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a b s t r a c t

Shimming in the context of nuclear magnetic resonance aims to achieve a uniform magnetic field distri-
bution, as perfect as possible, and is crucial for useful spectroscopy and imaging. Currently, shimming
precedes most acquisition procedures in the laboratory, and this mostly semi-automatic procedure often
needs to be repeated, which can be cumbersome and time-consuming. The paper investigates the feasi-
bility of completely automating and accelerating the shimming procedure by applying deep learning
(DL). We show that DL can relate measured spectral shape to shim current specifications and thus rapidly
predict three shim currents simultaneously, given only four input spectra. Due to the lack of accessible
data for developing shimming algorithms, we also introduce a database that served as our DL training
set, and allows inference of changes to 1H NMR signals depending on shim offsets. In situ experiments
of deep regression with ensembles demonstrate a high success rate in spectral quality improvement
for random shim distortions over different neural architectures and chemical substances. This paper pre-
sents a proof-of-concept that machine learning can simplify and accelerate the shimming problem, either
as a stand-alone method, or in combination with traditional shimming methods. Our database and code
are publicly available.
� 2022 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent decades, deep learning (DL) [1] has shown unprece-
dented achievements in various industrial and scientific fields.
Although areas of research such as computer vision or natural lan-
guage processing have become commonplace, many fields of
science have only recently begun to exploit the vast possibilities
that DL can provide. One such area is nuclear magnetic resonance
(NMR) spectroscopy, a non-destructive technique widely used in
chemistry, physics and medicine to study the properties of liquid
or solid samples. The most notable contributions from DL currently
employed in NMR include, but are not limited to, methods for
reconstruction of non-uniformly sampled (NUS) spectra [2] and
truncated free induction decays (FIDs) [3], chemical shift predic-
tion [4], or denoising and segmentation of magnetic resonance
images [5,6]. Other possible applications of DL for solving chal-
lenges in NMR are also discussed and suggested in the community
[7].

Most of these approaches and suggestions are being applied at
the post-processing stages of NMR spectroscopy, taking the hard-
ware setup for the NMR measurement as granted. In contrast, we
propose to optimize the preparation preceding an NMR measure-
ment with deep learning methods.

One crucial parameter of the NMR setup, which requires the
most careful and precise tuning for subsequent successful mea-
surements, is the homogeneity of the magnetic field. The strength
of the magnetic field B0 directly influences the precession fre-
quency f of each stationary spin with its gyromagnetic ratio c, as
described by the well-known Larmor equation 2pf ¼ �cB0. For a
perfectly uniform field and a chemically homogeneous sample,
the observable signal in the frequency domain yields a single Lor-
entzian peak centered at f. However, in an inhomogeneous mag-
netic field B0, the spins experience different local fields due to
various effects (e.g. susceptibility differences between material
inside the field, manufacturing inaccuracies of the coil, or intra-
molecular shielding effects in the sample itself), and thus possess
frequencies shifted around the central Larmor frequency. This
means that inhomogeneities broaden the line shapes of the spec-
trum, decrease their amplitude and consequently decrease the
signal-to-noise ratio (SNR). Furthermore, the non-bijective map-
ping of the FID from a three-dimensional volume to a one-
dimensional spectrum introduces ambiguities, i.e., the connection
between the location of each distortion and its direct impact on
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the spectrum is lost during the acquisition process (Fig. 1). Espe-
cially with recent efforts in miniaturizing NMR technologies [8],
signal sensitivity increases, but field inhomogeneities remain hard
to eliminate.

To overcome distortions in the measured spectrum caused by a
magnetic field inhomogeneity, a method referred to as ”shimming”
is used. Modern shimming is best described as the procedure of
superimposing a secondary correction magnetic field by adjusting
the currents in a finite set of field-orthogonal coils (the so-called
shim coils) to correct for inhomogeneities in the magnetic field
B0. Modern NMR spectrometers usually require the magnetic field
to be uniform in the range of parts per billion (ppb).

However, the shimming procedure is often a tedious and
painstaking process that demands extensive time and experience
from the operator [9]. This is due to the large number of shim coils
required for spectroscopy, the inter-dependence of shim field pat-
terns (violations of orthogonality), and the lack of a straightfor-
ward solution for the correct shim coil values in an (expected)
non-convex solution space. This situation makes it a challenge to
provide a correct, fast, and reliable shimming procedure for the
magnetic field, especially on the order of a few seconds.

