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Abstract

Deep learning increasingly accelerates biomedical research, deploying neural networks for

multiple tasks, such as image classification, object detection, and semantic segmentation.

However, neural networks are commonly trained supervised on large-scale, labeled data-

sets. These prerequisites raise issues in biomedical image recognition, as datasets are gen-

erally small-scale, challenging to obtain, expensive to label, and frequently heterogeneously

labeled. Furthermore, heterogeneous labels are a challenge for supervised methods. If not

all classes are labeled for an individual sample, supervised deep learning approaches can

only learn on a subset of the dataset with common labels for each individual sample; conse-

quently, biomedical image recognition engineers need to be frugal concerning their label and

ground truth requirements. This paper discusses the effects of frugal labeling and proposes

to train neural networks for multi-class semantic segmentation on heterogeneously labeled

data based on a novel objective function. The objective function combines a class asymmet-

ric loss with the Dice loss. The approach is demonstrated for training on the sparse ground

truth of a heterogeneous labeled dataset, training within a transfer learning setting, and the

use-case of merging multiple heterogeneously labeled datasets. For this purpose, a biomed-

ical small-scale, multi-class semantic segmentation dataset is utilized. The heartSeg dataset

is based on the medaka fish’s position as a cardiac model system. Automating image recog-

nition and semantic segmentation enables high-throughput experiments and is essential for

biomedical research. Our approach and analysis show competitive results in supervised

training regimes and encourage frugal labeling within biomedical image recognition.

1 Introduction

Today, biomedical image recognition and semantic segmentation are successfully driven by

deep learning approaches and supervised training of neural networks [1]. Learning feature

representations from data enables the identification and quantification of patterns in biomedi-

cal data [2]. Biomedical applications and especially studies rely on high-performing semantic

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0263656 February 8, 2022 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Schutera M, Rettenberger L, Pylatiuk C,

Reischl M (2022) Methods for the frugal labeler:

Multi-class semantic segmentation on

heterogeneous labels. PLoS ONE 17(2): e0263656.

https://doi.org/10.1371/journal.pone.0263656

Editor: Jyotismita Chaki, Vellore Institute of

Technology: VIT University, INDIA

Received: May 3, 2021

Accepted: January 24, 2022

Published: February 8, 2022

Copyright: © 2022 Schutera et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from https://osf.io/uyk79/.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-7416-1902
https://doi.org/10.1371/journal.pone.0263656
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263656&domain=pdf&date_stamp=2022-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263656&domain=pdf&date_stamp=2022-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263656&domain=pdf&date_stamp=2022-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263656&domain=pdf&date_stamp=2022-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263656&domain=pdf&date_stamp=2022-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263656&domain=pdf&date_stamp=2022-02-08
https://doi.org/10.1371/journal.pone.0263656
http://creativecommons.org/licenses/by/4.0/
https://osf.io/uyk79/


segmentation neural networks [3, 4]. A variety of neural network architectures have addressed

semantic segmentation. In biomedical image segmentation, deep symmetric convolutional

neural networks, such as V-net [5], and U-Net [6] dominate the algorithmic state-of-the-art.

In supervised deep learning approaches, these architectures are driven by large-scale, homoge-

neous labeled datasets [7–9]. Homogeneity means that the ground truth for each sample of the

dataset includes a label for each of the specified classes. Heterogeneity defines a ground truth

in which different samples might miss labels for a present class or include labels for specific

classes only. Supervised learning methods from the outset are subject to restrictions when

applied to heterogeneous labeled data. Heterogeneous labeled data as defined by [10] is to be

understood as partially labeled data. As a result, supervised training on heterogeneous data

means reducing the number of available data samples for training, limiting the task’s scope to

a reduced set of classes, or conclusively an unfeasible training.

Biomedical image datasets for semantic segmentation are commonly small-scale, including

heterogeneous, pixel-wise labels. These heterogeneous datasets are regularly discarded during

data preprocessing and cleaning before supervised training. It is tedious to transfer a heteroge-

neous dataset into a homogeneous dataset by supplementing labels. Usually, such datasets are

waived before training. Nevertheless, these biomedical datasets carry domain knowledge that

asks for modeling, is challenging to obtain, and expensive to label, and their applications range

from image classification to semantic segmentation. Therefore, different approaches have been

taken in the related work to cultivate heterogeneous datasets for supervised neural network

training. One field considers multi-modal learning where the input samples are from different

source modalities such as audio, image, text, and video. Another field focuses on multi-task

learning, where the neural network has to perform multiple different tasks. Most commonly,

neural networks in this field are based on learning a joint representation, or a shared feature

space combined with either separate encoding paths in the multi-modal setting [11], or separate

classification output layers in the multi-task learning [12–14]. Consequently, much ground truth

information is lost if the data is only partially labeled, which is the case with heterogeneous data.

