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Abstract

Background: The teleost medaka (Oryzias latipes) is a well-established vertebrate
model system, with a long history of genetic research, and multiple high-quality
reference genomes available for several inbred strains. Medaka has a high tolerance
to inbreeding from the wild, thus allowing one to establish inbred lines from wild
founder individuals.

Results: We exploit this feature to create an inbred panel resource: the Medaka
Inbred Kiyosu-Karlsruhe (MIKK) panel. This panel of 80 near-isogenic inbred lines
contains a large amount of genetic variation inherited from the original wild
population. We use Oxford Nanopore Technologies (ONT) long read data to further
investigate the genomic and epigenomic landscapes of a subset of the MIKK panel.
Nanopore sequencing allows us to identify a large variety of high-quality structural
variants, and we present results and methods using a pan-genome graph
representation of 12 individual medaka lines. This graph-based reference MIKK panel
genome reveals novel differences between the MIKK panel lines and standard linear
reference genomes. We find additional MIKK panel-specific genomic content that
would be missing from linear reference alignment approaches. We are also able to
identify and quantify the presence of repeat elements in each of the lines. Finally, we
investigate line-specific CpG methylation and performed differential DNA
methylation analysis across these 12 lines.

Conclusions: We present a detailed analysis of the MIKK panel genomes using long
and short read sequence technologies, creating a MIKK panel-specific pan genome
reference dataset allowing for investigation of novel variation types that would be
elusive using standard approaches.
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Background
The Japanese medaka fish (Oryzias latipes) has a long history as a vertebrate model or-

ganism [1, 2]. We took advantage of its unusually high tolerance to inbreeding to estab-

lish the Medaka Inbred Kiyosu-Karlsruhe (MIKK) panel: the largest collection of near-

isogenic vertebrate lines derived from a single wild population [3]. In the companion

article published with this one, we provide a detailed genetic characterisation of the 80

individual MIKK panel lines [4], based on the alignment of Illumina short reads to the

closest, fully assembled reference genome—the southern Japanese medaka inbred

strain, HdrR. Although this allowed us to discover much of the genetic variation in the

MIKK panel relative to HdrR, the approach inevitably kept certain variants hidden, in-

cluding larger and more complex structural variation—“dark variation”—that is likely

to have functional consequences for each of the lines. Here, we describe how we used

Oxford Nanopore Technologies (ONT) long read sequencing to uncover some of this

dark variation in 12 of the MIKK panel lines, giving us a more complete assessment of

their genomic variation, and paving the way for future studies to elaborate on how

structural variants (SVs) affect phenotypes of interest.

The traditional approach for detecting genetic variation is to align reads to a linear

reference genome. There are at least three high-quality medaka reference genomes

based on inbred strains from different geographical regions in eastern Asia [5, 6]. These

include HdrR (southern Japan), HNI (northern Japan), and HSOK (Korea), all of which

have been characterised in depth at both phenotypic and genomic levels [7, 8]. Using

such linear reference genomes makes it relatively straightforward to determine the

functional consequences of genetic variants relative to those references. Although this

reference-anchored approach is convenient, it introduces a “reference bias” that can

give rise to an under-representation or even incorrect interpretation of genetic variation

[9]. Specifically, it makes it difficult to discover complex structural variation, such as

large insertions and nested variations.

Variation pangenome graphs offer a compelling alternative approach, allowing for the

representation of different classes of SVs using universal semantics [10–13]. The se-

quencing costs and mapping ambiguity of short reads has so far hindered the wide-

spread adoption of graph genomes. However, recent advances in long-read sequencing

technologies [14, 15], and the availability of efficient graph assembly algorithms [11,

16], now make it possible to generate pangenome graphs from multiple draft assem-

blies at a reasonable cost. These individual assemblies additionally confer the ability to

map and quantify different types of repeats [17, 18], which was previously limited when

using short-read technology alone. Pangenome reference graph representations and

variation is an active area of research with significant progress having been made in

methods for creating, interacting with and interpreting these structures [19] across a

variety of organisms including humans [10, 11]. Although much progress is being

made, this pangenome approach does come with its own limitations, as the graph rep-

resentation can be challenging to understand and interpret [20]. There are clear advan-

tages offered by moving away from the linear reference [21] and several path-based

variant calling methods have already been developed [9, 22]: however, there can still be

a barrier to using graph approaches for researchers who are unfamiliar with these

structures. Nevertheless, in this study, we demonstrate how these modern assembly

generation and aggregation approaches have allowed for a more complete assessment
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of genomic variation in 12 of the MIKK panel lines, paving the way for additional me-

daka research studies to use graph genome variation in addition to, or instead of, the

traditional reference-anchored approach. This might involve using novel graph vari-

ation in genotype-to-phenotype mapping experiments, or further population-based

studies comparing other geographically separated medaka strains across Japan and

beyond.

Even when applying the traditional reference-anchored approach, using Illumina

short-read sequences together with ONT long-read sequences can create a highly ac-

curate representation of large-scale genomic variation. It is clear that SVs impact im-

portant traits in humans [23], and it is essential to accurately characterise them to gain

a more complete picture of the variation between genomes [24]. Using the combination

of long- and short-read sequences takes advantage of their complementary strengths:

long reads can span highly repetitive regions, helping to resolve complex SVs, whereas

short reads are often of higher quality overall, allowing increased base-calling and map-

ping accuracy when used to polish the long-read SV calls. Numerous methods for using

both technologies in concert have been developed over the years [25], and although

there still remain certain challenges associated with SV detection [26], methods that

can leverage the combined information from different modern sequencing technologies

are likely to provide the highest accuracy [27]. Here, we show how we used ONT long-

read information to discover large SVs in 12 MIKK panel lines using the traditional

reference-anchored approach, and how polishing the SVs with Illumina short reads

substantially improved their mapping accuracy.

Finally, in addition to enabling the construction of pangenome graphs and the discov-

ery of larger SVs, ONT sequencing also allows one to directly detect DNA modifica-

tions, such as DNA methylation [28, 29]. We used ONT here to characterise DNA

methylation in 12 MIKK panel lines. Altogether, we demonstrate the advantages of

using combined short- and long-read technologies, together with both traditional and

modern alignment and assembly approaches, in order to more fully characterise large

and complex genomic variation. We show several examples of compelling functional

consequences, including rearrangements to the exonic structure or the deletion of

whole genes. During this work, we provide extensive custom-designed methods and ex-

amples of interacting with and extracting meaningful variant-level information from

genome graphs [30], both showcasing complex SVs in medaka fish and making our

graph assembly available as a resource for the community. We demonstrate some clear

advantages of using the graph-based approach and provide new methods for the down-

stream interpretation of variation. Ultimately, this more complete assessment of the dif-

ferences between genomes will lead to a more detailed and sophisticated understanding

of how genetic variation causes phenotypic differences.

