
This is the accepted version of 10.1109/SOCC52499.2021.9739212. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

FLECSim-SoC: A Flexible End-to-End Co-Design
Simulation Framework for System on Chips

Tim Hotfilter, Julian Hoefer, Fabian Kreß, Fabian Kempf, Juergen Becker
Karlsruhe Institute of Technology

Karlsruhe, Germany
{hotfilter, julian.hoefer, fabian.kress, fabian.kempf, becker}@kit.edu

Abstract—Hardware accelerators for deep neural networks
(DNNs) have established themselves over the past decade. Most
developments have worked towards higher efficiency with an
individual application in mind. This highlights the strong re-
lationship between co-designing the accelerator together with
the requirements of the application. Currently for a structured
design flow, however, it lacks a tool to evaluate a DNN accelerator
embedded in a System on Chip (SoC) platform.

To address this gap in the state of the art, we introduce
FLECSim, a tool framework that enables an end-to-end sim-
ulation of an SoC with dedicated accelerators, CPUs and mem-
ories. FLECSim offers flexible configuration of the system and
straightforward integration of new accelerator models in both
SystemC and RTL, which allows for early design verification.
During the simulation, FLECSim provides metrics of the SoC,
which can be used to explore the design space. Finally, we present
the capabilities of FLECSim, perform an exemplary evaluation
with a systolic array-based accelerator and explore the design
parameters in terms of accelerator size, power and performance.

Index Terms—neural network simulation, neural network ac-
celerator, simulation framework, SoC simulation

I. INTRODUCTION

In the past decade, development and research in the area
of deep neural networks (DNNs) gained pace by the order
of magnitude. This trend is notably highlighted by emerging
topics such as autonomous driving as well as by research in
robotics, medicine and science. For instance, DNNs already
surpass humans in filtering data much faster than traditional al-
gorithms in particle physics experiments [1]. However, DNNs,
in general, come with a very high computational complexity
and large memory requirements. As the algorithms gain in
complexity to enter more areas of application, these factors
scale even further. Hence, many current general-purpose com-
puter architectures like CPUs or GPUs cannot keep up with
the demand for computational power.

As a result, a trend towards hardware accelerators for DNNs
can be observed since the 2010s. This is further supported
by the advances in silicon manufacturing, which allow for
more integrated architectures. Recent accelerators employ op-
timization strategies of DNNs such as exploiting parallel data
flow [2], sparsity in the intermediate results [3] or reoccurring
data. Thereby, they can quickly achieve 100x in performance
increase or over 1000x better energy efficiency [4]. However,
the growing DNN size and additional constraints like real-

CPU
Firmware

Configuration
mem_size 10k

cpu_type riscv

.

Simulation Platform (FLECSim)

NN Results &
Accurarcy
Top-5 = 96%

Metrics
power 10W

area 10mm2

.

Fig. 1: Principle of FLECSim: Based on an architecture
configuration the simulation is performed. The tool eventually
reports metrics of the architecture and of the neural network.

time capabilities pose yet unanswered memory, bandwidth and
performance challenges on the architectures.

Since it is impossible to achieve a high throughput ac-
celerator with low power consumption and a small area
footprint, current approaches have to take the application
and the DNN topology into account from the beginning.
While an embedded IoT accelerator emphasizes a low power
consumption, a data-center accelerator rather focuses on high
throughput. Thus a well-fitting accelerator for a given DNN
can exploit optimizations to reduce power consumption or
achieve higher performance. All requirements can as well be
explored automatically through a proper framework.

In this paper, we present our design approach to bring
together the variety of requirements that current applications
pose on hardware accelerators for DNNs. Therefore, we in-
troduce FLECSim, a simulation platform that allows us to
evaluate an accelerator in a System on Chip (SoC) setup, with
additional modules like memories or CPUs. As depicted in
Figure 1 the SoC parameters can be configured in advance
and after simulation, the tool reports valuable design insights
of the overall architecture such as power consumption, chip
area or execution time of each individual components as well
as the results of the neural network itself.

In summary, our contributions are threefold:
• We present our simulation framework FLECSim and its

versatile applications due to the full SoC simulation with
interchangeable accelerator models. FLECSim allows for

an early design evaluation through the provided simula-
tion insights and metrics such as an estimation of chip
area, execution time or energy consumption.

