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Abstract In this paper, we construct and analyze a new dynamical low-rank integra-
tor for second-order matrix differential equations. The method is based on a combi-
nation of the projector-splitting integrator introduced in [11] and a Strang splitting.
We also present a variant of the new integrator which is tailored to stiff second-order
problems.
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1 Introduction

Dynamical low-rank integrators [9] have been introduced for the approximation of
large, time-dependent matrices which are solutions to first-order matrix differential
equations that can be well approximated by low-rank matrices. Typically, such ma-
trix differential equations stem from spatially discretized PDEs. The idea is to project
the right-hand side of the problem onto the tangent space of the manifold of matri-
ces with small, fixed rank. It was shown in [9], that this ansatz yields differential
equations for the factors of a low-rank decomposition resembling a singular value
decomposition. Compared to the approximation of the full matrix solution, working
only with the factors of the low-rank decomposition significantly reduces the com-
putational costs and the required storage. Unfortunately, the integrator of [9] suffers
from ill-conditioning in the presence of small singular values, a situation which is
called over-approximation, i.e., the rank chosen within the method exceeds the rank
of the actual solution. A projector-splitting integrator which is robust in the case of
over-approximation was introduced in [11]. It is based on a clever Lie-Trotter splitting
of the projected right-hand side, which allows one to solve the subproblems exactly.
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A variant of this approach was recently presented in [2]. This new unconventional
integrator is especially suited for strongly dissipative problems.

Both the projector-splitting integrator and the unconventional integrator have been
applied to a variety of first-order matrix differential equations, e.g., for Schrödinger
equations in [2], for the Vlasov–Poison equation in [3], for Vlasov–Maxwell equa-
tions in [4], and for Burgers’ equation with uncertainty in [10]. However, to the best
of our knowledge, for second-order matrix differential equations of the form

A′′(t) = F
(
A(t)

)
, A(t) ∈ Cm×n, A(0) = A0, A′(0) = B0, (1)

with large m,n, such integrators have not been considered so far. The obvious tech-
nique of reformulating (1) into a first-order system and applying the projector-split-
ting integrator [11] for first-order matrix differential equations behaved poorly in
our numerical experiments. The reason might be that the inherent structure of the
second-order problem is ignored by this procedure, causing the approximation qual-
ity to deteriorate. Therefore, we propose to combine the projector-splitting integrator
with a Strang splitting and call this new scheme ST-LO method (Strang splitting
combined with the method by Lubich and Oseledets). It yields a robust and reliable
dynamical low-rank integrator for second-order equations of type (1), provided that
the exact solution A(t) and its derivative A′(t) can be well approximated by matrices
of low rank. In the special situation that the exact flows used within the Strang split-
ting preserve the low rank of the previous approximation, our integrator reduces to
the leapfrog scheme if the rank chosen in the method is sufficiently large. We also
develop a variant of the scheme which is tailored to stiff semilinear second-order
equations. For this, we combine our newly developed scheme with the ideas in [12],
where a dynamical low-rank integrator for stiff first-order equations was based on the
projector-splitting integrator.

For the projector-splitting integrator, a detailed error analysis was provided in [8].
It relies on an exactness property of the integrator, namely that it provides the exact
solution if this solution preserves the (low) rank of the initial value for all times and
the exact initial value is used to start the integrator. Unfortunately, this is no longer
true for the ST-LO scheme because of the Strang splitting. Nevertheless, we will
provide error bounds under similar assumptions as in [8].

The paper is organized as follows: In Section 2, we briefly recall the projector-
splitting integrator introduced in [11] by Lubich and Oseledets. The construction of
the ST-LO scheme is presented in Section 3 and its error analysis in Section 4. A
modification of the ST-LO scheme which also works for stiff second-order problems
is developed in Section 5.

Throughout this paper, m,n, and r are natural numbers, where w.l.o.g. m≥ n� r.
If n > m, we consider the equivalent differential equation for the transpose. By Mr
we denote the manifold of complex m×n matrices with rank r,

Mr = {Ŷ ∈ Cm×n | rank(Ŷ ) = r}.

The Stiefel manifold of m× r unitary matrices is denoted by

Vm,r = {U ∈ Cm×r |UHU = Ir},
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where Ir is the identity matrix of dimension r and UH is the conjugate transpose of
U .

The singular value decomposition of a matrix Y ∈ Cm×n is given by

Y =UΣV H , U ∈ Vm,m, V ∈ Vn,n, Σ = diag(σ1, . . . ,σn) ∈ Cm×n,

where σ1 ≥ . . . ≥ σn ≥ 0 are its singular values. It is well known that for r < n, the
rank-r best-approximation to Y w.r.t. the Frobenius norm ‖ · ‖ is given by

Ŷ =U Σ̃V H = Û Σ̂V̂ H ,

where Σ̃ = diag(σ1, . . . ,σr,0, . . . ,0) and

Û =U [Ir 0] ∈ Vm,r, V̂ =V [Ir 0] ∈ Vn,r, Σ̂ = diag(σ1, . . . ,σr).

