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Abstract 
This dissertation thesis investigates the application of big data, machine learning, 

and the target costing approach for managing costs during new product development in 

the context of high product complexity and uncertainty. A longitudinal case study at a 

German car manufacturer is conducted to examine the topic. First, we conduct a 

systematic literature review, which analyzes use cases, issues, and benefits of big data 

and machine learning technology for the application in management accounting. Our 

review contributes to the literature by providing an overview about the specific aspects 

of both technologies that can be applied in managerial accounting. Further, we identify 

the specific issues and benefits of both technologies in the context management 

accounting. Second, we present a case study on the applicability of machine learning and 

big data technology for product cost estimation, focusing on the material costs of 

passenger cars. Our case study contributes to the literature by providing a novel approach 

to increase the predictive accuracy of cost estimates of subsequent product generations, 

we show that the predictive accuracy is significantly larger when using big data sets, and 

we find that machine learning can outperform cost estimates from cost experts, or produce 

at least comparable results, even when dealing with highly complex products. Third, we 

conduct an experimental study to investigate the trade-off between accuracy (predictive 

performance) and explainability (transparency and interpretability) of machine learning 

models in the context of product cost estimation. We empirically confirm the often-

implied inverse relationship between both attributes from the perspective of cost experts. 

Further, we show that the relative importance of explainability to accuracy perceived by 

cost experts is important when selecting between alternative machine learning models. 

Then, we present four factors that significantly determine the perceived relative 

importance of explainability to accuracy. Fourth, we present a proprietary archival study 

to investigate the target costing approach in a complex product development context, 

which is characterized by product design interdependence and uncertainty about target 

cost difficulty. We find that target cost difficulty is related to more cost reduction 

performance during product development based on archival company data, and thereby 

complement results from earlier studies, which are based on experimental studies. 

Further, we demonstrate that in a complex product development context, product design 

interdependence and uncertainty about target cost difficulty may both limit the 

effectiveness of target costing. 
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Kurzfassung 
Die vorliegende Arbeit untersucht die Anwendung von Big Data, Machine 

Learning und der Zielkostenrechnung für das Kostenmanagement für Produkte mit hoher 

Komplexität und Unsicherheit während der Produktentwicklung. Zur Untersuchung des 

Forschungsthemas wurde eine dreijährige Fallstudie bei einem deutschen 

Automobilhersteller durchgeführt. Im ersten Abschnitt werden Anwendungsfälle, 

Chancen und Risiken von Big Data und Machine Learning im Controlling anhand einer 

systematischen Literaturrecherche untersucht. Zunächst stellt die Literaturrecherche 

einen Überblick zu den spezifischen Aspekten beider Technologien im Bereich des 

Controllings dar. Darüber hinaus werden die spezifischen Chancen und Risiken beider 

Technologien im Bezug des Controllings identifiziert. Im zweiten Abschnitt wird anhand 

einer Fallstudie die Anwendbarkeit von Machine Learning and Big Data für die 

Produktkostenschätzung von Materialeinzelkosten hochkomplexer Produkte untersucht. 

Zunächst wird ein neuer Ansatz zur Erhöhung der Genauigkeit von 

Produktkostenschätzungen nachfolgender Produktgenerationen vorgestellt. Zudem wird 

die signifikante Verbesserung der Genauigkeit durch die Anwendung von Big Data 

aufgezeigt. Ein Vergleich mit manuellen Verfahren zeigt, dass auch bei hochkomplexen 

Produkten Machine Learning in der Lage ist, bessere oder zumindest vergleichbare 

Kostenschätzungen zu generieren. Im dritten Abschnitt wird anhand eines Experiments 

der Zielkonflikt zwischen der Genauigkeit (Vorhersage) und Erklärbarkeit (Transparenz 

und Interpretierbarkeit) von Machine Learning Modellen im Kontext der 

Produktkostenschätzung untersucht. Dabei kann die oft unterstellte inverse Beziehung 

zwischen Genauigkeit und Erklärbarkeit empirisch bestätigt werden. Zudem stellt sich 

heraus, dass die wahrgenommene relative Wichtigkeit von Erklärbarkeit zu Genauigkeit 

ein wichtiger Faktor für die Auswahl von Machine Learning Modellen ist. Zuletzt werden 

vier Faktoren vorgestellt, welche die relative Wichtigkeit von Erklärbarkeit und 

Genauigkeit während der Produktentwicklung bestimmen. Die Archivstudie im vierten 

Abschnitt untersucht die Zielkostenrechnung im Kontext komplexer Produktentwicklung 

auf der Basis von Wechselwirkungen innerhalb der Produkte und Unsicherheiten 

bezüglich der Zielkostenlücke. Zunächst wird gezeigt, dass die Höhe der Zielkostenlücke 

im Zusammenhang mit der Kostenreduktion während der Produktentwicklung steht, was 

bisherige Forschungsergebnisse auf der Basis von Experimenten komplementiert. Zudem 

wird gezeigt, dass die Wechselwirkungen innerhalb der Produkte und Unsicherheiten 

bezüglich der Zielkostenlücke die Effektivität der Zielkostenrechnung limitieren.  
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1 Introduction 
Cost management during new product development is one of the most important 

tasks of manufacturing companies and a principal task of management accounting. 

However, the management of costs becomes increasingly difficult due to higher 

complexity, modularity, and uncertainty during new product development 

(Gopalakrishnan et al., 2015; Stadtherr & Wouters, 2021). Thereby, direct material costs 

play a major role for new product development, as material cost usually have the largest 

leverage for optimizing the profitability of products (Fischer, 2017). Two important 

success factors of new product development performance are the tools and methods 

available. New tools that incorporate big data and machine learning, yield promising 

benefits toward the management of costs (Chou et al., 2010; Fosso Wamba et al., 2015; 

Loyer et al., 2016). However, empirical research reporting on the actual applicability and 

realized benefits of these technologies is scarce. On the other hand, cost management 

methods, such as target costing, can improve customer satisfaction and the cost reduction 

performance during product development (Dekker & Smidt, 2003). However, little is 

known about the impact of high product complexity and uncertainty on the effectiveness 

of these methods (Ax et al., 2008). Therefore, this dissertation involves two research foci, 

namely 1) the applicability of big data and machine learning technology for cost 

management during new product development and 2) the impact of complexity and 

uncertainty on the effectiveness of the target costing approach. 

Global data is expected to grow exponentially by about 40% a year (McKinsey 

Global Institute, 2011). This avenue of large and complex data sets are referred to as big 

data, which can be characterized by its high volume, variety, velocity, and veracity (IBM, 

2013). The usage of big data technology enables companies to change from mostly 

intuitive-based to data-based decision making (O'Leary, 2013). Further, the progress of 

machine learning opens new possibilities for processing information and creating 

additional value from data. On the other side, machine learning establishes algorithms 

that enable computers to learn by finding statistical regularities and patterns in data 

(Oladipupo, 2010). Machine learning and data analytics are considered the top two game-

changing technologies for businesses (Carlton Sapp et al., 2019). Top performing 

companies use data analytics five times more than low performing companies (LaValle 

et al., 2011). New data sources and advanced analytical techniques are expected to yield 

great impact on the finance profession by increasing the influence in their businesses 

(Economist Intelligence Unit, 2013; Richins et al., 2017). In practice, however, 
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companies often gather massive amounts of data without knowing how to make use of it 

(Earley, 2015; LaValle et al., 2011). In addition, complex machine learning techniques 

are often referred to as black boxes as they lack transparency and interpretability. 

Explainability is especially important when managing costs during new product 

development with its cross-functional nature (Cavalieri et al., 2004; Verlinden et al., 

2008).  

Target costing is one of the most important techniques to manage life-cycle costs 

during the product design and development stage (Kato, 1993). Target costs are calculated 

as the maximum product cost, which ensures meeting the profitability goals and customer 

requirements (Everaert et al., 2006). Therewith, the target costing method is a 

strategically important cost management method, which secures the competitiveness of 

manufacturing companies (Cooper & Slagmulder, 1999). In particular, the method 

improves the coordination of efforts within companies toward a joint cost goal (Ewert & 

Ernst, 1999). However, this approach may not enhance motivation and performance in a 

more complex and uncertain organizational product development context (A. Davila & 

Wouters, 2004; Gopalakrishnan et al., 2015; Henri & Wouters, 2020; Mihm, 2010). On 

the one hand, complex product development environment can correspond to large 

interdependencies between parts, which demand more coordination of shared resources 

from development teams. On the other hand, longer lead times of product development 

create uncertainty about future sales prices, product attributes, and costs. So far, little is 

known about the effectiveness of the target costing approach in such a complex product 

development context. 

To investigate both research foci, we conduct a longitudinal case study at a 

German car manufacturer. The author was part of the controlling department full-time for 

three years. The case study provided access to large and sensitive data sources and cost 

experts with whom findings were evaluated. Case study research is appropriate in 

situations of asking how and why research questions and involves multiple sources of data 

such as interview data, archival data, and participant observation (Yin, 2018). The case 

study approach is often used to examine how techniques and processes from theory are 

applied in practice (Scapens, 1990). This dissertation thesis consists of 6 chapters as 

showcased in Figure 1. Chapter 2, 3, and 4 address the first research focus; chapter 5 

covers the second one. The 4 main chapters are briefly introduced in the following 

sections.  
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Figure 1:  Overview of the six chapters that constitute the dissertation. The dissertation investigates two 

research foci (I and II). 

In the second chapter, we conduct a systematic literature review on the use cases, 

issues, and benefits of big data and machine learning for management accounting. We 

aim to provide a better understanding of which managerial accounting tasks big data and 

machine learning technology can be applied on. We systematically review 36 articles, 

which deal with management accounting-related tasks. Content analysis is applied to 

identify categories about the issues and benefits of big data and machine learning for 

management accounting.  

In the third chapter, we conduct a case study on the usage of big data and machine 

learning technology for the management of direct material cost of passenger cars. 

Specifically, we investigate the impact of big data on the cost estimation accuracy, 

compare the predictive accuracy of machine learning methods with manual cost 

calculations from cost experts, and examine the validity of cost-engineering insights such 

as cost driver selection and the cost behavior of product features. The results are discussed 

with cost experts from the case company to validate the results.  

In the fourth chapter, we analyze the applicability of complex machine learning 

models during new product development. We evaluate the interpretability problem of 

machine learning techniques, which commonly describes the trade-off between accuracy 

and explainability. In an experiment with 40 participants from the controlling department 

of the case company, we investigate several factors that influence the importance of 

explainability relative to accuracy in the context of product cost estimation during product 

development.  

In the fifth chapter, we analyze the impact of interdependencies between parts and 

uncertainty during new product development on the effectiveness of the target costing 

approach. The analysis is based on proprietary archival data from the case company. For 

 ntrod ction  oncl sion

 ase st dy
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several hundreds of parts and components, we examine the cost reduction performance 

and target cost attainment during product development and during the production stage.  

This dissertation thesis contributes to the literature in several ways. In the second 

chapter, we confirm the revolutionary potential of big data and machine learning for 

management accounting and extend the body of literature by identifying new benefits and 

issues of both technologies in this context. In the third chapter, we empirically prove the 

benefit of big data for machine learning-based product cost estimation, introduce a novel 

method to improve multi-generational cost estimates, and empirically assess the validity 

of cost engineering insights of machine learning models. In the fourth chapter, we 

empirically show that the interpretability problem is indeed perceived by people, that the 

trade-off between explainability and accuracy has a major impact on the machine learning 

selection process and present four factors that determine the relative importance of 

explainability to accuracy. In the fifth chapter, we complement prior research by 

providing empirical evidence on the positive association between target cost difficulty 

and cost reduction performance on the basis of proprietary archival company data. We 

also add to the literature by showing that product design interdependence and uncertainty 

about target cost difficulty may limit the effectiveness of target costing.  
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2 Big Data and Machine Learning in 
Management Accounting: A 
Systematic Literature Review 

Abstract 

This systematic literature review analyzes use cases, issues, and benefits of 

machine learning and big data technology for the application in management 

accounting. Currently, the literature lacks in an overview about the use cases of big 

data and machine learning for managerial accounting and the specific issues and 

benefits that can be expected from both technologies in this context. First, this review 

contributes to the literature by providing an overview about the specific aspects of 

big data (volume, velocity, variety, and veracity) and machine learning methods that 

can be applied in managerial accounting. We find that both technologies can 

actually be applied on almost any of the main management accounting tasks. 

Thereby, several machine learning methods at different levels of complexity and any 

of the four big data aspects are used. Further, we find that both technologies are 

used for different tasks. Machine learning is primarily used for predictive tasks, 

while big data is mostly used for descriptive analyses. Simultaneous usage of both 

technologies is rather limited, which is surprising since both technologies benefit 

from each other. In the second stage of this review, we identify issues and benefits of 

both technologies in management accounting. Our systematic review finds that poor 

data quality and the lack of the management accountants’ skills are the most critical 

issues of big data in managerial accounting. For machine learning the 

interpretability problem and the complex training process are considered 

problematic. Big data offers opportunities by providing new insights, better decision 

making and increasing the influence of accountants. In the case of machine learning, 

we find that higher accuracy, time-specific advantages, and greater independence 

from expert knowledge are the main benefits. The issues and benefits of both 

technologies highly depend on the specific management accounting task.  

Keywords:    Big data; Machine learning; Management accounting;  

Literature review  
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2.1 Introduction 

Machine learning and big data technology are expected to have a significant 

positive impact on the performance of corporate management and are considered game-

changers for businesses (Carlton Sapp et al., 2019; LaValle et al., 2011). The collection 

of massive amounts of data at high volume, velocity, variety, and veracity—short big 

data—can support management accountants in many aspects, such as decision making, 

visual analytics, and new insights (McAfee et al., 2012; Saggi & Jain, 2018). With internal 

and external data sources, management accountants can better conduct descriptive 

analytics (explaining the past), predictive analytics (forecasting the future) and 

prescriptive analytics (identifying optimal decisions) (Appelbaum et al., 2017). At the 

same time, more sophisticated machine learning models can be applied to improve 

corporate forecasting, planning tasks, and cost control (Coussement et al., 2015; Kuzey 

et al., 2019). Moreover, machine learning can automate repetitive tasks and thereby free 

up administrative capacities in companies (Gotthardt, M., Koivulaakso, D., Paksoy, O. et 

al., 2020; Losbichler & Lehner, 2021). Big data is usually an important enabler and an 

input for successful machine learning applications. The combination of machine learning 

and big data has the potential to transform the function of finance professionals and 

change their role within businesses (Economist Intelligence Unit, 2013; Richins et al., 

2017). Thereby, accounting professionals are not required to act as technical specialists 

but they should understand the potential of big data and its implications on corporate 

decision making (Bhimani & Willcocks, 2014). In practice, however, many companies 

often collect massive amounts of data without knowing how to apply the data to operate 

their businesses (Earley, 2015; LaValle et al., 2011). Big data is a growing topic in 

business research that is however still in its infancy (Y. Zhang et al., 2021). Further, the 

expected benefits are set against the inherent problems of big data and machine learning 

such as data quality of big data sets and acceptance problems of complex data analytics 

techniques. Therefore, management accountants are often reluctant to apply machine 

learning and big data technology to operate their business (Arnaboldi et al., 2017; 

Losbichler & Lehner, 2021).  

