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1 Introduction

During the 20th century, advances in quantum mechanics led to a number of inventions, such as lasers and
semiconductor transistors, which have beenmaking a huge impact on bothmodern technological progress and
daily life. These inventions were possible due to the newly acquired understanding of quantum phenomena
defining the behavior ofmacroscopic objects, e.g. energy spectrumofmetals and semiconductors. Nowadays,
scientific progress has enabled control over individual quantum systems, such as trapped ions [BKRB08;
BCMS19; MCD+21], nitrogen vacancies in diamonds [DCJ+07; Neb20], individual electron spins [LD98;
Kan98; CSDF+21], molecular spins [BW08; SKD+16; MPW21], and superconducting qubits [NPT99;
AAB+19; KKY+19; KSB+20; BGO20]. For some of them (e.g. for superconducting qubits), it is possible
to not only utilize nature-given objects, but rather to engineer an artificially-made quantum system with
desired energies and properties.

This allows for the development of (truly) quantum technologies relying on the very basic principles of
quantum mechanics, such as entanglement and superposition. Currently, different applications of these
technologies can be summarized as quantum information processing, including quantum cryptography,
quantum sensing, and quantum computation. In quantum cryptography [Kim08; XMZ+20], entangled
quantum objects are used to realize key distribution which is protected by fundamental physical laws.
Non-classical quantum states are utilized in quantum sensing to overcome the Heisenberg uncertainty
principle and significantly increase measurement speed and precision, which is essential for axion search
[MPB+19; Leh21] and gravitational wave detection [AAAe16]. Fundamentally different computational
algorithms can be run on quantum computers [Fey; DiV95], profiting from superposition and entanglement
of states of multiple two-level systems, denoted quantum bits or qubits.

Superconducting quantum circuits are a prominent platform for quantum computation and sensing. The
information is stored in quantum degrees of freedom of Cooper pair condensate in nano- and micro-
fabricated resonators made of superconducting elements (both linear and nonlinear). Typically operating
in 1–10 GHz frequency range, these resonators can be coupled between each other and readout lines with
nearly arbitrary coupling strengths, enabling ultrastrong coupling regime [YFA+17]. The utilization of
low-loss nonlinear elements such as Josephson junctions [Jos62] allows to engineer the energy spectrum of
quantum systems and create artificial atoms. Recently, quantum supremacy was claimed to be achieved on
a programmable superconducting quantum processor [AAB+19]. The macroscopic nature, while providing
versatility, comes with a price: superconducting circuits are coupled to numerous mesoscopic systems
[SDH+19; GMF+17; BVB+21; MCL19] limiting lifetimes of superconducting qubits. Despite several
decades of development of superconducting qubits, mitigating these unwanted interactions is still an ongoing
research ofmajor importance, and different fabrication [SBW+20;OSB+21], material [KTY+21; PRM+21],
and design [BKP13; GMDP+21] improvements are being investigated.

Similar to any other platform, for superconducting-circuit-based quantum technologies it is instrumental
to be able to readout a state of a superconducting artificial atom. The readout relies on the ability to
infer the state of the atom in a time significantly shorter than its relaxation time. This capability is
crucial for the implementation of quantum error correction algorithms, mandatory for quantum computation
[RDN+12; RDW+12; SPL+14; KBF+15; OPH+16]. Additionally, continuous measurement of quantum
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1 Introduction

jumps between discrete levels of a superconducting artificial atom [VSS11] can be used as a detection tool,
informing on the interactions between the quantum system and the environment, such as quasiparticles
[RBT+13; VPS+14; SDH+19]. For all these applications it is important to be able to discriminate the state
of the quantum system as fast as possible.

The speed of high-fidelity single-shot readout improved over the last decade [JSM+14; WKG+17], mainly
thanks to the development of near-quantum limited Josephson parametric amplifiers [CBL07; YIW+08;
MWB+14; RFN+12; EW14; MOH+15; RD16] and the utilization of Purcell filters [BLH+15]. An ad-
ditional tuning knob allowing to speed-up the measurement is the readout drive power. However, as the
readout power is increased, superconducting qubits typically suffer from increased transition rates and leak-
age outside of the computational space. In practice [JMS+12; WKG+17; MMS+19], these effects bound
the photon number for quantum non-demolition (QND) readout, typically to n < 10, for reasons which are
currently the subject of theoretical modelling [BGB09; MPT20; PMT20].

In the scope of this thesis, by using the remarkable insensitivity to n of the ground and excited state lifetimes
of a granular Aluminum (grAl) fluxonium [GSG+19] artificial atom, recently reported in [GSG+21],
the enhancement of the QND detection speed of quantum jumps with increasing n, up to n = 110, is
demonstrated. By utilizing a Bayesian filtering method [SPL+14; Kor16; WQL14; WMKS+16; FLQL16;
RMA+10; SCID+16], it was possible to achieve detection times up to 3 times faster than the time required
for transitions between the readout resonator steady states.

To handle the large n, a high dynamic range dimer Josephson junction array parametric amplifier [WTR+20]
was developed. The amplifier, referred to as DJJAA, consists of a dispersion-engineered Josephson junction
array, and can be operated in a non-degenerate regime [RD16], protecting qubit from pump leakage effects
by ensuring frequency detuning between pump and signal tones of few hundreds of MHz. Fabricated with a
standard two-step optical lithography, this amplifier is low-cost and accessible to a wide community.

Some areas of research, such as hybrid systems [BPK+16; CSDF+21; MPW21] or search of axions [IR18;
OSF+19], could profit from quantum-limited parametric amplifiers. However, since magnetic fields in the
Tesla range are often required, Josephson-junction-based amplifiers cannot be properly utilized because the
junction’s critical current is suppressed [SWP+19]. To enable high-magnetic-field quantum detection, the
first generation of granular aluminum parametric amplifier (GrAPA) was developed in the scope of this
thesis. Owing to nonlinearity of granular aluminum (grAl) [MGK+18] and resilience of grAl to in-plane
fields up to few Tesla [BRW+20], the amplifier demonstrated 20 dB of gain in magnetic fields up to 1 T.
While presented experiments revealed a number of required optimizations, this work opens a way to utilize
the current progress in the development of Josephson parametric amplifiers in close vicinity of hybrid
quantum devices, where magnetic field shielding is not possible or practical. Additionally, utilization of
GrAPAs can enhance measurement efficiency of the currently ongoing search for axions [IR18; OSF+19]
since the amplifier can be placed close to (or directly integrated into [EKT+19]) the readout resonator thus
minimizing cable losses.

This thesis is organized as follows: first, an introduction to circuit quantum electrodynamics is given in
chapter 2, focusing on subjects which are instrumental for readout. Chapter 3 reports on development of a
dimer Josephson junction array amplifier [WTR+20] and utilization of scattering of microwave radiation on
superconducting qubits for power calibration. Chapter 4 is dedicated to minimizing quantum jumps detection
time [TWF+21] made possible by the unique combination of a dimer Josephson junction array amplifier
with a large dynamic range, and the fact that the readout of a granular aluminum fluxonium artificial atom
remained quantum-non-demolition at relatively large photon numbers in the readout resonator. In chapter 5,
a granular aluminum parametric amplifier resilient to magnetic fields up to 1 T is discussed.
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2 Circuit Quantum Electrodynamics

This chapter intends to give an introduction to circuit Quantum Electrodynamics (cQED). It explains
the concepts of both linear and non-linear quantum circuits and how the state of a quantum system can be
measured, as well as the operating principle and important characteristics of Josephson parametric amplifiers.

Circuit quantum electrodynamics is a field that is more than 20 years old, and there is a number of excellent
reviews [BGO20; KKY+19] providing much more detailed information than this chapter does. For details
about qubits and quantum computation, the interested reader is referred to [KSB+20]. Nice introductions
to the readout can be found in [CDG+]. For more information about Josephson parametric amplifiers, one
can use [RD16; Aum20]

2.1 Quantum electric circuits

Superconducting quantum circuits have been proven to be easy to couple and manipulate while having life-
times sufficient for quantum information processing. Here, the basic circuit building blocks and requirements
are discussed.

2.1.1 Resonators

The simplest yet important quantum electric circuit is a lossless parallel LC resonator. Its classical Hamil-
tonian can be written as

H =
Φ2

2L
+
Q2

2C
, (2.1)

where the node flux Φ is an integral of the voltage drop on the capacitor,

Φ(t) =

∫ t

∞
V (t′)dt′ = LI(t). (2.2)

The coordinate and momentum of this Hamiltonian are charge and flux, since ∂H
∂Q = Φ̇ and ∂H

∂Φ = −Q̇.
Following the standard quantization procedure [VD17], they can be converted to quantum-mechanical
operators Φ̂ and Q̂ obeying the commutation relation

[
Φ̂, Q̂

]
= iℏ. The Hamiltonian can be then rewritten

in terms of annihilation and creation operators:

Ĥ = ℏω(a+a+ 1/2) (2.3)

where the annihilation operator is given by

a =
Φ̂ + iQ̂√
2ℏZres

(2.4)
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2 Circuit Quantum Electrodynamics

with Zres =
√
L/C being the resonator impedance. To operate a resonator in the quantum regime, two

conditions must be fulfilled. First, the oscillator has to be decoupled from uncontrollable degrees of freedom
[MWG+20] (e.g. radiation and dielectric losses), such that the gap between energy levels is much bigger
than their linewidth. For superconducting resonators, the routinely achievable intrinsic quality factors are
Qi ∼ 103 − 107, which fulfills the low-loss requirement. Secondly, energy of thermal excitations has to be
kT ≪ ℏω. Since temperature corresponding to 1 GHz is T1GHz ≈ 50 mK and typical resonator frequencies
are in the 4-12 GHz range, this condition is satisfied for a typical dilution refrigerator operating at 20 mK.

2.1.2 Josephson junction

Energy levels of an oscillator are equidistant, and the resonator mean energy is given by the number of
circulating photons. To form a qubit, one needs to be able to individually address the transition of interest
(e.g. |0⟩ → |1⟩). To achieve that, a low-loss nonlinear element needs to be introduced into the circuit, thus
changing energy levels inhomogeneously.

The standard nonlinear element of choice in superconducting electronics is the Josephson junction [Tin04;
Sch97]. It was first predicted by Josephson [Jos62] that supercurrent can flow between two superconductors
separated by a weak link. While the exact nature of the weak link can vary (constriction in a wire,
normal metal layer, ferromagnetic layer, etc.), in this work I utilize superconductor-insulator-superconductor
junctions with a weak link formed of a thin insulating layer. This system can be described by two Josephson
equations,

I = Ic sin (
2πΦ

Φ0
) (2.5)

Φ̇ = V, (2.6)

where I is the current flowing through the junction, Ic is the junction critical current, V is the voltage across
the junction, Φ0 is the flux quantum, and φ = 2πΦ/Φ0 is the difference of condensate phases between two
superconductors. If I exceeds Ic, Cooper pairs are broken, and the Josephson junction becomes resistive.
For quantum information processing, it is thus crucial to keep operating currents well below Ic. From
Eqs. (2.5),(2.6), for ac supercurrents below critical in the absence of charging effects, voltage and current
are linked as

V =
Φ0

2πIc

İ√
1− (I/Ic)2

,

meaning that Josephson junction can be thought of as a nonlinear inductor

LJ(I) =
Φ0

2πIc

1√
1− (I/Ic)2

=
LJ√

1− (I/Ic)2
. (2.7)

The inductive energy associated with Cooper pair tunneling is

E = EJ(1− cos
2π

Φ0
Φ), (2.8)

where EJ =
Φ0Ic
2π is referred to a Josephson energy. In addition to the tunnel energy, there is also a charging

energy Q2/2CJ due to finite capacitance CJ between superconducting islands of the junction. The total
Hamiltonian is given by

H =
Q2

2CJ
+ EJ(1− cos

2π

Φ0
Φ). (2.9)
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2.1 Quantum electric circuits

In contrast to Eq. (2.1), this Hamiltonian is nonlinear due to the cosine term replacing the magnetic energy
Φ2/2L, which gives an anharmonic spectrum. Provided that the linewidth of energy levels is much smaller
than the distance between them, this system can be thought of as an artificial atom.

2.1.3 Superconducting qubits

While the Josephson junction provides the required nonlinearity to build a qubit, there is a number of
important characteristics defining whether this qubit is "good", such as susceptibility to different noise
sources, coupling strength to control lines, or anharmonicity α = E12 − E01. To be able engineer these
parameters and optimize qubit performance, the Josephson junction (or junctions) is typically inserted into
some electric circuit.

C IJ CJ LJ

Φ

0

Figure 2.1: Schematic of a superconducting artificial atom: a Josephson junction shunted with a capacitor (left image). Josephson
junction schematic representation used here represents an ideal Josephson nonlinear inductance (Eq. (2.7)) shunted with a
junction capacitance CJ between the electrodes. It is thus applicable only for currents below IJ.

One of the simplest examples of qubit engineering is a transmon qubit [KYG+07] schematically shown in
Fig. 2.1. It consists of a Josephson junction shunted with a capacitanceC ≫ CJ . It’s Hamiltonian is similar
to Eq. (2.9), and is equal to

H =
(Q−Qg)

2

2(C + CJ)
+ EJ(1− cos

2π

Φ0
Φ) = 4EC(N −Ng)

2 + EJ(1− cosφ), (2.10)

where N is the number of tunneled Cooper pairs in the units of 2e, Ng is the offset charge representing
the external field bias, and EC = e2/2(C + CJ) is the charging energy of the qubit. The Hamiltonian’s
spectrum is controlled by the ratio EJ/EC. When either EJ/EC ≪ 1 or EJ/EC ≫ 1, eigenstates of the
Hamiltonian are given by the eigenstates of charge or flux operator, respectively, due to the corresponding
energy being dominant. If the charging energy dominates, the system is in a charge qubit regime [NPT99],
and the offset charge has a strong influence on the transition frequencies. Consequently, the unavoidable
charge noise creates fluctuations of the artificial atom transition frequencies and leads to dephasing. This
problem can be addressed by designing the circuit in the so-called transmon regime by using such shunting
capacitances that EJ/EC = 20 − 80. In this case, variation of energy with the offset charge is suppressed
by exp(−

√
8EJ/EC). This comes with a price of anharmonicity reduction. However, the anharmonicity

scaling is approximately linear, which makes the trade-off beneficial for EJ/EC ≈ 50.

The full description and derivations for transmon qubit can be fond in [KYG+07]. Here, I focus on
approximations sufficient for the scope of the thesis. Thanks to phase variations being small and offset
charge having negligible influence of the eigenenergies, the Hamiltonian can be truncated to the first
nonlinear term of the cosine expansion

H ≈ 4ECn
2 +

1

2
EJφ

2 − 1

4!
EJφ

4 ≈
(√

8EJEC − EC

)
a+a− EC

2
a+a+aa, (2.11)
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2 Circuit Quantum Electrodynamics

where, similar to Eq. (2.4),

φ =

(
8EC

EJ

)1/4

(a+ + a) (2.12)

n = i

(
EJ

8EC

)1/4

(a+ − a). (2.13)

This Hamiltonian is commonly known as a Kerr Hamiltonian, with fundamental mode frequency ω0 =(√
8EJEC − EC

)
/ℏ and Kerr nonlinearity K = −EC/ℏ indicating by how much the resonance frequency

shifts when one photon is added to resonator population, thus defining the anharmonicity α. For transmons,
typical α is in the 100 MHz range, which is small compared to fundamental mode frequencies of few GHz.
Nevertheless, transmons can be used as artificial atoms thanks to achievable narrow linewidth of the modes.

IJ
L

Φ

0

Φext

Figure 2.2: Schematic of a fluxonium artificial atom: the Josephson junction with critical current IJ and capacitance CJ shunted with
the superinductor L. The external magnetic flux Φext is used to tune the atom’s energy levels.

Despite having simple structure and small anharmonicity, transmon qubits are currently one of the most used
qubits in cQED, allowing to perform quantum computations [MWHH21] and achieve quantum supremacy
[AAB+19; ZCCe21]. However, there are many other qubit types, utilizing different circuit topologies,
number of Josephson junctions, and EJ/EC aiming to increase qubit anharmonicity and coherence times
[MKGD09; YGK+16; YSK+20; YPN+21; BKP13; GMDP+21]. One of the most promising designs is
the fluxonium artificial atom [MKGD09]. Fig. 2.2 shows its electrical schematic consisting of a Josephson
junction shunted with a superinductorL≫ LJ. The superinductor is typically made of an array of Josephson
junctions [MKGD09; PGC+14; NLS+19] or a kinetic inductance material [GSG+19]. The fluxonium is
described by the Hamiltonian

H =
Q2

2CJ
+

Φ2
L

2L
+ EJ cos

2π

Φ0
Φ, (2.14)

where ΦL is the flux associated with the superinductance. It is linked with the Josephson-junction flux Φ

and external flux Φext via [Tin04]
ΦL − Φ+ Φext = mΦ0. (2.15)

By including the external flux into the inductive term to make the Hamiltonian viable for time-dependent
fields [YSK19], Eq. (2.14) becomes

H =
Q2

2CJ
+

1

2L
(Φ− Φext +mΦ0)

2
+ EJ cos

2π

Φ0
Φ. (2.16)

To obtain the system’s eigenmodes, this Hamiltonian is numerically diagonalized according to the procedure
described in Ref. [SKV+16]. The typical anharmonicity of a fluxonium is in the GHz range, allowing to
implement fast control gates and perform high-power readout without exciting higher energy states. On top
of that, this design has a reduced sensitivity to charge noise [MKGD09]. Currently, the highest reported
coherence times of fluxonium artificial atoms are in the millisecond range [PGC+14; LNG+18a; NLS+19;
SFM+21], which is the state-of-the-art record for superconducting qubits.
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2.2 Readout and decoherence

2.2 Readout and decoherence

Quantum systems discussed so far were considered isolated from the environment. However, this is merely
an idealized picture. In the experimental reality, they are coupled to numerous systems, both wanted and
unwanted. In this section I introduce the so-called input-output formalism to treat systems coupled to the
continuum, show how this coupling affects the systems, and argue that this can be used to measure the state
of a quantum system.

2.2.1 Open quantum system

The most straightforward way to interact with a quantum system is to couple it to a continuum, thus realizing
a so-called open quantum system. Unfortunately, this interaction not only creates a communication channel,
but also opens a channel for decoherence. To demonstrate that, one can consider a toy model of a qubit
coupled to one bath with a coupling strength κ. The evolution of the qubit’s density matrix is described by
a Lindblad-form master equation [Car02]

ρ̇ = − i

ℏ
[H, ρ] + κ(nTL + 1)D̂(σ)ρ+ κnTLD̂(σ+)ρ, (2.17)

where nTL = nTL(ωq) is the number of thermal photons in the transmission line at the qubit frequency,
following the Bose-Einstein statistics, and the operator D̂(X)Y = XYX+ − 1

2{X
+X,Y } represents

the dissipation term. This equation describes dynamic of a two-level system with energy relaxation time
T1 = 1/κ and dephasing time T2 = 2T1. In case of coupling to several baths with different couplings κi,
total qubit decay rates are equal to sum of decay rates of different channels T−1

1 =
∑n

i κi.

Whenever a qubit is coupled to a bath, the qubit’s state lifetimes get reduced. On the other hand, signals sent
through the transmission line (TL) get scattered on a quantum system, giving rise to such effects as elastic
and inelastic nonlinear scattering [AZA+10; HWJ+11]. These effects are drive-power-dependent and can
both be used for in situ power calibration [HDSdG+20], which is instrumental for different measurement
routines in cQED (e.g. determining Kerr coefficients or extracting quantum efficiency of the measurement
setup). Remarkably, calibration accuracy for these methods does not depend on exact parameters and decay
times of a qubit, as long as it is Purcell-limited [PTP46].

