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Abstract A (possibly illegal) game of chance, which is described in Chap. 14 of
Marc Elsberg’s thriller “GREED”, seems to offer an excellent chance of winning.
However, as the gambling starts and evolves over several rounds, the actual ex-
perience of the vast majority of the gamblers in a pub is strikingly different. We
provide an analysis of this specific game and several of its variants by elementary
tools of probability. Thus we also encounter an interesting threshold phenomenon,
which is related to the transition from a profit zone to a loss area. Our arguments
are motivated and illustrated by numerical calculations with Python.
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1 Introduction

In the summer of 2020, one of the authors (DH) spent a wonderful, albeit short,
family holiday on one of the Frisian North Sea islands. At last one could enjoy nature
with almost no worries and a brief period of the year when incidence numbers,
exponential growth and R-factors had faded into the background. My wife had
immersed herself in one of her books on the beach, while I relaxed and let my eyes
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wander over the expanse of the sea. Finally, my wife, who teaches mathematics,
turned to me and said, “You might be interested in this.” While reading Marc Els-
berg’s thriller “GREED”, she had come across an interesting connection, which we
initially discussed animatedly without pencil and paper. The following investigation
finally arose from this first conversation.

Elsberg had his breakthrough as an author in 2012 with “BLACKOUT”. The
book describes the scenario of a widespread collapse of power supply and its con-
sequences. With “ZERO” and “HELIX” he confirmed his reputation as a master of
the science thriller. In his eighth book with the title “GREED” [10], Elsberg deals
with economic concepts, findings and theories with a focus on the question whether
comprehensive cooperation between economic partners and branches of industry
could lead to greater prosperity for everybody. He relies on scientific work related
to ergodicity economics of a group led by Ole Peters at the London Mathematical
Laboratory, which was supported by the Nobel Prize winners Murray Gell-Mann
and Ken Arrow [30].

In his review of “GREED”, Edgar Fell [13, translated from German] comments
on Elsberg’s book:

In the course of this exciting story, more and more connections of an economic
nature emerge. It is fascinating to see how the author succeeds in bringing com-
plex economic and social issues closer to the reader. Even the mathematical
foundations of game theory are built into the plot in a “playful” way. An il-
legal game of chance in a bar, for example, offers the opportunity to take the
first steps in this direction. It works like magic. Elsberg’s captivating art of sto-
rytelling allows even readers who are completely untrained in mathematics to
grasp his number games. The knowledge that is conveyed stimulates thought –
about how modern forms of society actually work.

The aim of the following considerations is to present an elementary analysis of
a game of chance (a bet) from Chap. 14 of Elsberg’s thriller “GREED”, mentioned
in the review by Edgar Fell, and of variants of this bet. On the one hand, this offers
the opportunity to apply some of the basic concepts of (elementary) stochastics. In
this respect it is fair to say that games of chance provided much of the inspiration
behind the birth of probability theory; see the historical review in Ethier’s book
on the Doctrine of Chances [12]. On the other hand, the investigation naturally
leads to a threshold phenomenon (phase transition). Phenomena of this kind were
originally observed in statistical physics, but also play an important role in the
analysis of random graphs and random polytopes. For an elementary introduction
to the topic of phase transitions in classical random graphs (Erdös–Renyi) we refer
to [9], the classical work [11] as well as the monographs and textbooks [4, 19, 23].
Threshold phenomena with random polytopes (e.g. in high dimensions), random
cones and connections to optimization, data analysis and signal processing have
been investigated in [1–3, 6, 7, 14, 15, 21, 22, 31], for example.

In Sect. 2, we provide a summary of those aspects from “GREED” which are
relevant for the present discussion. We essentially focus on Chap. 14, in which
Elsberg stages the dynamics associated with the gambling scenario (the bet). In the
following sections, we will analyse this particular gamble step by step. Here we start
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from the specific situation provided in the thriller. Motivated by our observations on
the initial scenario described by Elsberg and a first quantitative analysis in Sect. 3,
we generalise the underlying parameters of this game of chance (see Sect. 4). At
first we examine the asymptotic behaviour of the expected net profit as the number n

of rounds tends to infinity (Elsberg’s choice is n D 100). Then we introduce general
parameters u and d used to update the score after each round and find pairs .d; u/ (at
least numerically if n is finite) that define a fair game (Elsberg’s choice corresponds
to d D 0.6, u D 1.5 which results in an unfair game). The asymptotic analysis
as n tends to infinity leads to a surprising threshold phenomenon which marks
the asymptotically sharp transition from the profit zone to the loss area. While the
original version of the bet is based on successively tossing a fair coin, in Sect. 4.5
we also explore the effect a biased coin has on the outcome of the bet, which allows
us to establish a similar, but more general asymptotic threshold property. In addition,
it can be seen from our investigation that a surprisingly small bias may already turn
an unfavourable game into a fair one while keeping the other parameters fixed (see
Fig. 6). By a thorough analysis of the asymptotic behaviour of the variance of the
net profit as the number n of rounds tends to infinity, we can even deduce the limit
distribution of the net profit. It turns out that the limit distribution is deterministic,
except for the case in which .d; u/ lies on the boundary between profit zone and
loss area when we obtain a two-point distribution in the limit. Finally, in Sect. 5 we
illustrate some numerical simulations that motivate a small excursion to a generalised
birthday problem. Throughout the paper, our arguments are motivated and illustrated
by numerical calculations with Python (relevant source code is available from https://
github.com/tgoell/On-a-game-of-chance-in-Marc-Elsberg-s-Greed-.git).

2 Elsberg’s game of chance [10] and some initial insights

In Chap. 14 of “GREED” [10], Elsberg describes the following scenario.
A group of people gathers in a bar in “Berlin Mitte”. A man (Fitzroy Peel, the

croupier) offers the following bet to the rest of the group: A player starts with an
initial score of 100 points (units). Afterwards, a coin is tossed one hundred times. In
each round, the current score is increased by fifty percent, if the coin shows “heads”.
Otherwise, the current score is reduced by forty percent. After one hundred rounds,
there are two possibilities. If the final score exceeds 100 points (units), the player
wins and receives double his stake. The mentioned stake can be chosen by the
player, but is not allowed to exceed one hundred euros. If the final score does not
exceed one hundred points, the player loses. The payout in the case of a loss is
not explicitly specified in [10] (although it seems natural to assume that Elsberg
intended the player to lose his or her entire stake).

While one member of the group called “T-Shirt” wants to participate right away,
another one (Jan) is sceptical at first. T-Shirt tries to convince Jan with the following
explanation. In his opinion, one simply needs to take the mean of the possible
outcomes. He therefore adds the possible percentages after one round (150 percent
and 60 percent) and divides the sum by the number of possible outcomes (two).
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This yields a mean of 105 percent in each round. Jan and two other members of the
group seem to be convinced by T-Shirts explanation and agree to join the game.

However, another member of the group speaks up and expresses his concerns
about the neglect of probabilities in the previous explanation. In his opinion, one
needs to consider that the coin shows “heads” or “tails”, each with probability 1

2 .
Therefore, he multiplies the possible outcomes with the associated probabilities to
arrive at an average gain of 105 percent in each round – the same result as before.

Finally, one more member of the group explains his point of view on the suggested
bet. He explains that the average increase of five percent in each round yields an
average final score (expected outcome) of 131.5 times the initial score. T-Shirt seems
confident of his victory and the group starts the offered gamble.

In the following chapters, Elsberg describes the reactions of the members of the
group as the gambling evolves. Initially, a euphoric mood spreads in the room, as
the majority of the players are successful in the beginning. However, after a couple
of rounds more and more people end up with low scores and finally only one player
has a score exceeding 100 (units). Now the mood in the room shifts completely.
There are violent accusations of cheating, leading even to a physical confrontation.