Currently, the literature lacks in an overview about the use cases for the 

management accounting profession and the specific issues and benefits that can be 

expected from these technologies on the various management accounting tasks. So far 

most literature reviews on this topic investigate related technologies such as business 

intelligence or data mining. Rikhardsson and Yigitbasioglu (2018) for example 
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investigate applications of business intelligence and analytics however they mostly focus 

on the identification of research gaps. Nielsen (2018) discusses the application of business 

analytics for managerial accounting. Amani and Fadlalla (2017) investigate the utilization 

of data mining in accounting. In addition, current literature on big data often presents an 

optimistic view focusing mainly on the opportunities of the technology (Rikhardsson & 

Yigitbasioglu, 2018). Gärtner and Hiebl (2017) provide a literature review on both—

benefits and issues—in management accounting, however, they primarily investigate the 

impact along technological aspects of big data without linking opportunities and 

challenges to specific management accounting tasks. Mardini and Alkurdi (2021) provide 

a brief overview of the impact of artificial intelligence (AI), which is closely related to 

machine learning, on managerial accounting, however the literature review lacks in a 

systematic categorization of use cases, benefits, or issues.  

To address this gap, we provide a holistic overview of the use cases of big data 

and machine learning in managerial accounting. We address the specific issues and 

benefits that both technologies yield for various management accounting tasks. This 

chapter presents a systematic literature review to address two research questions: What 

are use cases of big data and machine learning in management accounting? What are the 

issues and benefits of these technologies for managerial accounting? 

To answer the research questions a systematic literature review is conducted. We 

therefore search for relevant studies within the journals covered in the Australian 

Business Deans Council (ABDC) journal list. Content analysis is used to identify 

categories about the issues and benefits. Systematic literature reviews are commonly used 

to organize the complexity and variety of knowledge and aim to describe and evaluate the 

existing body of literature and identify knowledge gaps for further research (Tranfield et 

al., 2003). This literature review makes two contributions to the literature. First, we 

provide a comprehensive overview of the specific aspects of big data (volume, velocity, 

variety, and veracity) and machine learning (various methods) that can be used to solve 

the main management accounting tasks. Second, we identify and categorize issues and 

benefits in the context of managerial accounting. We facilitate deciding on the adoption 

of big data and machine learning by presenting various use cases and showcasing 

potential issues and benefits.  

In the remainder of this chapter, we first provide comprehensive descriptions of 

management accounting, big data, machine learning, and related technologies to avoid 

any ambiguity on this topic. Section 2.3 explains the literature search method and the 
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framework for content analysis. In Section 2.4, we review the literature and analyze the 

identified categories. Section 2.5 concludes the chapter.  

2.2 Conceptualizing Management Accounting, Big Data, 
and Machine Learning 

2.2.1 Management Accounting 

In 1981, the Institute of Management Accountants characterized management 

accounting as a profession, responsible for the identification, accumulation, and analysis 

of financial data (Institute of Management Accountants, 2008). By now, management 

accounting emerged into a more strategic role acting as close business partners of 

management. This new role is described in the current definition by the Institute of 

Management Accountants (2008, p. 1): 

“Management accounting is a profession that involves partnering in 

management decision making, devising planning and performance 

management systems, and providing expertise in financial reporting and 

control to assist management in the formulation and implementation of an 

organization’s strategy.”  

By providing information, supporting decisions, and acting as a business partner, 

managerial accounting is a central specialist to guide management (Langmann, 2019). 

The business orientation of management accounting covers the willingness and ability to 

provide more added value to the management by supporting decision-making and control 

(Järvenpää, 2007). Strategic management accounting involves an external perspective, 

the use of non-financial measures, and the usage of different time periods (Rom & Rohde, 

2006). Driven by the ongoing digitization process, the transformation from a purely 

transaction-based perspective to a broader understanding of relevant information is taking 

place (Bhimani & Willcocks, 2014). Thereby, the application of extensive data mining 

and analytics enables accountants to take a larger strategic role within companies (Pickard 

& Cokins, 2015).  

2.2.2 Big Data, Machine Learning, and Related Disciplines 

In the following, we provide an overview of big data, machine learning, and 

related disciplines. Big data refers to large and complex data sets and was first 

characterized by the 3Vs: volume, variety, and velocity (Laney, 2001; McAfee et al., 
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2012). This characterization has been expanded by the dimension veracity, describing the 

uncertainty and credibility of data (IBM, 2013). More recently, also value, variability and 

visualization are considered.1 According to the HACE theorem, big data “starts wit  

large-volume, heterogeneous, autonomous sources with distributed and decentralized 

control, and seeks to explore complex and evolving relations ips a ong data” (X. Wu et 

al., 2014, p. 98). However, the definition and classification of big data differs across 

various domains. Whether a data set can be regarded as big data depends on the 

capabilities of the information system (Vasarhelyi et al., 2015). Hence, there is no 

minimum size for data to be considered as big. Big data analytics describes the statistical 

analysis techniques deployed when dealing with large and complex data sets. Kwon et al. 

(2014, p. 387) defined big data analytics as “tec nologies (e.g., database and data mining 

tools) and techniques (e.g., analytical methods) that a company can employ to analyze 

large scale, complex data for various applications intended to augment firm performance 

in vario s di ensions”. 

Machine learning is about designing algorithms that allow a computer to learn 

by finding statistical regularities or other patterns in data sets (Oladipupo, 2010). Machine 

learning thereby enable computers to automatically improve through training examples 

(Horvitz & Mulligan, 2015). Machine learning is used to acquire knowledge on their own 

by discovering patterns from raw data (Goodfellow et al., 2016). Machine learning can 

be categorized into supervised and unsupervised learning (VanderPlas, 2016). Supervised 

learning involves the modeling of relationships between known features and a 

corresponding target variable. Common use cases for supervised machine learning 

methods are classification (discrete categories) and regression (continuous quantities). 

Unsupervised learning involves the identification of patterns in data sets without any 

target variable. The goal is to detect hidden structures and patterns in data sets, including 

clustering (identifying distinct groups within data) and dimensionality reduction 

(generate a more concise representation of data). Machine learning originates from 

artificial intelligence, statistics, and computer science, but it has established as a scientific 

discipline on its own (Luxburg & Schölkopf, 2011). A popular machine learning 

technique for many applications in practice and science are artificial neural networks 

(ANNs) (Hwang & Ding, 1997). Neural networks build complex representations of data 

 

1 Note that the definition of big data varies across researchers. As an example, Fosso Wamba et al.  

(2015) describe the 4Vs by volume + velocity + variety + value and the 5Vs by volume + velocity + variety 

+ value + veracity.  
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inspired by the architecture of human brains. ANNs have been applied in many areas, 

including pattern matching, forecasting, and classification. The machine learning 

discipline is closely related to statistical learning, which refers to techniques for 

understanding and evaluating complex data sets. It has emerged as a new subfield in 

statistics focusing on supervised and unsupervised modeling (James et al., 2013). In 

essence, statistical learning methods solve prediction and inference problems.  

Artificial intelligence is characterized by the ability to learn from data and solve 

specific tasks (Kaplan & Haenlein, 2019). The ultimate achievement would be to develop 

a machine that can mimic or outperform human mental capabilities, including: 

understanding, reasoning, and recognition (Hopgood, 2005). Since there is no standard 

definition of intelligence, likewise there is much debate about the term artificial 

intelligence (Legg & Hutter, 2007). Commonly artificial intelligence refers to human-like 

thinking and acting (Russell & Norvig, 2016). In practice, artificial intelligence-based 

systems often lack in explainability and are being regarded as black boxes. This key 

impediment triggered the development of explainable artificial intelligence (XAI). This 

research field aims to make outcomes from artificial intelligence systems more 

understandable to humans and improves trust into artificial intelligence-based systems 

(Adadi & Berrada, 2018).  

In the following, we introduce three closely related disciplines on this topic: data 

mining, data science, and data analytics. We incorporate similar technologies to enable 

diffusion on this topic. Data mining uses historical data to discover patterns and improve 

decision making (T. M. Mitchell, 1999). Data mining can be depicted as computer 

automated exploratory data analysis of data sets with high complexity and volume 

(Friedman, 1997). Data science is an interdisciplinary field, which turns data into value 

for businesses (van der Aalst, 2016). Value can be provided in many ways, including: 

visualizations that provide new insights, forecasting models, and automated decision-

making systems. The data science discipline covers data storage, extraction, preparation, 

exploration, computing infrastructures, visualizations, analytics, and the utilization of 

findings in businesses. Data analytics is a highly interdisciplinary field incorporating 

aspects from many other scientific areas such as statistics, machine learning, pattern 

recognition, operations research, and artificial intelligence, which describes the analysis 

of large data sets with computer systems in order to support decision making (Runkler, 

2016). 
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2.3 Method 

2.3.1.1 Literature Search 

To analyze the intersection between both technologies and management 

accounting, we conduct a systematic literature review. The literature selection process is 

based on the query-based approach of Saggi and Jain (2018). The literature search 

incorporates two sets of journals. First, we incorporate studies exclusively published in 

accounting journals. Second, we include studies published in business journals dealing 

with management accounting-relevant problems. The selection of the accounting and 

business journals is based on the ABDC journal quality list from 2019 (ABDC, 2019). 

The accounting journals are selected according to the ABDC code 1501 with an ABDC 

rating of A*, A, and B. The sample of business journals is based on all journals in the 

ABDC list with a rating of A*. The accounting journals already covered in the first sample 

are omitted from the second set of journals. In so doing, we obtain 58 accounting journals 

and 182 business journals.  

Next, the sample of accounting (A) and business (B) journals are searched for 

relevant articles. Therefore, we formulate three search term queries. The queries are 

numbered as (1) “big data”, (2) “machine learning”, “artificial intelligence”, “neural net”, 

and “statistical learning”, and (3) “data science”, “data analytics”, and “data mining”. The 

third query is applied to also incorporate related disciplines and cast the net as widely as 

possible. We additionally include the search term “case st dy” in the query of business 

journals, as we are specifically interested in practical applications of big data and machine 

learning. Table 1 provides an overview of the literature search queries. 
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Table 1: Literature search queries 

Accounting literature (A) 

A1 A2 A3 

“big data” “machine learning” AND “artificial 

intelligence” AND “neural net” AND 

“statistical learning” 

“data science” AND “data 

analytics” AND “data mining” 

Business literature (B) 

B1 B2 B3 

“big data” 

AND 

“case study” 

(“machine learning” AND “artificial 

intelligence” AND 

“neural net” AND “statistical learning”) 

AND “case study” 

(“data science” AND “data 

analytics AND “data mining”) 

AND case study” 

 

The literature search has been carried out on the Scopus citation and abstract 

database (Elsevier B.V., 2019). With 22,800 titles from more than 5,000 publishers, 

Scopus is “t e largest abstract and citation database of peer-reviewed literat re” in the 

fields of science, technology, and social science (Elsevier B.V., 2017, p. 3). We search 

for matching search terms within the article’s title, abstract, and keyword list. By 

combining the two journal samples and the three search term queries, we obtain six 

literature queries (A1, A2, A3, B1, B2, and B3). The execution of the queries A1, A2, 

and A3 on Scopus returned 47, 57, and 44 papers, respectively. The execution of the 

queries B1, B2, and B3 returned 30, 204, and 83 papers. 
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Figure 2: Paper selection process. Parentheses specify secondary studies. Representation adopted from 

Saggi and Jain (2018). 

We select relevant articles according to the inclusion criteria adopted from Amani 

and Fadlalla (2017). An article is included when it 1) describes a specific use case of big 

data or machine learning in a managerial accounting-related task, 2) specifies what big 

data or machine learning techniques have been utilized, and 3) discusses issues or benefits 

of these technologies. Since we are also interested in potential use cases, we additionally 

include conceptional papers such as interpretive articles, commentaries, and literature 

reviews. We exclude studies in civil engineering or public management as we focus on 

an industry-specific context. The selection process is depicted in Figure 2. First, the 

results are filtered by abstract reading. The remainder is selected by full text reading, 

resulting in 20 studies from the accounting journal set and 16 articles from the set of 

business journals. The sample includes 14 secondary studies obtained by forward and 

backward search of the primary studies. Table 2 provides an overview of the journals that 

research the application of big data and machine learning in managerial accounting. A 

large proportion of articles (28%) is published in the International Journal of Production 

Economics (IJPE). 
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Table 2: List of journals/sources included in this literature review. The asterisk indicates 

journals/sources obtained by forward and backward search. 

No. Journal/Sources Abbreviation Count 

1. Accounting and Business Research ABR 1 

2. Accounting Horizons AH 1 

3. Association of Chartered Certified Accountants* ACCA 1 

4. Chartered Global Management Accountant* CGMA 2 

5. Computers & Industrial Engineering CIE 1 

6. Contemporary Accounting Research CAR 1 

7. Decision Support Systems DSS 4 

8. European Journal of Operational Research EJOR 2 

9. Harvard business review HBR 1 

10. IMA Journal of Management Mathematics* IMA JMM 1 

11. Information & Management IM 1 

12. International Journal of Accounting & Information Management* IJAIM 3 

13. International Journal of Accounting Information Systems IJAIS 1 

14. International Journal of Agile Manufacturing* IJAM 1 

15. International Journal of Hospitality Management IJHM 1 

16. International Journal of Production Economics IJPE 10 

17. Journal of Emerging Technologies in Accounting JETA 1 

18. London: Economist Intelligence Unit* EIU 1 

19. MIT sloan management review MIT SMR 1 

20. Neurocomputing* Neuroc 1 

    

We observe a sharp increase in literature in the past 3 decades (Figure 3). While 

in the nineties three articles were published, two decades later the body of literature has 

increased by a factor of seven. 

 

Figure 3: Increase in literature of big data and machine learning applications in managerial accounting 

in the past 30 years. Two papers from 2020 are discarded in this illustration. 

An overview of the research methods on this topic is provided in Figure 4. The 

characterization of research methods is based on the classification of Wouters and 
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Morales (2014). The assignment of research methods per article is summarized in Table 

6 in Appendix A. The analysis shows that most research relies on archival or market data, 

while there is hardly any field research on this topic.  

 

Figure 4: Overview of research methods for the 36 articles 

2.3.1.2 Content Analysis and Organizing Framework 

Content analysis is conducted to investigate use cases, issues, and benefits of big 

data and machine learning in management accounting. To analyze the articles, we apply 

deductive category development for the big data and machine learning techniques and the 

management accounting tasks. The big data categorization is based on the 4Vs (volume, 

velocity, variety, and veracity) (IBM, 2013). If an article utilizes social media data as the 

main data source, we consider all four Vs to be satisfied. Usually, social media data 

involves huge amounts of data that are produced in real-time at large variety and veracity. 

The categorization of machine learning techniques is based on the classification scheme 

of Brownlee (2019). The categorization of management accounting tasks is based on the 

main processes of the Controlling Process Model (International Group of Control, 2012). 

As we expect cost estimation to be a major use case of machine learning and big data, we 

introduce a separate category for this task. Cost estimation can be depicted as a sub-

category of cost accounting. The categorization of issues and effects of big data and 

machine learning is based on inductive category development. The categories of the 

content analysis are summarized in Table 3. The classification of each article according 

to the coding scheme is presented in Table 4. For each article a brief summary regarding 

the research focus is provided. 
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Table 3: Categories for content analysis 

Use Case (deductive approach) 

Big Data Volume (VOL), velocity (VEL), variety (VAR), and veracity (VER). 

Mach Learn. Regression analysis (REGR), instance-based algorithms (INST), decision tree 

algorithms (TREE), Bayesian methods (BAYES), artificial neural networks (ANN), 

and other techniques (OTHER). 

Mgmt. Acc. Strategic planning (STR.PLAN), operational planning and budgeting (OPR.PLAN), 

forecasting (FORECAST), cost accounting (COST.ACC), cost estimation 

(COST.EST), management reporting (REPORT), project and investment controlling 

(INVEST), risk management (RISK.MGT), and management support (MGT.SUPP). 

