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Abstract
Conventional methods to estimate the static formation temperature (SFT) require borehole
temperature data measured during thermal recovery periods. This can be both economically and
technically prohibitive under real operational conditions, especially for high-temperature
boreholes. This study investigates the use of temperature logs obtained under injection
conditions to determine SFT through inverse modelling. An adaptive sampling approach based
on machine-learning techniques is applied to explore the model space efficiently by iteratively
proposing samples based on the results of previous runs. Synthetic case studies are conducted
with rigorous evaluation of factors affecting the quality of SFT estimates for deep hot wells. The
results show that using temperature data measured at higher flow rates or after longer injection
times could lead to less-reliable results. Furthermore, the estimation error exhibits an almost
linear dependency on the standard error of the measured borehole temperatures. In addition,
potential flow loss zones in the borehole would lead to increased uncertainties in the SFT
estimates. Consequently, any prior knowledge about the amount of flow loss could improve the
estimation accuracy considerably. For formations with thermal gradients varying with depth,
prior information on the depth of the gradient change is necessary to avoid spurious results. The
inversion scheme presented is demonstrated as an efficient tool for quantifying uncertainty in the
interpretation of borehole data. Although only temperature data are considered in this work,
other types of data such as flow and transport measurements can also be included in this method
for geophysical and rock physics studies.

Keywords: static formation temperature, temperature log, flow loss, data-driven, reduced-order
model

1. Introduction

The undisturbed or static formation temperature (SFT) is a
key objective for the analysis of borehole measurements. It
is a particularly important parameter in the exploration and
exploitation of geothermal and hydrocarbon resources, as it

reveals thermal reserves (Prensky 1992), affects the trans-
port properties of hydrocarbons (Kutasov & Eppelbaum
2010) and determines the drilling operation and produc-
tion parameters in geothermal and oil reservoirs (Bu et al.
2012). Over the past decades, temperature surveys from
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geothermal andpetroleumwells have beenwidely used tode-
rive the SFT (Roux et al. 1980; Espinosa-Paredes & Garcia-
Gutierrez 2003; Bassam et al. 2010). Most of these meth-
ods are based on different analytical models that extrapolate
borehole-temperature buildup data after a previous thermal
perturbation period (the drilling process) under shut-in con-
ditions (i.e., in a static water column). Advanced approaches
have been developed, such as applying neural networks to
synthetic and field thermal recovery data (Bassam et al. 2010;
Wong-Loya et al. 2012). To-date, the challenges in these nu-
merical approaches have been hardly overcome due to unre-
alistic assumptions on the borehole drilling process, neglect-
ing measurement errors, etc. (Aabø &Hermanrud 2019).

On the operational side, the acquisition of temperature
data over a relatively long period of thermal recovery (hours
up to several days) can become a difficult endeavor in prac-
tice, especially for high-temperature boreholes. Technical
challenges may arise since conventional tools have an up-
per operating temperature limit (∼ 300◦C). Recent devel-
opments concern high-temperature measuring instruments
for temperatures above 350◦C (Ásmundsson et al. 2014;
Friðleifsson et al. 2020; Okamoto et al. 2019). However, the
endurance time of these logging tools in the harsh environ-
ment is limited to only a few hours, which limits the applica-
tion of the above correction methods to the shut-in temper-
ature data.

On the other hand, dynamic temperature logs acquired
under flow conditions can also provide valuable information
about the borehole and its surrounding formation. Barton
et al. (1995) andSteingrimsson (2013) analysed thermal log-
ging data to determine the location of feed/loss zones, their
relative sizes and the associated flow rates by detecting ‘kicks’
in the temperature profiles. Patterson et al. (2017) used snap-
shots of the temperature profile at discrete times to indicate
the rate of wellbore heat gain/loss as well as the evolution
of reservoir temperature under normal borehole operating
conditions. Drakeley et al. (2006) and Wang et al. (2010)
applied optic fiber Distributed Temperature Sensing (DTS)
to monitor downhole temperatures in real time with high
frequency and spatial resolution. Following the pioneering
work of Nowak (1953) to diagnose zonal flow contributions
in the borehole based on temperature data, a few papers pre-
sented the use of temperature profiles to derive flowmeasure-
ments (Kabir et al. 2012; Reges et al. 2016; Silva et al. 2019).
However, to the authors’ knowledge, there is not yet an eval-
uation of the SFT based on temperature measurements ob-
tainedunderdynamic situations (i.e., arising from thedrilling
process or flow injections).

In this study, we apply an inversion modelling approach
to analyse the uncertainty in the interpretation of dynamic
temperature logs for the SFT determination. Specifically, the
inversion scheme involves reduced-order modelling which
has proved to be a promising method to solve non-linear

inverse problems in recent years (Mirghani et al. 2012; Chen
et al. 2017; Schulte et al. 2020). A reduced-order model
(ROM), also known as a surrogate model, can be viewed
as a regression for a set of input-output data obtained from
a high-fidelity code. It is often used to replace the complex
original physical model to accelerate the computational
speed and improve efficiency in searching the model space
of an inverse problem (Zhang et al. 2020). A variety of
techniques have been tried to construct ROMs, such as
polynomials (Oladyshkin et al. 2011) and kriging (Mo
et al. 2019), while other studies consider machine-learning
methods (also referred to as data-driven), including support
vectormachine (Jhong et al. 2017), artificial neural networks
(Sudakov et al. 2019) and quantum-enhanced deep learning
(Liu et al. 2021), to name a few.