Elastic scattering

Figure 2.3: (a) Transmission as a function of frequency for different drive powers. Power corresponding to each line correspond to the
color bar on the right-hand side. (b) Complex plane response parametric plot versus frequency.
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2 Circuit Quantum Electrodynamics

In case of elastic scattering, when a coherent continuous drive is sent in a vicinity of a qubit frequency, a frac-
tion of the sent photons get absorbed, and the absorption coefficient is power-dependent. The transmission
coefficient of that signal for the Purcell-limited case is equal to (see Appendix A.1.3):

S21 =
κ

2γ

1 + iδω/γ

1 + (δω/γ)2 +Ω2/κγ
. (2.18)

Here δω = ω − ωq is a detuning of the drive frequency from the qubit frequency, Ω = 2κP
ℏωq

is the Rabi
frequency which depends on the drive power P , and γ = κ/2 + γϕ is the T2 relaxation rate with the term
γφ accounting for qubit dephasing caused by frequency fluctuations or coupling to unwanted baths. For
the ideal case of a lossless two-level system (γφ = 0), when ωdrive = ωq, a weak drive (Ω ≪ κ) gets fully
absorbed and re-emitted with a π phase shift, while absorption of a strong drive (Ω ≫ κ) is negligible due
to the fact that qubit can only interact with one photon at a time, as can be inferred from Fig. 2.3. Since
all coefficients of Eq. 2.18 can be experimentally extracted by applying a circle fit procedure [PSB+15] to
a low-power response, power dependence of the transmission coefficient can indeed be utilized for power
calibration purposes.

Inelastic scattering

ωdrive

|+, N+1⟩

|-, N+1⟩

|+, N⟩

|-, N⟩

Ω

Figure 2.4: Sketch illustrating the Mollow triplet appearing due to hybridization of the qubit states in presence of a strong coherent
drive. Green, orange, and magenta colors correspond to frequencies ωdrive, ωdrive − Ω, and ωdrive +Ω respectively.

When a two-level system interacts with a strong drive (Ω ≫ κ), its states get dressed and levels are split by
ℏΩ. This is known as Autler-Townes effect [AT55], and it is in fact a dynamical Stark shift. Assuming a
strong drive, the Hamiltonian of the system can be written as

H/ℏ = ωqσz + ωdrivea
+a+ g(a+σ + aσ+), (2.19)

whereσ,σ+ are the ladder Pauli operators. In the absence of coupling, the eigenenergies in the (|0, N + 1⟩, |1, N⟩)
basis are:

E|0,N+1⟩ = (N + 1)ℏωdrive − ℏωq/2 (2.20)

E|1,N⟩ = Nℏωdrive + ℏωq/2 (2.21)
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2.2 Readout and decoherence

If ωdrive = ωq, the off-diagonal interaction term g(a+σ + aσ+) splits levels, such that new eigenfrequeicies
are equal to

E|±,N⟩ = (N − 1/2)ℏωq ± ℏg
√
N, (2.22)

resulting in four energy levels. In the limit of large photon numbersN ≫ 1, there are three unique transition
frequencies between these levels ωq, ωq ± Ω, known as Mollow triplet [Mol69]. To observe this effect,
one needs to apply a strong drive creating the hybridization, and probe the system with a weak tone. By
fitting power dependence of the modes splitting, power calibration can be performed. Since measurement
of frequency is generally more accurate than measurement of transmission coefficient, the Mollow triplet
approach is a more precise power calibration method than the elastic scattering one.

2.2.2 Input-output theory

The master equation presented in the previous section only describes evolution of a quantum system while
providing no information about radiated fields. For the readout, however, it is crucial to be able to link the
measured radiated (or reflected) signal with the state of the system of interest. It can be done within the
so-called input-output theory proposed by Gardiner and Collet [GC85]. Here I derive the main results and
equations of this theory, focusing on a practical case of microwave transmission line coupled to a quantum
system with defined creation and annihilation operators sketched in Fig. 2.5. A more detailed introduction
to the input-output theory (IOT) can be fond in [CDG+; BGO20].

TL

bin

bout

Hsys

ξ(ω)

Hint

Figure 2.5: Sketch of the system under study: transmission line (TL) coupled to a system under study with Hamiltonian Hsys with
coupling strength ξ(ω). Here, bin and bout are the input and output fields, respectively.

We consider a quantum system described by HamiltonianHsys coupled to a microwave transmission line (see
Fig. 2.5). A semi-infinite transmission line can be modelled as a thermal bath [CDG+] with a Hamiltonian

Hbath =

∫ ∞

−∞
b+(ω)b(ω)dω, (2.23)

where the annihilation/creation operators satisfy [b(ω), b+(ω)] = δ(ω − ω′). A single bath model is used
despite the fact that there are left and right propagating waves. It is possible due to the boundary condition at
the right-hand side of the transmission line, which, in the absence of the probe system, yields zero current at
this node. Because of the boundary condition, both left and right propagating waves can be described by the
same operators, which simply implies the fact that the right propagating waves are at some point reflected at
the open end and and become left propagating waves.

Interaction of the system and bath, assuming rotating wave approximation, is described by a Hamiltonian:

H = Hsys +Hbath +Hint (2.24)

Hint = ℏ
∫ ∞

−∞
dω ξ(ω)[b+(ω)a+ b(ω)a+]. (2.25)
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2 Circuit Quantum Electrodynamics

While not specifying the exact system Hamiltonian, here we focus on evolution of the system’s annihilation
operator a. Heisenberg equations for b(ω) and a are:

∂tb(ω) = −iwb(ω)− iξ(ω)a (2.26)

∂ta = − i

ℏ
[a,Hsys] + i

∫ ∞

−∞
dω ξ(ω)b(ω). (2.27)

Assuming b(ω) is known at some moment of time t0 < t (which is the case if, for example, one sends a
readout pulse), Eq. (2.26) can be integrated:

b(ω, t) = b0(ω)e
−iw(t−t0) − i

∫ t

t0

dt′e−iω(t−t′)ξ(ω)a(t′). (2.28)

First term of the right-hand part of this equation is a free evolution, while the second one describes an
evolution due to the interaction with the quantum system. It thus makes sense to define the input field as

bin(t) =
1√
2π

∫ ∞

−∞
dωe−iω(t−t0)b0(ω), (2.29)

where the normalization coefficient is chosen for the later convenience.

By substituting (2.26) into (2.27), one gets

∂ta = − i

ℏ
[a,Hsys] + i

∫ ∞

−∞
dω ξ(ω)

{
b0(ω)e

−iω(t−t0) − i

∫ t

t0

dt′e−iω(t−t′)ξ(ω)a(t′)

}
.

To proceed further, it makes sense to simplify this expression by introducing the first Markov approximation
ξ(ω) =

√
κ
2π . It can be done if the following conditions are fulfilled:

• Coupling strength has to be small compared to the system eigenfrequencies (κ ≪ ωsys). Although it
is possible in cQED to achieve ultra strong coupling regime [YFA+17], it is not the case for standard
devices, and the typical ratio is κ/ωsys ∼ 10−1 − 10−4.

• The system is Markovian, in the sense that there is no "memory" time and the evolution operator
is linear. In cQED, due to the standard operation temperatures of tens of mK, the typical memory
time is τmemory ∝ ℏ/kT ∼ 0.1 ns, which is negligible for normal readout and manipulation routines
[KKY+19].

With that, and by using
∫∞
−∞ dωe−iω(t−t′) = 2πδ(t− t′) and

∫ t

t0
dt′δ(t− t′)a(t′) = 1

2a(t), the last equation
can be simplified to

∂ta = − i

ℏ
[a,Hsys]−

κa(t)

2
+

√
κbin(t). (2.30)

This is one of the final equations, describing the evolution of the quantum system provided that the input
field is known. A similar result can be obtained for the output field. In that case, the field is known at the
moment t1 > t:

bout(t) =
1√
2π

∫ ∞

−∞
dωe−iω(t−t1)b1(ω).

Following the same routine, the Langevin equation can be obtained:

∂ta = − i

ℏ
[a,Hsys] +

κ

2
a(t)−

√
κbout(t). (2.31)
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2.2 Readout and decoherence

It is important to mention here that since for the reflection measurement there is a boundary condition at the
right end of the TL, the sign in front of bout is swapped.

Substituting (2.31) into (2.30) results in the standard input-output relation

bout(t) = −bin(t) +
√
κa(t), (2.32)

allowing to interpret the results of a quantum system readout.

Resonator with intrinsic losses

TL

bin

bout

lin

lout

κ(ω) γ(ω)

loss 
bath

C L

Figure 2.6: Sketch of a parallel LC resonator coupled to a readout transmission line (TL) with coupling strength κ. Intrinsic losses of
the resonator are modelled with and additional transmission line with coupling strength γ.

To demonstrate the application of the IOT, lets consider the common practical case of a resonator with
intrinsic losses coupled to a transmission line (see Fig. 2.7). To model intrinsic losses, an additional fictional
transmission line is coupled to the resonator with a coupling strength γ = ωres/Qi, where Qi is the internal
quality factor. The Langevin equation for that system is

∂ta = − i

ℏ
[a,Hsys]−

κ+ γ

2
a(t) +

√
κbin(t) +

√
γlin(t), (2.33)

which, in frequency space, transforms into

a(ω) =

√
κbin(ω)

i(ω − ω0) + (κ+ γ)/2
+

√
γlin(ω)

i(ω − ω0) + (κ+ γ)/2
. (2.34)

Experimentally, the resonator is characterised by measuring scattering parameters. In this case, the measur-
able scattering matrix has only one term – the reflection coefficient S11(ω) = bout/bin. By utilizing the IOT
relation bout = −bin +

√
κa, it can be written as

S11(ω) = −1 +
κ

i(ω − ω0) + (κ+ γ)/2
. (2.35)

In Fig. 2.7, the reflection coefficient is shown as a parametric plot versus frequency for different ratios of κ
and γ. Depending on the ratio, there are three resonator regimes:

• Overcoupled resonator (κ≫ γ). The photons mainly leak out to the readout line, and only negligible
part of information gets dissipated. The response is clearly visible in the phase of the reflected
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2 Circuit Quantum Electrodynamics

signal. This regime is instrumental for quantum information processing (e.g. for readout resonators
[WSB+04]).

• Critically coupled resonator (κ = γ). The photon leak out rate is equal to the dissipation rate, and at
resonance all input power is dissipated. This regime is optimal for measuringQi and studying internal
loss mechanisms [SBO+11; HVC+19].

• Undercoupled resonator (κ ≪ γ). In this regime it is hard to measure the response, and in cQED
undercoupled ports are mainly used to apply a drive or a pump tone without introducing significant
losses.

1 0 1
Re(S11)

1

0

1

Im
(S

11
)

/
0.01 1.0 10.0

Figure 2.7: Reflection coefficient of resonator for different values of γ, corresponding to overcoupled (blue curve), critically coupled
(orange curve), and undercoupled (green curve) resonator regimes.

2.2.3 Dispersive readout

TL

κ

g

Figure 2.8: Scheme of a qubit-resonator system used for dispersive readout.

Generally, to perform a readout of a quantum system one needs to find a way to couple it to some quantum
degree of freedom which can be measured by a classical apparatus. For superconducting qubits the typically
used approach is a dispersive scheme adopted from cavity QED. A qubit is coupled to a readout resonator
(either capacitively or inductively) with coupling strength g. As a result of this interaction, states of the
qubit and the resonator hybridize, and frequency of the resonator thus becomes qubit-state-dependent. A
readout tone reflected from the resonator acquires a qubit-state-dependent phase shift. Provided that the
measurement signal-to-noise ratio (SNR) is sufficient, by measuring the output field one can infer the qubit
state.
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2.2 Readout and decoherence

Light-matter interaction in this case is described by the James-Cummings Hamiltonian

H = ℏωqσz/2 + ℏωresa
+a+ ℏg(a+σ + aσ+), (2.36)

where we have used rotating wave approximation. The last term is responsible for single quanta interactions
between the resonator photon population and qubit excitation. The "regime" of this coupled system depends
on the ratio of coupling strength g and frequency difference between the qubit and the resonator∆ = ωq−ωres.
On resonance, with |g/∆| ≫ 1, the bare qubit and resonator eigenstates become strongly hybridized and
lose their individual character. As a result, energy is coherently swapped between two systems via so-called
vacuum Rabi oscillations. This regime, although being valuable for quantum gates operations, is not desired
in the context of quantum non-demolition measurement, for which the state of the measured system must
not be changed by the act of measurement.

In the dispersive regime defined by |g/∆| ≪ 1, qubit and resonator are weakly entangled. The Hamilto-
nian can be diagonalized perturbatively by using unitary transformation U = exp

(
g
∆ (a+σ − aσ+)

)
. By

expanding U+HU to the first order of χ = 2g2/∆, one gets

Hdisp = U+HU ≈ ℏωqσz/2 + ℏωresa
+a+ ℏχa+aσz/2. (2.37)

This formula gives a good approximation as long as the resonator photon number fulfills n ≪ ncrit =

(∆/2g)2, assuming that there are no other corrections to the model becoming significant at lower photon
numbers (e.g. accounting for higher levels of an artificial atom).

The last term in Eq. (2.37) has a dual nature. On one hand, the qubit frequency depends on the resonator
population, giving rise to an ac Stark effect. On the other hand, the resonator frequency is qubit-state
dependent, which can be used for readout purposes. Remarkably, themeasurement provided by the dispersive
Hamiltonian is quantum nondemolition (QND), owing to the fact that [Hdisp, σz] ≈ 0.

As anything, ability to readout the qubit state via the dispersive interaction comes with a price — reduced
coherence time. It happens because the qubit state is entangled with the resonator state which has a loss
channel through the transmission line. The resulting additional energy decay rate, refereed to as Purcell
decay [PTP46], is

ΓPurcell ≈
( g
∆

)2
κ. (2.38)

Principle of dispersive readout

The dispersive readout scheme can be utilized to infer state of a superconducting qubit, and its optimization
is an active field of research. The core question is how can the measurement SNR be maximized while
minimizing back-action on a qubit?

Lets imagine that we can directly measure the field at the output of the lossless readout resonator dispersively
coupled to a superconducting qubit. The measured quantity is a complex voltage of the microwave drive

Vmeas =

∫ τRO

0

V (t)dt (2.39)

corresponding to the output electric field itegrated over integration time τRO. Its real and imaginary parts are
two non-commuting quadratures which are being measured simultaneously. These quadratures are refferred
to as in-plane (I) and out-of-plane (Q). For a lossless readout resonator measured in reflection, the phase of
the reflected signal contains information about the qubit state.

13



2 Circuit Quantum Electrodynamics
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Figure 2.9: Phase of the signal reflected from the readout resonator for qubit being in ground (blue curve) and excited (red curve) state
versus detuning of the readout tone ωRO from the bare resonator frequency ωres indicated with grey dotted line. The phase
responses are calculated for the optimal case χ = κ, when the phase difference is maximum for ωRO = ωres.

To demonstrate that, one needs to apply the IOT theory (Eqs. (2.32,2.30)) to the dispersive Hamiltonian
(Eq. (2.37)). The output field (assuming long continuous drive) can be written as

bout =

(
−1 +

κ

i(ω − ω0 − χ⟨σz⟩)q + κ/2

)
bin, (2.40)

where ⟨σz⟩q = ±1 depends on the collapsed state of the qubit. While the absolute value of the output
voltage is the same for both states, the phase is not, as can be seen in Fig. 2.9. Phase difference between the
output voltages φeg = 4arctan(χ/κ) depends on the ratio of χ/κ, and reaches its maximum of 180° when
χ = κ. One of the benefits of cQED is that one can reliably implement big couplings, thus reaching this
optimal angle is achievable for the majority of situations.

SNR

Signal-to-noise ratio is one of the most important measurement metrics. Focusing on the idealised case of
direct measurement of a field at the readout resonator output, one can calculate a theoretical prediction for
the SNR.

Assuming a readout pulse is applied to a resonator in the ground state, the output field evolves as

β(t) = (βi − βf) exp [i(ωRO − ωres − χ⟨σz⟩q))t− κt/2] + βf, (2.41)

where βi = 0 and βf are the initial and final pointer states calculated following Eq. (2.40). This evolution
is shown in Fig. 2.10 for both qubit states. As expected, the output signal is delayed by τκ ∼ 1/κ due to
the readout resonator ring-up/down time, affecting the timescale of the readout pulse variations and thus
being crucial for minimizing the states discrimination times discussed in details in Sec. 4. For simplicity,
here we focus on a standard regime highlighted in Fig. 2.10, when the integration time interval τRO ≫ τκ is
chosen such that the output field is in the vicinity of the final steady-state, and τκ does not affect the average
measured amplitude.

For further discussions, it is convenient to convert the output field in units of square root of measured photons√
nκτRO/4 leaving the cavity during the integration time. It is convenient to express the added Gaussian

noise in these units, because it does not scale with time, and the evolution of pointer states can be described
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2.2 Readout and decoherence

by considering only the mean value. The measured average output fields corresponding to different qubit
states are separated by

|V|1⟩ − V|0⟩| =
√
nκτRO sin

φ01

2
. (2.42)

In units of measurement photons, the variation of quadratures due to quantum fluctuations is equal to

σQF = 1/2. (2.43)

Thus, in the ideal case of a lossless readout chain adding no noise to the signal, the measurement SNR is

SNRideal =
√
nκτRO sin

φ01

2
. (2.44)

In addition to SNR, another important quantity is the measurement fidelity

Fmeas = 1− P (0|1)− P (1|0), (2.45)

where P (0|1) is the conditional probability that after measuring qubit in state 1, it is in fact in state 0 and
P (1|0) is the reverse. Assuming that qubit relaxation and higher-order effects do not affect the measurement
and the steady-states are Gaussian, the measurement fidelity is related to SNR via

Fmeas = 1− erfc(SNR/2), (2.46)

where erfc is the error function. Similar to measurement fidelity, QNDness of the measurement can be
characterized by measuring QND fidelity

QNDmeas =
P (0|0) + P (1|1)

2
. (2.47)

For quantum information processing, QNDmeas limits fidelity of the overall algorithm, and it is thus crucial
that QNDmeas is as close as possible to either 1 or 0. If that is the case, the observer can be certain about the
qubit state after the measurement, and can either move to the next algorithm steps when QNDmeas = 1, or
do so after flipping the qubit state for QNDmeas = 0.
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Figure 2.10: Evolution of the output field during the readout. The input pulse with field amplitude bin is applied at time = 0 and is kept
constant during the readout. (a) Imaginary part of the output field versus time for excited (red curve) and ground (blue
curve) qubit states. (b) Parametric plot showing dynamics of the complex output field.
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Measurement nonidealities and limitations

The maximum achievable SNR scales as a square root of resonator photon population and integration time,
and can be adjusted to the desired value by simply increasing these parameters. The increase, however,
has its limits for both n and τRO because is causes a decrease of qubit lifetimes during the readout. This
problem is most obvious for the measurement time when it approaches the qubit relaxation time T1. Indeed,
the qubit decay during readout is in fact contributing to the non-QNDness budget. If τRO ≥ T1, QND
fidelity (Eq. (2.47)) of the measurement decreases since the qubit has a significant chance to decay during
the measurement.

A similar situation occurs when one wants to utilize high-power readout to boost SNR. The first bound
for drive power comes from the critical photon number ncrit which sets a limit on applicability for the
dispersive approximation. Typically achievable ncrit are higher than hundreds of photons, however, in
practise, populating higher energy levels and lifetime decrease due to qubit state flips occurs for drives
corresponding to n≪ ncrit, as low as n ∼ 1−10 [JMS+12; SCK+16; WKG+17; MMS+19]. This problem
is not yet fully understood and is an object of theoretical and experimental investigation.

On top of these issues, SNR is also limited by the readout chain imperfections. The most crucial problem
comes from the fact that the typical readout power is much smaller than the thermal noise of the room
temperature apparatus corresponding to nRT ∼ 1000. Signal thus has to be amplified at cryogenic stages,
and since any amplifier adds noise, the overall noise of the measured signal is higher than the quantum
fluctuations ( Eq. (2.43)). The minimum possible noise of amplification chain can be achieved if the first
amplifier in the chain is a quantum-limited amplifier [Cav82], i.e. adds only half a quanta of noise. The
measured quadrature variation in that case is σQL = 1/

√
2 in the units of square root of measured photons.

Another imperfection comes from losses ηloss in coaxial cables, components and interconnects used for
signal transmission, causing loss of information and thus lowering the SNR. As a result, Eq. (2.44) becomes

SNR = sin
φ01

2

√
ηloss

(
σQL
σmeas

)2
nκτRO

2
. (2.48)

Here, the extra factor 1/2 appears due to the noise added by the quantum-limited amplifier. Both propagation
losses and non-quantum-limited amplification chain are typically accounted for by introducing quantum

efficiency η = ηloss

(
σQL
σmeas

)2
. For state-of-the-art experiments, typical values are η = 0.6± 0.2 [EKT+19].

