factors on
the performance of the ANNs are investigated. It is found that ANNs that use actual reflectivity as
only input are outperforming the standard Z–R relationship in reproducing ground precipitation.
This is reflected by an increase in correlation between modelled and observed data from 0.67 (Z–R) to
0.78 (ANN) for hourly and 0.61 to 0.86, respectively, for 10 min time resolution. However, the focus
of this study was to investigate if model accuracy benefits from additional input features. It is shown
that an expansion of the input feature space by using time-lagged reflectivity with lags up to two and
additional meteorological variables such as temperature, relative humidity, and sunshine duration
significantly increases model performance. Thus, overall, it is shown that a systematic predictor
screening and the correspondent extension of the input feature space substantially improves the
performance of a simple Neural Network model. For instance, air temperature and relative humidity
provide valuable additional input information. It is concluded that model performance is dependent
on all three ingredients: time resolution, time lagged information, and additional meteorological input
features. Taking all of these into account, the model performance can be optimized to a correlation of
0.9 and minimum model bias of 0.002 between observed and modelled precipitation data even with a
simple ANN architecture.

Keywords: precipitation; Z–R relationship; X-band radar; feed-forward neural networks; predictor
screening; Bavarian Oberland region

1. Introduction

For more than 70 years, meteorology has been concerned with the question of whether
and how to develop the most accurate models possible from precipitation radar measure-
ments for Quantitative Precipitation Estimation (QPE) at ground level. The theoretical
finding that the power obtained from radiation reflected from rain is proportional to the
reflectivity has been verified by [1]. Based on their experiments using a wavelength of

Water 2022, 14, 276. https://doi.org/10.3390/w14030276 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14030276
https://doi.org/10.3390/w14030276
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/{0000-0002-8657-6152}
https://doi.org/10.3390/w14030276
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14030276?type=check_update&version=2


Water 2022, 14, 276 2 of 17

10 cm, they published an empirical formula for converting the reflectivity (Z) measured by
radar into the precipitation rate (R), the statistical power law Z–R relation.

A general problem of this approach is that Z is measured as an average of a large
volume and the gauge measures only at one point at the ground. The difference may be
huge in case of convective rain, were the rain rate may vary significantly within short
distances (e.g., 100 m) and the radar beam may extend over 1000 m. Moreover, with finite
elevation of the radar beam, there is a vertical displacement to the ground bound gauge.
This causes a time delay between the time series of radar and gauge. This problem will
be worse in case of wind, because the origin of the rain (and the relevant Z) measured by
the gauge may be unknown. In case of single elevation radar, the origin may even not be
observed by the radar [1].

Since its discovery, the empirical Z–R relation has been continuously improved. Af-
ter the development of dual-polarization radars, different types of hydrometeors could be
distinguished and hydrometeor-based Z–R relationships were estimated, leading to a more
sophisticated QPE [2,3].

Quantitatively correct radar-based precipitation estimations require a calibration using
precipitation gauges on the ground. Thus, calibrated radar precipitation data can be seen
as a synthesis of a radar and ground measurement network, combining the advantages
of both measurement techniques. In Germany, the routine procedure RADOLAN (Radar
Online Adjustment) of the German Weather Service (DWD) provides area-wide, spatially
and temporally high-resolution quantitative precipitation data in near real-time, derived
by hourly values measured at the precipitation stations and the precipitation recordings of
17 weather radars [4]. Though the RADOLAN dataset provides a considerable improve-
ment for spatially and temporally highly resolved rainfall monitoring, the QPEs still contain
systematic errors [5].

In 2018, the DWD released a reanalysis product, processing all radar data back to the
year 2001 by using consistent processing techniques, several new correction algorithms,
and more rain gauges for adjustment. This radar climatology data set, called RADKLIM
(Radar Climatology), was developed with the aim to facilitate radar-based climatological
research [5].

Other statistical approaches have been applied to correct radar precipitation fields
by assimilating gauge information [6,7]. Based on the concept of Copula functions,
Vogl et al. [7] assimilated the rain gauges by considering the structure and the strength
of dependence between the radar pixels and the gauges in the surrounding of the radar.
The Copula-based approach performed similarly well compared to RADOLAN.

Due to the calibration of the radar using precipitation gauges on the ground, RAD-
KLIM, RADOLAN, and Copula-based approaches offer potential options for QPE in Ger-
many. It is, however, questioned whether this computationally demanding calibration
procedures can be replaced by less-demanding approaches, e.g., by using ANNs, possibly
leading to QPEs with similar accuracy.

The approach of using ANNs to support the evaluation and validation of weather
radar measurements is not new. In 2000, Liu and Chandrasekar [8] dealt with the classifica-
tion of hydrometeors by neuro-fuzzy systems. Unlike QPEs, their study focused on the
classification of hydrometeors.

