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Abstract: Remote sensing techniques are frequently applied for the surveying of remote areas, where
the use of conventional surveying techniques remains difficult and impracticable. In this paper, we
focus on one of the remote glacier areas, namely the Tyndall Glacier area in the Southern Patagonian
Icefield in Chile. Based on optical remote sensing data in the form of multi-spectral Sentinel-2 imagery,
we analyze the extent of different snow and ice classes on the surface of the glacier by means of
pixel-wise classification. Our study comprises three main steps: (1) Labeled Sentinel-2 compliant
data are obtained from theoretical spectral reflectance curves, as there are no training data available
for the investigated area; (2) Four different classification approaches are used and compared in
their ability to identify the defined five snow and ice types, thereof two unsupervised approaches
(k-means clustering and rule-based classification via snow and ice indices) and two supervised
approaches (Linear Discriminant Analysis and Random Forest classifier); (3) We first focus on the
pixel-wise classification of Sentinel-2 imagery, and we then use the best-performing approach for a
multi-temporal analysis of the Tyndall Glacier area. While the achieved classification results reveal
that all of the used classification approaches are suitable for detecting different snow and ice classes
on the glacier surface, the multi-temporal analysis clearly reveals the seasonal development of the
glacier. The change of snow and ice types on the glacier surface is evident, especially between the
end of ablation season (April) and the end of accumulation season (September) in Southern Chile.

Keywords: remote sensing; glacier monitoring; snow mapping; classification; multi-temporal; multi-
spectral; change detection; Sentinel-2

1. Introduction

Remote sensing surveying techniques are of great advantage for various applications
and hence are widely used. On the one hand, they allow for an investigation of large areas
in a short time and with less effort than conventional terrestrial surveying methods. On
the other hand, as the available set of remote sensing sensors in space is growing, so is the
field of possible applications. Among the latter, a particular focus is given to land cover
classification, which can be achieved through the evaluation of many different surface
properties. In this paper, we study one very remote area, where it would cost an inefficiently
high effort to survey with terrestrial approaches. The Campo de Hielo Patagonico Sur
(CHPS; also called Southern Patagonian Ice Field) is an icefield in Southern Patagonia
between Chile and Argentina. It is the world’s second-largest contiguous extrapolar icefield
and the second-largest icefield in the Southern hemisphere after Antarctica [1]. Research
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in this remote area is still difficult in general as the area is hardly accessible for terrestrial
on-site measurements. Consequently, remote sensing was used in the past years to provide
access to investigate the area [2].

Due to its large extent, the surveying of ice masses in the CHPS has been of great
importance to understand its development over the past and especially recent years to
understand the impact of climate change [3,4]. The CHPS is the largest freshwater reservoir
in South America [1], providing fresh water to a large part of the dry Patagonian Argentina.
The ice mass fed 154 major outlet glaciers until 2011 [5]. Some studies were already carried
out on the development of the glacier extent and mass balance through a combination of
digital elevation models and optical data [1,6]. However, apart from the knowledge of
the glacier extent, the understanding of the land cover types (i.e., the snow and ice types)
of the glaciers is of significance, as the variability of seasonal snow cover is an important
parameter in the climate system. The type of snow and ice cover of a certain region gives
information not only about energy and moisture budgets within the glacier but also is an
indicator for surface temperature and precipitation changes [7].

1.1. Contribution

In the scope of our study, the land cover composition on the glacier surface is defined
through classification of the snow and ice types on the surface of the glaciers. To investigate
the change in glacier extent and surface composition, an evaluation of a time series of
specific years is conducted.

This paper extends our previous work [8], where we rely on a pixel-wise classification
of Sentinel-2 data with respect to different snow and ice classes. The straightforward
approach for this is given by a supervised classification [9]. However, no reference data
(i.e., training examples) are available for the different snow and ice cover types in the
investigated area. Consequently, suitable reference data need to be obtained, for which
we rely on theoretical knowledge [10] to simulate labeled Sentinel-2 compliant data from
densely sampled spectral reflectance curves representing different snow and ice cover
types [11–13]. On this basis, we apply four different classification approaches, thereof two
unsupervised approaches (k-means clustering [14] and rule-based classification via snow
and ice indices [15,16]) and two supervised approaches (Linear Discriminant Analysis [17]
and Random Forest classifier [18]). In this paper, our contributions are twofold: (1) We
evaluate the given methodology in detail and thereby also deeper analyze the quality of
the given reference data; (2) We conduct a multi-temporal analysis to assess changes in
glacier extent and surface composition.

Accordingly, we first focus on the pixel-wise classification of Sentinel-2 imagery
available for the Tyndall Glacier area, and we then use the best-performing approach for a
multi-temporal analysis. Here, the year 2019 is examined more closely as a representative to
demonstrate the findings of the change in glacier surface composition within one year. The
dates of the end of ablation and end of accumulation time are investigated subsequently.
These dates reveal significant information about the glacier state over the explored timeline
of the years 2016 to 2020. The plausibility of the findings is independently evaluated by
comparison with temperature and precipitation data. These data mainly influence the
glacier’s snow and ice state. Several metrics are applied to demonstrate the classification
findings in an intuitive way: Area statistics for each snow and ice class are calculated.
Finally, the change in glacier snout extent is described.

1.2. Paper Outline

After briefly summarizing related work (Section 1.3), we present the used materials
and methods (Section 2). We first describe the study area (Section 2.1) and the data
used for this case study (Section 2.2). Subsequently, we focus on the applied methodology
(Section 2.3) and summarize the methodology to obtain labeled reference data (Section 2.3.1)
as well as all the algorithms applied for data preprocessing (Section 2.3.2). Furthermore, the
involved classification approaches (Section 2.3.3) and the methods applied in the scope of
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the multi-temporal analysis (Section 2.3.4) are explained. We demonstrate the performance
of the proposed methodology by presenting a selection of achieved experimental results
(Section 3), and we discuss the achieved results in detail (Section 4). Finally, we draw a
conclusion (Section 5) of the findings of the study and we provide an outlook on how to
further optimize the results of classification with respect to snow and ice types on a glacier.

1.3. Background

Glaciers play an important role in their influence on climate. According to the Global
Climate Observing System (GCOS), glaciers belong to the Essential Climate Variables
(ECVs) [19], as glacier changes are key indicators of climate change [20]. Their melting will
significantly impact the sea-level rise over the next 100 years [21].

In the context of glacier monitoring, the multi-temporal analysis of a glacier con-
cerning different snow and ice types is relevant to detect changes in the glacier’s surface
composition. The glacier influences its environment in different ways through melting or
refreezing on the glacier [22,23]. Its surface composition gives information about energy
and moisture budgets within the glacier and is an indicator for surface temperature and
precipitation changes [7]. This influence can be estimated from the extent of snow and ice
classes on the glacier’s surface, which demonstrates the state of melting or refreezing.

To analyze the extent of different snow and ice classes on the glacier’s surface, corre-
sponding target classes for the classification task need to be defined. There exist different
definitions of snow or ice types [24] or glacier zones [25], which have been derived accord-
ing to several physical properties. Therefore, the task of snow and ice type definition is
essential to delimit possibly distinguished classes. The characteristics of the snow and ice
types alter the spectral signature of the different snow and ice types in the multi-spectral
satellite imagery and can therefore be detected through classification of the optical im-
agery [8]. The definitions used in our work rely on the classes used in [10,26–28] and
specified by one spectral signature per class, covering wavelengths between about 0.4 µm
and 1.2 µm. However, these classes do not correspond with other snow and ice class
definitions like, for example, given in [29,30], since definitions there rely on radar systems
and thus different wavelengths, resulting in different characteristics that are revealed by
the acquired data. The classes considered in the scope of our work can be briefly described
as follows:

• Glacier Ice: This ice type is formed when fallen snow is compressed and slowly turning
into ice. This process occurs, where the accumulation of snow and ice exceeds ablation
and where different geological criteria are met. Glacier ice typically exists in the lower
parts of a glacier;

• Refreezing Ice: This ice type occurs when snow falls on already existing ice. The
fresh snow is compressed and becomes part of the glacier. Compared to glacier ice,
refreezing ice typically exists in the upper parts of a glacier and is newer ice;

• Dirty Glacier Ice: This ice type contains small impurities within the ice. These impurities
are mostly bare soil or rock material debris lying on the glacier or adjacent to the glacier,
and even small impurities of soil can cause a different spectral reflectance of the ice;

• Firn: This snow type is characterized by being melted and refrozen. Therefore, it
contains a higher water content than Fresh Snow and more impurities. More specifically,
due to changes in incident solar radiation and temperature, fallen snow melts and
refreezes in certain intervals. Snow that traversed this process once or several times is
commonly defined as Firn [25–29], but sometimes also as Aged Snow [10];

• Fresh Snow: This snow type represents newly fallen snow that did not go through
the process of melting and refreezing. It has lower water content and contains fewer
impurities in comparison to Firn.

Note that these classes only describe transient states of the snow and ice, which can
quickly transform into other states (and therefore classes), depending on several natural
conditions. Some of these classes (Fresh Snow, Firn, Refreezing Ice) might therefore quickly
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lose their distinguishing characteristics that influence the spectral reflectance. However,
these classes are of great interest for glacier monitoring, and the motivation for using these
classes seems intuitive: The deeper the snow depth, the bigger the delay in time to reach
isothermal conditions, which allows the snow cover on the glacier to persist longer [31].
Thus, it prevents more melting and water run-off from the glacier. The separation into
the classes of Fresh Snow and Firn allows statements about the snow wetness, one of the
main physical properties of snow. Snow wetness accordingly allows statements about the
location of zones of accumulation areas on the glacier. Concerning the ice classes, three
classes are distinguished. On the one hand, the performed separation allows reasoning
about the extent of debris cover on the glacier surface. Debris cover influences the glacier
behavior, as surface debris affects the rate of glacier melting [32]. On the other hand,
the separation of Refreezing Ice is relevant, as the refreezing of meltwater may prevent
immediate run-off of meltwater and therefore also influences glacier ablation in another
way than Glacier Ice [33].

Several approaches exist to apply remote sensing techniques for glacier observation.
In this context, numerous studies focused on the development of the glacier extent and
mass balance of glaciers in general. The extent of glaciers was, for instance, investigated
in [34–36]. Mass balance can be estimated through optical remote sensing [37] and the
combination of digital elevation models and optical remote sensing data, which is quite
commonly applied [6,38–40]. Some studies were carried out on the mass balance of the
here investigated Tyndall Glacier [1,41].

