

Transferability of the nuclear fission regulation to potential fusion power plants*

J. Herb¹, X. Z. Jin², B. Gionfiotti³, EUROfusion presented by R. Stieglitz²

¹ Gesellschaft für Reaktorsicherheit (GRS), ² Karlsruher Institut für Technologie (KIT), ³ ENEA

INSTITUTE for NEUTRONPHYSICS and REACTOR TECHNOLOGY (INR)

- General Aspects of Nuclear Regulation Approaches (prescriptive vs. goal oriented)
- General Safety Requirements for Nuclear Installations
- Challenges to be mastered by adaption of fission regulations to fusion
- Regulatory differences between fission and fusion reactors
- Potentially applicable IAEA or European Council directives
- Recommendations for Implementation of Legal and Regulatory Framework for Fusion
 - Structure of legal boundaries
 - Regulatory framework (Safety requirements, Safety Concepts, Fusion specific Aspects)
 - Codes & Standards
 - Interfacing Safety, Security, Safeguards

*Most being part of contractual work for EU-<u>Directorate-General for Energy</u> (European Commission) accessible at https://op.europa.eu/en/publication-detail/-/publication/e1579af9-8d44-11ec-8c40-01aa75ed71a1/language-en

General Aspects of Nuclear Regulation Approaches

Worldwide two classes of nuclear regulation approaches adopted

Prescriptive approach

(e.g. GER, KOR, China, PR, USA)

- Regulation contains explicit requirements the Definition of major safety objectives to be licensee needs to fulfil
- Requirements contain technology used in installation
- Facility-specific safety systems to be installed are functionally regulated down to the detail level

Ads. and disads.

- Simple execution by licensee & authorities
- Traceability & transparency by all actors
- Deficits for New Technologies
 - Regulations need to be set in advance of the facility design
 - development of regulations over time
 - detailed evolutionary knowledge development by licensee and authority mandatory

Goal-oriented approach

(e.g. FRA, UK,... as for JET and ITER)

- met by installation
- Responsibility of the licensee to demonstrate that design & technology matches objectives at all operational stages (construction, operation, decomissioning)

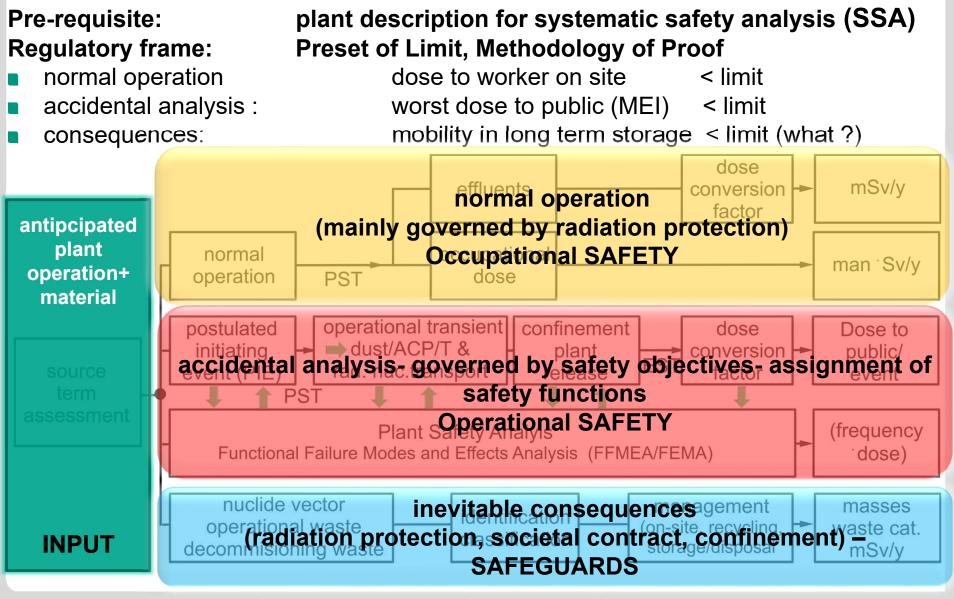
Ads. and disads.