We adopt a simple, non-parametric, supervised machine-
learning model called K-Nearest Neighbor (KNN, see Sec-
tion 2.2 for more details) to create a ROM. The ROM is
then integrated into the inversion process to propose sam-
pling points in each iteration. A detailed description of the
workflow can be found in Section 2. In Section 3 and 4, the
inversion procedure is applied to different case studies to ex-
amine various aspects that affect the accuracy of the deter-
mined SFT and are related to the injection conditions, the
quality of the data and aspects of the inverse modelling such
as the prior information and the type of misfit function. Our
study aims to contribute to abetter understandingof these in-
fluencing factors and to present amethod for quantifying the
associated uncertainties. In doing so, it also demonstrates the
capability of the data-driven surrogate modelling approach
to solve inverse problems using borehole temperature data,
which has hardly been investigated in this context so far.

2. Methodology

To determine the parameters of interest, namely the SFT
and later the flow loss, as well as their uncertainties (devia-
tions from the true values), a two-step procedure is applied.
The first step consists of forwardmodelling that evaluates the
temperature profile by simulating the advective heat trans-
port within the borehole and the heat transfer between
the borehole and the formation, using an in-house sim-
ulator developed on the MOOSE framework (Korzani
et al. 2019; Wang et al. 2019). The second step con-
sists of parameter inversion using an adaptive sampling
approach based on the ROM, which is driven by the
RAVEN software (Alfonsi et al. 2016). Specifically, RAVEN
provides different machine-learning algorithms to train a
ROMvia an Application Programming Interface (API) from
the scikit-learn python library (Pedregosa et al. 2011). It
also couples natively with a MOOSE-based application
so that the two steps above can be performed using a
single software tool. Such a framework also enables the
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distribution of a large number of calculations to multicore
workstations and high-performance computation systems.

2.1. Forward thermal modelling

The forward simulation simplifies the thermal modelling
procedure by assuming that the geometries of the borehole
and formation are cylindrical, the fluid is incompressible and
its flow direction in the borehole is only axial. Furthermore,
the rock formation is considered impermeable and the ther-
mal dissipation and expansion effects of the fluid are negligi-
ble.

Given above, the thermal transport mechanism in the
borehole is governed by both conduction and advection,
which is typically expressed in cylindrical coordinates as fol-
lows (Yang et al. 2013):

𝜌f cp,f

(
𝜕Tf

𝜕t
+ vr,f

𝜕Tf

𝜕r
+ vz,f

𝜕Tf

𝜕z

)
−
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r
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𝜕r
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Assuming incompressible flow, the continuity equation is
given by

1
r

𝜕(rvr,f )

𝜕r
+

𝜕vz,f
𝜕z

= 0,

where 𝜌f is the fluid density, cp, f is the fluid specific heat ca-
pacity,𝜆f is the fluid thermal conductivity, and vz, f and vr, f are
the axial and radial flow velocities, respectively. vz, f is calcu-
lated by Q/A, where Q is the flow rate and A is the borehole
cross-sectional area.

Considering only heat conduction in the formation, the
energy conservation equation can be written as

𝜌scp,s
𝜕Ts

𝜕t
−

𝜆s

r
𝜕Ts

𝜕r
− 𝜆s

𝜕2Ts

𝜕r2
− 𝜆s

𝜕2Ts

𝜕z2
= 0,

where𝜌s, cp, s and𝜆s are the density, heat capacity and thermal
conductivity of the formation, respectively.

The thermal exchange between the borehole and forma-
tion is modelled via thermal transfer relations at their inter-
face:

q = −𝜆s
(
𝜕Ts

𝜕r

) ||Γsf
= h(Ts − Tf ),

where q is the heat flux, Γsf is the interfacial area between the
fluid and the formation, and h is the heat transfer coefficient
under forced convection. A detailed description for the cal-
culation of h can be found inWang et al. (2019).

2.2. Adaptive sampling based on the reduced-order model

The inversion or estimation of the SFT and the flow rate
is conducted using an adaptive sampling approach. This

involves using the results of previous simulations to create
a surrogate model, which is then used to suggest the most
informative area in the model space for the next sampling
step. In this way, the number of iterations required to solve
the inversion problem is reduced compared to other classical
sampling methods such as Monte Carlo, Latin Hypercube
Sampling, etc (Mandelli et al. 2015).