Issues (inductive approach) 

Big Data Poor data quality (QUALITY), lacking skills and know how (SKILL), privacy issues 

(PRIVACY), information overload (OVERLOAD), and problems with the 

preprocessing of raw data (PREPROC). 

Mach Learn. Interpretability problem (INTERPRET), issues related to the training process 

(TRAINING), and (hyper-)parameter setting (PARAMS). 

Benefits (inductive approach) 

Big Data New insights (INSIGHT), better corporate decision making (DEC.MAK), and 

increasing influence of management accountants (INFLUENCE). 

Mach Learn. Accuracy of outcomes (ACCURACY), time-related advantages (TIME), independence 

from expert knowledge (INDEP), and new insights (INSIGHT). 
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2.4 Application of Big Data and Machine Learning in 
Management Accounting 

2.4.1 Use Cases 

In the following, we provide an overview of the use cases of big data and machine 

learning on the main management accounting tasks. The first category covers the 

strategic planning process. The usage of big data in combination with profound analytics 

tools provide companies with new insights, creating competitive advantages in their 

strategic planning (CGMA, 2016). Specifically, the provision of more atomized and 

reconfigurable accounting information can be used to improve strategic decision making 

(Green et al., 2018). The second category covers the operational planning and budgeting 

task. Machine learning methods, such as neural networks and ID3 algorithms, can support 

the choice between LIFO (last in, first out) and FIFO (first in, first out) accounting 

methods (Liang et al., 1992). Further, artificial neural networks are able to optimize the 

inventory management of distribution companies by learning from past operations and 

decisions (Bansal, K., Vadhavkar, S. & Gupta, 1998). ANNs can also support the 

classification of stock-keeping units according to the ABC ranking scheme to improve 

the allocation of material resources (Partovi & Anandarajan, 2002). Tang (2009) 

combined artificial neural networks and fuzzy logic theory to improve corporate budget 

allocation. Finally, machine learning can be applied to estimate the number of warranty 

claims to support the financial planning of manufacturers and warranty providers (S. Wu 

& Akbarov, 2011). The third category addresses the forecasting task. The largest positive 

impact of large amounts of data from the perspective of chief financial officers lies in 

scenario planning and forecasting (Economist Intelligence Unit, 2013). Coussement et al. 

(2015) introduces a Bayesian framework for integrating expert knowledge into decision 

support systems in the context of customer satisfaction forecasting of products or 

services. Coussement et al. (2017) explores several data preparation techniques to 

improve the performance of logistic regression models compared to state-of-the-art 

machine learning techniques for the prediction of customer churn. In addition, genetic 

algorithms and artificial neural networks were applied for predicting loan credit-scores 

(good, poor, bad) of customers (Desai, 1997). The fourth category addresses cost 

accounting. New types of data, where much stems from external sources, enable 

companies to identify cost reduction potentials (CGMA, 2013). Kuzey et al. (2019) uses 

several machine learning models, such as logistic regression, support vector machines, 

and decision trees, to analyze influencing factors of cost system functionality (i.e., 
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accuracy, detail of cost data) and optimize the design of cost systems. Finally, the 

combination of simulation modeling and association rule mining can be applied to define 

cost drivers for activity-based costing systems (Kostakis et al., 2008). The fifth category 

covers cost estimation. Chou et al. (2010) applies regression models and neural networks 

on cost forecasting of liquid-crystal display equipment. Deng and Yeh (2011) use support 

vector machines, regression models, and neural networks to estimate manufacturing costs 

for airframe structural parts. Further, machine learning techniques have been applied on 

the estimation of manufacturing cost of jet engine components, providing relevant 

insights for cost engineers such as cost driver ranking and partial dependence plots for 

cost drivers (Loyer et al., 2016). Cavalieri et al. (2004) compares parametric and neural 

network methods for estimating manufacturing cost of automotive brake disks to optimize 

product concepts during the early stages of product development. Regression analysis and 

artificial neural networks were used for the estimation of manufacturing cost of sheet 

metal parts to obtain first cost forecasts during the early pricing stages (Verlinden et al., 

2008). The sixth category deals with the management reporting task of managerial 

accounting. Gruss et al. (2018) introduces a novel text mining approach based on social 

media postings to support the management reporting on product quality. Big data in the 

form of online reviews can be applied in the reporting of competitiveness of hotel brands 

and other branded products (H. Xia et al., 2020). New types of data, such as video and 

audio files can be used in managerial accounting to improve management control systems 

by incorporating better performance measures (Warren et al., 2015). The seventh category 

covers project and investment controlling. Artificial neural networks can be applied for 

the estimation of bank merger premiums to improve corporate investment decisions 

(Shawver, 2005). Hua Tan et al. (2006) combines case-based reasoning with neural 

networks to support investment decision making on new manufacturing technologies. The 

eighth category encompasses risk management. Big data can support accountants in the 

area of risk management by real-time risk identification and seeing the bigger picture 

(Chua, 2013). Holton (2009) applies text mining techniques to detect disgruntled 

employee communications, supporting fraud risk prediction and prevention. Finally, the 

ninth category addresses management support. Big data can be used for the preparation 

of management information incorporating highly different data sources (Bhimani & 

Willcocks, 2014). Thereby, the usage of big data enables managers to measure and learn 

more about their companies (McAfee et al., 2012). Tan et al. (2015) introduces an 

analytical infrastructure based on deduction graph techniques to support managerial 

decision making by providing important product requirements. Golmohammadi (2011) 
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proposes a decision-making model, integrating fuzzy logic and neural networks to support 

the managerial decision-making process.  

2.4.2 Issues 

In the following, we describe the identified issues of big data applications in 

management accounting. The first issue of big data is related to the poor data quality. 

Reliable data quality and integrity is an important requirement for the usefulness of big 

data applications (Appelbaum et al., 2017; Warren et al., 2015). However, large data sets 

are often disorganized and difficult to manage (Bhimani & Willcocks, 2014). For 

example, social media posts are difficult to work with due to abbreviations and different 

formatting (Gruss et al., 2018). In addition, the reliability of such information is often 

problematic (Tan et al., 2015). The second category addresses the required skills and 

know-how in order to operate both technologies. The adoption of big data technology is 

often limited by the lacking knowledge of retrieving valuable information from massive 

amounts of data (Warren et al., 2015). Most business professionals have difficulties 

getting insights from big data and work with non-financial data sources (CGMA, 2013). 

The adoption of big data and the development toward a data-driven company is often 

inhibited by the lack of internal skills and the understanding to use analytics for business 

operations (LaValle et al., 2011). However, teaching accountants how to work with 

unfamiliar data sources and integrating IT in the accounting curriculum is challenging 

(Green et al., 2018). The third category covers privacy issues. Integrating and sharing 

many data sources throughout a company can be the cause of privacy and security 

problems (Appelbaum et al., 2017). The risks of privacy and ethical problems are difficult 

to measure in big data applications (Chua, 2013). Hence, big data systems must be 

implemented with care to prevent privacy violations (Holton, 2009). The fourth category 

is information overload. Providing too much information at higher degrees of variety 

reduces the usability for effective decision making (CGMA, 2016). When applying big 

data, often much effort and time is required to identify relevant information (Tan et al., 

2015). The fifth category deals with complex preprocessing steps. It is difficult to 

integrate information from different sources (i.e., customer feedback, website data) and 

utilizing the separate pieces of information for decision making (Tan et al., 2015). Further, 

there are certain data formats, such as videos and images, that yield potential information, 

but they are generally difficult to process and interpret (Zhan & Tan, 2020).  

In the following, we provide an overview of the identified issues when applying 

machine learning in management accounting. The first category deals with the 
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interpretability problem. A major limitation of machine learning is the lack of 

interpretability and transparency, which is necessary to improve the model and utilize the 

output in practice (Cavalieri et al., 2004). The perception of machine learning models as 

a black box leads to a reduction in trust into the model and its results (Liang et al., 1992). 

One example of a hard to interpret and opaque machine learning models are artificial 

neural networks (Chou et al., 2010). In cost estimation, neural networks do not provide 

any direct information about the association between input and output variables that can 

be used to understand cost relationships and identify cost drivers (Caputo & Pelagagge, 

2008). Therefore, cost engineers still prefer more transparent and interpretable cost 

estimation models for their explanatory power (Verlinden et al., 2008). The second 

category deals with the complex training process of machine learning. Complex machine 

learning models require many hours to train (Chou et al., 2010). Further, machine learning 

models are often limited to numerical representations only. Hence, the inclusion of 

important qualitative features into a model is challenging (Partovi & Anandarajan, 2002). 

Massive training examples are required when training machine learning models; if the 

size of a training set is not large enough, the machine learning algorithm might not solve 

the task sufficiently (Tang, 2009). The final category covers the (hyper-)parameter 

setting problem. Selecting the right machine learning model for a task and adjusting the 

parameters is a manual and iterative process, where developers sometimes go through 

thousands of versions until identifying an adequate model (Bansal, K., Vadhavkar, S. & 

Gupta, 1998). Deng and Yeh (2011) states that the adjustment of parameters is the most 

critical problem in neural networks, where the predictive performance is directly 

dependent on the parameter selection. Often heuristic approaches are necessary, where 

the identification of the most appropriate model with an optimized set of parameters 

however cannot be ensured (Desai, 1997). 

2.4.3 Benefits 

In this section, we provide an overview of the identified positive effects of big 

data and machine learning applications in management accounting. The first category of 

benefits covers the gathering of new insights. Big data can help manufacturers to better 

understand their customers and identify important customer requirements, which can be 

used to improve product designs (Qi et al., 2016). Further, the application of big data 

enables manufactures to get new ideas for new product development (Tan et al., 2015). 

Additional insights from big data can also be used to get a holistic perspective about the 

operational capabilities of a company (Zhan & Tan, 2020). The second category covers 
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benefits related to better decision making. Big data enables decision making based on 

facts instead of relying only on personal judgment (LaValle et al., 2011). McAfee et al. 

(2012, p. 6) state that “data-driven decisions are better decisions” as managers can judge 

based on proof instead of hunches. Therefore, recipients of accounting data will 

increasingly demand for raw data, which provide more flexibility and autonomy when 

conducting analyses according to the specific decision-making needs (Green et al., 2018). 

Further, the velocity aspect of big data can provide real time insights, which can support 

time critical decision making processes (Chua, 2013). The third category deals with an 

increasing influence of accountants. Big data and more sophisticated data analytics can 

transform finance professionals into information specialists (Bhimani & Willcocks, 

2014). Therefore, management accountants are required to partner more closely with the 

IT department (data collection), data scientists (data analytics) and managers 

(transforming insights into actions) (CGMA, 2013). Finance and accounting managers 

see a strategic opportunity in the application of big data leading to an increase of their 

influential power within companies (Economist Intelligence Unit, 2013). 

The first category of benefits toward the application of machine learning in 

management accounting is the increasing accuracy of outcomes. Results from machine 

learning models proof to have higher predictive accuracy than conventional techniques in 

the classification of stock-keeping units according to the ABC ranking system (Amani & 

Fadlalla, 2017). Similarly, the application of artificial neural networks significantly 

increases the predictive accuracy when estimating merger premiums compared to simple 

linear regression models (Shawver, 2005). Further, the utilization of machine learning 

models lead to an increase in predictive accuracy in the context of product cost estimation 

(Caputo & Pelagagge, 2008; Cavalieri et al., 2004; Loyer et al., 2016). The second 

category covers time-specific advantages. Machine learning enables product managers to 

produce sufficiently accurate product cost estimates in the early phase of new product 

development, which support the first negotiations with clients and reduces cost changes 

at later stages (Chou et al., 2010). Further, machine learning models estimate product 

costs much leaner and faster than more traditional methods (Cavalieri et al., 2004). 

Verlinden et al. (2008) state that in the sheet metal industry the application of machine 

learning can be beneficial, since fast product cost estimates are necessary as customers 

often expect price quotations right away. The third category covers benefits regarding the 

independence of machine learning systems from expert knowledge. Caputo and 

Pelagagge (2008) point out that the utilization of ANNs saves time and expenses of cost 

experts as supervised learning algorithms are independent from prior set cost 
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relationships. In cost management the results of machine learning models are independent 

from the abilities of cost experts, selecting the most important cost drivers and defining 

cost estimation relationships (Cavalieri et al., 2004). Golmohammadi (2011) claims that 

artificial neural networks can be used for many multi-attribute decision making problems 

without personal judgment from management. Coussement et al. (2015) point out that the 

integration of machine learning methods into decision support systems is beneficial as 

such systems can operate mostly independently from expert opinions. On many occasions 

the manual evaluation of problems would be too expensive and time consuming. The final 

category covers new insights gained from machine learning models. Machine learning 

can be used to gather robust and reliable insights of influencing factors for cost system 

functionality, including the importance and sensitivity of variables (Kuzey et al., 2019). 

Kostakis et al. (2008) used association rule mining to gain insights into the associations 

between cost drivers for activity-based costing systems. The findings can be used to 

develop latent cost drivers for more difficult-to-measure cost drivers. Loyer et al. (2016) 

used machine learning to gain relevant insights for cost engineers; for example, machine 

learning can be used to rank cost drivers according to their importance and approximate 

the functional relationship between cost drivers and manufacturing costs. Machine 

learning systems can support the prioritization of investment decisions by systematically 

providing insights about past projects and experiences (Hua Tan et al., 2006). 

2.4.4 Category Frequencies and Analysis 

In the following, we analyze the category frequencies of both technologies, the 

management accounting tasks, and the identified issues and benefits. Figure 5 depicts the 

number of articles for each category in the sample of literature. The percentage 

frequencies refer to the relative number of articles within a category group.  
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Figure 5: Overview of big data and machine learning application in managerial accounting 

2.4.4.1 Use Cases of Big Data and Machine Learning in Management 

Accounting (Research Question 1) 

The content analysis shows that big data and machine learning technology can be 

used to support all major management accounting tasks. All four aspects of big data (4Vs) 

can be deployed in managerial accounting. Thereby, big data is mostly specified by high 

volume (30%), variety (29%), and velocity (27%). Several machine learning methods, 

either classification or regression, at different levels of complexity can be deployed. The 

most common machine learning techniques are the rather complex artificial neural 

network (40%) followed by the rather simple regression model (17%). Figure 6 depicts 

the number of articles describing use cases of big data, machine learning and the 

simultaneous usage of both technologies on the nine management accounting tasks. The 

deployment of big data and machine learning technology strongly depends on the 

corresponding management accounting task. Big data is primarily applied for 

management support, management reporting, and operational planning and budgeting. 

For tasks that involve predictive analytics such as cost estimation, forecasting, and 
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operational planning and budgeting primarily machine learning is used. The 

simultaneous deployment of big data and machine learning is scarce. From 36 articles 

only 5 (14%) combined machine learning and big data technology. Figure 6 also shows 

that most applications of big data and machine learning in management accounting have 

been investigated with empirical research.  

 

Figure 6: Number of articles that describe applications of big data and machine learning in management 

accounting. Non-empirical articles are illustrated separately. 