If the SNR is small (SNR < 1), only partial information about the quantum system can be inferred. Because
of that, one needs to perform multiple readouts to extract information. For the majority of applications
(e.g. quantum computing), however, one requires strong projective measurement resulting in a single-shot
readout. It is thus important to be able to perform high-fidelity readout, implying:

• Fast readout in order to be able to react quickly to error syndromes measured in quantum error
correction protocols, and ideally increase the coherence times of logical qubits.

• High SNR to suppress states separation error.

• QND readout to void uncontrollable qubit flips or, even worse, quantum system leaving the compu-
tational space.

To achieve this, one needs to implement a number of optimizations, with the most important one being
utilization of a quantum-limited amplifier.
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2.3 Josephson parametric amplifier

2.3 Josephson parametric amplifier

Due to the typically low (n < 10) readout powers [JMS+12; SCK+16; WKG+17; MMS+19], in order to
realize a single-shot readout of a superconducting qubit one needs a quantum-limited cryogenic amplifier. It
can be realized by building a so-called parametric amplifier — a system with some parameter being varied,
similar to a mechanical swing. For cryogenic microwave applications, the most successful approach is to use
Josephson parametric amplifiers (JPAs): the inductance of the system (e.g. resonator) is being varied over
time by utilizing Josephson junctions as nonlinear inductors.

In this section I describe basic concepts and operation principles of JPAs, as well as their important
characteristics and how enhancement of the latter can be achieved when designing a device.

2.3.1 Principles of parametric amplification

The principle of parametric amplification can be demonstrated on a classical LC oscillator formed by a
parallel-plate capacitor and a solenoid. Provided there are no losses, current flowing through the solenoid
oscillates as

I(t) = I0 cosω0t+ ω0Q0 sinω0t, (2.49)

where ω0 = 1/
√
LC is the angular frequency of oscillations. The initial amplitudes of oscillations of

current and charge I0 and Q0 correspond to two quadratures of the resonator state.

If one periodically partially inserts a ferromagnetic core inside the solenoidwith angular frequencyωp = 2ω0,
such that the core is inside the solenoid when the current is maximum and is out when the current is zero,
the resonance frequency becomes time-dependent: ω(t) = ω0+ δω cosωpt (assuming that δω ≪ ω0). This
modulation results in a dynamics of the system where the amplitude of the oscillating current gets amplified
over time thanks to the energy being pumped into the resonator:

I(t) = I0e
δωt/2 cosω0t+ ω0Q0e

−δωt/2 sinω0t (2.50)

While one quadrature is being amplified, the other becomes squeezed. This is so-called phase-sensitive
amplification, and the result of the amplification is a squeezed state [Aum20]. Since there is no coupling to
other physical modes, phase-sensitive amplification is noiseless, provided that the resonator has no intrinsic
losses.

Although seemingly being the best possible regime, phase-sensitive amplification is rarely useful in practice
due to the fact that only one quadrature is amplified. Because of that, not only this amplification requires
careful tuning, it is also susceptible to losses in coaxial cables (which degrade its efficiency), thus providing
a minor increase of the measurement efficiency at a cost of making the measurement more complicated. As
a result, this regime is typically used only when one starves for every last digit of quantum efficiency.

In order to amplify both quadratures and realize "phase-preserving" amplification, an extra degree of freedom
has to be added, such that the 4D quadrature space is squeezed instead of the previously considered 2D. This
can be achieved by coupling the "signal" resonator to another, so-called "idler" resonator. When pumping
this system at ωp = ωs + ωi, one can observe amplification of both quadratures of both signal and idler.
The price to pay for this regime is the added noise. Because the signal mode is coupled to the idler mode,
the idler vacuum noise contributes to the noise of the amplifier at the signal frequency. The added noise,
provided a lossless system, is quantum limited [Cav82], i.e. is equal to half a photon.
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2.3.2 Simplest realization of JPA

TL

C

Cin

LJ

κ

Figure 2.11: Schematic of the simplest realization of a JPA: a Josephson junction shunted with a capacitor C. The resulting nonlinear
resonator is capacitively coupled to transmission line via capatitor Cin.

In order to realize a microwave resonator with variable inductance, one can introduce a Josephson junction
into the system or, even better, fully replace its inductance with a Josephson junction. This system has the
same scheme and charge regime EJ ≫ EC as a transmon qubit coupled to a transmission line, and hence
can be described by the same Hamiltonian

H = ℏω0a
+a+ ℏ

K

2
a+a+aa. (2.51)

What makes a JPA different from a transmon qubit is the ratio of the coupling strength to the transmission
line κ and its Kerr coefficient K. When κ ≪ K, each energy level can be individually addressed, and the
system works as an artificial atom. In the other case, if κ ≫ K, any applied drive excites a big amount
of transitions, and the system can be treated as a classical nonlinear resonator — a resonator with photon-
number dependent resonance frequency. In order to operate a JPA as an amplifier, one needs to apply a strong
pump tone which periodically varies inductance (and hence resonance frequency) of this system thanks to
the JJ nonlinearity. A signal sent at the pumped JPA is then amplified.

To calculate the gain of a JPA and its response when applying the pump tone, one can use the IOT discussed
in Sec. 2.2.2. For the ideal lossless case, the Langevin equation describing evolution of the intra-resonator
field is

Ȧ = −iω0A− iKA+AA− κ

2
A+

√
κBin, (2.52)

with the input-output relation
Bout = −Bin +

√
κA (2.53)

Typically, there are two tones applied to the system: strong classical pump and weak quantum signal. We
can then decompose input/output and inner fields into two parts, classical and quantum:

Bin/out = βin/oute
iωpt + bin/out,

A = αeiωpt + a.

Assuming that there is no pump depletion (α does not depend on bin), and given that the pump tone is much
stronger than the signal( |α/⟨b⟩| ≫ 1), Eq. (2.52) can be dealt with by using a perturbation approach. First,
we solve the classical response for the pump tone, and then linearize the equation for the signal response.
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Figure 2.12: Normalized photon population as a function of pump frequency detuning shown for different pump powers.

Classical nonlinear response

For the classical nonlinear response, the Langevin equation is reduced to

i(ωp − ω0)α− iKα+α2 − κ

2
α = −

√
κβin. (2.54)

Multiplied by its conjugate, this equation becomes[
(ωp − ω0)

2 +
κ2

4

]
n− 2(ωp − ω0)Kn

2 +K2n3 = κ|βin|2, (2.55)

where n = |α|2 is the resonator photon number. This is a cubic equation, and can be solved analytically.
However, instead of deriving lengthy expressions, I present numerical results in Fig. 2.12, where the absolute
value of inner-resonator field is shown for different pump powers. For a weak drive (K|α|2 ≪ κ), the system
demonstrates a Lorentian response. However, as pump power increases to the range where K|α|2 ∼ κ,
the resonance frequency is Kerr-shifted to lower values and the curve gets tilted. At the critical value of n
referred to as bifurcation photon number

nbif =
κ√
27K

, (2.56)

derivative ∂n/∂ωp at the frequency ωp,crit = ω0 −
√
3
2 κ is infinite, and the system response is extremely

sensitive to the smallest changes in the input signal. For drive powers creating photon number population
n > nbif, Eq. (2.55) has three real solutions, two of which are stable. This bistable regime is called
bifurcation, and has chaotic nature. For even higher drive powers, higher-order terms of the cosine expansion
become significant giving rise to multistable solutions [JBM+14].

While being physically interesting, multistable regimes are not usually used for parametric amplification
purposes (although this is possible, see e.g. [SVP+04; VDS09]). To operate a JPA, one typically utilizes
resonator populations slightly lower than nbif, profiting from the high sensitivity of the bifurcation point
while being safe from chaotic behaviour of the bifurcation regime.
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2 Circuit Quantum Electrodynamics

Signal response

With the pump dynamics described in the previous section, it is now possible to use it to find the response
to the weak quantum signal by following perturbation theory. Assuming |a| ≪ |α|, terms like Kαa+a can
be neglected and we can consider a linear equation

ȧ = −iω0a−
κ

2
a− 2iK|α|2a− iKα2e−2iωpta+ +

√
κbin.

Applying Fourier transform gives[
i(ω − ω0)−

κ

2
− 2iK|α|2

]
a(ω)− iKα2a+(2ωp − ω) = −

√
κbin(ω). (2.57)

The additional term at frequency ωi = 2ωp − ω (referred to as idler frequency) indicates that Eq. (2.57)
describes a wave mixing process, and due to nonlinear interaction a(ω) and a(ωi) are coupled. This is
closely related to what was discussed in Sec. 2.3.1: in order to amplify both quadratures of a signal, an
additional mode has to be introduced.

Eq. (2.57) can be rewritten as two coupled equations:(
W (ω) −iKα2

iK(α+)2 W ∗(ωi)

)(
a(ω)

a+(ωi)

)
= −

√
κ

(
bin(ω)

b+in (ωi)

)
, (2.58)

whereW (ω) = i(ω−ω0−K|α|2)− κ
2 . After some algebraic steps, the input-output relation can be written

as (
bout(ω)

b+out(ωi)

)
=

(
g(ω) m(ω)

m∗(ωi) g∗(ωi)

)(
bin(ω)

b+in (ωi)

)
. (2.59)

Here, the coefficients are

g(ω) = −1− κW ∗(ωi)

W (ω)W ∗(ωi)−K2|α|4
(2.60)

m(ω) =
iκKα2

W (ω)W ∗(ωi)−K2|α|4
. (2.61)

Eq. (2.59) is the main result of these calculations, and will be a focus of further discussion throughout this
section. To start things of, we will focus on one of the most important things – signal gain. As can be
deduced, after interacting with the JPA the input field bin(ω) gets multiplied by gain factor g(ω). In practice,
it is more convenient to work with the power gain

G(ω) =

∣∣∣∣bout(ω)bin(ω)

∣∣∣∣2 = |g(ω)|2. (2.62)

In Fig. 2.13(a), few examples of power gain frequency dependence are demonstrated. The curves are
Lorentzians centered around corresponding pump frequencies. The maximal power gain G0 (observed at
pump frequency) can be adjusted by changing pump frequency and power to any desired value, up to more
than 30 dB. This tunability can be seen in Fig. 2.13(b), where the maximum of gain is shown as a function
of pump parameters. Outside of the bifurcation area, represented with black in Fig. 2.13(a), the system is
stable and can be used for parametric amplification. The grey dashed line indicates optimal pump frequency
for each drive power, minimizing the required drive power required to obtain desired gain profile.
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Figure 2.13: (a) Maximum of gain G0 versus normalized pump power and frequency. White dotted line indicates optimal pump
powers for each frequency. (b) Examples of gain profiles obtained for different optimal pump parameters.

One of the most important characteristics of any amplifier is instantaneous bandwidth defined as a frequency
interval in which gain is less than 3 dB lower then the maximum gain. As is evident from Fig. 2.13(a), ampli-
fication band decreases with the maximum gain G0 increase. The interdependence of these characteristics
is described by the so-called gain-bandwidth product

BW
√
G0 = κ. (2.63)

Thus, increasing G0 comes with a price, and operating at maximum gain is not always optimum.

Another important conclusion which can be made from Eq. (2.59) is that the output fields at signal and
idler frequencies become entangled due to the off-diagonal term m(ω) representing idler gain. Depending
on measurement procedure, this entanglement either results in generation of squeezed states, or becomes
a source of the JPA noise, caused by the quantum noise at the idler frequency being added to the output
signal tone via term m(ω)b+in (ωi). Before explaining these phenomena in details in the next subsections, it
is important to mention some relations between g(ω) and m(ω) originating from the fact that photons are
Bose particles and thus obey

[bin/out(ω1), b
+
in/out(ω2)] = δω1,ω2

[bin/out(ω1), bin/out(ω2)]] = 0.

By using these relations, one can find that

|g(ω)|2 − |m(ω)|2 = 1, (2.64)

g(ω)m(ωi) = g(ωi)m(ω). (2.65)

In the high gain limit |g|2 ≫ 1 (the typically used power gains are 15-25 dB), |g(ω)| ≈ |m(ω)|. As a result,
output powers at signal and idler frequencies are equal, and idler tone carries the same information signal
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2 Circuit Quantum Electrodynamics

does. Additionally, one can deduce that |g(ω)|2 = |g(ωi)|2, meaning that the power gain curve is symmetric
with respect to the pump frequency (provided there are no losses present in the system).

2.3.3 Important characteristics of JPAs

Although JPAs posses interesting physics by themselves, their main attractiveness comes from the fact that
they can be used as a first amplifier in the chain, adding minimum amount of noise allowed by quantum
mechanics. They should thus be thought of as a practical device, possessing a set of characteristics of
interest which should be optimized when designing and operating an amplifier. Here, one can find a detailed
discussion for the most important specifications.

Added noise

The most important figure of merit for a JPA is its added noise. As will be shown, a JPA is a quantum-limited
amplifier, and it is placed in the amplification chain only to make it’s noise quantum limited. It is thus
important to understand the origin of the JPA added noise, and estimate the power gain required to suppress
noise of the next amplifier in the chain.
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Figure 2.14: Sketch illustrating origin of JPA noise in phase-preserving regime. (a) Schematic of a signal (red) and associated noise
(orange) amplified by an amplifier with gainG and corresponding noise temperature TN. (b),(c) Power spectrum of input
and out fields, respectively. Lorentzian curves indicate signal power gain profile.

When operated in phase-preserving regime, meaning that only signal tone is being measured while ω ̸= ωi,
JPA adds quantum-limited noise [Cav82]. It happens due to the fact that quantum fluctuations present at the
idler tone are added to the output signal tone, which is sketched in Fig. 2.14. Following Eq. (2.59), the input
field bin(ω) is amplified, and also "copied" to the idler output field due to the termm∗(ωi)bin(ω). Since in the
high-gain limit |g(ω)| ≈ |g(ωi)|, bin(ω) contributes equally to the output power of signal and idler tones. The
same is true for the idler tone: the input idler field also gets amplified and "copied" to the output signal tone,
with the same power gain. Although nothing is usually sent at the idler frequency, there are always quantum
fluctuations with power spectral density S(ω) = ℏω

2 coth
(

ℏω
2kBT

)
, which get transferred to the signal tone

due to wave mixing processes. In the units of square root of measured photons, the added noise corresponds
to σadded = 1/2, increasing the total noise of the measurement to σtotal =

√
σ2
added + σ2

fluctuations = 1/
√
2.

Typically, cQED experiments require several amplification stages since the gain of ∼ 100 dB needed to
make signals detectable by the measurement apparatus is hard (if not impossible) to achieve by using a single
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Figure 2.15: (a) Schematic of the amplification chain consisting of JPA and HEMT(top image), which can be thought of as a single
amplifier with effective gain GJPAGHEMT and noise temperature TJPA + THEMT/GJPA. (b) Added noise temperature of
the amplification chain in the units normalized by quantum-limited noise as a function of JPA power gain. The noise
temperature of HEMT was considered to be 2K. The grey dotted line indicates quantum-limited noise.

amplifier. As depicted in Fig. 2.15(a), the amplification chain consisting of a series of amplifiers with gains
Gi and noise temperatures Ti in the abscense of losses can be modelled as an single equivalent amplifier
with gain G =

∏
iGi and noise temperature T = T1 +

T2

G1
+ T3

G1G2
+ .... When building an amplification

chain, it is thus important to put the lowest-noise amplifiers first, and make sure that gain of each amplifier
is big enough to suppress noise of the next amplifier in the chain, thus limiting overall noise of the chain to
the noise of the first amplifier. For JPAs it is thus important to estimate gain required to suppress noise of
the second amplifier in the chain, which is usually a HEMT amplifier with noise temperature of 2–4 K. In
Fig. 2.15(b), the noise temperature of the amplification chain is shown as a function of the JPA gain. As is
evident, the noise temperature approaches quantum limit at 15 dB, and increasing gain above 25 dB does
not improve the noise characteristics. Because of that, the typically chosen gain value is 20 dB.

Losses

So far only lossless schemes were considered. However, since losses are the main factor limiting the overall
JPA performance, it is important to be able to estimate their influence and low they should be kept.

Similar to the treatment for resonators with finite Qi (see Sec. 2.2.2), to model losses one can introduce a
bath with Hamiltonian Hl =

∫
R
dω ℏω l+(ω)l(ω) coupled to the JPA with coupling strength

√
γ
2π . The

Langevin equation (2.52) corresponding to this system is

ȧ = − i

ℏ
[a,Hsys]−

κ+ γ

2
a(t)−

√
κbin(t)−

√
γlin(t). (2.66)

The output field bout(ω) inferred from Eq. (2.59) then changes to

bout(ω) = gγ(ω)bin(ω) +mγ(ω)b
+
in (ωi) +

√
γ

κ
(gγ(ω) + 1)lin(ω) +

√
γ

κ
mγ(ω)l

+
in (ωi), (2.67)
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where gγ ,mγ are calculated using Eq. (2.61) withW (ω) being changed to toWγ(ω) = i(ω−ω0−K|α|2)−
κ+γ
2 .
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Figure 2.16: Gain versus normalized frequency for different loss rates. Pump frequency is the same for all plots (ωp = ω0 − 0.86κ)
while pump power was adjusted for each curve to maximize G0.

There are two negative effects caused by losses. First, they change the gain curve making it asymmetric and
limiting the maximum achievable gain, as illustrated in Fig. 2.16. Secondly, the added noise of JPA increases
due to interaction of the signal tone with two additional modes, lin(ω) and l+in (ωi). In the limit of high gain,

Textra ≈
2γ

κ

ℏω
2

=
2γ

κ
TQL, (2.68)

where Textra is the additional added noise.

For a quantum-limited JPA it is thus essential that κ ≫ γ (or, in other terms, Qc ≪ Qi). Conveniently,
JPAs are usually broadband and utilize Qc = 10− 100. The required Qi ≥ 103 is hence easily achievable,
which makes JPAs relatively insensitive to fabrication limitations and numerous effects which could limit
Qi, such as e.g. dielectric or quasiparticle losses.

Signal-pump detuning

When using a reflection-based amplifier, to separate input and output fields one uses a circulator [Poz11]
— directional passive device which transmits signals in the forward direction, while strongly attenuating
reverse-propagating signals. The attenuation, however, is typically limited to 20 dB while the pump power
is 20-40 dB higher than signal. Because of that, when using a JPA for qubit readout, one has to be careful
about pump leaking onto the qubit chip through the circulator isolation. Due to the leakage, there appears
an additional strong drive influencing the state of the measured system. For the discussed JPA schematic
(cf. Fig. 2.11), the pump tone is detuned from the signal by (at best) few tens of MHz, and pump leakage
becomes a huge problem.

24



2.3 Josephson parametric amplifier

To combat that, one could introduce several isolators between the qubit chip and the JPA. However, they
are bulky elements relying on magnetic elements. Not only they create unwanted magnetic fields, they also
introduce additional losses thus lowering quantum efficiency. It would thus be beneficial to avoid using
unneeded isolators by increasing the pump-signal detuning to at least hundreds of MHz. By doing so, the
pump-induced photon population in the qubit’s readout resonator becomes negligible due to its Lorentzian
response with typical linewidth of 1–10 MHz.

There is a number of ways to achieve this detuning. First, one could use three-wave mixing nonlinearity,
thus changing relation between mixed frequencies to ωp = ωs + ωi. Pump frequency is then approximately
twice as big as the signal one. This regime can be achieved by using flux-pumping of dc-SQUIDs, or
utilizing the controllable nonlinearities of rf-SQUIDs [Zor19] or SNAILs [FVS+17; FSL+18; SFJ+19;
SSL+20]. Another solution is to use a system of two coupled nonlinear resonators, which can operate
in a non-degenerate regime for which pump and signal tones occupy different physical modes and gain
has a double-Lorentzian profile. Non-degenerate amplification can be realized for both 3-wave-mixing
[BSM+10; RFN+12; LCC+17] and 4-wave-mixing [ESM+14; WTR+20] regimes (a detailed discussion
about the 4-wave-mixing nondegenerate amplifier developed duringmy PhD thesis can be found in chapter 3).