Similarly, Hessami et al. [9] applied four different ANN models for the post-calibration
of weather radar rainfall estimation, including multilayer feed-forward networks and
radial basis functions. The multilayer feed-forward training algorithms consisted of four
variants of the gradient descent method, four variants of the conjugate gradient method,
Quasi-Newton, One Step Secant, Resilient backpropagation, the Levenberg–Marquardt
method, and the Levenberg–Marquardt method using Bayesian regularization. It is found
that the Levenberg–Marquardt algorithm using Bayesian regularization provides a robust
solution, which benefits from the convergence speed and from the over-fitting control of
Bayes’ theorem, which has been a problem for all other multilayer feed-forward training
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procedures. Moreover, radial basis networks have also been problematic as they are very
sensitive when used with sparse data.

More recent publications predominately deal with deep learning algorithms, originally
developed for image processing. Applications are demonstrated in the modelling of
precipitation intensities derived from satellite data (e.g., [10–15]). A more general overview
of studies on the use of deep learning in the field of hydrology can be found in [16].

Deep learning approaches also found their way into the processing of radar images.
For instance, Bonnet et al. [17] applied Video Prediction Deep Learning algorithms for pre-
cipitation nowcasting and short-term forecasting, i.e., to predict the future sequence of
reflectivity images for up to 1-h lead time for São Paulo, Brazil. Tian et al. [18] devel-
oped two models based on the Back Propagation Neural Networks and Convolutional Neural
Networks, respectively. Both approaches outperformed the traditional Z–R relation for
QPE. Tosiri et al. [19] improved deep learning precipitation prediction by integrating
the precipitation data from Japan Aerospace Exploration Agency’s Global Rainfall Watch
with the precipitation data from Type C Doppler radars. It has been demonstrated that the
proposed method can improve precipitation nowcasting for extreme weather situations
such as typhoons.

Orlandini and Morlini [20] trained three different ANN networks, a multilayer per-
ceptron, a Bayesian network, and a radial basis function network for the identification and
reproduction of the relationship between Z and R. With respect to over-fitting and over-
parametrization, they found that a Bayesian network appears less vulnerable than the other
two approaches. As a key challenge for future work, they mentioned the identification and
incorporation of all relevant factors (i.e., variables) that allow ANN models to recognize
the different circumstances produced by atmospheric processes and radar operation.

Picking up the key challenge of incorporating relevant (meteorological) predictor
variables, the overall research question addressed in this study is whether or not a trained
ANN based on the radar measurements and meteorological observations can be applied
for QPEs. We therefore use a very simple ANN architecture, as it is more suitable for
predictor screening than deep networks. In those, the input–output sensitivity may be hard
to detect due to the complex structure of the resulting transfer functions. As a benchmark,
we used a three-layer ANN with actual reflectivity as its only input, that mimics the
nature of the empirical Z–R relationship. Based on the reflectivity measurements of the
X-band precipitation radar in Kirnberg (Bavaria, Germany), the performance of ANNs with
increasing complexity of the input feature space is analysed and compared to the standard
Z–R relationship. During training, the ANN models are assumed to learn adequate non-
linear transfer functions that are able to deliver comparable results with respect to a realistic
representation of ground precipitation.

In detail, the following more specific research questions are addressed:

1. What influence has time resolution i.e., aggregated hourly precipitation values, com-
pared to 10 min data on model performance?

2. Is it useful to include time lagged reflectivity as additional input features?
3. Which meteorological predictor variables can be used to improve the ANN

model performance?

2. Materials and Methods

Figure 1 shows the location and of the X-Band single polarization radar, positioned in
Kirnberg (Geigersau farm, Weilheim-Schongau, Bavaria, Germany) at 950 m height (a.s.l.).
In this feasibility study, only the DWD station nearby the radar at the Hohenpeissenberg
has been used for validation.
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Figure 1. Image of X-Band radar, located in Kirnberg in southern Bavaria (left) and measurement
radius. The pins indicate the location of the radar in the centre as well as the reference observation
station at Hohenpeissenberg for validation (right).

2.1. X-Band Radar

The raw radar data are measured with a maximum radius of 50 km around the radar
position and with a horizontal resolution of 100 m. The radar acquired 12 scans of 360◦ per
minute. The five minute medians of the measured data are collected as a time series. More
technical details about the radar are summarized in Table 1.

Table 1. Technical details about the X-Band radar radar at Kirnberg (Geigersau farm, Weilheim-
Schongau, Bavaria, Germany).

Antenna

Gain 37.5 dB
Azimuth Beam Width 2.5°
Elevation Beam Width 2.5°
Elevation Angle 3°
Rotation Rate 12 rpm (=12 rounds per slide)
Azimuth Accuracy ±0.5°
Weight (incl. Radome) 23.6 kg

Transmitter

Peak Power 25 kW
Frequency 9410 (±30 MHz)
Pulse Repetition Frequency 1500 Hz
Pulse Duration 500 ns
Pulse Length 75 m

Receiver

Bandwidth (1200 ns 500 ns) 2.5 MHz 7 MHz
Minimum Detectable Signal −100 dBm
Dynamic Range 70 dB
Noise Figure 6 dB
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2.2. Data Preprocessing

The raw data suffers from corrupted scans such as missing measured data, uncom-
pleted scans, artifacts, or misaligned azimuth (wrong orientation). Empty scans are iden-
tified by a predefined threshold for minimum signal level (60 dBZ). Uncompleted scans
are identified by wrong number of scanned azimuths, and the misaligned orientation of
the scans is corrected by comparing the positions of distinct ground clutter (caused by
mountains, e.g., the Mount Zugspitze) with a correct reference scan. These corrupted scans
have been identified and removed.