For a given step size τ we use the notation tk = kτ for any k with 2k ∈ N0.

2 The projector-splitting integrator

In this section, we briefly review dynamical low-rank approximations as introduced
in [9, 11]. We start with the following problem: Given some time-dependent matrix
A(t), find a low-rank approximation Â(t) ∈Mr such that

Â(t)≈ A(t) for all t ∈ [0,T ].

In [9], this is done by imposing that Â′(t), which is contained in the tangent space
TÂ(t)Mr to Mr at Â(t), satisfies

‖Â′(t)−A′(t)‖= min! (2)

For an initial value Â(0) = Â0 ∈Mr, condition (2) is equivalent to a Galerkin condi-
tion. In fact, then Â solves the evolution equation

Â′(t) = P
(
Â(t)

)
A′(t), Â(0) = Â0 ∈Mr, (3)

where P
(
Â(t)

)
denotes the orthogonal projection onto the tangent space TÂ(t)Mr. A

natural choice for the initial value Â0 of (3) is the rank-r best approximation to A(0).
For all Â ∈Mr there is a non-unique low-rank factorization

Â = Û ŜV̂ H , Û ∈ Vm,r, V̂ ∈ Vn,r, Ŝ ∈ Cr×r invertible, (4)

which allows us to write the orthogonal projector P(Â) onto TÂ(t)Mr as

P(Â)Z = ZV̂V̂ H −ÛÛHZV̂V̂ H +ÛÛHZ, (5)

cf., [9, Lemma 4.1]. The dynamical low-rank integrator constructed in [11] is based
on a Lie-Trotter splitting, applied to the differential equation (3) with P(Â) given in
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(5). Given a step size τ > 0, the first integration step consists of solving the three
subproblems

Y ′α = A′V̂αV̂ H
α , Yα(0) = Â0, (6a)

Y ′
β
=−ÛβÛH

β
A′V̂βV̂ H

β
, Yβ (0) = Yα(τ), (6b)

Y ′γ = ÛγÛH
γ A′, Yγ(0) = Yβ (τ). (6c)

As shown in [11, Lemma 3.1], all subproblems (6) can be solved exactly on Mr when
the additional conditions

V̂ ′α(t) = 0, Û ′
β
(t) = 0, V̂ ′

β
(t) = 0, Û ′γ(t) = 0,

are imposed. Then, the solutions

Yη(t) = Ûη(t)Ŝη(t)V̂η(t)H , η ∈ {α,β ,γ},

can be written in terms of the increment ∆A = A(τ)−A(0),

Ûα(t)Ŝα(t) = Ûα(0)Ŝα(0)+∆AV̂α(0), V̂α(t) = V̂α(0),

Ŝβ (t) = Ŝβ (0)−Ûβ (0)
H

∆AV̂β (0), Ûβ (t) = Ûβ (0), V̂β (t) = V̂β (0),

V̂γ(t)Ŝγ(t)H = V̂γ(0)Ŝγ(0)H +∆AHÛγ(0), Ûγ(t) = Ûγ(0).

The integration process is continued with initial value Yγ(τ)≈ Â(τ) in the next time
step. A single time step of the resultant projector-splitting integrator is presented in
Algorithm 1, version (α).

The above approach is also suitable for the construction of low-rank approxima-
tions to the unknown solution A(t) of the first-order differential equation

A′(t) = F
(
A(t)

)
, A(0) = A0 ∈ Cm×n, t ∈ [0,T ]. (7)

As explained in [11, Section 3.4], the only change affects the replacement of the
increment ∆A in Algorithm 1 in a way resembling the explicit Euler method,

∆A = τF(Â0),

see version (β ). The global error of this first-order scheme depends on the quality of
the approximation of the exact solution A(t) of (7) by a low-rank matrix (for t ∈ [0,T ])
and on properties of the right-hand side F , cf. [8].

Remark 1 The computational complexity of Algorithm 1 is dominated by the two
products ∆AV̂ and ∆AHÛ in lines 7 and 11, respectively, the two QR-decompositions
of matrices of dimension m× r and n× r, respectively, and the three matrix-matrix
products in lines 8, 10, and 11. For an efficient implementation, it is important to
compute the products ∆AV̂ and ∆AHÛ without computing ∆A explicitly.
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Algorithm 1 Projector-splitting integrator for low-rank approximations to
(α) given time-dependent matrices A(t) or (β ) the solution of (7), single time step
1: function PRSI(Û , Ŝ,V̂ ,r,∆A)
2: {input: factors Û , Ŝ,V̂ of rank-r approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,r , V̂ ∈ Vn,r ,
3: Ŝ ∈ Cr×r , functions for matrix-vector multiplication with ∆A and ∆AH ,
4: (α) ∆A = A(t + τ)−A(t),
5: (β ) ∆A = τF(Â) }
6:
7: K̃ = ∆AV̂
8: K = Û Ŝ+ K̃
9: compute QR-decomposition Û Ŝ = K