In this study, the ROM is built using perhaps the
simplest and most transparent surrogate model, KNN
(Runarsson 2004). KNN is non-parametric and requires no
prior knowledge of the type of mapping function. Thus, it
is free to learn any functional form from the training data
(Russell & Norvig 2002). Furthermore, it is easy to imple-
ment since the learning consists of simply storing points that
are evaluated using the high-fidelity model, and each time a
point is added, the trainedmodel is improved. KNNpredicts
a so-called label (defined, in our case, in equation 7) of a
sampling point based on the labels of its k nearest neighbors
using the following formula:

C =
w1C1 +…+ wjCj∑k

j=1 wj

,

where C is the label associated with each nearest neighbor
and k is the number of nearest neighbors. The weight of the
jth nearest neighbor (pj) for the evaluated point (p) is de-
fined aswj= 1/dist(p, pj), where the distance dist(p, pj) is the
Euclidean distance between p and pj.

The ROM is then used as a ‘classifier’ that predicts where
further exploration of the model space should be oriented to
develop a Limit Surface (LS) that identifies the boundary be-
tween the positive and negative Boolean labels established
according to a user-defined constraint criterion (Alfonsi et al.
2016). In our analysis, such a criterion is constructed using
the root mean square error (RMSE), which describes the
discrepancy between the simulated and measured borehole
temperatures as follows:

RMSE =

√∑m
i=1(Tsim,i − Tmeasure,i)2

m
,

where Tsim is the simulated temperature, Tmeasure is the mea-
sured temperature andm is the number of the sampled tem-
peratures along the depth. A decision function C(RMSE) is
defined to recast the response of the system into a binary
form:

C(RMSE) =
{
1 if RMSE < RMSEthres
−1 if RMSE > RMSEthres

,

where RMSEthres is the RMSE threshold value.
In reality, the RMSE comes from two sources: the errors

of (1) themeasured temperatures and (2) the calculatedTsim
in the forwardmodelling, both with respect to the true bore-
hole temperatures. The reason for choosing the RMSE as a
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criterion is that, due to its arithmetic similarity, the RMSE
can be considered analogous to the standard deviation of the
measureddata (assuming that thedata arenot biased)(Meyer
2012). Meanwhile, it is the most commonly used metric for
measuring model prediction quality, which makes it also
suitable for presenting the second type of error source. In all
case studies of this work, only one error source is included
in the RMSE at a time in order to investigate its influence
on the interpretation of the temperature log separately. We
will first focus on the measurement errors and later include
aspects of forwardmodelling by considering incorrectmodel
assumptions. Given that temperature logging instruments
typically have an accuracy of ± 1◦C (Förster 2001) and the
errors of the measurements can still rise at higher temper-
atures (Sharma et al. 2021), we explicitly select different
RMSEthres values between 0.5◦C and 2.0◦C as possibly ac-
ceptable fitting qualities between the model predictions and
themeasurements, and allow either data to have some errors.

In the context of this study, the employed inversion
scheme is intended to find the boundary (LS) that delin-
eates the model space–SFT (one-dimensional) or SFT and
the flow loss (two-dimensional), depending on whether the
RMSE values of the model predictions are larger or smaller
than the RMSEthres. In summary, the generalised workflow
used for this work consists of the following steps:

1. Initial sampling points in the model space are gener-
ated using the Monte Carlo forward sampling scheme
for the model parameters, namely the SFT and flow
rate.

2. Borehole temperatures at those measured depths are
computed using the borehole simulator for each sam-
pling point.

3. The decision function, equation (7), is evaluated using
the results from step 2.

4. The data pairs {model parameters, decision function
value} are used to train the ROM using the KNN clas-
sification model.

5. The ROM is used to predict the values of the deci-
sion function for all the discretisation nodes of the
model space and then the LS is determined based on
the change of the values of the decision function (i.e.,
the transition from−1 to 1).

6. Each point on the LS is assigned a score based on its
distance from the sampling points already taken (the
greater the distance, the higher the score) and the per-
sistence of its predicted decision function value (the
larger the number of times the prediction for that point
has changed, the higher the score). The point with the
highest score is added to the training samples.

7. The procedure is repeated from step 2 until conver-
gence is achieved: (a) when the LS does not change
after a certain number of consecutive iterations (here-

after called persistence step) and (b) when the “vol-
ume” fraction of each cell in the entire discretised
model space reaches a user-defined tolerance (referred
to as convergence confidence).

It is worth mentioning the former criterion is necessary
to prevent the search algorithm from focusing too much on
a certain region of the LS while placing too few points in
other zones and thus completely hidingundiscovered regions
of the LS. In addition, the latter convergence criterion deter-
mines the accuracy of the predicted LS, i.e., the smaller the
tolerance value, the finer the discretisation grid on themodel
domain, the more accurate the computed LS.

3. Synthetic case studies

3.1. Uniform geothermal gradient

This section examines the factors that influence the accuracy
of the SFT estimates, namely borehole operation parameters
such as injection flow rate and injection duration, the qual-
ity of temperature measurements and the presence of a flow
loss zone. For simplicity, the formation is assumed to have a
constant geothermal gradient.