• We show how FLECSim can guide the co-design process
between an accelerator and the according application.

• We finally evaluate our simulation framework by exem-
plary means of a systolic array-based accelerator.

II. MOTIVATION AND CHALLENGES

The development of an SoC requires the consideration of
various mutually exclusive design decisions, which results in
a crucial co-design of both hardware and software. In this
process, each functionality is evaluated and afterwards either
assigned to run in hardware or software. While pure soft-
ware solutions offer the most flexibility and straightforward
deployment, they lack energy efficiency and latency compared
to dedicated hardware accelerators. Nevertheless, they have
almost no flexibility and take more chip area than software
implementations. The advantages of hardware accelerators
come into play when parallelism and special operations might
be exploited. Only the well-balanced combination of software
and hardware solutions allows for an efficient SoC design.

AI-supported applications based on DNNs are becoming
more prevalent and are finding their way into embedded sys-
tems, which leads to dedicated SoCs with a DNN accelerator
to support the parallel data flow of the algorithms. Over the
recent decade, many DNN accelerators were presented from
a more general area of application such as the in-datacenter
tensor processing unit (TPU) [5] to highly specific ones like
Eyeriss [2], which focuses on an energy-aware inference of
convolutional DNNs by leveraging sparsity in the data.

The design of the DNN accelerator strongly depends on
the DNN topology to be executed. Larger or more complex
computation units require more energy and chip area but
promise either a faster execution or more precise results. To
achieve high utilization of a DNN accelerator, it is essential
to guarantee a steady supply of data from the memory. Since
the data movement represents a typical bottleneck, the orches-
tration of the data flow has to be meticulously considered [6].
Hence, the shorter the data path is the more performance can
be achieved. However, large chunks of local memory require
much chip area and energy as well, which becomes a limiting
factor in embedded solutions. As a consequence, the memory
hierarchy has to be taken into account while dimensioning
the accelerator. Moreover, the accelerator has to be configured
and controlled from an application software running on a
CPU. This metadata has a direct influence on the accelerator
performance. For an accurate estimate of the overall system
performance, the interactions between the DNN accelerator
and software have to be considered as well.

As a consequence, the main challenge and motivation while
designing an SoC for a given DNN application is to carefully
balance the trade-offs between energy consumption, chip area
and performance. To get credible metrics in these domains, it
is important to consider and align the complete setup from the
accelerator over the memory hierarchy to the CPU integration.

This requires a simulation framework that can simulate the
system for different configurations.

III. RELATED WORK

There have been numerous research efforts done on hard-
ware accelerators for DNNs [2]–[5], [7]. They explore differ-
ent data flow and reuse strategies as well as various memory
orchestrations based on a given application or network archi-
tecture. In the same period, many novel network architectures
were presented. While some focus on higher prediction ac-
curacy, there is a growing number of networks available that
put effort into reducing the number of network weights and
maintaining the accuracy. Systematic pruning techniques [8]
e.g. yield network architectures such as SqeezeNet [9] or Tiny-
Darknet [10]. Thereby, these can reduce the number of weights
by 50x and the number of operations by 3x, respectively.
To further reduce the memory footprint or the bandwidth
requirements without accuracy degradation, quantization and
compression techniques are widely employed.

These approaches highlight the strong relationship between
the DNN topology and the underlying hardware accelerator. To
investigate this relationship from a methodical point of view,
concomitant simulation frameworks for DNN accelerators
or highly adjustable hardware architectures were introduced.
Approaching from a top-down view, ScaleSIM [11] offers
fast estimation of an analytical model of a fixed systolic
array supporting different data flows. While the tool reports
utilization and allows for good insights, it lacks architectural
design parameters such as chip area and energy consumption.
Timeloop [12] takes the analytical DNN model further to find
the best matching mapping for a DNN topology onto a systolic
array. Moreover, it can be coupled with Accelergy [13], an
open-source tool for generally applicable static energy esti-
mation, to report energy consumption as well as chip area and
thus to overcome the design parameter restriction. Similarly,
the authors of STONNE [14] present a simulation framework
that optimizes towards a high utilization by exemplary means
of an accelerator of an MAERI [7] architecture.