10: Ŝ = Ŝ−ÛH K̃
11: L = V̂ ŜH +∆AHÛ
12: compute QR-decomposition V̂ ŜH = L
13:
14: return Û , Ŝ,V̂ ,L
15: {output: factors Û , Ŝ,V̂ of rank-r approximation Â = Û ŜV̂ H ≈ A(t + τ) and L = V̂ ŜH (optional),
16: with Û ∈ Vm,r , V̂ ∈ Vn,r , Ŝ ∈ Cr×r}
17: end function

3 Dynamical low-rank approximation of second-order matrix ODEs

Next, we devise a low-rank integrator for second-order matrix differential equations
of the form (1). A straightforward practice would be to rewrite (1) as a first-order
system [

A
B

]′
=

[
B

F(A)

]
,

[
A(0)
B(0)

]
=

[
A0
B0

]
, (8)

and to apply Algorithm 1. However, numerical tests showed that the quality of the
numerical solutions deteriorates over time, possibly caused by the neglection of the
structure of the the right-hand side of (8).

We thus use a different ansatz and first split (8) into[
A
B

]′
=

[
0

F(A)

]
+

[
B
0

]
, (9)

and then apply a standard Strang splitting. Solving the subproblems exactly leads to
the well-known leapfrog or Störmer-Verlet scheme,

Bk+ 1
2
= Bk +

τ

2
F(Ak), (10a)

Ak+1 = Ak + τBk+ 1
2
, (10b)

Bk+1 = Bk+ 1
2
+

τ

2
F(Ak+1), (10c)

cf. [5, Section 1.5]. If approximations to A′ = B are not required at full time steps,
then the most economic implementation of the leapfrog scheme is to combine (10a)
and (10c) via

Bk+ 1
2
= Bk− 1

2
+ τF(Ak), k ≥ 1. (10d)
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For k = 0, B 1
2

is computed from (10a).
A low-rank integrator for the second-order equation (1) is now designed by ap-

proximating the exact flows of the subproblems in (9) by their respective low-rank
flows using the projector-splitting method [11]. First, we determine initial values Â0
and B̂0 as rank-rA and rank-rB best-approximations to A0 and B0, respectively. Af-
ter k time steps, the low-rank approximations Âk ≈ A(tk) and B̂k− 1

2
≈ B(tk− 1

2
) are

represented by (non-unique) decompositions

Âk = ÛkŜkV̂ H
k ∈MrA , B̂k− 1

2
= T̂k− 1

2
R̂k− 1

2
Ŵ H

k− 1
2
∈MrB ,

where

Ûk ∈Vm,rA , V̂k ∈Vn,rA , Ŝk ∈CrA×rA , T̂k− 1
2
∈Vm,rB , Ŵk− 1

2
∈Vn,rB , R̂k− 1

2
∈CrB×rB .

The low-rank matrices Âk+1 ≈ A(tk+1) and B̂k+ 1
2
≈ B(tk+ 1

2
) are obtained by approxi-

mating the solutions of (9) by applying Algorithm 1 to

B̃′k− 1
2
(σ) = F(Âk), B̃k− 1

2
(0) = B̂k− 1

2
, σ ∈ [0,τ], k ≥ 1, (11a)

Ã′k(σ) = B̂k+1/2, Ãk(0) = Âk, σ ∈ [0,τ], k ≥ 0, (11b)

where for k = 0, we have

B̃′0(σ) = F(Â0), B̃0(0) = B̂0, σ ∈ [0,
τ

2
]. (11c)

Since the exact solutions of (11) read

B̃k− 1
2
(τ) = B̂k− 1

2
+ τF(Âk), (12a)

Ãk(τ) = Âk + τB̂k+ 1
2
, (12b)

B̃0(
τ

2
) = B̂0 +

τ

2
F(Â0), (12c)

the increments ∆Bk− 1
2

and ∆Ak are given explicitly as

∆Bk− 1
2
= B̃k− 1

2
(τ)− B̃k− 1

2
(0) = τF(Âk), k ≥ 1,

∆Ak = Ãk(τ)− Ãk(0) = τB̂k+ 1
2
, k ≥ 0,

∆B0 = B̃0(
τ

2
)− B̃0(0) =

τ

2
F(Â0).

The resulting dynamical low-rank integrator for second-order matrix ODEs will
be named ST-LO method, for Strang splitting combined with the Lubich-Oseledets
integrator. It is presented in Algorithm 2.