Other studies suggest several different approaches for glacier observation. These
can employ different sensors that make use of other segments of the electromagnetic
spectrum. Taylor et al. [42] give an overview of several innovations of usable sensors.
Besides optical remote sensing, SAR remote sensing can be used for snow and ice cover
investigations [43–46], alike thermal infrared remote sensing [47,48].

Using only optical satellite data, a diversity of techniques may be applied for glacier
monitoring. Dietz et al. [10] highlight remote sensing methods considering snow properties
in different wavelengths. Rabatel et al. [49] present three different methods for mass balance
determination: the ELA (equilibrium-line altitude) approach, the albedo approach and
the snow map approach. Few studies focus on the categorization of specific snow and ice
classes on the glacier area. The albedo approach and the snow map approach proposed by
Rabatel et al. [49] belong to these studies. The albedo approach is based on the principle of
the evocation of different spectral responses by distinct snow and ice classes. Therefore,
the specific spectral reflectances of the distinct snow and ice classes need to be known.
Dietz et al. [10] give an overview of the reflectances of different surface types related to
snow cover in a different wavelength. The reflectances of several different glacier states
and locations and other large ice accumulations, where the classification into snow and
ice classes might be advantageous (e.g., Antarctica), vary a lot [50]. Takeuchi et al. [51]
show the specific surface albedo on the Tyndall Glacier, which is also the area of inter-
est in our study, but without an assignment of specific classes to certain albedo values.
Baraka et al. [52] propose a deep learning approach to categorize the classes of clean and
debris-covered ice. Similar works focused on the mapping of debris-covered glaciers [53,54]
or the identification of rock glaciers [55] for Himalayan areas.

Besides supervised approaches, rule-based approaches and unsupervised approaches
are already applied for snow cover classification. Wang and Li [56] use the Normalized
Difference Snow Index (NDSI) in combination with supervised approaches. Another snow
mapping method is based on regional snow maps from daily optical satellite images, where
the first step also consists in calculating the NDSI [49]. Combinations of three different
snow indices to distinguish four classes allow an even more sophisticated separation [15].
Here, a thresholding is applied to assign each pixel to either class. Gupta et al. [57] use
only the NDSI and thresholding. Paul et al. [16] and Zhou et al. [58] use band ratios and
thresholding for glacier extent mapping. DeAngelis et al. [2] use an unsupervised (k-means
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and ISOdata clustering) and supervised (max likelihood) approach for a classification with
respect to the classes of Bare Ice, Debris-covered Ice, Slush, Snow-1, Snow-2 and Shadows.

Overall, many studies have been carried out to map glacier extent and obtain mass
balance. In contrast, a classification into snow and ice classes was rarely realized. Consider-
ing all possibilities optical remote sensing data offer to carry out this study, we decided to
use Sentinel-2 data and four different classification approaches, two supervised and two
unsupervised ones (according to [8]). These approaches are used as the basis for further
investigations and development in our study.

Multi-temporal analyses have been widely used for change detection over several
years in all fields based on remote sensing data. In this regard, many studies (see, for
example, [59,60]) focus on land cover change detection with Sentinel-2 data. Specialized
in the field of study on glacier change detection, Cao et al. [61] conduct a multi-temporal
analysis on the changes in glacier volume, and others on the development of the glacier
extent over time [62,63]. Asokan et al. [64] give an overview of different change detection
techniques in general.

Several studies consider the same area of investigation as in this study [2,65]. The
Patagonian Icefield and its glaciers are of major interest as they have been significantly
retreating for some years [1] and may contribute significantly to sea-level rise [3,4]. We
specifically focus on one glacier in the CHPS, the Tyndall Glacier. It already has been
investigated in particular in several studies [6,41].

2. Materials and Methods

In the scope of this paper, we consider a change detection task relying on the clas-
sification of Sentinel-2 imagery across multiple acquisition times. More specifically, we
address glacier monitoring in terms of analyzing the extent of different snow and ice types
on the glacier surface, as the variability of seasonal snow cover on the glacier surface is an
important parameter in the climate system. First, we present the study area (Section 2.1) for
this case study as well as the input data (Section 2.2) for the classification task. The input
data are multi-spectral satellite data in the form of Sentinel-2 imagery on the one hand and
theoretical spectral signatures for training and evaluation on the other. Subsequently, we
explain the methods applied in the scope of our study (Section 2.3), for which an overview
is provided in Figure 1. As no labeled benchmark dataset exists for the considered classifi-
cation task, we first need to generate reference data matching the given class definitions
(Section 2.3.1). Then, we focus on the preprocessing of the multi-spectral data (Section 2.3.2)
and the classification with respect to the given different snow and ice types (Section 2.3.3),
where the latter is approached with four different classification approaches. Finally, af-
ter the classification of data of several time steps, the results are merged to conduct the
multi-temporal analysis using different methods (Section 2.3.4).

2.1. Study Area

The Southern Patagonian Icefield (Campo de Hielo Sur; CHPS) in Chile and Argentina
stretches from parallels 48◦15′S to 51◦30′S for approximately 350 km [66] and covers an
area of 12,363 km2. The extent of the entire icefield is too large to undertake a study of
precise snow/ice type classification. Hence, in this study, only a subset of the Torres del
Paine National Park is considered. This subset still represents a great physical, climatic and
biological diversity [67]. The national park is a gateway for human interaction with the
otherwise untouched wilderness of major parts of the rest of the CHPS. This national park
comprises the Grey Glacier, the Tyndall Glacier, and the Dickson Glacier. Representatively
for these three glaciers, that are influenced by the same climatic and weather changes, the
snow and ice cover development of the Tyndall Glacier is studied, which is one of the
largest glaciers in the Southern Patagonian Icefield, with an approximate length of 32 km
and an extent of 331 km2 [41]. It is also one of the southernmost glaciers in the CHPS and is
retreating in an enlarging terminus lake. Its location is displayed in Figure 2.
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Figure 1. Overview of the processing steps applied in this study to carry out a classification of
Sentinel-2 imagery and to conduct a multi-temporal analysis on that basis. For each time step, a
pixel-wise classification of multi-spectral data with respect to the given different snow and ice types is
performed. Subsequently, achieved classification results are merged in the scope of a multi-temporal
analysis to assess changes in glacier extent and surface composition. A particular challenge is
given with the fact that no reference data are available for the considered classification task, so that
appropriate reference data have to be generated from theoretical knowledge about corresponding
spectral signatures.

Figure 2. Study area of the Tyndall Glacier, located in the Southern Patagonian Icefield.

2.2. Data

For our study, we use multi-spectral Sentinel-2 data to benefit from the high resolution
of 10 m for at least four of its 13 spectral bands. The scenes are available on the satellite
mission’s download platform (Copernicus Open Access Hub). A time series of several years
should be evaluated to investigate the change of the glacier surface cover over time. At
this stage, the available years 2015 to 2020, when Sentinel-2 was operational, are evaluated.
As for 2015, the area is cloud-covered for most acquisition dates, this year will not be
considered in general. Some considerations already address the best survey timing and
frequency: According to the studies of Karpilo et al. [68], glacier monitoring timing depends
on the different characteristics, which are to be surveyed. To allow the determination of
the glacier’s terminus position (the position of the snout of the glacier), the survey should
be carried out in the late summer. This is the end of the ablation season and when the
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maximum area of snow-free ice is exposed. In the area of the Torres del Paine National Park,
this state coincides with the months of February to April. For determining the magnitude
of seasonal accumulation/ablation (mass balance), the survey should be carried out at the
end of the accumulation season and at the end of the ablation season, respectively. In the
area of the Torres del Paine National Park, the state of the end of accumulation season
coincides with the months of September/October. Monitoring should occur on an annual
basis for the terminus position and naturally biannually for the mass balance. As snow/ice
melt occurs mainly in the Chilean summer (December–February) and continues in the
months after (March/April), mainly these months should be investigated [68]. We need to
adapt the investigated months slightly, as days without cloud cover or at least partial cloud
cover are rare for the study area.

Other data necessary for the classification task are the reference data. These are
obtained from theoretical knowledge, as no ground truth data or adequately labeled
benchmark data are available with respect to the different snow and ice cover types in
the investigated area. According to the studies of Dietz et al. [10], the reflectance values
obtained in a certain wavelength of the sensor’s spectrum are related to the snow/ice cover
type. The corresponding spectral signatures for either class are represented in Figure 3
in Section 2.3.1. These were derived over an area in Northern China, and they reveal that
the classes meaningful for the aim of our study can, in principle, be differentiated well.

Besides relying on theoretical knowledge in the form of these spectral signatures for
the defined classes, we additionally consider the class Water, as we pursue a classification
of the complete scene for the multi-temporal analysis. The class Water is essential, as the
glacier snout retreats in a terminus lake, and we clearly need to determine a transition
from the snow and ice classes present on the glacier to the non-ice class of the lake. A clear
distinguishing by classifying all the classes (including water) allows the inference to the
development of the glacier retreat in the multi-temporal analysis. Hence, labeled reference
data are also necessary for the class of Water. Therefore, another reflectance curve is used
to provide the necessary theoretical data basis for this class.

2.3. Methods

In this section, we first explain how reference data are created for the classification task
(Section 2.3.1). Subsequently, we describe the performed data preprocessing (Section 2.3.2)
and the applied classification approaches (Section 2.3.3). This part of our methodology is
following our previous work [8], yet described in more detail and with additional classifier
settings. Finally, we focus on change detection by applying the classification approaches
on Sentinel-2 data of the study area across multiple time steps, as this allows for a multi-
temporal analysis in terms of change detection with respect to glacier extent and surface
composition (Section 2.3.4).

2.3.1. Generation of Reference Data

As in this case, the study area is inaccessible to terrestrial surveys in a reasonable effort,
no ground truth data are available. Suitable reference data are therefore obtained from
theoretical knowledge according to a methodology described in our previous work [8]. For
the predefined target classes, we take into account spectral signatures defined according
to [10,26] for the classes of interest for an area in Northern China (Figure 3).

Relying on this theoretical knowledge in the form of a spectral signature per snow/ice
cover type as reference, we assume that a transfer to our study area can be made by
comparing measured spectral signatures to this reference and accordingly selecting sim-
ilar samples as training data. However, the measured signatures are acquired with the
Sentinel-2 Multi-Spectral Instrument (S2-MSI), thus represented by 13 reflectance values
corresponding to the 13 given spectral bands. Consequently, we need to simulate labeled
Sentinel-2 compliant data from the reference signatures of the different snow and ice cover
types. To do so, we apply an interpolation of the reference signatures to obtain the spectral
reflectance curves (SRCs) with values for steps of 1 nm in wavelength. Subsequently, the
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spectral response functions (SRFs) of the S2-MSI and the derived SRCs are used to calculate
the weighted mean of the spectral reflectance values (SRs) per class per band. As a result,
we get one Sentinel-2 compliant spectral signature as reference for each of the five classes
of interest (i.e., Glacier Ice, Refreezing Ice, Dirty Glacier Ice, Firn and Fresh Snow).