In addition, the clutter effects, consisting of static clutter and speckles, have to be
removed. The static clutter is caused by ground reflections around the radar (up to ap-
proximately 15 km radius) and by obstacles (mountains ranging from south east to south
west). The clutter from the obstacles is very prominent with high reflectivities up to 50 dBZ.
To remove the clutter due to obstacles, the relevant pixels of the scans are masked and the
reflectivity is interpolated using the surrounding pixels. The ground clutter (e.g., around
the DWD station Hohenpeissenberg) extends over a big area and cannot be handled as
described above. Instead, we have calculated the mean reflectivity of this clutter using all
clear sky scans of the relevant month and subtract this from the actual scan. The speckles
are produced by moving objects (e.g., aeroplanes) and vary strongly in space and time.
The extension of this phenomenon is limited to few pixels. The Gabella filter [21] has
been used for masking and interpolation. The whole process of clutter removal has been
extensively tested for the best parameter set of the filters (e.g., thresholds). The aim was to
remove the clutter without introducing artifacts or removing small scale rain fields.

In the following, the raw measured Z has been used as input data, because there is
no reliable way to correct for attenuation with a single polarization radar. For this study,
data from May, June, and July 2015 and May, June, July, and September 2016 were chosen.
The data were restricted to summer so that precipitation can be considered as rain with
high probability. The temporal resolution of the meteorological observations is 10 min
while the radar measures in 5 min intervals. Thus, two 5 min radar measurements were
combined with the corresponding 10 min station observation so that uncertainties from
upscaling were minimized. After removing missing or erroneous data, 26,554 data samples
(10 min time resolution) were available.

To compare the performance of different models for different time resolution, hourly
time series were generated by aggregating the raw data. In that case, 4268 data pairs could
be used for the analyses.

Figure 2 shows a comparison between observed precipitation and precipitation cal-
culated from radar reflectivities by the standard Z–R relationship in 10-min resolution
exemplarily for the station Hohenpeissenberg. The correlation between observed and radar
based precipitation is 0.61. As only 3085 values are larger than 0 mm/10min, the observed
mean is only 0.037 with a standard deviation of 0.30 mm/10min. It can be seen from
Figure 2 that the position of rain events is well represented in the radar based data, while
the absolute values tend to be overestimated.

This is also reflected in the scatter plot (Figure 3), where it can be seen that precipitation
is systematically overestimated. Thus, the mean value of radar based precipitation is
0.08 mm/10 min leading to a bias of 0.03 mm/10 min.

2.3. Models

It is assumed that a Neural Network model is able to learn an appropriate non-linear
transfer function that can reproduce the amount of precipitation, measured at the ground,
from radar reflectivities and different meteorological input features.

To compare the performance of a transfer function based on a Neural Network directly
with the empirical Z–R relationship, firstly a simple feed-forward Neural Network is set
up which retrieves only radar reflectivities as input and is trained to reproduce rainfall at
the ground as target.
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Figure 2. Observed precipitation and precipitation calculated from reflectivity by the Z–R relationship
at location Hohenpeissenberg (Correlation coefficient ρ = 0.61).
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Figure 3. Scatter plot of observed precipitation and precipitation calculated from reflectivity by the
Z–R relationship at location Hohenpeissenberg (Correlation coefficient ρ = 0.61).

Meta parameters of the ANN model include the number of hidden layers, the number
of active neurons within each of them, as well as parameters that are connected to the
learning procedure e.g., the learning rate. These meta parameters have to be adapted
during training to optimize model performance.

The Neural Network topology is kept simple with only one hidden layer (activation
function tanh). The model topology is shown schematically in Figure 4 (left). The dimension
of the input cluster depends on the size of the input feature space and is different for the
individual settings, while the output cluster always has one dimension.
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As a high-dimensional input space requires more complexity of the transfer function,
the number of Neurons in the hidden layer is adapted with increasing input complexity
and set to (20 + 4 · InputDim). Thus, for only 1 input feature, the ANN has only 24 active
Neurons in the hidden layer, while the number of Neurons increases to 44 when e.g., radar
reflectivities with lags up to 5 are used as input features.