There is a close relationship between the ST-LO and the leapfrog schemes:

Theorem 2 If for all t ∈ [0,T ] the exact solutions A(t) and B(t) of the subproblems
(9) with rankA0 = rA, rankB0 = rB stay of rank rA and rB, respectively, then the solu-
tions of the ST-LO and leapfrog schemes coincide.
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Proof The ST-LO scheme is derived by exchanging the exact flows of the leapfrog
scheme by their corresponding low-rank flows. Since the exact flows preserve the
rank by assumption, the application of the exactness property of the projector-split-
ting integrator [11, Theorem 4.1] yields the desired result. ut

Algorithm 2 DLR integrator for second-order ODEs (1), ST-LO scheme, single time
step
1: function ST-LO(τ,F,Û , Ŝ,V̂ , T̂ , R̂,Ŵ ,rA,rB)
2: {input: step size τ , right-hand side F ,
3: factors Û , Ŝ,V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,rA , V̂ ∈ Vn,rA ,
4: Ŝ ∈ CrA×rA ,
5: factors T̂ , R̂,Ŵ of rank-rB approximation B̂ = T̂ R̂Ŵ H ≈ A′(t− τ

2 ) with T̂ ∈ Vm,rB ,
6: Ŵ ∈ Vn,rB , R̂ ∈ CrB×rB}
7:
8: B̂-step: T̂ , R̂,Ŵ ,L = PRSI

(
T̂ , R̂,Ŵ ,rB,∆B

)
where ∆B = τF(Û ŜV̂ H)

9:
10: Â-step: Û , Ŝ,V̂ = PRSI

(
Û , Ŝ,V̂ ,rA,∆A

)
where ∆A = τT̂ LH

11:
12: return Û , Ŝ,V̂ , T̂ , R̂,Ŵ
13: {output: factors Û , Ŝ,V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t + τ) with Û ∈ Vm,rA ,
14: V̂ ∈ Vn,rA , Ŝ ∈ CrA×rA ,
15: factors T̂ , R̂,Ŵ of rank-rB approximationB̂ = T̂ R̂Ŵ H ≈ A′(t + τ

2 ) with T̂ ∈ Vm,rB ,
16: Ŵ ∈ Vn,rB , R̂ ∈ CrB×rB}
17: end function

Algorithm 3 DLR integrator for second-order ODEs (1), ST-LO VAR scheme, single
time step
1: function ST-LO VAR(τ,ω2

3 ,F,Û , Ŝ,V̂ , T̂ , R̂,Ŵ ,rA,rB)
2: {input: step size τ , weight ω2

3 , right-hand side F ,
3: factors Û , Ŝ,V̂ of rank-rA approximation Â = Û ŜV̂ H ≈ A(t) with Û ∈ Vm,rA , V̂ ∈ Vn,rA ,
4: Ŝ ∈ CrA×rA ,
5: factors T̂ , R̂,Ŵ of rank-rB approximation B̂ = T̂ R̂Ŵ H ≈ A′(t) with T̂ ∈ Vm,rB , Ŵ ∈ Vn,rB ,
6: R̂ ∈ CrB×rB}
7:
8: B̂-step: T̂ , R̂,Ŵ ,L = PRSI

(
T̂ , R̂,Ŵ ,rB,∆B

)
where ∆B = τ

2 F(Û ŜV̂ H)
9:

10: Â-step: Û , Ŝ,V̂ = PRSI
(
Û , Ŝ,V̂ ,rA,∆A

)
where ∆A = ω2

3 τT̂ LH

11:
12: B̂-step: T̂ , R̂,Ŵ = PRSI

(
T̂ , R̂,Ŵ ,rB,∆B

)
where ∆B = τ

2 F(Û ŜV̂ H)
13:
14: return Û , Ŝ,V̂ , T̂ , R̂,Ŵ
15: {output: factors Û , Ŝ,V̂ of rank-rA approximation to Â = Û ŜV̂ H ≈ A(t + τ) with Û ∈ Vm,rA ,
16: V̂ ∈ Vn,rA , Ŝ ∈ CrA×rA ,
17: factors T̂ , R̂,Ŵ of rank-rB approximation to B̂ = T̂ R̂Ŵ H ≈ A′(t + τ) with T̂ ∈ Vm,rB ,
18: Ŵ ∈ Vn,rB , R̂ ∈ CrB×rB}
19: end function
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Clearly, in general the ST-LO scheme does not inherit the exactness property
of the projector-splitting integrator, because of the splitting error. A detailed error
analysis of the ST-LO scheme will be presented in Section 4.

In the same way, a variant of the ST-LO scheme is based on the non-staggered
version of the leapfrog scheme (10), procuring approximations to A′ on the same
time-grid as approximations to A. Here, the function F has to be evaluated twice in
each time step so that the computational effort is larger when compared to the stan-
dard ST-LO scheme. In this version we also allow for a rescaled step size in the A-step
(10b). As we will see later, this will be an important detail in the construction of dy-
namical low-rank integrators for stiff second-order matrix differential equations. The
resulting method is called the ST-LO VAR scheme. It is described in Algorithm 3.