Results
Line-specific assemblies and medaka pangenome graph assembly

We selected 12 MIKK panel lines (including 3 pairs of sibling lines) and sequenced

brain samples with ONT long read technology to a median of 20x coverage per line,

with 37 million reads overall. We multiplexed 4 samples per PromethION flowcell and

obtained more than 10 Gb per sample with a mean genome coverage between 13X and
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30X as compared with 31X to 39X for illumina sequencing, and the median N50 of the

reads was 7411 bp (Additional file 1: Table S1). The analysis consisted of 4 steps: (1)

linear draft assembly for each MIKK line using both short and long reads, (2) pangen-

ome graph construction combining known medaka reference genomes and MIKK panel

draft assemblies, (3) alignment of ONT reads to the graph, and (4) extraction of com-

plex structural variations.

Individual MIKK line assemblies

We generated individual assemblies for each line using a hybrid Illumina/ONT strategy.

To this end, we first built a scaffold with ONT data using wtdbg2 [31] and then

polished the resulting assemblies using the Illumina reads with Pilon [32]. The quality

of the draft assemblies was evaluated with Quast [33] against the HdrR reference as-

sembly, BUSCO [34] using the closest available linage (actinopterygii), and a reference

free assessment using Merqury [35]. For the BUSCO results using 3640 BUSCOs from

26 genomes, most MIKK panel assemblies had greater than 50% complete BUSCOs

with a median of 59% across the 12 assemblies (the “Methods” section). For the

reference-free assessment using Merqury, we observe consistent consensus quality

(QV) estimates (Additional file 2: Fig. S1A) and reasonable k-mer completeness values

with a median completeness of 78% across all 12 assemblies (Additional file 2: Fig.

S1B). Although the level of complete BUSCOs in our draft MIKK panel assemblies is

lower than needed for reference grade assemblies, we observe similar levels compared

to draft assemblies from other teleost species [36] and reasonable k-mer completeness

and QV measures from the Merqury reference free assessment (Additional file 3: Table

S2). Although we acknowledge that our draft assemblies could be further improved by

more sequencing or the addition of further data types such as chromosome conform-

ation capture (Hi-C), they have proved useful in gaining a more complete understand-

ing of genome variation between panel lines and relative to 3 different gold standard

reference genomes (HdrR, HNI, and HSOK). However, since these are draft assemblies,

we have been strict in our definition of novel variation requiring support from both

DNA-seq and RNA-seq in MIKK panel lines.

The assemblies have between 2500 and 4400 contigs amounting to total lengths of

721 to 742 Mb, with N50 values between 404 and 971 kb (Table 1 and Fig. 1A). Assem-

bly lengths are highly consistent with the length of the medaka HdrR reference (734

Mb), as are the percentages of CG (Table 1 and Fig. 1D). However, when aligning the

contigs to the HdrR reference the median alignment length (NA50) scores drop to

values between 105 and 280 kb, although many alignments are over 1 Mb long. This is

very likely due to the presence of structural variations interrupting alignments and a

significant divergence of the MIKK genomes as compared with HdrR. Indeed, on aver-

age only 80% of the bases from the MIKK panel genomes are aligned unambiguously to

the HdrR reference and a similar trend is observed for the number of genes covered

(Table 1 and Fig. 1C, E). As shown in more details in the following section (Fig. 2B),

the majority of the additional 20% present in the MIKK panel occurs in more than one

MIKK line. Altogether, this suggests that the MIKK panel line genomes can be reason-

ably accurately assembled and contain a significant amount of genetic diversity com-

pared with the HdrR line, the closest complete reference assembly.
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Table 1 Summary statistics of individual MIKK line assemblies

Line
id

Number
of contigs

GC
(%)

Total
length

Largest
contig

N50 Total aligned
length

Largest
alignment

NA50

4-1 2,886 40.66 730,816,425 5,635,124 802,725 599,170,757 2,340,443 259,311

4-2 2,762 40.71 737,637,241 6,376,848 971,613 612,988,975 2,781,976 279,257

7-1 2,512 40.69 732,447,291 5,851,261 942,347 608,014,583 2,243,072 265,102

7-2 2,892 40.69 732,448,405 4,099,264 845,096 607,409,964 1,761,859 253,015

11-1 3,368 40.56 728,542,858 4,525,370 624,727 545,652,612 1,541,261 180,262

69-1 3,077 40.59 727,390,278 6,080,511 708,738 573,096,833 1,823,612 220,342

79-2 3,053 40.62 730,357,166 6,658,276 742,721 584,535,579 2,384,437 235,007

80-1 4,374 40.49 720,948,860 3,238,833 404,886 491,501,885 1,304,457 105,372

117-2 2,810 40.73 732,113,747 5,059,334 903,899 620,809,739 2,195,961 270,130

131-1 3,651 40.72 741,963,499 5,589,066 737,055 563,763,739 2,231,101 180,572

134-1 3,142 40.71 731,842,804 4,138,056 747,064 606,908,341 2,042,573 245,116

134-2 3,977 40.75 729,131,624 3,835,876 475,444 621,355,180 1,698,873 209,441

Fig. 1 Quality metrics for individual assemblies. A Normalised distribution of contigs length for each
assembly. Dashed lines represent the N50 values. B Cumulative length of contigs. C Cumulative length for
contig blocks aligned on HdrR, in comparison with the HdrR reference chromosomes (dashed black line). D
Distribution of CG content of assemblies in comparison with the HdrR reference (dash black line). E
Feature-response curve for HdrR gene annotation, showing the quality of the assemblies as a function of
the maximum number of possible genes allowed in the contigs
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Pangenome graph assembly and read alignment

To better represent the complexity of the MIKK panel and the relationships with exist-

ing medaka reference genomes, we built a pangenome variation graph with minigraph