- Technology neutral
- Risk of licensee receiving no acceptance by authority (evidence of meeting safety objectives not considered adequate)
- Evolutionary development of regulation with pre-scriptive elements (occupational & operational doses, radiological consequences) and demonstration proof of procedures -HYBRID

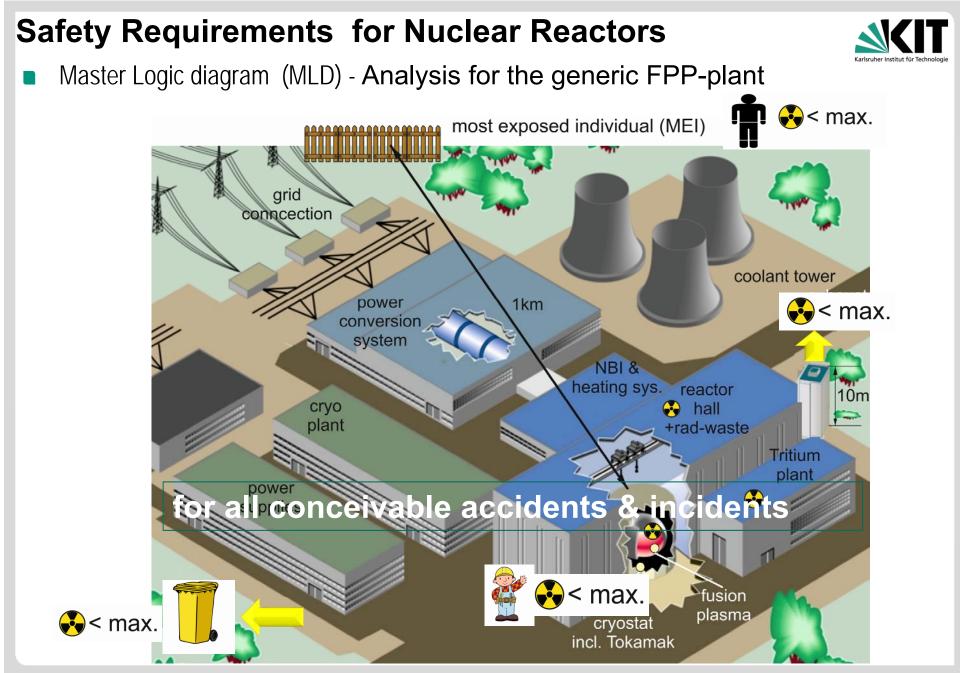
likely only an adapted goal-oriented may meet current fusion reactor maturity

Transferability of the nuclear fission regulation to potential fusion power plants | GRS- KIT| Stieglitz 2

General Safety Requirements for Nuclear Installations*1,2


- Fundamental Safety Principles (according to GSR, SSR)
 - **Protection** of public and environment **against radiological hazards**
 - Elimination of need for public evacuation in any accident
 - Protection of site workers against radiation exposure according to ALARA-principle (<u>As Low As Reasonably Achievable</u>)
 - Employment of measures to prevent accidents and mitigate their consequences
 - Minimization of activated waste and safe confinement of rad.-waste
- Safety objectives to be met for fusion the same fission reactor are the same
- requires depiction in a regulatory fusion framework
- Approach to demonstrate fulfillment of Safety Principles
 - Realization of defence-in-depth (DiD) concept to meet safety functions, preservation of barriers & retention functions in any operational condition (internal & external hazards)
 - Application of safety demonstration methodology according to FAIR*³ principle
 - Adoption common nuclear approaches (e.g. "leak before break"*4;)
 - Encompassing character of safety demonstration to meet all primary requirements

Generally same methodological approach but different operationalization (due to different physical principles and components)


- ^{*1} IAEA safety standards series, ^{*2} Council Directives/Directives of Europ. Parliament
- *3FAIR = findable,accessible,interoperable, reproducible
- irectives/Directives of Europ. Parliament *4 techr
- *4 technology and experience dependent
- 3 Transferability of the nuclear fission regulation to potential fusion power plants | GRS- KIT| Stieglitz IAEA-Consultancy Meeting, 28th Feb -3rd March 2022, virtual

Safety Requirements for Nuclear Reactors

Transferability of the nuclear fission regulation to potential fusion power plants | GRS- KIT| Stieglitz PST=process source term
 IAEA-Consultancy Meeting , 28th Feb -3rd March 2022, virtual
 EST=environmental source term

Transferability of the nuclear fission regulation to potential fusion power plants | GRS- KIT| Stieglitz IAEA-Consultancy Meeting , 28th Feb -3rd March 2022, virtual