Several approaches already exist to solve this problem and
automate the shimming procedure to increase spectral quality.
The most robust approaches to date utilize the downhill simplex
(or Nelder-Mead) method [10,11], and adaptations thereof [12].
Also, automated shimming based on a lock channel is widely used,
e.g. for continuously adapted shimming during lengthy NMR mea-
surements. Unfortunately, with large initial field inhomogeneities,
locking may be impossible due to its inherently low SNR. A signif-
icant contribution to shimming utilizes gradient shimming [13,14].
For this, ideally, rapidly switchable gradient coils would be neces-
sary, which may not be available. Also, the B0 field maps could be
distorted [15], requiring appropriate corrections and potentially
repetitions. Despite emerging solutions [16–18], signal-based
methods remain significant and can automatically improve spec-
tral quality if sufficient runtime is provided. Nevertheless, the
achieved improvements are often not perfect, and manual refine-
ment is necessary due to imperfect hardware, non-orthogonal or
dependent shims [19], and sensitivity to starting values and step
sizes for regular shimming methods.
Fig. 1. Illustration of the fundamental problems in NMR shimming based on
spectral data. (a) Field inhomogeneities induce differing Larmor frequencies, which
causes line broadening, and thus reduces spectral quality. (b) The non-bijectivity
between the one-dimensional spectrum and its three-dimensional origin intro-
duces additional ambiguities. The two cubes indicate differing spatially varying
field strengths in the region of interest, as caused by inhomogeneities, that
nevertheless give cause to similarly shaped spectra.
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We propose to fill this gap by utilizing a deep learning (DL)
algorithm to guide the shimming process. As a tool, DL has demon-
strated great success over various domains by end-to-end learning,
i.e., an algorithm learns, given only input and target, to automati-
cally detect features. In general, the feature detection is enabled
by combining representations in multiple layers based on repre-
sentations from the previous layer, where each layer represent
more abstract feature levels [1]. With sufficient capacity, DL can
thus learn arbitrary complex functions of high-dimensional input,
and still allows for fast inference. Therefore, we hypothesize that
it is possible for DL to learn shim values given 1D signals drawn
from 3D space, even when the shim values do not directly corre-
spond to visible features in the signal. Accordingly, we utilize
supervised deep regression due to its capability to automatically
detect non-linear relations between high-dimensional input data
and numerical targets with high performance. We furthermore
merge deep regression with the idea of ensembles, by combining
multiple weak models to reduce prediction variance.

We focus on a non-iterative method for initial shimming to
rapidly reach a state near the global optimum. Our scenario
assumes shimming a probe from scratch with first-order shims,
and beneficial use cases are the acceleration or improvement of
existing automated shimming methods, focusing on high-
throughput NMR alone or in conjunction with miniaturized hard-
ware [20], without the use of gradients or even a lock channel.
For this, we have generated a publicly available database for
first-order NMR shimming that allows inference of spectral
changes depending on shim offsets. We utilize the database to
train a set of deep regression models (so-called weak learners) that
can simultaneously predict three first-order shim currents given
four distinct NMR measurements: the current unshimmed spec-
trum, and three spectra with individually modified shim values.
The weak learners are then combined in an ensemble, via a meta-
model, to increase prediction stability, and the performance is ana-
lyzed in situ for different evaluation metrics. Furthermore, we con-
duct limited comparison with regular shimming based on the
downhill simplex method.

In summary, our paper makes the following contributions:

� Creation of the first spectral database (ShimDB) dedicated to
low-field NMR shimming1;

� Proof-of-concept for utilizing deep learning for shimming;
� Establishment of a method for rapid shimming based on deep
regression with ensembles (DRE)1, shown in Fig. 2.

Note that we only use information learned from data, i.e., we
employ a knowledge-based approach. We also do not require pri-
ors, or mathematical formulations of spatial shim functions, as
would be required for gradient shimming.

The rest of the paper is organized as follows. Section 2 provides
an overview of related work on automated shimming, deep regres-
sion, and ensembles. In Section 3, we introduce our database, and
in Section 4, our method. In Section 5, we describe our experiments
for both DL training and in situ deployment. We discuss our
approach in Section 6 and conclude in Section 7.
2. Fundamentals and related work

We start by unfolding the shimming problem and highlighting
some of the successful or recent approaches. We also describe rel-
evant advances in deep learning that we adopted in our method.
1 Database publicly available at https://github.com/mobecks/ShimDB and code at
https://github.com/mobecks/dre-nmr-shim.

https://github.com/mobecks/ShimDB
https://github.com/mobecks/dre-nmr-shim


Fig. 2. Sketch of deep regression with ensembles (DRE). Three-dimensional distortions (illustrated as a 3D ”inhomogeneity cube”) of the sample volume collapse to a one-
dimensional signal. By systematic offsets of the available shim currents, a batch of distinguishable spectra is obtained, which serves as input to a deep neural network. The
prediction contains the shim values to achieve a more homogeneous field and thus a spectrum of higher quality.

Fig. 3. Principle of shimming along the z-axis using higher-order shims. Starting
from an unshimmed spectrum with unknown field inhomogeneities DB0, correction
fields induced by the shim coils (dashed lines) and their correct weights wi must be
selected sequentially such that the inhomogeneities are canceled. The quality of the
final spectrum is usually specified by the full width at half maximum (FWHM).
Layout inspired by [21].
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2.1. Automated shimming

The shimming problem. The nuclear spin ensemble precession
frequencies differ depending on the locally experienced and spa-
tially varying field strengths of an inhomogeneous magnetic field

B
!

0 r!
� �

at a 3D coordinate r!¼ r1; r2; r3ð Þ. Mathematically, the
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The basis set of (ideally orthogonal) spatial functions S
!

i; i 6 n 2 N,
and their real scalar weights wi are adjusted to reproduce and thus

cancel the field inhomogeneities D B
!