Saturation power

For any amplifier, the physical process of amplification can be described as transfer of energy from pump
into the signal of interest. Naturally, there is a limit of energy transfer rate, and for input signal power
"demanding" higher transfer rates that GPin > Plimit, the apparent power gain is lower than the expected
one. This effect results in gain being signal-power-dependent as it reaches a certain threshold. The threshold
is referred to as saturation power or 1dB compression point, and is defined as a signal power at which gain
decreases by 1 dB.

For JPAs utilizing fourth order nonlinearity, the main saturation mechanisms are pump depletion (reduction
of pump power due to amplification process) and Stark shift of the JPA resonance frequency induced by
signal [FSL+18; PDM+19]. Both effects change pumping parameters: the first one reduces pump photon
number population, and the second changes the pump tone detuning ωp − ω0. This results in a decrease of
gain of an optimally pumped JPA, as can be deduced from Fig. 2.13(b).

For a four-wave-mixing amplifier, the Stark shift effect is the dominant source of saturation. Following
[FSL+18], the corresponding 1dB-compression point obeys

P Stark
1dB ∼ κ2

K

ℏω0

G
5/4
0

. (2.69)

Increase of Psat is an important part of the amplifier development. As evident from Eq. (2.69), it can be
achieved by increasing κ and/or decreasing Kerr nonlinearity.

The resonator bandwidth cannot be increased to arbitrary big value. This is caused by the fact that current
induced by pump tone should not exceed critical current of the Josephson junction, which entails that

pQ ≥ 16/
√
3, (2.70)

where p = LJ
L+LJ

is the nonlinear inductance participation ratio. Thus, the highest safe value for κ is ω0/10.

For Kerr suppression, the optimal choice suggested in [EW14] is to replace a single Josephson junction
with an array, distributing power among several junctions. For the scheme shown in Fig. 2.11, if a single
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junction with inductance LJ is replaced with N junctions and reducing capacitance to C/N to maintain
the same resonance frequency, the Kerr coefficient scales [SSL+20] as K ∝ 1/N . A complementary Kerr
decrease, achievable by increasing critical current of the Josephson junction, is limited by Eq. (2.70), because
participation ratio starts to lower due to unavoidable linear inuctances. In practice, the typically used critical
currents are Ic = 1− 10 µs.

Saturation power can be further increased by utilizing other wave-mixing regimes while fully suppressing
forth order nonlinearity. It was shown in [FSL+18] that when using SNAILs for three-wave-mixing Kerr-
free amplifiers, saturation power is limited by pump depletion requiring an order of magnitude higher signal
powers than signal-induced Stark shift.

Bandwidth

One of the most important characteristics of an amplifier is instantaneous bandwidth defined as a frequency
interval in which gain is less than 3 dB lower then the maximum gain. For non-degenerate 4-wave-mixing
amplifiers, it is limited to about 1% of the resonance frequency by gain-bandwidth product (Eq. (2.63)) and
critical current of Josephson junction (Eq. (2.70)). The resulting band of few tens of MHz is sufficient for
a single-qubit readout since it is bigger that the typical readout resonator linewidth of 1–10 MHz and also
allows to resolve pulses with the typical length of few tens of nanoseconds.

However, there are application requiring wider band, such as multiplexed readout of several qubits or kinetic
inductance detector arrays, not to mention the much desired user-friendliness of a ’plug-and-play’ device
with a band of couple GHz. For JPAs, the gain-bandwidth product has to be dealt with to widen the band.
There are currently two approaches: changing the product and getting rid of it by not using resonator-based
structures.

Gain-bandwidth product can be changed by using an impedance matching technique [MWB+14; RKC+;
NFE17; YGS+20], realized by making coupling κ(ω) frequency-dependent by introducing resonator-based
schemes in front of the JPA. In principle, if coupling was a complex function of frequency κ(ω), this function
could be engineered to compensate the detuning ω−ω0 in Eq. (2.61), thus making the gain profile flat over a
wide frequency range. If κ(ω) is accordingly designed, the gain-bandwidth product (2.63) changes, resulting
in BW ≈ κ. Thus, an impedance-matched JPA can reach an instantaneous band of hundreds of MHz.

Another solution for the band increase is to get rid of the resonator, and use nonlinear transmission line as a
wave-mixing media. This kind of amplifier is called a TravelingWave Parametric Amplifier(TWPA) and is a
widely used approach in optics [Agr13]. First reported cryogenic microwave TWPAs were based on kinetic
inductance [HEDLZ12]. Unfortunately, even nowadays [MVW+21] they are still not optimal for qubit read-
out applications due to high pump powers, gain profile with many ripples, and non-quantum-limited noise.
A Josephson-junction-based TWPA was first proposed in [YFMS], where the nonlinear media is a lumped-
element transmission linewith inductances replaced by Josephson junctions. Nowadays there aremany differ-
ent realizations of Josephson junction TWPAs, utilizing different wave mixing regimes[MOH+15; MM19],
phase matching realizations[OMSZ; PRD+20; REP+21], and pumping schemes [Zor19]. Despite having a
few-GHz bandwidth and high saturation power, nowadays TWPAs are not yet quantum-limited, most proba-
bly due to dielectric losses [OAB+08] and sidebands generation [PNW+21]. For summary about TWPAs’
state of the art, the reader is redirected to [ERPR21].
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3 Dimer Josephson Junction Array Amplifier
(DJJAA)

The Dimer Josephson Junction Array Amplifier (DJJAA) [WTR+20] is a 4-wave-mixing non-degenerate
parametric amplifier. Owing to the design based on a Josephson junction array (JJA), the DJJAA saturation
power exceeds thousand photons per µs making this amplifier suitable for experiments requiring high-power
readout. Non-degeneracy is achieved by engineering the JJA dispersion, ensuring few hundreds of MHz of
detuning between pump and signal frequencies. Last but not least, the amplifier can be fabricated with a
widely-accessible two-step optical lithography.

This chapter is organized as follows. First, the operating principle of a 4-wave-mixing non-degenerate
amplifier is discussed (Sec. 3.1). Then, the DJJAA design concept and dispersion engineering are presented
in Sec. 3.2, followed by the experimental realization of the DJJAA and its characterization (Sec. 3.3). Sec. 3.4
is dedicated to the utilization of superconducting qubits as power detector, focusing on accurate calibration
of DJJAA saturation power.

3.1 Theoretical model

This section is a brief summary of a theoretical model used to predict the response of a 4-wave-mixing
non-degenerate amplifier. Selected simulations which can help to build intuition on how to design and
operate such an amplifier are shown. For a detailed discussion of the model, the interested reader is referred
to [ESM+14].

TL

κ J

ωl ωr

Figure 3.1: Equivalent schematic of a JPD.

To achieve non-degenerate four-wave-mixing amplification, one can use a system consisting of two modes
(ω+ ̸= ω−)which are both coupled to a transmission line and have a cross-Kerr interactionKcrossa

+
+a+a

+
−a−

between each other. This system is further referred to as dimer, and the corresponding Josephson junction-
based parametric amplifier — as Josephson Parametric Dimer (JPD). For algebraic reasons, it is convenient
to map such system to the Bose-Hubbard model [SCWS08]. The equivalent circuit of a Bose-Hubbard
JPD is shown in Fig. 3.1. There are two nonlinear modes with frequencies ωl, ωr coupled with a coupling
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3 Dimer Josephson Junction Array Amplifier (DJJAA)

strength J . One of the modes, denoted left, is coupled to a transmission line with a coupling strength κ. All
intrinsic losses of the dimer are accounted for by introducing loss rate γ for the right resonator. This system
is described by the Hamiltonian

H/ℏ = ωlA
+
l Al + ωrA

+
r Ar + J(AlA

+
r +ArA

+
l ) +

1

2

(
KlA

+
l A

+
l AlAl +KrA

+
r A

+
r ArAr

)
, (3.1)

where Kl/r are the modes’ Kerr coefficients, and Al/r is the annihilation operator for the corresponding
resonator.

Due to the mixing term J(AlA
+
r + ArA

+
l ), left and right modes hybridize, resulting in symmetric and

asymmetric modes with eigenfrequencies

ω± =
ωl + ωr

2
±

√
J2 +

(
ωl − ωr

2

)2

(3.2)

and corresponding linewidths

κ± =
κ

2

(
1± |ωl − ωr|√

4J2 + (ωl − ωr)2

)
. (3.3)

For the optimal hybridization case of ωl = ωr, the modes’ frequencies are split by 2J , and the effective
coupling strength to the transmission line of each hybridized mode is κ/2 (photons spend equal amount of
time in left and right resonators).

Similar to Sec. 2.3.2, annihilation operators Al/r = αl/re
iωpt + al/r are decomposed into strong classical (

αl/re
iωpt) and quantum (al/r) parts. Equations of motion for the classical part describe the system response to

the pump tone. They are given by Langevin equations, leading to a closed set of coupled nonlinear equations

(i(ωp − ωl)−
κ

2
)αl − iJαr − iKlα

+
l α

2
l +

√
κβin = 0.

(i(ωp − ωr)−
γ

2
)αr − iJαr − iKrα

+
r α

2
r = 0. (3.4)

These equations, depending on pump frequency and power, have either one or multiple solutions. The latter
results in a chaotic behaviour, and is typically avoided for parametric amplification purposes.

Following the procedure discussed in Sec. 2.3.2, weak quantum response can be calculated once classical
fields are known. Assuming there is no pump depletion, the Langevin equations for quantum signal linking
annihilation operators of left and right modes at signal ω and idler (ωi = 2ωp − ω) frequencies with
transmission line fields are (for details, see supplementary of Ref. [ESM+14]):

a(ω) =
√
κV bin/out(ω), (3.5)

where a(ω) =
(
al(w), a

+
l (ωi), ar(ω), a

+
r (ωi)

)T
, bin/out ≈ (bin/out(ω), b

+
in/out(ωi), 0, 0)

T, and

V =


i(ω − ωl)− κ/2 −iKlα

2
l −iJ 0

iKlα
∗
l
2 −i(ωi − ωl)− κ/2 0 iJ

−iJ 0 i(ω − ωr)− γ/2 −iKrα
2
r

0 iJ iKrα
∗
r
2 −i(ωi − ωr)− γ/2

 . (3.6)
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By using the Input-Output relation, the output field at signal frequency can be written as

bout(w) = g(ω)bin(ω) +m(ω)b+in (ωi), (3.7)

with the signal and idler gains equal to

g(ω) = −1− κV −1
11 (ω),

m(ω) = −κV −1
12 (ω). (3.8)
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Figure 3.2: (a) Maximum of gain G0 shown versus normalized pump power |Kβ2
in|/κ2 and frequency (ωp − ωmid)/κ, where

ωmid = (ωl + ωr)/2. While there are solutions with the maximum of gain reaching up to 60 dB, G0 was capped at
30 dB to make areas with degenerate gain more visible. The light-grey area indicates pump parameters for which Eq. (3.4)
has multiple solutions. (b),(c) Examples of degenerate and non-degenerate gain profiles, respectively. The corresponding
pump parameters are indicated by the corresponding circle and square labels in panel (a).
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3 Dimer Josephson Junction Array Amplifier (DJJAA)

In Fig. 3.2(a), maximum of power signal gain G = |g|2 is show for different normalized pump powers
|Kβ2

in|/κ2 and frequencies (ωp − ωmid)/κ. The calculation was performed for the following system param-
eters: ωl = ωr = 2π · 6 GHz, κ = J = 2π · 600 MHz, γ = 0, Kl = Kr = 2π · 10 kHz. Depending on
pump power and frequency, there are three different regions corresponding to different types of the amplifier
response. The light-grey area in Fig. 3.2(a) indicates the region with multiple solutions of Eq. (3.4), resulting
in bifurcation. If pump is applied in the vicinity of one of the hybridized modes, visible in Fig. 3.2(a) as
"comets", only one of them is driven, resulting in the degenerate gain profile shown in Fig. 3.2(b). When
the pump frequency is located in-between the modes, the system works as a non-degenerate amplifier (see
Fig. 3.2(c)) with a two-lobe gain profile. The distance between Lorentzian lobes is approximately equal to
2J , ensuring signal-pump detuning (Sec. 2.3.3). Notably, in the non-degenerate regime the gain is tunable
within Btun ∼ κ thanks to the corresponding parameter region in Fig. 3.2(a). Thus, even without utiliza-
tion of SQUIDs, JPD amplifiers are frequency-tunable within few hundreds of MHz, on-par with some
SQUID-based designs [RFN+12].

3.1.1 Essential requirements for non-degenerate gain

To ensure that the non-degenerate pump-parameter region is present, two conditions have to be fulfilled.
First, it should be possible to pump both modes simultaneously. For that, modes splitting should be limited
to J ≤ 2κ, as can be seen in Fig.3.3. As the ratio J/κ increases, the effective area of pump parameters
enabling non-degenerate gain decreases, almost disappearing for J = 3κ (see Fig.3.3(c)).

Second, dimer modes need to be fully hybridized, meaning that κ+ = κ− (or equivalently, ωl = ωr).
Asymmetry in the effective Bose-Hubbard modes leads to one modes having lower bifurcation photon
number, resulting in reduction of the non-degenerate pump parameter region. The extreme case of ωr =

ωl+3κ is shown in Fig. 3.4. As can be seen, for these parameters non-degenerate regime cannot be achieved.
To avoid that, one should ensure that |ωr − ωl|/κ < 1/2.

3.2 DJJAA concept

To create a 4-wave-mixing non-degenerate amplifier with high saturation power, we utilized Josephson junc-
tion arrays (JJAs) with an engineered dispersion relation [WTR+20]. In this section, I discuss characteristics
of a JJA, as well as its dispersion engineering.

3.2.1 Josephson junction array (JJA)

For a JJA-based amplifier design, it is crucial to be able to predict its dispersion relation and Kerr coefficients.
Here, I focus on a particular case, crucial for amplifiers discussed in this thesis: a λ/2 resonator made of
an array of Josephson junctions. Its schematic is shown in Fig. 3.5(a). The array ends are galvanically
connected to a 50Ω transmission line (left edge) and to the ground (right edge). The crossed boxes indicate
Josephson junctions with critical current IJ and shunting capacitanceCJ. Superconducting strips connecting
JJs create capacitance to ground C0.

Following [WKD+15], this system can be described by the Lagrangian

L =

N∑
i=1

C0

2
Φ̇2

i +

N−1∑
i=0

CJ

2

(
Φ̇i+1 − Φ̇i

)2
−

N−1∑
i=0

EJ cos

(
Φi+1 − Φi

φ0

)
, (3.9)
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Figure 3.3:Maximum of gain shown versus normalized pump power |Kβ2

in|/κ2 and frequency (ωp −ωmid)/κ for different resonator
coupling strengths: (a) J = κ, (b) J = 2κ, (c) J = 3κ. Light-grey areas indicate pump parameters for which Eq. (3.4)
has multiple solutions. The calculation was performed for the following system parameters: ωl = ωr = 2π · 6 GHz,
κ = 2π · 600MHz, γ = 0,Kl = Kr = 2π · 10 kHz.

where Φi is the flux at node i, and Φ0 is the flux quantum. The dispersion of the JJA can be calculated by
linearizing this Lagrangian. The linear part can be written in matrix form

Llin =
1

2
Φ̇TCΦ̇T − 1

2
ΦTL−1ΦT, (3.10)

with Φ = (Φ0,Φ1, ...,ΦN )T. Here, C and L are the capacitance and inductance matrices (see Appendix
A.1.1 for details). It can be quantized and numerically diagonalized, resulting in the Hamiltonian

Hlin =

N∑
i=0

ℏωia
+
i ai, (3.11)

where eigenfrequencies ωi are calculated by solving the eigenvalue problem

C−1/2L−1C−/2ψi = ω2
i ψi. (3.12)
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3 Dimer Josephson Junction Array Amplifier (DJJAA)

Figure 3.4: Maximum of gain shown versus normalized pump power |Kβ2
in|/κ2 and frequency (ωp −ωmid)/κ for the resonators with

different resonance frequencies. Light-grey areas indicate pump parameters for which Eq. (3.4) has multiple solutions.
Calculation was performed for the following system parameters: ωl = 2π · 6 GHz, κ = 2π · 600 MHz, γ = 0,
ωr = ωl + 3κ, J = κ,Kl = Kr = 2π · 10 kHz.

Here, eigenvectors ψi are linked to the flux spatial distribution of the corresponding modes as

Φi = C−1/2ψi

√
ℏ
2ωi

(ai + a+i ). (3.13)

A typical solution of the eigenproblem is shown in Fig. 3.5(b), for chain parameters listed in Table 3.1.
The modes dispersion is linear for ωi ≪ ωplasma, saturating to the plasma frequency ωplasma = 1/

√
LJCJ as

mode number increases. Flux distribution for the linear part of the dispersion is sinusoidal (see Fig. 3.5(c)),
similar to microstrip resonator modes [Poz11].

To calculate self- and cross-Kerr coefficients of the JJA, the Lagrangian in Eq. (3.9) is expanded to the forth
order [WKD+15]:

H =
∑
j

ℏwja
+
j aj +

ℏ
2

∑
j

Kjja
+
j a

+
j ajaj +

∑
{j,k|j ̸=k}

Kjka
+
j aja

+
k ak (3.14)

By using perturbation theory and utilizing the solution obtained for the linearized Lagrangian, the Kerr
coefficients can be written as

Kjj = −12ηjjjj
ℏEJ

φ0C2
Jw

2
j

(3.15)

Kjk = −12ηjjkk
ℏEJ

φ0C2
Jwjwk

(3.16)

Here, ηijkl is a numerical coefficient, exact formula of which can be found in [WKD+15].
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Figure 3.5: (a) Schematic of a Josephson junction array-based λ/2 resonator. (b) Mode dispersion of the JJA calculated for parameters
listed in Table 3.1. (c) Distribution of the flux over the resonator for two neighbouring modes indicated in panel (b), i.e.
the eigenstates of modes 5 and 6.

3.2.2 Dimerization of a JJA

To ensure the J ≤ 2κ condition (see Sec. 3.1.1), the JJA dispersion relation can be engineered to achieve
the required modes splitting. In the scope of this thesis, it was done by introducing a series capacitor in the
middle of the array shown in Fig. 3.6(a). This results in symmetric and asymmetric modes (Fig. 3.6(c)).
These modes form pairs, denoted dimers, as can be seen in Fig. 3.6(b). The frequency splitting between
modes of a dimer is controlled by the value of Cc (see Fig. 3.7), providing a convenient tuning knob for
amplifier design. Each dimer located below the plasma frequency region can be utilized for non-degenerate
4-wave-mixing amplification.

Table 3.1: List of parameters used for JJA/DJJAA modes simulation.

Type N IJ CJ ωplasma/2π C0 Cc C ′
0

JJA (Fig. 3.5(a)) 1600 3 µA 1225 fF 13.72 GHz 0.45 fF N/A N/A
DJJAA (Fig. 3.6(a)) 1600 3 µA 1225 fF 13.72 GHz 0.45 fF 40 fF 33 fF
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3 Dimer Josephson Junction Array Amplifier (DJJAA)

0 N/2 N
Node number

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

/
0

0 25 50
Mode number

0.0

0.2

0.4

0.6

0.8

1.0

/
p

la
sm

a

(a)

(c)

(b)Cc

C0'

IJ,CJ

C0

TL

Figure 3.6: (a) Schematic of a dimerized Josephson junction array. (b) Modes dispersion of the DJJA calculated for parameters listed
in Table 3.1. (c) Distribution of a flux over the resonator for two neighbouring modes indicated in panel (b).
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Figure 3.7: Frequencies of selected modes as a function of Cc. Colors indicating different modes corespond to the ones used in
Fig. 3.6(b). Notice that only half of the modes (every second one) are influenced by the coupling capacitor. This can be
intuitively understood as a consequence of the eigenstates shown in Fig. 3.5(c), which indicate that only half of the modes
have a voltage gradient at the position of the capacitor.