2.4.4.2 Issues and Benefits of Big Data and Machine Learning Application in 

Management Accounting (Research Question 2) 

Next, we discuss the issues and benefits of both technologies in the context of 

managerial accounting. The most critical issues of big data applications in management 

accounting are poor data quality (41%) and the lack of required skills and know-how 

(23%). In most cases of machine learning applications, the interpretability problem (47%) 

and the complex training process (32%) are considered problematic. Overall, most issues 

are related toward the lack of know-how and experience of management accountants to 

work with these technologies. Therefore, most issues could be addressed with additional 

training and education. However, some issues, such as the interpretability problem of 

machine learning and data quality of big data, remain to be critical. In these cases, 

compromising between different factors (i.e., accuracy versus interpretability) is 

necessary. 
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The most important benefits of big data application are new insights (38%), better 

decision making (31%) and an increasing influence of accountants in their businesses 

(31%). In the case of machine learning, mostly an increase in accuracy of outcomes is 

reported (48%), followed by time-specific advantages (19%) and a larger independence 

from expert knowledge (19%). Therefore, most benefits point toward an increase of 

effectivity to solve common management accounting tasks. Some benefits, such as the 

increase of influential power and independence from expert knowledge, indicate a rather 

disruptive impact on the management accounting profession. Big data and machine 

learning can change the role of management accountants toward information specialists. 

Table 5 depicts the categories of issues and benefits of both technologies over the nine 

managerial accounting tasks. The categories of issues and benefits are highly dependent 

on the corresponding tasks. For example, the interpretability problem and the accuracy 

benefit of machine learning is almost entirely relevant in cost estimation. Whereas the 

data quality issue and benefits from new insights of big data are mostly effective in the 

tasks of management reporting and management support.  
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Table 5: Issues and benefits of big data and machine learning over managerial accounting tasks. The 

table depicts for each category of issues and benefits the number of articles that describe a 

specific management accounting task. The most common combination of management 

accounting task and category of issues and benefits is indicated by underline.  
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Total 15 11 7 6 2  7 8 9  9 6 4  14 5 5 4 
                   

Strategic planning 1 1 
 

1   
 

1 
 

 

   

     

Operat. plan. and budgeting 2 3 
 

1   
 

1 1  1 3 1  2    

Forecasting 1 1 
 

1   
  

1  1 1 1  2  1  

Cost accounting 2 1 1 
 

  
  

1  

   

 2   2 

Cost estimation 

    
  

   

 5 2 2  6 4 2 1 

Management reporting 4 3 2 1   2 2 2  1 
  

 1    

Project and investment contl. 

    
  

   

 1 
  

 1 1 1 1 

Risk management 1 1 2 1   1 1 2  

   

     

Management support 4 1 2 1 2  4 3 2  

   

   1  

                   

2.5 Discussion and Conclusion 

In this chapter, we investigate the body of literature on the application of big data 

and machine learning technology in management accounting. The study answers two 

research questions: 1) What are use cases of big data and machine learning in 

management accounting? 2) What are the issues and benefits of these technologies for 

managerial accounting? The systematic literature review has identified and analyzed 36 

articles.  

The literature so far has considered big data and machine learning as game-

changers for businesses (Carlton Sapp et al., 2019; LaValle et al., 2011). We find several 

empirical studies, which suggest that big data technology can actually be applied in the 

managerial accounting tasks of strategic planning, operational planning and budgeting, 

forecasting, cost accounting, management reporting, risk management, and management 

support. Further we find that machine learning technology can actually be applied in 

operational planning and budgeting, forecasting, cost accounting, cost estimation, 
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management reporting, project and investment controlling, risk management, and 

management support. Since both technologies can be applied on almost any management 

accounting task, we can confirm the game-changing potential of big data and machine 

learning technology.  

However, we also find that big data and machine learning are mostly used for 

different tasks. Big data is primarily used for management reporting and management 

support, while machine learning is primarily used for cost estimation, operational 

planning and budgeting, and forecasting. This suggests that the revolutionary potential 

of big data and machine learning is different between the tasks. Big data yields a larger 

impact on tasks where descriptive analyses are involved, while machine learning yields a 

larger potential for tasks with predictive analytics. As both technologies are often 

primarily used for different tasks, there are not many studies that evaluate or apply 

simultaneous usage. Literature suggests that the simultaneous usage is beneficial as big 

data and machine learning are two technologies reinforcing each other (Y. Zhang et al., 

2021). We assume that the limited research on the simultaneous usage can be explained 

by the different knowledge bases needed in order to work with big data and machine 

learning. Since researchers might either be familiar with big data or machine learning, the 

simultaneous usage is rather limited.  

Our findings suggest two interesting avenues for further research. First, we 

identified three managerial accounting tasks where either the application of big data or 

machine learning have not been covered. Therefore, further research could investigate the 

applicability of big data in cost estimation and project and investment controlling and 

machine learning in strategic planning. Second, further research is needed to examine the 

potential benefits and challenges of the simultaneous usage of big data and machine 

learning in management accounting. 

The literature so far has identified several management accounting specific 

challenges and opportunities of big data and machine learning (Gärtner & Hiebl, 2017; 

Mardini & Alkurdi, 2021). Our systematic review finds that poor data quality, lack in 

skills, privacy issues, information overload, and the preprocessing of raw data are critical 

issues of big data in management accounting. On the other hand, big data offers new 

insights, better decision making and increasing influence of accountants. In the case of 

machine learning, we find that the interpretability problem, complex training process, 

and parameter setting are considered problematic, while higher accuracy of outcomes, 
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time-specific advantages, larger independence from expert knowledge, and new insights 

are important opportunities.  

Our systematic literature review identified several new benefits and issues of big 

data and machine learning in managerial accounting not considered in literature reviews 

so far (Gärtner & Hiebl, 2017; Mardini & Alkurdi, 2021). As an example, for big data we 

identified the increasing influence of accountants as a new important benefit and the 

privacy issues a new critical problem. For machine learning, we identified the 

independence from expert knowledge as an additional benefit and the interpretability 

problem as a highly critical issue. Further, our findings suggest a slightly different ranking 

of issues of big data in management accounting relative to the literature. While in Gärtner 

and Hiebl (2017) the large data volume and the loss of data sovereignty was considered 

challenging in managerial accounting, we find that data quality and the lack in skills as 

particularly problematic.  

In addition, we find that the issues and benefits are highly dependent on the 

management accounting tasks. As an example, the data quality is particularly problematic 

when dealing with management reporting, while the interpretability problem is 

particularly critical in the case of cost estimation. This differentiation suggests that there 

are no overall issues and benefits of big data and machine learning, but they rather depend 

on the managerial accounting task. We can explain this result with the unique 

characteristics of the nine management accounting tasks. Managerial accounting tasks 

differ in various aspects such as time, quality, and accuracy requirements. As big data and 

machine learning have benefits and issues related to these aspects, the significance of 

opportunities and challenges can be different as well.  

Two more research avenues can be suggested. First, most issues of big data and 

machine learning point toward the general lack of knowledge and experience of 

accountants, which can be counteracted with education and training or partnering more 

closely with IT. However, some issues require compromising between different factors 

(i.e., interpretability versus accuracy). The interpretability problem, which describes the 

trade-off between interpretability and accuracy of machine learning models, was the most 

concerning issue of machine learning in management accounting. Future research could 

analyze solutions to the interpretability problem specifically in the field of managerial 

accounting. Second, only little field work is applied on this topic. Field research on big 

data and machine learning from the perspective of management accounting could 
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investigate how such technology is used, how to overcome challenges, and report on 

actual benefits.  

The literature review has some limitations. First, the literature search is limited by 

the focus on high-ranking journals of the ABDC list in combination with backward and 

forward search. Of course, we cannot claim completeness since we risk missing relevant 

studies in lower ranked journals or other journals not included in the ABDC journal list, 

which are not covered in the backward and forward search. The second limitation refers 

to the selection of search terms. Some authors might apply big data or machine learning 

techniques without using our search terms. Still, we assume that a significant part of the 

relevant studies published in reputable academic journals is included in this review. 
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2.6 Appendix A 

Table 6: Overview of articles in this review 

Author (year) Query Journal Research method 

Appelbaum et al. (2017) A1 IJAIS Theoretical 

Bhimani and Willcocks (2014) A1 ABR Theoretical 

CGMA (2013) A1 CGMA Qualitative, Survey 

CGMA (2016) A1 CGMA Survey 

Chua (2014) A1 ACCA Theoretical, Qualitative 

Economist Intelligence Unit (2013) A1 EIU Survey, Qualitative 

Green et al. (2018) A1 IJAIM Theoretical 

Holton (2009) A1 DSS Market 

LaValle et al. (2011) A1 MIT SMR Survey 

McAfee et al. (2012) A1 HBR Market, Qualitative 

Warren et al. (2015) A1 AH Theoretical 

Desai (1997) A2 IMA JMM Archival 

Kuzey et al. (2019) A2 IJAIM Survey 

Liang et al. (1992) A2 CAR Market 

Bansal, K., Vadhavkar, S. and Gupta (1998) A3 IJAM Archival 

Chou et al. (2010) A3 IJPE Archival 

Kostakis et al. (2008) A3 IJAIM Simulation study 

Partovi and Anandarajan (2002) A3 CIE Archival 

Shawver (2005) A3 JETA Market 

Tang (2009) A3 Neuroc Field work 

Qi et al. (2016) B1, B3 IM Market 

Tan et al. (2015) B1, B3 IJPE Field work 

Zhan and Tan (2020) B1, B3 EJOR Field work 

Caputo and Pelagagge (2008) B2 IJPE Archival 

Cavalieri et al. (2004) B2 IJPE Archival 

Loyer et al. (2016) B2 IJPE Archival 

Coussement et al. (2015) B2, B3 DSS Market 

Deng and Yeh (2011) B2 IJPE Simulation study 

Golmohammadi (2011) B2 IJPE Archival 

Gruss et al. (2018) B2, B3 DSS Market 

Hua Tan et al. (2006) B2 IJPE Field work 

Verlinden et al. (2008) B2 IJPE Archival 

Q. Wang (2007) B2 IJPE Simulation study 

S. Wu and Akbarov (2011) B2 EJOR Market, Archival 

Coussement et al. (2017) B3 DSS Archival 

H. Xia et al. (2020) B3 IJHM Market 
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3 Big Data and Machine Learning in 
Cost Management: A Case Study 

Abstract 

This study presents a case study on the applicability of machine learning and 

big data technology for product cost estimation, focusing on the material costs of 

passenger cars, using actual company data. The study provides contributions on six 

research aspects. First, we show what machine learning algorithms are appropriate 

when dealing with product cost estimation of highly complex products with more 

than 2,000 parts and hundreds of cost drivers. Second, our case study contributes to 

the literature by providing a novel approach to increase the predictive accuracy of 

cost estimates of subsequent product generations. Third, we show that the accuracy 

is up to 3.5 times higher when using big data compared to an intermediate size of 

data. Fourth, machine learning can outperform cost estimates from cost experts, or 

produce at least comparable results, even when dealing with highly complex 

products. Then, we add to the current literature by evaluating use cases, issues, and 

benefits of machine learning and big data from the perspective of cost experts. 

Specifically, the case study shows that machine learning can reliably select the most 

important cost drivers (fifth aspect) and calculate the average cost of cost drivers 

over thousands of product configurations (sixth aspect). However, cost experts must 

be knowledgeable about the product and remain careful when interpreting machine 

learning outcomes as they can yield misleading outcomes for some exceptional 

cases. In conclusion, machine learning and big data empirically proved to be able 

to generate additional values in many aspects for managing cost during the early 

phase of new product development. 

Keywords:   Machine learning; Big Data; Product cost estimation; Cost 

management; Case study 
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3.1 Introduction 

Machine learning and big data technology offer significant potential benefits for 

managing costs and economic decision-making in manufacturing companies (Chou et al., 

2010; Fosso Wamba et al., 2015; Loyer et al., 2016). While the literature offers many 

theoretical approaches, frameworks, or conceptual applications of big data and machine 

learning (Bhimani & Willcocks, 2014; Rikhardsson & Yigitbasioglu, 2018; Saggi & Jain, 

2018), far less empirical studies report experienced implementation and realized benefits, 

and these typically do not provide specific insights regarding cost management and 

economic decision-making (Fosso Wamba et al., 2015; Hua Tan et al., 2006; Tan et al., 

2015). The lack of actual implementations and empirical evaluation also encompasses the 

field of cost estimation. We need to better understand how the potential of these new 

technologies can be realized in this area. This chapter presents a case study to address the 

following questions: How can big data and machine learning technology be applied to 

complex product cost estimation? What are the actual benefits and insights for such 

technology for the product development process? 

To answer this research question, we present a case study describing the 

application of these technologies in the automotive industry using real industrial data. We 

cooperated with a German car manufacturer to investigate the applicability of machine 

learning for cost estimation of passenger cars for subsequent product generations. This 

study describes the implementation for such technology, how to overcome issues, and 

evaluates potential benefits. Two state-of-the-art machine learning models, namely 

Artificial Neural Networks and Gradient Boosted Regression Trees, were applied on high 

volume data to analyze several aspects of cost estimation and cost management. The 

research aspects were analyzed based on real industrial data. In addition, the results are 

discussed and evaluated with cost experts from the case company. 

The analysis contributes to the literature in several ways. First, the study shows 

that machine learning and big data can produce higher predictive accuracy than manual 

calculations from cost experts or produce at least comparable results even when dealing 

with highly complex products. We thereby add to the cost estimation literature that mostly 

considered products with intermediate complexity (Bendul & Apostu, 2017; Caputo & 

Pelagagge, 2008). Second, the case study introduces a novel approach to increase 

predictive accuracy for cost estimates for subsequent product generations in the context 

of multi-generational product development (Cai & Tyagi, 2014; Tyagi et al., 2015). Third, 

this case study shows that the accuracy is considerably higher when using big data sets 



3.2 Literature Review 

 

38 

compared to intermediate-sized data sets. In the context of cost estimation, we consider 

an amount of data in the few hundreds as intermediate (Caputo & Pelagagge, 2008; Chou 

et al., 2010; Loyer et al., 2016). Too our knowledge, considerably larger amounts of data 

in the tens of thousands or hundreds of thousands have not explicitly examined in the 

context of product cost estimation and are further referred to as big data. Further, we add 

to the current literature by evaluating benefits and issues of the application of machine 

learning at a manufacturing company from the perspective of cost experts. Research in 

the field of product cost estimation already used machine learning models to examine cost 

engineering insights such as cost driver identification and cost behavior analysis, 

however, did not empirically validate the results (Chan et al., 2018; Loyer et al., 2016). 

The evaluation shows that machine learning and big data can reliably select the most 

important cost drivers and calculate the average cost of product features over thousands 

of product configurations. Yet, we also highlight the importance of cost estimators and 

cost managers to be knowledgeable about the product and remain careful when 

interpreting machine learning outcomes as they yield in some cases misleading outcomes. 

The remainder of this chapter is structured as follows: In the next section, we 

provide a short overview about product cost estimation methods and the application of 

machine learning in the product cost estimation task. In Section 3.3 we motivate six 

research aspects in the context of cost estimation and cost management during new 

product development. In Section 3.4, we conduct a case study approach to analyze the 

research aspects. Section 3.5 concludes the work.  

3.2 Literature Review 

3.2.1 Product Cost Estimation 

Product cost estimation is a topic of great importance for all manufacturing and 

producing companies. Especially during the product development process, it is a main 

interface between engineering and cost management divisions. When it comes to 

evaluating the cost of a product, several problems arise. An overestimation of cost could 

mistakenly discard profitable products, while an underestimation of cost causes the risk 

of producing at loss. Therefore, generating accurate cost estimates at any stage of product 

development is necessary to remain competitive.  

For an overview of product cost estimation methods, the framework of Niazi et 

al. (2006) is helpful, who divides methods into qualitative and quantitative techniques. 

