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Coherent X-ray diffraction was used to measure the type, quantity and the

relative distances between stacking faults along the growth direction of two

individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The

presented approach is based on the general property of the Patterson function,

which is the autocorrelation of the electron density as well as the Fourier

transformation of the diffracted intensity distribution of an object. Partial

Patterson functions were extracted from the diffracted intensity measured along

the ½000�11� direction in the vicinity of the wurtzite 00�11�55 Bragg peak. The maxima

of the Patterson function encode both the distances between the fault planes and

the type of the fault planes with the sensitivity of a single atomic bilayer. The

positions of the fault planes are deduced from the positions and shapes of the

maxima of the Patterson function and they are in excellent agreement with the

positions found with transmission electron microscopy of the same nanowire.

1. Introduction

GaAs nanowires (NWs), in contrast to GaAs bulk, can exhibit

not only the stable zincblende (ZB) crystallographic phase

with an ABCABC . . . bilayer stacking along the densely

packed direction but also the metastable wurtzite (WZ)

structure (McMahon & Nelmes, 2005) with periodic bilayer

stacking of type ABAB . . . . It is even possible to tailor the NW

structure from a ‘perfect’ defect-free single phase to alter-

nating crystallographic phase NWs (Algra et al., 2008; Caroff

et al., 2009; Joyce et al., 2010; Lehmann et al., 2013). The

method of choice for investigating crystal structure and

occurrence of stacking faults (SFs) in NWs is transmission

electron microscopy (TEM) [see (Johansson et al., 2006), for

instance]; however, this method is destructive and the sample

preparation is quite demanding. Semiconductor NWs have

been investigated by X-ray diffraction [see a recent review by

Stangl et al. (2013)]. The ‘standard’ laboratory X-ray diffrac-

tion (XRD) uses a partially coherent primary X-ray wave and

it studies large ensembles of NWs (typically more than 106)

(Mandl et al., 2006; Eymery et al., 2007; Keplinger et al., 2009;

Köhl et al., 2016); this approach yields average parameters of

the NWs such as the facet orientation (Mariager et al., 2007),

size, chemical composition, crystal phases etc., which are

relevant for optimizing the NW growth.

Single NWs can be investigated by the help of a very narrow

and almost fully coherent primary X-ray beam (nanobeam).
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Coherent X-ray diffraction (CXD) utilizes the full coherence

of a primary nanobeam and it has been used in several works

for the determination of the shape of an individual NW (Diaz

et al., 2009; Chamard et al., 2009; Biermanns et al., 2009), as

well as for the determination of the local crystal structure. In

the paper by Favre-Nicolin et al. (2010) a reversed Monte -

Carlo fitting procedure has been used for the reconstruction of

the ZB/WZ sequence, and a standard fitting method was used

by Biermanns et al. (2012) for the determination of the lengths

and positions of ZB and WZ segments. A direct phase-

retrieval method was used by Davtyan et al. (2016) for the

determination of the stacking fault density in a single NW.

However, this work also demonstrates that the result of the

phase-retrieval algorithm might be ambiguous when high

defect densities are present.

Here, we aim to study the quantity, positions and the types

of SFs along the growth direction in a single GaAs NW with a

predominant WZ structure by performing an inverse Fourier

transform from an experimentally measured speckle pattern.

We show that the Fourier transform of the reciprocal-space

distribution of diffracted intensity [the Patterson function

(Patterson, 1935)] is a suitable method for a direct determi-

nation of the positions of the SFs in a chosen NW if the

number of defects in the irradiated sample volume is suffi-

ciently small, as illustrated in this work with up to five SFs. The

method is much simpler than the approaches based on the

retrieval of the phase of the diffracted wave mentioned above

and has been recently demonstrated for GaN microcrystals

(Holý et al., 2017). Furthermore, the method is able to deter-

mine the distance between individual SFs with atomic preci-

sion and also identifies the types of defects, if not only the

positions but also the shapes of the maxima of the Patterson

function are considered.

The paper is structured as follows: x2 describes the sample

preparation, characteristics and coherent X-ray diffraction

setup. x3 introduces the basics of the theory of coherent

diffraction from a NW with SFs. x4 describes the Patterson

analysis and results from measured speckle patterns. Finally, in

x5 we present the results of TEM which are correlated to the

results obtained from partial Patterson analysis showing good

agreement for the positions and type of the SFs in the NWs

under investigation.

2. Sample preparation and X-ray diffraction
experiments

The GaAs NWs were grown by means of metalorganic vapour

phase epitaxy (MOVPE) on epiready GaAs (111)B substrates

in an AIXTRON 200/4 horizontal setup. Everywhere in this

paper we represent the directions and planes in the hexagonal

crystallographic base of the WZ lattice, i.e. we use four-digit

Miller indices denoted hkil where the first three indices refer

to the basal plane and the last index is along the growth axis.