As one Sentinel-2 compliant spectral signature per class does not reflect the whole
variance of spectral values within one class, the creation of a bigger dataset is necessary
regarding the training of a supervised classification approach. For this purpose, we focus
on selecting similar samples from our study area via the Nearest-Neighbor (NN) algorithm.

In the next step, training data (Training Areas = TAs) and test data (Control Areas = CAs)
are created to obtain a non-committed result in the evaluation of classification results. To set
up the TAs and CAs, independent Regions Of Interest (ROIs) are selected manually on the
glacier area, based on the data created through the NN algorithm and according to standard
criteria like representativeness and spectral variability. As for the classification of full scenes
of the glaciers, the class Water is added, labeled reference data are also necessary for this
class and generated accordingly from a given spectral reflectance curve [69].
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Figure 3. Spectral signatures for snow and ice classes [8], cf. [10].

2.3.2. Preprocessing

Suitable Sentinel-2 imagery of our study area is selected by choosing the least-cloudy
scene for each month of the year 2019 and the selected months lying in the ablation or accu-
mulation time of the years 2016 to 2020. No scene is chosen for a month if the cloud cover
is >50% in the study area for all scenes of the month. When using Sentinel-2 satellite data,
some preprocessing steps are required concerning the data. First, an atmospheric correction
via the Sen2Cor software is applied according to [70], which involves the following steps:

• Look-Up-Table (LUT) preparation;
• retrieval of Aerosol Optical Thickness (AOT);
• retrieval of Water Vapour (WV);
• cirrus removal; and
• the retrieval of the corresponding surface reflectance.

Next, we apply an image enhancement for each band of the multi-spectral imagery,
that is, for each image in the corresponding image stack. For that purpose, values that lie
below or above the boundary 1%-percentile are cropped and mapped to the percentile’s
value corresponding to the considered band. Then, the resulting values for each band are
scaled to a range of 0% to 100%. Finally, a resampling to a resolution of 10 m is applied for
those Sentinel-2 bands with lower resolution.

As only the glacier itself is relevant for our study, while the area surrounding the
glacier is not of particular interest, a corresponding image mask is created via manual
annotation. Furthermore, in some scenes, shadow areas exist on the glacier. These areas
are discarded by applying a shadow mask created automatically via transformation to
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another color representation [71] and subsequent clustering. Since different scenes can have
slightly different viewing angles and therefore shadows, such masks are created for two
different scenes that show the maximal extent of shadows and are combined subsequently.
Hence, all possible shadow extents are excluded by one mask that can be applied to all
investigated scenes.

2.3.3. Classification

For a pixel-wise classification of the given Sentinel-2 data with respect to the different
snow and ice classes, we test four different classification approaches. On the one hand, we
involve two unsupervised approaches represented by a standard k-means clustering and
a rule-based classification via snow and ice indices. On the other hand, we involve two
supervised approaches represented by Linear Discriminant Analysis (LDA) and Random
Forest (RF) classifiers.

For the k-means clustering, the parameter k is selected as a suitable number of cen-
troids [14] derived experimentally for the given classification task. The obtained clusters
after the clustering step are assigned to the predefined classes (Section 1.3) based on their
Euclidean distance to the respective reference spectra.

For a rule-based classification approach, different spectral indices to separate between
different snow cover classes were used [15]. These indices are the Normalized Difference
Snow Index (NDSI), the Normalized Difference Glacier Index (NDGI) and the Normalized
Difference Snow Ice Index (NDSII):

NDSI =
GREEN − SWIR
GREEN + SWIR

(1)

NDGI =
GREEN − RED
GREEN + RED

(2)

NDSII =
GREEN − NIR
GREEN + NIR

. (3)

After calculating these indices, thresholds are applied to separate the data for the classes [15].
Suitable thresholds are chosen experimentally, since the thresholds vary with different
sensors and seasons. To compare the thus achieved results with the other classification ap-
proaches, we need to adapt the class definitions used in [15] towards our predefined classes.

For the LDA classifier, we assume that each of the classes is characterized by a mean
vector µi and the same covariance matrix Σ. Gaussian distribution parameters can then be
estimated for each class during the training relying on training examples. By maximizing
the likelihood, a label can be assigned to each data point to be classified.

The RF classifier [18] relies on the idea of strategically generating an ensemble of
decision trees via bootstrap aggregating: A number of weak learners represented by
decision trees are trained independently from each other on subsets of the training data,
which are randomly drawn with replacement. For a new sample to be classified, each
decision tree casts a vote for one of the defined classes, and the majority vote across the
individual votes is typically used for a robust class prediction. In contrast to the other
classifiers involved in our study, the RF classifier relies on internal hyperparameters. In this
study, we particularly pay attention to the hyperparameters represented by the number M
of decision trees and the maximum tree depth MaxD of each decision tree, while further
hyperparameters (e.g., the minimum allowable number nmin of training examples for a tree
node to be split or the number na of active variables to be used for the test in each tree node)
are selected as default values according to the most commonly used implementations. The
RF’s hyperparameters are optimized with a grid search on a suitable raster of values for
the involved free hyperparameters.

Among all classification approaches, the supervised ones are trained on exemplary
datasets (see Section 2.3.1), while each classification approach provides a classification map
for the considered scene for every selected time step.
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2.3.4. Multi-Temporal Analysis

For the multi-temporal analysis, all preprocessing steps as described above are carried
out accordingly for all time steps to be investigated. Thus, we get a pixel-wise classification
result per time step, and a comparison of these classification maps allows reasoning about
changes in glacier extent and surface composition.

Several methods are applied to investigate the change detection, that occurs in the
comparison of classification results derived for different time steps. On the one hand,
land cover area statistics are calculated for each time step and compared. On the other
hand, as especially the glacier snout reveals how much the glacier might have declined, the
glacier edge is evaluated through automatic comparison of classification results achieved
for multiple time steps. Overlaying the classification results of each year, the end of the
glacier snout can be detected, separating the different ice classes from the class Water where
the glacier ends in the terminus lake. For this purpose, the type of ice class does not need
to be specified as the type of ice covering the glacier snout varies over the years.

To evaluate the plausibility of the findings of the multi-temporal analysis, temperature
and precipitation data are considered for the survey times of the study. These weather
data have a direct influence on the snow and ice cover classes present on the glacier. The
understanding of the weather data is crucial to the interpretation of snow and ice class
development on the glacier surface. Weather data are derived from the EXPLORADOR
CLIMÁTICO [72] (weather data website) for every day of the year and averaged to a
monthly mean. The weather station is located at a height of 345 m a.s.l. It lies in the lower
part of the glacier, which stretches from 300 to 1500 m a.s.l. [73]. The equilibrium line lies at
627 m a.s.l. [2]. The variation of the temperature and precipitation in higher regions of the
glacier can therefore not be considered in this study.

3. Results

After describing the used data subsets in detail (Section 3.1), we first focus on analyzing
the quality of the used reference data (Section 3.2). Subsequently, we present the achieved
classification results for glacier monitoring in terms of determining different snow and ice
types on the glacier surface (Section 3.3). Finally, we present the results achieved for the
multi-temporal analysis in terms of describing the development of the glacier over time
(Section 3.4). Please note that the class Water is only involved to allow a good distinguishing
of the glacier snout, while all other evaluation specifically addresses the determination of
the extent of different snow and ice classes on the glacier surface.

3.1. Used Data Subsets

In this study, we use two differently sized sample subsets of the glacier area. The first
subset, in the following referred to as S , displays a small selected area on the glacier, chosen
with the criteria to include all five defined snow and ice classes. This subset S is used for
testing purposes regarding the different classification approaches in a first step. In a next
step, we use a subset comprising the whole glacier area, in the following referred to as
STyndall, to conduct the multi-temporal analysis. With this subset STyndall, we examine the
overall glacier development with special attention on the glacier snout. Figure 4 displays
the extent of the two subsets in Sentinel-2’s Red-Green-Blue (RGB) color composite.

3.2. Quality Assessment for the Derived Reference Data

We evaluate the quality of the generated reference data per snow and ice class by
the comparison of the obtained reflectance values with the theoretical spectral reflectance
curves. More specifically, the evaluation considers two steps according to the reference
generation. First, the initially created reference data samples (one single sample per class)
are taken into account. These samples lie on the theoretical spectral reflectance curves (cf.
Figure 3) and therefore fit very well. In a second step, the quality of the dataset which was
created by applying the NN algorithm on the original few samples is evaluated. The thus
created dataset is used for the visual evaluation of the classification results. For evaluating
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the quality of this dataset, the mean values and standard deviations of all samples are
calculated per band per class. Figure 5 shows the comparison of the created reference data
samples to the theoretical spectral reflectance curves. The mean values do correspond well
with the theoretical curves for most of the classes and the standard deviations are quite
similar for all bands in all classes, with about 5–10%. The main outlier occurs for Band 1
in the class of Dirty Glacier Ice with a standard deviation of about 20% and values lying
outside the expected range of the theoretical reflectance curve. The main mixing of the
reflectance values occurs where the value ranges overlap. This happens especially in the
Bands 1–3 for the classes Firn, Glacier Ice, and Refreezing Ice.

0 52,5 Kilometers

Figure 4. Subsets considered in the scope of this paper: subset S comprising a smaller part of the
upper glacier area (right), and subset STyndall comprising the whole glacier area (left). Since the area
surrounding the glacier is not of particular interest, a corresponding image mask created via manual
annotation is applied. Furthermore, a masking of shadow areas is performed (cf. Section 2.3.2).
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Figure 5. Combined plot for comparison of theoretical spectral reflectance curve (cf. [10]) and
mean/standard deviation of reflectance values of the created dataset per band per class, the latter
being displayed for each band’s central wavelength.

From all the samples generated by the NN algorithm, we then select a meaningful
number of samples as training data and test data on the subset S . As training data, three
training areas (TAs) are chosen per class, while six control areas (CAs) are chosen per class
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for the test data. Tables 1 and 2 display the distribution of the independent TA/CA ROIs
and their corresponding number of pixels. Figure 6 displays the spatial distribution of
the TAs and CAs across the subset S . For training areas, an attempt has been made to
extract approximately the same number of pixels for each class, as no prior knowledge
of the complexity of separation of the different classes is given. Unfortunately, the class
of Dirty Glacier Ice only appears in a small part of the scene. Besides, pixels assigned to
the class Dirty Glacier Ice are rather mixed with other classes in the reference image. This
dataset is used to train the supervised classification approaches based on the TAs and to
evaluate the performance of all the approaches on the test data corresponding to the CAs.