The most basic solution to deal with missing labels is to drop the loss of unknown entities

in the objective function, which merely overcomes the technical limitation of a loss value not

being determinable if the ground truth is missing [15]. Marginally more advanced is to treat

missing class labels as background, which, however, introduces the problem that it is assumed

that everything unlabeled must be background, which is most often not the case [16–18]. A

more sophisticated approach is to train a shared feature space across different datasets or clas-

ses while introducing fine-tuned sub-classifier heads, which enabled the merging of multiple

datasets. Still, this approach treats unknown labels as background without leveraging any addi-

tional knowledge [19]. More data-focused approaches try to incorporate knowledge by using

the similarity between classes to merge them, which requires the precondition that multiple

classes are similar in their appearance. Further, merging multiple classes leads to training a

more general (and less complex) task [20]. Finally, a promising yet straightforward approach is

to take full advantage of the fact that virtually all semantic segmentation tasks are multi-class

problems. All data points are assigned a single, unambiguous class. This realization leads to an

objective function that utilizes the mutually exclusive nature of ground truth masks in seman-

tic segmentation [10, 21].

All approaches mentioned above try to cope with unlabeled information in datasets by

altering established methods or exploiting supervision cues in the data. This work combines

both methods within the training process by utilizing explicit annotation information and, in

particular, the information implicitly available in a sample.

Wasting heterogeneous labeled data for biomedical applications should not remain the best

practice. Instead, this work proposes an approach for the frugal labeler and biomedical image
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recognition engineer to train neural networks for multi-class semantic segmentation (with

U-Net) on heterogeneously labeled datasets. The novel combined objective function is pre-

sented, which represents a modified version of a sample dropping objective function [16, 17],

extended by the class-asymmetric (CA) objective function [10], to train on heterogeneous

labeled datasets. The approach is implemented to train on heterogeneous labeled data accord-

ing to training settings common in biomedical semantic segmentation: training on a heteroge-

neous labeled dataset, transfer learning for domain adaptation by introducing an additional

class and training on multiple datasets with heterogeneous labels. At the same time, our results

prove that our method’s performance matches supervised training on a homogeneous labeled

dataset. In detail, this work’s contributions are:

• A biomedical homogeneous labeled benchmark dataset covering the central vascular system

(heart, atrium, bulbus) in Medaka is provided to enable reproducibility of the experiments.

• A software package for the synthetic generation of heterogeneous datasets is provided; this

allows for the homogeneous dataset’s configurable adaptation.

• A segmentation performance baseline is created by supervised multi-class semantic segmen-

tation with U-Net on the homogeneous labeled dataset of the central vascular system of the

Medaka.

• A novel objective function is developed and tested on three different dataset characteristics.

With these contributions, we enable the practitioner and the research community to reduce
label efforts for multi-class segmentation by making heterogeneously labeled data deployable for
supervised training. We aim to create awareness for the value and possibility of deploying hetero-
geneously labeled datasets in biomedical applications and demonstrate how to do so. All code
and data employed in this paper are open-sourced.

2 Methods and data

2.1 Overview

First, the approach is presented, which transforms a homogeneous dataset, where every

instance is labeled with all classes into a heterogeneous dataset, where samples may only be

partially labeled. Second, a novel combined objective function is introduced, which is tailored

to operate on heterogeneously labeled datasets. For this a dataset ðX; ~YÞ is employed, where

each sample label pair ðx; ~yÞ 2 ðX; ~YÞ consists of a sample x, which is an RGB image with the

dimensions (w, h, 3) and a ground truth label ~y with dimensions (w, h, C), where w is the

width and h the height of the image sample and its corresponding ground truth label and C is

the number of classes. The number of sample label pairs in the dataset is defined as S. Subse-

quently, we introduce our biomedical dataset of the central vascular system of the Medaka

fish, which serves as a benchmark for the conducted experiments.