Fig. 2 Pangenome graph reference characterisation. A Example section of the graph for chromosome 1
showing different paths through the graph via segments originating from the 4 types of assemblies used
to build the graph. B Total length of segments contained into the graph by type of assembly. Dashed areas
represent the proportion of bases for segments covered by at least 2 samples with at least 5% of the
average coverage over the HdrR reference segments. C Distribution of the length of segment by type of
assembly normalised by the total length of segments. D Kernel density plots of the length of alternative
segments according to their divergence when aligned onto the HdrR reference. The quadrants defined by
vertical dashed lines (length = 2kb) and horizontal dashed lines (divergence = 0.5) separate the segments
into 4 categories according to their length and divergence score. The numbers displayed correspond to the
percentages of segments within each of the 4 quadrants. E Percentages of bases from nanopore reads
aligning on each type of assembly for the 12 MIKK samples. F Detailed percentages of bases aligned on
alternative segments for each MIKK sample depending on segments cross-usage by the other samples,
from 12 (all other samples) to 1 (only the current sample). A segment was considered used by a sample
when its coverage was at least 5% of the average HdrR reference coverage
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[11] containing all the individual MIKK assemblies together with the HdrR, HNI, and

HSOK reference assemblies (http://utgenome.org/medaka_v2). Previous phylogenetic

analyses showed that the MIKK panel is genetically closest to HdrR, then HNI and fi-

nally HSOK [3]. Thus, we used an iterative strategy to build our pangenome graph,

starting with HdrR as the primary anchor, followed by HNI, then HSOK and finally all

the MIKK panel assemblies one by one. By doing so, we can identify the segments of

the graph that are specific to the MIKK panel, while having information on which is

the closest reference for every graph segment. To assess the completeness of graph

usage relative to a set of “core genes” in the most closely related gold standard refer-

ence (HdrR), we used a similar approach to a previous study [37]. We took all graph

segments used by all 12 assemblies (and the HdrR reference) and compared, for each of

24,328 annotated reference genes, the proportion of bases in coding exons that were

fully contained within the set of “core graph segments” (the “Methods” section). Next,

we defined a gene as being core (“present” in all 12 lines) if over 95% of coding exon

bases for that gene were covered. Overall, we found that 78% of annotated reference

genes had greater that 95% of their coding exons covered by all 12 lines with only 8.5%

of annotated genes missing all coding exons in all lines, leaving an interesting set of

13.5% genes with variable rates of coding sequence fragmentation (Additional file 2:

Fig. S2). This suggests that a substantial portion of the annotated coding sequences

from the most closely related reference genome (HdrR) may have undergone significant

fragmentation and/or deletion in the MIKK panel which is most likely a consequence

of complex structural rearrangements.

The presence of non-HdrR alternative segments can indicate insertions or significant

divergence from the reference, whereas the connection of two non-adjacent HdrR seg-

ments in linear space is indicative of possible deletions (example shown graphically in

Fig. 2A). We obtained a graph containing over 1.1 million segments totaling 1.3 Gb,

which is around 1.8 times larger than the HdrR reference genome. Together, the 12

MIKK lines bring an additional 211,836 segments to the graph (318 Mb, 24.3% of total)

of which 161,533 are covered by at least 2 lines (203 Mb, 20.2%). The segments only

found in the MIKK panel have an N50 of nearly 4000 bp and a median sequence iden-

tity of 73.7% when aligned to the HdrR reference (Table 2 and Fig. 2B–D). In summary,

the MIKK panel contains a large number of relatively low divergent paths through the

graph mostly consisting of segments ranging from 100 to 5000 bp and cover the major-

ity of annotated HdrR reference genes. In comparison both HNI and HSOK bring fewer

Table 2 Pangenome graph reference statistics. Segment type indicates which assembly the
segments originally come from. For the “Segments used by at least 2 MIKK samples” columns, we
defined a segment as being used if its coverage is at least 10% of the average coverage over the
HdrR reference segments

Segment
type

All segments in graph Segments used by at
least 2 MIKK samples

Median
segment
length

Longest
segment

N50 Median
%
identityLength (bp) # segments Length (bp) # segments

HdrR 734,100,826 648,692 713,609,808 615,564 401 675,459 3000 NA

HNI 103,507,879 148,689 43,204,187 47,854 239 175,667 2003 62.9%

HSOK 152,043,332 100,275 49,055,247 23,881 371 236,527 5803 60.4%

MIKK 318,174,656 211,836 203,539,620 161,533 559 89,792 3998 73.7%

All 1,307,826,693 1,109,492 1,009,408,862 848,832 389 675,459 3342 NA
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segments but with a greater sequence divergence as compared with the HdrR reference

[38.9% and 60.4% identity, respectively). Interestingly, HSOK has a sizable population of

long and divergent segments (> 2000 bp and > 0.5 divergence) which represent 13.9%

of segments as opposed to 5.1% and 6.7% for HNI and MIKK, respectively (Fig. 2D).

This is in line with the established phylogeography of Medaka fish, in that the Korean-

derived HSOK line is geographically isolated from Japanese medaka lines and earlier

branching in evolutionary time.

Finally, we analysed the graph usage after aligning raw nanopore reads for each indi-

vidual MIKK sample and computing the coverage for each segment. Overall, the MIKK

lines behave similarly in terms of the reference types to which they align, with HdrR

holding the bulk of the coverage (median = 85.1%) followed by MIKK-specific segments

(11%) HNI segments (3%) and HSOK (0.9%) (Fig. 2E and Additional file 4: Table S3).

Among the non-HdrR alternative segments, we also investigated the cross-usage of

each segment across the 12 MIKK samples. The samples overwhelmingly use segments

that are also covered by at least half of all the samples (median = 90.36%) and even by

all the samples in the majority of the cases (54.61%) (Fig. 2D and Additional file 5:

Table S4). However, there is one notable exception for line 131-1 for which HNI type

segments get a much larger fraction of the coverage (6.8%). The samples also tend to

align on alternative segments supported by fewer samples, with 28.6% of the bases

aligned on segments used by fewer than 6 samples, including 16.7% specific to 131-1

line.