The number of trainable parameters (weights) in the connector matrices A and B is
fully determined by the cluster dimensions. The number of free parameters in the respective
transfer function yout = B(tanh (A~x)) is thus increasing with an increased number of input
features in ~x = (x1, . . . , xk). A plot of the loss function during training of an exemplary
model (hourly resolution, actual reflectivity only input) shows that the loss on the test set
is decreasing continuously for the first epochs of training. However, after 600 epochs, it
is starting to increase again while the training loss is still decreasing. This shows that the
model tends to over-fit, i.e., it is learning too much detail from the training data while
loosing its ability to generalize on unseen samples. To compensate for that effect, an early
stopping procedure is implemented during training. The performance of the model on the
test set is monitored during training and the learning is stopped as soon as the test error
starts to rise again.

Input

Hidden

Output

A

B

Figure 4. Topology of a simple 3-layer feed-forward Neural Network (left) and loss on the training
and test set of an exemplary training run for hourly time resolution (right).

As the ranges of reflectivities and observed rainfall, as well as those of other meteoro-
logical variables, are substantially different, the data has to be standardized to a range of
[−1;1] by a standard scaler xisc =

xi−x
σx

before feeding it to the Neural Network. The trans-
formed data xsc then has mean xsc = 0 and a standard deviation of σxsc = 1. This data range
is also optimal for the tanh activation function, as too large or too small values would be
mapped to +1 or −1 while passing the hidden layer, leading to a loss of input information.

After standardization, the available data is split up into a training set (3400 for hourly
and 21,000 values for 10-min time resolution), a test set (10% of the training data, randomly
selected for each model run), and a fixed generalization set (850 and 5000 values). While
the training and test set are presented during training and are used for model optimization
as well as optimization of the different meta-parameters, the generalization set represents
completely unseen data and is used for final performance estimation.

Figure 5 shows the workflow of model training and selection.
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Figure 5. Workflow of model training and selection of the best model run (color of arrows: model
selection (grey); data flow (blue); recall, i.e., application of best model on generalization set (orange)).

Based on the number of input features the respective number of hidden neurons is
calculated and the first model is trained using stochastic gradient descent with momentum.
The optimal meta-parameters of the training are found by a grid search. To avoid over-
fitting, an early stopping procedure is applied during training with a maximum number
of 3000 training epochs, which is large enough not to be reached before the loss on the
test set increases. As the random initialization of model weights leads to slightly different
performances in model recall, for all experiments an ensemble of models (20 ensemble
members) is trained using the optimal set of meta-parameters. The best model is picked
out based on the model loss evaluated on the test set.

2.4. Performance Measures

We use several statistical measures for the quantitative analysis of the modelling
results. Besides the time series diagrams and scatter plots to visualize the performance,
several standard performance measures are calculated, such as the bias, Pearson Correlation
coefficient (ρ), the Root Mean Squared Error (RMSE), and the Nash–Sutcliffe Efficiency (NSE). Let
Qi denote the i = 1, . . . , n observations, Q the mean of the observations, Q?

i the modelled
data, and Q? the mean of the modelled data. Then, the model bias that measures the
difference between observed and modelled mean is defined as:

bias = Q? − Q. (1)

The RMSE is a measure of the deviation between the two data sets, giving relatively
more weight to larger differences. It is defined as:

RMSE =

√
1
n

n

∑
i=1

(Q?
i − Qi)2. (2)

The Pearson Correlation coefficient (ρ) measures the strength and direction of the
linear relationship between the modelled and observed data (perfect fit corresponds with
ρ = 1), and is calculated as follows:

ρ =
∑n

i=1(Q
?
i − Q?) · (Qi − Q)√

∑n
i=1(Qi − Q)2 ·

√
∑n

i=1(Q
?
i − Q?)2

. (3)

The Nash–Sutcliffe Efficiency (NSE) is calculated as one minus the ratio of the error
variance of the model divided by the variance of the observations. In case of a perfect
model with an estimation error variance equal to zero, the resulting NSE value equals 1,
whereas a model with an estimation error variance equal to the variance of the observations



Water 2022, 14, 276 9 of 17

leads to an NSE of 0. The NSE is sensitive to extreme values and penalizes large outliers
(perfect fit corresponds to NSE = 1). It is defined as:

NSE = 1 − ∑n
i=1(Q

?
i − Qi)

2

∑n
i=1(Qi − Q)2

. (4)

3. Results

In this section, the results of the different modelling approaches are compared. The shown
results are calculated by evaluating the best model of the ensemble for the unseen data of
the validation set.

3.1. Z–R vs. Simple Model

First, the influence of temporal resolution on the model performance is evaluated.
For the comparison, we set up a basic Neural Network model where only the raw reflectivity
at the actual time is used as input feature. The ANN is therefore trained to derive a non-
linear transfer function similar to the empirical Z–R relationship that is able to translate
raw reflectivities into precipitation.

3.1.1. Hourly Aggregation Level

For the first calculations the data is aggregated to hourly time resolution. Figure 6
shows a scatter plot of modelled and observed precipitation for an hourly time resolution.
The correlation between the two time series is 0.78 and thus slightly higher than for the
standard Z–R relationship (0.67). It is also possible to reduce the systematic overestimation
of precipitation amount as the bias is decreasing from 0.1 to 0.068.