5

Karlsruher Institut für Technologie

Challenges to be mastered by adaption of fission regulations to fusion

Collection of fusion specific open aspects^{*1} to be mapped in regulatory frame on reactor scale. Treatment of:

- Radioactive releases to ambient
- Limitation of on-site tritium inventory
- Radiation exposure risks on-site (at operation & maintenance)
- Establishment of a safety concept identifying fundamental safety functions containing also supplementary supporting safety functions for fusion facilities.
- Accidents to be considered for safety analyses scoping internal & external hazards
 - Transients associated with radiological events
 - Non-radiological hazards potentially impacting barriers (confinement)
 - Consideration of the approach in case of Design Extension Conditions (DEC) according to IAEA Safety Standards (emergency manual, documentation of emergency exercises, guidelines for severe accident management *2)
- Treatment of decay heat removal at operation & during interim storage

Open aspects^{*1} for fusion specific development of licensing authority to regularly complement regulatory frame

- Applicability of Codes & Standards for fusion facilities
- Inclusion of internat. & national operational experience feedback of fusion facilities
- Enhancement of fusion specific readiness, capabilities of TSO and regulatory body

^{*1} see Perrault, 2016, EA safety standards series, Gandolin 2020, Elbez-Uzan, 2020

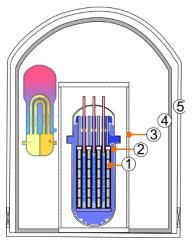
*² Amendment based on IAEA initiative of 2011, operationally implemented in Germany 2012

Primary safety functions

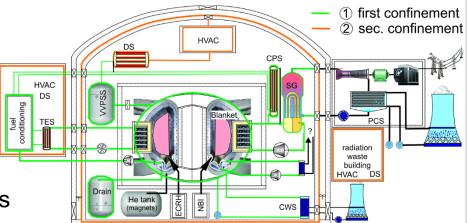
- Power control
- Radiological on-site inventory (confinement, limitation & control of releases)
- Radiologial consequences at DEC

Fundamentally different physics of Fusion vs. Fission

(fuel, power density & control, inventory, nuclide vector, decay heat,)


 different reactor architecture of fusion and fission plant to meet primary safety functions

Functional similarities are


- Static confinement barriers for releases
- Implementation of retention functions
- Shielding
- Provisions for decay heat removal
- But, fulfillment by entirley different systems, components, physical principles

ry safety functions

Fusion reactor

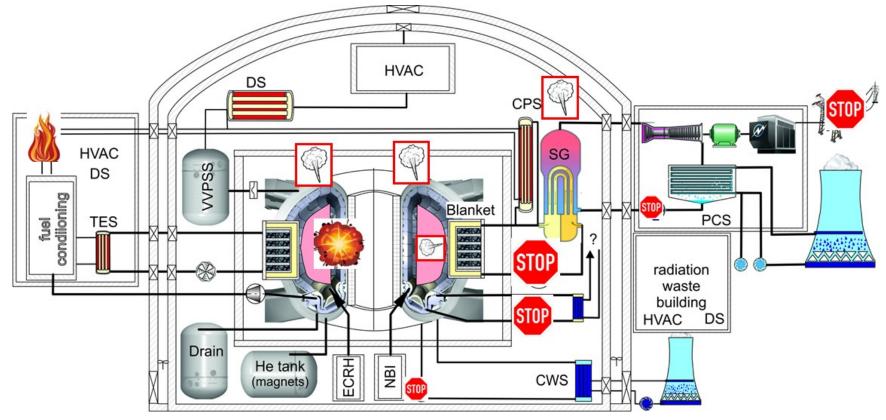
Regulatory aspects to be covered in operationalization of in any nuclear reactor safety concept

- Operational experience
- Leak-before-break concept
- Provision of measures, procedures, and installations to meet radiological criteria based on inherent physical principles and/or passive as well as active safety systems.
- Enveloping safety concept based on postulated single initiating, multiple failure events, severe plant states with assignment to different levels of defense

Continuous dynamic adaption (development) over time **for** Fusion Reactor **regulation** is required for several reasons:

- First of a kind (FOAK)
- Material licensing, data basis still limited ⇒ application of Leak-before-break ?
- Maturity of safety concept on different DiD not fully developed or proven
- Multitude of systems, structures and components (SSCs) in a fusion reactor is associated with safety on several DiD-levels
- assignment of SSC's in importance classes challenging (and design dependent)

⁸ Transferability of the nuclear fission regulation to potential fusion power plants | GRS- KIT| Stieglitz IAEA-Consultancy Meeting , 28th Feb -3rd March 2022, virtual


SSC's associated with safety and safety functions (PIE, safety function,)

- In-Vessel components (Blanket, Divertor, Limiter, thermal & radiation shields)
- Reactor core confinement (Vacuum vessel & boundaries)
- Primary Heat Transfer System (enthalpy, chemical source, ACP, CPS)
- Magnet systems (stored energy, cryo-system and infrastructure)
- Inner and Outer Fuel cycle (TES, DIR, Fuelling, Vacuum pumps, Tritium plant)
- Power control & diagnostics (HCD, FPSS, Sensors, reactor control system)
- Balance of Plant & Plant Electrical Supply (power management, emergency supply,)
- Remote Maintenance (in plant and AMF including rad.-waste)
- Buildings (Tokamak, Tritium plant, radiologic material hosting galleries =static barriers)

ACP =activated corrosion products CPS= Coolant purification system TES= tritium extraction system DIR=direct internal recycling HCD=Heating Current Drive FPSS=fusion power shut-down system AMF=Active waste Management Facility

Safety Analyses - Postulated Initiating Events (internal events)

- Events are similar as in nuclear power plants such as
 - Loss of flow accident (LOFA),
 Loss of offsite-power (SBO), Leaks (VV, Primary System, ...), Fire & explosion
- Functional systems coping with timely progression of event not comparable to fission reactors

Fully applicable are the following IAEA standards

- Standard Series No. SF-1 "Fundamental Safety Principles"
- GSR Part 2 "Leadership and Management for Safety"
- GSR Part 3 "Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards"
- GSR Part 4 "Safety Assessment for Facilities and Activities"
- GSR Part 6 "Decommissioning of Facilities"
- GSR Part 7 "Preparedness and Response for a Nuclear or Radiological Emergency"
- SSR-1 "Site Evaluation for Nuclear Installations"
- SSR-2/1 "Safety of Nuclear Power Plants: Design"
- SSR-2/2 "Safety of Nuclear Power Plants: Commissioning and Operation"
- SSR-3 "Safety of Research Reactors"

Modifications or adaptions refer to

- SSR-4 "Safety of Nuclear Fuel Cycle Facilities"
- Here, interface between safety, nuclear security and the state system of accounting for, and control of nuclear material needs to be considered (Tritium)
- Terminology of expression referring to nuclear fuel, nuclear fuel cycle, processing of spent fuel require fusion adaptation or amendment if applied to fusion
 ^{*1} or corresponding Europ. Council directives, for details see EC report

Specific Safety Guides (SSG) require adaptation to Fusion facilities

Site Evaluation*2

- SSG-9 Seismic Hazards in Site Evaluation for Nuclear Installations
- SSG-18 Meteorological and Hydrological Hazards in Site Evaluation for Nuclear Installation
- SSG-21, SSG-35, NS-G-3.1, NS-G-3.2, NS-G-3.6
- Design (although SSR-2/1, SSR-2/2 and SSR-3 are technology neutral they refer to specifc safety guides containing fission specifities which are not applicable or to be modified parts) *2
 Not applicable are
 - SSG-5, -6, -7, 42 and -43 referring to nuclear fuel
 - SSG-52 Reactor core design
 - SSG-63 Fuel handling and criticality in storage

modification (adaptions) refer to

- SSG-30 Safety classification of SSC
- SSG-34 Design of electrical power systems in NPP
- SSG-37 Instrumentation and Control Systems
- SSG-56 Design of Reactor coolant systems
- SSG-62 Design of Auxiliary Systems ,
- NS-G-1.13, NS-G-4.6 Radiation protection for design of NPP and waste management

^{*1} or corresponding Europ. Council directives, for details see EC report

*2 not complete

Specific Safety Guides (SSG) require adaptation to Fusion facilities

- Construction and commissioning *2
 - SSG-28 Commissioning of NPP
 - SSG-38 Construction of nuclear installations
 - NS-G-4.1 Commissioning and equipment qualification
- Operation *2