Novel genetic sequences and large-scale insertions and deletions in the MIKK pane

Pangenome variation graphs offer new options to discover structural variations that are

not available with conventional SV approaches based on linear reference genomes. In

particular, they are better suited to represent genomic intervals which accumulated a

large number of small variations as divergent alternative paths. We analysed the pres-

ence of such paths in our medaka pangenome graph and their potential functional im-

pact. To do so, we identified branches of the graph containing segments which have (1)

a low identity compared with the HdrR reference, (2) a robust DNA-Seq and RNA-Seq

support from multiple MIKK panel samples, (3) a total cumulative length exceeding 10

kb, and (4) with at least one annotated exon overlapped (see precise criteria in the

“Methods”section). With this strict set of criteria, we found 19 such alternative paths in

our graph (Additional file 6: Table S5). The 2 examples presented in Fig. 3A/B show

the layout of the graph with the reference and the alternative divergent paths. To inves-

tigate the precise RNA usage pattern, we generated local linear assemblies for the 2

branches of each selected loci and aligned short RNA-Seq data obtained for 50 MIKK

liver samples. In both cases, the exonic coverage pattern over the reference and alterna-

tive paths is strikingly different, showing the impact on the transcriptional landscape

around these loci of the structural variation.

Large scale rearrangements, deletions in particular, can easily be detected in a graph

by analysing the usage of links between segments. We selected links [1] connecting 2

HdrR segments distant by more than 10kb, [2] with a strong coverage in multiple

MIKK panel samples, and [3] skipping at least 1 annotated exon (see precise criteria in

the “Methods” section). We obtained a list of 16 of these large-scale deletions
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Fig. 3 Example structural variations identified in the pangenome graph. A, B Visualisation of alternative
divergent paths in the graph. For both selected examples, the left side panel shows a bandage plot
indicating the reference HdrR and the alternative path. Each graph segment is color-coded according to
the number of samples with at least 50% of the reference coverage for the ONT DNA-Seq dataset, from
white (none) to deep red (all). Blue segments are supported by multiple samples for both Illumina RNA-Seq
and ONT DNA-Seq. The right panel shows the linear structure of local assemblies for both the reference
and the alternative paths. For the reference, the top blue track represents the existing Medaka HdrR
annotations. The light and dark green tracks correspond to the segment layout from the graph. Finally, the
heatmaps show the RNA expression intensities for all 50 medaka samples sequenced along the represented
sections of the graph (grey = not found, white = less than 5 reads, dark red = more than 100 reads). C, D
Visualisation of large-scale deletions in the graph. For both selected examples, the left panel shows the
Medaka HdrR annotations (blue) and the graph segment layout (light and dark green), overlaid with the
deletion position (grey rectangle). The bandage plots on the right are color-coded as previously described.
The shaded area indicates the reference sequence deletions robustly supported by a direct connection
between distant reference segments (link coverage > 50% of reference coverage for at least 9 samples)
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(Additional file 7: Table S6), 2 examples of which are presented in Fig. 3C/D. When

lowering the length to 1 kb and not restricting to deletions overlapping exons, we

found 2059 such events, showing the widespread occurrence of such deletions with a

disruptive potential.

Altogether, our graph genome analysis generated a comprehensive dataset from these

12 lines that has allowed us to identify complex variants. We were able to highlight po-

tential functional consequences including disruption of gene exonic pattern and re-

moval of entire genes. Further computational tools in read mapping and annotation

will be needed to robustly identify non-reference genic content in the graph genome.

This new way to look at population genomics allowed us to visualize highly complex

SVs in medaka fish at an unprecedented resolution and to provide our graph assembly

as a resource for the community.

Structural variation and breakpoint mapping in the MIKK panel

As an alternative to the variation pangenome approach, we also explored structural

variation (SVs) in a reference-anchored manner, similar to many human studies [38].

Differences in SVs between panel lines is another important class of genetic variation

that could cause or contribute to significant phenotypic differences. Here, we used

Nanopore sequencing data obtained for 9 of the 12 selected lines allowing us to charac-

terise larger SVs in the MIKK panel and to create a more extensive picture of genomic

rearrangements compared to available medaka reference genomes. We first called

structural variants using only the ONT long reads, producing a set of structural vari-

ants classified into five types: deletions (DEL), insertions (INS), translocations (TRA),

duplications (DUP), and inversions (INV). We then “polished” the called DEL and INS

variants with Illumina short reads to improve their accuracy. The polishing process fil-

tered out 7.4% of DEL and 12.8% of INS variants, and adjusted the breakpoints (i.e.

start and end positions) for 75–77% of DEL and INS variants in each sample by a mean

of 23 bp for the start position, and 33 bp for the end position (Additional file 2: Fig.

S3). This process produced a total of 143,326 filtered SVs.

The 9 “polished” samples contained a mean per-sample count of approximately 37K

DEL variants (12% singletons), 29.5K INS variants (14%), 3.5K TRA variants (9%), 2.5K

DUP (7%), and 600 INV (7%) (Fig. 4D). DEL variants were up to 494 kb in length, with

90% of unique DEL variants shorter than 3.8 kb. INS variants were only up to 13.8 kb

in length, with 90% of unique INS variants shorter than 2 kb. DUP and INV variants

tended to be longer, with a mean length of 19 and 70.5 kb respectively (Fig. 4A). Figure

4E shows the per-sample distribution of DEL variants across the genome. Most large

DEL variants over 250 kb in length were common among the MIKK panel lines. A

number of large DEL variants appear to have accumulated within the 0–10 Mb region

of chromosome 2, which is enriched for repeats in the HdrR reference genome (Add-

itional file 2: Fig. S4A)

SVs were generally enriched in regions covered by repeats. While only 16% of bases

in the HdrR reference were classified as repeats (irrespective of strand), those bases

overlapped with 72% of DEL, 63% of DUP, 81% of INV, and 35% of TRA variant re-

gions. However, repeat bases only overlapped with 21% of INS variants. We also

assessed each SV’s probability of being loss-of-function (pLI) [39] by calculating the
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logarithm of odds (LOD) for the pLI scores of all genes overlapping the variant (Fig.

4B, C). 30,357 out of 134,088 DEL, INS, DUP, and INV variants overlapped at least one

gene, and 9% of those had a score greater than 10, indicating a high probability that the

SV would cause a loss of function. Two INS variants on chr2 had an outlying LOD

score of 57 as a result of overlapping medaka gene ENSORLG00000003411, which has

a pLI score of 1—the highest intolerance to variants causing a loss of function. This

Fig. 4 Polished SVs in 9 MIKK panel lines sequenced with ONT. DEL deletion, INS insertion, TRA translocation,
DUP duplication, INV inversion. A Aggregate log10 counts and lengths of distinct SVs by type, excluding TRA. B
pLI LOD scores in distinct SVs by SV type. C Histogram of LOD scores by SV type. D Total and singleton counts
of SV types per sample. E Circos plot showing per-sample distribution and lengths of DEL variants across the
genome. Circos figures for each of the other SV types are included in Additional file 8: Fig. S6
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gene is homologous with human genes SCN1A, SCN2A and SCN3A, which encode so-

dium channels and have been associated with neuronal and sleep disorders. We did not

find evidence that longer SVs tended to have a higher probability of causing a loss of

function (Fig. 4B).