0 1 2 3 4 5 6
Observations [mm/h]

0

1

2

3

4

5

6

M
od

el
 O

ut
pu

t [
m

m
/h

]

perfect fit
Obs vs. Mod ( =0.78)

Figure 6. Scatter plot for observed (Obs) and modelled (Mod) precipitation at location Hohenpeis-
senberg in an hourly resolution. Validation set (20% of the available data points).
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3.1.2. The 10-min Time Resolution

To estimate the influence of temporal resolution on model performance, the ANN
is now trained with data in 10 min temporal resolution. As the radar reflectivities are
available in 5 min time resolution, the Neural Network now retrieves two inputs, i.e., the
two reflectivity measurements that are available within the respective 10 min interval.
Figure 7 shows a scatter plot of modelled and observed precipitation on the validation set.

The correlation between modelled and observed precipitation is increased from 0.75
(Z–R relationship) to 0.86, while the bias is reduced from −0.08 to 0.01. Thus, the ANN
model is tending to slightly overestimate the total amount of precipitation.
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M
od
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ut
pu

t [
m
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perfect fit
Obs vs. Mod ( =0.86)

Figure 7. Scatter plot for observed (Obs) and modelled (Mod) precipitation at location Hohenpeis-
senberg in 10-min time resolution. Validation period (20% of the available data points).

As the performance of the 10-min resolution model is slightly better than that for the
hourly one, we keep the 10-min time resolution fixed for all other experiments. Plots of
time series with modelled and observed precipitation for the two different time resolutions
may be found in the Appendix (Figures A1 and A2).

3.2. Time-Lagged Input-Reflectivity and Ground Precipitation

To further improve the model performance, additional input features are added. Time-
lagged reflectivity measurements, as well as ground observations, are easily available and
provide valuable information. Figure 8 shows the correlation matrix between precipita-
tion from ground observations and radar-based values (Z–R relationship) with time lags.
As expected, the correlation decreases from 0.61 (Lag 0) to 0.28 (Lags 4 and 5), indicating
that radar observations with at least Lags 1 and 2 are relevant additional input features for
subsequent modelling.
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Figure 8. Correlation of radar based precipitation (Z–R relationship) with different time lags and
ground observations calculated for the complete data set with 10-min time resolution.

Table 2 shows a comparison of model runs with increasing complexity of input fea-
ture space.

Table 2. Performance of Neural Network models where the dimension of the input feature space is
stepwise increased by adding information from radar with different time lags.

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

ρ 0.86 0.88 0.87 0.80 0.79 0.80
RMSE 0.11 0.10 0.09 0.12 0.13 0.12
bias 0.019 0.009 0.006 0.010 0.010 0.014
NSE 0.65 0.72 0.71 0.59 0.55 0.57

It can be seen that the correlation coefficient (0.88) and NSE (0.72) are highest for a
model that retrieves reflectivities with Lag 0 and Lag 1 as input. The RMSE (0.10) and
the bias (0.009) are only outperformed when Lag 2 information is additionally added
(RMSE = 0.09 and bias = 0.006). It is also found that the addition of Lag 3 and Lag 4 does
not further improve model quality, but indeed leads to decreased performance in terms
of correlation, RMSE, and NSE, even in comparison with a simplistic modelling approach
(Lag 0 input only).

Similar experiments with stepwise addition of lagged ground information lead to
comparable results. The best model is found to be the one that uses actual reflectivity and
Lags 1 to 4 of ground observations (ρ = 0.87, RMSE = 0.08, bias = 0.005, and NSE = 0.75).
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3.3. Meteorological Measurements as Input Features

As it is not only precipitation at ground level which is available, but also other meteoro-
logical variables, we tested if model performance is improved by adding this information to
the model input. Figure 9 shows the correlation between available meteorological variables
and ground precipitation. It is found that humidity, followed by air temperature, has the
highest correlation coefficient, with 0.16 and −0.1, respectively. As the correlation is found
to be low in general, it is expected that these additional input features will only be able to
contribute moderately to improved model performance.
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Figure 9. Correlation coefficient of different meteo-variables and ground precipitation calculated for
the complete data set with 10-min time resolution.

Table 3 shows the performance of Neural Network models where air pressure, air
temperature, relative humidity, or sunshine duration are added to the input feature space.
It can be seen that, compared to the base model with only Lag 0 reflectivity as input,
performance decreases slightly when air pressure is used. Nevertheless, a moderate
improvement is observed for air temperature, relative humidity and sunshine duration.

3.4. Mixed Model—All Inputs versus Strong Inputs

As previous experiments show that model performance benefits from an expansion
of input feature space, it is now tested if a model with all available input information
outperforms those with reduced feature space. For the first calculation, a model is set up
that uses time-lagged reflectivity and ground precipitation as well as all available meteo-
variables. The second model uses only information that was found to improve performance
i.e., time-lagged input with lags not larger than two, temperature, relative humidity and
sunshine duration. Again, in both cases, a complete ensemble of models is trained and the
best model is identified by evaluating the performance on the validation set.
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Table 3. Performance of Neural Network models where the dimension of the input feature space
of the Lag 0-Model is expanded by adding another meteorological variable, i.e., air pressure, air
temperature, relative humidity, or sunshine duration.