4 Error analysis of ST-LO

In the following, we analyze the error of the ST-LO scheme given in Algorithm 2
when applied to (1) with a right-hand side F which is Lipschitz-continuous with a
moderate Lipschitz constant L, i.e., F satisfies

‖F(Y )−F(Ỹ )‖ ≤ L‖Y − Ỹ‖ for all Y,Ỹ ∈ Cm×n. (13)

Our analysis relies on the error analysis in [8] for the projector-splitting integrator.
Recall that the ST-LO scheme is derived from the leapfrog scheme (10), which is

stable under the CFL condition, cf. [7],

τ
2 ≤ τ

2
CFL =

4
L
. (14)

We therefore assume, that the step size τ always satisfies (14).

Assumption 1 The exact solution A : [0,T ]→ Cm×n of (1) is in C 4([0,T ]). Further-
more, there are low-rank approximations XA(t) ∈MrA ,XB(t) ∈MrB such that

A(t) = XA(t)+RA(t), ‖RA(0)‖ ≤ ρA, ‖R′A(t)‖ ≤ ρ
′
A, (15a)

B(t) = A′(t) = XB(t)+RB(t), ‖RB(0)‖ ≤ ρB, ‖R′B(t)‖ ≤ ρ
′
B. (15b)

Additionally, there exist sufficiently large constants γA and γB, such that (15) is also
satisfied for all YA(t),YB(t) ∈ Cm×n with

‖A(t)−YA(t)‖ ≤ γA, ‖B(t)−YB(t)‖ ≤ γB.
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For the approximations Âk ≈ A(tk) and B̂k+ 1
2
≈ B(tk+ 1

2
) computed with the ST-

LO scheme and for Ãk and B̃k− 1
2

given in (12), we define

Ek
A = ‖A(tk)− Âk‖, E

k+ 1
2

B = ‖B(tk+ 1
2
)− B̂k+ 1

2
‖, k ≥ 0, (16a)

Ẽ0
A = 0, Ẽ

1
2

B = ‖B(t 1
2
)− B̃0(t 1

2
)‖, (16b)

Ẽk
A = ‖A(tk)− Ãk−1(τ)‖, Ẽ

k+ 1
2

B = ‖B(tk+ 1
2
)− B̃k− 1

2
(τ)‖, k ≥ 1, (16c)

Ê0
A = E0

A, Ê
1
2

B = ‖B̃0(t 1
2
)− B̂ 1

2
‖, (16d)

Êk
A = ‖Ãk−1(τ)− Âk‖, Ê

k+ 1
2

B = ‖B̃k− 1
2
(τ)− B̂k+ 1

2
‖, k ≥ 1. (16e)

By the triangle inequality, we have

E
k+ 1

2
B ≤ Ẽ

k+ 1
2

B + Ê
k+ 1

2
B and Ek+1

A ≤ Ẽk+1
A + Êk+1

A , k ≥ 0. (17)

The analysis of the ST-LO scheme is organized in two lemmas and a theorem.

Our first result are coupled, recursive inequalities for Ek+1
A and E

k+ 1
2

B .

Lemma 3 Let A : [0,T ]→Cm×n with A∈C 4([0,T ]) be the exact solution of (1) with
initial values A0,B0 ∈ Cm×n and B = A′. Further, denote by B̂k− 1

2
and Âk the low-

rank approximations obtained by the ST-LO scheme after k steps started with initial
values Â0 ∈MrA , B̂0 ∈MrB . Then, the errors introduced in (16) satisfy

E
1
2

B ≤ E0
B +

τ

2
LE0

A + Ê
1
2

B +CLF
B τ

2, (18a)

E1
A ≤ (1+

τ2

2
L)E0

A + τE0
B + τÊ

1
2

B + Ê1
A +(CLF

A +CLF
B )τ3 (18b)

and for k ∈ N we have

E
k+ 1

2
B ≤ E

k− 1
2

B + τLEk
A + Ê

k+ 1
2

B +CLF
B τ

3, (19a)

Ek+1
A ≤ (1+ τ

2L)Ek
A + τE

k− 1
2

B + τÊ
k+ 1

2
B + Êk+1

A +(CLF
A +CLF

B τ)τ3. (19b)

The constants CLF
A and CLF

B are given explicitly as

CLF
A = max

t∈[0,T ]

1
24
‖A′′′(t)‖, CLF

B = max
{

max
t∈[0, τ

2 ]

1
8
‖A′′′(t)‖, max

t∈[0,T ]

1
24
‖A(4)(t)‖

}
.