The Co-Exploration of Hardware Design Space and Neural
Architecture shows potential to optimize accuracy and hard-
ware efficiency. In [15] and [16] the authors partition the
execution of the neural architecture on multiple FPGAs. The
mapping of layers on heterogeneous ASIC architectures is
covered in [17]. In all three works, a feedback loop optimizes
the neural architecture to maximize accuracy. Abdelfattah et
al. [18] present an approach to co-design a DNN accelerator
with high-level synthesis tools to obtain precise area and
energy estimates. On a lower level, Reagan et al. present their
fine-granular adjustable architecture Minerva [19] and explore
various configurations to achieve an 8x better energy efficiency
reported from EDA tools, while preserving the accuracy.
However, its fine-granularity is limited to small applications.

An overall analytical SoC simulation and design flow is
shown in SMAUG [20]. The authors present their approach
starting from the network application through a dedicated
scheduler down to their architecture, consisting of a CPU

TLM
X-Bar

CPU
Imperas OVPsim

Memory
model

Accelerators DMAs

Fig. 2: Usual setup of our SystemC simulator inside FLECSim

model in gem5 [21] and a user-specific DNN accelerator
model. The latter itself is interchangeable, however, it can only
model the data flow taxonomy in an analytical way to fit their
scheduler and thus cannot reveal control flow bottlenecks.

FLECSim addresses the current gap in the state of the art
that lacks an end-to-end SoC simulation framework with a
straightforward and interchangeable accelerator interface. In
a similar way, we use an accurate architecture description in
SystemC or RTL combined with a CPU model for data and
control flow analysis. This is coupled with an analytical model
for energy and area estimation to achieve a fast and highly
flexible SoC simulation that offers an early system integration.

IV. FLECSIM SIMULATION PLATFORM

FLECSim allows us to simulate an SoC design with various
components like accelerators, memories or CPUs that can
communicate via a TLM crossbar. A usual setup is depicted
in Figure 2. The tool allows the instantiation of accelerators
for specific tasks e.g. neural networks but not limited to
any application. Different data movement and orchestration
schemes can be realized through dedicated configurable DMAs
and memories. FLECSim features a CPU to simulate control
flow aspects in an instruction set simulator (ISS). All other
SoC modules are implemented in SystemC to enable cycle-
accurate execution and simple extension in C++.

FLECSim and its components can be set up with a JSON-
based configuration file, which can consider for example the
memory size or the design parameters of the accelerator;
factors that heavily impact the SoC. During the simulation,
FLECSim collects valuable information, from which we obtain
design metrics such as energy consumption or execution time.

A. CPU Platform and TLM Crossbar

To enable a full SoC simulation we have to consider data
flow driven applications that can be accelerated in dedicated
hardware structures and control flow aspects, which might
be executed in a CPU. As an example, inside a systolic
array, the incoming data is forwarded and processed through
a mesh without using separate instructions for each step.
However, setting up a DNN and the accelerator requires at
least one master component, which controls the data flow
from and to the accelerator and the memory, respectively. This
can either be done within the accelerator itself, by adding a
DMA to the SoC or by using a dedicated control flow entity
such as a processor. An entire CPU offers the possibility to

port various DNN implementations and frameworks such as
Darknet, PyTorch or TensorFlow by cross-compiling to the
target CPU architecture.

Since the main focus of this work is on the SoC architecture
simulation and fast exploration of hardware accelerators the
use of a cycle-accurate processor simulation can be avoided.
Instead, we attach an instruction-accurate ISS to FLECSim
which in turn leads to a significantly reduced simulation time.
This approach also enables the user to run a DNN on a Linux
kernel in the ISS which is supported by widely used simulators
such as gem5 [21] or Imperas OVPsim [22].