0. Each S
!

i represents a specific
shim coil (or spatial shim coil function) with its current wi. An
example of the shimming procedure for an arbitrary axis in space
is given in Fig. 3. Magnetic field inhomogeneities cause distortions
in the spectrum, which can be canceled by sequentially adding spa-

tial shim functions S
!

i with the correct weights wi. The concept of
homogenization by superimposing correction fields was developed
by Golay in 1958 [22].

In general, according to their optimization objective, automated
shimming methods can be separated into signal-based and field-
based methods. Field-based methods, or gradient shimming [13],
use B0 field maps acquired by gradient-echo imaging sequences
to calculate an optimal combination of basis functions to cancel
inhomogeneities. We focus on iterative signal-based shimming,
which optimizes a scalar quality criterion based on signals such
as the FID, lock channel, or spectral lineshapes. Moreover, we can
neglect theoretical limitations of spatial functions and directly
optimize for the shim currents.

1-D signal-based shimming. These are based on 1-D search algo-
rithms, covered by the Tuning [23] or Coggins [24] algorithms, and
are characterized by optimizing one variable at a time. The meth-
ods all share the procedure of repeatedly comparing three spectra
until the minimum quality criterion of choice can be approximated
by fitting a parameterized parabolic curve. Adjusting one shim at a
time is simple and often faster than other methods, but does not
incorporate dependencies between shim values. This is why it
often has to be iterated.

N-D signal-based shimming. In n-dimensional optimization, a
group of n variables are adjusted simultaneously. For this, the
3

downhill simplex method [11], or its modifications [12], are usu-
ally used. The methods commonly use a geometrical polytope (a
‘‘simplex”) of nþ 1 vertexes, where each vertex is represented by
the quality criterion corresponding to specific shim settings. The
simplex then evolves through solution space using geometrical



2 It is intended to continuously extend the database with new subsets.
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operations such as reflection, expansion, and contraction of the
simplex, based on the worst, average and best quality criterion,
until a local minimum is reached, evidenced by vertices of similar
quality criterium. Note that the Nelder-Mead simplex method [10]
applicable in shimming should not be confused with the simplex
algorithm of Dantzig for linear programming [25].

The major limitation of the downhill simplex method is its slow
convergence speed [26]. Several improvements, such as quasi-
gradient methods [27], adaptive shrinking coefficients [28] or per-
turbed centroids [29], are combined in [12] to enhance NMR
shimming.

Other methods, such as modified steepest descent [11], or the
rapid, modified simplex method proposed by Webb et al. [30], also
enable n-dimensional shim optimization.

Other approaches. The main idea behind the method introduced
by Michal [19] is to orthogonalize the shim coil gradients such that
the optimization of one shim becomes independent of the others.
With truly-orthogonal ‘‘composite shims”, finding a global mini-
mum becomes a one-dimensional calculation. The method brings
various limitations: gradients show non-linear behaviour due to
current supply, heating, or other components, and thus affect the
symmetry required to calculate composite shims.

2.2. Deep learning methodologies

We now consider deep learning methods, a branch of machine
learning, which learns representations from a set of prior data by
abstraction at multiple levels.

Deep learning overview. Deep neural networks are most com-
monly implemented as stacked layers of artificial neurons, where
the weight of each neuron is updated (or learned) with backprop-
agation [31] and gradient descent, to minimize a loss function on
given training data. However, generalisation is judged by the pre-
diction performance on previously unseen (out-of-sample) data.
Therefore, different regularization techniques can prevent overfit-
ting or unwanted memorization of the training samples. For exam-
ple, early stopping of the training process is used when the training
and test errors diverge, dropout [32] randomly shuts down neu-
rons during weight update, and augmentation is used to increase
the amount and variance of data. The usage of non-linear activa-
tion functions, such as the rectified linear unit (ReLU) [33], with
a sufficient number of processing layers (depth), allows neural net-
works to approximate any arbitrary function. Furthermore, differ-
ent connection patterns, e.g. each-to-each (fully-connected), of
the neurons in and between each layer, allow for efficient predic-
tion on different data structures (e.g. sequential or image-like).
We refer to [1] for a more detailed description of the entire DL idea.

Deep Regression. The generalization of standard regression (i.e.
prediction of a single continuous variable) to multiple, possibly
interdependent variables is often referred to as multi-target
regression [34]. When deep neural networks replace the function
approximation, one commonly refers to deep regression. In [35],
vanilla deep regression is coined to refer to convolutional neural
networks (CNNs) with a linear last layer. Spectral reconstruction
[2] and denoising methods [5] in NMR can be seen as regression
methods, where input and output shapes are similar. Regression
without convolutions is used to predict chemical shifts in [36] or
[37]. However, in both cases, it only predicts a single target.

We also note with interest all the advances made for successful
deep regression. Nevertheless, to allow for exploration of DL in the
shimming problem, we first investigate vanilla models that require
fewer assumptions, which were found to yield comparable results
for complex regression models in computer vision experiments
[35].

1D Convolutions. From [38], we adopt the idea of interpreting
NMR spectra in the frequency domain as 1D-images, in order to
4

apply CNNs and developments from computer vision. The concept
behind convolutional layers, inspired by the virtual cortex, is to
sweep filter kernels over a grid-like input to generate representa-
tions of the next layer, instead of direct links used in fully-
connected layers. CNNs incorporate parameter sharing and sparse
connectivity to decrease memory requirements and allow predic-
tions independent of the features’ locations [39]. We also extend
this idea by using multiple input spectra as a batched input to
our model, similar to RGB channels of an image. A comprehensive
overview of the capabilities of one-dimensional CNNs, which are
applied to NMR spectra in this paper, is given in [40]. The possibil-
ity to visually relate specific distortions in the NMR spectrum to
specific shim currents [41] supports our goal of automating the
shimming process with DL.