Proof By Taylor series expansion, we have

‖A(tk+1)−
(
A(tk)+ τB(tk+ 1

2
)
)
‖ ≤CLF

A τ
3, k ≥ 0, (20a)

‖B(tk+ 1
2
)−
(
B(tk− 1

2
)+ τF(A(tk))

)
‖ ≤CLF

B τ
3, k ≥ 1. (20b)
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as well as

‖B(t 1
2
)−
(
B0 +

τ

2
F(A0)

)
‖ ≤CLF

B τ
2. (20c)

Hence for k = 0, we have

Ẽ
1
2

B ≤ ‖B0 +
τ

2
F(A0)− (B̂0 +

τ

2
F(Â0))‖+CLF

B τ
2

≤ E0
B +

τ

2
LE0

A +CLF
B τ

2 (21)

by (20c), (12c), and (13). Employing (17) shows (18a). Using (18a) and (20a) yields

Ẽ1
A ≤ ‖A0 + τB(

τ

2
)− (Â0 + τB̂ 1

2
)‖+CLF

A τ
3

≤ E0
A + τE

1
2

B +CLF
A τ

3

≤
(
1+

τ2

2
L
)
E0

A + τE0
B + τÊ

1
2

B +(CLF
A +CLF

B )τ3. (22)

Together with (17) this proves (18b).
For k ≥ 1 we follow the same steps. We have by (12), (13), and (20b)

Ẽ
k+ 1

2
B ≤ E

k− 1
2

B + τLEk
A +CLF

B τ
3 (23)

and by (17) thus (19a). Lastly, we have by (20a), using again (12), and inserting (19a)

Ẽk+1
A ≤ Ek

A + τE
k+ 1

2
B +CLF

A τ
3

≤ Ek
A + τ

(
E

k− 1
2

B + τLEk
A + Ê

k+ 1
2

B +CLF
B τ

3
)
+CLF

A τ
3

= (1+ τ
2L)Ek

A + τE
k− 1

2
B + τÊ

k+ 1
2

B +(CLF
A +CLF

B τ)τ3, (24)

which together with (17) completes the proof. ut

In [8, Section 2.6.1] it was shown that the error between a time-dependent matrix
A(t) satisfying (15a) and the rank-rA approximation Y1 ≈ A(τ) computed by Algo-
rithm 1 started from XA(0) ∈MrA is bounded by

‖A(τ)−Y1‖ ≤ ρA +7τρ
′
A. (25)

In the next lemma we eliminate Ê
k+ 1

2
B and Êk+1

A from (19) by using (25).

Lemma 4 Let the assumptions of Lemma 3 be satisfied. Furthermore, assume that

E0
A ≤ ρA, E0

B ≤ ρB. (26)
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If Assumption 1 is fulfilled, then for all k such that tk+4 ≤ T , the errors E
k+ 1

2
B and

Ek+1
A defined in (16) satisfy

E
k+ 1

2
B ≤ ρB +7tk+1ρ

′
B + τL

k

∑
j=0

E j
A +CLF

B τ
2(1+ tk), (27a)

Ek+1
A ≤ ρA + tk+1ρB + τL

k

∑
j=0

tk+1− jE
j
A +7tk+1ρ

′
A +

7
2

tk+1tk+2ρ
′
B

+

(
(CLF

A +CLF
B )tk+1 +

1
2

tktk+1CLF
B

)
τ

2,

(27b)

respectively.

Proof The proof is accomplished by induction on k. First, we show that the errors

Ẽk+1
A and Ẽ

k+ 1
2

B are uniformly bounded by suitable constants γA and γB. Then the
auxiliary solutions Ã and B̃ are sufficiently close to the exact solutions A and B, and
hence they admit representations like (15) by Assumption 1. Since the approxima-
tions Â and B̂ are low-rank approximation to Ã and B̃ computed by Algorithm 1
started from initial values of rank rA and rB, respectively, the local errors Êk+1

A and

Ê
k+ 1

2
B are bounded by

Ê
1
2

B ≤
7
2

τρ
′
B, Ê

k+ 1
2

B ≤ 7τρ
′
B, k ≥ 1, Êk+1

A ≤ 7τρ
′
A, k ≥ 0, (28)

cf. (25). The estimate on the global error then follows from (17).
For k = 0 we deduce from (21) and (26)

Ẽ
1
2

B ≤ ρB +
τ

2
LρA +CLF

B τ
2.