Subsequently (in Chap. 22), a first popular explanation of the preceding events
is given. On the one hand, it is argued that the mean values calculated by some of
the participants are not appropriate for analysing the game, as they do not describe
the course of the game over time, and that they ignore the fact that the initial
situation can be different in each round. Here, the phenomenon of (lack of) ergodicity
(the coincidence of temporal mean values and probabilistic averages) is used as an
explanation. However, other points are perhaps more decisive for the analysis of the
game.

More helpful is the remark that with an initial score of 100 (units) and a loss of
forty percent in the first round, the score is reduced to sixty. Then, in order to reach
again 100 (units) by winning in the second round, 66.67 percent instead of just 50
percent of the current score would be required. But even if a player wins in the first
round and loses in the second round, the remaining score is only ninety. Ultimately,
the basic error of the players is to calculate an expected value for the starting round
and to conclude that 0.5 � 1.5C 0.5 � 0.6 D 1.05 is the factor by which the profit per
round should increase. Although the expected score at the end of the game varies
exactly in this way (see below), the rules of the game do not state that the payout
is double the stake if the mean value is greater than 100 (units), but if the actual
outcome of the game results in a score that is greater than 100 (units). In addition,
the prize in the event of a win is independent of the final score. It is only relevant
whether the final score exceeds the initial score of 100 (units).

3 A quantitative analysis

We start by summarising and formalising the rules of the previously described game.
Here we suggest a payout rule in the case of a loss which is more advantageous for
the gamblers than a complete loss of the stake.
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1. The stake a � 100 (euros) is placed. The initial score is 100 (units).
2. The game consists of 100 rounds, each starting with the toss of a fair coin.
3. If the coin shows “heads”, the current score is increased by 50%.

Otherwise, the current score is reduced by 40%.
4. This procedure will be continued until 100 rounds are completed.
5. In the end, the player wins if the final score exceeds 100 and receives a payout of

twice the individual stake. In this case the net profit equals the stake. Otherwise,
the payout of the player is

stake � final score
100

;

hence the net profit equals

stake � final score
100

� stake;

which is negative (a loss), but not a complete loss of the stake. In other words, the
higher the final score, the higher the percentage of the stake that the player keeps.

Remark: As said before, the payout in the event of a loss is not explicitly
specified by Elsberg. If, in contrast to the situation described above, we agree that
the player loses his or her entire stake in the event of a loss, then the outcome would
be even more disadvantageous for the player. The analysis below then simplifies
significantly as the consideration of the quantity A.:::/ in Sect. 4.3 can be omitted.

Simulations: Using Python (or a similar programming language), the game can
be simulated very easily. Various realisations are displayed in Sect. 5.

A first analysis: Let a denote the stake. We assume that the coin tosses are
done independently with a fair coin. If the coin shows “heads” k times and “tails”
.100� k/ times during the n D 100 rounds, for some k 2 f0; :::; 100g, then the final
score is given by

b.k/ D 100 � 1.5k � 0.6100�k : (1)

Note that the final score depends only on the numbers of “heads” and “tails” and
not on the particular order in which they appear.

Using (1), we can easily find the smallest integer k necessary to win the game.
A player wins the game, yielding a net profit of a euros, if and only if the condition

b.k/ D 100 � 1.5k � 0.6100�k > 100 (2)

is satisfied. Condition (2) can be rewritten as

�
1.5

0.6

�k

>

�
1

0.6

�100

(3)
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or

k > 100 � ln
�
5
3

�
ln
�
5
2

� ; (4)

where ln denotes the natural logarithm. Clearly, (4) does neither depend on the initial
score 100, nor on the stake a, and (2) is equivalent to

k > 100 � ln5 � ln3

ln5 � ln2
� 55.749. (5)

Consequently, a player receives a net payout of a euros (keeping the initial stake)

in the case where k � 56, whereas the net profit is a � 1.5k � 0.6100�k � a < 0 euros
(which is a loss that depends on the particular number k) if k � 55.

In the underlying scenario, we can easily compute the probability of a loss, which
is given by

55X
kD0

�
100

k

��
1

2

�100

� 0.864;

whereas the probability of a win is approximately given by 0.136.
The previously determined probability of winning can also be seen in our numer-

ical simulations (see Sect. 5). Fig. 12 illustrates the outcomes of 100 simulations of
Elsberg’s game of chance. Only 14 out of the 100 simulations were beneficial for
the gamblers.

Further, we can determine the expected net profit, i.e., the payout minus the stake,
of a player. Hence, the expected net profit is given by

55X
kD0

�
100

k

��
1

2

�100

�
�
a � 1.5k � 0.6100�k � a

�
C

100X
kD56

�
100

k

��
1

2

�100

� a

D a �
�
1

2

�100
"

55X
kD0

�
100

k

��
1.5k � 0.6100�k � 1

�
C

100X
kD56

�
100

k

�#

D a �
"

�1 C
55X

kD0

�
100

k

�
0.75k � 0.3100�k C

�
1

2

�99 100X
kD56

�
100

k

�#

� �0.68 � a:

This demonstrates that a player should ultimately expect a significant loss.

4 Variations

The previous analysis shows that the participants of Elsberg’s bet will experience
a significant loss on average. Thus the question arises which rule or parameter
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underlying the gambling leads to this unfair situation and how the framework can
be adjusted in order to make the gambling more (or even less) advantageous for the
participants. In the following, we will study the influence of different parameters of
Elsberg’s game of chance (to which we also refer as a “bet”, “gamble” or simply a
“game”), or rather of the version of it employing our specific payout rule, starting
with the number n of rounds.

4.1 Number of rounds

We will now analyse the influence of the number n of rounds on the expected net
profit.

For n D 1, the behaviour of the gamble coincides with the players’ perception.
The expected net profit is then given by G.a; 1/ D 0.3 � a. For n D 2, the expected
net profit is still positive, given by G.a; 2/ D 0.4 � a. However, the final score is
only larger than 100 if k D 2. This event occurs with probability 1

4 implying that
the probability of a loss is given by 3

4 . After n D 6 rounds, the expected net profit is
negative for the first time. Although G.a; 7/ is positive again, the expected net profit
is strictly negative for n � 8. Fig. 1 illustrates the expected net profit after n rounds
and shows an interesting behaviour. While the value G.a; n/ is not monotonic due
to some jumps, we can clearly see a decreasing trend. This leads to the conjecture
that the expected net profit converges to �a as n ! 1 (see Fig. 2). A formal proof
of the asymptotic behaviour can be found below in Proposition 1.

In general, the expected net profit after n rounds with the initial stake a is given
by

G.a; n/ WD a �
2
4�1 C

k0.n/X
kD0

�n

k

�
0.75k � 0.3n�k C

�
1

2

�n�1 nX
kDk0.n/C1

�n

k

�35 ; (6)

Fig. 1 Illustration of the ex-
pected net profit in Elsberg’s bet
after n rounds (n 2 f1; :::; 200g)
for an initial stake of a D 100
euros
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Fig. 2 Illustration of the ex-
pected net profit after n rounds
using an initial stake of a D 100
(euros) in Elsberg’s gamble

where

k0.n/ WD
�

n � ln5 � ln3

ln5 � ln2

	

represents the boundary between winning and losing events. In the definition of k0,
b�c denotes the floor function defined as bxc D maxfn 2 Z W n � xg, x 2 R. The
logarithmic expression in the previous definition of k0 is approximately given by

ln5 � ln3

ln5 � ln2
� 0.5574929501.

We will now prove the previously mentioned conjecture regarding the asymptotic
behaviour of the expected net profit using concentration inequalities. As usual, we
denote a random variable X with a binomial distribution with parameters n 2 N

and p 2 Œ0,1� by X � Bin.n; p/.

Proposition 1 For any a > 0, G.a; n/ ! �a as n ! 1 with an exponential rate
of convergence.