2.2 Heterogeneous label dataset generation

There is a need to generate multiple distinct datasets with varying degrees of missing labels

based on a common source for structured label ablation experiments on a heterogeneous data-

set. While it would be possible to conduct experiments on multiple datasets that are inherently

heterogeneous and stem from multiple domains, such approaches are not feasible if we want

to draw conclusions on the deployed methods and the influence of missing labels. When draw-

ing samples from the same source dataset, the presented methods will be decisive in evaluating

different hyperparameter configurations in the conducted experiments.
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To obtain a heterogeneous dataset from a predefined homogeneous source ðX; ~YÞ, the class

labels, which should potentially be dropped, need to be defined as a subset d ¼ fdi 2 N j di �

Cg of the number of all classes. For each class label in d, a defined absolute share of labels P 2
N with P � S is dropped from the source dataset labels. This means that for every di 2 d, P
randomly chosen labels are removed from the ground truth labels ~Y. The relative share of

removed labels is described by r ¼ P=S. With this procedure, we can obtain a large amount of

unique, synthetically produced heterogeneous datasets which all stem from the same data

source. For implementation details see Chapter 4 and https://github.com/Heterogeneous-

Semantic-Segmentation/Utilities-for-The-Frugal-Labeler.

2.3 Biomedical image segmentation with U-Net

The U-Net [6] is a deep, symmetric fully convolutional neural network, which follows the typi-

cal architecture of encoder-decoder networks. The encoder produces feature maps by combin-

ing convolutional and pooling operations while the decoder employs transposed convolutions

to densify the feature maps and generate segmentation masks. Additionally, features at multi-

ple resolutions of the encoder path are used in the decoder to enhance the generated segmenta-

tion masks. The architecture was initially motivated by semantic segmentation tasks on small-

scale biomedical image datasets. This work builds upon previous heart segmentation experi-

ments with the U-Net [3]. The architecture is extended to expect an RGB image, not a gray-

scale image, as an input and to classify multiple classes instead of just one. The input is

expected to be a tensor of the shape (w, h, 3), and the output is a tensor of the shape (w, h, C).

Each coordinate (u, v) with u 2 {0, . . ., w} and v 2 {0, . . ., h} in the output tensor contains a

normalized probability distribution of all classes (softmax). The model and training pipeline

are publicly available (see https://osf.io/uyk79/).

2.4 Objective function

The objective function used in this work is tailored to enable learning on heterogeneous labels

and stabilize the learning process by exploiting implicit information of unlabeled classes. The

channels, meaning class labels, and the normalized predicted output of overall classes for each

pixel are utilized when calculating the objective function’s output.

In the following ~Yw�h�C is defined to be the ground truth tensor and Ŷw�h�C the prediction

of the U-Net. Facing heterogeneously labeled data combined with the fact that the U-Net

expects an input tensor with constant size requires marking missing labels in another way than

simply dropping them. For that matter, a binary label mask vector m 2 Rc, with c = {1, . . ., C}

is introduced, which indicates whether a ground truth mask exists for any of the C classes. If a

ground truth mask exists, mc is 1 and 0 if not.

2.4.1 Channel optimization. The proposed objective function is a composition of two

individual objective functions. The first component of the objective function is optimizing

each channel of the prediction tensor Ŷ to be closer to the ground truth tensor ~Y with each

step, therefore horizontal optimization. For this, the Dice-Sørensen Coefficient (DSC) is

employed. The DSC divides the area of overlap between the segments of two segmentation

masks by the overall number of pixels in both masks (see Eq 1)

DSCðc; ~y; ŷÞ ¼
2
Xw

u¼0

Xh

v¼0

ð~yu;v;c � ŷu;v;cÞ þ �

Xw

u¼0

Xh

v¼0

~yu;v;c þ
Xw

u¼0

Xh

v¼0

ŷu;v;c þ �

: ð1Þ

PLOS ONE Multi-class semantic segmentation on heterogeneous labels

PLOS ONE | https://doi.org/10.1371/journal.pone.0263656 February 8, 2022 4 / 14

https://github.com/Heterogeneous-Semantic-Segmentation/Utilities-for-The-Frugal-Labeler
https://github.com/Heterogeneous-Semantic-Segmentation/Utilities-for-The-Frugal-Labeler
https://osf.io/uyk79/
https://doi.org/10.1371/journal.pone.0263656