The growth conditions were optimized to achieved WZ GaAs

NWs with a minimized number of stacking faults occurring

along the ½000�11�-type growth direction. Details of the growth

parameters can be found elsewhere (Lehmann et al., 2012,

2013). Au particles with a density of about 18 mm�2 and

diameter of 80 nm serve as catalytic seeds to control the

density and the diameter of the NWs. A broad diameter

distribution was observed directly after the growth; immersion

of the sample in an ultrasonic bath (70/30 2-propanol/water

mixture for 30 s) resulted in only relatively large diameters

(d <� 200 nm) at a much lower density. Thus, an individual

nanowire could be illuminated by an X-ray nanobeam.

Investigation of the scanning electron microscopy (SEM)

images [see Fig. 1(a)] shows that a pyramidal base is formed at

the bottom of every NW due to lateral overgrowth during the

growth process which is a well known effect occurring under

the conditions used (Lehmann et al., 2012). Careful adjust-

ment of the growth and processing parameters allowed us to

control both the density and the crystallographic phase of the

NWs. In our case the NWs exhibited mostly the WZ crystal

structure [with the ABAB . . . stacking of the basal (0001)

planes], with a low number of SFs.

As mentioned before, we observed pyramidal bases of NWs

mostly being removed by the ultrasonic cleaning as a result

of the crystal phase tuning. These residual bases (parasitic

islands) can represent obstacles for CXD experiments. From

the growth characteristics and preliminary investigations we

know that the parasitic pyramids contain WZ segments and

therefore scatter at the same Bragg condition as the NWs.

In order to obtain an isolated NW, which is the necessary

condition for CXD, we have employed an additional sample

preparation step in a SEM equipped with a focused ion beam

(FIB). In a circular area around a randomly chosen NW of

interest we remove the parasitic islands by bombardment with

Ga ions with an acceleration voltage of 30 keV and 0.92 nA

beam current perpendicular to the sample surface. Although

the chosen NW is not directly hit by the ion beam itself during

this treatment, some material is deposited on the side walls of

the NW. Comparison of the SEM images before [Fig. 1(a)] and

after the FIB cleaning [Fig. 1(b)] shows that the deposited

material is thicker in the bottom part (see also Fig. 9 for a

TEM analysis of the redeposited material).

The necessary radius of this FIB cleaning step is dictated by

the Bragg diffraction geometry of the CXD experiment. We

have estimated that the radius of 4 mm is sufficient for a given

length of the NW of around 2 mm, an X-ray energy of 8 keV,

and the region of interest around the ð01�11�55Þ Bragg diffraction

maximum, at around 60� angle of incidence. A further FIB

processing step was used to cut the remaining Au-seed particle

from the top of the NW. This step was necessary for two

reasons: firstly to reduce the length of the NW [see Figs. 1(b)

and 1(c)] and secondly to be able to observe its internal cross

section at the top. The top view after cutting the gold droplet

[see Fig. 1(d)] shows the hexagonal cross section of the NW

surrounded by an amorphous shell created during the FIB

treatment. The described FIB procedure was applied to

several NWs. In this work we focus on the results of two such

NWs labelled nw1 and nw2 in Fig. 1(e) (side view).

CXD experiments were carried out at beamline ID01 at

the European Synchrotron (ESRF), employing the available
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nano-focusing setup (Chahine et al., 2014). A sketch of the

experimental geometry is presented in Fig. 1( f). The focusing

of the primary X-ray beam was achieved by a 1800 nm-thick

Au Fresnel zone plate (FZP) with a diameter of 300 mm and

the width of the outermost Fresnel zone being 70 nm. The FZP

was illuminated by a primary X-ray beam with an energy of

8 keV and placed �13.5 cm upstream of the sample. In addi-

tion, a beamstop and an order-sorting aperture (OSA) were

used to suppress the transmitted direct beam and higher

diffraction orders of the FZP, respectively. The resulting

coherent beam has a size of approximately 250 nm � 300 nm

full width at half-maximum (FWHM). As illustrated in

Fig. 1( f), the beam size is smaller than the length of the NW

and only a part of the NW is illuminated. Since the NW is

composed predominantly of WZ structure, the angle of inci-

dence and the detector plane have to be adjusted to fulfill the

Bragg condition where only the WZ phase contributes to

diffraction. This has been achieved firstly by choosing the

correct angle of incidence and secondly by adjusting the angle

of asymmetric atomic planes by rotating the NW around the

growth axis; the chosen asymmetric planes occur with a period

of 60�. By performing scans along the nanowire axis at

different diffractometer angles, how-

ever, we have verified that, for a suffi-

ciently small range (around 2�), an

angular scan does not result in a signif-

icant change of the illuminated area on

the NW. Once the Bragg diffraction is

found, the typical speckle pattern

around the WZ diffraction maximum is

recorded by a two-dimensional (2D)

MaxiPix detector with 516 � 516 pixels

of 55 mm � 55 mm size mounted at a

distance of 728 mm from the sample.