Proof In the following, we will prove that both sums in (6) converge to zero as n

tends to infinity.
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Let Xn � Bin
�
n; 5

7

�
. Then we get

k0.n/X
kD0

�n

k

�
0.75k � 0.3n�k D 1.05n

k0.n/X
kD0

�n

k

��5
7

�k

�
�
2

7

�n�k

D 1.05n � P.Xn � k0.n//

� 1.05n � P
�

Xn � 5

7
n � �

�
5

7
� 0.5575

�
n

�

� 1.05n � exp
 

�2 �
�
5

7
� 0.5575

�2

n

!

� 1.05n � 1.050392097�n ! 0 as n ! 1;

(7)

where we used Hoeffding’s inequality [5, Theorem 2.8], [8] in the second to last
step. (Alternatively, Chernoff’s inequality can be used, at the cost of an additional
factor 2.)

Now let Yn � Bin
�
n; 1

2

�
. Using k0.n/ � b0.55nc � 0.55n � 1, we obtain the

following upper bound on the second sum

�
1

2

�n�1

�
nX

kDk0.n/C1

�n

k

�
D 2 � P.Yn � k0.n/ C 1/

� 2 � P.Yn � 0.55n/

� 2 � P.Yn � 0.5n � 0.05n/

� 2exp
��2 � 0.052 � n

� ! 0 as n ! 1;

(8)

where we used Okamoto’s inequality [29], [5, Ex. 2.12] in the last step.
An application of the upper bounds (7) and (8) in (6) completes the proof. �

Remark: If we are not interested in the rate of convergence in Proposition 1, the
second part of the proof can be simplified by using the fact that Yn=n converges in
probability to zero. However, it seems that for the first part of the argument some
finer tools are required.

An important feature of Elsberg’s game of chance is the bounded payout in the
event of a win. If the payout in the case of a loss would also apply in the winning
scenarios, the expected net profit would be given by

�
1

2

�n nX
kD0

�n

k

� �
1.5k � 0.6n�k � 1

�
� a D a � .1.05n � 1/ : (9)

This is exactly the value the gamblers expected intuitively.

4.2 Up and down

In the following subsection, we will study the influence of the percentages used to
modify the current score after each round. In Elsberg’s game of chance, the score
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Fig. 3 Expected net profit after
n D 100 rounds with an initial
stake of a D 100 in terms of
the “down factor” d for various
choices of the “up factor” u

is increased by 50% or decreased by 40% if the coin shows “heads” or “tails”,
respectively. We will substitute these percentages by some general percentages au

and ad . The indices u and d stand for “up” and “down”.
Hence, the updated modification (increase or decrease) of the current score in

each round is given as follows.

3’. If the coin shows “heads”, the current score is increased by au%.
Otherwise, the current score is reduced by ad%.

In the game introduced by Elsberg, the values au and ad are apparently given by

au D 50 and ad D 40.

Since it will be more convenient to use fractions instead of percentages, we
introduce the following factors

u WD 1 C au

100
and d WD 1 � ad

100
:

Using the previously defined factors u and d , we obtain more generally (cf. (1))
for the final score after n rounds

eb.k/ D 100 � uk � dn�k: (10)

Here again, k 2 f0; 1; :::; ng denotes the number of coin tosses showing “heads”
among the n independent repetitions. Then, the expected net profit under the updated
modification rule 3’ is given by

eG.a; n; u; d/ D a �
�
1

2

�n
2
4ek0.n;u;d/X

kD0

�n

k

� �
ukdn�k � 1

�
C

nX
kDek0.n;u;d/C1

�n

k

�35 :

(11)
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Fig. 4 Expected net profit after
n D 100 rounds with an initial
stake of a D 100 in terms of the
“up factor” u for various choices
of the “down factor” d

As before, the quantity

ek0.n; u; d/ WD
�

�n � ln.d/

ln.u/ � ln.d/

	
(12)

represents the boundary between winning and losing events. More precisely, a player
wins if and only if k >ek0.n; u; d/.

General assumption: In the following, we always assume that 0 < d � 1 � u

and u ¤ d . This is not a loss of generality since other choices of u and d are not
reasonable in the given situation.

Intuitively, one would expect that an increase of u or d results in an advantage
for the participants of the game of chance. Figs. 3 and 4 support this conjecture.
Both figures were generated using an initial stake of a D 100 (euros) in a game of
n D 100 rounds. In Fig. 3, we fixed the factor u and illustrated the expected net
profit in terms of d . In Fig. 4, we treated the opposite situation where d is fixed and
the expected net profit is computed in terms of u. In both figures, the expected net
profit in the situation described by Elsberg is marked by a red dot.

Both figures show that the expected net profit increases with the variable param-
eter d and u, respectively. Moreover, both figures illustrate that the expected net
profit approaches �a or a for small or large choices of d and u, respectively.

Based on Figs. 3 and 4, one expects the existence of choices for u and d that
result in a fair game. In this context, we say that a game is “fair”, if the expected
net profit equals zero. Numerically, it is possible to determine pairs .d; u/ which
define a fair game. The blue line in Fig. 5 contains tuples .d; u/ resulting in a fair
game. Tuples below the blue line are advantageous for the organiser of the game (the
croupier) while tuples above the blue line result in a game which is advantageous
for the participants.

For comparison, we also illustrated the function u D d �1 (orange) suggesting
the conjecture that asymptotically as n ! 1, the fair tuples .d; u/ are determined
by the relation u D d �1. We will prove this conjecture in Theorem 2 below.
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Fig. 5 Pairs .d; u/ resulting in
a fair game for a D 100 and
n D 100 (blue curve)

Fig. 5 also contains a green dot marking the tuple .0.6,1.5/ used in the game
of chance introduced by Elsberg. This illustration shows once again that Elsberg’s
game of chance is unfair to the participants in the game.

4.3 Gambling on the edge

As already mentioned in the previous subsection, the conjecture which is supported
by the illustration of our numerical results in Fig. 5 can be proven exactly (asymp-
totically as n ! 1). This leads to an interesting threshold phenomenon, where
f.u; d/ 2 Œ1; 1/ � .0,1� W ud D 1; u ¤ dg describes the boundary between tu-
ples leading to a game of chance that is advantageous or disadvantageous for the
participants in the game. All tuples on the boundary lead to a fair game.

Since, according to the property eG.a; n; u; d/ D a � eG.1; n; u; d/, the expected
net profit eG.a; n; u; d/ is proportional to the initial stake a, we define G.n; u; d/ WDeG.1; n; u; d/ for notational simplicity. Then, it follows that G.n; u; d/ can be written
as

G.n; u; d/ D �1 C A.n; u; d/ C B.n; u; d/;

where

A.n; u; d/ WD
�
1

2

�n

�
ek0.n;u;d/X

kD0

�n

k

�
ukdn�k ;

B.n; u; d/ WD
�
1

2

�n�1

�
nX

kDek0.n;u;d/C1

�n

k

�
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and

ek0.n; u; d/ D
$

n � ln
�
1
d

�
ln
�
u
d

�
%

;

implying that ek0.n; u; d/ 2 f0; :::; ng.

Theorem 2 Let 0 < d � 1 � u and u ¤ d . Then

lim
n!1G.n; u; d/ D

8<
:
1; if ud > 1;

0; if ud D 1;

�1; if ud < 1.

The proof of Theorem 2 will be split into two auxiliary results concerning the
asymptotic behaviour of A.n; u; d/ and B.n; u; d/ as n ! 1.

Lemma 1 Let 0 < d � 1 � u and u ¤ d . Then

lim
n!1A.n; u; d/ D 0.

Proof Case 1: u C d < 2. In this case,

A.n; u; d/ D
�

u C d

2

�n

�
ek0.n;u;d/X

kD0

�n

k

�� u

u C d

�k�
d

u C d

�n�k

�
�

u C d

2

�n

! 0

as n ! 1.