Training Areas Control Areas

0 2.5 5

km

0 2.5 5

km

Figure 6. Spatial distribution of the Training Areas (TAs) and the Control Areas (CAs) on the subset
S . The color encoding follows Figure 3 and accounts for the classes Glacier Ice (red), Refreezing Ice
(green), Dirty Glacier Ice (blue), Firn (cyan), and Fresh Snow (yellow).

Table 1. Characteristics of the training data in terms of the number of areas (ROIs) and number of
pixels per class.

Class Number of ROIs
per class

Number of Pixels per
Class

Percentage of Number
of Pixels per Class

all 15 6245 100%
Dirty Glacier Ice 3 830 14%
Firn 3 1263 22%
Fresh Snow 3 1160 20%
Glacier Ice 3 1641 28%
Refreezing Ice 3 1351 23%

Table 2. Characteristics of the test data in terms of the number of areas (ROIs) and number of pixels
per class.

Class Number of ROIs
per Class

Number of Pixels per
Class

Percentage of Number
of Pixels per Class

all 30 12,208 100%
Dirty Glacier Ice 6 1187 10%
Firn 6 3875 32%
Fresh Snow 6 3647 30%
Glacier Ice 6 2086 17%
Refreezing Ice 6 1413 12%

For the classification of the subset STyndall covering the whole Tyndall Glacier, training
and test data are necessary as well. Furthermore, TAs and CAs for the class of Water need
to be added for this step. Two options for the generation of these data are:
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• Use the same TAs/CAs as applied for the subset S and add TAs/CAs only for the
class Water;

• Create an entirely new dataset (TAs and CAs) on the area of the subset STyndall.

For the second approach, TAs and CAs are selected in a similar distribution to the
ones outlined above. Both approaches were tested and we found no major difference in
the accuracy of the results achieved on the basis of the two datasets, so we use the first
approach with the previously on the subset S created dataset enriched with samples for
the additional class of Water in the following.

3.3. Classification Results

For performance evaluation regarding the quality of derived classification results,
we consider commonly used evaluation metrics that allow a quantitative evaluation on a
per-pixel basis. On the one hand, we consider global evaluation metrics represented by the
overall accuracy (OA), the κ-index (κ), and the mean F1-score across all classes (mF1). On
the other hand, we also consider the class-wise evaluation metrics represented by recall,
precision, and F1-score, where the latter metric represents a compound metric combining
recall and precision with equal weights. The class-wise evaluation metrics complement
the global evaluation metrics, as the latter might be biased in case of a highly imbalanced
distribution of the occurrence of single classes.

The k-means clustering is tested for different values of k, starting with the number of
given classes and successively increasing k by increments of 1. In the assignment of cluster
centers from the clustering with k = 7 to the considered classes as defined in Section 2.3.1,
it already is revealed that one of the classes (Refreezing Ice) is not allocated to any of the
clusters. As this loss of one class does not occur for k = 8, the results with k = 8 portray
the situation in a better way than for smaller k. Here, the clustering produces good results
for the classification with respect to snow/ice classes. As displayed in Table 3, the OA
reaches 84.70%, while κ and mF1 amount to 79.73% and 83.37%, respectively. The class-wise
evaluation metrics of recall and precision are provided in Table 4 and rather high for the
snow classes, while they are particularly low for the class Glacier Ice (recall of 53.40%) and
for the class Refreezing Ice (precision of 57.97%).

For the rule-based classification based on snow and ice indices, decision rules are
applied which rely on suitable thresholds to allow for an appropriate separation of the
different classes. To select suitable thresholds, the histograms of the indices were used to get
a rough idea about which thresholds would be useful to apply for the different separations
in each step. The assumption of comparability of the thus derived subsets of the data to
the defined classes is necessary. However, it can be held, as the results obtained from the
rule-based approach show similar structures of snow and ice classes as the reference image
obtained from reference data. After the separation into data subsets, the NN algorithm is
used to assign the derived subsets to the given snow and ice classes. The results of this
approach are much better than the ones achieved for the k-means clustering, with an OA
of 90.98% and values of 84.00% and 82.40% for κ and mF1, respectively. However, the
class-wise evaluation metrics hint on some problems for the class Dirty Glacier Ice, for which
a recall of only 32.18% is achieved. Note that recall and precision can only be calculated for
the general class of ’snow’ without differentiation between Firn and Fresh Snow.

The results obtained with the LDA classifier reveal a further improvement up to an OA
of 97.26%, while κ and mF1 are given by 96.38% and 96.39%, respectively. The class-wise
evaluation metrics of recall and precision are in the range of about 90–97%, while recall
yields the lowest value with 89.70% for the class Refreezing Ice.

Among all tested approaches, the RF classifier achieved the best results characterized
by an OA of 97.49% and values of 96.68% and 96.70% for κ and mF1, respectively. Further-
more, the class-wise evaluation metrics of recall and precision reveal slightly better scores
across all classes in comparison to the scores achieved by the LDA classifier. The internal
hyperparameters of the RF classifier derived via grid search on a suitable raster of values
are given with a total number of M = 100 trees and a maximum tree depth of MaxD = 20.



Remote Sens. 2022, 14, 845 14 of 27

Table 3. Comparison of the results achieved with the applied classification approaches with values in
% (Clust: k-means clustering with k = 8; RBC: Rule-based classification; LDA: Linear Discriminant
Analysis; RF: Random Forest; OA: Overall Accuracy).

Metric Clust RBC LDA RF

OA 84.70 90.98 97.26 97.49
κ-index 79.73 84.00 96.38 96.68
mean F1-score 83.37 82.40 96.39 96.70
Recall mean 82.05 79.09 96.35 96.65
Precision mean 84.73 86.00 96.43 96.75
Recall min 53.40 32.18 89.70 89.77
Recall max 100.00 99.47 100.00 100.00
Precision min 57.97 74.33 92.12 93.01
Precision max 100.00 99.18 100.00 100.00

Table 4. Comparison of the scores achieved by the applied classification approaches for the class-wise
evaluation metrics of recall and precision with values in % (Clust: k-means clustering with k = 8;
RBC: Rule-based classification; LDA: Linear Discriminant Analysis; RF: Random Forest).

Metric Class Clust RBC LDA RF

Recall Dirty Glacier Ice 78.82 32.18 98.82 99.50
Firn 100.00 99.47 98.40 98.54

Fresh Snow 82.69 100.00 100.00
Glacier Ice 53.40 94.30 94.83 95.45

Refreezing Ice 95.31 90.41 89.70 89.77

Precision Dirty Glacier Ice 100.00 90.54 98.82 99.00
Firn 87.89 99.18 100.00 100.00

Fresh Snow 100.00 98.03 98.20
Glacier Ice 77.81 74.33 93.18 93.52

Refreezing Ice 57.97 79.96 92.12 93.01

Besides the quantitative evaluation, we also provide qualitative results in the form
of classification maps. The classification maps achieved with all involved approaches are
displayed in Figure 7 for the date of 8 May 2019 on the subset S (which represents a smaller
area on the glacier) together with the generated reference data for the same subset. By
visual inspection, it can be verified that all the created maps agree well on a coarse level,
while differences are given on a finer level.

In the result obtained by k-means clustering, less pixels are classified as Fresh Snow
and Dirty Glacier Ice compared to the reference map. The class Glacier Ice is classified less in
favor of Refreezing Ice.

In the rule-based approach, Fresh Snow and Firn are not separated but classified as
just one single class ‘snow’. Therefore no information about the snow’s wetness content is
distinguishable with this method. The area covered by Glacier Ice is bigger than the one
derived with the clustering approach and therefore more similar to the actual reference,
while Dirty Glacier Ice is far less present. The specific extent of small areas of Refreezing Ice
on the Glacier Ice area is very well noticeable, as it is in the reference.

The LDA classification contains too few pixels that are classified as Dirty Glacier Ice in
the area of accumulation of this ice type compared to the reference. They are classified as
Glacier Ice instead. The classification into the other three classes matches almost perfectly
on the other hand. Structures within the transition from Refreezing Ice to Glacier Ice are well
represented, too.

The RF classification matches the reference best. Structures on the ice are clearly
noticeable and the areas of all classes match well. The appearance of the class Dirty Glacier
Ice on the glacier itself is the only one that is comparable to the reference data (higher
occurrence of this class). The classification into this class along the area where the two
glacier streams fuse is also more similar to the reference as a larger area is classified as Dirty
Glacier Ice.
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In conclusion, the RF approach outperforms the other approaches in the classification
of multi-spectral satellite imagery in terms of glacier monitoring with respect to different
snow and ice cover types and, hence, it will be applied in the following for the multi-
temporal analysis.

Rule-Based ClassificationReference Map
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Dirty Glacier Ice

Glacier Ice

Refreezing Ice
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k-means Clustering
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Figure 7. Reference and classification maps obtained from the four tested classification approaches:
reference map obtained from the Nearest-Neighbor algorithm on labeled data; classification map
obtained from k-means clustering (k = 8) with a subsequent assignment of classes; classification map
obtained from rule-based classification via snow and ice indices; classification map obtained from
Linear Discriminant Analysis (LDA) classification; classification map obtained from Random Forest
(RF) classification.

3.4. Multi-Temporal Analysis

For a glacier monitoring across several time steps, the first step consists in applying
the derived RF classifier to all the Sentinel-2 scenes to be taken into consideration. In this
regard, the main limitation for the application of the tested snow and ice type classification
approach on suitably distributed time steps is the occurrence of clouds at the survey dates,
as clouds do falsify the results of a classification relying on optical remote sensing data
in the visible, near infrared and short-wave infrared domain. To nevertheless cover and
explain the results of the broadest possible period, a selection of different time steps will be
reviewed (cf. Section 2.2). Thus, in the scope of our work, the multi-temporal analysis is
targeted towards the following aspects:

• The monthly change over the year of 2019 is reviewed for the months of April, May,
August, September and October, as these are some of the months stated to be most
important for an evaluation of glacier development. Furthermore, data from these
months of the year 2019 allow having a cloud-free scene as the basis for classification;

• The annual change for the month of April, representative for the end of ablation time,
is reviewed for the years of 2017, 2019, and 2020;

• The annual change for the month of September, representative for the end of accumu-
lation time, is reviewed for the years of 2016, 2018, and 2019.