The speckle pattern is the result of

interference between the WZ segments

separated by SFs (Favre-Nicolin et al.,

2010; Davtyan et al., 2016). A three-

dimensional (3D) reciprocal-space map

of the diffracted intensity can be

recorded by combining a series of

2D diffraction patterns collected at

different angles of incidence. At the

same time we also change the angle of

the detector arm to move approxi-

mately along the [0001] crystal trunca-

tion rod, where the speckle pattern of

the defects can be seen. For conversion

from angular to reciprocal space we use

the approach proposed by Kriegner et al.

(2013). Using the scanning technique

described above it is also possible to

measure the asymmetric diffraction of

other crystallographic phases that may

occur in the GaAs nanowires, namely

ZB with the bilayer stacking

ABCABC . . . , and the twinned zinc-

blende lattice (TZB) with the bilayer stacking ACBACB . . . .

In order to reveal the crystal structure of the NWs and

parasitic islands, we employed scanning X-ray diffraction, in

which the sample is scanned across the primary nanobeam.

The scanning was performed in three diffraction maxima of

the ZB, WZ and TZB lattices. The resulting real-space crys-

tallographic phase maps for nw1 and nw2 are presented in

Fig. 2. It is obvious that the parasitic islands mostly consist of

ZB and TZB segments, in contrast to wurtzite NWs. Note that

the base of the NW of interest is also a parasitic island, since it

is depicted by intensity maxima in the ZB and TZB images

[see Figs. 2(a), 2(c) and 9(c) for nw1 and Figs. 2(d) and 2( f) for

nw2]. On the other hand the NW itself consists only of WZ

since its elongated shape shows up only in Figs. 2(b) and 2(e).

It is important to note that very small ZB segments

(containing one or a few ABCABC . . . stacked basal layers)

cannot be detected by this technique. The real-space maps also

show clearly the effect of FIB isolation by means of a clean,

less intense, circle around the NW where only diffraction

signal from the substrate can be detected.

The 3D reciprocal-space maps (RSMs) from nw1 and nw2

are measured at specific regions along the NW growth axis by
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Figure 1
(a)–(e) SEM images of the focused ion beam sample preparation. (a) nw1 in the as-grown state.
(b) nw1 after the FIB treatment to clean its surrounding from parasitic islands and after reducing its
length (c). (d) Top view of the nanowires cross section after the final FIB treatment. (e, f ) Overview
images which show that multiple nanowires were prepared in a similar fashion. ( f ) Schematic of the
experimental setup which shows the focusing Fresnel zone plate (FZP), beam stop (BS) and order-
sorting aperture (OSA). The focused beam is almost fully coherent and when centred on the NW of
interest leads to the observation of a speckle pattern. When several 2D images are combined to a
3D reciprocal-space map an intensity distribution as shown in the 3D contour plot is observed.



performing the angular scan along the crystal truncation rod

as described in the previous section around the 01�11�55 WZ

diffraction. The projections of these maps onto the Qxz plane,

where Qx is the reciprocal-space axis parallel to the sample

surface and to the azimuthal direction of the primary beam,

and Qz is perpendicular to the surface, are shown in Fig. 3.

Line cuts from these projections along Qz shown in Fig. 3 are

used in the partial Patterson analysis described below. It is

evident from the figure that nw1 shows more ordered and

simple oscillations along Qz with about three periods super-

imposed, while the structure of the oscillations of nw2 is more

complex. This implies that fewer defects occur in the illumi-

nated part of nw1 than in nw2, since

NWs with many defects do not exhibit a

clear periodicity in the speckle patterns

(Davtyan et al., 2016).

3. Diffraction simulations

In order to describe the speckle pattern

arising from stacking defects along the

½000�11� direction as shown in Fig. 3 we

developed a simple theoretical descrip-

tion. Within the kinematical approx-

imation and the far-field limit, the

amplitude of the wave diffracted from a

single NW is proportional to the Fourier

transformation of its electron density.

If we restrict to a distribution of the

diffracted signal along the Qz direction,

i.e. parallel to the NW axis [0001], the

expression for the amplitude of the scattered radiation has the

following simple form,

EðQzÞ ¼ A hk
� �

F Qz;Q
� �XN

j¼ 1

exp �iQzzj

� �
exp �ihk:xj

� �
: ð1Þ

Here we have denoted h the reciprocal lattice vector, hk � Qk
is the component of h parallel to the sample surface (i.e.

perpendicular to the NW axis), Q = ðjhkj
2
þQ 2

z Þ
1=2 is the

length of the scattering vector, and

F Qz;Q
� �

¼ fGaðQÞ þ fAsðQÞ exp �iQz�d
� �

ð2Þ
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Figure 3
2D RSM of nw1 (a) and nw2 (b) with corresponding line cut at particular Qx value.