Ensemble methods. Ensemble methods in machine learning com-
bine multiple models to construct a more powerful model to
achieve higher accuracy or lower variance in predictions [42,43].
In general, ensembles consist of two levels: multiple weak learners
(level-0), and a combination of their predictions (level-1), often
represented by a meta-model. Several forms, such as bagging
[42], boosting [44], or stacking [45] can be distinguished, and they
differ in data handling or training of the different levels’ models.

Some applications of ensembles-to-regression are summarized
in [46]. In the field of NMR, ensembles have already been used to
predict fish sizes from metabolomic profiles using spectral data
[47].
3. First-order shimming dataset

The success of deep learning algorithms strongly depends on
the quantity and quality of available data, which should represent
the task as accurate as possible without introducing biases. Thus,
the first step in the development of DL-assisted automatic shim-
ming was the creation of a database for algorithm training. The
shimming database (ShimDB)2 is a collection of proton NMR signals
recorded under the application of shim coil fields and so far contains
a subset called LinearShimDB, a small-scale dataset containing over
9000 instances with only linear shim offsets. It allows inference of
changes to the NMR spectrum or free induction decay (FID) depend-
ing on linear shim offsets. Each data instance includes the following
information: A binary file containing the raw 1H-FID with dimen-

sions 1� 32768; the shim values 2 �215;215
h i

for n shims; the

acquisition parameters; and the processing parameters. We pretend
that the spectrometer only has n ¼ 3 first-order shims, thereby only
X;Y , and Z shim values are non-zero, but this is easily extended.

The measured sample consists of distilled water mixed with
copper sulfate to reduce spin–lattice or longitudinal relaxation
time T1, allowing for faster database acquisition. In analogy to
the study [48], the 50 ml H2O is mixed with 0,062 g CuSO4+5H2O
(CAS No. 7758–99-8), resulting in a concentration of 5 mmol/L
CuSO4. With inversion recovery experiments we find that
T1 � 290 ms.

The data was acquired on the low-field Magritek Spinsolve 80
Carbon spectrometer (Magritek GmbH, Aachen Germany, [49])
with a 1H frequency of 80 MHz using standard 5 mm sample tubes
and the Spinsolve-Expert software. Experimental parameters, and
the dataset’s characteristics, are summarized in Table 1. A large
reception bandwidth was chosen because the initial line shape is
unknown when using large shim offsets. Also, the frequency lock
is not activated so that the signal potentially could leave the field
of view.



Table 1
Characteristics and acquisition parameters of the first-order shimming dataset
(LinearShimDB).

Characteristics Nr. spectra 9261
Shim range R 	10000
Step size s 1000
Shims X;Y ; Z

Acquisition parameters Nucleus 1H
Bandwidth 20 kHz
Points 32768
Repetition time 2000 ms
Filtering -
Phase correction /0

M. Becker, M. Jouda, A. Kolchinskaya et al. Journal of Magnetic Resonance 336 (2022) 107151
The acquisition procedure of the LinearShimDB subset was as
follows. The manufacturer’s automated shimming technique,
based on the downhill simplex method [50], was used to obtain
a reference spectrum of decent quality. Then, all shim values
except the three linear shims X;Y and Z were set to a current of
zero Ampére. The resulting spectrum and corresponding shim set-
tings yr were used as the reference values. The database parame-
ters were obtained by relative, systematic offsets
y ¼ yr þ asX ; bsY ; csZð Þ from the reference shim values in a range
R with step size s, where a; b; c 2 � R

s ;
R
s

� �
change in a grid-like man-

ner. R is chosen large enough to mimic shimming a probe from
scratch. For each combination, the raw FID, acquisition parameters,
and shim values were stored. 3

We believe that our data can successfully be reused for training
ML models on different setups and scenarios by transfer learning
or domain adaptation techniques [51].
4. Deep regression with ensembles for shimming

In this section, we define the mathematical problem and intro-
duce our network structures for deep regression, where we differ-
entiate between weak learners (level-0), and the meta-model
(level-1). Furthermore, we introduce our performance metrics.
4.1. Problem definition in terms of DL and NMR

Let D ¼ x; yð Þi
� �jDj

i¼1 be our database, where x; yð Þi is a pair

including the input x 2 RW�4 with dimensions W � 4, where W is
the input’s width, and the associated target
y ¼ y1; y2; . . . ; ynð Þ 2 Rn, defined as a real-valued vector of n ele-
ments, with n being the number of separate shim coils. Also, con-
sider the regression model Fh �ð Þ, represented by a deep
convolutional neural network with parameters h. The network
parameters h are learned in a supervised manner using the data-
base D in order to minimize the mean squared error (MSE)
between the prediction ŷ ¼ Fh xð Þ and the target y.