A small positive number � = 10−7 is added to the numerator and denominator in the calcu-

lation of DSC to avoid division by zero. The DSC statistic is embedded into a modified Dice

loss LDSC (see Eq 2). The quantity (1 − DSC) is summed over all classes in LDSC. For every mask

the value of (1 − DSC) is multiplied by mc, which means that the current value is only taken

into account if the specific mask exists (mc = 1). After that the accumulated loss is normalized

with respect to the number of present masks, so LDSC is always scaled according to how many

masks are present

LDSCð~y; ŷÞ ¼

XC

c¼1

mc ð1 � DSCðc; ~y; ŷÞÞ

XC

c¼1

mc

: ð2Þ

2.4.2 Probability distribution optimization. The second component of the combined

objective function assumes that pixels do not belong to two classes simultaneously in a multi-

class segmentation problem. For this, the class asymmetric loss (CAL) is employed. This func-

tion only observes masks that do not have a ground truth value. If a pixel within a mask has a

high confidence value, but it is known that it belongs to a different, labeled class, the function

will deliver a high value. So, if a ground truth value is defined for a pixel, it is known that the

pixel cannot belong to an unlabeled mask. However, if the pixel has no ground truth defined,

it is not possible to determine whether the pixel belongs to the unlabeled mask. To calculate

CAL, the values of the given mask index c are summed over all coordinates (see Eq 3). For each

coordinate (u, v), the pixel at the same position in all mask indices z, except for the current

mask c, is observed and the predicted value ŷu;v;z at that coordinate is observed. An activation

function f(.) (such as sigmoid) transforms the prediction to constrain the range of possible out-

put values. Afterward, the value is multiplied by (1 −mz) only to take those masks into account,

in which the ground truth is not set. Finally, the summation is multiplied by the ground truth

value ~yu;v;c. Since ~yu;v;c is 1 if the mask index c is the correct class for the pixel at position (u, v),

and 0 otherwise, this multiplication ensures that the summation is only taken into consider-

ation if ~yu;v;c is the correct class for this pixel

CALðc; ~y; ŷÞ ¼
Xw

u¼0

Xh

v¼0

~yu;v;c �
X

z2f1;...;Cgnfcg

f ðŷu;v;zÞ � ð1 � mzÞ

 !

: ð3Þ

CAL is then used in LCAL (see Eq 4) to calculate the second component of the composed

objective function. As in LDSC, LCAL is determined by calculating the sum over all classes and

only taking into account the classes for which a mask exists (mc = 1)

LCALð~y; ŷÞ ¼
XC

c¼0

mc CALðc; ~y; ŷÞ: ð4Þ

If the background class is determined as the class in which none of the C defined classes is

present, it needs to be excluded in the calculation of LCAL. This is necessary since this naive def-

inition of the background class makes it impossible to distinguish between unlabeled pixels

and actual background.

2.4.3 Combined objective function. The combined objective function is designed as:

L ¼ ð1 � aÞ LDSC þ aLCAL; ð5Þ

With α 2 [0, 1), is the weight between the two individual loss functions. The weighting factor

α adjusts the influence between the horizontal, channel-wise optimization of LDSC and vertical,
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probability distribution-wise, optimization of LCAL. The value α = 1.0 is not considered to be

valid since LCAL only makes statements about unlabeled data and hence would not be able to

operate independently.

The combined objective function L is tailored to take advantage of heterogeneously labeled

datasets, with two individual loss functions which complement one another, each focusing on

optimizing one dimension (horizontal or vertical) of the output tensor. In Fig 1 the calculation

of L is depicted.

2.5 Performance frugality ratio (PFR)

A novel metric is introduced to measure the similarity between ground truth labels and predic-

tions, under consideration of the degree of heterogeneity in the given data and an existing sta-

tistic M (such as DSC or the Intersection over Union (IoU)). The Performance Frugality Ratio

(PFR) divides the given statistic by the number of available labels n ¼ S � P, which is the dif-

ference between the number of overall sample-label pairs S and the share of dropped labels P
(see Eq 6)

PFRðMÞ ¼
M
n
: ð6Þ

Since PFR takes heterogeneity in the dataset into consideration, the calculation is more pro-

found than the used statistic alone. More precisely, if fewer samples need to be labeled to

achieve the same performance for a given statistic, the same result is achieved with less infor-

mation which means better performance.