Figure 2
Scanning X-ray diffraction images of nw1 and nw2 and their surrounding for various Bragg peaks are shown. Images created by the GaAs ZB ð�33�33�11Þ, WZ
ð01�11�55Þ and twinned ZB ð�22�22�44Þ Bragg peaks are shown in panels (a, d), (b, e) and (c, f ), respectively. The colour scale is adjusted to yield an appropriate
contrast within the image. Especially at the ð�33�33�11Þ peak the constant contribution of the substrate is ignored. The NW appears as an elongated object since
the incidence angles at the Bragg conditions are between 59 and 62�.



is the structure factor of a GaAs molecule. In the last

expression, fGa;AsðQÞ are the atomic form factors of Ga and

As, respectively, and �d is the Ga—As bond length. In

equation (1) we describe the NW structure as a sequence of

basal (0001) planes, and the shape of the NW cross section is

included in the pre-factor AðQkÞ; its particular form is not

considered here. N is the total number of basal planes in the

coherently irradiated part of the NW, zj is the z-coordinate of

the jth plane and x j is the vector of its lateral shift with respect

to the first basal plane.

In a perfect WZ structure, the basal planes are equidistantly

distributed, i.e. zj = dWZð j� 1Þ, where dWZ = c WZ=2 is the

distance of basal (0001) planes and c WZ is the vertical WZ

lattice parameter. In the case of a purely geometrical ZB!

WZ transformation, this lattice parameter is connected with

the cubic lattice parameter aZB by the obvious formula

c
ðgeomÞ
WZ = 2aZB=

ffiffiffi
3
p

; however, the actual lattice parameter differs

by " = ðc WZ � c
ðgeomÞ
WZ Þ=c

ðgeomÞ
WZ ’ 1% (McMahon & Nelmes,

2005; Jacobsson et al., 2015). Since the WZ structure exhibits

the ABAB . . . bilayer stacking of the basal planes, the lateral

shifts of the basal planes are x j = p½1þ ð�1Þ j�=2, i.e. x j � x j�1 =

pð�1Þ j. Here we denoted p = ð2a1 þ a2Þ=3, with a1;2 the basis

vectors in the basal (0001) plane. The vectors a1;2 have a length

of aWZ and the angle between them is 120�. In the case of the

ZB lattice with the bilayer stacking ABCABC . . . , the lateral

shifts are x j = pð j� 1Þ, i.e. x j � x j�1 = p.

A real NW structure exhibits a random sequence of SFs. In

a wurtzite lattice four types of SFs (Zakharov et al., 2005),

denoted I1, I2, I3 (intrinsic) and E (extrinsic), exist (see Fig. 4).

In this sketch the position of the fault plane is denoted by the

horizontal dashed line, and the empty circles represent the Ga

positions in the ideal lattice. The dotted rectangles denote the

ZB segments associated with a given SF; various fault types

differ in the lengths of the ZB segments. We assume that the

basal plane distance in the ZB segments corresponds to the

ideal ZB lattice, i.e. dZB = aZB=
ffiffiffi
3
p

. Outside the ZB segments

we use the actual WZ inter-planar distance dWZ including

the factor ". In the simulation we choose the positions nt ,

t = 1; . . . ;M, and types of individual SFs. Here we denote M

the number of the SFs in the irradiated volume of the NW, and

the numbers nt are the indices of the basal (0001) planes

containing the faults. Then we generate the sequence of the

z-coordinates zj , j = 1; . . . ;N, of the basal planes and the

sequence of their lateral positions x j .

In order to account for a limited coherence of the primary

X-ray beam, the scattered intensity has to be calculated by the

formula

I Qz

� �
¼ A hk

� �
f Qz;Q
� ��� ��2

�
XN

j¼ 1

XN

k¼ 1

exp �i Qzzj �Q	zzk

� �� �
exp �ihk: xj � xk

� �� �

� � zj � zk

� �
; ð3Þ

where �ðzj � zkÞ is the effective mutual coherence function of

the experimental setup, containing both the coherence func-

tion of the primary radiation and the angular resolution of

the detector (see below). This simulation, however, is time-

consuming, since it requires summation of NðN þ 1Þ=2 terms

for each value of Qz. In order to speed up the procedure, we

calculated the diffracted intensity using IðQzÞ = jEðQzÞj
2 and

equations (1) and (2) for the diffracted amplitude, and

convoluted the resulting intensity distribution by the Fourier

transformation of �ðzÞ. We have tested numerically that both

approaches yield nearly identical results. A Gaussian function

with a FWHM of 2�=Lcoh was used as the Fourier transfor-

mation of �; Lcoh is the corresponding effective coherence

length which depends upon the coherence properties of the

primary beam and on a finite angular resolution of the 2D

detector. In our experimental setup the primary beam was

fully coherent across the beam diameter so that its coherence

width �ðiÞ? was large and its degree of coherence was deter-

mined only by its coherence length (Born & Wolf, 1999; Leake

et al., 2009),

�ðiÞk ¼
�2

2��
: ð4Þ

Here, � is the wavelength and �� is the width of the wave-

length spread determined by the primary monochromator.