Not applicable are

- SSG-27 criticality safety
- NS-G-2.5, NS G4-3 core managment and fuel handling

Modification (adaptions) refer e.g. to

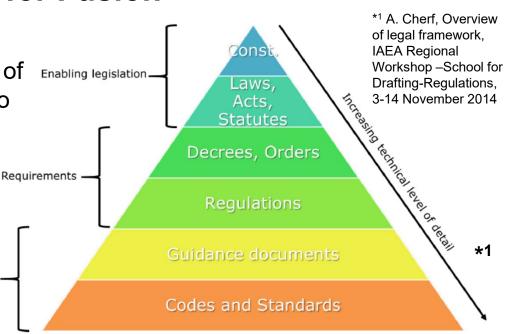
- SSG-10 ageing management
- SSG-13 chemistry for water cooled NPP
- SSG-50 operating experience feedback for nuclear installations
-
-
- NS-G-2.3 modifications to NPP
- NS-G-2.6 maintenance, surveillance and in-service inspection in NPP
- NS-G-2.14 conduct of operations at NPP
- ^{*1} or corresponding Europ. Council directives, for details see EC report
- *2 not complete
 - 13 Transferability of the nuclear fission regulation to potential fusion power plants | **GRS- KIT**| **Stieglitz** IAEA-Consultancy Meeting , 28th Feb -3rd March 2022, virtual

Specific Safety Guides (SSG) require adaptation to Fusion facilities

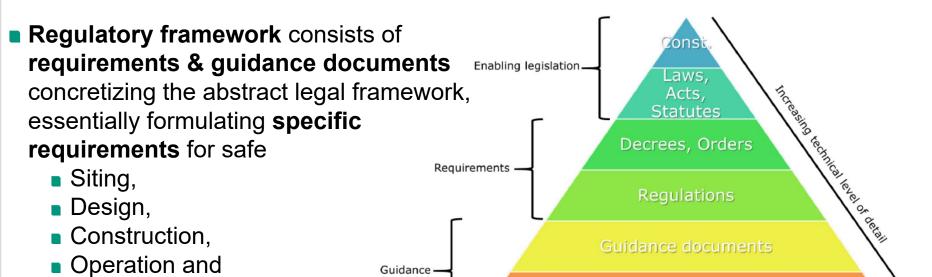
- Decommissioning and waste management
- Radiation protection
- Leadership and management
- Safety assessment
 relevant safety demonstration in principle applicable provided modifications are integrated
 - SSG-2 Deterministic safety analysis (e.g. "core melt down" cannot be expected in FPP)
 - SSG-3 PSA level 1 necessitates consideration of FPP design aspects
 - SSG-4 PSA level 2 requires integration of FPP design specifities
 - SSG-20 Safety Assessment and preparation of safety analysis report (misses fusion specific systems)
 - SSG-61 Content of Safety Analysis report demands structural changes for FPP (ordering, logical sequence)

full applicable are

- GSG-3 safety case & assessment of predisposal management of rad.-waste
- WS-G-5.2 safety assessment for decommissioning of facilities using radioactive material


^{*1} or corresponding Europ. Council directives, for details see EC report

Recommendations for Implementation of Legal and Regulatory Framework for Fusion


 Legal and regulatory framework for nuclear installations (first 3 levels) are of Enabling Legislation.
 general nature and thus applicable to fusion reactors as well. Applying

- IAEA-SF1 Fundamental safety principles and
- IAEA-GSR-1 Governmental, Legal and Regulatory framework for Safety scopes all elements of a legal and regulatory framework.
- Thus, implementation provides legal basis for Fusion power plant as well wrt.
 - Defining competent regulatory authority;
 - Establishing licensing procedure for fusion power plants;
 - Requiring initial assessment of safety & regular reassessment of safety;
 - System for operational experience feedback;
 - Assigning obligation and responsibilities to license holder;
 - Defining high-level safety objective & implementation as high level requirements in legal context;
 - Establishing adequate on-site emergency organization to cope with incidents & accidents.
 - 15 Transferability of the nuclear fission regulation to potential fusion power plants | **GRS- KIT**| **Stieglitz** IAEA-Consultancy Meeting , 28th Feb -3rd March 2022, virtual

Recommendations for Implementation of Legal and Regulatory Framework for Fusion

Codes and Standards

- Decommissioning
- These regulations contain more specific and technical detailed requirements (issued by government, regulatory bodies) and thus require wrt. to a fusion plant
- Adaptation of regulations taking into account fusion specific aspects
- Reserve options to a goal oriented achievement of safety objectives
- Allowing for a graded approach*1,2 considering the hazard potential of a specific fusion facility

*1 IAEA, Integrated Regulatory Review Service (IRRS) Report to the Unites States of America, IAEA-NS-IRRS-2010/02, 2011.