Qualitative techniques compare new products to previous ones to find similarities. Based 
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on that, past designs and manufacturing data can be used to generate cost estimates for 

new products. Qualitative techniques can be divided into intuitive and analogical 

techniques. Intuitive techniques are based on expert experience. The knowledge is usually 

stored in rule sets, decision trees, or case-databases. Analogical techniques use historical 

cost data to train statistical models. Estimations are based on correlations between the 

features and cost, where causality does not necessarily exist. Quantitative techniques 

make use of the knowledge about the design, materials, and processes of a product. Costs 

are then calculated using a predefined equation. Quantitative techniques can be divided 

into parametric and analytical methods. Parametric techniques derive an equation for 

costs, using relevant features as input variables. Analytical techniques consider the 

product as the sum of all necessary units and operations (i.e., break-down approach, 

activity-based costing).  

Machine learning has been applied to product cost estimation in several industries 

for a great variety of products. In the manufacturing sector, machine learning was used to 

estimate the cost of machined rotational parts (Li Qian & Ben-Arieh, 2008) and sheet 

metal parts (Verlinden et al., 2008). In the aerospace industry, machine learning 

algorithms were applied to predict the manufacturing cost of jet engine components 

(Loyer et al., 2016) and airframe structural projects (Deng & Yeh, 2011). In the 

electronics industry, several machine learning techniques were compared for the 

prediction of thin-film transistor liquid-crystal display manufacturing equipment (Chou 

et al., 2010; Chou & Tsai, 2012). Caputo and Pelagagge (2008) used neural networks and 

parametric methods in the heavy carpentry sector to forecast manufacturing cost of large 

pressure vessels. Y. F. Zhang et al. (1996) applied neural networks to estimate the cost of 

packaging products. In the automotive industry, Cavalieri et al. (2004) compared 

parametric methods and neural networks to predict the unitary manufacturing costs of 

brake disks. Further, discrete event simulation has been applied to the cost analysis of 

composite cross car beams (Kendall et al., 1998). Farineau et al. (2001) used regression 

analysis to predict manufacturing cost of gear box casings (i.e., clutch housing, 

differential carrier, gear box housing). In the study of Stockton et al. (2013), data mining 

techniques were used to extract cost estimation relationships for automated spray painting 

and turning processes. 

The application of machine learning for product cost estimation proved to be 

beneficial in many ways. The application of such technology can generate accurate cost 

estimates (Caputo & Pelagagge, 2008; Loyer et al., 2016), is fast (Cavalieri et al., 2004), 
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can be conducted in the very early phase of new product development (Chou et al., 2010), 

can lead to more autonomy (Caputo & Pelagagge, 2008; Cavalieri et al., 2004), and might 

provide important cost-engineering insights (Loyer et al., 2016). Further, machine 

learning can help to set sales prices as competitive as possible (Verlinden et al., 2008) 

and generate cost forecasts that are inexpensive in terms of the required type and amount 

of input data (Q. Wang, 2007). Machine learning-based cost modeling is particularly 

useful in the early stages of product development when optimizing the design of new 

products (Cavalieri et al., 2004).  

3.2.2 Knowledge Gap 

While the literature provides many examples of machine learning applications to 

predict the cost on part or component level, little is known about the effectiveness in the 

case of highly complex products. Many modern products are very complex according to 

their number of parts and the application of commonality strategies resulting in a high 

variety of products. Secondly, since most cost estimation studies approach cost prediction 

from the perspective of a single generation, the product cost estimation literature lacks in 

studies considering multi-generational aspects of products (Cai & Tyagi, 2014). Third, 

cost estimation literature is limited when considering the potential of big data. Most 

studies apply cost estimation methods on an intermediate size of data with few hundred 

training examples and few cost drivers (Caputo & Pelagagge, 2008; Chou et al., 2010; 

Loyer et al., 2016). Fourth, literature lacks qualitative research and field work. Empirical 

cost estimation studies mostly focus on the comparison of statistical models according to 

their predictive performance based on archival data. However, little is known about the 

actual utilization in practice. In particular, the literature lacks on empirical analyses on 

the applicability of complex (black-box) machine learning models. Fifth, articles that also 

considers additional benefits for cost engineers and project management is scarce. One of 

the few studies that discusses additional benefits and insights is the work of Loyer et al. 

(2016), which, however, lacks in the empirical validation of insights. 

3.3 Specific Aspects to look at 

In the following, we introduce six research aspects to investigate the applicability 

of machine learning and big data techniques for the estimation of cost of complex and 

multi-generational products. The first aspect addresses the model selection problem of 

machine learning applications. Many machine learning algorithms have already been 

applied in cost engineering and were compared according to their performance. We intend 
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to complement the existing literature by comparing various machine learning methods for 

the estimation of costs of highly complex products with a large variety of features. The 

process of finding the best-performing model from a set of models is called model 

selection. 

1st aspect: Which machine learning models are appropriate for the estimation of 

manufacturing costs of highly complex products? 

The second aspect deals with the potential of big data application for product cost 

estimation. Big data has not explicitly been applied in the context of product cost 

estimation. Currently, the number of training examples for product cost estimation is far 

from being considered big (i.e., 68 observations in Caputo and Pelagagge (2008), 519 in 

Chou et al. (2010), 254 in Loyer et al. (2016)). There is usually a positive association 

between the size of training data and the predictive performance of (complex) machine 

learning algorithms (Goodfellow et al., 2016; Grolinger et al., 2014). Training on more 

data usually leads to more accurate cost estimates, upon the condition of sufficient data 

quality. Therefore, we expect that using high-volume data will lead to more accurate cost 

estimates compared to intermediate amounts of data.  

2nd aspect: Does big data lead to a substantial increase in cost estimation accuracy 

compared to intermediate amounts of data? 

The third aspect addresses the problem of multi-generational product cost 

estimation. Using costing data from past generations for the prediction of a subsequent 

generation seems logical, but also raises concerns about the validity of historical data. 

There can be several years between two product generations (i.e., approximately seven 

years in the automotive industry). In the meanwhile, customer value, market, technology, 

and competitor environment can be substantially different. Consequently, data from past 

product generations are potentially not representative to predict subsequent product 

generations.  

3rd aspect: How to improve the predictive performance of multi-generational product 

estimation?  

The fourth aspect is related to the potential increase in predictive accuracy 

compared to manual calculations from cost experts. From the literature we know that 

state-of-the-art machine learning models can be more accurate than conventional 

statistical methods (Cavalieri et al., 2004; Verlinden et al., 2008). In addition, some 
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research indicates that cost estimates from machine learning methods can outperform cost 

forecasts from domain experts, based on their experience and traditional cost estimation 

methods (Bendul & Apostu, 2017; Caputo & Pelagagge, 2008). However, the superiority 

of machine learning could only be confirmed for products with rather manageable 

complexity. When dealing with highly complex products, presumably human judgment 

becomes more important to produce accurate cost estimates. This leads to the question, 

whether machine learning methods produce more accurate cost estimates than manual 

calculations from cost engineers when dealing with complex products.  

4th aspect: Does machine learning technology lead to more accurate cost estimates than 

calculations from cost experts when dealing with highly complex products? 

The remaining aspects cover potential insights of machine learning and big data 

technology for cost management. Most cost estimation studies compare machine learning 

algorithms up to their predictive accuracy only. The work of Loyer et al. (2016) is one of 

the very few studies that also covers potential engineering insights that such technology 

might yield for cost experts. However, little is known whether such insights are valid and 

helpful in practice. The following two research aspects examine this question.  

The fifth aspect concerns the reliability of cost driver identification based on 

machine learning. In the context of new product development it is crucial to understand 

what drives costs. Knowing which features cause the highest impact on cost is especially 

important for decision making at the early design stage. Cost driver analysis is the 

“examination, quantification and explanation of the cause-effect relationship of the cost 

drivers and total over ead costs of an operation” (Schniederjans & Garvin, 1997, p. 72). 

Understandably, the selection of cost drivers from a set of potential cost drivers can be 

difficult in the case of high product interdependencies and modular designs. Machine 

learning practitioners face a similar problem. The knowledge about important features is 

helpful to improve models, counteract unwanted behavior and build trust in the model 

(Hooker et al., 2018). Often only few features have a considerable impact on the target 

variable. The vast majority of features, however, are insignificant and could have also not 

been collected (Friedman & Meulman, 2003). Loyer et al. (2016) demonstrated the 

application of machine learning to select and quantify the most important cost drivers. 

Similar approaches have been applied in the cost driver detection for activity-based 

costing systems (K. Kim, 2003; Kostakis et al., 2008). However, due to the lack of 

empirical research it is mostly unclear whether machine learning can reliably unveil the 

underlying costing structure and produce reasonable results.  
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5th aspect: Can machine learning models select the most important cost drivers reliably? 

The sixth aspect covers the relationship between product features and total 

manufacturing cost. The knowledge about the average cost and their sensitivity of 

features yields important insights for product planners in the early design stage (Farineau 

et al., 2001). Due to high product commonality and high interdependencies between parts, 

however, it is often difficult to estimate these relationships over multiple product 

configurations. Product features often occur only in combination with other features due 

to bundling and packaging approaches (i.e., equipment lines of cars). Therefore, the cost 

of one feature is often confounded with other features. Machine learning can be used to 

extract the relationships between product features and manufacturing costs by using the 

knowledge representation of machine learning models (Chan et al., 2018; Loyer et al., 

2016). However, due to the lack of empirical research, little is known whether these 

approaches produce indeed meaningful and reliable information for cost planners. 

6th aspect: Can machine learning models reliably estimate the relationship between cost 

drivers and manufacturing cost? 

Accordingly, we explore the following research questions: How can big data and 

machine learning technology be applied for complex product cost estimation? What are 

the actual benefits and insights for such technology for the product development process? 

3.4 A Case Study 

We conducted a case study to investigate the research questions and the six 

research aspects. In the following, we shortly describe the case study approach and its 

adequacy to answer the research questions. Then, the case company and its products are 

introduced, and relevant background information of the industry is provided. Following 

this, the case study evidence and the data collection process are described. Then, the six 

research aspects are analyzed based on quantitative and qualitative data.  

3.4.1 Case Study Research 

In the following, we explain the reasoning behind choosing a case study approach. 

Case study research is appropriate in situations of asking how and why research questions, 

having no requirement of control over the behavioral aspects and a focus on present 

events (Yin, 2018). Since we are interested in the question of how machine learning and 

big data technology can be applied in practice, a case study is an appropriate method in 
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contrast to methods relying only on quantitative data. In a case study, several sources of 

evidence are combined: archival documents, interview data, direct observations, and 

physical artifacts (Yin, 2018). The case study approach is often used to examine how 

techniques and processes from theory are applied in practice (Scapens, 1990). Otley and 

Berry (1994) furthermore highlight that case studies can provide a more comprehensive 

perspective by which theories can be generated and modified. To examine our research 

questions, highly sensitive data (quantitative and qualitative) is needed. In addition, the 

expertise of cost experts to evaluate and discuss the findings is required. Therefore, a case 

study is conducted that involved not just obtaining the data from the company but also 

working with company employees on site to obtain trust and a comprehensive 

understanding about processes and data sources. We select a research site on the basis of 

the following four requirements. Since we are interested in the applicability of machine 

learning and big data in the cost estimation task of highly complex products, sufficient 

complexity of the products is needed in terms of the number of parts and variety of 

product configurations. Second, the case company needs to handle multi-generational 

products. Third, the case company needs to have large volume of costing and technical 

data over at least two product generations. Fourth, the access to domain experts needs to 

be granted to discuss and evaluate findings. 

3.4.2 Case Company 

3.4.2.1 Research Site 

The case study is conducted at a German car manufacturer operating in the 

premium segment. The case company is further referred to as AutomotiveCompany. The 

product line-up encompasses several vehicles ranging from small cars to luxury cars. The 

author was three years on site and participated in several cost management and new 

product development projects. The author supported project teams at the integration of 

costing data and data analysis.   erefore, e tensive access to t e co pany’s costing and 

technical databases was granted. The author mainly participated in the parts controlling 

department. Part controllers are responsible for the management of direct material costs 

of parts and participate in the simultaneous engineering (SE) teams. The estimation of 

direct material costs at AutomotiveCompany is mostly based on analytical techniques 

incorporating historical costing data adjusted by expert knowledge. So far, the controlling 

department of AutomotiveCompany has no prior experience of machine learning- and big 

data-based product cost estimation methods. When dealing with passenger cars, direct 

material cost represent the largest share of total cost (approximately 60%). Therefore, at 



3 Big Data and Machine Learning in Cost Management: A Case Study 

 

45 

AutomotiveCompany most cost reduction effort and attention during new product 

development is placed on this cost type. Figure 7 illustrates an exemplary breakdown of 

sales price and cost structure of a passenger car. 

 

Figure 7: Breakdown of a passenger car’s sales price into cost types. Disguised case company data. 

In this case study, the unit of analysis are entire car models over thousands of 

configurations. A car model can be for example the Volkswagen Golf or the Volkswagen 

Passat. In total we analyze 120,378 unique configurations of four car models over two 

product generations. Modern passenger cars are highly complex products. At 

AutomotiveCompany a bill of materials consists of approximately 2,500 parts and 

components. On one side, components typically have a large technical variety, resulting 

in a wide range of component costs (i.e., car seats, steering wheel, combustion engine). 

On the other side, there are many interdependencies between product features, where one 

product feature requires or prohibit other features. Figure 8 showcases some examples of 

the complexity of components and the complexity of the assembly of passenger cars. 
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Figure 8: Complexity of modern passenger cars (graphic by the author) 

3.4.3 Case Study Data 

The case study data encompasses a mix of quantitative and qualitative data. The 

quantitative data is being used to analyze and test the research aspects. The qualitative 

data is used to evaluate the findings regarding the research aspects from the perspective 

of cost experts. The qualitative evaluation is based on the aspects: feasibility, usability, 

utility, and intention to use. 

3.4.3.1 Quantitative Data Collection 

The quantitative archival data includes complex bills of materials, production 

data, and descriptions of technical features. In the following, we explain the combination 

of data from AutomotiveCompany’s costing, production, and technical IT systems. First, 

we explain the data sources and the necessary pre-processing steps. Then, we explain the 

construction of the multi-generational data set and provide an overview of the direct 

material cost. 

3.4.3.1.1 Data Sources and Pre-Processing 

We employ three data sources: costing, production, and technical data. The 

costing data is based on the post-calculation system, which tracks the direct material costs 

of a car model in the form of complex bills of materials. A complex bill of materials 

covers all parts and components of a car model (i.e., 15 steering wheels, 10 combustion 

engines). The production data includes the configurations of product characteristics for 
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all cars produced in the form of order codes. A product characteristic describes the 

specific version of equipment or technical part. An order code is the combination of all 

product characteristics that describe a certain configuration of a car model (i.e., with or 

without head-up display, the version of the car seats). The technical data encompasses 

short textual descriptions for each product characteristic. To create numerical 

representations for the product characteristics, we manually extract the individual product 

features from the descriptions. For example, a specific combustion engine can be 

described by the engine performance, number of cylinders, and the turbo specification. 

Ordinal dichotomous product characteristics are thereby encoded by 1 = with product 

feature, 0 = without product feature. Nominal categorical product characteristics are 

encoded by one-hot encoding. One-hot encoding creates a binary vector for each 

category. In total 461 individual product features are extracted from all product 

characteristics. 10 of which are cardinal (i.e., engine performance, rear brake 

performance), the majority however are binary features such as the advanced display 

system, advanced suspension system, and driver assistance system.  

3.4.3.1.2 Data Combination 

The product features and direct material cost of a produced car are combined 

based on the specific order code. The total direct material cost is calculated as the sum of 

all parts required to satisfy the order code. The product features can be mapped to each 

order code according to the corresponding product characteristics. Further, the cost is 

grouped into four categories or assembly groups: body, electrics, chassis, and engine. 