Case 2: u C d D 2. Since u ¤ d is satisfied by assumption, it follows that

d < 1 must hold as well. We can therefore conclude that 2 �
�
1 � d

2

�1�d
2
�
d
2

�d
2

> 1

(see Lemma 3 for x D d
2 2 .0; 1

2 )), and thus .2 � d/2�ddd > 1 or equivalently
uud 2�u > 1. This inequality is in turn equivalent to

u

2
>

ln
�
1
d

�
ln
�
u
d

� ;

which implies that

1

n
ek0.n; u; d/ ! ln

�
1
d

�
ln
�
u
d

� <
u

2
for n ! 1: (13)
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Now let Yn � Bin.n; u
2 /. The law of large numbers yields

A.n; u; d/ D
ek0.n;u;d/X

kD0

�n

k

��u

2

�k�d

2

�n�k

D P
�
Yn �ek0.n; u; d/

�

D P

 
1

n
Yn �

ek0.n; u; d/

n

!
! 0 as n ! 1;

due to (13) and 1
n
EYn D u

2 .

If we use Hoeffding’s inequality [5, Theorem 2.8] (or alternatively Chernoff’s

inequality including an additional factor 2) and the fact that ek0.n;u;d/
n

� u
2 < 0 for

sufficiently large n due to (13), it is even possible to verify an exponential rate of
convergence. Using the previously mentioned tools, we get

P

 
Yn � nu

2
�
 ek0.n; u; d/

n
� u

2

!
n

!
� exp

0
@�2

 ek0.n; u; d/

n
� u

2

!2

n

1
A ;

where

ek0.n; u; d/

n
� u

2
! ln

�
1
d

�
ln
�
u
d

� � u

2
DW ˛.u; d/ < 0 for n ! 1:

Note that ˛.u; d/ ! 0 as d; u ! 1.
Case 3: u C d > 2 and ud ¤ 1. It follows that u > 2 � d � 1, hence

uudd > .2 � d/2�ddd � 1, and therefore we obtain

ln
�
1
d

�
ln
�
u
d

� <
u

u C d
< 1. (14)

For sufficiently large n it also follows that

1 �
ek0.n; u; d/

n
>

d

u C d
or equivalently

ek0.n; u; d/

n
<

u

u C d
: (15)

Let �n � Bin.n; u
uCd

/ and �n WD n � �n � Bin.n; d
uCd

/. We will now use
an inequality (see [5, Ex. 2.11] or [8]) that usually arises during the derivation of
Chernoff’s inequality. It states that if Sn � Bin.n; p/ and y 2 .p; 1/, then

P.Sn � ny/ �
�

.1 � p/1�ypy

.1 � y/1�yyy

�n

: (16)

(Remark: In the Wikipedia article [35] this step is referred to as the “Chernoff-
Hoeffding theorem”.)
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Using (15) and (16) for p D d
uCd

and y D 1 � n�1ek0.n; u; d/, it follows that

A.n; u; d/ D
�

u C d

2

�n

P
�
�n �ek0.n; u; d/

�

D
�

u C d

2

�n

P
�
�n � n �ek0.n; u; d/

�

D
�

u C d

2

�n

P

 
�n �

 
1 �

ek0.n; u; d/

n

!
n

!

�
�

u C d

2

�n

2
6664

�
u

uCd

�ek0.n;u;d/

n

�
d

uCd

�1�ek0.n;u;d/

n

�ek0.n;u;d/
n

�ek0.n;u;d/

n
�
1 �ek0.n;u;d/

n

�1�ek0.n;u;d/

n

3
7775

n

D !.n; u; d/n;

where

!.n; u; d/ WD u
ek0.n;u;d/

n d 1�ek0.n;u;d/

n

2
�ek0.n;u;d/

n

�ek0.n;u;d/

n
�
1 �ek0.n;u;d/

n

�1�ek0.n;u;d/

n

:

Since we assumed that ud ¤ 1, we get

1

n
ek0.n; u; d/ ! ln

�
1
d

�
ln
�
u
d

� 2 .0,1/ n


1

2

�
;

and therefore

2

 ek0.n; u; d/

n

!ek0.n;u;d/

n
 
1 �

ek0.n; u; d/

n

!1�ek0.n;u;d/

n

! �.u; d/ 2 .1,2/

as n ! 1. Furthermore,

u
ek0.n;u;d/

n d 1�ek0.n;u;d/

n ! u

ln. 1
d /

ln. u
d / d

ln.u/

ln. u
d / D 1 for n ! 1: (17)

Finally, this implies that !.n; u; d/ ! �.u; d/�1 2 .0,1/ as n ! 1, which yields
!.n; u; d/n ! 0, as requested.

Case 4: u C d > 2 and ud D 1. If n is even, there exists some m 2 N such that
n D 2m. Hence,ek0.n; u; d/ D �

n
2

˘ D m and therefore A.n; u; d/ can be written as

A.n; u; d/ D
mX

kD0

�
1

2

�2m �2m

k

�
d 2m�2k:
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Since k � m, it follows that
�
2m
k

�
�
�
2m
m

�
. Now we can use Stirling’s approxima-

tion to see that

�
2m

m

�
� 22mp

�m
; (18)

where � means that the two expressions are asymptotically equivalent. Hence, for
k � m and sufficiently large m 2 N,

�
1

2

�2m �2m

k

�
� 1p

m
:

We conclude that

A.n; u; d/ � 1p
m

mX
jD0

.d 2/j � .1 � d 2/�1 1p
m

! 0 as n ! 1:

If n is odd, there exists some m 2 N such that n D 2m C 1. Then it follows thatek0.n; u; d/ D m and A.n; u; d/ can be bounded by

A.n; u; d/ D
mX

kD0

�
1

2

�2mC1 �2m C 1

k

�
d 2mC1�2k

D d

2

mX
kD0

�
1

2

�2m 2m C 1

2m C 1 � k

�
2m

k

�
d 2m�2k

� d

2

2m C 1

m C 1
A.2m; u; d/ � A.2m; u; d/ ! 0 as n ! 1;

which completes the argument. �

Remark: 	 As soon as (13) is available, the second case in the previous proof can
be included into the third case. However, the application of Hoeffding’s inequality
is easier in the second case. Moreover, we could alternatively argue with the law of
large numbers in the second case (though without obtaining the exponential rate of
convergence then). Therefore we decided to treat these cases separately.

	 At the critical boundary, characterised by the equation ud D 1, the expression
A.n; u; d/ still converges to zero. However, the rate of convergence is no longer
exponential, but of order 1=

p
n. We only presented an upper bound on the order of

convergence, but one could consider the summand for k D m to deduce a lower
bound as well.

In order to establish the asymptotic behaviour of G.n; u; d/, which is stated
in Theorem 2, it remains to analyse the asymptotic behaviour of B.n; u; d/. The
required result is provided by the following lemma.
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Lemma 2 If 0 < d � 1 � u and u ¤ d , then

lim
n!1B.n; u; d/ D

8<
:
0; if ud < 1;

1; if ud D 1;

2; if ud > 1.