We compared these polished INS and DEL calls with the high-quality graph-based al-

ternative paths and large-scale deletions, respectively. We found that 2 of the 19 re-

gions covered by graph-based alternative paths (Additional file 6: Table S5), and 4 of

the 16 regions covered by graph-based deletions (Additional file 7: Table S6), had no

SVs that overlapped those regions at all, which suggests they would have been missed

entirely when using a reference-anchored approach alone. With the exception of one

alternative path on chromosome 20, the alternative paths were not captured by INS

variants, which only covered up to 63% of the bases in each region, and in many cases

substantially less. On the other hand, for 8 of the 16 graph-based deletions, the DEL

variants covered at least 85% of the bases in those regions. The other 8 graph-based de-

letions were either not at all covered by DEL variants or only slightly. This indicates

that the reference-based approach is better at detecting large-scale deletions than alter-

native paths (“insertions”), but still misses around half of such variants relative to the

graph-based approach.

Differential methylation analysis

Native DNA sequencing with nanopore technology can be used to robustly detect CpG

methylation at single base and single read resolution. There are a number of software

methods which can be used to identify methylated positions [28, 29]; however, finding

differentially methylated areas of the genome between samples requires processing

these methylation calls across samples. To do so, we developed an analytic framework

[40] to identify CpG islands of interest in the 12 panel lines sequenced with Nanopore

DNA-Seq.

We were able to use the sequencing data previously generated to explore CpG

methylation differences in the brain samples of the 12 selected MIKK panel lines. We

found 4459 significantly differentially methylated regions (DMR) among the 271,294

CpG islands included in the analysis (FDR=1%), using a Kruskal-Wallis test. Significant

DMR are distributed across the entire genome, with a possible enrichment towards

chromosomal extremities (Fig. 5C). In addition, we observed a sharp enrichment of sig-

nificant DMR near gene transcription start sites compared with non-significant regions

(Fig. 5B). When clustering the significant DMR across the entire genome the 3 sib-lines

pairs included in the analysis cluster together. This suggests that the methylome is con-

served across multiple generations; the simplest explanation being that much of the

methylation variation is genetically determined. Detailed interactive reports for the 100

top significant DMR can be found at https://birneylab.github.io/MIKK_genome_

companion_paper/DNA_methylation/results/pycometh_html/pycoMeth_summary_

report.html [30], and a list of all significant hits is provided as Additional file 9: Table

S7. Among the top hits, we found interesting candidates in close proximity to coding

genes including onecut3a, gart, dnase1, and galm. The onecut3a gene is a transcription

factor that has been found to have important roles in the development of the liver and

pancreas in Zebrafish, in particular biliary development [41]. The gart and galm genes
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are enzymes required for de novo purine biosynthesis and normal galactose metabolism,

respectively, and the dnase1 gene is an important member of the DNase family involved

in actin binding and deoxyribonuclease activity. To investigate differences in expression

levels for these four DMRs, we were able to match 8 samples for liver and 6 samples

Fig. 5 DNA methylation analysis. A Heatmap of all significant CpG islands differentially methylated across
the MIKK panel samples. CpG islands are sorted by genomic positions and the X-axis. Samples are ordered
by hierarchical clustering on the Y-axis and color coded so that sibling lines are indicated with the same
colors. The color scheme is according to the value of the median log-likelihood ratio from −3 (blue) to 3
(red) with ambiguous values between −1 and 1 in white. B Distribution of distances to the closest gene
TSS for significantly differentially methylated CpG in red (n=4249) and all non-significant islands in blue (n=
8727). C Number of significant CpG islands by genomic windows for the 24 HdrR chromosomes, from 0
(white) to 6 (dark red). D Example 100kb region containing a significant CpG island in red (chr15:1565040-
1565987) as opposed to non-significant ones in white. E CpG level log-likelihood ratio kernel density plot
for the CpG island highlighted in panel D. Samples are sorted on the Y-axis by decreasing median llr.
Individual CpG values are indicated by dots. F Heatmap of log-likelihood ratio with hierarchical clustering
by sample for the CpG island highlighted in panel D. On the X-axis are individual CpGs sorted by
genomic position
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for heart where we also had bulk RNA sequence data available (Additional file 2: Fig.

S5). The results here are limited and we expect that in most cases a larger sample size

will be required to reliably detect these effects; however, we do observe a significant re-

lationship (p=0.002) between methylation likelihood and expression in the liver for the

galm gene (Additional file 2: Fig. S5D).

Discussion
Improvements to the accessibility and affordability of long-read genome-sequencing

technologies opens up new possibilities for a deeper characterisation of eukaryotic ge-

nomes and a more complete understanding of intra-species genetic variation. The

standard approach of using a linear reference can only partially handle large and com-

plex structural variation, and a considerable fraction of genetic variation between indi-

viduals is masked from sight. Such ‘dark’ genome variation comes in a variety of flavors

and scales, including large novel sequence insertions, gene conversion, and introgres-

sion from other compatible genomes.

Here, we focused on providing a more complete view of the genetic variation ob-

served across 12 lines from the MIKK panel by assembling a draft genome for each of

the lines and then integrating them with three high-quality medaka reference genomes

(HdrR, HNI, and HSOK). Each of the 12 MIKK panel lines are inbred lines derived from

the same wild founder population from Kiyosu, Japan and can be considered as

southern-Japanese strains most closely related to the HdrR reference. First, we set out

to create high-quality draft genomes for each of the 12 MIKK panel lines using a com-

bination of high-coverage ONT and Illumina sequence data. We observed overall

good-quality metrics for the assemblies, with the total sequence lengths being consist-

ently close to the length of the HdrR reference genome and similar rates of missing

BUSCOs to previous draft assemblies in teleost fish [36]. Interestingly, when aligning

these draft assemblies against the HdrR reference, NA50 values see a marked decrease,

indicating that there is likely to be a considerable fraction of the MIKK panel genomes

that is not present in the HdrR reference. When aligning these draft assemblies to the

HdrR reference, we often observed large sequences being split up and fragmented into

many smaller sections mapping to different genomic locations, suggesting a marked di-

vergence of the MIKK panel genomes from the HdrR reference as a result of many

structural variations or novel insertions interrupting the HdrR sequence. As more high-

quality reference genome assemblies are generated for medaka [42] and other species

[43], new approaches for the representation and comparison of genomes are becoming

increasingly valuable, as they allow for a deeper understanding of genetic variation

within and between species. To further characterise some of the genetic differences

within the MIKK panel, and between the MIKK panel and the 3 medaka reference ge-

nomes, we used a recently developed graph-based alignment approach, allowing us to

represent all 12 MIKK assemblies on the same genome graph together with the 3 refer-

ence medaka assemblies. Not only does this approach allow us to represent all MIKK

panel assemblies on the same scaffold, but it also provides an intuitive way of assessing

how the MIKK panel genomes differ from the genomes of more distant medaka strains.