By Assumption 1, for γB ≥ ρB +
τ

2 LρA +CLF
B τ2, it holds by (18a) and (28) that

E
1
2

B ≤ ρB +
τ

2
LE0

A +7
τ

2
ρ
′
B +CLF

B τ
2

< ρB + τLE0
A +7t1ρ

′
B +CLF

B τ
2, (29)

which is (27a) for k = 0.
Likewise, by (22), (26), and (29) we have

Ẽ1
A ≤ ρA + τ

2LE0
A + τρB +7τ

2
ρ
′
B +(CLF

A +CLF
B )τ3. (30)

Choosing γA as the right-hand side of (30), by Assumption 1 and (28) we deduce

E1
A ≤ ρA + τ

2LE0
A + t1ρB +7t1ρ

′
A +

7
2

t1t2ρ
′
B +(CLF

A +CLF
B )t1τ

2,

which shows (27b) for k = 0.
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Assuming that (27) holds true for some arbitrary, but fixed k−1 ∈ N0, we now
prove (27). Applying the Gronwall-type Lemma 6 below, we find from (27b) for
j = 1, . . . ,k

E j
A ≤ e

√
Ltk M j

A, (31)

where

M j
A = ρA + t jρB +7t jρ

′
A +

7
2

t jt j+1ρ
′
B +
(
(CLF

A +CLF
B )t j +

1
2

t j−1t jCLF
B
)
τ

2. (32)

By (26), this bound is also valid for j = 0. From (23) and (27a) we obtain

Ẽ
k+ 1

2
B ≤ E

k− 1
2

B + τLEk
A +CLF

B τ
3

≤
(

ρB +7tkρ
′
B + τL

k−1

∑
j=0

E j
A +CLF

B τ
2(1+ tk−1)

)
+ τLEk

A +CLF
B τ

3

= ρB +7tkρ
′
B + τL

k

∑
j=0

E j
A +CLF

B τ
2(1+ tk). (33)

Inserting (31) into (33) for 0≤ tk+4 ≤ T results in constants CB(T ), C̃B(T ) depending
on L,ρB,ρ

′
B and CLF

B such that

Ẽ
k+ 1

2
B ≤CB(T )+ τ

2C̃B(T ).

By Assumption 1 for γB ≥CB(T )+τ2C̃B(T ), (28) shows that Ê
k+ 1

2
B ≤ 7τρ ′B. Thus we

obtain from (33) and (17)

E
k+ 1

2
B ≤ ρB +7tk+1ρ

′
B + τL

k

∑
j=0

E j
A +CLF

B τ
2(1+ tk),

which proves (27a) for all k ∈ N0.
Similarly, using (24) and the induction hypothesis, we get

Ẽk+1
A ≤

(
ρA + tkρB + τL

k−1

∑
j=0

tk− jE
j
A +7tkρ

′
A +

7
2

tktk+1ρ
′
B

+
(
(CLF

A +CLF
B )tk+1 +

1
2

tktk+1CLF
B
)
τ

2
)
+ τ

2LEk
A

+ τ

(
ρB +7tkρ

′
B + τL

k−1

∑
j=0

E j
A +CLF

B τ
2(1+ tk−1)

)
+7τ

2
ρ
′
B +(CLF

A +CLF
B τ)τ3

= ρA + tk+1ρB + τL
k

∑
j=0

tk+1− jE
j
A +7tkρ

′
A +

7
2

tk+1tk+2ρ
′
B

+
(
(CLF

A +CLF
B )tk+1 +

1
2

tktk+1CLF
B
)
τ

2.

(34)
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By employing the bound (31) on E j
A for 0 ≤ tk+4 ≤ T we define constants CA(T ),

CA(T ) depending on L,ρA,ρB,ρ
′
A,ρ

′
B,C

LF
A and CLF

B such that

Ẽk+1
A ≤CA(T )+ τ

2C̃A(T ).

Now let Assumption 1 be fulfilled for some γA ≥ CA(T )+ τ2C̃A(T ). Then we have
Êk+1

A ≤ 7τρ ′A by (28). Finally, we conclude from (34) and (17)

Ek+1
A ≤ ρA + tk+1ρB + τL

k

∑
j=0

tk+1− jE
j
A +7tk+1ρ

′
A +

7
2

tk+1tk+2ρ
′
B

+

(
(CLF

A +CLF
B )tk+1 +

1
2

tktk+1CLF
B

)
τ

2.

This completes the proof. ut

We are now able to prove a global error bound.

Theorem 5 If the assumptions of Lemma 4 are satisfied, then the global errors Ek+1
A

and E
k+ 1

2
B are bounded by

Ek+1
A ≤ e

√
Ltk+1 Mk+1

A ,

where Mk+1
A is given in (32), and

E
k+ 1

2
B ≤ e

√
Ltk M

k+ 1
2

B ,

for

M
k+ 1

2
B = ρB + tk+ 1

2
LρA +7tk+ 1

2
ρ
′
B +

1
2

tktk+1ρ
′
A +
(1

2
tktk+1CLF

A +(1+ tk)CLF
B
)
τ

2,

respectively, as long as tk+4 ≤ T .