The body group consists for example of the bodyshell, windows, heating, air 

conditioning, seats, bumper, interieur equipment, and trim. The electrics group contains 

the infotainment system, on-board power supply, electronic control units, and battery. 

The chassis encompasses axles, steering, brakes, and fuel system. The engine group 

includes the combustion engine, transmission, and clutch. Some parts cannot be attributed 

to any of the four assembly groups. Relative to the total cost the remaining costs range 

from 0.44% to 0.91%. For the sake of simplicity, we discard these parts when predicting 

cost at the assembly level. Duplicated order codes are kept in the database to capture the 

relative frequency of individual product features and feature combinations. 

To analyze the multi-generational aspect of product cost estimation, we collect 

data for two periods containing two product generations: predecessor generation (three-

month period) and successor generation (four-month period). The car models in both data 

sets are mutually exclusive. The data set includes four car models (car a, car b, car c, and 
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car d) ranging from a small car to a luxury car. Table 7 provides an overview of the data 

set. As an example, the product feature head-up display (HUD) is mapped to 1 (included) 

or 0 (not included), the product feature steering wheel covering includes among others 

the categories leather and polyurethane (PUR) coating, the product feature combustion 

engine includes among others the number of cylinders, engine performance, and a biturbo 

charging specification. The database covers four car models (a, b, c, and d) over two 

generations (I and II) with the corresponding product features and corresponding direct 

material costs (assembly-level and total cost).  

Table 7: Overview of the combined data set.  The data encompasses four car models for two 

generations with thousands of configurations according to different product features and the 

corresponding direct material costs (fictive data). 

Car 

 model 

 Product features  Direct material cost [€] 

 HUD ··· leather PUR ··· cyl. perform. biturbo  electr. ··· sum 

aI 
 0 ··· 1 0 ··· 4 145 0  1,500 ··· 9,200 

aI 
 0 ··· 0 1 ··· 4 160 1  1,600 ··· 9,500 

…              
dI 

 1 ··· 1 0 ··· 6 170 1  6,200 ··· 31,000 

…              

bII  1 ··· 1 0 ··· 6 220 1  4,000 ··· 16,000 
…              

dII 
 1 ··· 1 0 ··· 8 270 1  7,600 ··· 38,000 

3.4.3.1.3 Splitting the Data Set 

To train and test machine learning models, the data is split into a training, 

validation, and testing set. The training set is used for fitting the models; the validation 

set is used to tune the hyperparameters; the testing set is used to evaluate the performance. 

We distinguish between predecessor generation data (generation I) and successor 

generation data (generation II). The predecessor generation data is employed for training, 

validation, and inner-generational testing. The data is split into 80% training set, 10% 

validation set and 10% testing set. To ensure that the duplicated order codes are mutually 

exclusive in each sample, we employ the following sampling process: For each car model, 

we randomly select one order code from the predecessor data set. Next, all observations 

that have the same order code are added to the training set and removed from the 

predecessor data set. The selection process is repeated until the training set exceeds 80% 

of observations. The same process is applied for the validation set (repeated until < 10%). 

The remaining observations are used for inner-generational testing. This sampling 

process leads to the following distribution of unique order codes: The training set captures 

in average 53% of the unique order codes over the four car models. The validation set 

contains in average 22% and the testing set 25% of order codes. The successor generation 
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data is exclusively used for testing (inter-generational testing). Figure 9 provides an 

overview of the data set configuration. 

 

Figure 9: Overview of the multi-generational data set. Number of observations are depicted in brackets.  

We employed a re-fit strategy to make use of the complete predecessor generation 

data. Therewith, the model for inner-generational testing is trained on the training and 

validation set. The inter-generational testing is based on the complete predecessor data 

set (training, validation, and inner-generational testing set). Thereby, the models are fitted 

to the additional observations without updating the hyperparameters. Table 8 provides an 

overview of the costing data for the predecessor and successor generations. The number 

of individual order codes provide insight into the complexity of modern passenger cars. 

During the period of only three months, 32,880 unique order codes of car cI have been 

produced. The direct material cost of car cI ranges from €14,657 to €42,088. The standard 

deviation amounts to €4,406. 
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Table 8: Overview of the predecessor and successor product generations. The summary table 

incorporates the number of observations (Obs.), unique order codes (OC) and descriptive 

statistics of the direct material cost (DMC) in EUR. 

Car Obs. OC DMCmin DMCmax DMC̅̅ ̅̅ ̅̅ ̅ DMCSD 

Predecessor product generation (I) 

car aI 41,846 16,515 8,179 15,379 9,869 1,077 

car bI 23,044 11,875 12,090 21,649 16,136 1,991 

car cI 62,706 32,880 14,657 42,088 20,914 4,406 

car dI 8,129 2,061 26,549 50,808 31,991 5,544 

Total 135,725 63,331     

Successor product generation (II) 

car aII 24,034 9,312 8,340 12,981 10,099 1,196 

car bII 66,479 31,275 12,584 31,018 17,292 3,337 

car cII 32,177 15,403 17,768 32,567 23,591 3,221 

car dII 6,384 1,057 30,757 46,429 35,256 3,765 

Total 129,074 57,047     

 

3.4.3.2 Qualitative Data Collection 

To evaluate the results regarding feasibility, usability, utility, and intention to use, 

semi-structured interviews were conducted to collect qualitative data. We spoke with 14 

cost experts, five from the complete vehicle controlling department (C1 – C5) and nine 

from the parts controlling department (P1 – P9) of AutomotiveCompany. All interviewed 

cost experts have work experience in the controlling department of at least three years. 

The approach to improve the predictive performance for multi-generational cost 

estimation (3rd aspect), the comparison of cost estimation accuracy (4th aspect) and 

reliability of cost driver selection (5th aspect) were discussed with complete vehicle 

controllers. The reliability of machine learning models to estimate the relationship 

between product features and manufacturing cost (6th aspect) was discussed with part 

controllers. The analysis of the 1st aspect (algorithm selection) and 2nd aspect (impact of 

big data) is based on quantitative data only.  

The evaluation of research aspects is based on the measures feasibility, usability, 

utility, and intention to use (Agarwal & Prasad, 1998; Hua Tan et al., 2006; Platts, 1993; 

Tan et al., 2015). We formulate five criteria to assess the applicability of machine learning 

and big data in the context of cost management (Table 9). 
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Table 9: Evaluation criteria for case study results 

Evaluation criteria 

C1 feasibility How valid would you rate the method/results? 

C2 utility (support) Are the results helpful for your work? In what situation? 

C3 utility (insight) Does/Do the method/results yield any new or unexpected insights? 

C4 usability How easy could the method be integrated into your work? 

C5 intention to use Do you intend to use the method in practice? 

3.4.4 Results 

3.4.4.1 1st aspect: Model Selection for the Estimation of Manufacturing Costs of 

Highly Complex Products 

The first research aspect deals with the algorithm selection problem for product 

cost estimation of complex products. In this section, we compare the predictive accuracy 

of several machine learning models: artificial neural network (ANN), case-based 

reasoning (CBR), decision tree regression (DTR), elastic net regression (ELR), gradient 

boosted regression (GBR), lasso regression (LAR), and linear support vector regression 

(LSVR). To implement the models, each model has been tuned individually. The 

hyperparameter-setting procedure for each model is described in the Appendix B (Table 

19). The models are trained on the training set (80%) and tuned according to the validation 

set (10%). The selected models were implemented in Python with the scikit-learn package 

(Pedregosa et al., 2011). 

The predictive performance is measured with four metrics: normalized mean 

absolute error (NMAE), mean absolute percentage error (MAPE), normalized root mean 

square error (NRMSE), and explained variance score (EVS). The NMAE, MAPE and 

NRMSE are error metrics where lower values are preferable. The NMAE is calculated as 

the mean absolute error divided by the mean of the actual values. The MAPE is calculated 

by the mean relative absolute deviation between the actual value (yi) and forecast value 

(ŷ
i
) to the actual value. The MAPE measure is the most commonly used metric for 

evaluating forecasts in companies (Gneiting, 2011). However, one major drawback is that 

the metric puts more emphasis on negative deviations (yi < ŷ
i
). When used to select 

between alternative forecasting models, this metric systematically selects those which 

underestimate the actual values (Tofallis, 2015). Therefore, the NMAE and MAPE are 

both used to evaluate the relative error. The NRMSE puts more weight on larger errors 

and therefore additionally penalizes models with larger errors. The EVS measures the 

capability to explain variations in the data (higher values are preferable). The EVS almost 
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equals the coefficient of determination (R2) except that the EVS can handle the skewness 

of residuals (Guia et al., 2020). The four metrics are calculated as follows: 
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Table 10 compares the machine learning models according to the four metrics 

over the four cars (car aI, car bI, car cI, car dI). The highest predictive performances are 

attained by the GBR and ANN models. In the following, we further describe both 

algorithms and use the two models to analyze the remaining research aspects (2, 3, 4, 5, 

and 6). In doing so, we are also able to investigate the practical applicability of highly 

complex (black-box) machine learning models from the perspective of cost experts. 

Notably, the much simpler LAR model yields comparable predictive accuracy that 

suggests that not always high complex machine learning models are required when 

conducting product cost estimation within the same product generation.  
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Table 10: Comparison of machine learning models on the total cost prediction for the validation set. The 

table depicts the average performance over the four car models. 

Model NMAE [%] MAPE [%] NRMSE [%] EVS [%] 

GBR 0.88 0.89 1.32 99.21 

ANN 1.16 1.15 1.58 98.93 

LAR 1.26 1.27 1.67 98.76 

LSVR 1.42 1.40 1.94 98.44 

DTR 2.20 2.21 3.13 96.05 

ELR 2.36 2.32 3.18 95.61 

CBR 2.61 2.59 3.72 94.55 

     

3.4.4.1.1 Artificial Neural Networks 

Neural networks are graph models that mimic the function of neurons in the 

human brain (Shtub & Zimerman, 1993). The network consists of computational units, 

so-called neurons, that are organized in different layers. Each neuron obtains input signals 

from preceding units and passes a transformed signal to subsequent units if activated. The 

neurons on the input layer receive the input data, while the output layer combines all 

signals to produce the output data. In between, hidden layers allow for complex 

interactions and nonlinear behavior (Figure 10a). The input value of a neuron is usually 

the simple weighted summation of all input signals, which is then modified by an 

activation function. In product cost estimation usually the back-propagation algorithm is 

used to determine the weights of the signals between the neurons (Niazi et al., 2006). The 

complexity of an artificial neural network is mainly determined by the number of hidden 

layers and the number of neurons. These parameters need to be adjusted carefully when 

designing the topology of neural networks. If the complexity of the network is too high, 

an overly complex function is generated to approximate the training data. Later, however, 

the network possibly fails to perform on the testing data set. This effect is called 

overlearning or overfitting. Determining the best topology for the neural network is 

usually done by trial-and-error where different networks are tested and the best one is 

selected. 
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(a)  Schematic drawing of deep learning with two 

hidden layers 

 

(b)   epresentation of t e  osenblatt’s 

perceptron (Rosenblatt, 1958) 

Figure 10: Neural network representations 

In the following, we describe the learning procedure for multi-layer feed-forward 

neural networks based on the work of Rumelhart et al. (1986). Back-propagation neural 

networks are based on a supervised learning procedure, meaning that the network is 

constructed by presenting data with known input and output values. The aim is to find a 

set of weights (w) that reduces the differences between the generated output vectors (y) 

and the target output vector (t). Figure 10b represents a basic neural network design. The 

procedure starts by initializing the weights with small random numbers. The weight 

between neuron i and neuron j is denoted by wij. The network is successively fed by the 

training data and the output is calculated by a so-called forward pass. In doing so, the 

neurons in each layer determine their states by the input signals they receive from units 

in lower layers. The i-th input of neuron j is denoted as xij, the total input to neuron j (xj) 

is calculated as ∑ xijwij
n
i= . The output of a neuron j (yj) is then calculated by applying an 

activation function φ (yj = φ(xj)). The prediction error is then calculated by comparing the 

output layer and the target vectors (tj). Derivatives of the error are propagated backwards 

from the output layer through the network. Each weight is changed by an amount 

proportional to the accumulated error, ∂E ∂w⁄ . An important parameter for the back-

propagation step is the learning rate (η) that adjusts the rate at which the weights are 

updated. 
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Algorithm 1: Back-propagation algorithm 

1. Initialize weights with small random numbers. 

2. Repeat: 

 (a) Selection of observation d from training set T. 

 (b) Compute output for d. 

 (d) Successive back-propagation of error on neurons 

  δj {
oj( − oj ∑ δkwjk

k∈Downstream(j 
j ∉ output

oj( − oj (tj − oj j∈ output
 

 (e) Update weights Δwij = ηδjxij 

  

The number of hyperparameters of ANNs is vast. Typical parameters that are used 

in most implementations are the number and size of the hidden layers, the learning rate 

and the dropout rate (Diaz et al., 2017). Other hyperparameters that are often adjusted are 

activation functions, learning rates, number of training epochs, dropout for regularization, 

loss functions, and optimizers (Neary, 2018). 

3.4.4.1.2 Gradient Boosted Regression 

Boosting is an important approach in machine learning which was developed by 

Freund and Schapire (1997). The approach involves the combination of many simple 

models (so-called weak learners or base learners) to produce a single ensemble with high 

performance. This procedure is applicable for classification problems (categorical 

dependent variable) and regression problems (continuous dependent variable). In the 

boosting approach, the ensemble F(x) is calculated as the weighted sum of base learners 

fm(x),  F(x =∑ β
m
 f
m
(x)M

m= , where βm denotes the expansion coefficient at each iteration. 

Thereby, an additive model is created by successively fitting base learners to the residuals 

of the current ensemble. This approach has been refined by Friedman (2001) and 

Friedman (2002) by the introduction of the TreeBoost algorithm that uses regression trees 

as base learners. Thereby, the TreeBoost algorithm combines the advantages of the 

boosting approach and regression trees such as conceptual simplicity and computational 

efficiency (Shin, 2015).  

In the following, the TreeBoost algorithm for regression trees is described. Since 

the selection of the optimal base learner in each iteration is computationally infeasible, a 
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steepest descent step is applied. In step 2(a), the so-called pseudo-residuals are computed 

for each observation i. In 2(b) a base learner is fitted to the pseudo-residuals (rim) resulting 

in the terminal regions Rjm. The terminal regions are the decision nodes of the regression 

tree. In 2(c) the step size (γjm) is computed. For the commonly used squared-error loss, 

the solution is the regression tree that best predicts the current pseudo-residuals. 

Therefore, the step size γjm is the mean of the residuals in each corresponding terminal 

region. In 2(d) the ensemble is updated. The final model F(x) consists of the aggregation 

of M base learners. Overfitting can be reduced by introducing a shrinkage parameter ν, 0 

< ν ≤ 1, and adjusting the number of base learners M. The algorithm is described in the 

following: 

Algorithm 2: Gradient TreeBoost 

1. Initialize f0(x) = arg minγ ∑ L(y
i
,N

i= γ . 

2. For m = 1 to M: 

 (a) For i = 1, 2, ..., N compute rim = − [
∂L(y

i
,   f(xi  

∂f(xi 
]
f=f

m− 

 

 (b) Fit a regression tree to the targets rim giving terminal regions 

  Rjm, j = 1, 2, ..., Jm. 

 (c) For j = 1, 2, ..., Jm compute 

  γjm = arg minγ ∑ L(y
i
, f
m- 
(xi)+γ xi ∈  jm . 

 (d) Update fm(x) = f
m- 

(x  + ν ∑  γ
jm
  x ∈Jm

j=  jm. 