As the MIKK panel is derived from a southern-Japanese population of wild medaka,

the MIKK panel lines are expected to be most closely related to the southern-Japanese

HdrR reference. This is clearly reflected by the total sequence length within the graph
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that can be assigned to the HdrR reference genome; however, there are an appreciable

number of MIKK-panel-specific sequences—the majority of which are supported by 2

or more MIKK panel assemblies. These high-confidence, novel MIKK-panel-specific se-

quences would be masked when using standard linear-genome-alignment approaches,

and would therefore be missing—or incorrectly represented—during downstream ana-

lysis, resulting, in the best case, in incomplete genomic variation calls. Furthermore,

when looking at novel sequences from the two more distant reference genomes (HNI

and HSOK), it is interesting to observe that the northern-Japanese HNI strain contrib-

utes fewer novel sequences to the MIKK panel assemblies than the southern-Korean

HSOK strain, the latter of which is geographically more distant from the MIKK panel’s

southern-Japanese founding population. However, for high-confidence sequences (those

supported by 2 or more MIKK panel assemblies), the total length of sequences are ap-

proximately equal for HNI and HSOK. The pattern of shared sequence between the

MIKK panel lines and the three reference genomes is remarkably consistent across all

MIKK panel assemblies with the exception of line 131-1, which shows higher numbers

of sequences assigned to HNI. This may have been due to the introgression of HNI

with line 131-1 in the facility during the inbreeding process. Aside from this line, we

see little evidence of significant introgression from more distant strains.

The graph-based approach improved our ability to detect large-scale structural vari-

ation relative to the traditional reference-anchored approach. Although the process of

aligning long reads to the HdrR reference and then polishing the calls with short reads

revealed a large number of SVs with improved breakpoint-mapping, it still missed

around half of the high-quality, large-scale deletions—and most alternative paths—that

were discovered through the graph-based approach. This demonstrates the utility of

graph genomes to uncover variation that would otherwise be obscured when using the

reference-anchored approach. We did observe that the reference-anchored approach

had a slight bias in favour of resolving the large graph-based deletions over the large

graph-based alternative paths. We also observed a sharp drop in the ability to detect in-

sertions above approximately 10 kb, and given the median long-read length is close to

three quarters of this limit, we hypothesise that the ability to resolve large insertions is

likely to be directly proportional to read length [44].

It is notable that there are clear genetic consequences for some of the structural vari-

ants observed, with a conservative set of 74,271 novel contigs that alter gene content

and 11,448 that overlap exonic regions. Having a comprehensive set of functional

changes on haplotypes, including these complex variations, is critical for understanding

the functional impact of variation. This will be of great importance when using the

MIKK panel for genetic association studies of phenotypes, where a full catalog of struc-

tural variation will facilitate the attribution of a mapped genetic locus to the correct

functional gene. As well as creating a more complete representation of genome struc-

ture, the detailed characterisation of genomic variation using advanced assembly aggre-

gation approaches provides important information that can be used to further refine

our understanding of gene organisation and function. By using a graph-based approach

combined with RNA-sequence alignment, we were able to show distinct expression

profile patterns between a standard linear view (or the HdrR path) compared to MIKK-

panel-specific alternatives for expressed genes. This analysis also shows the value in a

graph genome approach to understand functional impacts of structural variation; it is
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hard to represent some of this variation against a single linear genome, and certainly

“nested” variation (that is, variation inside of a region with large variation relative to

the reference), which is virtually impossible to handle with a reference-anchored

approach.

Variation population graphs are clearly more appropriate for the detection of com-

plex genomic variation across most organisms, including medaka fish, and as the field

progresses, we should expect to see further improvements into methods for genome as-

sembly, graph creation, manipulation, and variation interpretation [11, 13, 22, 45].

Here, we provide important additional variation using a graph genome representation

of 12 draft assemblies from the MIKK panel and have shown that it is not only possible

to detect novel variation from genome graphs, but that some of this variation is likely

to have a functional consequence. We provide extensive custom-written code that in-

cludes methods used to traverse, detect, and interpret variation using a genome graph

approach [30], and we have detailed all methods used to obtain a deeper characterisa-

tion of genomic variation in MIKK panel genomes. The results and methods we pro-

vide here, with which we have only started to explore novel genomic content relative to

three high-quality reference genomes, will be of direct interest to the community and

should stimulate further research across a diverse set of medaka fish populations.

An additional and compelling aspect of DNA sequencing using Oxford Nanopore

(ONT) is that along with providing long reads suitable for genome assembly; it is also

possible to detect DNA modifications, primarily DNA methylation at single-base reso-

lution. We were able to detect thousands of differentially methylated bases using ONT

sequence data across 12 MIKK panel lines, providing a further deep characterisation of

the genome variation in medaka fish. Interestingly, methylation patterns appear consist-

ent across multiple generations, with the MIKK panel sibling lines clustering together

based on their methylation profiles alone. This suggests that, like in other species [46],

methylation is a heritable trait in medaka fish capable of persisting across multiple gen-

erations and is likely to impact phenotypic traits.

Conclusions
With this pilot set of 12 MIKK panel lines, we have demonstrated the feasibility of gen-

erating independent assemblies for each of the MIKK panel lines and of interrogating

the rich functional differences created by their structural variants. Without these long-

read-based assemblies and the subsequent variation population graph, we would have

been ignorant of the substantial differences in genomic content between the MIKK

panel lines. Although there is still a long way to go to make the pangenome variation

graph a robust alternative to the linear genome, there is no doubt that it will play a

central role in constructing and characterising the ever-expanding catalogue of individ-

ual genomes. In addition, we have shown here that the detection of DNA modifications

by ONT works robustly in medaka fish. This already provides a useful resource to ex-

plore functional differences, but most importantly gives confidence that complete

MIKK panel sequencing by ONT will be useful, both for the identification of structural

variation, and to provide a key intermediate molecular readout via methylation status.