Proof Case 1: ud < 1. Then

1

n
ek0.n; u; d/ ! ln

�
1
d

�
ln
�
u
d

� >
1

2
as n ! 1; (19)

where the lower bound on the limit is equivalent to ud < 1. If we introduce
binomially distributed random variables Xn � Bin.n; 1

2 /, it follows that

B.n; u; d/ D 2P
�
Xn �ek0.n; u; d/ C 1

�
� 2P

�
1

n
Xn � 1

n
ek0.n; u; d/

�
! 0

for n ! 1, by the law of large numbers. An application of Okamoto’s inequality
(see [29]), in combination with the fact that ek0.n; u; d/ � n

2 > 0 for sufficiently
large n 2 N and (19), yields the even stronger statement

B.n; u; d/ � 2P
�
Xn � n

2
�ek0.n; u; d/ � n

2

�

� 2exp

0
@�2

 ek0.n; u; d/

n
� 1

2

!2

n

1
A ! 0

as n ! 1.
Case 2: ud > 1. Then

1

n
ek0.n; u; d/ ! ln

�
1
d

�
ln
�
u
d

� <
1

2
as n ! 1:

Analogously to the first case, an application of the law of large numbers yields

B.n; u; d/ D 2P.Xn �ek0.n; u; d/ C 1/

D 2P

�
1

n
Xn � 1

n
.ek0.n; u; d/ C 1/

�
! 2 � 1 D 2

for n ! 1.
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Again, an application of Okamoto’s inequality [29] instead of the law of large
numbers, leads to a stronger, exponential estimate given by

B.n; u; d/ D 2P
�
Xn �ek0.n; u; d/ C 1

�
D 2

�
1 � P

�
Xn �ek0.n; u; d/

��

� 2

0
@1 � exp

0
@�2n

 ek0.n; u; d/

n
� 1

2

!2
1
A
1
A ! 2 as n ! 1:

In combination with the upper bound B.n; u; d/ � 2, it now follows that
limn!1B.n; u; d/ D 2, and the convergence is of exponential order.

Case 3: ud D 1. Then we haveek0.n; u; d/ D �
n
2

˘
.

If n is odd, there exists some m 2 N such that n D 2m C 1. From the identity

2mC1X
kDmC1

�
2m C 1

k

�
D 22m

we deduce that

B.n; u; d/ D 2P
�
Xn �

jn

2

k
C 1

�
D 2 � 1

2
D 1.

If n is even, hence n D 2m for some m 2 N, we get

2mX
kDmC1

�
2m

k

�
D 22m�1 � 1

2

�
2m

m

�
;

and therefore, by Stirling’s approximation (18), it follows that

B.n; u; d/ D 2P
�
Xn �

jn

2

k
C 1

�
! 2 � 1

2
D 1 as n ! 1:

In this case, the convergence is of the order 1=
p

n. �

4.4 Unbounded prize

As we already mentioned in Sect. 3, the a priori bound on the prize in the event
of a win contributes to the disadvantages of the participants in Elsberg’s game of
chance. We will now analyse a modified gambling rule, which depends on the final
score and does not involve an a priori bound.

We will now assume that the payout at the end of the game is always given by
a times the final score. In analogy to the representation of the expected net profit
in (9), we can derive a general representation of the expected net profit using the
updated payout rule in the case of a win. We therefore arrive at the following (much
simpler) expression for the expected net profit, that is,

a �
�
1

2

�n nX
kD0

�n

k

� �
uk � dn�k � 1

�
D a �

��
u C d

2

�n

� 1
�

: (20)
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Fig. 6 Illustration of the ex-
pected net profit after n D 100
coin tosses in terms of the prob-
ability p that the coin shows
“heads”, using the game param-
eters a D 100, u D 1.5 and
d D 0.6

Clearly, the expected net profit is zero if and only if u C d D 2. Thus, using
the current payout rule in the event of a win, we can exactly characterise the tuples
.d; u/ which lead to a fair game, by the condition u C d D 2.

In the subsection below, we will analyse a modified version of Elsberg’s game
of chance based on a coin which is not necessarily fair. Before pursuing this topic,
we describe the influence of a biased coin in the current scenario of a payout which
does not involve an a priori bound on the prize in the event of a win. If p 2 Œ0,1�

describes the probability of the event “heads” and q D 1�p the probability that the
coin shows “tails”, the expected net profit in the underlying situation is then given
by a..pu C qd/n � 1/. Hence, under these assumptions the game is fair if and only
if pu C qd D 1.

4.5 Fake coins

In this subsection, we analyse the influence of the probability p that the coin shows
“heads”. In “GREED”, the gambling is executed using a fair coin (p D 1

2 ). Instead of
a fair coin, we could use a bent (biased) coin or some completely different Bernoulli
experiment (for example, by tossing a drawing pin or a dice and modifying the rule
in step 3’ appropriately). For the sake of simplicity, we will continue to use the toss
of a coin.

Intuitively, increasing the probability p that the coin shows “heads” should in-
crease the chances of winning for the participants of the gambling and hence increase
their expected net profit. Fig. 6 supports this conjecture. The figure illustrates the
expected net profit after n D 100 rounds using an initial stake of a D 100 in terms of
the probability p. The factors u and d are chosen according to the gamble described
in “GREED”.

As in the analysis of the influence of the up and down factors u and d , we want
to choose the probability p so that a fair game of chance is obtained. Fig. 6 suggests
that it is possible (at least numerically) to determine such a probability p. The net
profit for p D 1

2 and the choice of p which results in a fair game are both marked
in Fig. 6.
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In order to formalise the previously described modified version of Elsberg’s game
of chance, we consider a sequence of independent Bernoulli distributed random
variables X 0

i � Bin.1; p/, where fX 0
i D 1g and fX 0

i D 0g represent the events that
the i-th coin toss shows “heads” and “tails”, respectively. In order to simplify our
calculations, we define the complementary probability q D 1�p, which denotes the
probability of the event “tails”. Then, the random variable X

.p/
n WD X 0

1 C� � �CX 0
n �

Bin.n; p/ counts how often the event “heads” occurs among the n coin tosses.
Since we are interested in the net profit at the end of the game, we introduce the

random variable T .n; u; d; p/ given by

T .n; u; d; p/ WD
ek0.n;u;d/X

kD0

1fX .p/
n D kg.ukdn�k � 1/ C 1fX .p/

n �ek0.n; u; d/ C 1g

D � 1 C
ek0.n;u;d/X

kD0

1fX .p/
n D kgukdn�k

C 2 � 1
n
X .p/

n �ek0.n; u; d/ C 1
o

;

which represents the net profit after n rounds using the initial stake a D 1. At this
point, we recall the explanation at the beginning of Sect. 4.3 according to which the
expected net profit is proportional to the stake a. Hence, it suffices to consider the
case a D 1.

By 1fX .p/
n D kg we denote the indicator function with respect to the event

fX .p/
n D kg. More precisely, the expression is given by

1fX .p/
n D kg D

(
1; if X

.p/
n D k;

0; if X
.p/
n ¤ k:

For the sake of notational simplicity, we will use the shorthand notation Tn D
T .n; u; d; p/.

Since we defined Tn as the net profit at the end of the game, the expected net profit
is given by the expectation of the random variable Tn. Hence, we get the following
representation of the expected net profit G.n; u; d; p/ WD EŒT .n; u; d; p/�, that is,

G.n; u; d; p/ D �1 C
ek0.n;u;d/X

kD0

�n

k

�
.pu/k.qd/n�k C 2 �

nX
kDek0.n;u;d/C1

�n

k

�
pkqn�k

DW �1 C A.n; u; d; p/ C B.n; u; d; p/:

Here it should be noted thatek0.n; u; d/ is independent of p.
Similarly to the results in Sect. 4.3, we determine the asymptotic behaviour of

the expected net profit as n ! 1. Again, for the proof we consider two auxil-
iary results concerning the asymptotic behaviour of the quantities A.n; u; d; p/ and
B.n; u; d; p/ as n ! 1.
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We start by providing two analytic inequalities which will be useful in the proof
of Lemma 5.

Lemma 3 If d 2 .0,1� and x 2 Œ0; d �, then

.1 � x/1�x.d � x/x � 1 � x

d
:

The inequality is strict if d 2 .0,1/ and x 2 .0; d /.