3. Output F x = fM(x). 

  

The hyperparameter tuning of GBR models is mainly based on three parameters: 

the number of trees (M), the shrinkage parameter (ν), and the depth of the regression trees 

(Loyer et al., 2016). The depth of regression trees controls the number of binary 

evaluations in each tree. The shrinkage (or learning rate) parameter controls the weight 

of each decision tree in the aggregated model (Landry et al., 2016). 

3.4.4.2 2nd Aspect: Impact of Big Data on Cost Estimation Accuracy 

The second research aspect raises the question whether big data leads to a 

substantial increase in cost estimation accuracy compared to intermediate amounts of 

data. Big data usually refers to complex and very large data sets. It is often characterized 

by the 3Vs: volume, variety, and velocity (Laney, 2001; McAfee et al., 2012). To evaluate 
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the impact of big data (in this case mostly defined by volume), we vary the amount of 

data in two ways. First, we reduce the number of observations in the training data set. 

Therefore, 300 unique order codes are randomly selected for each car model. Second, we 

take all observations but only select the top 20 most important features according to the 

GBR model.2 Finally, we do both, which results in a sample of 1,200 configurations and 

20 features. This yields three subsets of training data. Figure 11 summarizes the results 

of the analysis for each performance metric. The usage of reduced observations and/or 

reduced number of features substantially decreases in predictive accuracy. The utilization 

of the reduced number of observations increases the NMAE score from 0.88% to 1.64%. 

The intermediate number of features leads to a NMAE score of 2.49%. In combination, 

the NMAE rises to 3.08%. Consequently, we can confirm the additional value of big data 

technology for product cost estimation. 

 

2 The selection of features is based on the impurity-based feature importance, see Section 3.4.4.5. 
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Figure 11: Impact of big data on cost estimation accuracy. The figure depicts a comparison of the 

predictive performance between the full data set, reduced number of observations (300 order 

codes for each car model), reduced number of features (top 20 most important features), and 

reduced number of observations and features. 

3.4.4.3 3rd Aspect: Improving Predictive Performance for Multi-Generational 

Product Cost Estimation 

The third research aspect deals with the improvement of predictive performance 

of multi-generational product cost estimation. At the case company, it is considered that 

direct material cost decrease by approximately four percent per year due to learning 

curves under the condition of equality in product design, quality, and other product 

properties. Therefore, some parts that remain unchanged will be cheaper in the subsequent 

product generation. To ensure the competitiveness of new product generations, new 

features, superior design, and better quality need to be introduced that again cause an 

increase in product costs. This increase in cost depends on several factors such as market 

environment and the targeted customer value. The change of cost between two product 

generations can therefore be approximated by the sum of the cost decrease due to learning 

curves and cost increase due to new and advanced product characteristics. It can be 

difficult to estimate this change of cost with cost estimation models relying on product 

features only. New features might be deployed in the successor product generation, which 

are unknown to the machine learning model. On the other hand, it is difficult to measure 
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intangible properties such as quality, impression, and the design of parts that, however, 

also have considerable effects on product cost. 3  In the following, we introduce a 

generation shift factor to approximate the change of cost between two product 

generations.  

To account for the cost changes between product generations, we adopt the target 

costing approach. Target costs are calculated as the difference between sales price and 

profit margin (profit percentage x sales price). We utilize this functional relationship 

between the sales price and cost to estimate the change in direct material cost between 

two generations. First, a linear regression model is fitted on the relationship between the 

average net earnings (𝑁𝐸̅̅ ̅̅ I) and average direct material cost (𝐷𝑀𝐶̅̅ ̅̅ ̅̅
I̅) over all products from 

the preceding product generation. We use the regression model and the estimated average 

net earnings for a product i from the successor generation (NE̅̅ ̅̅ II,i
e

), to calculate the 

corresponding estimated average material cost (DMC̅̅ ̅̅ ̅̅ ̅
II,i

e
). The estimated generation shift 

factor for product i (δ̂i) is defined as the ratio between the estimated average direct 

material cost of generation I and II. The final cost prediction of a predecessor generation 

product (DMCII,i) is obtained by multiplying the generation shift factor (δ̂i) with the 

prediction from the machine learning model for this product (DMCII,i
m

).  

 

3 In case of passenger cars, the interior trims can have more superior slush elements instead of 

plastic panels. A new generation of combustion engines might be equal according to its product features, 

but may differentiate by its running smoothness. 
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DMC̅̅ ̅̅ ̅̅ ̅

I = β
 
 + β

 
𝑁𝐸̅̅ ̅̅ 𝐼 + ϵ    (5) 

DMC̅̅ ̅̅ ̅̅ ̅
II,i

e
 = β

 
 + β

 
NE̅̅ ̅̅ II,i

e
  (6) 

DMC̅̅ ̅̅ ̅̅ ̅
I,i

e
 = β

 
 + β

 
NE̅̅ ̅̅ I,i   

δ̂i= 
DMC̅̅ ̅̅ ̅̅ ̅

II,i

e

DMC̅̅ ̅̅ ̅̅ ̅
I,i

e  (7) 

DMCII,i = δ̂i × DMCII,i
m

 (8) 

where   
I: predecessor project   

II: successor project  

   

   
In the following, the proposed approach is applied on company data from 

AutomotiveCompany. During the last two decades, the car manufacturer evolved from a 

volume manufacturer into a premium brand. As a result, net earnings and direct material 

cost increased during this transition. Accordingly, the mean direct material cost of the 

four car models increased from generation I to II. As an example, the mean direct material 

cost of car c increased from €20,914 in generation I to €23,591 in generation II (see Table 

8). In any case, the distribution of direct material cost is shifted to the right. The shape of 

distribution, however, remained largely the same between both generations. Therefore, 

we can rule out distributive effects where more high-end configurations cause the increase 

in average direct material cost. The regression analysis is based on the four predecessor 

projects (car aI, car bI, car cI, car dI). Net earnings constitute the weighted mean for each 

car model. The results of the regression model are provided in Appendix B (Table 20). 

The OLS model exhibits a significant linear relationship (p-value < 0.01) between net 

earnings and direct material costs. Economically the model shows that an increase in net 

earnings by €100 leads to an increase in direct material cost by €48.81. The linear model 

leads to a R2 of 0.993. The regression line and actual costs of car models for both 

generations are depicted in Figure 12. The scatter plot suggests a strong linear 

relationship between net earnings and direct material cost.  
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Figure 12: Linear relationship between the actual direct material cost and net earnings. The regression 

line is fitted on the predecessor data (R2 0.993). The scatter plot and the regression line 

suggest a strong positive linear relationship between net earnings and direct material cost. 

To validate the approach, we compare the predicted generation shift factor based 

on the regression formula (δ̂) with the actual change of direct material cost (δ). Therefore, 

we calculate the mean absolute error (MAE) between the actual change of cost and the 

predicted change of cost, 
 

 
∑ |δ̂i − δi|i ∈ {a, b, c, d} , which amounts to 0.0192 (SD 0.0184). 

The mean change of direct material cost over the four car models amounts to 1.0812 (SD 

0.0450). Accordingly, a large proportion of the actual change between two generations 

can be estimated. 

Finally, the approach is evaluated by cost experts from the complete controlling 

department of the case company using the evaluation criteria form Table 9. Overall, the 

method to adjust for the cost changes between two generations was perceived feasible, 

useful, and usable. Hence, the intention to use was rated high, provided that both 

generations are comparable according to certain market parameters such as sales volume 

and commodity prices. Table 11 provides an overview of the evaluation with cost experts.  
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Table 11: Evaluation of the 3rd research aspect: Improving the predictive performance for multi-

generational product cost estimation 

Criteria Evaluation feedback from cost experts 

C1: feasibility The approach was perceived as a valid method to roughly predict the costs of 

subsequent product generations. The ratio between direct material cost and net 

earnings in the regression analysis widely coincides with the rule of thumb at 

AutomotiveCompany of 50% (C1, C2, C3, C4). 

C2: utility 

(support) 

Overall, one was confident that the approach can help to adjust for cost changes between 

two generations in the very early phase when only little information about the 

subsequent generation is available (C1, C2, C5). 

C3: utility 

(insight) 

Most controllers have been surprised about the strength of the linear association 

between target net earnings and actual direct material cost. Normally, one would 

expect that the ratio between direct material cost and net earnings is lower in top-of-

the-range segments (C1, C2). 

C4: usability One was optimistic about the potential integration into a machine learning-based cost 

estimation process, since all required information is available for almost any product 

in the early phase (C1, C3, C4). 

C5: intention  

to use 

Many controllers point out that the total cost of a car model depends on several factors 

such as project volume, exhaust emission standards, vertical range of manufacture, 

commodity prices, and manufacturing location. If subsequent generations are less 

comparable according to these factors, further adjustments will be required (C1, C2, 

C5). 

   

3.4.4.4 4th Aspect: Comparison of Cost Estimation Accuracy: Machine Learning 

vs. Expert Judgment 

The fourth research aspect raises the question of whether machine learning 

technology leads to more accurate cost estimations than calculations from cost experts. 

First, we evaluate the cost estimation accuracy of the GBR and ANN model on the inner- 

and inter-generational data set. Second, we compare the results with the predictive 

accuracy of cost experts. The testing data is based on the data set split depicted in Figure 

9. During inner-generational forecasting, the cost of 13,569 new configurations within 

the same generation (I) are predicted. During inter-generational forecasting, the costs of 

129,074 configurations of the subsequent generation (II) are estimated. For each car 

model an individual machine learning model was trained. Therefore, we obtain four 

distinct GBR models and four ANN models. To analyze the predictive accuracy of both 

testing sets, the accuracy metrics NMAE, MAPE, NRMSE, and EVS are applied. First, 

the accuracy metrics are calculated for each car model (a, b, c, and d) individually. As an 

example, the inter-generational cost prediction accuracy of car a is based on the 24,034 

observations (see Table 8). Then, the accuracy scores of the four car models are averaged 

to obtain an overall mean accuracy score (mean over cars). As an example, the mean 
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NMAE of the total cost prediction is computed as 
 

4
∑  M  ii ∈ {a, b, c, d} . By grouping the 

accuracy scores over the car models, we cancel out the odd number of observations (i.e., 

66,479 car b, 6,384 car d). Otherwise, car b would have a 10-times greater impact on the 

overall accuracy score than car d. Moreover, the relationship between the predictive 

performance of direct material cost and the predicted generation adjustment factor (δ̂) can 

be analyzed. Finally, we can investigate the variation of accuracy scores over different 

car models.  

The results of the comparison of the two machine learning models for the total 

cost estimation task are exhibited in Table 12. On the inner-generational prediction task 

the GBR model has an average NMAE of 0.88% over the four car models. The ANN 

performs slightly worse and results in an average NMAE of 1.75%. In the case of the 

inter-generational prediction task, the GBR model results in an average NMAE of 4.86% 

and the ANN results in a score of 5.97% respectively. Again, the GBR outperforms the 

ANN forecasting model. In the case of inter-generational cost prediction, the predictive 

accuracy appears to strongly depend on the error between the predicted and the actual 

adjustment factors (δ̂ − δ), as the highest (lowest) δ-deviation corresponds to the most 

(least) accurate cost prediction.  
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Table 12: Total cost prediction accuracy for inner- and inter-generational data.  The mean accuracy 

measures are calculated as the average accuracy scores over the four car models (car a, car b, 

car c, and car d).  

  Total cost prediction accuracy 

Model Metric Mean over cars (SD)  car a car b car c car d 

Inner-generational cost prediction 

GBR NMAE [%] 0.88 (0.26)  0.86 0.68 0.66 1.32 

 MAPE [%] 0.88 (0.26)  0.85 0.71 0.65 1.31 

 NRMSE [%] 1.41 (0.43)  1.22 1.33 0.96 2.11 

 EVS [%] 99.13 (0.44)  99.13 98.95 99.82 98.62 

ANN NMAE [%] 1.75 (0.92)  1.07 1.77 0.93 3.24 

 MAPE [%] 1.75 (0.92)  1.06 1.78 0.90 3.24 

 NRMSE [%] 2.18 (1.04)  1.45 2.13 1.27 3.89 

 EVS [%] 98.92 (0.5)  98.81 98.76 99.74 98.39 

Inter-generational cost prediction 

GBR NMAE [%] 4.86 (1.63)  3.67 6.97 2.93 5.87 

 MAPE [%] 4.57 (1.39)  3.62 6.33 2.85 5.46 

 NRMSE [%] 7.02 (3.27)  4.27 11.88 3.80 8.11 

 EVS [%] 79.39 (13.61)  91.63 62.58 93.87 69.46 

ANN NMAE [%] 5.97 (1.36)  3.86 6.23 7.65 6.16 

 MAPE [%] 5.85 (1.34)  3.89 5.85 7.68 6.00 

 NRMSE [%] 7.35 (1.65)  4.69 9.14 8.17 7.41 

 EVS [%] 85.56 (8.12)  91.92 77.76 95.28 77.30 

δ-deviationi   δ̂i − δi   0.018 0.044 0.000 -0.015 

Note: i ∈ {car a, car b, car c, car d} 

        

Next, the cost estimation accuracy on assembly level is examined. Since car a has 

no assembly cost information, the analysis is based on the car models b, c, and d. First, 

the accuracy metrics are calculated for each car model and assembly group (body, 

electrics, chassis, and engine) individually. Second, for each assembly group the mean 

accuracy score is calculated by averaging the accuracy scores over the three car models. 

Then, the accuracy scores of the four assembly groups are averaged to obtain an overall 

accuracy score (mean over assemblies). For example, the mean NMAE on assembly level 

is calculated as 
 

 
∑

 

 
∑  M  i

j
i ∈ {b, c, d}i ∈ {body, electrics, chassis, engine} .   M  i

j
 is the 

prediction error over all configurations of a car model (i) for an assembly group (j). Table 

13 exhibits the results of the model comparison on the assembly level. On the inner-

generational prediction task the GBR model yields a mean NMAE of 1.14% over the four 

assemblies. The ANN performs slightly worse and results in 2.41% average NMAE. In 



3 Big Data and Machine Learning in Cost Management: A Case Study 

 

65 

the case of inter-generational prediction, the GBR model results in a NMAE of 13.98% 

and the ANN in a NMAE of 12.63%. The low accuracy scores on assembly level are 

mainly caused by the large deviations of the actual change of direct material cost between 

generation I and II over the assembly groups. For example, the actual average cost change 

between generation I and II of the electrics assembly amounts to 1.499, while the actual 

average cost change of the chassis group amounts to 0.9817. Since no sales prices on 

assembly level are available, the total cost adjustment factor of the corresponding car 

model must be equally used for each assembly group. Hence, the accuracy of the 

assembly cost estimation strongly depends on the error between the predicted and the 

actual adjustment factors for a given assembly (δĵ − δj). The highest (lowest) δ-deviationj 

corresponds again to the most (least) accurate cost prediction. As an example, the 

deviation between the predicted average cost change of the electrics group and the actual 

average cost change of the electrics group (δ-deviationelectrics) amounts to -0.389. The 

actual change of direct material cost of the electrics group is therefore, in average, 

underestimated. For the remaining assembly groups (body, chassis, and engine) the 

change of cost is, in average, overestimated.  
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Table 13: Assembly cost prediction accuracy for inner- and inter-generational data.  The accuracy scores 

for each assembly group (body, electrics, chassis, and engine) are calculated as the mean 

accuracy score over the three cars b, c, and d. The mean assembly cost estimation performance 

is calculated as the average accuracy scores over the four assemblies.  