In terms of NMR, the predictions ŷ translate/map to the shim
values wi and should solve Eq. 1. The inputs x are defined as
x ¼ u 0ð Þ; u sXð Þ;u sYð Þ;u sZð Þ½ �, where the unshimmed spectrum u
changes as a function of systematic shim offsets s. The DL model
predicts the shim correction terms Fh xð Þ ¼ ŷX ; ŷY ; ŷZð Þ, such that
yi � ŷi � 0. Note that we do not have access to either Si, nor the

magnetic field B
!

0. We also compare the mean absolute error
(MAE) to measure in situ shimming performance between the pre-
dicted and relative offset values of the reference shims (see Sec-
tion 3) with MAE ¼ 1

n

Pn
i¼1jyi � ŷij.
3 The dataset is publicly available at https://github.com/mobecks/ShimDB under
the CC BY-SA 4.0 licence.

5

Our approach stems from the concept of deep regression in a
multi-input and multi-output setting. In our scenario, the model
F is an ensemble of weak learners combined with a multi-layer
perceptron (MLP) as the meta-model, as proposed in subsection
4.2.

4.2. Deep learning architectures and pipeline

Level-0. Unlike in computer vision, in NMR there is no bijective
mapping between the input to the model and its output (i.e. pre-
diction at the pixel level of the input). Indeed, the shimming prob-
lem starts with a field inhomogeneity in 3D space, translates this
into a 1D NMR signal, after which there is no straightforward link
back to the correct shim currents. Therefore, we provide the weak
learners with a batch of four NMR spectra x as input and predict a
three-valued vector of continuous values ŷ, i.e., the shim values.

Each architecture begins with 3� 5 blocks of one-dimensional
convolutional layers, with varying kernel sizes, followed by two
fully connected layers with 32 nodes. Heterogeneous architectures
allow for higher variance in predictions that are useful for the
ensemble model. Additionally, we include dropout layers after con-
volution and fully-connected layers to prevent overfitting [32]. The
last layer uses linear activation for regression of the targets. The
architecture is illustrated in Fig. 4a.

Level-1. The meta-model combines features of its m heteroge-
neous weak learners, and represents a mixture of stacking and
boosting (see subsection 2.2). We investigate the following forms:

� Simple average over all weak learner predictions.
� Non-linear combination, with a fully-connected layer, of the
weak learner’s regression layer (2 Rm�n).

� A two-layer multi-layer perceptron (MLP) based on the second-
to-last fully-connected layer of the level-0 models. The MLP has
m� 32 nodes in its first, and 32 nodes in its second layer.

Also refer to Fig. 4b for a visualization of the ensemble with an
MLP-based meta-model.

4.3. Spectral quality and performance metrics

To judge the quality of spectra, we introduce a criterion c that
can be used for global or local quality judgements of single peaks.
For a spectrum g of interest and a reference spectrum r, it is defined
as:

c g; rð Þ ¼ 1
2

k1 � FWHM rð Þ
FWHM gð Þ þ k2 �max gð Þ

max rð Þ
� 	

; ð2Þ

where max �ð Þ is the maximum peak height and FWHM �ð Þ is the full
width at half maximum of that peak. ki can be used to increase or
decrease the impact of each term. The quality parameter c indicates
whether spectrum g is worse (0 < c < 1) or better (c > 1) than the
reference r.

Other spectral properties, such as peak symmetry, can easily
extend the criterion. But since linear shims cannot lead to symmet-
rical line shapes, we have refrained frommore precise quality mea-
sures such as the envelope of a spectral peak [52]. An extension to
multiple peaks could be realized via virtual peaks [53].

Furthermore, the following metrics are introduced to analyze
the performance of our method in laboratory experiments for the
n ¼ 3 first-order shims:

� Success rate SR 2 0;1½ �. We defined the SRw.r.t. the criterion c. If
the predicted shim setting yielded c higher than all c in the
input batch, then the method was deemed successful. For a sin-
gle experiment, it was defined as:

https://github.com/mobecks/ShimDB


Fig. 4. Visualization of neural network architectures. Each weak learner of the
ensemble consists of ‘ layers followed by two fully-connected layers. The meta-
model shown here is a two-layer MLP trained based on weak learners on the
transfer set T .
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SR ¼ 1; if csh > cinit; cX ; cY ; cZ½ �
0; otherwise;



ð3Þ

where cinit ; cX ; cY ; cZ½ � are the quality values for the input batch
and csh is the criterion after shimming with DRE.

� Correct direction ratio DiR 2 0;1½ �. Indicator whether the
method pointed towards the global minimum and equals to 1
if the predicted signs matched the distortion’s signs:
DiR ¼ 1
n

Xn
i¼1

sgn ŷið Þ ¼¼ sgn yið Þð Þ; ð4Þ

where sgn �ð Þ is the sign function, ŷi is the model’s prediction and
yi is the true distortion.

� Mean improvement of criterion c (see Eq. 2) with k1 ¼ k2. Given
in percentage for c g; rð Þ, where g is the spectrum with predicted
correction and r is the initial spectrum.

� Averaged MAE between predictions and random distortion.
� Generalization to other substances.

5. Experiments

In this section, we describe prerequisites in pre-processing,
hardware, and DL training, followed by our evaluation protocol,
and the results for offline and in situ (online) experiments.