The effective coherence length of the primary beam along the

z-axis (i.e. along the NW) is therefore L
ðiÞ
coh = �ðiÞk = sinð�iÞ, where

�i is the incidence angle of the primary radiation. The finite

resolution of the detector can be described by the effective

coherence width,

�ðfÞ? ’ �
L

s
; ð5Þ

where L is the sample–detector distance and s is the size of the

detector pixel; this formula follows from the optical recipro-

city theorem (Born & Wolf, 1999). The coherence width

determines the effective coherence length of the emitted beam

along the z-axis: L
ðfÞ
coh = �ðfÞ? = cosð�fÞ, where �f is the angle of
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Figure 4
Types of SFs in wurtzite lattice. The horizontal dashed line represents the
position of the fault plane, and the dotted rectangles denote small face-
centred-cubic-like segments with ABCABC . . . stacking.



exit. Combining both effects we obtain the effective coherence

length along the z-axis used in the simulations,

1=Lcoh ’ 1=L
ðiÞ
coh

� 	2

þ 1=L
ðfÞ
coh

� 	2

 �1=2

: ð6Þ

In our experimental setup we used � ’ 1.5 Å, �� ’ 10�4 Å,

L ’ 0.7 m, s ’ 0.05 mm, �i ’ 60� and �f ’ 20�, so that Lcoh ’

1.3 mm. In our simple one-dimensional simulation we did not

include the actual shape of the primary wavefront, since it

would affect only the intensity profile across the Qz-rod, which

is not considered here.

In the following we show several examples of the diffracted

intensities simulated along the line in reciprocal space parallel

to [0001] and crossing the reciprocal points 0�111 �LL of the WZ

lattice; the simulation line is sketched in Fig. 5(a). This line

contains both the reciprocal points H H H�2 of the ZB lattice

and points H H Hþ2 of the TZB lattice. Fig. 5(b) shows the

diffraction curves simulated for two SFs of type I1 lying in

positions n1 = 400, n2 = 600 calculated for various coherence

widths Lcoh (in the figure expressed as multiples of the inter-

planar distance dWZ). The total irradiated NW length was set

to N = 1050. The curve exhibits the WZ maxima with L = 5, 6

and plenty of oscillations between them.

In order to analyze the diffraction curve, we calculate the

partial Patterson function, i.e. the Fourier transformation of

the diffracted intensity,

PðnÞ ¼
1

2�

ZQzmax

Qzmin

dQz I Qz

� �
exp inQzdWZ

� �

�
1

2�

Z1

�1

dQz I Qz

� �
W Qz

� �
exp inQzdWZ

� �
; ð7Þ

in a limited window Qz 2 ½Qzmin;Qzmax�. In order to suppress

non-physical oscillations caused by the edges of the window

function, we used a smoothing window function WðQzÞ of

the Planck-taper type (Tu, 2007), which is smooth everywhere

(the class C1 function) and exactly zero outside the region

½Qzmin;Qzmax�.

Fig. 5(c) presents the Patterson functions calculated in two

windows denoted in Fig. 5(b) by black and magenta rectangles;

the shape of the window function is indicated by black and

magenta curves in the rectangles. It is obvious that the

Patterson function obtained from the window containing the

main diffraction maximum [the magenta curve in Fig. 5(c)]

exhibits only the main maximum at n = 0. However, the

Patterson function calculated from the window between the

maxima [the black rectangle in Fig. 5(b) and the black curves

in Fig. 5(c)] shows several sharp maxima. The maxima in the

curve obtained for large Lcoh correspond to the positions n1;2

of the SFs [the red vertical lines in Fig. 5(b)], the ‘mirror’

positions N � n1;2 (the green lines) and the difference

jn1 � n2j of the positions (the blue line). An additional

maximum appears at n = N, which corresponds to the full

irradiated NW length (the black dotted line). Decreasing

the coherence width, the maxima on the Patterson function

gradually disappear. If Lcoh < n1;2 dWZ and Lcoh < N � n1;2 dWZ,

only the difference peak at jn1 � n2j persists; this is the case

for the curve calculated for Lcoh = 500dWZ: In Fig. 5(d) we

display the Patterson functions calculated for a large coher-

ence width Lcoh = 5000dWZ and various numbers of SFs. If the

coherence width is large, the analysis of the Patterson function

is complicated due to the presence of various types of peaks

(denoted by various colours in the figure). In this case, a

suitable low-pass filter can be applied before the Fourier

transformation.