Fig 1. Visualization of the combined objective function. An exemplary sample x is fed into the network, which outputs a training prediction ŷ . Each

class is denoted with a unique color. The corresponding ground truth label ~y is missing the class on the lower right. The dotted line marks where the

label would be in the sample. The dashed box on the right denotes L, with the output for both objective functions LCAL and LDSC. Prediction errors are

marked as red areas. The number in the lower-left corners indicates the approximate output for the respective objective function. Since there is a

prediction error in both given classes, the Dice loss will output a value L > 0 for them and 0 for the unlabeled class since it cannot make a statement

without the ground truth mask. The class asymmetric loss will only output a value L > 0 if an unlabeled class’s predicted segmentation mask intersects

with a given class’s ground truth mask. Since the network predicted a small portion of the unlabeled class as part of the class in the center-left, the

output will be L > 0 for this class. For the other labeled class, no intersection occurred, and hence the output is 0. Since the unlabeled mask does not

contain a ground truth, it is not evaluated by the class asymmetric loss, which will result in an output of 0.

https://doi.org/10.1371/journal.pone.0263656.g001

PLOS ONE Multi-class semantic segmentation on heterogeneous labels

PLOS ONE | https://doi.org/10.1371/journal.pone.0263656 February 8, 2022 6 / 14

https://doi.org/10.1371/journal.pone.0263656.g001
https://doi.org/10.1371/journal.pone.0263656


2.6 Extended heartSeg dataset

The dataset X of this work is an extension of the heartSeg dataset [3]. Each sample x 2 X is an

RGB image capturing the heart region of Medaka (Oryzias latipes) hatchlings from a constant

ventral view. Since the body of Medaka is see-through, noninvasive studies regarding the inter-

nal organs and the whole circulatory system are practicable [22]. A Medaka’s heart contains

three parts: the atrium, the ventricle, and the bulbus. The atrium receives deoxygenated blood

from the circulatory system and delivers it to the ventricle, which forwards it into the bulbus.

The bulbus is the heart’s exit chamber and provides the gill arches with a constant blood flow.

The blood flow through these three chambers was captured in 63 short recordings (around 11

seconds with 24 frames per second each) in total, from which the single image samples x 2 X

are extracted. The dataset is split into training and test data following the heartSeg dataset [3]

with ntrain = 565 samples in the training set Xtrain and ntest = 165 samples in the test set Xtest.

The RGB image samples have a 640 × 480 pixels resolution.

2.6.1 Data labeling. Each x 2 X in the heartSeg dataset possesses an associated ground

truth mask ~y 2 ~Y. Initially, ~Y solely contains the ventricle class V. Within this work, we

extended the labels by two semantic classes: the bulbus B and the atrium A of the medaka

hatchlings’ circulatory system.

Prior to our additional labeling, each ~y 2 ~Y is a binary matrix with the same dimensions as

its associated sample where each pixel ~yu;v indicates whether it belongs to the ventricle class V

(~yu;v ¼ 1) or the background (~yu;v ¼ 0). After labeling, each ~y contains the label masks (V,B,A)

for all three classes (see Fig 2). The mask for each class is an individual binary image mask,

therefore the extended dataset contains a total of (ntrain+ ntest)
�3 = 2, 190 label masks. It takes

around 25 seconds to generate a single label mask for an individual class. The overall time

spent to extend the heartSeg dataset by the atrium and the bulbus class was around 10 hours.

For scale, extending this dataset to nc = 5 classes and approximately ns = 5, 000 samples would

result in ns
�nc = 25, 000 label masks and a total labeling time of around 174 hours for all

samples.

Even though Medaka is nearly transparent, the heart chambers are only clearly identifiable

in the recordings if filled with enough blood. The cardiac cycle makes it difficult to reliably

label a chamber if it is only partially filled with blood and very challenging if it contains little

Fig 2. Labels of the extended heartSeg dataset. Displaying image masks for the three semantic classes overlaid on two image samples of the medaka

hatchlings’ cardiac system as part of the extended heartSeg dataset. The orange label masks depict the ventricle V (based on the heartSeg dataset [3]).

The blue and green label masks depict the respective, newly added semantic classes bulbus B and atrium A.

https://doi.org/10.1371/journal.pone.0263656.g002
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blood (end-systolic). The extended heartSeg dataset is available for download here (https://osf.

io/uyk79).