3.3 Experimental realization

Here, I present a DJJAA [WTR+20] fabricated with a two-step optical lithography. The amplifier shown
in Fig. 3.8 was further used for high-power detection of a grAl fluxonium quantum jumps discussed in
Chapter 4. For information about other fabricated and measured optical-lithography DJJAAs, the reader is
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Figure 3.8: (a),(b) Photo of a DJJAA inside a sampleholder. (c) SEM images of SQUID array and interdigitated capacitor. (d),(e)
Falsecolored SEM images of a SQUID. Blue color corresponds to the first Al layer, blue — to the second one.

referred to [Win20]. A DJJAA fabricated by using e-beam lithography relying on a bridge-free technique
[LPP+11], similar to Ref. [PDM+19], is discussed in Appendix A.1.2.

In Fig. 3.8(c), SEM images of the DJJAA are presented. The amplifier consists of an array of 1600 SQUIDs
interrupted in the middle with an interdigitated capacitor. Left and right edges of the array are galvanically
connected to a 50 Ω microstrip transmission line and ground plane, respectively. Circuit parameters of the
amplifier correspond to the ones listed in Table 3.1 for the DJJAA.

The sample was fabricated on top of a polished 330 µm thick C-plane sapphire wafer by utilizing a two-
step optical lithography [WTR+20]. First aluminum layer (30 nm thick) including capacitor pads, on-chip
microstrip lines, and part of the array, is shown in the magnified images of the SQUID area (Figs. 3.8(d,e))
in a blue false color. Josephson junctions were formed by oxidation of the first layer to form the oxide layer
followed by evaporation of the second layer of aluminum (40 nm thick) shown in red in Figs. 3.8(d,e). Prior
to the latter two steps, an argon milling was performed [GMS+18] to remove native oxide forming due to
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3 Dimer Josephson Junction Array Amplifier (DJJAA)

exposing the sample to atmosphere. Before each Al evaporation, plasma cleaning was done to prevent aging
of Josephson junctions [PFC+12]. To ensure uniformity of the ground capacitances and to minimize losses,
a 200 nm thick platinum layer was deposited on the backside of the chip. The sample was then glued to the
copper sampleholder with a silver paste (Fig. 3.8(a)) and connected to a printed circuit board by aluminum
wirebonds (Fig. 3.8(b)).
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Figure 3.9: (a) Schematic of experimental setup used for DJJAA characterization. The displayed microwave components are thermal-
ized to the nearest temperature stage indicated above them. (b) Phase of weak reflected signal versus frequency and external
magnetic flux. (c) Example of a non-degenerate gain profile measured at Φ ≈ 0.2Φ0 (d) Left lobe of non-degenerate gain
versus signal frequency measured for different pump powers at Φ ≈ 0.09Φ0. (e) Maximum of gain profiles shown in
panel (d) versus input signal power.

To characterize the DJJAA, we used the experimental setup shown in Fig. 3.9(a). The qubit sample in front
of the DJJAA is used for power calibration which is discussed in details in Sec. 3.4. Fig. 3.9(b) shows the
phase of the reflection coefficient of a weak probe measured for different external magnetic fields. There
are two dimers which can be used for non-degenerate amplification in the 4–8 GHz octave. In this section,
I focus on the upper one. In Fig. 3.9(c), and example of a non-degenerate gain obtained at Φ/Φ0 ≈ 0.2 is
presented.

For the grAl fluxonium state readout (Chapter 4), the amplifier was flux-tuned to Φ/Φ0 ≈ 0.1 to match the
readout resonator frequency. At this external flux, the linear parameters of the DJJAA extracted with a circle
fit [PSB+15] are: w−/2π = 7.055 GHz, w+/2π = 7.279 GHz, κ−/2π = 54 MHz, κ+/2π = 88 MHz,
γ/κ ≤ 0.1. Fig. 3.9(d) shows left lobes of non-degenerate gain profiles with the lobes splitting of about
260 ± 20 MHz measured at the external flux (Φ/Φ0 ≈ 0.1). For these gains, pump frequency was kept
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3.4 Power calibration

constant (ωp/2π = 7.377 GHz) while pump power was varied. For the 20 dB gain profile, the instantaneous
bandwidth is equal to 7 MHz. In Fig. 3.9(e), maximum of gain is shown as a function of calibrated signal
power at the input of the DJJAA. This dependence allows to extract the saturation power, defined as signal
power for which maximum of gain reduces by 1 dB. For the 20 dB gain, the saturation power was−98 dBm,
equaivalent to about 2 · 104 photons/µs.

3.4 Power calibration

In situ calibration of power at the input of the device of interest is important in cQED. It is instrumental for
a number of routines, including (but not limited to) measuring saturation power of an amplifier, determining
Kerr coefficient of a nonlinear system, and measuring the noise added by an amplifier. In this section, I
present an experimental realization of power calibration relying on scattering effects discussed in Sec. 2.2.1.
In particular, a transmon qubit directly coupled to a transmission line (Sec. 3.4.1) and a qubit-resonator system
(Sec. 3.4.2) made of a granular aluminum fluxonium qubit coupled to a readout antenna [GSG+19; GSG+21]
were utilized. Another power calibration technique based on an ac-Stark effect is discussed in Sec. 4.4.

3.4.1 Scattering from a transmon qubit coupled to a transmission line
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Figure 3.10: (a) SEM image of the transmon qubit (the bottom object) capacitively coupled to a transmisson line (the top object). The
qubit is formed by capacitor pads connected by a SQUID shown in panel (b). (c) Spectrum of the transmon qubit: phase
of weak probe versus frequency and external magnetic flux.
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Figure 3.11: (a) Transmission at the probe frequencyω = ω01, whereω01 is the transmon qubit, shown as a function of calibrated probe
power. The upper x axis shows probe power in units of photons in the band Nphotons/γ, where Nphotons = Pprobe/ℏω01

is the photon flux and γ is the qubit T2 rate. (b) IQ parametric plots of transmission for different probe powers with probe
frequency being the parameter. Lines’ colors are in agreement with panel (a).
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3 Dimer Josephson Junction Array Amplifier (DJJAA)

To calibrate the saturation power of the DJJAA device described in Appendix A.1.2, we utilized a transmon
qubit capacitively coupled to a microstrip transmission line. In Fig. 3.10(a), an SEM image of the qubit is
shown. It consists of capacitor pads connected by a dc-SQUID, magnified image of which is presented in
Fig. 3.10(b). The SQUID is formed of Al superconducting loop and two Al/AlOx/Al Josephson junctions
fabricated on top of a C-plane sapphire substrate.

In the absence of magnetic field, transmon parameters are: ω01/2π = 1
h (
√
8EJEC − EC) = 5.953 GHz,

EJ = 16.31 GHz, EC = 300 MHz. The Josephson energy (and thus qubit frequency) can be tuned by
applying external magnetic field. Fig. 3.10(b) shows the spectrum of of the qubit. Owing to is tunability,
the transmon can be used as a power calibration unit in 4–6 GHz frequency range. Moreover, after using it
to calibrate power at the frequency of interest, the qubit can be flux-tuned below 4 GHz to avoid its influence
on further experiments.

As was discussed in Sec. 2.2.1, two effects can be used for a power calibration: resonance fluorescence and
Autler-Mollow triplet. In case of resonanse fluoresncence, also referred to as elastic scattering, transmission
through the microstrip 50 Ω line is power-dependent. The transfer coefficient obeying Eq. (2.18), aside
from ω01, EJ, EC, depends on drive power Pprobe, coupling strength to the transmission line κ/2π =

3.24 MHz, and decoherence rate γ = 1.78 MHz. The latter two were extracted from a circle fit [PSB+15]
applied to low-power (Ω ≪ κ) transmission data. With the decay rates being known, transmission S21(ω)

depends only on drive power, and the exact value of the latter can thus be extracted from transmission
measurements. Fig. 3.11(a) shows the measured transmission in zero magnetic field at ω = ω01. The
black solid line indicates a fit with Eq. (2.18), yielding attenuation between VNA (Fig.3.9(a)) and the qubit
A = Pprobe/PVNA = 92.4± 0.1. In Fig. 3.11(b), the transmission function plotted in IQ plane is compared
with the fit result for different probe powers.

Figure 3.12: Transmission of a weak probe shown as a function of calibrated power of the dressing microwave drive.

Another calibration approach, denoted inelastic scattering, relies on theAutler-Townes effect. If a strong drive
(Ω ≫ κ) is applied, states of qubit and propagating photons get dressed. When probing such a dressed system
with a weak probe, three modes are visible, with drive-power-dependent frequencies equal to ω01, ω01 ±Ω.
Fig. 3.12 demonstrates the inelastic scattering measured with VNA (Fig.3.9(a)) for Φ = 0. Three modes
indicated with dotted colored lines are the Mollow triplet modes, appearing due to a strong drive created by
a microwave generator. The other two frequencies located at lower frequencies are present due to the 1-2
transition of the transmon. By fitting the Mollow triplet frequencies’ power dependence (see Eq. (2.22)),
the attenuation between microwave generator and the transmon qubit A = Pcold/Pgen = 95.5 ± 0.1 was
extracted. It differs from the one obtained by the elastic scattering method due to different cabling of VNA
and microwave generator.
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3.4 Power calibration

3.4.2 Scattering from a qubit-resonator system

Figure 3.13: Phase of a probe signal versus current through a coil creating magnetic field in the fluxonium loop (cf. Fig. 2.2).
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Figure 3.14: (a) Reflection at the probe frequency corresponding to frequency of the hybridized mode shown as a function of
calibrated probe power. The upper x axis shows probe power in units of photons in the band Nphotons/γ, where
Nphotons = Pprobe/ℏω01 is the photon flux and γ is the mode’s T2 rate. (b) IQ parametric plots of transmission for
different probe powers with probe frequency being the parameter. Lines’ color is in agreement with panel (a).

Scattering effects can be utilized for power calibration not only for a qubit directly coupled to a transmission
line, but also for a standard dispersive readout setup in which the qubit is coupled to a readout resonator with
a coupling strength g, and the resonator is coupled to a transmission line. By flux-tuning the qubit frequency
to the vicinity of the resonator frequency, such that |ω01 − ωres| ≪ g, one creates a system of two strongly
hybridized qubit-resonator modes. Each of them can be thought of and used as a two-level-system directly
coupled to a transmission line.

In Fig. 3.13, a spectrum of a strongly hybridized qubit-resonator system is shown. The measured system
(for details, see Chapter 4) is a granular aluminum fluxonium qubit coupled to a readout antenna. Fig. 3.14
presents an example of the elastic scattering applied to the lower mode at the coil current I = 1.768 mA.
The effective system parameters extracted following the procedure discussed in the previous section are:
ω01 = 7.226GHz, κ = 5.4MHz, γ = 3.4MHz. The elastic scattering was utilized tomeasure the saturation
power of the DJJAA discussed in this chapter. The result of this calibration yeilding Psat = −98± 1 dBm
is in agreement with the ac-Stark power photon number calibration (see Sec. 4.4).
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4 High-power quantum jumps detection

In this section I demonstrate speed-up in detection of quantum jumps of a superconducting artificial atom
achieved by utilizing readout signal power up to two orders of magnitude higher than the state-of-the-art.
This was made possible by the unique combination of a DJJAA, and the fact that the readout of our granular
aluminum fluxonium artificial atom remained quantum-non-demolition (QND) at relatively large photon
numbers in the readout resonator, up to n = 110. Using Bayesian inference allows to detect quantum jumps
faster than the readout resonator response time.

4.1 Measurement strength

Figure 4.1: Histograms of the measured continious readout response: Q quadrature (left panel) fitted with gaussian functions and the
IQ response(right panel). Colored lines on the right panel indicate mean value of the steady-state complex amplitude.

For measurement of a state of an artificial atom dispersively coupled to a readout resonator one of the
most important things to consider is if the measurement is weak or a strong projective. The measurement
strength is determined by the SNR, defining whether a single measured data point is sufficient (projective
measurement) or insufficient (weak measurement) to infer the state of the monitored quantum object. For a
two-level system, SNR is defined as the ratio of distance between steady states αg/e corresponding to qubit
states and the sum of their variance σg/e

SNR =
|αe − αe|
σe + σe

, (4.1)

both inferred from aGaussian fit of a histogramed sequence of consecutivemeasurements. A typical example
of such a histogram is shown in Fig. 4.1. The SNR is affected not only by the obvious parameters, such
as readout power and system noise, but also by some other readout-line related parameters, which will be
addressed further in this section.
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4 High-power quantum jumps detection

Lets start with calculations of the expected SNR for the ideal (lossless) case. Without loss of generality, we
can focus on a so-called steady-state SNR

SNRideal
ss =

|α|√
σ2
Q + σ2

I

=

√
Pout

Pnoise
. (4.2)

Here α is the pointer state, σ2
I/Q are it’s variances along respective quadratures, Pout/noise are the power of

the readout signal and noise, respectively. SNRideal
ss provides information about the readout chain, while the

definition given in Eq. (4.1) combines this information with an angle between different steady states. The
angle information is not a critical resource of the measurement strength since reaching a target coupling
strength is not a problem in cQED, and one can design qubit-resonator system with up to 180° angle between
the steady states resulting in SNRss/SNR ∼ 1.

For the readout resonator with a photon number population n, resonance frequency ωres, and coupling
strength κ, provided Qc ≪ Qi, the readout drive power at the output is

Pout =
1

4
ℏωresnκ, (4.3)

and the noise power is
Pnoise = kBTnoiseB. (4.4)

There are two discussion-worthy terms in the last equation, with the first one being the noise temperature
Tnoise. It has two contributions: the natural noise Tin coming with the signal (think of the noise at the output
of the readout resonator), and the noise added by the readout chain Tsys. In case there is no squeezing
involved (see Sec. 4.6) and the experimental setup has proper attenuation and thermalization [KSK+19],
Tin is at a quantum limit Tin = ℏωres

2kB
. The second part, Tsys, is dominated by the added noise of the first

amplifier in the chain (Sec. 2.3.3). Thus, for an ideal standard-quantum-limited setup utilizing a Josephson
parametric amplifier (Sec. 2.3), Tsys = ℏω

2kB
.

The other important factor for calculating the noise power is the measurement bandwidth B (see supple-
mentary material in Ref. [VSS11]). It is affected by all filtering bandwidths B−1 =

∑
iB

−1
i , including

the effective filter given by the measurement time Bmeas = 1/τ (the Fourier transformation of a rectangle
pulse), readout resonator bandwidth Brr = κ/2, bandwidth of the first amplifier in the amplification chain
Bamp and all other filters (e.g. bandpass ones at room temperature) present in the readout chain. It is thus
important to make sure that the readout resonator bandwidth is much smaller than the bandwidth of JPA
and all band-pass filters in order to avoid limiting the information flux. Provided that only Bmeas and Brr are
non-negligible, the ideal SNR can be calculated as

SNRideal
ss =

|α|√
σ2
Q + σ2

I

=

√
ℏωresnκ

4kBTnoiseB
=

√
1

4
nκB−1 ≈

√
1

4
n(κτ + 2) (4.5)

To address real-setup imperfections in Eq. (4.5), so-called measurement efficiency η is added to the equation.

SNRss =

√
1

4
ηn(κτ + 2) (4.6)

In the state-of-the-art quantum-limited cQED setups, typical values of measurement efficiency are η = 0.4−
0.8 [EKT+19]. Sources of non-ideality in the readout chain are cables, connectors and circulators/isolators
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4.2 Decreasing the state discrimination time

losses between qubit and JPA, as well as the noise of the amplifier being higher than the expected quantum
limit.

There are two different measurement regimes, depending on the ratio between Bmeas and Brr. When
Bmeas ≪ Brr or, in other terms, κτ ≫ 1, SNRss ≈

√
1
4nκτ . This means that the measurement time is much

bigger than the resonator response time τB = 2/κ (also commonly referred to as ring-up/down time), and
after a measurement the data point is guaranteed to be in a 3σ area of one of the steady states in Fig. 4.1. For
this regime, SNR defined in Eq. (4.1) serves as a measure of the measurement strength. Provided big enough
SNR, this results in a strong projective measurement, and later on in the text I will refer to this regime as
’large-τ ’ regime.

A different situation occurs whenBmeas ≫ Brr (κτ ≪ 1). In that case the measurement time is less than the
resonator response time, and SNRss ≈

√
n/2 depends only on the drive power due to saturation occurring

when τ → 0. Although it seems that information gets lost in that regime, it is not the case, and a projective
measurement regime can also be achieved. Moreover, as will be discussed in this chapter, this regime is
actually the holy grail of the qubit state detection. However, the definition of SNR given in Eq. (4.5) is not
applicable for that situation since the information about the qubit state is hidden behind the readout resonator
dynamics. Thus the conventional SNR cannot be used as a measure of the measurement strength in this
’dynamical’ regime, which requires a dedicated treatment discussed in Sec. 4.3.

4.2 Decreasing the state discrimination time

−10 0 10

−2.5

0.0

2.5

time (1/κ)

n = 2, τ = 10/κ 

−10 0 10
 

−2.5

0.0

2.5

n = 2, τ = 0.1/κ

−10 0 10

−10

0

10

n = 100, τ = 0.1/κ

time (1/κ) time (1/κ)

Q
 (
√
n

m
e
a
s 
)

Q
 (
√
n

m
e
a
s 
)

Q
 (
√
n

m
e
a
s 
)

τ increase
projective measurementprojective measurement weak measurement

n increase

Figure 4.2: Simulated Q quadrature (black lines) of a quantum-limited continuous measurement of a qubit coupled to a readout
resonator. The quadrature values are presented in units of square root of measurement photons√nmeas =

√
n̄B−1κ/4,

where n is the circulating photon number in the readout resonator, κ is the resonator’s coupling rate to the measurement
apparatus, andB−1 ≈ τ+τB is the measurement bandwidth, given by the sum of the integration time τ and the resonator
response time τB = 2/κ. The blue and red areas indicate ±2σ intervals centered around the mean values of the Q
quadrature corresponding to the ground and first excited state, respectively, denoted Q|g⟩ and Q|e⟩. The panels depict the
transition from a weak measurement (middle panel) to a projective measurement by increasing either τ (left panel) or n
(right panel).

During the continuous measurement of a qubit coupled to a readout resonator, schematically shown in
Fig. 4.2, when the qubit state changes between ground (|g⟩) and excited (|e⟩), due to thermal or non-
equilibrium (eg. quasiparticles [VPS+14]) excitations, the response of the readout resonator moves along
the classical trajectory between the steady states corresponding to the |g⟩ and |e⟩ states of the qubit. The
evolution of the measured Q quadrature during that transition isQ(t)−Q|e⟩ ∝

(
Q|g⟩ −Q|e⟩

)
e−κt/2. Here,

Q|g⟩/|e⟩ are the measured readout resonator quadrature values of the steady states corresponding to |g⟩ and
|e⟩. The resonator bandwidth κ sets the response time τB = 2/κ of the measurement apparatus to a quantum
jump — the decay time of the exponential evolution.
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4 High-power quantum jumps detection

The readout power, populating the readout resonator with n photons, and the integration time τ affect the
SNR and hence determine whether measurement is weak or projective. A typical example of a sequence of
weakmeasurements is shown in themiddle panel of Fig. 4.2. There are twoways to convert this measurement
to a strong one: by utilizing the "high-τ” regime obtained increasing τ (left panel in Fig. 4.2), or by utilizing
the dynamical regime in which the required SNR is achieved by increasing n (right panel in Fig. 4.2).

Once the projective measurement regime is achieved, the next step is to minimize the state discrimination
time. For the "high-τ” approach it can only be achieved by increasing the readout resonator coupling strength
κ. Although being a viable solution, the κ increase has a limit due to unwanted effects, such as cross-talk
between different qubits, Purcell effect, and limitation of the frequency space required for multiplexing.
Hence, in order to decrease the detection time further, one requires a complementary tuning knob.

A photon number increase is a viable solution, and as integration time decreases with increasing n, the
readout enters the dynamical regime in which the steady-state SNR doesn’t depend on the integration time
(Fig. 4.2(c)). However, until now, for the state-of-the-art readout in cQED this regime was not achieved:
the typical readout power is n < 10, which is orders of magnitude below the expected critical photon
number arising from the extra terms appearing in the James-Cummings Hamiltonian. When the drive power
increases beyond the few photons limit, the readout becomes non-QND.