Proof If d D 1, the assertion of the lemma is apparently true, since the expressions
on the left- and right-hand side are equal. Now let d 2 .0,1/ be arbitrary, but fixed.
We introduce the auxiliary function

f .x/ WD .1 � x/ln.1 � x/ C xln.d � x/ � ln
�
1 � x

d

�
; x 2 Œ0; d /:

Then, f .0/ D 0 and

f 0.x/ D 1 � x

d � x
� 1 � ln

�
1 � x

d � x

�
> 0 for x 2 Œ0; d /;

since h�1� ln.h/ > 0 for h > 1. Using the strict monotonicity of f , it follows that
f .x/ > 0 for x 2 .0; d /. Now the assertions of the lemma can be easily deduced.

�

Lemma 4 If x; p 2 .0,1/, then

�
x

p

�x� 1 � x

1 � p

�1�x

� 1.

Equality holds if and only if x D p.

Proof Let p 2 .0,1/ be arbitrary, but fixed. Again, we introduce an auxiliary
function, given by

g.x/ WD xln

�
x

p

�
C .1 � x/ln

�
1 � x

1 � p

�
; x 2 .0,1/:

Then g satisfies g.0C/ D �ln.1 � p/ > 0, g.1�/ D �ln.p/ > 0 and

g0.x/ D ln

�
x

p

1 � p

1 � x

�
:

Moreover, g0.0C/ D �1, g0.1�/ D C1 and g0.x/ D 0 are satisfied if and only
if x D p. Finally, we have g.p/ D 0. Now we can easily deduce the assertions of
the lemma. �
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The preceding auxiliary results can be used to prove the following generalisation
of Lemma 1.

Lemma 5 If 0 < d � 1 � u and u ¤ d , then

lim
n!1A.n; u; d; p/ D 0.

Proof The overall structure of the proof is similar to the proof of Lemma 1.
Case 1: pu C qd < 1. Then it follows that

A.n; u; d; p/ D .pu C qd/n �
ek0.n;u;d/X

kD0

�n

k

�� pu

pu C qd

�k�
qd

pu C qd

�n�k

� .pu C qd/n ! 0

as n ! 1.
Case 2: puCqd D 1. We have d < 1, since u ¤ d . An application of Lemma 3

with x D qd 2 .0; d / shows that

.1 � qd/1�qd .pd/qd > p

and therefore

upud qd > 1.

The previous inequality can be rewritten as

ln
�
1
d

�
ln
�
u
d

� < pu:

Hence, the asymptotic behaviour ofek0 is given by

1

n
ek0.n; u; d/ ! ln

�
1
d

�
ln
�
u
d

� < pu for n ! 1: (21)

Now let Y
.p/
n � Bin.n; pu/. The law of large numbers implies that

A.n; u; d; p/ D
ek0.n;u;d/X

kD0

�n

k

�
.pu/k.qd/n�k D P

�
Y .p/
n �ek0.n; u; d/

�

D P

 
1

n
Y .p/
n �

ek0.n; u; d/

n

!
! 0 as n ! 1;

where we used (21) and 1
n
EY

.p/
n D pu.

Analogously to the proof of Lemma 1, an alternative argument that is based on
Hoeffding’s or Chernoff’s inequality yields an exponential rate of convergence.
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Case 3: pu C qd > 1 and upd q ¤ 1. An application of Lemma 3 with x D
qd 2 .0; d / (and hence 1 � qd > 0) yields the inequality

.pu/1�qd .pd/qd > .1 � qd/1�qd .pd/qd � p;

and therefore

upud qd > 1.

The previous inequality is equivalent to the left inequality in

ln
�
1
d

�
ln
�
u
d

� <
pu

pu C qd
< 1.

Finally, for sufficiently large n we get

1 �
ek0.n; u; d/

n
>

qd

pu C qd
and

ek0.n; u; d/

n
<

pu

pu C qd
: (22)

Now let �
.p/
n � Bin.n; pu

puCqd
/ and �

.p/
n WD n � �

.p/
n � Bin.n; qd

puCqd
/. Similarly

to the proof of Theorem 2, we can use (22) in the derivation of an upper bound on
A.n; u; d; p/, that is,

A.n; u; d; p/ D .pu C qd/nP
�
�.p/n �ek0.n; u; d/

�

D .pu C qd/nP
�
�.p/n � n �ek0.n; u; d/

�

D .pu C qd/nP

 
�.p/n �

 
1 �

ek0.n; u; d/

n

!
n

!

� .pu C qd/n

2
6664

�
pu

puCqd

�ek0.n;u;d/

n
�

qd
puCqd

�1�ek0.n;u;d/

n

�ek0.n;u;d/
n

�ek0.n;u;d/

n
�
1 �ek0.n;u;d/

n

�1�ek0.n;u;d/

n

3
7775

n

D !.n; u; d; p/n;

where

!.n; u; d; p/ WD
u
ek0.n;u;d/

n d 1�ek0.n;u;d/

n

�
1
p

�ek0.n;u;d/

n
�

1
q

�1�ek0.n;u;d/

n
�ek0.n;u;d/

n

�ek0.n;u;d/

n
�
1 �ek0.n;u;d/

n

�1�ek0.n;u;d/

n

:
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Observe that

1

n
ek0.n; u; d/ ! ln

�
1
d

�
ln
�
u
d

� DW c 2 .0,1/:

The limit c satisfies c ¤ p due to the assumption upd 1�p ¤ 1. From Lemma 4
we deduce that the denominator of !.n; u; d; p/ converges to �.u; d; p/ > 1 as
n ! 1.

Moreover, (17) remains true (see the proof of Lemma 1), sinceek0 does not depend
on p.

We conclude that !.n; u; d; p/ ! �.u; d; p/�1 2 .0,1/ and therefore
!.n; u; d; p/n ! 0 as n ! 1.

Case 4: upd q D 1. Since d ¤ u, it follows that pu C qd > 1. Since upd q D 1,ek0.n; u; d/ D bnpc and therefore A.n; u; d; p/ simplifies to

A.n; u; d; p/ D
bnpcX
kD0

�n

k

�
.pu/k.qd/n�k :

For k � bnp�qc we can easily deduce that ak WD �
n
k

�
pkqn�k � akC1. In addition,

the assumption upd q D 1 implies that ukdn�k D dn� k
p . Hence,

A.n; u; d; p/ �
�

n

bnpc
�

pbnpcqn�bnpc
bnpcX
kD0

dn� k
p

�
�

n

bnpc
�

pbnpcqn�bnpc 1

1 � d
:

(23)

Further, the right-hand side of (23) converges to zero since
�

n

bnpc
�

pbnpcqn�bnpc D P
�
bnpc � 1 < X .p/

n � bnpc
�

D P

 
bnpc � np � 1p

npq
<

X
.p/
n � npp

npq
� bnpc � npp

npq

!

! ˆ.0/ � ˆ.0/ D 0 for n ! 1;

(24)

where ˆ is the cumulative distribution function of the standard normal distribution.
Combining (23) and (24), finally we obtain that A.n; u; d; p/ converges to zero

as n ! 1. The Berry–Esseen theorem further shows that the convergence is of the
order 1=

p
n. �

As explained in the remark following the proof of Lemma 1, it is possible to
include the second case of the previous proof into the third case. However, we
decided to treat these cases separately due to the same reasons as mentioned before.
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Instead of using the central limit theorem and the Berry–Esseen theorem at the
end of the fourth case, we could use that
�

n

bnpc
�

pbnpcqn�bnpc � 1p
2�pq

� 1p
n

as n ! 1, to prove (24). The former asymptotic equivalence arises as a local
central limit theorem in the proof of the De Moivre–Laplace theorem (see, e.g., [33,
p. 55]). Alternatively, one could use Stirling’s approximation (while using the binary
entropy function) to provide a more direct argument.

In order to determine the asymptotic behaviour of the expected net profit, we need
to identify the limit of the second summand, denoted by B.n; u; d; p/, as n ! 1.