3 Results

Four experiments evaluate how the approaches for training on heterogeneous labels influence

the multi-class semantic segmentation performance. The first experiment (see Subsection 3.1)

is a general ablation study in which labels from all classes are dropped. The second experiment

(see Subsection 3.2) simulates a situation in which a dataset labeled with one class is extended

by a second class. The extension formulates a transfer learning task [23] since the knowledge

available by the labels of the first class is used to transfer the knowledge and learn on the sec-

ond class. The third experiment (see Subsection 3.3) is a variation of the second experiment, in

which each sample is only associated with a single label mask. It thus only holds information

on one of the two classes simultaneously. The fourth experiment (see Subsection 3.4) investi-

gates the contribution of the two individual loss functions, which form the combined objective

function, by modifying the weight between them.

3.1 Label-effort reduction in multi-class semantic segmentation

The first experiment focuses on the central claim of our work, demonstrating the ability to

train on heterogeneously labeled data. The effect is presented on different magnitudes of het-

erogeneity, so labels from all classes are dropped equally with an increasing percentage. This

general label ablation study does not specify a particular use-case. However, it evaluates how

dropped labels influence performance, referring to the baseline of supervised training on the

fully labeled dataset (dropped labels 0%). The results (see Experiment 3.1 in Fig 3) show that

there is no major drop in performance up until about ρ = 60% dropped label share according

to both the mean IoU (mIoU) and mean DSC (mDSC). Mean PFR (mPFR) also progresses

alike for both metrics. After that, performance drops rapidly. At ρ> 70%, the network will

usually converge to a state in which the background class is assumed as the correct class for all

pixels. It is assumed that this behavior occurs since the background class is a composition of

the other classes and hence occurs more frequently if few classes are labeled, which implicitly

increases its importance while training. It is also apparent from the results that the bulbus class

is the hardest to segment, which is expected since the cardiac outflow tract is not as clearly

delineated as the atrium and ventricle.

3.2 Extending an additional class by transfer learning

For the second experiment, a situation is assumed where the dataset is fully labeled with a sin-

gle class and should be extended by a second one. The samples, which are already labeled with

one class, are partially extended by the labels of a second class, making the dataset heteroge-

neous. In contrast to the first experiment, one class remains homogeneously labeled. Here, the

ventricle class is always fully labeled, and the atrium class contains a decreasing number of

labels to simulate incomplete labeling processes for the atrium class. The dataset is reduced to

only two classes (atrium and ventricle) for this experiment. The performance of the ventricle

class stays relatively constant (which is to be expected). The atrium class shows a slowly

decreasing performance when the number of dropped labels increases. Dropping ρ = 40%

atrium class labels from our dataset results in performance deterioration of 1% in DSC and 2%

in IoU (see Experiment 3.2 in Fig 3). If only 60% of the atrium samples are labeled, there is

solely a marginal performance decrease compared to labeling all samples.
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3.3 Merging heterogeneous labeled datasets

The third experiment simulates a situation where two datasets are sampled from the same

domain but with differently labeled classes. Here, two datasets containing the labels for distinct

classes should be merged without additional labeling. For this, the initial dataset is split into

two distinct datasets, one having only the ventricle class labeled and the other one only the

atrium class. It is essential to ensure that splits only occur at complete sequences to avoid hav-

ing partial sequences in both divided datasets. Only the ventricle and atrium classes are taken

into account. For evaluating the synergy effect of merging heterogeneous datasets, the dataset

is split into different proportions (for example, 25% / 75% would mean that one dataset makes

up 25% of the overall samples and the other one 75%). Even though the dataset sizes may differ

notably in this experiment, both datasets are continuously sampled with equal amounts. To

achieve equivalent sampling rates oversampling is employed, which means that samples of the

minority class are randomly sampled multiple times. The results show the best performance if

the two datasets are balanced (which is to be expected). This experiment shows that merging

Fig 3. Experiments. Visualization of the conducted experiments. Each row is an experiment, each column the applied

statistic. The scatter points in each plot indicate the value for the respective method to measure performance, either the

mean Performance Frugality Ratio PFR over the observed classes or the mean value (μ) over the respective statistic.