3.1.1. Estimation of the SFT alone. Herein, a 2-D domain
that consists of a borehole with a radius of 0.11 m and a non-
permeable formation with a vertical extension of 4500 m
and a lateral extension of 50 m is simulated. The rock forma-
tion is assumed to have constant thermal properties (𝜌s =
2700 kgm−3; cp, s = 800 J kg−1 K−1; 𝜆s = 2.5 Wm−1 K−1).
Figure 1a shows the initial and boundary conditions of the
model. The SFT is assumed to increase linearly from 10◦C
at the surface to 500◦C at 4500 m, and no flow loss occurs
along the borehole. Water is injected from the wellhead
into the borehole at a constant temperature (10◦C) and a
constant flow rate. Borehole temperatures are then simu-
lated assuming constant water properties (𝜌f = 998 kgm−3;
cp, f = 4182 J kg−1 K−1; 𝜆f = 0.6 Wm−1 K−1) using the
forward-modelling approach that is previously described.
Figure 1b shows synthetic temperature logs for different in-
jection durations (3–12 hours) at a flow rate of 50 L s−1, and
figure 1c for six hours after injection at different flow rates
(25–100 L s−1).

The analysis of the sensitivity of the SFT estimates to
the dynamic injection conditions (injection time and flow
rate) and the chosen RMSEthres value is performed using
the aforementioned adaptive sampling approach. Note that
the RMSEthres in this case only takes the measurement error
into account. Since the SFT is a linear function of depth,
only the SFT at the bottom-hole needs to be solved. The
number of realisations required for adaptive sampling to
converge usually depends on the complexity of the inverse
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Figure 1. (a) Schematic of the simulation set-upwith the boundary and initial conditions: injection temperature at well-head 10◦C, SFT linear function
of vertical depth. (b) Synthetic temperature logs after different injection durations (3, 6, 9 and 12 hours) at a rate of 50 L s−1. (b) Synthetic temperature
logs obtained under different flow rates (25, 50, 75, and 100 L s−1) after 6 hours of injection.

problem (e.g., the number of predicted variables) and the
prior uncertainty (e.g., the RMSEthres value and the model
space of the variables). For all inversion scenarios presented
in this section, the input bottom-hole SFT value is assumed
to have a uniform distribution in the interval 450–550◦C,
and the ROMs are trained with KNN using five nearest
neighbors (see also table 1 for a summary of the relevant

parameter values in this study). The total number of forward
simulations evaluated for eachmodel to reach convergence is
about 100–200.

Four temperature logs obtained after different injec-
tion durations (3, 6, 9 and 12 hours) at 50 L s−1 are in-
verted to estimate the SFT value at the bottom-hole sepa-
rately. According to figure 2a, the estimation errors of the
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Table 1. Parameters for the modelling space, the KNNmodel and convergence criteria used for the inversion models in this study.

Uniform geothermal gradient Two-layer geothermal gradient

Parameter type Parameter name SFT alone SFT and flow rate F1A1 F2A2

Prior model SFT at 4500 m U[450,550]◦C U[400,600]◦C U[298,748]◦C U[250,850]◦C
parameters Flow rate below 3500 m – U[0,50] L s−1 U[0,50] L s−1 U[0,50] L s−1

Parameters for K-number of KNN 5 5 5 5
the ROM and LS Persistence step 30 100 100 100
search Convergence confidence 1e-3 1e-5 5e-6 5e-6

Figure 2. Comparisons of the maximum andminimum values of the SFT at the bottom-hole (4500m depth) considering: (a) different injection dura-
tions (3, 6, 9 and 12 hours), flow rate of 50 L s−1 andRSMEthres = 1.0◦C; (b) different flow rates (25, 50, 75 and 100 L s−1), injection duration of 6 hours
and RSMEthres = 1.0◦C; (c) different RSMEthres values (0.5, 1.0, 1.5, and 2.0◦C), injection duration of 6 hours and flow rate of 50 L s−1.

SFT are ± 11.5◦C (± 2.3%), ± 14.4◦C (± 2.9%), ± 16.2◦C
(± 3.2%) and ± 17.5◦C (± 3.5%), respectively. Figure 2b
shows the inversion results using temperatures measured at
different injection rates (25, 50, 75 and 100 L s−1) after the
same injection duration of 6 hours. The estimation error is
lowest (± 7.2◦C/± 1.4%) when the flow rate is 25 L s−1 and
highest (± 28.9◦C/± 5.8%) when the flow rate is 100 L s−1.
These results are obtained for an RMSEthres value of 1.0◦C.
Figure 2c displays the results for the formation temperature
at the bottom-hole by inverting the temperature log obtained
after 6 hours of injection at 50 L s−1, considering RMSEthres
values between 0.5◦C and 2◦C (with a step of 0.5◦C). As
expected, the error of the estimate would increase (from

± 7.2◦C to± 28.9◦C) as the RMSEthres value increases from
0.5◦C to 2.0◦C.