Transmitting signals and values between the instruction-
accurate ISS and the attached cycle-accurate simulated periph-
erals is realized by using the SystemC TLM-2.0 (Transaction
Level Modeling) [23]. However, the ISS usually executes mul-
tiple instructions between the cycles according to the quantum
and the set MIPS (million instructions per second) value. The
quantum period thereby sets the time each processor model in-
stance has to wait before it can continue. Using one of the core
interfaces specified by SystemC TLM-2.0, i.e. the blocking
transport or the direct memory interface, would therefore hold
the ISS back from moving to the next instruction in case of a
read access. In contrast, values sent via the TLM analysis port
are immediately propagated and handled by corresponding
functions. This approach leads to a considerable reduction of
the overall simulation time since thousands of instructions can
be simulated without an intervening SystemC scheduler.

In this work, we use the Imperas OVPsim ISS since it in-
herently implements the TLM analysis port as communication
interface to our SystemC modules. Additionally, it offers a
wide range of processor models and peripherals to simulate
actual SoCs. Every module of the simulated SoC can be
mapped to a configurable address space and connected to the
internal CPU Platform system bus over a dedicated peripheral
interface. FLECSim can therefore serve a broad range of
applications and hardware platforms to guide the hardware
and software co-design process.

B. Accelerators

The design of the FLECSim simulation platform allows for
various accelerator architectures. These must only provide at
least one port that is connected to one of the SoC modules
or the CPU. The width of the port is not fixed hence it
is customizable to model any kind of accelerator. Also, the
number of ports to the DMA engine and thus to the memory
is not limited, which allows us to simulate SoCs with an
arbitrary number of DMAs. A connection to the processor
can be established via the TLM crossbar to access an internal
set of registers from the outside to e.g. read the current state
or configure internal parameters of the accelerator during run
time. Thus, FLECSim comes with a common TLM interface
for the accelerator models.

Besides a pure SystemC accelerator model, FLECSim of-
fers also a simulation of RTL models written in Verilog
or SystemVerilog. Therefore, FLECSim provides a wrapper
to Verilator, an open-source tool that compiles Verilog or

DNN
Application

SW Stack
Darknet

Accelerator
SystemC model

Metrics
AccelergyA

PI

FLECSim

Quantization
Pruning Co-Design

Chip area
Energy consumption

Fig. 3: Design flow of the DNN application and hardware
accelerator co-design realized in FLECSim. The gray boxes
are covered in this work.

SystemVerilog RTL code into SystemC [24]. Consequently,
this approach eliminates the need to translate the RTL code
into a SystemC model manually and since the RTL simulator
model can be validated in the SoC in an early design stage, it
speeds up the entire design process.

C. Memory model and stream data movement

A holistic simulation of the SoC has numerous advantages.
Especially an integrated memory model allows for a more
precise performance evaluation. Accordingly, we implemented
a simple DRAM-based memory model which offers a con-
figurable size only limited by the system architecture. To
be able to offload algorithm parts from the CPU to the
accelerator, the process can access the TLM memory via the
TLM crossbar. The data flow between the memory and the
accelerators can be set up by one or more DMAs. With a set
of registers accessible by the CPU, these can be configured
in terms of the address range or the access pattern to model
various application scenarios. Additionally, the transfers can
be triggered and the status retrieved from the same place.

V. DESIGN FLOW

FLECSim enables an end-to-end simulation of an SoC
including e.g. a DNN accelerator. The flow of a DNN hardware
accelerator design and how FLECSim can support this is
depicted in Figure 3. In the first place, the DNN topology
might be optimized to reduce the complexity through quanti-
zation or pruning. We can then deploy the network topology
on the FLECSim CPU and control the accelerator structure
via an API. FLECSim collects information about the energy
consumption, execution time and chip area, which can be used
to optimize the hardware architecture and DNN application.

A. CPU Software Framework

A crucial bottleneck during SoC design is the mutual
dependency of hardware architecture, API and software, which
leads to an increased development time and long time to
market. The optimal solution is the parallel and iterative
design to enable early validation and make faster design
decisions. FLECSim enables this through high flexibility in
the choice of the software architecture. The application can be
compiled for the target CPU instruction set and subsequently
executed by the CPU ISS. The application spectrum ranges

from simple C programs to software frameworks such as
Darknet or TensorFlow to operating system (OS) kernels
e.g. Linux. In this manner to provide a wide range of state-of-
the-art DNN applications, we adapt the well-established DNN
framework Darknet [25] to be executed as bare-metal directly
on the CPU. The Darknet framework offers easy access to the
underlying BLAS functions and the general matrix multipli-
cation (GEMM) implementation, which accounts for the vast
majority of computations in DNNs. Hence, these functions
can be adapted according to the corresponding custom API
such that the underlying accelerator is configured and supplied
with data to further perform the very same functionality. This
allows us to run arbitrary DNN topologies by providing the
corresponding Darknet configuration files. As a result, early
estimates about the overall execution time and efficiency of
software, API and hardware accelerator are enabled, address-
ing the aforementioned bottleneck and allowing early parallel
and iterative optimization.