The optimal performance is highlighted with a vertical dotted line. The plotted values are presented as a moving

average with kernel size two. The left axis corresponds to the respective statistic, the right axis, if it is present, to the

respective PFR. For details see S1 File.

https://doi.org/10.1371/journal.pone.0263656.g003
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two datasets from the same domain is possible. When only one class is labeled, the evaluated

models perform relatively well, even when the merged datasets are imbalanced(see Experiment

3.3 in Fig 3).

3.4 Trading off horizontal with vertical loss

The fourth experiment evaluates how the two individual loss functions, which make up the

combined objective function used in this work, contribute to the achieved results. For the sake

of comparability, the same test setup as in the experiment of Section 3.2 is used. The dataset is

reduced to only the atrium and ventricle classes, and only the atrium class labels are dropped.

For this experiment, the dropped label share is fixed at 50%, which means half of the atrium

labels are dropped. The weighting factor α is modified (see Eq 5) to see how both loss functions

influence the learning process. The mIoU and mDSC metrics show that performance increases

with increasing weight on LCAL, up until a limit at about α = 0.4, at which point the perfor-

mance decreases again. Both losses are essential in this experiment since the atrium class per-

formance increases (slightly) even after α = 0.4. After that, however, the performance of the

ventricle class starts decreasing. The best performance can be achieved if both losses are

employed at a (roughly) equal share (see Experiment 3.4 in Fig 3).

4 Implementation and training

The additional labels for the heartSeg dataset were annotated with the Pixel Annotation Tool

(version 1.4.0) [24]. The methods presented in this work were implemented with Python (ver-

sion 3.7.6), using the following packages: TensorFlow (version 2.3.0), Keras (version 2.4.3),

and NumPy (version 1.18.1).

4.1 Data augmentation and preprocessing

Due to the small-scale nature of the presented dataset, which is typical for biomedical applica-

tions, a set of data augmentation strategies is utilized:

• Rotations in range: [0,0.3] degrees,

• Width shift in range: [-0.05,0.05],

• Height shifts in range: [-0.05,0.05],

• Shear angles in range: [0,0.05] degrees (counter-clockwise direction),

• Zoom in range: [0,0.5],

• Horizontal flips with 50% probability,

• Fill mode: Nearest.

Each sample x 2 Xtrain of the training set and its corresponding ground truth label mask

~y 2 ~Ytrain are randomly augmented within the ranges defined above. For data augmentation,

Keras’ ImageDataGenerator was used. In addition to augmentation, images and their corre-

sponding label masks were scaled to a size of 256 × 256 pixels and pixel intensities in the range

of [0, 1].

4.2 Training

The U-Net model was trained until there were no improvements in the Dice loss statistic on

the validation data, which happened at around 20 epochs (see Fig 4). A batch size of 11 was
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used, meaning there were 154 iterations, or weight updates, per epoch. For weight updates, the

Adam optimizer [25] with a learning rate of 10−3 was used. The model was trained on an NVI-

DIA GeForce GTX 1080 graphics card, which requires around 160 seconds per epoch. Our

U-Net implementation has 3 × 107 parameters. With the early stopping approach described

above, each model takes about 160 minutes to train.

4.3 Testing

The test data follows the dataset split of the heartSeg dataset (see Subsection 2.6). The experi-

mental details are put forth in the results (see Section 3). Each experiment has been evaluated

for ten consecutive runs. The respective relevant statistics are given for each experimental con-

figuration with the mean and standard deviation over all runs. A comprehensive overview of

the results is given in S1 File.

4.4 Heterogeneous label generator

Our novel heterogeneous label generator transfers a homogeneous labeled dataset into a het-

erogeneous one, enabling research on partially labeled datasets while retaining ground truth

values for evaluation. The generator takes a dataset that contains the complete set of label

masks and yields heterogeneous datasets, which only contain labels to a preconfigured degree

(such as a 50% label share). Since online sampling is a requirement for many applications, the

labels are dropped online while training, avoiding sample and label redundancies, keeping a

persistent database. The data is always accessed on the original homogeneous dataset. This

approach excludes the possibility to define a definite number of dropped labels for each class

since the sample size might be unknown. Consequently, the dropped label share is defined as a

relative number in the implementation.