3.1.2. Estimation of the SFT and the flow loss. The loss of
circulation fluid is commonly encountered in drilled bore-
holes due to the existence of faulted or fractured formations
(Allahvirdizadeh 2020). To account for such a case, a loss
zone at 3500 m is added to the same model explained in fig-
ure 1a. It is assumed the injection flow rate becomes 25 L s−1
below 3500 m due to the loss. As can be seen in figure 3, a
significant increase in the temperature gradient after the loss
zone is observed for each temperature profile measured at a
different time.
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Figure 3. Synthetic temperature logs of the borehole fluid after different
injection durations (3, 6 and 12 hours) considering a flow rate of 50 L s−1

above 3500 m and 25 L s−1 below 3500 m due to the loss.

In the following, the bottom-hole SFT and the remaining
flow below the loss zone are jointly estimated using the tem-
perature log obtained six hours after injection. The depen-
dency of the results on the accuracy of the temperature mea-
surement is analysed again by taking four differentRMSEthres
values in the inversion procedure. The prior distributions of
the bottom-hole SFT and the remaining flow rate are 400–
600◦C and 0–50 L s−1, respectively. The numbers of steps
for the four models to converge is around 1000–1500. As
can be seen from figure 4, the errors of both the SFT and
flow rate estimates increase as the RMSEthres value becomes
larger. For instance, if the RMSEthres is 0.5◦C, the maximum
estimation error is ∼10◦C (2%) for the bottom-hole SFT
and ∼1.5 L s−1 (3%) for the flow rate below 3500 m. How-
ever, when the RMSEthres rises up to 2.0◦C, the maximum
estimation error becomes ∼ 48◦C (9.6%) for the SFT and
∼6.5 L s−1 (26%) for the flow rate. Also, the elliptical shape
of the contour lines indicates a positive correlation between
the bottom-hole SFT value and the remaining flow. Further-
more, it is found that the uncertainty of the SFT estimate in-
creases when a flow loss zone is present. For example, com-
pared to the inversion results for the case in Section 3.1.1
where no loss occurs, the maximum error of the SFT esti-
mate increases by 2.8◦C for RMSEthres = 0.5◦C and 19.1◦C
for RMSEthres =2.0◦C.

Figure 4. Contour plot of the RMSE as a function of the two estimated
variables: SFT at bottom-hole depth (horizontal axis) and the flow rates
below 3500 m (vertical axis). The black star marks the true values for
bottom-hole SFT and flow rate below 3500 m (which corresponds to an
RMSE value of 0.0◦C).

3.2. Two-layer model with non-uniform geothermal
gradient

Herein, we extend the complexity of the above study by con-
sidering a formation (hereafter referred to as formation F1)
consisting of two layers with different geothermal gradients.
The purpose of the new study is to investigate the influence
of different prior assumptions about the geothermal gradient
(i.e., the second type of error source contributing to the
RMSE, as discussed in Section 2.2) on the prediction of
the SFT and the flow rate. We would like to mention that
this study is inspired by the deep well RN-15/IDDP-2 in
Reykjanes, Iceland. The well was drilled by deepening an
existing well (RN-15) of 2500 m depth to 4500 m deep.
During the drilling, a major flow loss was found at around
3500m. The high-temperature environment around the well
was confirmed by measured temperatures of up to 426◦C
(Friðleifsson et al. 2020). The SFTprofile from the surface to
a depth of 2500m has been directly calculated using thermal
recovery temperature data of the well. However, the determi-
nationof theSFTbelow2500mhasbeen an issueofmuch in-
terest. As cold fluid was continuously injected during drilling
to cool down the casing and the formation (Peter-Borie et al.
2018), only temperature measurements from injection con-
ditions are available to assess the formation temperature. For
F1, the true formation temperature is assumed to increase
from the surface with a constant gradient of 0.096◦Cm−1

to 298◦C at 3000 m and then continue to increase with a
gradient of 0.135◦Cm−1 until it reaches 500◦C at 4500 m
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Figure 5. Predefined SFT profile of formation F1 (black line), bore-
hole temperature profile (blue line) calculated after 6 hours’ injection at
50 L s−1 and the derivative of temperature with respect to depth (red
dashed line).

(figure 5, SFT_F1). Figure 5 (blue line) also shows the tem-
perature profile after 6 hours of injection at a rate of 50 L s−1.
It is noticeable that the local flow loss of 25 L s−1 at 3500 m
leads to a dramatic increase in the borehole temperature
gradient (figure 5, red dashed line), whereas the increase of
the SFT gradient after 3000 m has no obvious effect on the
change in the local fluid temperature gradient.

In the following investigated scenarios, it is assumed
that the SFT in the upper 2500 m is already known. For
the geothermal gradient below 2500 m, however, different
assumptions are made. One model (F1A1) hypothesizes
a constant thermal gradient from the surface to 3000 m
(which is consistent with the truth) and another possibly
different gradient below 3000 m. Therefore, the SFT can be
linearly extrapolated from 2500 m until 3000 m but remains
unknown for the second layer. In another model (F1A2), a
linear-shaped SFT is assumed for the entire depth interval
between 2500 m and 4500 m. By comparing F1A2 with
F1A1, a question being addressed is: Without knowing how
the geothermal gradient varies within the intended depth
interval, what impact would the assumption of a uniform
geothermal gradient–a commonly adopted simplification in

Figure 6. Contour plot of the RMSEthres = 1.0◦C in the exploration space
of SFT value at the bottom hole and the flow rate below 3500m for model
F1A1 and F1A2. The blue star marks the true values for the SFT and the
flow rate (500◦C, 25 L s−1).

geothermal studies (Gholamrezaie et al. 2018; Al Saedi et al.
2019)– have on the determination of the SFT?