Thus, we present here a methodology for the downstream genome analysis of pangen-

ome graphs that has the potential to become a more widely used approach for

population-based studies.
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Methods
Fish husbandry and dissection

The MIKK panel lines were established from a wild Medaka (Oryzias latipes) popula-

tion as detailed in our back to back companion paper [4]. Liver and brain samples dis-

section procedures are also described in detail in the companion paper. In this paper,

we selected the following lines: 4-1, 4-2, 7-1, 7-2, 11-1, 69-1, 79-2, 80-1, 117-2, 131-1,

134-1, and 134-2. Line ids starting with the same number (in bold) are sibling lines,

derived from the same F1 founder family. The selection was done before full stabilisa-

tion of the final MIKK panel lines, leading to the following lines not being present in

the official 80 stable MIKK lines: 7-1, 131-1, and 134-2.

Sample preparation and sequencing

Briefly, RNA extraction from liver samples and DNA extraction from brain samples

were performed on a Qiagen automated extraction platform using QIAsymphony RNA

and DNA Kits, respectively. Samples were prepared for Illumina DNA-Sequencing

using the standard PCR-free Illumina protocol [47] and RNA-Sequencing using the

NEBNext Ultra II Directional RNA Library Prep Kit following the manufacturer’s

instructions.

For Nanopore DNA-Sequencing, brain DNA samples were prepared with the ligation

sequencing kit (SQK-LSK109), multiplexed with the native barcoding expansion kit

(EXP-NBD104), and finally loaded in a FLO-PRO002 flow-cell on a PromethION in-

strument, all following the manufacturer’s instructions (Oxford Nanopore, Oxford,

UK). To reduce sequencing costs while targeting a coverage of around 15X, we multi-

plexed 4 samples per flowcell. The 12 MIKK panel samples were selected based primar-

ily on DNA material availability, but within the selectable sample set (those with

sufficient material for ONT sequencing), we also ensured that they covered a good rep-

resentation of the range of homozygosity levels across the MIKK panel and that we in-

cluded 3 sibling lines.

Bioinformatic methods and data

Raw sequencing data can be retrieved from ENA linked to the following project ID set

out in the “Availability of data and materials” section.

All the scripts and metadata used for this study are extensively described in the asso-

ciated github repository available at https://github.com/birneylab/MIKK_genome_

companion_paper [30].

Nanopore data processing

Basecalling

After nanopore sequencing, raw nanopore data in FAST5 format was transferred se-

curely from Sanger Institute storage to the EBI high performance compute cluster,

where all the analyses were performed. FAST5 files were basecalled and demultiplexed

according to the 4 expected barcodes for each run with ONT-Guppy (v4.0.14). See de-

tailed analysis and metadata at https://birneylab.github.io/mikk_genome_companion_

paper/nanopore_basecalling/ [30].
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Alignment and QC

We developed a Snakemake pipeline [48] called pycoSnake [49] to run the entire ana-

lysis, including mapping, quality control, differential methylation analysis, and struc-

tural variation calling. For this study, we ran pycoSnake v0.1a3 (commit hash 6d24

8c0fddfedd8f27d59b59f94f63f64d16e9bd) [50], DNA_ONT workflow v0.2. All the tools

and environment are version controlled in individual conda environments. Briefly, ref-

erence genome and annotations were obtained from ensembl Release 99 (Japanese me-

daka HdrR ASM223467v1, https://www.ensembl.org/Oryzias_latipes/Info/Index).

Basecalled reads are merged and filtered using pyBiotools v0.2.0.9 [51], then aligned to

the reference using Minimap2 v2.15 [52]. Alignments are filtered to keep only high-

quality primary reads using pyBiotools v0.2.0.9 [51], and quality control checks are per-

formed using pycoQC v2.5.0.23 [53]. The detailed parameters used to run each tool as

well as the sample QC can be found at https://birneylab.github.io/MIKK_genome_

companion_paper/Nanopore_processing/ [30]. We assessed assembly quality using

QUAST [33], BUSCO [34], and Merqury [35] and provide an overview of this assess-

ment within the results section; for BUSCO, we used the closest available linage dataset

(actinopterygii), and for Merqury, we used meryl to find the optimum k-mer size of 19.

The full results can be found at https://birneylab.github.io/MIKK_genome_companion_

paper/Individual_assemblies/ [30].

DNA methylation analysis

The differential methylation analysis was performed as part of the pycoSnake pipe-

line, after the alignment steps described before. In brief, CpG methylated sites are

called at single read level with nanopolish call_methylation v0.11.1 [28]. Methyla-

tion log likelihood ratio (LLR) are aggregated at genomic position level, then within

CpG islands. Finally, for each CpG island with sufficient coverage the differential

methylation analysis is performed using pycoMeth v0.4.25 [40]. Briefly, all median

LLR values for each CpG positions within a given CpG island are compared be-

tween samples using a Kruskal-Wallis test and all resulting p values are adjusted

for multiple tests using the Benjamini & Hochberg procedure for controlling the

false discovery rate (FDR). We also performed extra analyses to produce the final

paper figure in a Jupyter notebook. Additional information on the differential

methylation analysis can be found at: https://birneylab.github.io/MIKK_genome_

companion_paper/DNA_methylation/index [30].

Structural variant calling

Structural variant calling was also performed as part of pycoSnake pipeline. Reads

were re-aligned with NGMLR v0.2.7, followed by a first round of SV detection

with Sniffles v1.0.12 [54]. Variants were subsequently filtered and merged with

SURVIVOR v1.0.7 (https://github.com/fritzsedlazeck/SURVIVOR) [55]. Then, a

second round of Sniffles SV calling was done using the merge calls to constrain

the detection to the common filtered variants previously collected. Finally, all

calls are merged in a single unified VCF file. Additional information on the

Structural variant calling analysis can be found at: https://birneylab.github.io/

MIKK_genome_companion_paper/Nanopore_SV_analysis/ [30]. To polish the calls
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with Illumina reads, we used the Illumina reads and VCF described in [4] with

SViper v2.0.0 [56] to produce a “polished” set of structural variants for 9 of the

12 MIKK panel samples. (Lines 4-2 and 7-2 failed this processing stage without

an error message, so were necessarily excluded from the downstream reference-

anchored analysis. We also excluded line 131-1 because it had an unusually high

level of HNI sequence content (see the “Discussion” section) and could therefore

bias the results). We used bcftools v1.9 and Picard v2.25.0 [57, 58] to further

process the data, then R version 4.0.4 and a suite of R packages [59–70] to carry

out the analysis set out in full at: https://birneylab.github.io/MIKK_genome_

main_paper/06_Structural_variation.html [30].