Fig 4. Predictions of different training schemes. For reasons of comparability, the predictions are shown for the

same sample (see Fig 2). The first column presents the development of the baseline model’s prediction during the

training, followed by the ablation experiment with 60% dropped labels, the transfer learning approach with 70%

dropped labels, and the merge experiment with a ratio of 63% to 37%. The rows depict the predictions’ state after e
training epochs (10, 20, 30, 40, 50). For detailed results of the experiments, see Section 3. The last column shows the

validation loss development during training, presented as a moving average with kernel size three.

https://doi.org/10.1371/journal.pone.0263656.g004
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Since any number of calls to the heterogeneous label generator should be possible without

eventually encountering the dataset’s complete ground truth, the sample memory M is imple-

mented. M stores the information on which labels have already been modified (e.g., label

instance dropped) in a previous call to the function. In this way, it is ensured that an individual

label ~y is modified in the same way even if it is queried multiple times. After one training itera-

tion, M is emptied. With that approach, the user reaches complete control over generating a

heterogeneous labeled dataset without sacrificing online capabilities.

5 Discussion

This work provides the deep learning practitioner with a method for supervised training on

heterogeneous labeled data. In particular, the method’s contribution to frugal label deploy-

ment is of interest to the biomedical research and engineering community, which often faces

multiple challenges addressed in this work. Often, data acquisition is expensive, labeling is

tedious and requires expert domain knowledge, and the need to fall back on multiple data

sources with different label specifications is ubiquitous.

We want to draw attention to the fact that the temporal, cyclic characteristics of the

extended heartSeg dataset sustain the semantic segmentation training when dropping individ-

ual labels in experiments one and two. The combined background class poses problems if only

a few labels are given for a particular class. Thus, future work might advance pseudo label

approaches to harness knowledge already modeled in the neural network yet missing in cur-

rently heterogeneously labeled samples.

6 Conclusion

The novel approaches to deploying heterogeneous labels within semantic segmentation have

been presented and examined in multiple experiments, being common use-cases within bio-

medical semantic segmentation. As a benchmark, the multi-class segmentation dataset of

Medaka’s cardiac system was developed, providing semantic segmentation label masks of

three classes, together with a baseline performance (mDSC) of 84% (Table 1 in S1 File first

row) by supervised training on all labels. Furthermore, a combined objective function for tasks

with heterogeneous labels is introduced to cope with and utilize heterogeneous labels during

neural network training, ready to be adapted to further semantic segmentation tasks and data-

sets. Our approaches demonstrate beneficial effects on label effort reduction while staying

competitive with supervised training on the entire label set and the general cultivation of het-

erogeneous labeled datasets in multi-class semantic segmentation with neural networks.

The first experiment demonstrates our presented objective function’s capability to utilize

heterogeneous labeled data. A common necessity in biomedical imaging tasks, where different

data sources usually come with different label specifications. For 60% missing labels across all

classes, the performance only deteriorates to 78% mDSC (Table 1 in S1 File seventh row), 6%

below baseline performance (Table 1 in S1 File first row). The second experiment demon-

strates the transfer capabilities between multiple segmentation classes within a single dataset.

The presented approach is capable of extending the model by an additional class. With a

reduction to merely 30% labels for one class (atrium), the approach still achieves an 84%

mDSC (Table 2 in S1 File seventh row), 2% below baseline performance (Table 4 in S1 File

sixth row). The third experiment demonstrates the capabilities of merging two datasets within

the same domain with different classes labeled into a single training process. For balanced clas-

ses (50%/50% label share), the approach reaches a mDSC of 74% (Table 3 in S1 File third row),

12% below benchmark performance (Table 4 in S1 File sixth row). The fourth experiment

demonstrates how the two individual loss functions work together to achieve the best
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performance. The results show that the modified Dice loss and the class-asymmetric loss play a

vital role in the first three experiments. For our dataset, the best value for α is determined to be

0.4 (Table 6 in S1 File fifth row), though placing equal weight on each loss component is a sen-

sible choice in practice.

This study provides approaches for the frugal labeler facing heterogeneous labeled semantic

segmentation data. The heartSeg dataset, the entire training pipeline, including the heteroge-

neous dataset generator, and the proposed objective function’s implementation, are publicly

available from the online repository (https://osf.io/uyk79/).

Supporting information

S1 File. Detailed information on the conducted experiments. Table 1: General ablation

study. Table 2: Extend dataset by an additional class. Table 3: Merge two datasets. Table 4:

Trading off horizontal with vertical loss.
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