For both models, the flow rate below 3500 m is a predic-
tion variable. An additional inversion parameter for F1A1 is
the SFT in the depth interval 3000–4500 m, and for F1A2
the SFT in the depth interval 2500–4500 m. Again, assum-
ing a constant geothermal gradientwithin each layer, only the
SFT value at the bottom depth (4500 m) needs to be solved
in both cases. The thermal gradient is considered to vary
possibly between 0 and 0.3◦Cm−1 (Bahlburg & Breitkreuz
2018). Accordingly, the explored SFT values at 4500 m for
F1A1 and F1A2 are 298–748◦C and 250–850◦C, respec-
tively.Theflow rate below3500m is assumed tobeuniformly
distributed over the interval [0,50] L s−1. The total number
of forward simulations performed is∼ 3800 for model F1A1
and∼ 2700 for model F1A2.

Figure 6 shows the contour plots ofRMSEthres= 1.0◦C for
model F1A1 and F1A2 in the explored space of the bottom-
hole SFT value and the flow rate. For model F1A1, both
the SFT and the flow rate are poorly estimated: the accept-
able SFT at 4500 m covers the entire domain allowed, 298–
748◦C, and the flow rate can vary between 16 L s−1 and
38 L s−1. Nonetheless, there is still a strong correlation be-
tween the flow rate value and the associated SFT value. On
the other hand, both variables seem to be better constrained
in F1A2 than in F1A1, although the variability of the inverted
values is still quite high.

4. Discussion

4.1. Impact of the injection and logging conditions

As can be seen from figure 2, the accuracy of the SFT esti-
mate when interpreting dynamic temperature logs is highly
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Figure 7. Maximum (circles) and minimum (squares) values of the esti-
mated SFT at the bottom-hole using temperature logs obtained under in-
jection rate 25 L s−1 (blue line) and 50 L s−1 (red line) after different injec-
tion durations (1, 2, 3, 4, 6, 9 and 12 hours) consideringRMSEthres = 1.0◦C
(for the model described in Section 3.1.1).

dependent onboth theflow rate and thedurationof the injec-
tionbefore the temperature recording. For the same injection
duration before logging, the errors of the estimates would in-
crease with the injection rate. Similarly, longer injection du-
rations at the same injection rate lead to decreasing accuracy
of the estimates. Therefore, the determination of SFT using
dynamic temperature logs requires careful selection of these
logs.As such, the inversion schemecan alsobe applied topro-
pose appropriate temperature logs to be used. For example,
for the investigated case in Section 3.1.1, the time at which
the log is acquired needs to be restricted according to the in-
jection rate and the desired accuracy of the SFT estimates.
To achieve an accuracy of ± 10◦C, temperatures measured
within 12 hours of injection can be accepted for an injection
rate of 25 L s−1, whereas for an injection rate of 50 L s−1, only
logs recorded within the first 2 hours after the start of injec-
tion can be used (figure 7). However, it should be noted that
our discussion is based only on stable injection conditions
(i.e., constant injection rates). In practice, if several temper-
ature profiles are measured, the injection rates and the re-
spective duration of injection before these logs are obtained
may be very different. Since both flow rate and injection du-
ration affect the quality of data interpretation, it may be nec-
essary in such situations to use several temperature logs to
perform independent inversionprocedures andmake a cross-
comparison of the results.

Herein, the inversion study was only performed on in-
stantaneous depth-temperature profiles. In other words, we

assumed that temperatures were recorded simultaneously at
all sampling depths. As mentioned in the Introduction, the
acquisition of this type of temperature log can be achieved
withDTS. In contrast, conventional loggingmethods such as
wireline logging often involve running a temperature sensor
in and out along the borehole and recording the temperature
at each specific depth. Since the temperature sensor requires
some time to reach thermal equilibrium with the measured
fluid, the logging speed needs to be limited to attain high
accuracy of the temperature data (Sharma et al. 2021). At a
typical logging speed of 10–15mmin−1 (Prensky 1992), the
logging time for a borehole with a depth of 4500 m would
be 5–7.5 hours. Our study suggests that such a time span
would cause varying errors in the SFT estimates for different
locations as they have inconsistent exposure time to the
thermal perturbations at the time of temperature recording.
Namely, the later the temperature is measured at a given
depth, the higher the uncertainty in the SFT estimate at that
depth (assuming a constant injection rate).