Prediction and annotation of repetitive and transposable elements

The RepeatModeler pipeline (v2.0.0) [71] for the automated de novo identification of

repetitive and transposable elements was run on all chromosomes in the HdrR genome

assembly [8]. RepeatModeler was run with its default parameters and the additional

long terminal repeat (LTR) structural discovery sub-pipeline that includes the LTRhar-

vest [72] and LTR_retriever [73] tools.

The RepeatModeler library of repeats was filtered to remove non-TE protein coding

sequences by using a protein BLAST (Altschul et al., 1990) to align (E value ≤ 1e-5) the

Oryzias latipes proteome (Ensembl v99) and pfam peptide database (v32) against the

RepeatMasker peptide library. Finally, a nucleotide BLAST was used to remove any

RepeatModeler repeats that aligned (E value ≤ 1e-10) against the corresponding

transcripts.

RepeatMasker (v4.1.0) [74] was used to align the chromosomes in the HdrR assembly

against the filtered RepeatModeler library of consensus repeats and the existing Repeat-

Masker repeat families.

Additionally, Exonerate (Slater and Birney, 2005) was used to align the two subtypes

of the Teratorn mobile element found in the Oryzias latipes genome against the HdrR

reference. (The Teratorn element being the result of a fusion between a piggyBac DNA

transposon and a member of the Alloherpesviridae family [17]).

Assembly and graph analysis

De novo assembly of MIKK panel genomes

For each line, Nanopore FASTQ raw sequences were assembled using the long-read as-

sembler wtdbg2 in Nanopore (ONT) mode to create draft assemblies for the 12 MIKK

panel genomes [31]. We then polished each of the draft assemblies with their corre-

sponding ~30X Illumina sequences using 2 rounds of the Pilon [32]. The draft assem-

bly qualities were evaluated using QUAST v5.1.0rc1 [33], and FASTA were deposited

at ENA under the same study accession as the nanopore reads (PRJEB43089) [78]. Add-

itional information on the analysis and access to raw data can be obtained at https://

birneylab.github.io/MIKK_genome_companion_paper/Individual_assemblies/ [30].

Variation pangenome graph assembly

On top of the MIKK panel line draft assemblies, we also used 3 high-quality me-

daka reference assemblies HdrR, HNI, and HSOK, including unanchored contigs, to
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scaffold the graph (http://utgenome.org/medaka_v2). Prior pangenome assembly

each contig from every reference was prefixed with the reference name it belongs

to, to allow unambiguous identification of the origin of graph segments (eg, HdrR_

1 for chromosome 1 of the HdrR reference). We assembled the graph pangenome

using minigraph2 v0.10 [11] (-x ggs mode) adding iteratively each reference in the

following order HdrR, HNI, and HSOK, then the MIKK lines 69-1, 131-1, 117-2, 4-

2, 7-2, 4-1, 134-2, 79-2, 134-1, 80-1, 7-1, and finally 11-1. The resulting graph in

rGFA format was parsed to extract descriptive statistics as well as graph anchored

annotations for Bandage [75] and IGV [76] using python scripting. The analysis

notebook and the raw data can be found at https://birneylab.github.io/MIKK_

genome_companion_paper/Graph_assembly/ [30].

Graph alignment and segment usage analysis

We aligned the DNA-Seq nanopore reads for each of our 12 MIKK samples to the

pangenome graph using minigraph2 v0.10 [11] (-x lr mode) and obtained align-

ment files in GAF format. We also aligned the 50 Illumina RNA-Seq datasets ob-

tained from MIKK line liver samples described in [4] to the graph. However, since

pair-end mapping is not supported by minigraph, we first merged overlapping pairs

together using Flash v1.2.11 [77], then aligned the merged reads to the graph with

minigraph2 v0.10 [11] (-x sr mode). We then computed the length normalised

coverage of segments and junctions between segments for each sample and gener-

ated statistics on graph segment usage per samples, using python scripting. The

analysis notebook and the raw data can be found at https://birneylab.github.io/

MIKK_genome_companion_paper/Graph_usage/ [30].

Core gene analysis and the definition of gene presence/absence

We used the read alignment and graph segment usage profiles from above to define

“core graph segments” as those segments from the graph that were used by all MIKK

panel lines (and the HdrR reference). For the assessment of core gene presence, we cal-

culated the proportion of exonic bases that were covered by these core graph segments

for 24,328 annotated reference genes. A gene was considered core if over 95% of its ex-

onic bases were present in segments used by all MIKK panel lines and variable if it was

absent in at least one line.

Graph structural variation analysis

Based on the normalised coverage of graph segments and junctions, we investi-

gated the presence of 2 types of genetic variations in our MIKK panel: large scale

divergent insertions with DNA and RNA-Seq supports and complex deletions.

For the divergent insertions analysis, we searched for alternative non-HdrR paths

longer than 10kb, containing segments with a sequence diverging by more than

50%, supported by at least 2/12 samples for DNA-Seq (50% of mean HdrR cover-

age) and 8/50 samples for RNA-Seq (10% of mean HdrR coverage) and overlap-

ping at least 1 annotated gene exon. With this very strict set of criteria, we

found a set of 19 such paths (Table SX). For the complex deletions, we leveraged

the coverage information for the junction/link between segments instead. We
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identified 16 deletions, supported by junctions connecting 2 HdrR segments dis-

tant by more than 10kb, 2) with a coverage greater than 50% of the average HdrR

supported by at least half of the panel lines3) skipping at least 1 full annotated

HdrR exon. These candidate insertions and deletions were then manually investi-

gated using Bandage [75] for visualisation in graph space and IGV [76] for HdrR

anchored linear genome visualisation. The jupyter notebook containing the full

analysis and raw data can be found at https://birneylab.github.io/MIKK_genome_

companion_paper/Graph_SV/ [30].
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