Performing the Patterson analysis of an intensity curve

IðQzÞ for various positions of the window function, from the
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Figure 5
(a) Reciprocal-lattice points of ZB (black), WZ (red) and twinned ZB
lattices (blue). The vertical black line denotes the trajectory of the Qz-
scans considered in this paper, and the dashed rectangle corresponds to
the Qz-range used in panel (b). (b) The diffraction curve simulated for a
pair of I1-type stacking faults in positions n1 = 400 and n2 = 600 and using
various effective coherence widths Lcoh. The parameters of the curves are
the coherence widths expressed as multiples of the distances dWZ of the
(0001) basal planes. The black and magenta rectangles denote the Qz-
windows used for the calculation of the Patterson function; the shape of
the Planck-taper window function is indicated by the small graphs in the
rectangles. (c) The Patterson functions calculated from the diffraction
curves in panel (b); the black and magenta curves were obtained using the
black and magenta Qz-windows in (b), respectively. The vertical blue, red
and green lines denote the maxima of the Patterson functions; see the
main text for details. (d) The Patterson functions calculated for zero, one,
two and three stacking faults of type I1; the positions nt of the SFs are the
parameters of the curves. In the calculation the coherence width Lcoh =
5000dWZ was used. In panels (c) and (d) the vertical dotted line N denotes
the peak corresponding to the finite length of the nanowire. The curves in
panels (b) to (d) are shifted vertically.



shape of the Patterson function it is

possible to determine the type of the

SFs and their exact positions, the latter

with much better accuracy than from

the positions of the peaks in PðnÞ. This

fact is demonstrated in Fig. 6, where we

plot the diffraction curve with various

Qz-windows [Fig. 6(a)], and the corre-

sponding Patterson functions [Figs. 6(b)

and 6(c)]. The Qz-windows exclude the

region of the main Bragg peak and their

widths correspond to the Qz-range used

in the analysis of the experimental data.

The spatial resolution of the

Patterson function depends on the

length of the chosen Qz-window. In

Fig. 6(b) we considered a pair of SFs of

type I1, having various distances of the

fault planes differing by a single basal

(0001) plane [Fig. 6(b)]; in Fig. 6(c) we

show the Patterson function for various

combinations of types I1 and I2 and the

same SF distance. Other fault types are

not shown since they appear with much lower probability and

were not observed in our experiments as will be shown further

below. Calculating these curves, we used the actual value of

Lcoh = 2 mm and the Qz-windows used in the analysis of the

experimental data in the next section. From the figure it is

obvious that the change of the distance of the SFs by
1 basal

plane almost does not move the maximum of the Patterson

function, but it affects substantially the shape of the tails of the

maxima. Similar effects can be observed for various types of

SFs. The maxima of the Patterson functions obtained from

different Qz-windows exhibit different shapes, characteristic

both of the exact SF distance and of the SF types, so that from

the Patterson functions from various windows it is possible

in principle to determine the exact distance of the SFs and

their types.

4. Patterson analysis of the experimental data

From the line scans in Fig. 3 we calculated the partial

Patterson functions using various Qz-windows. Figs. 7, for nw1,

and 8, for nw2, show the Qz scans along with the Qz-windows

and the corresponding partial Patterson functions. The

Patterson functions of nw1 show three distinct maxima; their

positions are identical in the Patterson functions calculated

from various Qz-windows and also in Patterson functions from

two independent measurements [Figs. 7(a) and 7(b)]. The

positions of the maxima are at 183 nm, 415 nm and 598 nm

with an accuracy of about 
10 nm. If we assume that the

coherently irradiated part of the NW does not contain the

ends of the NW, or the end of the NW is not very well defined

due to the FIB cutting of the top, then these maxima corre-

spond only to the distances between the SFs, analogously to

the blue lines in Figs. 5(c) and 5(d). From the positions of the

maxima of the Patterson function we obtained unambiguously

the coordinates of the SFs: z3, z2 = z3 + 183 nm and z1 = z3 +

598 nm, where the coordinate of the last SF z3 cannot be

determined from the Patterson function.

The quality of the measured scan of nw1, shown in Fig. 7(a),

made it possible to determine the exact distance of the SFs.

To improve the robustness of this determination we used

the types of the SFs determined from high-resolution TEM

(HRTEM) images shown in the next section. From this

analysis it follows that the types of the SFs are I1 in positions

z1 and z3, and I2 in position z2. Using this a priori information,

we fitted the experimental Patterson functions from various

Qz-windows with the simulations; the results are shown in

Fig. 7(a). From the figure it follows that the simulated curves

agree qualitatively well with the measured data. The fit yielded

the SF positions n3, n3 + 555 and n3 + 1793, which corresponds

to the SF coordinates z3, z2 = z3 + 182.1 nm and z1 = z3 +

588.4 nm, respectively; these values are determined with an

accuracy of 
 dWZ ’ 0.3 nm.

In contrast to nw1, the Patterson function of nw2 (Fig. 8) is

more complicated and it does not allow for a straightforward

determination of the positions of the SFs. Nevertheless,

analagous to nw1, the distinct maxima of the Patterson func-

tions obtained from various Qz-windows are at the same

positions.