Furthermore, we now apply the RF classifier to the area of the whole glacier, that is,
we now consider the data subset STyndall. Since this area additionally covers the class Water
given for the terminus lake, additional TAs are selected for that class. Thus, training is
carried out with an extended set of TAs.
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Figure 8 displays the classification results for the named months of the year 2019. After
the summer in the Southern hemisphere (i.e., in the months of April and May, see Figure 8),
almost no snow is present on the glacier itself. The main classes present on the glacier
surface are Glacier Ice and Refreezing Ice, and Dirty Glacier Ice on the edges. The distribution
of those two classes between the months of April and May is varying mainly in the upper
part of the glacier.

At the end of the winter in the Southern hemisphere (i.e., in the months of August to
October), the predominant class present on the glacier surface is characterized by snow
(see Figure 8). For August and September, the class Firn shows the largest extent across
the glacier. For October, the upper part of the glacier (upper left corner) is covered with
Fresh Snow and the lower part shows almost the same cover as in the months of August
and September.

August 2019April 2019

October 2019September 2019

May 2019
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Dirty Glacier Ice

Glacier Ice
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Figure 8. Classification results achieved for the whole area of the Tyndall Glacier for the months of
April, May, August, September and October of the year 2019. Note that all possible shadow extents
are excluded by one mask applied to all investigated scenes.

To quantitatively assess the change in land cover, area statistics are evaluated for
representative dates. These area statistics are only calculated for the five snow and ice
classes, which are separated as the aim of this study. For the evaluation of the monthly
change within one year, only the months of May, August and September 2019 are considered
as representatives (Table 5). May and September are compared as months that are further
apart in time and probably demonstrating the most significant change due to seasonal
differences. August and September are compared as months lying next to each other in
time in the same season and therefore having approximately the same seasonal weather
circumstances. Note that, due to the masking (cf. Section 2.3.2), these area statistics can
only be used for comparison tasks, as they do not reflect the absolute land cover of the area.
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Table 5. Area statistics in % for the months of May, August and September of 2019.

Class May-2019 Aug-2019 Sep-2019

Dirty Glacier Ice 7.24 4.03 3.86
Firn 36.78 67.15 68.04
Fresh Snow 17.01 11.13 13.35
Glacier Ice 17.04 1.31 0.48
Refreezing Ice 13.62 10.17 8.11

To evaluate the change of snow and ice cover from one year to another, the two
representative dates of April for the end of the ablation time and September for the end of
the accumulation time are chosen. Results are displayed for the dates of available satellite
imagery in Figures 9 and 10, respectively.

While in April of the years of 2017 and 2020 (Figure 9) Refreezing Ice is the dominant
class on the glacier area, it is Glacier Ice in 2019. For all three years, the snow lines (i.e.,
the transition between snow cover to Glacier Ice) correspond approximately, being a little
higher in 2017. The distribution of Fresh Snow varies due to local weather conditions: In
2019 and 2020, more Fresh Snow is present.

April 2020April 2017 April 2019
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Figure 9. Classification results achieved for the scenes in April for the years 2017, 2019 and 2020,
geographical mask and shadow mask applied. Note that all possible shadow extents are excluded by
one mask applied to all investigated scenes.

September 2019September 2016 September 2018

Fresh Snow

Firn

Dirty Glacier Ice

Glacier Ice

Refreezing Ice

Water

0 2.5 5

km

0 2.5 5

km

0 2.5 5

km

Figure 10. Classification results achieved for the scenes in September for the years 2016, 2018 and
2019, geographical mask and shadow mask applied. Note that all possible shadow extents are
excluded by one mask applied to all investigated scenes.
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For September of the year of 2016 (Figure 10), Refreezing Ice is the dominant class on
the glacier. It is Firn for the other two investigated years. The classifications of the month
of September in the years 2018 and 2019 are very similar. Only some more Fresh Snow is
present in the higher parts of the mountains in 2018. More broken-off ice is present in the
lake area in 2019. Almost no areas of Dirty Glacier Ice are present in the two later years.
The areas of Fresh Snow correspond well in the years 2016 and 2018. The glacier’s snout
(i.e., the transition between the glacier and the terminus lake) does not vary significantly
throughout the presented years in September.

Area statistics are displayed in Tables 6 and 7 for the investigated dates of the end
of the ablation time and for the end of the accumulation time, respectively. The statistics
reinforce the findings made by visual inspection.

Table 6. Area statistics in % for the months of April in comparison.

Class Apr-2017 Apr-2019 Apr-2020

Dirty Glacier Ice 14.43 8.33 7.55
Firn 29.98 32.45 29.93
Fresh Snow 9.97 27.35 35.61
Glacier Ice 3.25 10.58 1.95
Refreezing Ice 34.15 14.90 17.32

Table 7. Area statistics in % for the months of September in comparison.

Class Sep-2016 Sep-2018 Sep-2019

Dirty Glacier Ice 5.41 1.78 3.86
Firn 47.51 62.30 68.04
Fresh Snow 14.91 16.49 13.35
Glacier Ice 1.72 0.31 0.48
Refreezing Ice 22.24 12.29 8.11

Finally, the change in glacier extent is assessed. The extent of the glacier snout gives a
good estimate for glacier development. For the evaluation of the change in glacier extent,
a complete time series of all the available Sentinel-2 data across the years 2016 to 2019 is
considered. Three images for the years 2016, 2018 and 2019 in September, respectively, are
taken into account. To fill the gap of the year 2017, a scene of the month of August was used
instead. The digitization of the glacier snout (Figure 11) according to the described method
(Section 2.3.4) reveals that the glacier break-off edge was varying for the investigated years.
Some interfering pixels over the displayed area exist, as the transition from ice to water
pixels also occurs on different areas than only at the actual terminus area of the glacier. This
confusion cannot be avoided by the simple automatic approach chosen in this study. In the
left part of the glacier snout, it is more clearly to distinguish that it retreats from 2016 to
2017 but then advances in the year 2018 and retreats again in 2019, where it corresponds
approximately to the end line of 2017.
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Figure 11. Glacier snout with glacier end line (break-off edge) for the years of 2016 (yellow), 2017
(pink), 2018 (red) and 2019 (blue). The underlying image is of 2016.

4. Discussion

The results of this study are dependent on three main steps that are carried out. These
are: (1) the generation of reference data (Section 4.1); (2) the chosen classification approach
(Section 4.2); and (3) the multi-temporal analysis (Section 4.3). Every step needs to be
assessed in particular to understand its influence on the overall result.

4.1. Generation of Reference Data

As no ground truth data are available for the considered classification task, appropriate
ground truth data are derived from theoretical spectral reflectance curves for the defined
target classes. From the primarily created reference data samples, more reference data points
are generated through the application of the NN algorithm. Good results can be achieved with
this technique, comparing the generated samples with the original theoretical knowledge.

With the separation of independent TAs and CAs, the foundation for the non-committed
evaluation of results is laid. As an attempt has been made to extract approximately the same
number of pixels for each defined class, the evaluation is unbiased. Despite the percentage of
non-overlapping TAs and CAs, their distribution is acceptable. After the evaluation of the
results, it can be concluded that it would be more suitable to use more samples for the three
ice classes and less for the snow classes. The latter can be classified very easily, while the ice
classes (especially Refreezing Ice) have a higher variation. Training with more samples could
then improve the classification results.

We find the differences between the possibilities to create reference datasets do not
significantly influence the results. While the selection of TAs/CAs for a scene and the transfer
of respective training data to other scenes seems straightforward and only optionally requires
selecting ROIs for additional classes in consideration, the creation of an entirely new dataset
for each other scene would significantly increase the manual effort for annotation. Accordingly,
from a user point of perspective, it is much more favorable to create a reference dataset (TAs
and CAs) once and then be able to transfer it to all scenes. In the scope of our work, we hold
to this method, since no major differences between the results achieved via the two methods
were found and improved applicability seems favorable.

However, this approach also has some drawbacks, as the initial reflectance curves
selected as a basis were acquired over an area in China. This area comprises Himalayan
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glaciers with a different temperature profile than Arctic glaciers. Therefore, the reflectance
values for the defined snow and ice classes might vary compared to an area in Southern
Chile. Furthermore, reflectance in different regions varies due to reasons like impurity
contents in the ice, slope angles that might cause glint in different satellite viewing an-
gles, or even water accumulations on the glacier top layers. In general, the use of such
reflectance curves is critical, as five classes are pre-defined, but these classes only describe
transient states of the snow and ice, which can quickly transform into other states (and
therefore classes), depending on several natural conditions. Therefore, some of these classes
(Fresh Snow, Firn, Refreezing Ice) can quickly lose their distinguishing characteristics that
influence spectral reflectance. How rapid the transformation between classes can be and
how it influences spectral reflectance needs to be investigated in detail to obtain more
accurate results for glacier snow and ice cover change.

Furthermore, in our methodology, the read-off from the reflectance curves to funda-
mental data points is challenging. Finally, creating a more extensive dataset via the NN
algorithm might introduce some further variances within the dataset. Nevertheless, as
displayed in Figure 5, we see that the mean reflectance values of the investigated Arctic
glacier in Chile correspond quite well with the reference reflectance curves for most parts of
the spectrum. We see some deviation, especially for Band 1 and Band 10. In conclusion, the
transfer from Himalayan glacier reflectance curves to the application on an Arctic glacier is
not optimal but still feasible. Improvements could be made by using spectral reflectance
curves over an Arctic glacier region, which is not available to date.

4.2. Involved Classification Approaches

Regarding the chosen classification approach, both unsupervised and supervised
approaches produce feasible results. However, each approach has some drawbacks and
advantages over the others.

While the involved unsupervised approaches (i.e., k-means clustering and rule-based
classification via snow and ice indices) are easier to carry out, their results are less accurate.
After different values of k are tested for the k-means clustering, a subsequently performed
in-depth analysis reveals that a selection of k = 8 delivers good results for the assignment
of cluster centers to the considered snow and ice classes. Using a too big value for k, the
results reveal the existence of some clusters that even cannot be separated by the human
eye. For too small values of k, the achieved results reveal problems in the separation of
classes, as one class cannot be separated from the others in the clustering. This generally
holds for classes with a low inter-class variation. Thus, the choice of a suitable value
for k is crucial to allocate all predefined spectral classes to at least one cluster. For the
rule-based classification approach, the high OA should be considered with caution. In this
case, the results are biased, as the separation into the classes Fresh Snow and Firn is not
taken into account with the involved indices (NDSI, NDGI, NDSII) [15]. The two classes
are considered and evaluated as one class in this approach. Therefore, the confusion that
appears between those classes is not included in the overall result. Furthermore, for this
method, the classes obtained through the indices need to be assigned to the predefined
spectral snow and ice classes, which will also lead to minor mislabeling.