*² IAEA, "Governmental, Legal and Regulatory Framework for Safety", IAEA Safety Standard Series No. GSR Part 1 Rev.1, IAEA, Vienna, 2016

Recommendations for Implementation of Legal and Regulatory Framework for Fusion

Safety assessment (SA)

- fully applicable to a FPP in term of methodological approach are IAEA Safety Standards
 - SSG-2 deterministic SA
 - SSG-3 and SSG-4 probabilistic SA

in conjunction with a Defence in Depth (DiD) concept.

DiD level assignment according to occurrence frequency

Fusion power plant (FPP) specific DiD concept and PIE needs to be developed

- DiD requires fusion plant specific postulated initiating events (PIE) covering all DiD-Levels
- PIE need to be grouped and assigned to a DiD level targetting to
 - control the event
 - avoid escalation and aggravation
 - mitigate the consequences

Safety objectives applicable from any nuclear installation derived from IAEA standards

- Acceptance targets and acceptance criteria shall follow radiological criteria (dose limits)* (BUT: dose criteria are different in magnitude and quality even in EU-Member states) Approaches:
 - Quantitative and/or
 - Qualitative
- But, fundamental fusion specific safety functions must be derived based on a functional approach to meet the radiological and nuclear safety objective. (requires modification SSR-2/1)

*EU Directive 2013/59/EURATOM, IAEA Guidelines

Example of Plant state and dose limits EU DEMO reactor

Assumed of plant state levels for a FPP according to EU-DEMO *

Lev.	Operational state	Objective	Means	Consequences dose limit**
1	Normal operation	Prevention of abnormal operation and failures including controls	conservative design high quality in construction, operation	Off-site 0.1mSv/a early Off-site 1mSv/a chron. On-site 5 mSv/a
2	Anticipated operational occurrence <i>f</i> >10 ⁻² /a	Control of abnormal operation and detection of failures (e.g. Plasma instabilities)	control, limiting and protection systems and surveillance features	Off-site 0.1mSv/a early Off-site 1mSv/a chron. On-site 5 mSv/a (ALARA)
3	Design basis accident- infrequent fault (DBA) $10^{-2} > f > 10^{-4}/a$	Control of accidents within design basis (unlikely events) by safety systems	Engineered safety features and accident procedures, potential radiological release but no off-site countermeasures	Plant shall return to power after inspection, rectification& requalification On-site 20 mSv/a
3*	DBA -imiting faults 10 ⁻⁴ >ƒ>10 ⁻⁶ /a	Control of severe conditions (prevention progression,mitigation of consequences)	Complementary measures and accident management no off-site intervention	Plant restart not required Off-site 10mSv/event (early dose)
4	hypothetical events-DEC ƒ <10 ⁻⁶ /a	Mitigation of radiologi- cal consequences (release of radioactive materials)	Postulated multiple failure events; measures of emergency preparedness and response	Off-site 50mSv/event (early dose) , limited countermeasures

*Taylor, et. al., Safety and Environment studies for a European DEMO design concept, Fusion Engineering and Design, Volume 146, Part A, September 2019, Pages 111-114, https://doi.org/10.1016/j.fusengdes.2018.11.049.

** dose limits e.g. from Article 9 of Council Directive 2013/59/Euratom

Recommendations for Implementation of Legal and Regulatory Framework for Fusion

fundamental fusion specific safety functions could address

- Radiation sources and their associated transport (tritium, raddiation, ACP)
- Mechanisms affecting shielding and confinement function
- Decay heat removal from PFC (needs to be discussed)*

Concept of multi-level confinement of radioactive inventory

linked to DiD concept and separates

- Barrier function for
- Retention function

Both are fulfilling the confinement function.