4.2. Impact of a flow loss zone

In the presence of flow losses along the borehole, the results
of the joint estimation of the SFT and the flow rate below the
loss zone show a clear increase in the uncertainty of the SFT
prediction as indicated both in figures 4 and 6. The reason
for this behavior can be explained by the coupled effects of
formation temperature and flow rate on the borehole tem-
perature. Namely, an elevated borehole temperature due to
a reduced flow rate (i.e., more sufficient time for the heat ex-
change with the surrounding formation) could be compen-
sated by a cooler formation temperature.Conversely, a cooler
borehole temperature caused by a higher injection rate can
be compensated by a hotter formation temperature. As a re-
sult, borehole temperature logs simulatedwithdifferent com-
binations of a wide range of values for the SFT and flow rate
may give similarly good fits to the temperature–depth data.
For instance, figure 8 shows two temperature logs, referred to
as L1 and L2, with the same RMSE value of 1.0◦C in model
F1A1 (Section 3.2). Each log corresponds to an acceptable
but extreme solution of this synthetic case (see figure 6).
Compared with the real solutions for the SFT value at the
bottom-hole (500◦C) and the flow rate (25 L s−1) after the
loss zone at 3500 m, the applied values for the bottom-hole
SFT (737.4◦C) and the flow rate (34.5 L s−1) to simulate L1
are much higher. On the contrary, the other valid log L2 is
simulated with a significantly lower bottom-hole SFT value
(289◦C) and a smaller remaining flow rate (16.9 L s−1). In
fact, the issue with the aforementioned thermal compensa-
tion effect of formation temperature and injection rate on
borehole temperature can always hinder the quality of the es-
timates as long as only temperature data is used for the simul-
taneous prediction of the flow rate and the SFT.
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Figure 8. Left: borehole temperature logs (L1, L2) that both satisfy
RMSE equals 1.0◦C in model F1A1, but are simulated with different val-
ues of SFT at the bottom-hole and flow rate below 3500 m. L1 (filled cir-
les) is simulated with a bottom-hole SFT value of 298◦C and a flow rate of
16.9 L s−1 below 3500m, and L2 (filled triangles) with a bottom-hole SFT
value of 737.4◦C and a flow rate of 34.5 L s−1 below 3500 m. Right: tem-
perature differences of L1 (hollow circles) and L2 (hollow triangles) with
respect to the synthetic temperature log.

4.3. Impact of inversion constraints

4.3.1. The misfit function. So far, the decision function
(equation 7) has been defined based on the RMSE to ac-
count for the measurement error. However, as can be ob-
served in figure 8, the acceptable temperature logs when si-
multaneously estimating the SFT and the flow loss (model
F1A1) can locally diverge from the true temperature log by
up to 3◦C (especially near the loss zone and at the bottom
depth), despite that RMSEthres is equal to 1◦C. Such an ob-
servation may not appear satisfactory but is inherent in the
initially selectedmisfit functionbasedon theL2-normmetric
(hereafter referred to as M1). Given this, a different evalua-
tionmetric (M2), which is themaximum absolute difference
between the simulated and the true borehole temperature
[max(|Tsim − Tmeasure|1, 2,…, n), where n is the total num-
ber of the sampled logging data], can be adopted in the
decision function. This new decision function is tested
on model F1A1 to investigate its impact on the solu-
tions for the SFT and the flow rate below 3500 m. The
contour lines depicting the RMSE (F1A1-M1) and the
max(|Tsim − Tmeasure|1, 2,…, n) (F1A1-M2) both being equal
to 1.0◦Care plotted in themodel space in figure 9. It is shown
that the solution space for themax(|Tsim − Tmeasure|1, 2,…, n)
being less than 1.0◦C is indeed more confined compared
to that for the RMSE being less than 1.0◦C. Furthermore,

Figure9. Contour lines in the parameter space (bottom-hole SFTand the
flow rate below 3500 m) where the following criteria for model F1A1 are
satisfied: (1)RMSEthres= 1.0◦C(F1A1-M1, black line); (2) themaximum
absolute difference between the simulated and the logged temperature for
each measurement is 1.0◦C (F1A1-M2, red line). The blue star marks the
true values for the SFT (500◦C) and the flow rate (25 L s−1).

the two extreme solutions of model F1A1 when M1 is ap-
plied (see figure 8) are removed from the solution space af-
ter M2 is applied. It should be stressed, however, that the
application of such a measurement-wise criterion would re-
quire a careful assessment of the data quality for each mea-
surement. For example, if the error of a single measure-
ment is higher than ± 1◦C, imposing the same type of cri-
terion like M2 in the misfit function can lead to biased
estimates.