5. Transmission electron microscopy

In order to correlate the results of the Patterson analysis

above with the structural properties of the NWs directly, we

performed a detailed TEM investigation of the selected NWs

using bright-field and conventional dark-field imaging as well

as energy-dispersive X-ray spectroscopy. Fig. 9 shows a bright-

field image of an exemplary nanowire FIB lamella with the
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Figure 6
(a) Diffraction curve simulated for a pair of SFs, using the effective coherence width of Lcoh = 2 mm,
and the SF positions z1 and z1 + 200dWZ = z1 + 65.6 nm; the rectangles represent the Qz-windows
used for the simulation of the Patterson functions in panels (b) and (c). (b) The Patterson functions
calculated for various distances z2 � z1 = ð200þ�nÞdWZ of the I1–I1 SF pair. The parameters of
the curves correspond to the numbers of the Qz-windows in panel (a); the colours of the curves
denote the values of �n. (c) The Patterson functions calculated for the same SF positions but
different SF types; the types of the SFs correspond to different colours of the curves. The curves
corresponding to different Qz-windows are shifted vertically.



substrate, NW body and FIB-redeposited shell post coloured

for better visibility. The FIB-redeposited shell was determined

to be amorphous with a compositional ratio of approximately

61% Ga and 39% As. A selected area diffraction pattern of

the entire NW is displayed in Fig. 9(b) highlighting the

diffraction spots chosen for the conventional dark-field

imaging for crystal phase distinction in larger field-of-view

images [for a more detailed experimental description of the

approach on similar samples, see Lehmann et al. (2015)]. The

base of the NW consists of WZ, ZB and twinned ZB segments,

as can be seen in Fig. 9(c) by convoluting the crystal phase-

sensitive dark-field images of all three phases. This supports

the finding of CXD as discussed above. A dark-field TEM

image of nw1 taken by choosing a ZB-sensitive diffraction

spot shows the stacking defects as brighter contrast lines

perpendicular to the NW axis (bottom to top) in the otherwise

darker contrast WZ body of the nano-

wire. Due to strain in the lamella,

additional contrast variations occur

within the nanowire body. Detailed

HRTEM images taken at the positions

of the three different stacking defects

are given in Figs. 9(e)–9(g). Coloured

circles are additionally shown for better

visibility of the different bilayer

stacking sequences. The three SFs

labelled are actually the ones probed by

the aforementioned Patterson analysis.

From this analysis we obtained the

distances between the SFs z2 � z1 and

z3 � z2; of course, the absolute position

z3 cannot be determined. We compared

these distances with the positions of

the SFs in Fig. 9(d) and we achieved

an excellent agreement. Based on the

HRTEM data presented in Figs. 9(e)–

9(g) we can extract the type of the SFs.

As explained in x3, the I1-type SF

contains a ZB-like block of basal planes

containing one single ZB-like plane,

while the ZB block in I2 contains two

ZB-like planes. Therefore, the types of

the SFs in nw1 are I1, I2 and I1.

The cross-sectional conventional

dark-field TEM image of nw2 in Fig. 10

shows that the NW contains more SFs

than nw1. Nevertheless, for five SFs

denoted by horizontal red lines in Fig. 10

the corresponding positions of the

maxima of the Patterson function

correspond very well to the experi-

mental data (vertical red lines in Fig. 9).

6. Discussion

The Patterson functions calculated from

simulated Qz intensity distributions

revealed that the appearance of the maxima on the Patterson

function strongly depends on the coherence properties of the

primary beam and/or on the angular resolution of the detector

[see Figs. 5(b) and 5(c)]. In the theoretical part of this paper

we combined both these factors into one effective coherence

length Lcoh and we showed that, if this length is sufficiently

large, several types of the maxima appear, corresponding to

the absolute positions zt of the SFs, the mirror positions T � zt

(T is the total length of the irradiated NW), as well as to the

distances jzt � zt 0 j. In this ideal case the interpretation of the

Patterson function is complicated. If Lcoh � T, only the

difference peaks jzt � zt 0 j occur, which allows for a direct

determination of zt, relative to the first or last SF in the NW.

Moreover, as demonstrated above for nw1, even if the top part

of the NW is influenced by FIB cutting, it is still possible to

obtain the SF distances. In the nanowire nw1, with three SFs
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Figure 7
The Patterson functions calculated from the Qz scans extracted from two independent 3D
reciprocal-space maps [panels (a) and (b)] of nw1 depicted in the SEM images in Fig. 1. The insets
show the Qz scans along with the positions of the Qz-windows from which the Patterson functions
have been obtained. The main panels display the Patterson functions; the parameters of the curves
refer to the Qz-windows, the curves are shifted vertically for clarity. The vertical red lines mark the
maxima of the Patterson functions; it is obvious that the functions calculated from different Qz-
windows and the functions obtained from various scans in panels (a) and (b) exhibit the maxima in
the same positions. The Patterson functions from the scan in panel (a) have been fitted to the model
described in the main text; the fitted curves are denoted by blue lines.