In this work I will present results of the high-power quantum jumps detection, made possible thanks to the
grAl fluxonium readout staying QND up to n = 150 photons [GSG+21]. First, the detection algorithm
utilizing Bayesian filtering will be described in Sec. 4.3, which is essential for the dynamical regime since
a standard latching filter cannot be used effectively for the quantum jumps detection. After that, the
experimental results of the detection will be presented and discussed.

4.3 Speed-up and detection
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Figure 4.3: Example of a quantum jumps trace for the "high-power" readout regime. The simulation was made for n = 100,
τ = 0.2/κ, ωdrive − ω|e⟩ = 0.3κ. (a) Simulated Q quadrature in the units of measured photons as a function of time.
Black line corresponds to the ideal (noiseless) classical trajectory. Grey areas indicate ±2σ intervals centered around the
mean values of the Q quadrature corresponding to the ground and first excited state, respectively, denoted Q|g⟩ and Q|e⟩.
The noise is corresponds to the noise of a quantum-limited readout chain. (b) Simulated IQ response. Grey circles indicate
the ±2σ area. Color corresponds to time in (a).

For the τ increase approach illustrated in Fig. 4.2(a) the qubit state detection is straightforward. All measured
data points are located around one of the resonator steady states, and one can use a simple latching filter
declaring a jump when a pointer state enters the respective 2σ area.

44



4.3 Speed-up and detection

In the dynamical readout regime, the physically instantaneous quantum jump is "delayed" due to the readout
resonator response (see Fig. 4.3). As a result, the output signal is seemingly non-Markovian with a memory
time τB = 2/κ, which is a problem for the latching filter because it is resonator-response limited, and
cannot infer the qubit state faster than τB . However, at each point in time the state of the qubit is encoded
in the instantaneous evolution of the pointer state, and is in fact Markovian. The full information about
the quantum system can be extracted by asking a question "where does the response move?" instead of the
latching-filter question "where is the response?".

In order to implement this kind of detection, a recursive Bayesian filter based on the hidden Markov model
can be utilized. At each time point it updates the Bayesian probabilities P (H|αt+τ , αt), where H is the
qubit state hypothesis, and αt+τ , αt are the measured responses at the current (t+ τ ) and previous (t) time
points. The probabilities are getting updated according to the standard Bayesian formula

PH (t+ τ) = P (H|t+ τ) =
P (αt+τ , αt|H)× PH (t)∑

H′∈{g,e}
P (αt+τ , αt|H ′)× PH′(t)

. (4.7)

The unnormilized probability P (αt+τ , αt|H) to observe the measured evolution of the pointer state assum-
ing the qubit is in state H is calculated as

P (αt+τ , αt|H) = exp

[
−
∣∣αt+τ − αcalc

t+τ (αt, H)
∣∣2

2β2
Hσ

2
H

]
. (4.8)

This probability is a Gaussian with standard deviation βHσH , where σH is the variance of the pointer states,
βH ∈ (0.8, 1.2) is a coefficient tuning the filter responsivity, and

αcalc
t+τ (αt, H) = (αt −AH)e−κτ/2+i(ωdrive−ωH)τ +AH (4.9)

is the pointer state corresponding to the classical trajectory starting at a pointer state with αt and ending at
the steady state AH corresponding to the qubit state hypothesis, similar to solid black lines in Fig. 4.3(b)
corresponding to the classical trajectory between the steady states. The last expression also allows to estimate
the actual signal-to-noise of the measurement: distance between the points of two different trajectories after
time τ divided by noise. As a result, this can provide with a timescale for the time evolution of the
discrimination between quantum states. However, one should keep in mind that each trajectory in the IQ
space is different, depending on the readout frequency and power, and some of them might even intersect,
especially when number of the quantum system states is higher than two.

If the angle between pointer states is big enough, it is also possible to make a more robust approximation
and only track the phase (or a quadrature), assuming it evolves as

φcalc
t+τ (φt, H) ≈ (φt − ϕH)e−CHκτ/2 + ϕH (4.10)

Here φt is the measured phase at time t, ϕH is the phase of the respective steady state, and CH = 1 ± 0.2

an empirical coefficient accounting for the resonator nonlinearity and for the term ei(ωdrive−ωH)τ in Eq. (4.9).
Both pointer state evolution (Eq. (4.9)) and exponential phase evolution (Eq. (4.10)) showed similar results
when used for the Bayesian filtering in the experiment, and the simpler Eq. (4.10) was utilized to calculate
the expected evolution for Eq. (4.8) in the experiment presented in the next two sections.
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4 High-power quantum jumps detection

4.4 Setup and qubit characterization
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Figure 4.4: (a) Simplified schematic of the experimental setup. The incident readout signal reflects from a resonator coupled to a flux-
onium artificial atom, both implemented using granular aluminum, which is the same device discussed in Ref.[GSG+21].
The reflected signal is amplified by a dimer Josephson junction array amplifier (DJJAA) [WTR+20] operated in the
non-degenerate phase-preserving regime. The measured 1 dB compression point of the DJJAA at 20 dB of power gain is
Psat = −98 dBm (see Sec. 3.3). The signal is further amplified by a commercial high electron mobility transistor amplifier
(HEMT) thermalized at 4 K, and is demodulated at room temperature into the I and Q quadratures. (b)2D histogram of
continuously measured I and Q quadratures, presented in units of square root of measurement photons

√
n̄B−1κ/4, where

n̄ = 56, andB−1 = 322 ns. In order to highlight the resonator classical trajectories, the colorbar scale is linear below 30
counts and logarithmic above. The calculated trajectories (|g⟩ to |e⟩ and back) corresponding to the linear response of the
resonator are indicated by the black traces. The signal-to-noise ratio, defined by Eq. (4.6), is SNR = 6, and the obtained
quantum efficiency for individual pointer state measurements is η = 0.6 ± 0.1. (c) Signal-to-noise ratio measured as a
function of integration time τ for different n values. The black dotted line corresponds to τB.

In order to realize a dynamical continuous readout, one requires both a high dynamic range quantum-limited
amplifier and an artificial atom resilient to high-power readout. A sketch of the experimental setup fulfilling
these two conditions is shown in Fig. 4.4(a). The measured quantum system is a fluxonium artificial
atom [MKGD09], dispersively coupled via a shared inductance to a readout resonator (see Table A.2 for
the list of system parameters). The inductors required for both the fluxonium and readout antenna are
implemented using grAl [GSG+19], and the fluxonium junction is implemented in the shape of a SQUID
[GSG+21; LNG+18b]. The sample chip was placed in a rectangular waveguide, following the concept
in Ref.[KSV+18], and measured in reflection. The DJJAA described in section 3.3 was used to perform
non-degenerate, phase-preserving amplification [RD16; ESM+14] with 20 dB of power gain and 7 MHz
instantaneous bandwidth. The DJJAA saturation power was -98 dBm, corresponding to a circulating photon
number in the readout resonator n ≈ 104.
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)

Figure 4.5: Normalized reflection (grey dots) and a circle fit result (black solid line). Probe frequency is the parameter of the plot.
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4.4 Setup and qubit characterization

First, the reflection from the readout resonator is measured with VNA at low (n ≪ 1) power (see Fig. 4.5).
A circle fit [PSB+15] is applied to extract the resonator characteristics, namely resonance frequency fres =
7.247 GHz, coupling to the transmission line κ = fres/Qc = 1.1 MHz, and the loss rate γ = fres/Qi =

20 kHz. Thanks to γ ≪ κ, only a negligible part of the readout signal is lost due to dissipation.

After the readout resonator characterization, the flux bias for the fluxonium qubit was fine-tuned to 0.542 Φ0

in the vicinity of the forthEge minimum [GSG+21] tomaximize pointer states separation. For thisminimum,
the qubit parameters are: EC/h = 2.8 GHz, EL/h = 0.71 GHz. In Fig. 4.4(b) a typical histogram of
the demodulated readout resonator response for n = 56 and an integration time τ = 32 ns is plotted. The
distribution shows three maxima, corresponding to the first three lowest energy levels of the fluxonium
artificial atom, labeled |g⟩, |e⟩, |f⟩. Data initially measured in the units of volts on a digitizer is converted to
the units of square root of measured photons

√
n̄B−1κ/4, where n̄ is the calibrated resonator population, and

B−1 ≈ τ + 2/κ. Since the integration time τ = 32 ns is much shorter than the characteristic response time
of the measurement setup τB = 290 ns, trajectories corresponding to transitions between the three steady
states are visible (see Fig. 4.6(a)), filling the space between the maxima in the IQ-plane. Bymeasuring angles
between steady states, qubit dispersive shifts χge/2π = −1.09MHz and χef/2π = 1.46 MHz were obtained
following equation tan (φij/4) = χij/κ. Temperature of the fluxonium, inferred from the population of
ground and exited states assuming Boltzmann distribution, was Tq =

ℏωge
k ln (Ng/Ne)

= 31 mK. The measured
rates of each transition at n = 56: Γeg = 35 µs, Γge = 130 µs, Γef = 42 µs, Γfe = 0.4 µs, were measured
by fitting the histogrammed lengths of the corresponding quantum jumps with an exponential decay curve.

Quantum efficiency of the readout chain η = 0.6 ± 0.1 is the ratio of the noise photons of the standard
quantum-limited chain ( with 1 total noise photon) and the measured one. It was extracted by fitting the
steady-state SNR (Eq. (4.6)) as a function of integration time for different photon numbers (see Fig. 4.6(b)).
The main source of uncertainty for the quantum efficiency is the photon number calibration.
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Figure 4.6: (a) 2D histograms of measured I and Q quadratures using the same data as in Fig. 4.4(c). Ellipses indicate the 2σ areas
for |g⟩, |e⟩, and |f⟩ steady states. Dotted lines on the left-hand panel show the location of steady state pointer states αi,
with i ∈ {|g⟩, |e⟩, |f⟩}, and arrowed colored curves on the right figure indicate resonator classical trajectories to a steady
state of corresponding color. (c) Squared steady-state signal-to-noise ratio (Eq. (4.6)) as a function of integration time for
different n. Straight lines are linear fits used to extract a measurement efficiency η = 0.6± 0.1, with the main source of
uncertainty being the photon number calibration.

The fluxonium decay times T1 = 32.1± 0.7 µs and T2 = 0.73± 0.06 µs (see Fig. 4.7(c),(d)) were obtained
following the standard routines illustrated in Figs. 4.7(a)(b). Before performing both experiments, the π
pulse (a pulse sent via the qubit drive line causing a 180° rotation of the qubit state on the Bloch sphere)
was calibrated by measuring the Rabi oscillations. For the T1 measurement (see Fig. 4.7(c)), after sending
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4 High-power quantum jumps detection

a π pulse via the qubit control line and waiting for a delay, a qubit state readout is performed. By obtaining
averaged results of multiple measurements for a number of delay times, one gets a decaying exponential
corresponding to a free decay of a qubit form exited to ground state. Procedure for the Ramsey T2 experiment
is similar: first, a π/2 pulse is sent, followed by a delay, a second π/2 pulse, and a qubit state readout.
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Figure 4.7: Qubit coherence measurements: T1(a,c) and T2 (Ramsey coherence time). (a),(b) Diagrams of the pulse sequences. Upper
traces indicate pulses at a qubit frequency , lower — at a readout frequency. (c) Measured T1 trace (grey dots). Black line
is a numerical fit of an exponential decay. (c) Measured T2 trace (grey dots). Black line is a numerical fit of a damped
sine.
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Figure 4.8: (a) Pulse sequence used for the ac Starkmeasurement. Upper trace indicates pulse at a qubit frequency , lower—at a readout
frequency. (b) Measured ac-Stark shift plotted versus room temperature readout power (top axis) and the corresponding
calibrated photon number (bottom axis).

To calibrate the readout power, ac Stark effect was used. Since fluxonium and resonator states are hybridized,
not only resonator frequency is qubit state dependent, but also the qubit frequency depends on the resonator
population, following

fge(n) = fq(0) + χgen (4.11)

Hence, by measuring the power dependence of the qubit frequency shift one can extract attenuation between
power the room-temperature microwave generator and input of the fluxonium sample. To measure this, the
pulse sequence shown in Fig. 4.8(a) was used. First, a 20 µs long (τpulse ≫ 2/κ) readout tone is applied.
In the middle of the readout pulse, a 10 µs long qubit drive is sent. Since the duration of the drive is much
longer than the Rabi decay time, in the end of the pulse the qubit is in the mixed state with Pe = 0.5. In the
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4.5 Bayesian detection applied

end, right after the end of the manipulation pulse, the state of the qubit is recorded, indicated by the grey
area on the Fig. 4.8(a).

A more precise method of photon number calibration, the measurement-induced dephasing [BTH+18], was
not possible for our setup because T2 was limited to sub-µs range due to being susceptible to local noise
even when operated at a sweet spot for global flux noise.

4.5 Bayesian detection applied
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Figure 4.9: Examples of Bayesian inference of the artificial atom’s state (|g⟩, |e⟩, or |f⟩) based on the continuous wave measurement of
the readout resonator. Black lines represent the phase vs. time extracted from the measured IQ response (see Fig. 4.4(b))
for n = 56 and τ = 32 ns. Hatched areas indicate the±2σ intervals for each state, centered on the corresponding average
phase response: -1.3 for |g⟩ (blue label), 1.3 for |e⟩ (red label), and -2.4 for |f⟩ (green label). Colored areas show the
stacked barplot vs. time for the calculated Bayesian probabilities (see Eq. (4.7)) of the first three states of the artificial
atom: |g⟩ in blue, |e⟩ in red, and |f⟩ in green. The inferred quantum state is indicated by the white line; when one of the
Bayesian probabilities reaches 50%, a jump to the respective state is declared.

After the system calibration and characterization, measurements of quntum jumps with drive power up to
n = 110 were performed. Thanks to the increased SNR, a Bayesian inference can be implemented for
quantum jumps detection, allowing to extract the state of the fluxonium. Typical detection sequences for
quantum jumps between the |e⟩, |g⟩, and |f⟩ fluxonium states using the recursive Bayesian filter are shown
in Fig. 4.9. Based on the measured black trace, the filter estimate for the fluxonium state is indicated by the
white trace. Notice that the |e⟩ → |f⟩ and |f⟩ → |e⟩ quantum jumps are correctly identified, even though the
pointer state intersects the phase value corresponding to the |g⟩ steady state. A quantum jump is declared once
one of the probabilities surpasses 50 %. The minimum probability for each state is typically capped at 10%
to prevent the filter saturation at PH(t) = 0, in which case Eq. (4.7) is no longer responsive. In Fig. 4.9(b) I
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Figure 4.10: (a) Histograms of the quantum jump detection times obtained with a three-point latching filter (orange), and a recursive
Bayesian filter (purple, see Eq. 4.7), for |g⟩ → |e⟩. For this histogram n = 56, and the integration time is τ = 32 ns.
(b) Average detection time for |g⟩ → |e⟩ jumps as a function of integration time, obtained using the three-point latching
filter (in orange) or the recursive Bayesian filter (in purple). Colored areas represent the standard deviation of the jump
detection time distribution (see panel a). (c) Quantum jumps detection time as a function of photon number in the readout
resonator n, for |g⟩ → |e⟩ quantum jumps. The colored area represents the standard deviation of the jump detection time
distribution (see panel a).

selected an example which illustrates the ability of the Bayesian filter to declare a |g⟩ → |e⟩ → |g⟩ quantum
jumps sequence for which the readout resonator never reached the steady state associated with |e⟩.

In Fig. 4.10 the Bayesian state estimate is compared to a latching filter for |g⟩ → |e⟩ transition. The latching
filter was designed to declare a jump when a pointer state enters the 2σ area of a respective steady state.
The detection time (for both latching and Bayesian filtering) is defined as time between leaving the 2σ

area of the previous coherent state and jump detection. In Fig. 4.10(a), histograms of the jump detection
times are shown for τ = 32 ns. The Bayesian inference provides a 3.5 times faster state discrimination on
average. In Fig. 4.10(b), the mean jump detection time is shown versus τ for both filters. As expected, the
Bayesian detection starts to outperform the latching filter for τ < τB (also see Fig. 4.11). The obtained
measurement QND fidelity [TKF+19] (Pe|e + Pg|g)/2 = 98%, where Pe|e and Pg|g are the probabilities
to obtain the same result in consecutive measurements separated by ∆t, is comparable to state-of-the-art
[JSM+14; KBS+16; WKG+17; TKF+19; DRM+20]. The time interval ∆t = 432 ns is chosen such that
the detection time of 98% of all quantum jumps is less than ∆t for the Bayesian filter. Transitions from |e⟩
to |g⟩ and |f⟩ during∆t contribute 1% and 1.2%, respectively, to the value of Pe|e = 96.7%, and transitions
from |g⟩ to |e⟩ contribute 0.3% to the measured Pg|g = 99.6%.

In Fig. 4.10(c), the average jump detection time for the |e⟩ → |g⟩ transition is shown as a function of n.
The results are obtained using the recursive Bayesian filter since the latching filter detecton time saturates
at 620 ns (see Fig. 4.10(b)). The detection time decreases with n, as expected from Eq. (4.5), and it has
a minimum of 175 ns for n = 56. The increase at n = 110 is caused mainly by the nonlinearity of the
grAl readout resonator and the associated squeezing of the pointer state distributions discussed in the next
section.
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Figure 4.12: 2D histogram of measured I and Q quadratures for n = 110.

The steady-states in Fig. 4.4(b) are visibly squeezed, which becomes even more visible when the readout
strength increases (see Fig. 4.12). This happens due to both the grAl readout resonator’s intrinsic nonlinearity
and the inherited state-dependent nonlinearities (see section 5.2). The intrinsic nonlinearity KgrAl/2π =

−2.4 kHz was measured by detuning the fluxonium from the hybridization flux interval and measuring
the resonance frequency power dependence (see Fig. 4.13). The inherited state-dependent nonlinearities
K|g⟩/2π = −2.6Hz,K|e⟩/2π = 2 kHz, andK|f⟩/2π = −2 kHz at n = 50were calculated using [SKV+16]
thanks to the known fluxonium parameters (see Table A.2). Notice that for the |e⟩ state the Kerr coefficients
almost cancel out, as confirmed by the reduced squeezing of the |e⟩ pointer state in Fig. 4.4(c).

The bifurcation photon number corresponding to the intrinsic nonlinearity is n ≈ 160, resulting in aKn ∼ κ

regime for a readout tone creating resonator population of n = 20 – 100 photons. Hence, the readout tone
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Figure 4.13: (a) Fluxonium-state-dependent inherited nonlinearities of the readout resonator as a function of external magnetic flux.
(b) Readout resonator frequency shift versus calibrated photon number.

Re(α)

Im(α)(b)

Re(α)

Im(α)(c)

Re(α)

Im(α)(a)

Figure 4.14: Sketches of the pointer states of a readout resonator coupled to a two-level system. Red color pointer states correspond to
the excited state, and blue to the ground. The grey arrowed line depicts a classical trajectory from ground to excited state.
The pointer state is either coherent (a), or squeezed (b) and (c), where the squeezing axis is aligned with the imaginary
and the real axis, respectively, depending on the readout frequency and readout power. The grey dashed ellipses on (b) and
(c) illustrate rotation of the squeezing axis of the pointer state during its evolution along the readout resonator classical
trajectory.

effectively acts as a pump and creates parametric amplification with non-negligible gain (see Fig. 4.15(b)),
which, depending on pump parameters, can reach up to 20 dB (see Appendix A.2.2). However, since the
readout drive is the only applied tone, the only visible effect of the associated amplification is squeezing
of the noise at the output of the qubit sample. Due to squeezing the effective readout SNR can, generally
speaking, either increase or decrease. For the situation shown in Fig. 4.14(a), when the |g⟩ → |e⟩ trajectory
is mostly visible in the phase response, states separation can be enhanced if the steady states are squeezed
along the imaginary axis (Fig. 4.14(b)). On the other hand, squeezing along the real axis decreases the
effective SNR (Fig. 4.14(c)).