Approach as in ITER:

Confinement concept has to provide at least two enveloping concentric barriers to ensure the safe confinement

- during operation (thermonuclear core, tritium containing pipes & plant)
- maintenance (blanket, divertor exchange requires vacuum vessel opening)

Does this require a depiction in specific SSG ?

PFC = Plasma facing components (depdending on position and lifetime, shut-down power can reach 1% of nom. power @ EOC, but could be reduced a safety function only)

ACP= Activation Corrosion Products

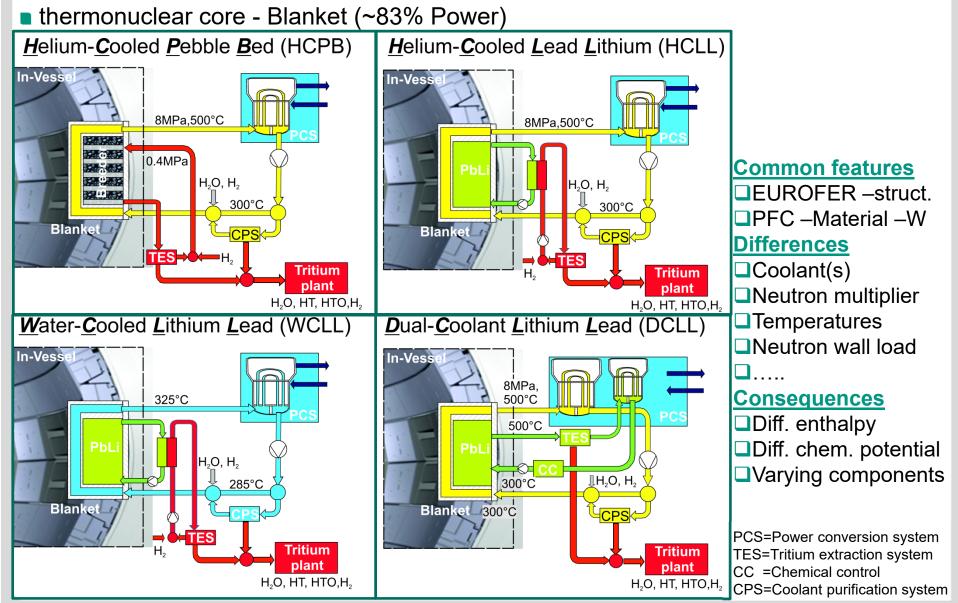
Recommendations for Implementation of Legal and Regulatory Framework for Fusion

Fusion specific safety aspects -various energy sources challenging safety of different SSC's, as

- Decay heat
- Plasma energy
- Magnetic energy
- Enthalpy of structure and coolants
- Chemical energy (arising von exothermal reactions in accidental case)
- Electromagnetic sources (ICRH, ECRH, NBI)
- (specific fusion systems e.g. using U-Zr as breeder may face criticality arguments)

According to the development level of fusion power plants

- Safety aspects for functional safety requirements of SSC's are formulated
- Safety functions and assignment of importance classes within the (individual) DiD safety concept are described


but

- Guidance documents on SSC design, as well as
- Codes & standards for safety demonstration

are in infancies

Importance of PFC components - Blanket

Action plan for the development of a targeted and proportionate regulatory framework^{*1} within EU

- 1. Establish a common legal framework to regulate fusion facilities either by
 - develop a Council Directive like the nuclear safety directive 2009/71/Euratom dedicated to safety of fusion facilities or
 - adapt nuclear safety directive 2009/71/Euratom to scope also fusion facilities
- 2. Discuss and agree on a defence in depth concept for fusion facilities
 - Applicable plant states
 - Technical acceptance targets
 - Radiological acceptance targets
- 3.Develop graded approach to be applied to fusion facilities to regulate such facilities commensurate with its radiological hazard potential
- 4.Develop "Safety requirements for magnetic confinement fusion facilities" with work performed at IAEA to formulate high level safety requirements addressing:
 - Leadership and management of safety
 - Siting
 - Design (general and specific design requirements)
 - Construction and commissioning
 - Operation/Decommissioning
 - Safety demonstration (initial and periodic safety assessments)
 - (emergency preparedness and response)

as derived from Study on the Applicability of the Regulatory Framework for Nuclear Facilities to Fusion Facilities- Towards a specific regulatory framework for fusion facilities . ENER-20-NUCL-SI2.834242 , 2021, Directorate-General for Energy