Lag 0 Air Pressure Air Temp. Relative Hum. Sunshine Dur.

ρ 0.86 0.84 0.87 0.87 0.86
RMSE 0.11 0.11 0.11 0.09 0.09
bias 0.019 0.019 0.009 0.019 0.014
NSE 0.65 0.65 0.63 0.73 0.60

Table 4 shows the results of best model runs. Compared to the basic model, a model
with all input features shows a moderate improvement of performance with respect to all
performance measures. However, a selection of only strong inputs leads to the best results
within this study. Compared to the base model, the correlation between modelled and
observed precipitation is increased from 0.86 to 0.90. The RMSE is reduced from 0.11 to
0.08, the bias decreases from 0.019 to 0.002, and the NSE increases from 0.65 to 0.84.

Table 4. Performance of Neural Network with all available input features compared to best input only.

Lag 0 All Inputs Best Inputs

ρ 0.86 0.87 0.90
RMSE 0.11 0.10 0.08
bias 0.019 0.009 0.002
NSE 0.65 0.73 0.84

The improved model performance is also visible in the scatter plot shown in Figure 10.
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Figure 10. Scatter plot for observed (Obs) and modelled (Mod) precipitation (model run with best
inputs) at location Hohenpeissenberg in 10-min resolution. Validation set (20% of the available
data points).
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A plot of time series with modelled and observed precipitation for the best model
configuration may be found in the Appendix A (Figure A3).

4. Discussion

It is shown that, already, simple ANNs are able to derive reasonable ground precipita-
tion from raw reflectivities obtained from a X-band single polarization radar. This confirms
previous studies that ANNs provide good nonparametric alternatives for traditional Z–R
relationships in QPE (e.g., [8]). The performance and effectiveness of the QPE by using
neural networks can be influenced by many factors such as the representativeness and
sufficiency of the training data set, the generalization capability of the network to new data,
season change, and location change (e.g., [8,22]). Furthermore, the type of the radar and
settings have an impact. It is known that polarimetric radars provide more options and
advantages for QPE than single-polarization radar (e.g., [3,23]).

In the case where only actual reflectivity is used as model input, the non-linear transfer
function of the ANN model is structurally comparable to the empirical Z–R relationship.
However, such models show an improved performance compared to that relationship in
terms of all performance measures used in this study. The models perform similarly for
time resolutions of 1 h and 10 min. In the first case, the correlation between modelled
and observed precipitation increases to 0.78 compared to 0.67 with the Z–R relationship,
while for 10-min resolution the model even reached a correlation coefficient of 0.86 (Z–R
relationship: 0.75).

It could also be shown that additional input features are able to further improve
model performance. In particular, time-lagged information from reflectivity, as well as the
expansion of the input feature space with additional meteorological variables substantially
improved the model quality. However, the input features have to be selected carefully. This
is reflected by a direct comparison of a model with all available input to one with strong fea-
tures only, that were identified by stepwise increasing model complexity. With a correlation
of 0.9 and an NSE of 0.84, the latter outperformed all other models that were investigated.

Whenever radar reflectivities are used as input, preprocessing of the data e.g., clutter
reduction, was completed before model training. This step is challenging and often requires
expert knowledge (e.g., setting the best thresholds of filters for clutter reduction). Often,
this step of preprocessing is even performed manually. It would therefore be a major
advantage if it could be shown that ANNs are able to derive reasonable ground precipitation
from reflectivity with a limited effort of manual preprocessing. Learning filters such as
convolutional and pooling layers may provide a good alternative.

The ANN architecture, a three layer feed-forward net, is shown to perform well on
the given data but may not be optimal as the underlying problem deals with time series
modelling. For that, recurrent neural networks are known to outperform feedforward
neural network models. It is thus promising to evaluate other ANN topologies for rainfall
estimation. In addition, modelling of spatial representation of precipitation may lead to
the necessity of including not only input feature vectors, but 2D input information. In that
case, it is assumed that Convolutional Neural Networks are the most suitable model class,
as they are able to respect for neighbourhood dependencies within the input feature maps
(e.g., [3,14,17–19]).

5. Conclusions and Future Work

The recent study demonstrates that ANNs with carefully selected input features are
outperforming the empirical Z–R relationship in deriving ground precipitation from mea-
sured radar reflectivities, as they are able to learn a non-linear transfer function from data.

Based on the results of this study, we answer the research questions as follows:

1. Increasing the time resolution leads to improved model performance. The correlation
coefficient between observed and modelled precipitation data is increased from 0.78
to 0.86, while the model bias is reduced from 0.07 to 0.01 for hourly and 10-min
resolution, respectively.
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2. It is found that models that use reflectivity with time lags up to Lag 2 as input
outperform those with actual information only. This is reflected by an increase in the
correlation coefficient to 0.87 and reduced model bias of 0.006.