Lemma 6 If 0 < d � 1 � u and u ¤ d , then

lim
n!1B.n; u; d; p/ D

8<
:
0; if upd q < 1;

1; if upd q D 1;

2; if upd q > 1.

Proof Case 1: upd q < 1. Then

1

n
ek0.n; u; d/ ! ln

�
1
d

�
ln
�
u
d

� > p as n ! 1; (25)

where the inequality giving a lower bound on the limit of n�1ek0 can be rewritten as

upd q < 1. Since X
.p/
n � Bin.n; p/, the law of large numbers yields

B.n; u; d; p/ D 2P
�
X .p/

n �ek0.n; u; d/ C 1
�

� 2P
�
1

n
X .p/

n � 1

n
ek0.n; u; d/

�
! 0 as n ! 1:

As in the previous proofs, we obtain an exponential rate of convergence using
Chernoff’s inequality in combination withek0.n; u; d/�np > 0 for sufficiently large
n and (25), that is,

B.n; u; d; p/ � 2P
�
X .p/

n � np �ek0.n; u; d/ � np
�

� 4exp

0
@�2

 ek0.n; u; d/

n
� p

!2

n

1
A ! 0

as n ! 1.
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Case 2: upd q > 1. Then it follows that

1

n
ek0.n; u; d/ ! ln

�
1
d

�
ln
�
u
d

� < p:

Similarly to the estimate in Case 1, the law of large numbers yields

B.n; u; d; p/ D 2P.X .p/
n �ek0.n; u; d/ C 1/

D 2P
�
1

n
X .p/

n � 1

n
.ek0.n; u; d/ C 1/

�
! 2 � 1 D 2

as n ! 1.
Furthermore, by an application of Chernoff’s inequality we obtain an exponential

lower bound on B.n; u; d; p/ given by

B.n; u; d; p/ D 2P
�
X .p/

n �ek0.n; u; d/ C 1
�

D 2
�
1 � P

�
X .p/

n �ek0.n; u; d/
��

� 2

0
@1 � 2 � exp

0
@�2n

 ek0.n; u; d/

n
� p

!2
1
A
1
A ! 2 as n ! 1:

In combination with the upper bound,B.n; u; d; p/ � 2, we obtain that B.n; u; d; p/

converges to 2 as n ! 1 at an exponential rate.
Case 3: upd q D 1. In this critical case, we will argue more effectively by using

the central limit theorem. The assumption upd 1�p D 1 implies that ek0.n; u; d/ D
bnpc and therefore

B.n; u; d; p/ D 2
nX

kDbnpcC1

�n

k

�
pkqn�k D 2P

�
X .p/

n � bnpc C 1
�

D 2
�
1 � P

�
X .p/

n � bnpc
��

D 2

 
1 � P

 
X

.p/
n � npp

npq
� bnpc � npp

npq

!!
! 2.1 � ˆ.0// D 1

as n ! 1. Again, we can deduce the rate of convergence, which is given by 1=
p

n,
using the Berry–Esseen theorem. �

Finally, the following generalisation of Theorem 2 is implied by Lemmas 5 and 6.

Theorem 3 Let p 2 .0,1/, 0 < d � 1 � u and u ¤ d . Then the expected net
profit G.n; u; d; p/ D EŒT .n; u; d; p/� after n rounds satisfies

lim
n!1G.n; u; d; p/ D

8<
:
1; if upd q > 1;

0; if upd q D 1;

�1; if upd q < 1.
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4.6 Analysis of the variance

In the final part of our analysis, we study the variance of the random variable Tn.
Since Tn was defined as the sum of random variables (and a constant, which does
not affect the variance), the variance of Tn is composed of the variances of the single
random variables and the covariances of any two distinct random variables. If we
further use that fX .p/

n D kg \ fX .p/
n D `g D ¿ for k ¤ `, then we obtain

V.Tn/ D
ek0.n;u;d/X

kD0

�n

k

�
.pu2/k.qd 2/n�k

C 4P.X .p/
n �ek0.n; u; d/ C 1/P.X .p/

n �ek0.n; u; d//

�
ek0.n;u;d/X

kD0

�n

k

�2
.pu/2k.qd/2.n�k/

� 4
ek0.n;u;d/X

kD0

�n

k

�
.pu/k.qd/n�k � P.X .p/

n �ek0.n; u; d/ C 1/

� 2
X

0�k<`�ek0.n;u;d/

�n

k

��n

`

�
.pu/kC`.qd/2n�k�`;

where

P.X .p/
n �ek0.n; u; d/ C 1/ D

nX
kDek0.n;u;d/C1

�n

k

�
pkqn�k :

Using the previous representation of V.Tn/, we explored how the parameters
n; u; d; p of the game affect the variance of Tn. The results can be found in the
Figs. 7–10. Note that we examined the entire variance as well as the behaviour of
the five summands, which we denoted by vi .n; u; d; p/, i D 1; :::; 5.

The results of our numerical analysis motivated the following theorem concerning
the asymptotic behaviour of the variance of Tn as well as of the random variable Tn

itself (with respect to convergence in distribution).

Theorem 4 Let p 2 .0,1/, 0 < d � 1 � u and u ¤ d . Then the asymptotic
behaviour of the variance of the net profit Tn D T .n; u; d; p/ after n rounds is given
by

lim
n!1V.Tn/ D



0; if upd q ¤ 1;

1; if upd q D 1.
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Fig. 7 Asymptotic behaviour of
the variance of Tn for u D 1.5,
d D 0.6, p D 0.5 (as in [10])
as n ! 1 (for clarity, only
every fifth value was shown).
a is the variance itself, b the
individual summands v1; :::; v5
that contribute to the variance

a

b

Moreover, the limiting distribution of the random variable Tn is characterised by

Tn !
8<
:

�1; if upd q < 1;

Z; if upd q D 1;

1; if upd q > 1;

where the limit is to be understood in the sense of convergence in distribution.
The distribution of the random variable Z is the two-point distribution given by
P.Z D 1/ D 1

2 D P.Z D �1/.

Proof We define

Cn WD C.n; u; d; p/ WD
ek0.n;u;d/X

kD0

1fX .p/
n D kgukdn�k
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Fig. 8 Illustration of the vari-
ance of Tn as a function in p,
where u D 1.5; d D 0.6; n D
200. a shows the entire variance
while b displays the summands
v1; :::; v5 separately

a

b

and

Dn WD D.n; u; d; p/ WD 2 � 1fX .p/
n �ek0.n; u; d/ C 1g:

Then we can write Tn as

Tn D �1 C Cn C Dn;

and therefore

V.Tn/ D V.Cn/ C V.Dn/ C 2 � Cov.Cn; Dn/:

Using the Cauchy–Schwarz inequality, we can estimate the covariance of Cn and
Dn using the associated variances and obtain

Cov.Cn; Dn/2 � V.Cn/ � V.Dn/:
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Fig. 9 Illustration of the vari-
ance of Tn as a function in u,
where d D 0.6; n D 200; p D
0.5. a shows the entire variance
while b displays the summands
v1; :::; v5 separately

a

b

To determine the asymptotic behaviour of V.Tn/, we can focus our attention on the
limits of V.Cn/ and V.Dn/ as n ! 1 (as we will see).

The variance of Cn is explicitly given by

V.Cn/ D
ek0.n;u;d/X

kD0

�n

k

�
pkqn�ku2kd 2.n�k/ �

ek0.n;u;d/X
kD0

�n

k

�2
.pu/2k.qd/2.n�k/

� 2
X

0�k<`�ek0.n;u;d/

�n

k

��n

`

�
.pu/kC`.qd/2n�k�` � 0.