5.1. Setup or implementation details

Dataset creation and pre-processing. Each member of a batch of
input spectra x consists of one spectrum corresponding to a unique
target value ŷ, and three spectra with offsets of s in the X;Y , and Z
6

shims, respectively. The databaseDwith input-target pairs x; yð Þi is
constructed by mining the dataset LinearShimDB from Section 3.
Each raw FID is fast-Fourier-transformed and phase-corrected to
yield a 1D spectrum, using nmrglue [54] and the same phase cor-
rection values given by the system’s auto-phase method. Note that
the unique target values y for each input x is not represented by its
absolute shim values, but is defined by its relative distortion w.r.t.
the reference spectrum ofD. This prevents the model from learning
absolute shim currents that would depend on the hardware that
the database was acquired on, and forces the model to learn the
relative shim offsets that will improve a given spectral shape.

In order to achieve faster convergence and generalization, our
data is further pre-processed. Each spectrum is normalized by a
constant normalization factor of 1e5 (the maximum intensity for
perfect shims) such that the spectral values lie within the range
0;1½ �. To meet resource constraints, all spectra are downsampled
from 32768 to 2048 data points. The regression targets (stored as
int16 integers) are divided by 215 to avoid exploding gradients,
and then multiplied by 100 to avoid vanishing gradients during
DL model training. We exclude dataset samples where offsets are
incomplete. Thus, the final subsets for training, validation, and test
are of size 6400=800=801.

Due to time constraints during the acquisition of D in a grid-like
manner (Section 3), we expect that the spectra of each instance
x; yð Þi inhibit some reality gap and temporal equalization. There-
fore, we introduce an additional transfer database T with
jT j ¼ 100 to differentiate from the systematic nature of data col-
lection. T is obtained under the same conditions as D, but each
spectrum of x is jointly acquired and is used to either fine-tune
the weak learner or the meta-model.

Hardware interface. Communication with the Magritek Spin-
solve spectrometer was enabled through a custom interface
between Python and the python-like programming language
Prospa, upon which the Spinsolve-Expert software is built. With
this interface, it is possible to benefit from open-source python
libraries for NMR data processing (nmrglue [54]) and deep learn-
ing frameworks (PyTorch [55], and ray tune [56]). The standard
shimming routines used by the spectrometer’s software are based
on parabolic interpolation and the downhill simplex method, and
the latter is adopted for comparison.

DL training details. Level-0 base models underwent a limited
neural architecture search (NAS), a technique for automating the
neural network architecture design [57], using ray tune [56],
and random search over a variable number of layers ‘, kernel sizes,
and other design choices. All weak learners were trained with a
learning rate of 0:001, batch size of 32, and the Adam optimizer
[58] for a maximum of 150 epochs utilizing early stopping. We
selected the top-50 architectures among 300 runs w.r.t. validation
error. The level-1 meta-models were trained with hyperparameter
optimization (HPO) using random search and early stopping. We
manually selected the best fully-connected and MLP-based net-
works w.r.t. their validation loss over 500 run. For a detailed
description, see subsection S1.2.

Hardware requirements. The DL training was performed with an
AMD Ryzen 5900X equipped with 64 GB RAM, and a graphics pro-
cessing unit NVIDIA GeForce RTX 3090. The LinearShimDB roughly
requires 3:4GB of disc space.
5.2. In situ evaluation protocol

We demonstrate in situ functionality by testing the method on a
set of 100 random distortions yX ; yY ; yZ 2 �10000;10000½ � of X;Y ; Z
shims, drawn from a uniform distribution. We deliver success rate
SR, direction rate DiR, mean improvement of our quality parameter
c, and MAE over five different model types, including single weak
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learners and diverse ensembles. Furthermore, we investigate gen-
eralizability towards multiple samples, i.e., pure water with CuSO4

as in Section 3, ethanol (CAS No. 67–66-3) dissolved in water with
a molar fraction of v ¼ 0:1; 0:5½ �, and isopropanol (CAS No. 67–63-
0) in water with v ¼ 0:5.

5.3. Level-0 training results

Offline experiments, i.e., training on static data, show that it is
possible to predict three distinct variables from an input of four
1-D signals with no apparent correlation between the input and
output dimensions. The best weak learner achieved an MAE of
596	 769 (mean	standard deviation) for a step size of s ¼ 1000
on the test set. As the possible precision was limited by the sam-
pling resolution of the underlying training data, results near 1=2
of the step size s indicated good performance. Detailed results
are given in Table S1. The entire network, including the meta-
model, was tested in situ only.

5.4. In situ results

The most crucial aspect of the method is not merely its training
performance, but also its applicability. Thus, the performance of
our method is evaluated in laboratory experiments, and a selection
of graphical results is given in Table 3 for our most promising
methods (single model and MLP-based) and different substances
(H2O, ethanol and isopropanol).

Interpretation of different model types. The results seem to indi-
cate that our method works in practise. Even weak learners
achieved an SR of 93% and a large improvement (mean of
þ435%) on the spectral quality for water. However, the variance
in criterion improvement and error remained high. Here, the
ensemble method with an MLP-based meta-model achieved more
robust but conservative predictions. Overall, a single model and
the MLP-based ensemble yield comparable results for all measured
metrics.