The involved supervised approaches (i.e., LDA classifier and RF classifier) yield better
results, with an accuracy of up to almost 98%. As the LDA classifier achieves good results
in accuracy and additionally in the land cover distribution for most classes, it might be
a good classification method for the task at hand. The RF classifier produces even better
scores than the LDA classifier, and all the classes are present in a plausible cover percentage
on the glacier as well. Therefore these methods might be accordingly well-suited to solve
the classification task with respect to different snow and ice classes.

In general, all approaches achieve good classifications for all the considered classes,
but some differences can be detected between the complexity of different classes: The
snow classes are easier to distinguish, thus achieving higher precision and recall values
via all approaches. The values lie as high as 100% for some approaches. These classes are
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rather easy to classify as the spectral values are very unique, as we can see already in the
theoretical spectral reflectance curves. The classification of Dirty Glacier Ice is also clearly
distinguished, which can be explained by the exposed reflectance curve again. Here, the
curve has a unique course compared to the others classes’ curves. The lower precision
and recall for the classes of Glacier Ice and Refreezing Ice is explainable with similar spectral
reflectance curves between these classes. The high similarity makes the classification task
more challenging, as many spectral values of the two classes will overlap in several bands.
Overall, the results of the classification task reproduce the findings in the spectral reflectance
curves and the tested approaches, in particular the ones relying on supervised classification,
are suitable for the classification of Sentinel-2 data with respect to the different snow and
ice classes.

4.3. Multi-Temporal Analysis

Visual inspection of the classification maps achieved for the multi-temporal analysis
and the additional consideration of area statistics (Section 3.4) give plausible results, show-
ing the expected changes between the summer and winter season within one year and
similar land cover extents for the same seasons of different years. To validate the results,
simple temperature and precipitation data are evaluated for the survey times, respectively.
Temperature and precipitation data for the year 2019 are displayed in Table 8.

The average temperature is higher in April (in the late end of the summer), which leads
to the snow being wetter (Refreezing Ice) and slowly transiting to the state of being rather
refrozen in the month of May (Glacier Ice) when temperatures start to drop further. After
the winter months of June to August, with minimum temperatures of around 0 °C, more
snow covers even the lower parts of the glacier, where snowfall was also more frequent
during these months. In the late winter months of September and October, the predominant
classes are snow classes.

Table 8. Temperature (in °C) and precipitation (in mm) data for the year 2019 on the Tyndall Glacier
(Temp-Temperature).

Month Temp Average Temp Minimum Precipitation

January 8.5 5.9 4.9
February 10.1 7.2 5.2
March 9.8 7.2 1.7
April 7.4 4.7 6.1
May 5.9 3.2 2.8
June 3.9 1.0 1.4
July 2.9 0.7 2.0
August 2.5 0.0 1.8
September 4.8 1.9 2.2
October 6.3 3.5 2.3
November 6.8 4.4 5.9
December 9.7 7.4 4.3

Temperature and precipitation data for the end of ablation time and end of accumula-
tion time are displayed in Tables 9 and 10, respectively. In April, the Fresh Snow distribution
is varying over the years due to local actual weather: In 2019 and 2020, more Fresh Snow is
present, which corresponds to a higher average precipitation in the year 2019 for the month
of April. As the temperature is measured in the lower part of the glacier tongue, it will still
be cold enough for snow to form at higher altitudes (upper left corner). In the acquisition
of September, for the year of 2016, Refreezing Ice is the dominant class on the glacier, which
corresponds with a high average temperature and no precipitation on average during the
month of September. It is Firn for the other two years in September, as snowfall was more
likely with a lower temperature and higher precipitation. Some more Fresh Snow is present
in the higher parts of the mountains in 2018, which might be explained by an even lower
temperature and higher precipitation amount than given for the year 2019.
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Table 9. Temperature (in °C) and precipitation (in mm) data for the month of April (end of ablation
time) in the years 2017, 2019 and 2020 on the Tyndall Glacier (Temp-Temperature).

Year Temp Average Temp Minimum Precipitation

2017 7.1 4.4 3.3
2019 7.4 4.7 6.1
2020 8.1 5.4 2.6

Table 10. Temperature (in °C) and precipitation (in mm) data for the month of September (end of
accumulation time) in the years 2016, 2018 and 2019 on the Tyndall Glacier (Temp–Temperature).

Year Temp Average Temp Minimum Precipitation

2016 6.6 3.6 0.0
2018 3.1 0.6 4.2
2019 4.8 1.9 2.2

Overall, the classification applied on multi-temporal data produces results that agree
well with the reference data. A comparison to weather data of the dates shows that results
obtained from the procedure in this study are plausible for the tested survey dates. Our
approach is therefore well-suited for the task of carrying out a multi-temporal classification
with respect to different snow and ice classes to quickly gain a fundamental overview of the
glacier area in remote areas. This allows the coarse study of such glaciers without extensive
effort or going on-site, but provides a good and straightforward approach for detecting
changes in delineation. The yearly development trend of snow and ice cover can be easily
determined from the classification results.

However, the used weather data are only a simple approach to explaining the findings
of the remote sensing investigation. Consulting weather data for the dates in question
should be considered to explain in detail the findings of the classification results and to
verify short-term changes. In doing so, more precise statements could be made about the
development of the glacier. Local/short-term weather phenomena might explain minor
and temporally short variations on the glacier surface composition (e.g., snowfall directly
on the date of the acquisition).

Limitations of a more precise investigation of the glacier state are also in place by
the characteristics and availability of the used satellite data. On the one hand, there are
the typical drawbacks of optical satellite data in the visible, near-infrared, and short-wave
infrared domain, as correct results can only be expected for cloud-free satellite imagery,
while clouds and cloud shadows directly deteriorate the results. On the other hand, in
any case, the satellite data is only available on dates restricted by the satellite overpass,
which might be only every three days. Therefore, depending on which dates are available
(mainly cloud-free) on the download platform, the user will need to study with the given
data. This limited availability restricts the use, as a different date could be more suitable
and representative concerning the weather state at the date. Overall, the satellite images
only present a snapshot of time, showing a specific glacier state. This state can transform
quickly, so that investigating one acquisition per month does not allow exact conclusions
about the whole month. However, we can demonstrate the plausibility of the findings
of one scene per month representatively for the time of the year, in conjunction with the
simple weather data (end of ablation time: Refreezing Ice transient to Glacier Ice; end of
accumulation time: mainly snow cover on the glacier, covering the ice).

In future studies, it might be helpful to consider SAR data to overcome the limitation
of the optical remote sensing data. Furthermore, the choice of suitable scenes for certain
investigations should be made in advance according to weather conditions. A more frequent
coverage of the area would be favorable. Therefore, it could be considered to combine the
data of different optical sensors, for example, Sentinel-2 data and Landsat-8 data. It might
also be possible to improve the classification results by further developing the classification
approach. On the other hand, further development of classification approaches would only
be suitable if more and/or more accurate reference data would be available. In the case at
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hand, tuning an approach for the precise task is ineffective, as its improvement cannot be
evaluated with the same precision. All applied approaches and future approaches can be
only as good as the reference dataset allows them to be tested. For further or more specific
studies, appropriately labeled data should be available. With several small improvements
on different steps of the procedure, its results might be improved and accuracies might be
enhanced. The procedure could then be applied to other classification tasks to distinguish
snow and ice surfaces in remote areas.

5. Conclusions

In this study, we classified the surface of a glacier in the region of the Torres del Paine
National Park in Southern Chile with respect to different snow and ice classes. Since our
preferred approach included supervised classification techniques, we needed reference data
to be used for training. As no reference data are available, we addressed the issue through
the generation of suitable reference data from theoretical knowledge. This knowledge was
given in the form of densely sampled spectral signatures for either class to be classified. For
a more detailed evaluation of snow and ice classes from satellite data and a more accurate
verification of obtained results, it would be desirable to take physical samples in the study
area to obtain ground truth data. Furthermore, it could be considered to acquire spectral
reflectance curves of the specified classes from the specific region where the task should be
carried out. Locally optimized spectral reflectance curves help to avoid regional variations
that might be present in snow and ice classes. In this study, only five snow and ice classes
are separated. A more detailed classification of land cover classes might be necessary for
different purposes. In this case, suitable reference data should rather be established by
ground truth samples for higher accuracy.

In the next step, four different classification approaches were evaluated on a subset of
the glacier area. These were two unsupervised approaches (k-means clustering and rule-
based classification via snow and ice indices) as well as two supervised approaches (LDA
classifier and RF classifier). All approaches achieved relatively good results for classification
with respect to snow and ice types on the Tyndall Glacier, yet a clear recommendation
towards the use of supervised classification approaches can be made. In the scope of our
experiments, no significant differences are present between the two involved supervised
approaches in terms of overall accuracy and class-wise recall and precision values. Thus, it
can be concluded that the approaches are suitable for snow and ice cover classification in
this task. In further studies, other supervised and more sophisticated approaches could be
tested to further improve the results. This might require a significantly larger amount of
data available for training, in particular for classification approaches with a higher number
of parameters such as given for standard deep learning approaches. On the other hand, the
conducted approach of using theoretical knowledge as the basis for the classification task
might be suitable for several other tasks, ideally reducing the amount of required data to
be labeled by a user for training.

Finally, a multi-temporal analysis was carried out for several time steps that were exam-
ined to be representative or important for monitoring the development of the glacier over time.
The classification approach applied on multi-temporal data produces results that agree well
with the reference data for the compared time step. A comparison to weather data in terms of
temperature and precipitation of the dates, respectively, reveals that results obtained from the
procedure in this study are plausible for the tested survey dates. Therefore, our approach is
well-suited for carrying out a multi-temporal classification with respect to different snow and
ice classes in remote areas. The yearly development trend of snow and ice cover can thus be
well-determined from the classification results, while small variations might be explained by
local/short-term weather phenomena (e.g., snowfall directly on the date of the acquisition).
To explain these findings of the classification results in detail and to verify short-term changes,
consolidation of weather data for the dates in question would need to be considered. On a
global scale, no major trend for the development of the Tyndall Glacier can be observed in the
used data from 2016–2020. For a more meaningful investigation of the glacier trend, a much
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longer time series should be considered. This might include using other (optical) satellite data.
Further limitations of a more precise investigation of the glacier states are also posed by the
general availability of data for earlier years and the availability of cloud-free satellite data
within a specified period.

Nevertheless, this study serves as a good basis for future investigations. The proce-
dure could then be applied to other multi-temporal classification tasks to investigate the
development of glacier surfaces in terms of snow and ice type composition.