In order to show that V.Cn/ ! 0, as n ! 1, it suffices to prove that the first sum
in the previous representation of V.Cn/ converges to zero as n ! 1. Here we can
apply again the result from Lemma 1, since apparentlyek0.n; u2; d 2/ Dek0.n; u; d/

and therefore
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Fig. 10 Illustration of the vari-
ance of Tn as a function in d ,
where u D 1.5; n D 200; p D
0.5. a shows the entire variance
while b displays the summands
v1; :::; v5 separately

a

b

ek0.n;u;d/X
kD0

�n

k

�
pkqn�ku2kd 2.n�k/ D A.n; u2; d 2; p/ ! 0 for n ! 1:

The application of Lemma 5 is permissible since 0 < d 2 � 1 � u2 and d 2 ¤ u2

are satisfied under the assumptions of the theorem.
Furthermore, the variance of Dn is given by

V.Dn/ D 4P
�
X .p/

n �ek0.n; u; d/ C 1
�
P
�
X .p/

n �ek0.n; u; d/
�

:

To examine the asymptotic behaviour of the variance of Dn, we distinguish three
cases.

(a) If upd q < 1, it follows that P
�
X

.p/
n �ek0.n; u; d/ C 1

�
! 0 as n ! 1, by

the same arguments as in the first case of the proof of Lemma 6.
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(b) If upd q > 1, we get P
�
X

.p/
n �ek0.n; u; d/ C 1

�
! 1 as n ! 1. This

assertion can be shown analogously to the second case in the proof of Lemma 6.

Therefore, it follows that P
�
X

.p/
n �ek0.n; u; d/

�
! 0 as n ! 1.

The results in (a) and (b) imply that if upd q ¤ 1, then V.Dn/ ! 0 as n ! 1
with an exponential rate of convergence.

(c) Finally, we need to treat the case where upd q D 1. Then it follows that

P
�
X

.p/
n �ek0.n; u; d/ C 1

�
! 1

2 and P
�
X

.p/
n �ek0.n; u; d/

�
! 1

2 as n ! 1.

These assertions can be shown similarly to the third case in the proof of Lemma 6.
Hence, it follows that V.Dn/ ! 1 as n ! 1. The convergence is of order 1=

p
n.

Now we want to find the limit in distribution of the sequence of random variables
.Tn/n2N.

If upd q ¤ 1, we can immediately deduce the limit in distribution using Theo-
rem 3 and V.Tn/ ! 0 as n ! 1. In this case, we conclude the formally stronger
result of convergence in probability.

Now we are left with the case upd q D 1.
First, we recall that EŒCn� D A.n; u; d; p/ ! 0 as n ! 1 (according to

Lemma 1) and V.Cn/ ! 0 as n ! 1. This directly implies that Cn converges
in probability to zero as n ! 1. Due to Sluzki’s theorem [18, S. 209] (or [16,
Chap. 5, Thm. 11.4], [25, Thm. 13.18]) it remains to show that Dn � 1 converges
in distribution to Z. For this purpose we use the characteristic functions 'Dn�1 of
Dn � 1 and 'Z of Z. For t 2 R it follows that

'Dn�1.t/ D E
h
ei t.Dn�1/

i

D P
�
X .p/

n �ek0.n; u; d/ C 1
�
ei t C P

�
X .p/

n �ek0.n; u; d/
�
e�i t

�! 1

2
ei t C 1

2
e�i t D 'Z.t/

as n ! 1, where again we used the asymptotic behaviour of the probabilities

P
�
X

.p/
n �ek0.n; u; d/ C 1

�
and P

�
X

.p/
n �ek0.n; u; d/

�
for n ! 1 which we

derived in Part (c). Finally, the Lévy–Cramér continuity theorem [18, S. 21] (or [16,
Chap. 5, Thm. 9.1], [25, Thm. 15.24]) implies the assertion. �

Illustrations: Figs. 7–10 display the behaviour of V.Tn/ in terms of the different
underlying parameters n; u; d and p of the game.

Fig. 7 shows the asymptotic behaviour of the variance of Tn as n tends to infinity
in the initial situation described in “GREED” (u D 1.5; d D 0.6; p D 0.5). Fig. 7a
illustrates the entire variance while Fig. 7b shows the behaviour of the five summands
introduced at the beginning of this subsection. As we would expect according to
Theorem 4, the convergence of the variance towards zero is clearly visible.
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The remaining Figs. 8–10 display the variance of Tn for n D 200 in terms of
the parameters p, u and d . Again, Figs. 8–10a show the entire variance while
Figs. 8–10b illustrate the five summands v1; :::; v5 separately.

Figs. 8–10b suggest that the quantity v2 has the strongest influence on the vari-
ance. In contrast, the terms v1, v3 and v5 only take values close to zero. These
observations coincide with the proof of Theorem 4, where we proved that v1; v3; v4
and v5 converge towards zero for any admissible choice of parameters while v2
converges towards 1 in the special case upd q D 1.

Moreover, we want to point out that the threshold phenomenon described in
Theorem 4 is already clearly visible after n D 200 rounds.

5 Some simulations and a generalised birthday problem

The following section includes some simulations of the development of the score
over time as well as the simulation of the final net profit in 100 repetitions of
Elsberg’s gamble. As we are working in the initial situation described by Elsberg,
the underlying scenario is characterised by the game parameters a D 100, n D 100,
u D 1.5, d D 0.6 and p D 0.5.

The simulations were generated using Python.
The random.binomial(n,p) function integrated in the Numpy library was used

to generate binomially distributed pseudo-random numbers.
Fig. 11 shows eight simulations of the score over time, that is, as a function of

successive rounds. It should not come as a surprise that at least two of the eight
simulations exhibit the same final score. The final score only depends on the number
k of the n rounds in which the coin shows “heads”. The probability of the event of
“heads” occurring k times for a fair coin is just pk D �

n
k

�
2�n for k 2 f0; 1; :::; ng.

If the eight simulations are done independently, the probability P8 that all eight final
scores are different is P8 D 8Š

P
jI jD8

Q
i2Ipi , where the summation extends over

all 8-element subsets I of f0; 1; :::; ng. Maclaurin’s inequality [32, (5)] implies that

2
4 1�

nC1
8

� X
jI jD8

Y
i2I

pi

3
5

1
8

� 1

n C 1

nX
iD0

pi D 1

n C 1
;

hence P8 � 8Š
�
nC1
8

� �
1

nC1

�8
(see [20, 24] for alternative arguments), where equality

holds for positive probabilities pi if and only if p0 D � � � D pn D 1=.n C 1/. For
n D 100,

1 � P8 � 1 � 100� � �94
1017

� 0.24

thus is a lower bound for the probability that for at least two of eight independent
simulations the same final score is attained. In other words, we have estimated the
probability of at least two equal final scores for non-uniform random variables in
terms of the uniform case. The present question represents a generalised birthday

K



136 T. Göll, D. Hug

a b

c d

e f

g h

Fig. 11 Eight simulations of the score over time as a function of successive rounds for u D 1.5, d D 0.6,
p D 0.5, a D 100 and n D 100 (as in [10])
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Fig. 12 Net profit achieved in
100 simulations of Elsberg’s
game [10] with a D 100 and
n D 100

problem (see [17, 26, 34]). A recursive numerical calculation with the help of [27,
Proposition 3.1] results in 1 � P8 � 0.83 and is therefore considerably larger than
in the case of uniform distributions. The naive direct calculation of this probability
by summation over all 8-element subsets of f0; 1; :::; 100g turns out to be infeasible,
so recursive methods and approximations [27, 28, 34] become relevant.

Subsequently, the scores at the end of each round were calculated as part of
a simulation study over 100 rounds.

In Fig. 12 the net profits are shown which are achieved in 100 repetitions of
Elsberg’s game of chance. In exactly 14 of the 100 simulations of the gamble, the
maximal net profit of 100 euros is realized.
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