B. Design Metrics

Along with the result of the DNN, FLECSim outputs various
platform metrics. Gathering metrics is a crucial indicator to
support designers in the hardware and software co-design.
While the result of the DNN can be used to compute the
accuracy, the collected metrics give insights to optimize the
application in terms of its efficiency. This can be done, for
example, by reducing the number of idle cycles for each
accelerator and revealing bottlenecks in the SoC architecture.

OVPsim already provides various metrics such as the num-
ber of executed instructions and the overall simulated time. It
also offers traces to capture each executed instruction. Beyond
the ISS, the number of register accesses from the processor
is counted within the TLM interface. Apart from the CPU,
SystemC modules inside FLECSim can be annotated with
actions such that the tool creates a JSON action counts file.
Since all modules except the CPU are simulated in a cycle-
accurate manner, the status of each can be logged for every
single clock cycle. This reveals different run and idle states,
from which the energy consumption can be derived.

To estimate the area of the SoC modules and their respective
energy consumption, we integrated Accelergy [13] into our
tool flow. Dynamic energy and area estimation of Accelergy
relies on a primitive component library based on estimation
plug-ins. We use CACTI [26] for memory components and
Aladdin [27] for accelerator structures. From gathered action
counts, the module attributes and architecture descriptions Ac-
celergy generates the estimates. The results can be combined
with metrics from the ISS and the TLM interface to calculate
the overall power consumption of the SoC architecture.

VI. EXPERIMENTAL RESULTS

To prove our concept, we designed a SystemC model of a
dedicated AI accelerator based on widely used architectures
with a systolic array of processing elements (PE). The size
of the accelerator, respectively the number of PEs, is config-
urable. We evaluate the effects of different accelerator sizes in

102 103
0

5

10

15

Number of PEs

E
st

im
at

ed
ar

ea
[m
m

2
]

(a) Area estimation of the accelerator with
different dimensions

102 103

200

400

600 CPU baseline

Number of PEs

Si
m

ul
at

ed
tim

e
[s

]

(b) Simulated execution time on the SoC
depending on accelerator dimensions

8x8 16x16 32x32 64x64
0

50

100

150

Array size

E
st

im
at

ed
E

ne
rg

y
[m

J]

PEs DRAM

(c) Estimated dynamic energy consumption
with different array sizes broken down into
DRAM and accelerator consumption

Fig. 4: Comparison of Tiny-Darknet inference on an exemplary SoC for different accelerator sizes

an exemplary SoC, consisting of a 32-bit RISC-V processor
model, a TLM-Memory and a SystemC DMA model. The
energy and area estimates of the accelerator are based on a
40nm reference table, for our memory model, a 65nm library
is used, respectively.

A. Neural Network Application

Small DNNs offer good accuracy results while only having
a small memory footprint and are likely implemented in SoCs
for mobile devices. To simulate a realistic application in our
SoC, we selected Tiny-Darknet [10], a DNN classifier, that
is hosted in the Darknet framework. Tiny-Darknet consists of
16 convolutional layers, with around 0.98 billion operations
in total and a memory footprint of 4 MB. We simulate the
entire execution, namely weight and image loading, feature
extraction and classification. Thereby, we work with standard
floating-point precision (32-bit). The vast majority of compu-
tations are caused by the convolutional layers, which will be
offloaded to the accelerator. To prove correctness, we work
with pre-trained weight data, allowing us to evaluate the clas-
sification accuracy with potential architectural optimizations
such as dynamic input feature map pruning.