3. A comprehensive predictor screening shows that meteorological variables can further
improve the modelling results. It is found that air temperature and relative humidity
provide the most valuable additional information to the model.

It is concluded that model performance is dependant on all three ingredients: time
resolution, time lagged information, and additional meteorological input features. Taking
all of these into account, the model performance can be optimized to a correlation of 0.9
and minimum model bias of 0.002 between observed and modelled precipitation data, even
with a simple Neural network architecture.

However, the challenge is not only to derive reliable QPE for radar grids with station
data, but also for those without. Thus future work has to address the open research question
if it is possible to transfer the learned relationship between reflectivity and precipitation
to locations in between. In doing so, it is necessary to restrict the input feature space to
available variables, i.e., time lagged reflectivities and interpolated meteorological features
such as pressure fields. Due to the discussed challenges with the preprocessing of the radar
data, one of the main subjects of future research is how to derive improved precipitation
fields in high spatio-temporal resolution with a limited effort on the preprocessing. As it
could be shown that an evidence-based choice of predictor variables significantly improves
model performance, it can be expected that approaches from deep learning also benefit
from an extended input feature space. In this study, only one station is used for validation.
More stations are required to analyse to what extent this approach can be transferred in
space. In this context, the next step could also be to apply deep learning algorithms for
spatial extension. Another issue is that the vertical displacement to the ground bound
gauge causes a time delay between the reflectivity and the observed precipitation time
series. It is shown that the introduction of lagged reflectivity values to the input feature
space of the ANN is able to compensate this time delay at least to some extent. However,
the effect is strongly coupled to general atmospherical conditions such as the prevalent
wind direction and magnitude. Coupling reflectivity time lags to wind direction and wind
speed, therefore, is assumed to further reduce time delays between modelled and observed
precipitation time series.
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Appendix A
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Figure A1. Observed (rain gauge data, Obs (red)) and modelled (Neural Network, Mod (blue))
precipitation at location Hohenpeissenberg in an hourly resolution on the Validation set (20% of the
available data points).
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Figure A2. Observed (rain gauge data, Obs (red)) and modelled (Neural Network, Mod (blue))
precipitation in 10-min temporal resolution at location Hohenpeissenberg. Validation period (20% of
the available data points).
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Figure A3. Observed (rain gauge data, Obs (red)) and modelled (Neural Network, Mod (blue))
precipitation at location Hohenpeissenberg in 10-min resolution on the Validation set (20% of the
available data points). The model input consists of reflectivities with time lag up to two as well as
selected meteorological variables.



Water 2022, 14, 276 17 of 17

References
1. Marshall, J.S.; Langille, R.C.; Palmer, W.M.K. Measurement of rainfall by radar. J. Atmos. Sci. 1947, 4, 186–192. [CrossRef]
2. Weigl, E. Radarniederschlag Bestimmung Mit Radar; Technical Report; DWD: Offenbach, Germany, 2015.
3. Gou, Y.; Chen, H.; Zheng, J. Polarimetric radar signatures and performance of various radar rainfall estimators during an extreme

precipitation event over the Thousand-Island Lake Area in Eastern China. Remote Sens. 2019, 11, 2335. [CrossRef]
4. Winterrath, T.; Rosenow, W.; Weigl, E. On the DWD quantitative precipitation analysis and nowcasting system for real-time

application in German flood risk management. Weather. Radar Hydrol. 2012, 351, 323–329.
5. Kreklow, J.; Tetzlaff, B.; Kuhnt, G.; Burkhard, B. A rainfall data intercomparison dataset of RADKLIM, RADOLAN, and rain

gauge data for Germany. Data 2019, 4, 118. [CrossRef]
6. Villarini, G.; Serinaldi, F.; Krajewski, W.F. Modeling radar-rainfall estimation uncertainties using parametric and non-parametric

approaches. Adv. Water Resour. 2008, 31, 1674–1686. [CrossRef]
7. Vogl, S.; Laux, P.; Qiu, W.; Mao, G.; Kunstmann, H. Copula-based assimilation of radar and gauge information to derive

bias-corrected precipitation fields. Hydrol. Earth Syst. Sci. 2012, 16, 2311–2328. [CrossRef]
8. Liu, H.; Chandrasekar, V. Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic

and neuro-fuzzy systems, and in situ verification. J. Atmos. Ocean. Technol. 2000, 17, 140–164. [CrossRef]
9. Hessami, M.; Anctil, F.; Viau, A.A. Selection of an Artificial Neural Network Model for the Post-calibration of Weather Radar

Rainfall Estimation. J. Data Sci. 2004, 2, 107–124. [CrossRef]
10. Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using an artificial neural

network cloud classification system. J. Appl. Meteorol. 2004, 43, 1834–1852. [CrossRef]
11. Tang, G.; Long, D.; Behrangi, A.; Wang, C.; Hong, Y. Exploring Deep Neural Networks to Retrieve Rain and Snow in High