Absent improvement by averaging the top 50 untuned models
confirmed the need to train ameta-model. Furthermore, the advan-
tage of a two-layer MLP with non-linear connections of the second-
to-last features is shown over a simple non-linear combination of
the weak learner’s last layer. We also fine-tuned a single model
to the transfer dataset T , yielding worse in situ results. Overall, a
transfer set seems to be unnecessary.
Table 2
In situ results of automated shimming of the DRE method using a single model and different
as mean 	 standard deviation over 100 random distortions drawn from a uniform distribu
multi-layer perceptron, T = transfer database, SR = success rate, DiR = direction ratio, MAE

Single mode

Untuned

H2O Success Rate SR 0.93
Direction Ratio DiR 0.90
Mean improvement of c þ435%	559 þ
Averaged MAE 1878	1271

Ethanol (0.5) SR 0.92
DiR 0.86
Mean improvement of c 157%	130
Averaged MAE 2431	1287

Ethanol (0.1) SR 0.91
DiR 0.87
Mean improvement of c þ265%	214 þ
Averaged MAE 2170	1292

Isopropanol (0.5) SR 0.91
DiR 0.89
Mean improvement of c þ299%	320 þ
Averaged MAE 1967	1177
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The robustness problem of a single model compared to the
MLP-based ensemble is visualized in Fig. 5 based on the experi-
ments that yield Table 2 for water. The single model can often
achieve narrower linewidths but shows higher variance.

Interpretation of generalizability. Through experiments on etha-
nol with v ¼ 0:1;0:5½ � and isopropanol with v ¼ 0:5, we strive to
show the generalization of the method to samples other than
H2O. Indeed, the training sample in both datasets D and T is water,
of course, with only a single peak. Surprisingly, we achieve success
rates above 91% for samples with more than one peak, despite the
risk of confusion among the peaks.

Hardware requirements. The most resource-intense MLP-based
ensemble model required 190 ms on average for prediction, using
an Intel Core i5-8500 and 200 MB of RAM. The required disc space
was between 0:5 and 2:5MB for each weak learner, and 200 KB for
the meta-model. Compared to acquisition times for the NMR mea-
surement, and storage space available on recent computers, these
were negligible requirements. One complete cycle of DRE, includ-
ing spectra acquisition, takes 31s without special time-saving
efforts being made.

5.5. Comparison

We compare our automated shimming method to Magritek’s
built-in implementation of the downhill simplex method, which
in turn is based on the algorithm in [50].

We expect faster convergence of the simplex method when
using the improvements as proposed by [12]. Nevertheless, Yao
et al. state that their method behaves similarly to the simplex
method when fewer shim coils are used, so we restricted our con-
siderations to the Magritek implementation of the regular down-
hill simplex method. This implementation requires at least nþ 1
measurements for n shims to initialize its simplex structure, and
one to four (average of two) function evaluations per iteration
[11]. Our method consistently needs four spectra for one iteration,
and one spectrum to check the results. We used a single model and
DRE with MLP as the meta-model for comparison.

Although the downhill simplex is known to have little influence
on the initial simplex’ size and shape [11], and tends to produce
rapid drops of initial values [59], we were able to accelerate the
shimming process. We compared results obtained from the stan-
dard Nelder-Mead method with i iterations and step size
s ¼ 1000, versus the results for simplex with i� 4 iterations while
ensemble types over different substances, with molar fraction vð Þ. Values are reported
tion. The best values are marked in bold. Abbreviations: FC = fully-connected, MLP =
= mean absolute error, c = criterion.

l Ensemble

Tuned to T Average FC MLP

0.91 0.61 0.76 0.94
0.89 0.77 0.78 0.89

394%	471 þ125%	244 þ127%	124 þ399%	560
1703	969 3989	2529 3191	1459 1756	1016

0.89 0.55 0.73 0.93
0.86 0.79 0.78 0.85

136%	99 28%	14 73%	63 123%	34
2492	1303 4510	1999 3441	1602 2460	1217

0.90 0.68 0.71 0.89
0.85 0.77 0.78 0.85

205%	158 þ77%	38 þ91%	66 þ257%	314
2478	1334 3995	2344 3462	1701 2250	1217

0.95 0.65 0.80 0.90
0.90 0.77 0.82 0.87

257%	278 þ74%	154 þ91%	107 þ201%	156
2102	1229 4199	2533 3393	1561 2097	956



Table 3
Exemplary selected results of shimmed spectra for water, ethanol (v ¼ 0:5), and isopropanol. A single model’s performance is compared to ensembles with an MLP-based meta-
model. Additionally, the optimal spectrum by applying the simplex method only to the first-order shims is reported. Abbreviations: EtOH = ethanol, i-PrOH = isopropanol.

Fig. 5. Probability density function (PDF) indicating the distribution of initial and
shimmed linewidths (FWHM) of our 100 in situ runs. The results are given for a
single model and an MLP-based ensemble on a sample of H2O. The dashed lines
visualize skewed normal distributions that are fitted to the histogram (continuous
line).
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initialized with our method (see Table 4). We reduce iterations by
four because one iteration of DRE needs four spectra for its
prediction.