Author Contributions: Conceptualization, J.F., S.H., G.S. and M.W.; methodology, J.F.; software, J.F.;
validation, J.F. and M.W.; formal analysis, J.F.; investigation, J.F.; data curation, J.F. and R.A.-d.-R.;
writing—original draft preparation, J.F. and M.W.; writing—review and editing, J.F., S.K., G.S. and
M.W.; visualization, J.F. and M.W.; supervision, S.H., G.S. and M.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The used Sentinel-2 data are available on the Copernicus Open Access
Hub, while used reference spectra were adopted from [10] and used weather data were derived from
the EXPLORADOR CLIMÁTICO [72].

Acknowledgments: We acknowledge support by the KIT-Publication Fund of the Karlsruhe Institute
of Technology. Furthermore, this work has been supported with a funding from the PROMOS
program of the German Academic Exchange Service (DAAD). Thus, this research work was initiated
during the first author’s stay at the University of Concepción.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rivera, A.; Casassa, G. Ice elevation, areal, and frontal changes of glaciers from National Park Torres del Paine, Southern

Patagonia Icefield. Arct. Antarct. Alp. Res. 2004, 36, 379–389. [CrossRef]
2. De Angelis, H.; Rau, F.; Skvarca, P. Snow zonation on Hielo Patagónico Sur, Southern Patagonia, derived from Landsat 5 TM

data. Glob. Planet. Change 2007, 59, 149–158. [CrossRef]
3. Aniya, M. Recent glacier variations of the Hielos Patagónicos, South America, and their contribution to sea-level change. Arct.

Antarct. Alp. Res. 1999, 31, 165–173. [CrossRef]
4. Rignot, E.; Rivera, A.; Casassa, G. Contribution of the Patagonia Icefields of South America to sea level rise. Science 2003,

302, 434–437. [CrossRef]
5. Davies, B.; Glasser, N. Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (∼AD 1870) to 2011. J. Glaciol. 2012,

58, 1063–1084. [CrossRef]
6. Sáez, N.; Staub, G.; Abarca-del-Río, R. Monitoring Glacier Retreat in the Chilean Southern Patagonian Ice Field. In Proceedings

of the IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August
2019; pp. 4169–4171.

7. Marshall, S.J. The Cryosphere; Princeton University Press: New Jersey, USA, 2011; Volume 2.
8. Florath, J.; Keller, S.; Staub, G.; Weinmann, M. Optical remote sensing for glacier monitoring with respect to different snow and

ice types: A case study for the Southern Patagonian Icefield. In Proceedings of the 2021 11th Workshop on Hyperspectral Imaging
and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 March 2021; pp. 1–5.

9. Bronge, L.B.; Bronge, C. Ice and snow-type classification in the Vestfold Hills, East Antarctica, using Landsat-TM data and ground
radiometer measurements. Int. J. Remote Sens. 1999, 20, 225–240. [CrossRef]

10. Dietz, A.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012,
33, 4094–4134. [CrossRef]

11. Thonfeld, F.; Feilhauer, H.; Menz, G. Simulation of Sentinel-2 images from hyperspectral data. In Proceedings of the Sentinel-2
Preparatory Symposium, Frascati, Italy, 23–27 April 2012.

12. Weinmann, M.; Maier, P.; Florath, J.; Weidner, U. Investigations on the potential of hyperspectral and Sentinel-2 data for land-cover
/ land-use classification. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-1, 155–162. [CrossRef]

13. Maier, P.; Keller, S. Application of different simulated spectral data and machine learning to estimate the chlorophyll a
concentration of several inland waters. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal
Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; pp. 1–5.

14. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C 1979, 28, 100–108. [CrossRef]

http://doi.org/10.1657/1523-0430(2004)036[0379:IEAAFC]2.0.CO;2
http://dx.doi.org/10.1016/j.gloplacha.2006.11.032
http://dx.doi.org/10.1080/15230430.1999.12003293
http://dx.doi.org/10.1126/science.1087393
http://dx.doi.org/10.3189/2012JoG12J026
http://dx.doi.org/10.1080/014311699213415
http://dx.doi.org/10.1080/01431161.2011.640964
http://dx.doi.org/10.5194/isprs-annals-IV-1-155-2018
http://dx.doi.org/10.2307/2346830


Remote Sens. 2022, 14, 845 25 of 27

15. Keshri, A.; Shukla, A.; Gupta, R. ASTER ratio indices for supraglacial terrain mapping. Int. J. Remote Sens. 2009, 30, 519–524.
[CrossRef]

16. Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier remote sensing using Sentinel-2. Part II: Mapping glacier
extents and surface facies, and comparison to Landsat 8. Remote Sens. 2016, 8, 575. [CrossRef]

17. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning—Data Mining, Inference, and Prediction; Springer: New
York, NY, USA, 2008; Volume 2.

18. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
19. Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in

support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [CrossRef]
20. Vaughan, D.G.; Comiso, J.C.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J.; et al. Observations:

Cryosphere. Clim. Chang. 2013, 2103, 317–382.
21. Church, J.A.; Gregory, J.M.; Huybrechts, P.; Kuhn, M.; Lambeck, K.; Nhuan, M.T.; Qin, D.; Woodworth, P.L. Changes in sea level.

In Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental
Panel; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., der Linden, P.J.V., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge
University Press: Cambridge, UK, 2001; pp. 639–694.

22. Liebezeit, J.R.; Gurney, K.; Budde, M.; Zack, S.; Ward, D. Phenological advancement in arctic bird species: Relative importance of
snow melt and ecological factors. Polar Biol. 2014, 37, 1309–1320. [CrossRef]

23. Niittynen, P.; Luoto, M. The importance of snow in species distribution models of arctic vegetation. Ecography 2018, 41, 1024–1037.
[CrossRef]

24. Fierz, C.; Armstrong, R.; Durand, Y.; Etchevers, P.; Greene, E.; McClung, D.; Nishimura, K.; Satyawali, P.; Sokratov, S. The
International Classification for Seasonal Snow on the Ground; UNESCO/IHP: Paris, France, 2009.

25. Pope, A.; Rees, W.G. Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface
classification. Remote Sens. Environ. 2014, 141, 1–13. [CrossRef]

26. König, M.; Winther, J.G.; Isaksson, E. Measuring snow and glacier ice properties from satellite. Rev. Geophys. 2001, 39, 1–27.
[CrossRef]

27. Hall, D.K.; Martinec, J. Remote Sensing of Ice and Snow; Springer: New York, NY, USA, 1985.
28. Kaushik, S.; Joshi, P.K.; Singh, T. Development of glacier mapping in Indian Himalaya: A review of approaches. Int. J. Remote

Sens. 2019, 40, 6607–6634. [CrossRef]
29. Ramage, J.M.; Isacks, B.L.; Miller, M.M. Radar glacier zones in southeast Alaska, USA: Field and satellite observations. J. Glaciol.

2000, 46, 287–296. [CrossRef]
30. Forster, R.R.; Smith, L.C.; Isacks, B.L. Effects of weather events on X-SAR returns from ice fields: Case-study of Hielo Patagónico

Sur, South America. Ann. Glaciol. 1997, 24, 367–374. [CrossRef]
31. Maggioni, M.; Freppaz, M.; Piccini, P.; Williams, M.; Zanini, E. Snow cover effects on glacier ice surface temperature. Arct.

Antarct. Alp. Res. 2009, 41, 323–329. [CrossRef]
32. Glasser, N.F.; Holt, T.O.; Evans, Z.D.; Davies, B.J.; Pelto, M.; Harrison, S. Recent spatial and temporal variations in debris cover on

Patagonian glaciers. Geomorphology 2016, 273, 202–216. [CrossRef]
33. Semmens, K.; Ramage, J. Melt patterns and dynamics in Alaska and Patagonia derived from passive microwave brightness

temperatures. Remote Sens. 2014, 6, 603–620. [CrossRef]
34. Albert, T.H. Evaluation of remote sensing techniques for ice-area classification applied to the tropical Quelccaya Ice Cap, Peru.

Polar Geogr. 2002, 26, 210–226. [CrossRef]
35. Baumhoer, C.A.; Dietz, A.J.; Dech, S.; Kuenzer, C. Remote sensing of antarctic glacier and ice-shelf front dynamics—A review.

Remote Sens. 2018, 10, 1445. [CrossRef]
36. Kumar, M.; Al-Quraishi, A.M.F.; Mondal, I. Glacier changes monitoring in Bhutan High Himalaya using remote sensing

technology. Environ. Eng. Res. 2021, 26, 38–50. [CrossRef]
37. Davaze, L.; Rabatel, A.; Arnaud, Y.; Sirguey, P.; Six, D.; Letreguilly, A.; Dumont, M. Monitoring glacier albedo as a proxy to derive

summer and annual surface mass balances from optical remote-sensing data. Cryosphere 2018, 12, 271–286. [CrossRef]
38. Podsiadlo, I.; Paris, C.; Callegari, M.; Marin, C.; Günther, D.; Strasser, U.; Notarnicola, C.; Bruzzone, L. Integrating models

and remote sensing data for distributed glacier mass balance estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020,
13, 6177–6194. [CrossRef]

39. Paul, F.; Kääb, A. Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada:
Cumberland Peninsula, Baffin Island. Ann. Glaciol. 2005, 42, 59–66. [CrossRef]

40. Racoviteanu, A.E.; Williams, M.W.; Barry, R.G. Optical remote sensing of glacier characteristics: A review with focus on the
Himalaya. Sensors 2008, 8, 3355–3383. [CrossRef] [PubMed]

41. Raymond, C.; Neumann, T.A.; Rignot, E.; Echelmeyer, K.; Rivera, A.; Casassa, G. Retreat of Glaciar Tyndall, Patagonia, over the
last half-century. J. Glaciol. 2005, 51, 239–247. [CrossRef]

42. Taylor, L.S.; Quincey, D.J.; Smith, M.W.; Baumhoer, C.A.; McMillan, M.; Mansell, D.T. Remote sensing of the mountain cryosphere:
Current capabilities and future opportunities for research. Prog. Phys. Geogr. Earth Environ. 2021, 45, 931–964. [CrossRef]

http://dx.doi.org/10.1080/01431160802385459
http://dx.doi.org/10.3390/rs8070575
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1175/BAMS-D-13-00047.1
http://dx.doi.org/10.1007/s00300-014-1522-x
http://dx.doi.org/10.1111/ecog.03348
http://dx.doi.org/10.1016/j.rse.2013.08.028
http://dx.doi.org/10.1029/1999RG000076
http://dx.doi.org/10.1080/01431161.2019.1582114
http://dx.doi.org/10.3189/172756500781832828
http://dx.doi.org/10.3189/S0260305500012465
http://dx.doi.org/10.1657/1938-4246-41.3.323
http://dx.doi.org/10.1016/j.geomorph.2016.07.036
http://dx.doi.org/10.3390/rs6010603
http://dx.doi.org/10.1080/789610193
http://dx.doi.org/10.3390/rs10091445
http://dx.doi.org/10.4491/eer.2019.255
http://dx.doi.org/10.5194/tc-12-271-2018
http://dx.doi.org/10.1109/JSTARS.2020.3028653
http://dx.doi.org/10.3189/172756405781813087
http://dx.doi.org/10.3390/s8053355
http://www.ncbi.nlm.nih.gov/pubmed/27879883
http://dx.doi.org/10.3189/172756505781829476
http://dx.doi.org/10.1177/03091333211023690


Remote Sens. 2022, 14, 845 26 of 27

43. Malz, P.; Sommer, C.; Farias, D.; Seehaus, T.; Braun, M. Global glacier monitoring with TanDEM-X remote sensing-advances,
challenges and requirements from the perspective of a multi-decadal approach. In Proceedings of the EGU General Assembly,
Online, 19–30 April 2021; p. EGU21-14634.