Latitudes Using Multisensor and Reanalysis Data. Water Resour. Res. 2018, 54, 8253–8278. [CrossRef]
12. Chen, H.; Sun, L.; Cifelli, R.; Xie, P. Deep Learning for Bias Correction of Satellite Retrievals of Orographic Precipitation. IEEE

Trans. Geosci. Remote Sens. 2021, 1–11. [CrossRef]
13. Chen, H.; Chandrasekar, V. Deep learning for surface precipitation estimation using multidimensional polarimetric radar

measurements. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels,
Belgium, 11–16 July 2021; pp. 359–362. [CrossRef]

14. Chen, H.; Chandrasekar, V.; Cifelli, R.; Xie, P. A Machine Learning System for Precipitation Estimation Using Satellite and Ground
Radar Network Observations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 982–994. [CrossRef]

15. Sadeghi, M.; Asanjan, A.A.; Faridzad, M.; Nguyen, P.H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.A. PERSIANN-CNN: Precipitation
estimation from remotely sensed information using artificial neural networks–convolutional neural networks. J. Hydrometeorol.
2019, 20, 2273–2289. [CrossRef]

16. Sit, M.A.; Demiray, B.Z.; Xiang, Z.; Ewing, G.J.; Sermet, Y.; Demir, I. A Comprehensive Review of Deep Learning Applications in
Hydrology and Water Resources. arXiv 2020, arXiv:abs/2007.1.

17. Bonnet, S.M.; Evsukoff, A.; Rodriguez, C.A.M. Precipitation nowcasting with weather radar images and deep learning in são
paulo, brasil. Atmosphere 2020, 11, 1157. [CrossRef]

18. Tian, W.; Yi, L.; Liu, W.; Huang, W.; Ma, G.; Zhang, Y. Ground radar precipitation estimation with deep learning approaches in
meteorological private cloud. J. Cloud Comput. 2020, 9, 1–12. [CrossRef]

19. Tosiri, W.; Kleawsirikul, N.; Leepaisomboon, P.; Gaviphatt, N.; Sakaino, H.; Vateekul, P. Precipitation Nowcasting Using Deep
Learning on Radar Data Augmented with Satellite Data. In Proceedings of the ACM International Conference Proceeding Series,
2021; Bangkok, Thailand, 29 June–1 July 2021. [CrossRef]

20. Orlandini, S.; Morlini, I. Artificial neural network estimation of rainfall intensity from radar observations. J. Geophys. Res. Atmos.
2000, 105, 24849–24861. [CrossRef]

21. Heistermann, M.; Jacobi, S.; Pfaff, T. Technical Note: An open source library for processing weather radar data (wradlib). Hydrol.
Earth Syst. Sci. 2013, 17, 863–871. [CrossRef]

22. Alqudah, A.; Chandrasekar, V.; Le, M. Investigating rainfall estimation from radar measurements using neural networks. Nat.
Hazards Earth Syst. Sci. 2013, 13, 535–544. [CrossRef]

23. Xiao, R.; Chandrasekar, V. Development of a neural network based algorithm for rainfall estimation from radar observations.
IEEE Trans. Geosci. Remote Sens. 1997, 35, 160–171. [CrossRef]

http://doi.org/10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2
http://dx.doi.org/10.3390/rs11202335
http://dx.doi.org/10.3390/data4030118
http://dx.doi.org/10.1016/j.advwatres.2008.08.002
http://dx.doi.org/10.5194/hess-16-2311-2012
http://dx.doi.org/10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2
http://dx.doi.org/10.6339/JDS.2004.02(2).147
http://dx.doi.org/10.1175/JAM2173.1
http://dx.doi.org/10.1029/2018WR023830
http://dx.doi.org/10.1109/TGRS.2021.3105438
http://dx.doi.org/10.1109/igarss47720.2021.9554847
http://dx.doi.org/10.1109/TGRS.2019.2942280
http://dx.doi.org/10.1175/JHM-D-19-0110.1
http://dx.doi.org/10.3390/atmos11111157
http://dx.doi.org/10.1186/s13677-020-00167-w
http://dx.doi.org/10.1145/3468784.3470469
http://dx.doi.org/10.1029/2000JD900408
http://dx.doi.org/10.5194/hess-17-863-2013
http://dx.doi.org/10.5194/nhess-13-535-2013
http://dx.doi.org/10.1109/36.551944

	Introduction
	Materials and Methods
	X-Band Radar
	Data Preprocessing
	Models
	Performance Measures

	Results
	Z–R vs. Simple Model
	Hourly Aggregation Level
	The 10-min Time Resolution

	Time-Lagged Input-Reflectivity and Ground Precipitation
	Meteorological Measurements as Input Features
	Mixed Model—All Inputs versus Strong Inputs

	Discussion
	Conclusions and Future Work
	
	References