Proof The bound for Ek+1
A is a direct consequence of (31) with j = k+1. The bound

for E
k+ 1

2
B is obtained as for Ek+1

A in the proof of Lemma 4, but starting from substi-
tuting (19b) into (19a). ut

The error of the ST-LO scheme is hence a combination of two error contributions:
an error caused by the low-rank approximations, and a time discretization error stem-
ming from the leapfrog scheme. If the low-rank errors ρA,ρB,ρ

′
A and ρ ′B are small,

i.e., the solutions A,B of (1) are well-approximated by low-rank matrices, the time
discretization error dominates.

In the proofs of Lemma 4 and Theorem 5 we used the following Gronwall-type
lemma.
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Lemma 6 Let τ,L ≥ 0 and {Mk}k≥0 a nonnegative, monotonically increasing se-
quence. If the nonnegative sequence {Ek}k≥0 satisfies

Ek ≤Mk +Lτ
2

k−1

∑
j=0

(k− j)E j,

then

Ek ≤Mk eτk
√

L .

Proof Define εk := Ek/Mk for all k ≥ 0. The sequence {εk}k≥0 is nonnegative and
satisfies

εk ≤ 1+ τ
2L

k−1

∑
j=0

(k− j)ε j (35)

due to the monotonicity of {Mk}k≥0. The statement then follows from [1, Lemma
3.8]. ut

5 Dynamical low-rank integrator for stiff second-order matrix differential
equations

We now consider semilinear second-order equations of the form

A′′ =−Ω
2
1 A−AΩ

2
2 + f (A), t ∈ [0,T ], A(0) = A0, A′(0) = B0 (36)

with given Hermitian, positive semidefinite matrices Ω1 ∈ Cm×m and Ω2 ∈ Cn×n of
large norm and a Lipschitz continuous function f with moderate Lipschitz constant.
It is well known that explicit methods like the leapfrog scheme (10) require step size
restrictions to ensure stability. Hence the same is true for the ST-LO algorithm, since
it can be viewed as a low-rank counterpart of the leapfrog scheme. Thus we aim at a
scheme which is unconditionally stable (i.e. independent of ‖Ω1,2‖).

For first-order equations, such an integrator was proposed in [12]. However, the
idea in [12] cannot be applied here directly since it relies on the property that the
exact solution of a linear first-order equation with initial value in Mr stays in Mr
for all times. This is in general not true for linear second-order equations, so that
additional considerations are required.

We reformulate (36) into an equivalent first-order problem and split the right-hand
side into a linear and a nonlinear part by introducing weights ωi ≥ 0, i = 1,2,3 with
ω2

1 +ω2
2 +ω2

3 = 1

[
A
B

]′
=

[
B

−Ω 2
1 A−AΩ 2

2 + f
(
A
)]= [ ω2

1 B
−Ω 2

1 A

]
+

[
ω2

2 B
−AΩ 2

2

]
+

[
ω2

3 B
f (A)

]
. (37)
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A natural choice would be ω2
i = 1/3, i = 1,2,3 but a different weighting is also

possible. The split equations can be written as[
A
B

]′
=

[
ω2

1 B
−Ω 2

1 A

]
=

[
0 ω2

1 I
−Ω 2

1 0

][
A
B

]
, (38a)

[
A B
]′
=
[
ω2

2 B −AΩ 2
2
]
=
[
A B
][ 0 −Ω 2

2
ω2

2 I 0

]
, (38b)[

A
B

]′
=

[
ω2

3 B
f
(
A
)] . (38c)

The solution of the linear problems (38a) and (38b) can be expressed in terms of the
matrix exponential

exp
(

t
[

0 ω2
i I

−Ω 2
j 0

])
=

[
cos(ωitΩ j) ω2

i t sinc(ωitΩ j)
−tΩ 2

j sinc(ωitΩ j) cos(ωitΩ j)

]
, j = 1,2. (39)

The full splitting scheme reads[
Â1

B̂1

]
=
(

φ
Ω1
τ
2
◦φ

Ω2
τ
2
◦φ

S
τ ◦φ

Ω2
τ
2
◦φ

Ω1
τ
2

)[Â0

B̂0

]
, (40)

where φ
Ω1
τ
2

and φ
Ω2
τ
2

denote the numerical flows given by Algorithm 1 with step size
τ

2 to the exact solutions of (38a) and (38b), respectively. φS
τ denotes the numerical

flow of the ST-LO VAR scheme, described in Algorithm 3, with right-hand side f .
The overall method (40) is called ST-LOSTIFF.

When approximations at full time steps are dispensable, the last half step φ
Ω1
τ
2

in
(40) can be combined with the first one of the next time step.

6 Conclusion and Outlook

In the present paper, we developed and analyzed dynamical low-rank integrators for
second-order matrix differential equations of the forms (1) or (36), proving second
order convergence in time under reasonable assumptions.

Numerical experiments are reported in [6], where we also discuss implementation
issues. This includes rank-adaptivity, which turns out to be essential for accomplish-
ing the desired accuracy efficiently.
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