B. Accelerator Structure

Since the Darknet framework uses the im2col transforma-
tion for simpler memory access patterns, the convolutional
layers can be represented as GEMM. The accelerator performs
this matrix multiplication in an output stationary manner.
Partial results of the inner products are kept local inside
the individual PEs. Weight and input feature map data are
distributed among the PEs. Weight data is handed to a whole
row of PEs and input feature map data to a column accord-
ingly. To match the accelerator dimensions, the matrices are
divided into multiple chunks that are streamed from the TLM
memory via the DMAs to the accelerator. The DMAs can be
configured from the CPU platform by setting control registers
to perform the necessary address generation depending on
matrix dimensions, accelerator array size and datatype used.
Per cycle, each DMA reads a line of data corresponding to the
accelerator rows or columns and calculates the next address

depending on the matrix dimension. Communication between
DMAs and the accelerator is modeled in a similar way to the
well-known AXI Stream protocol.

C. Evaluation and Design Insights

With the accelerator and SoC architecture described above,
we perform an estimation of the area requirements of the mod-
ules as well as the execution time and energy consumption of
Tiny-Darknet. We define the execution time as the time of the
last trace file entry, meaning that data loading and classification
by the CPU and feature extraction by the accelerator have fin-
ished and thus taken into consideration. The RISC-V processor
model is configured to perform 40 MIPS, comparable to other
low-power processors used in mobile devices. To simulate
the accelerator and other modules accurately, we choose a
quantum duration of 1µs according to the Imperas OVPsim
guidelines [22]. For error avoidance reasons, the simulation
clock cycle duration of the SystemC-modules must be higher
than the quantum duration of 1µs. Therefore, we set the clock
cycle of the SoC processor peripherals to 10µs.

Figure 4 shows the evaluation results of our test case. We
explored four different accelerator sizes (8x8, 16x16, 32x32,
64x64), revealing the trade-offs between execution time, en-
ergy consumption and chip area. As expected, the area of the
accelerator depicted in Figure 4a increases with the number of
PEs. The high area demands for the large accelerator arrays
are reinforced by the usage of 32-bit floating-point precision
simulated for the PEs, surpassing the demands of e.g. 8-bit
integer multiply-accumulate units.

When looking at the simulated execution time of the net-
work (Figure 4b) of merely the CPU, a comparably high
inference time of 653s can be observed, which is due to
the simulation of the 40 MIPS low-power CPU. Even with
a small 8x8 systolic array accelerator, the simulation reveals
significant potential for execution time improvements. With
an increasing number of processing elements and exploiting
higher spatial parallelization this continues. Due to inherent
data reuse inside the systolic array, fewer load operations from
the memory are necessary. However, even with the four sample
accelerators, attenuation can be observed. Parts of the DNN

inference that cannot be addressed by the hardware accelerator
such as image and weight loading or im2col transformation are
executed exclusively on the CPU.

The drawback of employing a high spatial parallelization
is an increased energy demand that can be inferred from
Figure 4c. As the number of PEs and likewise the data reuse
increases, the demand for memory accesses shrinks leading
to reduced energy consumption from DRAM reads. However,
this cannot compensate for the energy demands of the PEs
when looking at the 64x64 array.

In general, from the SoC perspective, a good solution
for the Tiny-Darknet inference is the combination of CPU
and a dedicated accelerator of size 16x16 or 32x32, having
a reasonable trade-off between reduced execution time and
additional area and energy demand.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced FLECSim an end-to-end SoC
simulation framework that allows for the crucial co-design of
DNN applications and underlying hardware accelerator. The
advantages of FLECSim come to play when an overall SoC
simulation with a straight-forward, flexible as well as early
integration of new accelerator models and interchangeable
software stack is favored. In the scope of this work, we
demonstrate how FLECSim can support the design flow with
the provided design insights by exemplary means of a systolic
array accelerator in combination with a RISC-V processor
running the Darknet DNN framework.

In the future, we would like to underpin our findings and
metrics with an evaluation of the SoC design on an actual
reconfigurable SoC platform such as the Xilinx Zynq. Besides
this, we plan to extend FLECSim to allow a full and automated
design space exploration aided by reinforcement learning. This
might also involve network optimization through pruning or
quantization and thus includes the complete design flow.