44. Pettinato, S.; Poggi, P.; Macelloni, G.; Paloscia, S.; Pampaloni, P.; Crepaz, A. Mapping snow cover in alpine areas with
ENVISAT/SAR images. In Proceedings of the ESA ENVISAT & ERS Symposium, Salzburg, Austria, 6–10 September 2004;
pp. 6–10.

45. Storvold, R.; Malnes, E.; Larsen, Y.; Høgda, K.; Hamran, S.; Mueller, K.; Langley, K. SAR remote sensing of snow parameters in
Norwegian areas—Current status and future perspective. J. Electromagn. Waves Appl. 2006, 20, 1751–1759. [CrossRef]

46. Staub, G.; Báez, J.C. Animating ASAR backscatter to monitor ice shelf front retreat—Northern George VI Ice Shelf Front. Int. J.
Remote Sens. 2011, 32, 7971–7983. [CrossRef]

47. Shukla, A.; Arora, M.; Gupta, R. Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing
data with inputs from geomorphometric parameters. Remote Sens. Environ. 2010, 114, 1378–1387. [CrossRef]

48. Wu, Y.; Wang, N.; Li, Z.; Chen, A.; Guo, Z.; Qie, Y. The effect of thermal radiation from surrounding terrain on glacier surface
temperatures retrieved from remote sensing data: A case study from Qiyi Glacier, China. Remote Sens. Environ. 2019, 231, 111267.
[CrossRef]

49. Rabatel, A.; Sirguey, P.; Drolon, V.; Maisongrande, P.; Arnaud, Y.; Berthier, E.; Davaze, L.; Dedieu, J.P.; Dumont, M. Annual and
seasonal glacier-wide surface mass balance quantified from changes in glacier surface state: A review on existing methods using
optical satellite imagery. Remote Sens. 2017, 9, 507. [CrossRef]

50. Winther, J.G. Spectral bi-directional reflectance of snow and glacier ice measured in Dronning Maud Land, Antarctica. Ann.
Glaciol. 1994, 20, 1–5. [CrossRef]

51. Takeuchi, N.; Kohshima, S.; Shiraiwa, T.; Kubota, K. Characteristics of cryoconite (surface dust on glaciers) and surface albedo of
a Patagonian glacier, Tyndall Glacier, Southern Patagonia Icefield. Bull. Glaciol. Res. 2001, 18, 65–70.

52. Baraka, S.; Akera, B.; Aryal, B.; Sherpa, T.; Shresta, F.; Ortiz, A.; Sankaran, K.; Ferres, J.L.; Matin, M.; Bengio, Y. Machine Learning
for Glacier Monitoring in the Hindu Kush Himalaya. arXiv 2020, arXiv:2012.05013.

53. Xie, Z.; Asari, V.K.; Haritashya, U.K. Evaluating deep-learning models for debris-covered glacier mapping. Appl. Comput. Geosci.
2021, 12, 1–17. [CrossRef]

54. Lu, Y.; Zhang, Z.; Shangguan, D.; Yang, J. Novel machine learning method integrating ensemble learning and deep learning for
mapping debris-covered glaciers. Remote Sens. 2021, 13, 2595. [CrossRef]

55. Robson, B.A.; Bolch, T.; MacDonell, S.; Hölbling, D.; Rastner, P.; Schaffer, N. Automated detection of rock glaciers using deep
learning and object-based image analysis. Remote Sens. Environ. 2020, 250, 112033. [CrossRef]

56. Wang, J.; Li, W. Comparison of methods of snow cover mapping by analysing the solar spectrum of satellite remote sensing data
in China. Int. J. Remote Sens. 2003, 24, 4129–4136. [CrossRef]

57. Gupta, R.; Haritashya, U.K.; Singh, P. Mapping dry/wet snow cover in the Indian Himalayas using IRS multispectral imagery.
Remote Sens. Environ. 2005, 97, 458–469. [CrossRef]

58. Zhou, S.; Yao, X.; Zhang, D.; Zhang, Y.; Liu, S.; Min, Y. Remote Sensing Monitoring of Advancing and Surging Glaciers in the Tien
Shan, 1990–2019. Remote Sens. 2021, 13, 1973. [CrossRef]

59. Weinmann, M.; Weidner, U. Land-cover and land-use classification based on multitemporal Sentinel-2 data. In Proceedings
of the IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018;
pp. 4946–4949.

60. Bruzzone, L.; Bovolo, F.; Paris, C.; Solano-Correa, Y.T.; Zanetti, M.; Fernández-Prieto, D. Analysis of multitemporal Sentinel-2
images in the framework of the ESA Scientific Exploitation of Operational Missions. In Proceedings of the 9th International
Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Bruges, Belgium, 27–29 June 2017; pp. 1–4.

61. Cao, B.; Pan, B.; Guan, W.; Wen, Z.; Wang, J. Changes in glacier volume on Mt. Gongga, southeastern Tibetan Plateau, based on
the analysis of multi-temporal DEMs from 1966 to 2015. J. Glaciol. 2019, 65, 366–375. [CrossRef]

62. Reinthaler, J.; Paul, F.; Granados, H.D.; Rivera, A.; Huggel, C. Area changes of glaciers on active volcanoes in Latin America
between 1986 and 2015 observed from multi-temporal satellite imagery. J. Glaciol. 2019, 65, 542–556. [CrossRef]

63. Meier, W.J.H.; Grießinger, J.; Hochreuther, P.; Braun, M.H. An updated multi-temporal glacier inventory for the Patagonian
Andes with changes between the little ice age and 2016. Front. Earth Sci. 2018, 6, 62. [CrossRef]

64. Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Informatics 2019,
12, 143–160. [CrossRef]

65. Pellicciotti, F.; Ragettli, S.; Carenzo, M.; McPhee, J. Changes of glaciers in the Andes of Chile and priorities for future work. Sci.
Total Environ. 2014, 493, 1197–1210. [CrossRef] [PubMed]

66. Casassa Rogazinski, G.; Rivera, A.; Aniya, M.; Naruse, R. Características glaciológicas del campo de hielo patagónico sur. Anales
del Instituto de la Patagonia 2000, 28, 5–22.

67. Mora Soto, A. Propuesta para el Desarrollo Sustentable del Parque Nacional Torres del Paine, en la Estancia Cerro Paine. Memoria
para optar al Título de Geógrafa 2009.

68. Karpilo, R.; Ronald, D. Glacier monitoring techniques. In Geological Monitoring; The Geological Society of America: Boulder, CO,
USA, 2009; pp. 141–162.

http://dx.doi.org/10.1163/156939306779292192
http://dx.doi.org/10.1080/01431161.2010.531785
http://dx.doi.org/10.1016/j.rse.2010.01.015
http://dx.doi.org/10.1016/j.rse.2019.111267
http://dx.doi.org/10.3390/rs9050507
http://dx.doi.org/10.3189/1994AoG20-1-1-5
http://dx.doi.org/10.1016/j.acags.2021.100071
http://dx.doi.org/10.3390/rs13132595
http://dx.doi.org/10.1016/j.rse.2020.112033
http://dx.doi.org/10.1080/0143116031000070409
http://dx.doi.org/10.1016/j.rse.2005.05.010
http://dx.doi.org/10.3390/rs13101973
http://dx.doi.org/10.1017/jog.2019.14
http://dx.doi.org/10.1017/jog.2019.30
http://dx.doi.org/10.3389/feart.2018.00062
http://dx.doi.org/10.1007/s12145-019-00380-5
http://dx.doi.org/10.1016/j.scitotenv.2013.10.055
http://www.ncbi.nlm.nih.gov/pubmed/24300481


Remote Sens. 2022, 14, 845 27 of 27

69. Huete, A. Remote sensing for environmental monitoring. In Environmental Monitoring and Characterization; Elsevier: Amsterdam,
The Netherlands, 2004; pp. 183–206.

70. Müller-Wilm, U. Sentinel-2 MSI—Level-2A Prototype Processor Installation and User Manual; Telespazio VEGA Deutschland GmbH:
Darmstadt, Germany, 2016.

71. Weinmann, M.; Weinmann, M. Fusion of hyperspectral, multispectral, color and 3D point cloud information for the semantic
classification of urban environments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1899–1906. [CrossRef]

72. De Ciencias del Clima y la Resilencia, C. Explorador Climatico. Available online: http://explorador.cr2.cl/ (accessed on 18
December 2020).

73. Weidemann, S.S.; Sauter, T.; Malz, P.; Jaña, R.; Arigony-Neto, J.; Casassa, G.; Schneider, C. Glacier mass changes of lake-
terminating Grey and Tyndall glaciers at the Southern Patagonia Icefield derived from geodetic observations and energy and
mass balance modeling. Front. Earth Sci. 2018, 6, 81. [CrossRef]

http://dx.doi.org/10.5194/isprs-archives-XLII-2-W13-1899-2019
http://explorador.cr2.cl/
http://dx.doi.org/10.3389/feart.2018.00081

	Introduction
	Contribution
	Paper Outline
	Background

	Materials and Methods
	Study Area
	Data
	Methods
	Generation of Reference Data
	Preprocessing
	Classification
	Multi-Temporal Analysis


	Results
	Used Data Subsets
	Quality Assessment for the Derived Reference Data
	Classification Results
	Multi-Temporal Analysis

	Discussion
	Generation of Reference Data
	Involved Classification Approaches
	Multi-Temporal Analysis

	Conclusions
	References