The model system which can be used to calculate orientation of the squeezing axis and the quadrature-
dependent gain is a 4-wave-mixing JPA with resonance frequency and nonlinearity both being fluxonium-
state-dependent. A constant pump tone (our readout drive) is applied with fixed power and frequency. The
only signal applied to the system is the vacuum noise, and the only noise measured in the experiment is the
noise at the drive frequency. Thus we only need to consider the phase-sensitive regime with ωs = ωi = ωp.
For phase-sensitive amplification, input and output fields are linked via

bout = gbin +mb+in, (4.12)

where g andm are defined in Eq. (2.61). Both of them are complex functions, and depend on the detuning
of the pump frequency from the bere resonance frequency ωp − ω0, coupling strength κ, loss rate γ,
Kerr nonlinearity K, and pump frequency and power. On top of that, as can be seen from Eq. (2.61),
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Figure 4.15: (a),(b) Theoretical prediction of dependence of squeezing axis angle and phase-sensitive gain versus detuning of the
steady-state resonance frequency from the pump frequency for n = 56. Red, blue, and green curves correspond to |g⟩,
|e⟩, and |f⟩ steady states. Respective vertical dotted lines indicate corresponding resonance steady states frequencies. (c)
Schematic illustrating how squeezed states appear on the IQ plane for φ = 0deg (red ellipse) and φ = 90deg (blue
ellipse) provided G > 1. (d) 2D histogram of measured I and Q quadratures using the same data as in Fig. 4.3. White
ellipses indicate the measured 2σ areas for |g⟩, |e⟩, and |f⟩ steady states. Colored ellipses show the theoretical prediction
of the squeezed noise.

m also depends on the pump phase φp while g is not affected by it. By defining quadrature as Xφ =
1
2 (e

iφb+ e−iφb+), one can find expression for Xout
φ :

Xout
φ =

1

2
(geiφ +me−iφ)bin + h.c. (4.13)

By introducing A = g(ωp)e
iφ +m∗(ωp)e

−iφ, the last equation can be rewritten as

Xout
φ =

|A|
2

(eiφAbin + e−iφAb+in) = |A|X in
φA
. (4.14)

where the quadrature gain is

Gφ = |A| = |geiφ +me−iφ| =
√
|g|2 + |m|2 + 2|gm| cos(2φ+Θ). (4.15)

Here Θ = arg(g)− arg(m∗) is the angle between g andm. This angle, defining the direction of squeezing
axis, depends on pump frequency, power, and phase. The quadrature corresponding to φ = −Θ/2 is
amplified by 2|g| (provided |g| ≫ 1), and the orthogonal quadrature corresponding to φ = π/2 − Θ/2 is
amplified by 1/2|g| (squeezed). These quadratures are the eigenvectors of linear transformation in Eq. (4.14).
Any other quadrature (linear combination of the squeezed and anti-squeezed ones) is not only amplified, but
also gets rotated in the phase space (X in

φA
→ Xout

φ ).

In our experiment the pump frequency and power are fixed. Thus orientation of squeezing axis and gain
depend on two fluxonium-state-dependent parameters: bare(non-Kerr-shifted) resonance frequency ω0/2π
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4 High-power quantum jumps detection

and the Kerr coefficient of the JPA, as shown in Fig. 4.15(a,b). Three lines in Fig. 4.15(a,b) correspond to
different fluxonium states (|g⟩,|e⟩,|f⟩) and show how the anti-squeezing quadrature gain depend on the JPA
bare frequency.

Table 4.1: Calculated gain and squeezing axis rotation angle for first three fluxonium states.

State φ = −Θ/2, degrees |G|2, dB
|g⟩ 81 0.22
|e⟩ 5 -0.16
|f⟩ 75 1.28

Theoretical prediction of gain and squeezing axis angle for each state is listed in Table 4.1. For all three states,
squeezing is close to tangential (note that |Ge| < 1 due to non-zero intrinsic losses of the readout resonator).
Comparison between measured and calculated squeezed noise for n = 56 is shown in Fig. 4.15(d). As is
evident, measured orientation of squeezing axis and quadrature gain are in qualitative agreement with the
theoretical prediction.
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5 Towards parametric amplifier resilient to
magnetic fields up to few Tesla

Josephson parametric amplifiers are nowadays an essential element in the readout chain for superconducting
qubits. However, the Josephson junctions used tomake these amplifiers sufferwhen exposed to highmagnetic
fields, whichmakes it very hard (if not impossible) to fully profit from them for a number of applications, such
as kinetic inductance detectors, axion search, and readout of the state for hybrid structures. In this section
I present a granular aluminum parametric amplifier (GrAPA) operating in degenerate four-wave-mixing
regime, which was resilient to in-plane fields up to 1 Tesla.

5.1 Granular Aluminum (grAl)

Evaporation of aluminum in oxygen atmosphere results in the formation of a material consisting of crystalline
grains with diameter of 2–4 nm embedded in an amorphous and non-stoichiometric aluminum oxide matrix.
This material, refereed to as granular aluminum (grAl), is superconducting [ACC66; DGGI73]. On top of
that, the grAl critical temperature is higher than the one of pure aluminum. Although this material was
discovered more than 50 years ago, the exact mechanism of superconductivity and the increased critical
temperature is still an object of theoretical research. Despite the lack of full understanding of the physics
behind it, grAl possess a number of useful properties which make it attractive for numerous applications in
cQED.

Thanks to its low losses, it can be used for quantum information processing. It was demonstrated that
resonators made of grAl haveQi ∼ 105 at low photon numbers [RSP+17; GMS+18] with losses dominated
by quasiparticles [SDR+12] which can be minimized by e.g. utilizing phonon [HVC+19; VHC+19] or
quasiparticle [HRS+17] traps. GrAl is a kinetic inductance material, with inductance as high as few
nH/□, allowing to use granular aluminum as a source of compact inductance. Its kinetic inductance
follows[Tin04; RSP+17]:

L□ =
R□ℏ
π∆

, (5.1)

where L□ is the kinetic inductance per square, R□ = ρn/d is the normal-state sheet resistance of the film,
and ∆ is the grAl superconducting gap. The resistivity ρn is controlled by the oxygen pressure during the
Al evaporation, and is hence a convenient tuning knob allowing to create grAl structures with the desired
kinetic inductance.

Kinetic inductance comes with Kerr nonlinearity, and grAl can be utilized as a nonlinear media with Kerr
coefficient ranging from few Hz ( a ’linear inductor’ regime ) to few MHz [MGK+18]. Owing to its
kinetic inductance and nonlinearity, grAl was used for building linear inductors of superconducting qubits
[GSG+19], for kinetic inductance detectors [VHC+19], and even as a nonlinearity source for a transmon
qubit [WBG+20; SVW+20]. However, so far granular aluminum has not been utilized as a nonlinear media
for parametric amplifier, for which one typically needs low losses and nonlinearity of K ∼ 1 − 100 kHz,
both achievable for grAl structures. On top of the mentioned characteristics, grAl is resilient to in-plane
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5 Towards parametric amplifier resilient to magnetic fields up to few Tesla

magnetic fields up to few Tesla [BRW+20]. Thanks to this feature, a grAl-based parametric amplifier, which
I refer to as GrAPA, can be used for high-magnetic-field applications, such as axion search [IR18] or readout
of state for hybrid architectures [BPK+16].

5.2 Nonlinearity of a grAl strip

NJJ
l

d

w

a

Figure 5.1: Sketch of a grAl strip (left panel) modelled as an array of Josephson junction array (right panel). l,w,d are the dimensions
of the strip, and a is the length corresponding to one effective Josephson junction.

For GrAPA design, it is important to be able to predict both kinetic inductance and nonlinearity of a grAl
strip (the influence of the strip self-capacitances is negligible for the design used in this thesis). While grAl
kinetic inductance is given by Eq. (5.1) and is confirmed by numerous experiments, calculating nonlinearity
is a more complicated matter due to the non-trivial nature of granular aluminum. It was suggested in
Ref.[MGK+18] to model a strip of grAl as a Josephson junction array (JJA). A strip (see Fig. 5.1) is
effectively divided in "blocks" with length a, which in Ref. [MGK+18] was chosen to be equal to the Al
grain diameter. While results of this work are in a great qualitative agreement with the measured data (see
Fig. 5 in the [MGK+18]), there is a quantitative mismatch of about an order of magnitude. This mismatch,
as will be further showed in this section, is most likely present due to the choice of a.

Assuming modelling the strip with an effective JJA is correct, the model has to fulfill two conditions:

• The critical current of the Josephson junctions is equal to the critical current of the grAl strip
IgrAlc = IJJc .

• The number of Josephson junctions is such that the total inductance of the grAl strip and the equivalent
array are equal, LgrAl

total = NJJLJJ.

Thus the effective JJ size is
a = l/NJJ =

π∆

2e

1

ρnjc
(5.2)

The normal-state resistivity can be inferred from the room-temperature resistance measurement, and is hence
an easy-to-get parameter. The critical current density, however, has to be extracted from experimental data
since it does not follow the Mattis-Bardeen formula. It depends only on ρn, and this dependence, shown on
Fig. 5.2, was reported in [FWB+19]. The dependence is not linear (jc ∝ ρ−1.3

n ), and the effective JJ size is
thus resistivity-dependent (see Fig. 5.3(a)), increasing from 10 to 70 nm as film resistivity is varied between
oxygen-poor and oxygen-rich films. This prediction is in agreement with Ref. [YGS+20], where authors
show that for kΩ grAl films, Al grains tend to form clusters.

For the Kerr coefficient calculation, lets consider a simple system consisting of a grAl strip shunted with
a capacitor, similar to the grAl transmon qubit discussed in [WBG+20] (calculations for other resonator
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Figure 5.2: Critical curret density of grAl thin films versus the film normal-state resistivity. Adapted from [FWB+19].
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Figure 5.3: (a) Effective Josephson junction length versus grAl film resistivity obtained assuming data reported in Fig. 5.2. (b)
Comparison of Kerr coefficients predicted by the 1D JJA model with the JJ size correction and experimental data shown
in [MGK+18]. Markers correspond to the ones used in the article. Grey circle corresponds to the grAl transmon reported
in [WBG+20]

realizations differ only by a numerical factor of an order one, see [MGK+18]). Assuming all inductance and
nonlinearity of the resonator arises from the grAl strip, the nonlinear part of the Kerr Hamiltonian is

H = − EJ

24N3
JJ
φ4, (5.3)

where EJ is the Josephson energy of the effective model JJs, NJJ is their number, and φ = ϕ/φ0 is the
phase drop on a single junction (assuming homogeneous phase distribution over the array and absence of
phase slips). Since φ = φZPF(a + a+) =

√
Zres
2Rq

(a + a+) =
√

Lresωres
2Rq

(a + a+) with Rq =
ℏ

(2e)2 , the final
equation for the Kerr coefficient is

K = − EJ

4ℏNJJ

(
ωresLJJ

Rq

)2

. (5.4)

In Fig. 5.3(b), the theoretical prediction for the Kerr coefficient (assuming the 1D JJA model with the
corrected JJ size) is compared with the experimental data reported in [MGK+18]. As can be seen, the JJ
size correction allows for a better fit.

However, this model is not absolutely exact. Its prediction for the nonlinearity of the grAl transmon discussed
in Ref. [WBG+20] is a factor of 5 higher than the experimentally obtained one. And since the nonlinearity
inference in [WBG+20] rely on measurement of frequency detuning between the 0-1 and 1-2 transitions,
the deviation of the theoretical model prediction cannot be explained by an experimental systematic error.
The mismatch could be caused by the intrinsic structure of grAl, and one might need to consider a 2D of
3D JJ array as a model of interest to be able to give an exact quantitative prediction of the Kerr coefficient.

57



5 Towards parametric amplifier resilient to magnetic fields up to few Tesla

Nevertheless, the 1D JJA model accuracy is sufficient for the GrAPA design purposes, and is hence the
model of choice for the current work.

5.3 Design
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Figure 5.4: (a,b) Images of a GrAPA chip inserted in the waveguide. Capacitor pads of the resonators are shown in blue on top of the
grey sapphire wafer. The images were taken from HFSS simulations. (c) SEM image of a grAl strip used as nonlinear
inductance of GrAPA.

To achieve signal-pump detuning, a 4-wave-mixing non-degenerate grAl-based amplifier, granular aluminum
dimer parametric amplifier (GrADPA), was designed. HFSS model of the GrADPA inserted in a cylindrical
waveguide used in [BRW+20] is shown in Fig. 5.4(a). The amplifier consists of two thin-film grAl resonators
on top of a C-plane sapphire wafer (see Fig. 5.4(b)). The resonator pads shown in blue are connected by a
grAl strip with volume 200×7000×40 nm3, a typical SEM image of which is presented in Fig. 5.4(c). Both
pads and strip are deposited in a single normal-angle evaporation to avoid high-power losses appearing due to
otherwise inevitable interface between materials with different kinetic inductances (see Appendix A.3.2 for
details). The inductance of the resonators is dominated by the grAl kinetic inductance, and the participation
ratio of the strip compared to the pads is p = Lkin

strip/Ltotal ≈ 0.85.

Similar to the series-capacitor implementation of DJJAAs discussed in chapter 3, one resonator (left) is
coupled to the transmission line more than one order of magnitude stronger than the other resonator. This
is achieved thanks to the capacitive coupling strength being strongly dependent on the distance from the
pin edge, changing from Qc = 40 to Qc = 20000 as distance between the pin edge and the left edge of a
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resonator in Fig. 5.4(b) is varied between 10 and 2000 µm. The corresponding HFSS simulation is presented
in Fig.5.5(b). The design is wirebonds-free, similar to [NSH+14], which is also beneficial for high magnetic
field applications.
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Figure 5.5: Qc and f0 of a single resonator as a function of distance between the pin edge and the closest capacitor pad.

The dipole interaction between resonators creates the modes coupling, enabling non-degenerate amplifica-
tion regime. To reach this regime, one needs to achieve appropriate hybridization by ensuring that bare
eigenfrequencies of the resonators differ by less than few percent (see Fig. 5.6). There are two factors
contributing to the imperfection: extra capacitance of the left resonator caused by vicinity of the pin, and
mismatch in kinetic inductances of the strips arising due to inhomogeneity in the grAl evaporation process.
The capacitors are balanced by adjusting their widths. The evaporation imperfections can be addressed by
improving the fabrication procedure or post-fabrication corrections of the second resonator’s pads width
(e.g. by reactive ion etching [LCC+17]).
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Figure 5.6: Results of HFSS simulation. Quality factor (left plot) and resonance frequency (right plot) of the system’s modes for
different ratios of grAl strip inductances.
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Figure 5.7: Schematic of the experimental setup. The displayed microwave components are thermalized to the nearest temperature
stage indicated above them. The right image of the cylindrical waveguide was provided by authors of Ref. [BRW+20].
Wires connected to the waveguide are used to apply a DC pulse for a thermal reset and do not affect magnetic field
measurements.

5.4 Experimental results

Schematic of the measurement setup is shown in Fig. 5.7. The waveguide with the chip is attached to a
dilution refrigerator Sionludi [Sio12] with a base temperature of 20 mK. Owing to its diameter of 3.6 mm,
the waveguide is placed in a coil assembly with 3D field control creating in-plane fields up to 1.2 T. The
waveguide pin can be manually moved along the z axis to adjust coupling strength.

First, to evaluate the resonators’ Qi, a chip with a single resonator was measured in a dedicated cooldown
without applying magnetic fields. The distance between the waveguide pin and the chip edge was adjusted
such thatQc ∼ Qi to minimize influence of Fano effect [Fan61] present due to the finite circulator’s isolation
[Rie22]. The reflection measured at low power (n̄≪ 1) is shown in Fig. 5.8. Applying the circlefit procedure
[PSB+15] yields Qc = 1.7 · 104 and Qi = 8.8 · 104. Since design values of the coupling quality factor are
Qtarget

c ∼ 10 − 100, it is safe to assume that Qi/Q
target
c ≥ 102, which ensures that resonator intrinsic losses

are negligible for parametric amplification purposes.

Fig. 5.9 shows a low-power signal reflection from the sample of interest. There are two modes (f left0 =

8.47 GHz, f right0 = 8.98 GHz) with coupling strengths corresponding to Qleft
c = 280, Qright

c = 67, and
internal quality factorsQi ∼ 104. The fact thatQleft

c ̸≈ Qright
c is due to imperfect hybridization mainly caused

by difference in the grAl strips resistivities. The obtained modes splitting and coupling strengths correspond
to L2/L1 ≈ 1.03 in Fig. 5.6, despite the room-temperature resistance measurements (Rstrip

left = 8 kΩ,
Rstrip

left = 8.8 kΩ) yielding L2/L1 = 1.1, most probably due to contact pin adjustment accuracy. Ripples
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Figure 5.8: Reflection of a weak signal from a decoupled single-resonator GrAPA to extract Qi: phase (top image) and amplitude
(bottom image) versus probe frequency.
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Figure 5.9: Phase (top image) and amplitude (bottom image) of weak signal reflected from the GrADPA versus the probe signal
frequency.

in the amplitude response in Fig. 5.9 are present mainly because of the previously discussed Fano effect,
which was confirmed by repeating the experiment with a circulator with higher isolation (the corresponding
models are LNF-CIC4_12A and QCY-100400).

The reflection power dependence is shown in Fig. 5.10. Notably, there are no losses appearing as drive
power increases up to and above the bifurcation point, as is evident from Fig. 5.10(c,d). Corresponding
Kerr coefficients (see Fig.5.11) of the modes are Kleft/2π = −1.6 kHz, Kright/2π = −0.8 kHz, extracted
assuming uncalibrated attenuation between the VNA and the sample is equal to 85 dB.Within the attenuation
estimate accuracy of ±10 dB, obtained Kerr coefficients are in agreement with the expectedKcalc ≈ 7 kHz
calculated following results of Sec. 5.2.
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5 Towards parametric amplifier resilient to magnetic fields up to few Tesla

Figure 5.10: (a),(b) Reflection phase and (c),(d) measured amplitude versus different VNA power and frequency. Left (a),(c) and right
(b,d) panels correspond to left and right modes, respectively.
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Figure 5.11: Kerr shift for left (black markers) and right (grey markers) modes versus estimated cold power.

5.4.1 Magnetic field resilience

Because of the hybridization imperfection, the maximum achievable non-degenerate gain was limited to
just a few dB (see Sec.3.1.1). Leaving this issue for future work, in the frame of this thesis I focus on
demonstrating degenerate gain regime in magnetic fields up to 1 T. Throughout the rest of the section, only
the left mode is discussed. It was chosen due to having less pronounced ripples (see Fig. 5.9(b)) thus ensuring
that any possible impedance-mismatching effects [MWB+14] are minimized.

First, the low-power resonator response was measured in different in-plane fields. As Bparr is increased, the
resonance frequency decreases (see Fig. 5.12(a)) because the superconducting gap field dependence obeying
[Tin04]

∆(B) = ∆0

√
1− (B/Bc)2

1 + (B/Bc)2
(5.5)
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Figure 5.12: (a) Left mode’s resonance frequency shift from f0(B = 0) = 8.473 GHz versus the in-plane magnetic field Bparr.
Black line indicates a fit applied to extract critical magnetic field Bc = 3.5 T. The inset plot shows a circle fit (black
dotted line) applied for the resonator for Bparr = 0. (b) Qc as a function of Bparr.

affects the kinetic inductance according to Eq.(5.1). By fitting the frequency shift dependence, the grAl
critical fieldBc = 3.5 Twas extracted, consistent with previously reported measurements [ACC66;WQL14;
BRW+20]. Because grAl is sensitive to perpendicular magnetic field [BRW+20], the unwanted perpendic-
ular component arising due to 0.7°misalignment of the sample was compensated by applying compensation
perpendicular magnetic field Bcomp

perp ∼ mT (see Appendix A.3.1 for details). The low-loss condition
Qi ≫ Qc is fulfilled within the measured range of in-plane magnetic field, withQc ∼ 102 (see Fig. 5.12(b))
and Qi ≳ 104.

5.4.2 Operating GrADPA in magnetic field

Applying a pump tone to the sample results in parametric amplification. In Fig. 5.13, examples of averaged
degenerate gain profiles are shown for different in-plane fields, up to 0.96 T. The maximum of gain was
adjusted to be close to 20 dB, and the measured instantaneous bandwidth was 6.5± 3 MHz.