ACKNOWLEDGMENT

This work was funded by the German Federal Ministry
of Education and Research (BMBF) under grant number
16ME0096 (ZuSE-KI-mobil). The responsibility for the con-
tent of this publication lies with the authors.

REFERENCES

[1] S. Baehr, F. Kempf, and J. Becker, “Data reduction and readout
triggering in particle physics experiments using neural networks on
fpgas,” in 2018 IEEE 18th International Conference on Nanotechnology
(IEEE-NANO), 2018, pp. 1–4.

[2] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,”
IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[3] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), 2016, pp. 1–13.

[4] S. Han et al., “EIE: efficient inference engine on compressed deep
neural network,” CoRR, vol. abs/1602.01528, 2016. [Online]. Available:
http://arxiv.org/abs/1602.01528

[5] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” CoRR, vol. abs/1704.04760, 2017. [Online]. Available:
http://arxiv.org/abs/1704.04760

[6] M. Pellauer et al., “Buffets: An efficient and composable storage
idiom for explicit decoupled data orchestration,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
137–151. [Online]. Available: https://doi.org/10.1145/3297858.3304025

[7] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling
flexible dataflow mapping over dnn accelerators via reconfigurable
interconnects,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 461–475. [Online].
Available: https://doi.org/10.1145/3173162.3173176

[8] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” arXiv preprint arXiv:1804.03294, 2018.

[9] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.
[Online]. Available: http://arxiv.org/abs/1602.07360

[10] “Tiny darknet,” https://pjreddie.com/darknet/tiny-darknet/, accessed:
2021-04-12.

[11] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Kr-
ishna, “Scale-sim: Systolic cnn accelerator simulator,” arXiv preprint
arXiv:1811.02883, 2018.

[12] A. Parashar et al., “Timeloop: A systematic approach to dnn accelerator
evaluation,” in 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2019, pp. 304–315.

[13] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-
level energy estimation methodology for accelerator designs,” in 2019
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2019, pp. 1–8.

[14] F. Muñoz-Martı́nez, J. L. Abellán, M. Acacio, and T. Krishna, “Stonne:
A detailed architectural simulator for flexible neural network accelera-
tors,” ArXiv, vol. abs/2006.07137, 2020.

[15] L. Yang et al., “Co-exploring neural architecture and network-on-chip
design for real-time artificial intelligence,” in 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), 2020, pp. 85–90.

[16] W. Jiang et al., “Hardware/software co-exploration of neural architec-
tures,” 2020.

[17] L. Yang et al., “Co-exploration of neural architectures and heterogeneous
asic accelerator designs targeting multiple tasks,” in Proceedings of the
57th ACM/EDAC/IEEE Design Automation Conference, ser. DAC ’20.
IEEE Press, 2020.

[18] M. S. Abdelfattah, Ł. Dudziak, T. Chau, R. Lee, H. Kim, and N. D.
Lane, “Best of both worlds: Automl codesign of a cnn and its hardware
accelerator,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC), 2020, pp. 1–6.

[19] B. Reagen et al., “Minerva: Enabling low-power, highly-accurate deep
neural network accelerators,” in 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2016, pp. 267–278.

[20] S. L. Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei, and
D. Brooks, “Smaug: End-to-end full-stack simulation infrastructure for
deep learning workloads,” ACM Trans. Archit. Code Optim., vol. 17,
no. 4, Nov. 2020. [Online]. Available: https://doi.org/10.1145/3424669

[21] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, p. 1–7, Aug. 2011. [Online]. Available:
https://doi.org/10.1145/2024716.2024718

[22] “Imperas OVPsim,” https://ovpworld.org, accessed: 2021-04-05.
[23] “OSCI TLM-2.0 standard,” http://systemc.org, accessed: 2021-04-07.
[24] W. Snyder, “Verilator and systemperl,” North American SystemC Users’

Group Design Automation Conference, 2004.
[25] J. Redmon, “Darknet: Open source neural networks in C,” http://pjreddie.

com/darknet/, 2013–2016.
[26] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-

p: Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in 2011 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2011, pp. 694–701.

[27] Y. S. Shao, B. Reagen, G. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA), 2014, pp. 97–
108.