Furthermore, we compared the number of function evaluations
necessary for the simplex to reach a criterion equivalent to the DRE
prediction, as shown in Table 5. The procedure is as follows: First,
our method ‘‘deep regression with ensembles” (DRE) predicts shim
settings for a random distortion drawn from a uniform distribu-
tion. Then, the downhill simplex method is started from the same
distortion with a step size of s ¼ 1000 (as used for the database in
Section 3). The algorithm is stopped when it reaches a linewidth
equivalent to the one achieved with DRE prediction, and the num-
ber of acquisitions (function evaluations) are reported. If the sim-
plex is not able to find an equivalent linewidth within 50
iterations, it is stopped.

The results in Tables 4 and 5 demonstrate that, using our
method as stand-alone or in combination with regular shimming
methods will provide an advantage in either the number of neces-
sary acquisitions, or the achieved spectral quality. Note that deep
regression (DR) apparently yields similar performance to deep
regression with ensembles (DRE) in quality improvement, but



Table 4
Comparison of criterion improvement w.r.t. initial spectrum between the default
downhill simplex and simplex initialized with our method. Default simplex is run for i
iterations and DR/DRE + simplex for i� 4 iterations because one iteration of DR/DRE
requires four measurements. Here i ¼ 10. Values are reported as cinitial� improvement
	 std. Best values are marked in bold. Abbreviations: DR = Deep Regression, DRE = DR
with ensembles.

Method Iterations
i

Criterion after DR/
DRE

Criterion after
simplex

simplex 10 - �5:2	 3:96
DR + simplex 1þ 6 �4:6	 4:9 �15:4	 11:1
DRE + simplex 1þ 6 �5:0	 6:3 �15:7	 11:7

Table 5
Comparison of necessary NMR acquisitions in the downhill simplex method to
achieve a similar criterion as obtained with our method. Lower is better and best
values are marked in bold. Abbreviations: fe = function evaluations, FWHM = full
width at half maximum, DR = Deep Regression, DRE = DR with ensembles.

Method FWHMinitial FWHMshimmed fe

DR 1432	532 516	330 4 + 1
simplex ” 552	411 16:3	11:1

DRE ” 486	342 4 + 1
simplex ” 473	414 21:1	16:6
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ensembles demonstrate advantage in the number of necessary
NMR acquisitions as compared to the simplex method.
6. Discussion

Discovering new methods for fast and efficient NMR shim coil
calibration remains a challenge, but we see great potential in a
fusion of traditional and modern algorithmic methods to achieve
both faster and more precise shimming.

Assumptions of our approach. Currently, our approach mimics a
scenario where only the first-order shims are available to shim a
probe from scratch. Thus, the best achievable FWHM is of the order
of tens of Hz, but our method shows that very broad initial line-
shapes can be improved, very nearly reaching the optimum. Fur-
thermore, using linear shims is the first step for DL to advance
shimming for more complex and non-standard cases (e.g. high-
throughput parallel spectroscopy where some samples may be
located off-center with respect to the shim system, shimming of
micro coils). Although first-order shims generally have a promi-
nent influence on reducing inhomogeneity, dealing with higher-
order shims should be considered in future work. We are also con-
vinced that localizable information, e.g. about axial magnetization
[17], with special hardware additions could help the DL method
and allow to reduce the number of required input spectra. Our
method contrasts with traditional shimming approaches, in that
it is not iterative, i.e., the result emerges after a single step. There-
fore, we cannot guarantee that iterating DR or DRE will converge to
better results under other circumstances.

Deep learning considerations. Also, it is unclear how or whether
supervised learning can be scaled for shimming of higher-order
shims, especially w.r.t. exponentially increasing requirements in
the data acquisition task. One approach to counteract this limita-
tion is to employ a sufficiently realistic digital twin (simulation)
of the shimming problem to generate synthetic data.

In any case, this study has not yet unlocked the full potential of
deep learning, as applied to the shimming problem in NMR. Espe-
cially, recent advances in explainable artificial intelligence (XAI)
[60] can help to understand decisions made by neural networks,
or new neural architectures such as transformers [61,62] are creat-
9

ing a big fuss and yield excellent performance in various tasks.
However, to stay grounded in the complexity of our method, we
expect higher stability of a single model by using benchmark archi-
tectures such as ResNet [63], and increased efficiency by realizing
other deep learning techniques [64].

Despite the limitation described above, we could prove that the
concept of using DL for NMR shimming is a promising approach to
accelerate the entire shimming process.

In general, we also wish to draw attention to the lack of pub-
lished code for related shimming methods, and the difficulty of
comparing published results obtained on diverse spectrometers
and hardware setups.

7. Conclusion

In this paper, we have conclusively shown that deep learning
can be used for fast, first-order shimming in a low-field NMR setup,
i.e., DL can tackle the ambiguity and lineshape problems inherited
by shimming. With our dataset for shimming, we furthermore
established a basis for continued research in this area. The applica-
bility of DL was demonstrated both offline and in situ: First, by
training neural networks to simultaneously predict three linear-
field shim currents necessary to partially cancel an arbitrary distor-
tion. And second, the deployment on a spectrometer of a meta-
model based on an ensemble of weak learners revealed that our
non-iterative method generally points towards the solution and
shows a high success rate in improving spectral quality. Despite
the models being trained entirely on water, we experienced gener-
alizability to more complex samples with more than one spectral
peak.
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