The visible deviation from Lorentzian fit is likely caused by mechanical vibrations. Indeed, for Bparr = 1 T,
a 0.1° tilt results in Bperp = 1 mT, shifting resonance frequency by few MHz [BRW+20]. When the pump
tone is applied, the gain profile is sensitive to resonance frequency fluctuations, as it changes pump frequency
detuning ωp −ω0 (see Eq. (2.61)). For the measured sample operated atG0 ≈ 20 dB with optimally chosen
pump parameters, 100 kHz resonance frequency shift results in gain deviations of about 1 dB. During the
measurement, the gain maximum G0 was observed to oscillate by a few dB with a Hz frequency, and
oscillations were more pronounced at higher magnetic fields.

Due to sensitivity to vibrations, saturation power could be only estimated. In Fig. 5.14, the maximum of gain
inferred from a Lorentzian fit of averaged data is shown versus the VNA power for different in-plane fields.
Assuming that the estimated attenuation between the sample and the VNA is 85 ± 10 dB, the measured
1 dB compression point for G0 = 18− 22 dB was -110:-100 dBm, which is in agreement with the inferred
Kerr coefficient. The saturation power can be further increased by decreasing the grAl nonlinearity, which
can be achieved by adjusting the volume of the grAl strip. This increase approach, however, can be utilized
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Figure 5.13: Examples of power gain measured for different in-plane fields. Color of the measured points indicates the value of Bparr
similar to Fig. 5.12. Black solid curves indicate Lorentzian fits of the corresponding gain profiles.
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Figure 5.14: Examples of saturation curves (maximum of gain inferred from a Lorentzian fit versus signal power) measured for different
in-plane fields. Color of the measured points indicates the value of Bparr, similar to Fig. 5.12.

only up to a certain limit. The limit is set by the pump power dissipation in the attenuators, which has to
be smaller than the cooling power of the dilution refrigerator. Additionally, the 1 dB compression point
can be increased by reducing the signal-induced Stark shift [PDM+19]. This can be realized by utilizing
grAl-based Kerr-free elements, such as SNAILs [FSL+18] or rf SQUIDs [Zor19].
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6 Conclusion and outlook

This thesis is dedicated to the minimization of the time required to infer the state of an artificial atom.
In this work, it was achieved thanks to utilization of a quantum-limited dimer Josephson junction array
amplifier with high saturation power, and the fact that the readout of a granular aluminum fuxonium artificial
atom remained quantum-non-demolition at relatively large photon numbers in the readout resonator. By
exploiting the increasing SNRwithn, a decrease of the artificial atom’s state detection timewas demonstrated
[TWF+21]. Thiswas achieved bymonitoring the transient trajectories in the IQplane of the readout resonator
response, prompted by quantum jumps between the three lowest energy states of the artificial atom. To infer
the qubit state encoded in the readout resonator dynamics, a recursive Bayesian filter was used. Owing to the
achieved dynamical regime, the artificial atom’s states could be discriminated before the resonator response
reaches its steady state.

In this work, the Bayesian filter is applied in post-processing. However, one can imagine using more
sophisticated filtering, and potentially running it in real time by utilizing FPGA-based instruments. This
can open a way to use the measurement of quantum jumps as a real-life detection tool, informing on the
interactions between the quantum system and the environment, such as quasiparticles [RBT+13; VPS+14;
SDH+19]. By deliberately designing a qubit which is strongly coupled to the system of interest, one could
even manipulate this system by implementing feedback loops.

As n is increased, the state discrimination time decreases, and the limiting factors are the emergence of
non-QND processes and nonlinearities of the readout resonator, both intrinsic and inherited. The latter issue
can be resolved (or at least minimized) by according optimization of the qubit-resonator system. With this,
understanding and mitigating non-QND processes during readout with increasing photons numbers, which
is a currently ongoing research, could further increase the quantum state detection speed in both pulsed and
continuous measurements.

To enable quantum-limited measurements, a non-degenerate 4-wave-mixing parametric amplifier was devel-
oped [WTR+20]. The amplifier is based on dispersion-engineered Josephson junction arrays, and is referred
to as dimer Josephson junction array amplifier (DJJAA). Thanks to the Josephson-junction-array-based de-
sign, the amplifier’s saturation power exceeds thousand photons per µs. The dispersion engineering allows
to operate the amplifier in the non-degenerate regime, ensuring few hundreds of MHz of frequency detuning
between pump and signal tones. The amplifier was fabricated with a widely-accessible two-step optical
lithography, making it user-friendly in both operation and fabrication. The measured quantum efficiency of
a readout chain utilizing an optical-lithography DJJAA was η = 60± 10%, on-par with the state-of-the-art
Josephson parametric amplifiers. The DJJAA design can be further improved by implementing more sophis-
ticated dispersion engineering schemes to make the amplifier less sensitive to magnetic fields and fabrication
inhomogenities, as well as to achieve a control of modes splitting for each individual dimer.

Finally, in this thesis I present the first realization of a parametric amplifier resilient to in-plane magnetic
fields up to 1 T. The amplifier is made of two thin-film granular aluminum (grAl) coupled resonators formed
by capacitor pads connected with a strip. The corresponding modes’ Kerr coefficients were adjusted to be
in the kHz range. Only one of the resonators is coupled to a transmission line, and the system’s modes
form a dimer, similar to the DJJAA’s dimers, thus enabling non-degenerate regime. Although the presented

65



6 Conclusion and outlook

realization of a granular aluminum dimer parametric amplifier (GrADPA) does not have any loops, the
non-degenerate gain profile can be tuned within few hundreds of MHz owing to the vast range of pump
parameters which can be used to obtain a gain profile with the maximum of gain G0 = 20 dB.

The GrADPA was characterized in magnetic fields up to 1.2 T. No significant increase of internal losses
was observed, indicating that amplifier’s added noise does not change in the in-plane field. Degenerate gain
was measured up to 1 T. Unfortunately, non-degenerate regime with G0 = 20 dB was not achievable due
to inhomogeneity of the grAl film resistivity. On top of that, the amplifier performance was limited due to
vibrations of the waveguide which were leading to oscillations of perpendicular component of the magnetic
field.

The future work includes minimization of the waveguide vibrations to the acceptable level. The inhomogene-
ity of the grAl film resistivity can be addressed by utilizing post-fabrication adjustment of the resonators’s
frequencies by reducing the capacitor pads’ width by using etching or evaporating metal with laser. By
utilizing grAl gradiometric SNAILs, one could make a flux-tunable 3-wave mixing GrAPA.
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A.1 DJJAA

A.1.1 Capacitance and inductance matrices

Eqs. (A.1),(A.2), introduce capacitance and inductancematrices of a Josephson junction array (see Fig. 3.5(a)),
galvanically connected with edges to ground plane and/or transmission line(s). For the dimerized JJA (see
Fig. 3.6(a)), the middle parts of the same matrices which are "responsible" for dimerization are presented in
Eqs. (A.3),(A.4).

C =



C0 + 2CJ −CJ 0 ...

−CJ C0 + 2CJ −CJ 0 ...

0 −CJ C0 + 2CJ −CJ 0 ...

... ... ... ... ... ... ...

... 0 −CJ C0 + 2CJ −CJ

... 0 −CJ C0 + 2CJ


(A.1)
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(A.2)

Cdimer =



... ... ... ... ... ...

... −CJ C0 + 2CJ −CJ 0 ...

... 0 −CJ Cc −Cc 0 ...

... 0 Cc −Cc −CJ 0 ...

... 0 −CJ C0 + 2CJ −CJ 0 ...

... ... ... ... ... ... ...
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A.1.2 E-beam-lithography DJJAA
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Figure A.1: (a) Schematic of the DJJAA. (b) SEM images of the SQUID array and the series capacitor.

Fig. A.1 shows SEM images of the DJJAA, as well as the equivalent schematic. The amplifier is made of
an array of 100 SQUIDs fabricated on a 300 um thick sapphire double-side polished wafer by utilizing a
bridge-free technique [LPP+11]. The SQUID array is interrupted in the middle with a series capacitor. Both
ground plane and coupling capacitor pads are separated from the SQUID arrays by a 200 nm wide wire,
which strongly reduces [PDM+19] effects of flux trapping and Meissner currents. To ensure uniformity of
the ground capacitancies and to minimize losses, a 200 nm thick gold layer was deposited on the backside of
the chip. The effective model (Fig. A.1(a)) circuit parameters of the DJJAA are: Cc = 6.5 fF, C ′

c = 20 fF,
C0 = 0.5 fF, CJ = 360 fF, LJ = 240 pH.

Figure A.2: (a) Imaginary part of weak reflected signal versus frequency and external magnetic flux. (b) Phase of the weak reflected
signal shown versus frequency for two flux biases indicated in panel (a) with dashed lines of corresponding colors. (c)
Non-degenerate gain profiles obtained for flux biases indicated in panel (a).
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To characterize the DJJAA, we used the experimental setup shown in Fig. 3.9(a). The qubit sample in front
of the DJJAA is the transmon qubit discussed in Sec. 3.4.1.

In Fig. A.2(a), phase response of the weak signal is shown for two selected flux biases. The corresponding
Bose-Hubbard model parameters extracted with a circle fit procedure [PSB+15] are listed in TableA.1. In
Fig. A.2(c), examples of non-degenerate gain profiles with the maximum gain of 20 dB and instantaneous
bandwidth of 20−30MHz are presented for the corresponding flux biases. Wiggles visible in the gain curves
are present most likely due to impedance mismatches [MWB+14], while the difference in the maximum
value of the Lorentzian peaks is caused by intrinsic losses γ/κ ≈ 0.1.

Table A.1: List of linear Bose-Hubbard parameters extracted from weak reflection probe measurements shown in Fig. A.2.

Φ/Φ0 ωl, GHz ωr, GHz J , GHz κ, GHz γ, GHz
0.2 6.966 6.786 0.749 0.59 0.05
0.35 5.763 5.726 0.391 0.49 0.035

Figure A.3: (a) Maximum of gain versus calibrated signal power. (b) Gain profiles at maximum achieved signal powers.

In Fig. A.3(a), maximum of the left lobe of the gain profile for Φ = 0.35Φ0 is shown versus signal power.
Curves have an abrupt drop, most probably caused by the DJJAA pump response entering the bifurcation
area due to either flux noise or AC Stark frequency shift caused by signal photons. Because of that, it was
impossible for this device to measure the 1dB compression point. However, the amplifier was provided with
20 dB of non-degenerate gain up to Psig ≈ −120 dBm, coresponding to 250 photons/µs.

A.1.3 Elastic scattering on a two-level system

Here, an elastic scattering on a two-level system is discussed for the case of transmission measurement.
The modelled system is a two-level system coupled to two baths corresponding to left and right propagating
waves. The coupling strength κ is equal for both modes, and is the qubit’s dominant loss mechanism. The
signal is assumed to be sent (and read out) via right propagating waves.
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By utilizing the input-output formalism, the transmission coefficient can be written as

t = βout(t)/βin(t) = 1 +
√
κ ⟨σx⟩ /βin(t), (A.5)

where βin/out is the input/otput field of the right-propagating bath. To obtain the expression for ⟨σx⟩, the
density matrix evolution needs to be calculated. It is described by

ρ̇ = − i

2
ωq[σz, ρ] +

√
κ
(
eiωdrtβ∗

in[σ, ρ]− e−iωdrtβin[σ
+, ρ] + κ(2σρσ+ − σ+σρ− ρσ+σ

)
=

= iωq

(
0 −ρ01
ρ10 0

)
+
√
κβin

[
eiωdrt

(
−ρ01 −0

ρ00 − ρ11 ρ01

)
+ e−iωdrt

(
−ρ10 ρ00 − ρ11

0 ρ10

)]
+

+ κ

(
−2ρ00 −ρ01
ρ10 2ρ00

)
, (A.6)

where ωq/2π is the 0-1 transition frequency of the qubit, and ωdr/2π is the drive frequency. Note that the
Lindblad term is doubled due to the fact that the qubit is coupled to two baths. By definition, the relaxation
and dephasing rates are the coefficients in the Lindblad term, so for the current model ( assuming qubit has
no intrinsic losses) Γ = 2γ = 2κ. Here, Γ and γ are the T1 and T2 decay rates.

The density matrix evolution can be rewritten as:

ρ̇00 = −
√
κβin(e

−iωdrtρ10 + eiωdrtρ01)− 2κρ00 (A.7)

ρ̇01 = (−iδωq − κ)ρ01 +
√
κβine

−iωdrt(ρ00 − ρ11) (A.8)

ρ̇10 = (iδωq − κ)ρ10 +
√
κβine

iωdrt(ρ00 − ρ11) (A.9)

Since interaction between the qubit and propagating waves is σx, one can write that:

ρ̇ =

(
0 −iωdrρ01

iωdrρ10 0

)
(A.10)

By introducing new variables

S+ = ρ01e
iωdrt ; S = ρ10e

−iωdrt; δw = ωdr − ωq, (A.11)

the density matrix evolution can be rewritten as (Trρ = 1):

0 = −
√
κβin(S + S+)− 2κρ00 (A.12)

0 = (−iδωq − κ)S+ +
√
κβin(2ρ00 − 1) (A.13)

0 = (iδωq − κ)S +
√
κβin(2ρ00 − 1). (A.14)

This system of equations yields

S+ =
√
κβin

−iδw − κ

δw2 + κ2 + 2κβ2
in

(A.15)

S =
√
κβin

iδw − κ

δw2 + κ2 + 2κβ2
in

(A.16)
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and
⟨σx⟩ = Tr(ρσx) = ρ01 + ρ10 = S+e−iωdrt + Seiωdrt. (A.17)

By utilizing RWA and leaving only terms with e−iωdrt, the final expression can be obtained (κ = γ):

t = 1− (1 + iδw/γ)

1 + (δw/γ)
2
+ 2Γβ2

in/Γγ
, (A.18)

with the Rabi frequency

Ω2 =
2ΓPin

ℏωq
. (A.19)

A.2 High-power quantum jumps detection

A.2.1 Fluxonium parameters

Table A.2 lists parameters of the system consisting of the fluxonium artificial atom and the readout resonator
utilized in chapter 4.

Table A.2: List of the qubit-resonator circuit parameters. The Josephson energy EJ is in-situ flux-tunable via the SQUID junction.

Fluxonium
EC/h 2.8 GHz
EL/h 0.71 GHz

EJ/h, GHz 7.1 GHz
Flux bias 0.542 Φ0

fge 902 MHz
fef 7.701 GHz
Tq 31 mK
T1 32.1± 0.7 µs
T2 0.73± 0.06 µs
Readout resonator

κ/2π 1.1 MHz
γ/2π 20 kHz
fres 7.247 GHz

Kintrinsic/2π -2.4 kHz
Couplings

χge/2π -1.09 MHz
χef/2π 1.46 MHz

A.2.2 Example of gain obtained on the fluxonium readout resonator

Fig. A.4 shows an example of power gain of the granular aluminum readout resonator measured with a VNA.
Power gain was obtained thanks to the intrinsic nonlinearity of the resonatorKintrinsic/2π = −2.4 kHz. The
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fluxonium artificial atom was flux-tuned away from the flux point used for other discussed experiments and
had a negligible contribution to the presented response.

Figure A.4: Example of a power gain obtained when pumping the fluxonium readout resonator.

A.2.3 Measurement setup

The measurement setup used for qubit readout discussed in chapter 4 is shown in Fig. A.5. To generate
readout pulses, the output of the ArbitraryWaveGenerator (AWG)with the carrier frequency IF = 62.5MHz
is upconverted on an IQ mixer by utilizing a tone of a local oscillator applied at frequency fres − IF. The
upconverted tone is then split into two parts on a power divider. One part, denoted reference, is down-
converted to the IF frequency and recorded on the ADC. In front of the ADC input channels, passband filters
with a band of 10 MHz were introduced to get rid of unwanted noise and harmonics.

The other part of the split upconverted tone, referred to as signal, is sent through the 30 mK dillution
refrigerator. Before the signal reaches the qubit sample, it passes through several commercial attenuators,
8 GHz low-pass commercial filter, and home-made infrared filter. These elements are introduced to ensure
that noise of the signal at the input of the qubit sample is as close to quantum noise as possible. After
reflecting from the readout resonator, the signal is amplified by the DJJAA operated in a non-degenerate
regime with G(fres) = 20 dB. To apply the pump tone via a separate input line, a 20 dB directional coupler
was used.

After the DJJAA, the signal is amplified by a High Electron Mobility Transistor (HEMT) amplifier and
room-temperature amplifiers, and is downconverted and recorded on ADC. An additional post-processing
filtering with a band of 4 MHz was applied to the signal trace. To extract Q and I quadratures, reference
and signal data recorded by ADC is multiplied sample-wise, with respective zero and quarter-period delays.
Prior to multiplication, signal and reference data are aligned to account for an 80 ns delay caused by the time
required for signal to travel through the cryostat.
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Figure A.5: Schematics of the measurement setup. The displayed microwave components are thermalized to the nearest temperature
stage indicated above them.

A.3 GrAPA

A.3.1 Compensation of the perpendicular field

While grAl is resilient to in-plane fields up to few Tesla, the critical field for the perpendicular field is lower
by two orders of magnitude. GrAPA resonance frequency is thus sensitive to perpendicular component of
magnetic field, typically caused by a minor chip tilt with respect to the Helmholtz coil. To compensate this
unwanted component, a cancellation field was applied.

In Fig. A.6, the compensation field is shown for different in-plane fields. For each point, the applied
perpendicular field was adjusted by maximizing resonance frequency of the GrAPA. Black line indicates
linear fit in the 0-1 T in-plane field range.
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Figure A.6: Compensation perpendicular magnetic field applied to negate effect of chip misalignment.

A.3.2 High-power issues at the interface between materials with different
kinetic inductance

In this section, another way of making the grAl-based amplifier is discussed. For this approach, the amplifier
capacitor pads aremade of another metal, such as Al or Nb. The design’s benefits are amore easily achievable
coupling to the transmission line (increasing the pads area does not change participation ratio of the nonlinear
inductance) and an enhanced critical magnetic field of the pads due to utilization of Nb.

In Fig. A.7, images of this realization of GrAPA are shown. The aluminum capacitor pads visible in
Fig. A.7(a) have a fractal structure which allows to maximize their magnetic critical field. Figs. A.7(b,c)
demonstrate connection between Al electrodes (vertical) and the grAl strip (horizontal) with volume VgrAl =
4.8 · 0.2 · 0.04µm3 and normal-state resistivity ρn = 1000 ± 500 µΩcm. The amplifier is fabricated on a
C-plane sapphire wafer in a single-step lithography by utilizing a three-angle shadow evaporation, similar to
Ref. [WBG+20].

(a)

500 um

1 um4 um

(b) (c)

Figure A.7: (a),(b) Optical microscope images of a GrAPA, consisting of two fractalized Al pads connected with a grAl strip. (c) SEM
image of a grAl strip (horisontal) connected with two Al electrodes(vertical). Volume of the grAl in-between electrodes is
VgrAl = 4.8 · 0.2 · 0.04 µm3, and the normal-state resistivity is ρn = 1000± 500 µΩcm. The structure was fabricated
in a single lithography step by performing a three-angle evaporation.

Response of the sample to a microwave probe is shown in Fig. A.8 for different drive powers. At low
power, the system works as an overcoupled resonator thanks to the fact that Qi/Qc > 10. However, as the
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Figure A.9: (a) Gain as a function of pump power and signal frequency. Pump is normalized by the bifurcation drive power, and
frequency is shifted by the pump frequency fpump = 7.926 GHz. (b) Some chosen gain profiles showcasing behaviour of
the device influenced by losses.

probe power approaches the bifurcation power, Qi demonstrates a significant decrease. Since parametric
amplification requires pump powers slightly below the bifurcation point, the amplifier’s gain is in the "lossy"
regime (see Sec. 2.3.3), as is evident in Fig. A.9. Because of that, noise added by this device is increased well
above the quantum limit. The same behaviour was observed in Nb/grAl samples and in grAl/grAl samples
with the first layer of grAl having resistivity about ten times lower than the second one.

The onset of the lossy behavior is most likely due to the interface of superconductors with different kinetic
inductance. Cooper pairs following the least-action route minimize their path through the high-Lkin metal.
As a result, current in the Al/grAl interface flows via a small area of the interface, and at some point
the current density probably exceeds the critical one. Although not a problem for low-power devices
[GSG+19; WBG+20], the loss rise problem makes combination of superconductors with significantly
different kinetic inductances suboptimal for parametric amplification purposes.
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