4.3.2. Prior information for the model space. Prior informa-
tion is another key factor that can contribute to the un-
certainty of the inversion results, as it determines how well
the presumed inversion model represents the unknown true
model. In our context, knowledge about the variation of the
geothermal gradient along the depth needs to be provided
for a meaningful interpretation of the temperature logs. In
the present study, it is assumed that the possible change
in the geothermal gradient is directly related to the layout
of the geological layers. Therefore, the layer thickness as
well as the location of the layer boundaries serve as con-
straints in the estimation of the geothermal gradient (i.e.,
SFT). The results of model F1A2 suggest that an incorrect
assumption regarding the thickness of the geological layers
introduces a bias that leads to the shifting of the accept-
able parameter region away from the true region. This is
evidenced by comparing the locations of the black and red
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Figure 10. The true SFT profiles of formation F1 (black) and F2 (red).

contours in figure 6 with regards to the position of the blue
star. We additionally examined a different layer configura-
tion F2, where the first layer extends to 4000 m (figure 10).
Again, the inversion modelling is performed assuming a sin-
gle geothermal gradient below 2500 m. The solutions, as
shown in figure 11, move even further away from the true
values of the SFT and the flow rate. It is also worth mention-
ing that, in a hydrothermal system, fluid advection or convec-
tion, or both, can cause variations in the geothermal gradient
that cannot be predicted by the conductive model (Schilling
et al. 2013). It is therefore recommended to investigate a
comprehensive coupled thermal-hydraulic forward model
to predict the temperature distribution in the target area,
constrained by temperature measurements from boreholes
(Athens & Caers 2019).

Finally, including different types of prior information
into the inverse modelling might also be necessary to limit
the boundaries of the model space, especially when deal-
ing with large uncertainties in the joint estimation of the
flow rate and the SFT. In practice, this can be done by com-
bining the borehole temperature profiles with other types
of measurement data such as flowmeter logs (Molz et al.
1994) that provide information on the rate of flow along
the depth, or geophysical surveys such as magnetotelluric,
gravity, resistivity logs (Hokstad & Tanavasuu-Milkeviciene
2017) and geothermometry data (Ystroem et al.2020)which
can add additional constraints on the in-situ formation
temperatures.

Figure 11. Contour lines for RMSE equals 1.0◦C for model F1 (black)
and F2 (red) in the model space of SFT at the bottom-hole and the flow
rate below 3500 m, when both assuming a constant geothermal gradient
for the investigated depth interval between 2500 and4500m.Theblue star
marks the true values for the SFT (500◦C) and the flow rate (25 L s−1).

5. Conclusion

In this paper, a data-driven inversion method is performed
to analyse the uncertainty in deriving static formation tem-
peratures (SFT) from borehole temperature logs measured
under injectionconditions. Specifically, the inversion scheme
groups the simulated temperature logs from the forward-
modelling step into two categories, ‘passing’ and ‘failing’,
based on a user-defined misfit tolerance (e.g., root mean
squared error) between the predicted and true temperature
values. A k nearest neighbor machine-learning model is then
trained as a ‘classifier’ that proposes themost promising sam-
pling points in themodel space for each iteration until the op-
timal prediction of the boundary between the two categories
is achieved. Compared with deterministic optimisation
methods that are used to find an optimal set of parameters,
the applied method allows for the simultaneous inversion
of all relevant model parameters, leading to predictions that
equally match the predefined quality of the data fitting.

Our study showcases the application of the method in
evaluating multiple factors that affect the accuracy of the so-
lutions for the SFT. For example, the inversion result for the
bottom-hole SFT deviates by ± 2.9%, i.e., ± 14.4◦C, from
the true value when the interpreted temperature log is mea-
sured after 6 hours of injection at 50 L s−1 with a standard
error of 1.0◦C. More generally, it is found that the use of
temperature data acquired at relatively lower injection rates
or after shorter injection durations and undoubtedly with
higher accuracy would improve the quality of the prediction.
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Additional case studies indicate that the occurrence of flow
losses along theborehole can lead to large uncertainties in the
determination of the SFT due to the thermal compensation
effect between the formation temperature and the flow rate.
Hence, the integration of prior information, e.g., from other
types of measurements such as flowmeter logs or geother-
mometers, into the inversionmodellingwould help to reduce
such uncertainties. Another option is to apply tighter con-
straints on themisfitbetweenpredictions andmeasurements.
However, as with anymisfit criterion, the choice of this crite-
rion should be justified, e.g., with regard to the quality of the
data acquired.

The present study is based on the assumption that the
SFT profile has a piecewise linear shape corresponding to
the structure of geological layers, which is most suitable for
conductive geothermal systems. Under these conditions, our
study shows that prior information on the thickness and lo-
cation depth of the geological layers is necessary to estimate
the SFT. If oversimplified assumptions aremade due to a lack
of such information, the search for solutions in the model
space may be strongly biased towards a wrong direction. On
the other hand, for a hydrothermal convection systemwhere
conductive heat flow can be disturbed due to the movement
of fluids in the formation, a piecewise linear-shape SFT may
not be applicable. Nevertheless, a coupled forward thermal-
hydraulic model can still be adapted to the current inversion
scheme.

With this work, we demonstrate the promise of applying
machine-learning techniques for efficient inversion of bore-
hole data, including uncertainty quantification. Besides the
numerical setting of the problem, the performance of any in-
version method also depends on the availability and quality
of the input data. Hereby, the use of more sophisticated log-
ging tools such as distributed temperature sensing to obtain
spatially and temporally densemeasurements is therefore en-
couraging. Future work may involve the integration of other
types of data into the inversion process to reduce the uncer-
tainty of the estimated parameters or to investigate different
parameters in the context of other geophysical applications.
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