Figure 8
The same situation as in Fig. 7; nw2. The quality of the experimental Patterson function does not
allow for fitting to the theoretical model.



and given coherence properties of the beam, we have shown

for two independent measurements that the Patterson func-

tion encodes the number of SFs and the relative distance

between them. As has been demonstrated in x3, the shape

of the Patterson function strongly depends on the distance

between the SFs with a sensitivity of 
1 atomic plane. With

the current resolution of the experi-

mental speckle pattern it is difficult to

achieve such a sensitivity only from

the positions of the Patterson function

maxima. The sensitivity of the positions

of the maxima of the Patterson function

to the SF positions can be estimated

from the sampling theorem by

�z ¼
2�

Qzmax �Qzmin

’ 10 nm; ð8Þ

i.e. it is inversely proportional to the

width of the Qz-window. The sensitivity

of the method to the SF distances can be

substantially improved if we consider

not only the positions of the maxima

of the Patterson function but also its

shape. Fig. 6(b) demonstrates that the

shape of the maximum of the Patterson

function changes if the SF distances

change by one atomic plane, i.e. by


0.3 nm [see Fig. 6(b)]. In addition, the

reliability of the distance determination

improves if we take into account the

Patterson functions obtained from several Qz-windows on the

same Qz scan.

However, the single-plane sensitivity and the determination

of the types of the SFs are possible only from experimental

data with excellent quality and low noise. In a more realistic

case the determination of the exact SF distances is more

robust if the SF types are known a priori. The maxima in the

Patterson function taken from nw2 (Fig. 10) do not allow for

exact determination of SF distances. From the cross-sectional

TEM image of nw2, it is evident that there are more SFs in

comparison with nw1. This is the reason why less regular

oscillations are observed in the speckle pattern in Fig. 3(b). In

addition, another obvious reason why the direct determination

of the fault positions from the Patterson function is not

possible in nw2 is that by chance the differences z5 � z4 and

z3 � z2 are quite close and the corresponding maxima in the

Patterson function almost coincide.

Characterization of the number of SFs and distances in

between them using the Patterson analysis described in this

work shows that, despite the several constraints, namely low

number of SFs and high sensitivity to noise, the approach is

relatively fast and easy to apply in comparison with coherent

diffraction imaging, where the data have to be analyzed by

phase-retrieval or ptychographic techniques. Similar to other

CXD experiments our technique required an isolated object

and a sufficient coherent beam to allow for the observation of

speckle patterns arising from the distance between individual

defects. The method can be also used for other systems, where

a small number of plane defects are observed in a well defined

limited volume (microcrystals, grains etc.). The extreme

sensitivity for the SF distances down to a single atomic plane

can be used for a detailed investigation of the positions of

planar defects in core/shell nanowires (Goldthorpe et al.,

research papers

J. Synchrotron Rad. (2017). 24, 981–990 Arman Davtyan et al. � Diffraction from nanowires 989

Figure 9
(a) Bright TEM overview image of an exemplary GaAs NW lamella with the substrate, NW body
and FIB-redeposited shell post coloured for better visibility. A selected area diffraction pattern of
the entire NW (b) and a convoluted dark-field image of the the base (c) using the diffraction spots
for imaging as indicated in (b) show the mixed crystal structure at the base. A dark-field image of
nw1 is given in (d) using the diffraction spot marked blue in (b) showing the stacking defects as
brighter contrast lines in the otherwise darker WZ nanowire body. HRTEM details of the three
stacking defects in the area of interest are given in (e)–(g) with coloured circles indicating the
different bilayer stacking order.

Figure 10
Cross-section TEM image of nw2. The horizontal dotted lines roughly
denote the irradiated area; individual SFs are highlighted by horizontal
white lines. The red lines mark the SFs used for the calculation of the
positions of the maxima of the Patterson function; the maxima are shown
in Fig. 8 as vertical red lines.



2008), where SFs occur only in different positions in the shell

structure and in the NW core.

7. Summary

If a single wurtzite nanowire is irradiated by a fully coherent

X-ray wave, the reciprocal-space distribution of the diffracted

intensity exhibits oscillations whose periods depend on the

mutual distances of stacking faults. In this paper we present an

effective method of extracting the distances from these oscil-

lations, based on the Fourier transformation of the diffracted

intensity (Patterson function) calculated in a limited window

in reciprocal space. The positions of the maxima of the

Patterson function determine the distances between the SFs

with an accuracy of about 10 nm. Moreover, the shape of the

Patterson function sensitively depends on the fault plane

distances so that from fitting the measured and simulated

shapes of the Patterson function the distances can be deter-

mined with an accuracy of a single atomic plane. We have used

this method for two GaAs nanowires; the resulting distances

of the stacking faults exactly agree with the distances deter-

mined from transmission electron microscopy of the same

nanowires.
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