  Assembly cost prediction accuracy 

Model Metric 
Mean over assemblies  

(SD) 
 Body Electrics Chassis Engine 

Inner-generational cost prediction 

GBR NMAE [%] 1.14 (0.56)  1.64 1.16 1.53 0.22 

 MAPE [%] 1.15 (0.57)  1.63 1.18 1.57 0.20 

 NRMSE [%] 2.03 (0.34)  2.44 1.68 2.29 1.72 

 EVS [%] 98.51 (0.49)  97.71 98.52 98.97 98.85 

ANN NMAE [%] 2.41 (0.76)  2.25 2.61 3.46 1.33 

 MAPE [%] 2.42 (0.84)  2.21 2.58 3.60 1.27 

 NRMSE [%] 3.35 (0.76)  3.17 3.27 4.53 2.42 

 EVS [%] 97.54 (0.76)  96.67 97.11 97.68 98.69 

Inter-generational cost prediction 

GBR NMAE [%] 13.98 (6.60)  6.99 24.82 12.25 11.85 

 MAPE [%] 13.70 (6.06)  6.50 23.30 12.23 12.75 

 NRMSE [%] 16.96 (7.10)  10.52 28.97 14.45 13.88 

 EVS [%] 62.87 (9.70)  72.31 46.63 65.69 66.85 

ANN NMAE [%] 12.63 (8.43)  6.50 27.18 8.44 8.40 

 MAPE [%] 12.36 (7.79)  5.96 25.67 8.36 9.43 

 NRMSE [%] 15.49 (8.84)  10.06 30.80 10.67 10.45 

 EVS [%] 61.87 (8.47)  70.96 53.87 69.70 52.96 

δ-deviationj   
 

3
∑ δ̂ij − δiji ∈ cars     0.046 -0.389 0.129 0.085 

Note: i ∈ {car b, car c, car d}, j ∈ {body, electrics, chassis, engine} 

   

The application of the generation shift factor (δ̂) proves to be an effective approach 

to improve the performance of inter-generational predictions. The usage of the total cost 

estimates from the GBR model without the application of the generation shift factor 

results in an average NMAE of 10.12% (+5.26 ppt). In the case of the ANN, the average 

NMAE without adjustment amounts to 11.97% (+6.00 ppt). Without adjustment, the 

assembly-level cost prediction of the GBR model leads to an average NMAE of 15.93% 

(+1.95 ppt) and in the case of the ANN to 16.64% (+4.01 ppt) respectively.  

Further, we analyze the distribution of the prediction error between the estimated 

cost and actual cost. Figure 13 depicts the actual and predicted total and assembly costs 

for the inter-generational prediction task of the GBR model. The total cost scatter plot 

shows an increasing prediction error (under-estimation) for car b and car d in higher-end 



3 Big Data and Machine Learning in Cost Management: A Case Study 

 

67 

configurations. The scatter plot on assembly level reveals lower performance of the 

electrics group especially at high-cost configurations, which presumably corresponds to 

the electric-specific innovations not included in the feature space.  

  

Figure 13: Scatter plot of actual versus predicted total and assembly costs for inter-generational 

prediction of the GBR model.  The assembly costs are the mean costs per assembly over three 

cars. 

Next, we compare the predictive performance with the manual estimations from 

cost experts. For this purpose, we rely on the corresponding reference configurations of 

the analyzed car models. AutomotiveCompany uses the reference configurations as proxy 

order codes for a car model to manage costs during product development. The manual 

cost estimates are based on the calculations from the controlling department at the early 

stage of new product development. The mean total cost estimation performance is 

calculated as the average NMAE over the four reference configurations of the four cars. 

The mean assembly cost estimation performance is calculated as the average NMAE over 

the four assemblies (body, electrics, chassis, and engine). The predictive performance for 

each assembly group is, again, calculated as the average NMAE score over the four 

reference configurations. The manual cost estimation results in an average NMAE of 

7.29% (SD 4.05%) for complete cost prediction. Thus, both machine learning models 

outperform the manual estimations from the controlling department. In the case of the 

assembly-level cost estimation, the NMAE amounts to 10.47% (SD 7.46%). Accordingly, 

the manual calculations are more accurate than the machine learning models at more 

granular cost levels.  



3.4 A Case Study 

 

68 

Finally, the machine learning-based cost estimation approach is discussed with 

cost experts from AutomotiveCompany. The results of the evaluation are summarized in 

Table 14. 

Table 14: Evaluation of the 4th research aspect: Comparison of cost estimation accuracy: Machine 

learning vs. expert judgment 

Criteria Evaluation feedback from cost experts 

C1: feasibility The ANN and GBR models are sufficiently accurate for providing total cost estimations 

for the early phase of new product development (C1, C2, C3, C4). The assembly cost 

prediction, however, has been rated as not sufficiently precise (C1, C2, C3, C4).  

C2: utility 

(support) 

A serious concern was caused by the low transparency and interpretability of both 

machine learning models. A comprehensible cost estimation method was considered 

crucial in most situations of the cross-functional product-planning process (C1, C3, 

C4). Nonetheless, machine learning was considered a helpful tool for cost 

management, especially when the product design changes rapidly, few information is 

available, and only rough cost estimates are needed (C1, C3, C4, C5). 

C3: utility 

(insight) 

The degree of cost increase of electrics was unexpectedly high. Yet, the increase could 

be explained by new innovations in infotainment, overall electrification of 

components and the shift of parts from other assemblies toward the electrics assembly 

group (C2, C4, C5). 

C4: usability One was optimistic that the integration of machine learning-based cost predictions can 

help finding cost efficient product designs during the product-planning process. This 

design-to-cost approach yields great potential to improve the design phase (C1, C4, 

C5). 

C5: intention  

to use 

Finally, one was positive about the intention to use and the integration into established 

product-planning tools (C1, C2, C3, C5). 

   

3.4.4.5 5th Aspect: Reliability of Machine Learning-Based Cost Driver Selection 

The fifth aspect raises the question whether machine learning models can identify 

and rank the most important cost drivers of highly complex products reliably. In the 

context of manufactured goods, cost drivers are described by any factor or activity that 

impact the total product cost. In this study, the 461 product features are used as cost 

drivers. We measure the impact of product features on direct material cost by the feature 

importance scores of the GBR model. The feature importance is a score that describes 

how useful a feature is for the machine learning model to predict the target variable. 

Therefore, the feature importance score quantifies the impact of any given feature on the 

predictive accuracy. One approach to derive the feature importance from statistical 

models is the utilization of linear regression coefficients, which is also commonly used 

for cost driver analysis. Since we apply more complex machine learning models to predict 
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cost, we derive the feature importance directly from the trained models. Specifically, the 

impurity-based feature importance of the GBR model is used to select the most 

important cost drivers. For a single binary split tree T with J – 1 internal nodes, Breiman 

et al. (1984) proposed the squared relevance, Ij
2(T), to measure the importance of features. 

The measure is based on the number of times a feature is used to split a tree, weighted by 

the squared improvement resulting from those splits (it
 ). For regression trees, the squared 

improvement measures the effectiveness of a split to decrease the squared prediction 

error. Therefore, a high squared relevance corresponds to a strong cause-and-effect 

relationship between a product feature and the direct material cost. The feature 

importance metric can be applied to GBR models by calculating the mean over the M 

trees in the ensemble. Due to stabilizing effects, the aggregated measure turns out to be 

more robust than measures based on a single tree (Friedman & Meulman, 2003). Usually, 

the resulting squared relevance measures are proportionally scaled to a maximum value 

of 100.  

   

Ij
 (T  = ∑ it

  (υt=j 

J− 

t =  

  (9) 

Ij
  = 

 

M
∑ Ij

 (Tm 

M

m = 1

  (10) 

where   
it
 : reduction in squared error due to the split in node t  
υt: index of splitting variable in node t   

 

The impurity-based feature importance calculation can be misleading for high 

cardinality features with many unique values. Therefore, the results of cardinal features 

(i.e., engine performance) are validated by comparing the results with an alternative 

measure, the permutation feature importance. The permutation feature importance 

measurement was introduced by Breiman (2001) for random forest models. The 

permutation feature importance is a model agnostic measure that means that it can be 

applied to any machine learning method. First, the original model error is calculated 

(errororig). Second, a feature-wise permutation step is conducted, where one feature is 

randomly shuffled, and afterwards, again, the model error is calculated (errorperm). The 

permutation feature importance (PFI) is then calculated as the ratio between the 

permutation error to the original error. If a feature is not important to the model, the PFI 

score is close to 1. If the PFI is considerably greater than 1, the feature is important. 
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PFI = 
errorperm

errororig
 (11) 

   
The investigation for the 5th and 6th research aspects is based on a detailed analysis 

of car c. The car model is selected, since it yields the largest training data set and, as a 

top-of-the-range car, covers a high variety of potential product features. The impurity-

based feature importance is derived from the GBR model, which was trained on the 

training and validation set of car c (n = 56,436). The permutation feature importance is 

also based on the GBR model, which was trained on the training and validation set and is 

calculated for the inner-generational testing set (n = 6,270). Table 15 exhibits the 10 most 

relevant features and the importance measure according to the impurity-based 

importance. The most important feature is engine power with a relevance of 38%. In total, 

the top ten features have a combined importance of 81%. The 50 most important features 

cover 98% of the feature importance. When comparing the impurity-based and 

permutation-based importance scores, the results of the cardinal features are largely 

comparable: engine performance (equal rank), rear brake performance (rank 3 instead of 

2), engine size (rank 2 instead of 4). The impurity-based and permutation methods identify 

the same cardinal features but in a slightly different order.  

Table 15: Feature importance of the GBR model (impurity-based and permutation-based). The model 

was trained on the inner-generational training set (90% of the predecessor generation data). 

The feature scale is distinguished between binary features (B) and cardinal features (C). 

Rank Feature Scale 
Impurity-based 

importance 

Permutation-based 

importance (rank) 
1 engine performance C 0.380 7.75 (1) 

2 rear brake performance C 0.109 3.08 (3) 

3 leather interior B 0.092 1.64 (18) 

4 engine size C 0.062 4.16 (2) 

5 camera system B 0.036 1.39 (25) 

6 driver assistance system B 0.028 2.16 (5) 

7 standard version (no high performance) B 0.028 1.53 (21) 

8 advanced display system B 0.026 1.68 (15) 

9 advanced suspension system B 0.023 2.85 (4) 

10 standard differential B 0.020 1.42 (23) 

      

To validate the selected cost drivers and the importance scores for direct material 

cost, the results are discussed with complete product controllers from 

AutomotiveCompany. The results are summarized in Table 16. 
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Table 16: Evaluation of the 5th research aspect: Reliability of machine learning-based cost driver 

selection 

Criteria Evaluation feedback from cost experts 

C1: feasibility Overall, the selection and ranking of the cost drivers could be confirmed by the cost 

experts. The GBR method reliably captured the features that cause a high proportion 

of direct material cost. Thereby, the relevance is not only based on individual 

component costs, but also on the influence on other parts (C4, C5, P6). 

C2: utility 

(support) 

The cost driver identification was considered to be helpful in several ways. First, the 

analysis helps to investigate the rather complex black-box model. Second, as the 

selection of features widely aligns with the ranking expected by the experts, it 

provides trust in the model and the cost predictions (C2, C3). Third, the analysis 

shows that despite the complexity of passenger cars, not hundreds of features are 

necessary to estimate material costs. This reduces the effort for data collection and 

improves the easiness to use in practice (C2, C3).  

C3: utility 

(insight) 

One controller explained that the high importance of engine performance might be 

caused by interdependencies with other parts. The combustion engine clearly 

accommodates a large proportion of direct material cost; however, the high relevance 

score can rather be explained by the effects on other parts (i.e., gearbox, motor 

cooling, overall powertrain) (C4, C5, P1). Still, it was perceived unplausible that 

engine performance explains 38% of total cost (C1, C4, C5). 

C4: usability The analysis helps to better understand the cost structure. Further, the cost experts can 

check what features need to be considered when managing cost and what features 

might be discarded (C1, C4, C5). The optimal number of features of a cost estimation 

model would cover about 70 input variables, which correspond to the number of 

features in the list of key product features at AutomotiveCompany (C1, C2). Others 

consider 20 cost drivers as acceptable to provide cost estimates in the early phase of 

new product development (C3, C5). 

C5: intention  

to use 
In general, the intention to use of the cost driver analysis was rated high (C1, C3, C4). 

   

3.4.4.6 6th Aspect: Reliability of Machine Learning Models to Estimate the 

Relationship Between Features and Manufacturing Cost 

The sixth aspect addresses the reliability of machine learning models to estimate 

the average costs of product features and the cost behavior of cardinal features over 

different feature values. The average cost of product features cannot be calculated from 

the data straightforwardly. In most cases, the total cost of a feature relies on many 

different parts and supplementary components. For example, the cost for a head-up 

display also depends on the bezel and the wiring harness. However, many of these parts 

serve multiple purposes and enable several features. As an example, the bezel of the head-

up display might be covered in leather and therefore also corresponds to the feature 

leather interior. Therefore, the sum of cost over all parts that are connected to the head-

up display would lead to an over-estimation of cost as they are attributed to the head-up 



3.4 A Case Study 

 

72 

display only proportionally. Alternatively, the cost of a certain product feature could be 

calculated by the difference between two configurations that differ only in this specific 

feature. For a binary feature the cost therefore can be calculated as the difference between 

the actual cost of a configuration with the product feature and without the feature. 

However, due to the high number of combinations between product features, these cases 

are limited and for some features they do not exist. 

To solve this problem, we use the knowledge representation of machine learning 

models. In doing so, we utilize the machine learning models to simulate changing feature 

values and estimate the effect on total cost. To do this, the Morris approach is adopted 

(Morris, 1991). This method calculates the mean elementary effect (µa) of feature Xa over 

multiple differences (so-called elementary effects) as a measure of global sensitivity. 

Thereby, the approach considers the average cost over various feature configurations and 

quantifies the range of costs. For the calculation of elementary effects (EE) we distinguish 

between binary (B) and cardinal (C) features. In the case of binary features, the difference 

between the total cost predictions with and without a feature is calculated. Therefore, for 

each observation, the original feature value is replaced by 1 or 0 respectively, all else 

being equal. To calculate the elementary effects of binary features, the more accurate 

GBR method is deployed. In the case of cardinal features, the differences between the 

total cost predictions of the initial feature value and the incremented value are calculated. 

For this purpose, the ANN is deployed. The GBR model could potentially classify initial 

and marginal changed feature values into the same terminal regions and therefore 

generally predict no cost changes. Finally, we calculate the mean elementary effect (µa) 

of feature Xa over n observations. In addition, the standard deviation of the elementary 

effects (σa) is computed, which provides information on the degree of interaction with 

other features (Pianosi et al., 2016). 



3 Big Data and Machine Learning in Cost Management: A Case Study 

 

73 
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where   
f
 m

: machine learning model m := {A(NN), G(BR)}  
B: binary features  
C: cardinal features  

   
To calculate the mean elementary effect, we use the GBR and ANN models, which 

were trained on the complete predecessor product generation data set of car c (n = 

62,706). Thereby, we use actual data samples instead of applying a sampling procedure. 

The combination of product features underlies technical restrictions, which prohibit 

certain configurations (i.e., a high-performance engine together with a basic gear box). 

The application of a naive sampling method without accounting for these restrictions, 

would result in non-realistic samples, causing biases to the results. Instead, the complete 

predecessor product generation data set of car c is used. To treat each order code equally, 

we drop all duplicated observations, resulting in n = 32,880 individual configurations. 

Table 17 depicts the results of the sensitivity analysis for the 10 most important features 

according to impurity-based measure of the GBR model (see Table 15). The table 

exhibits the mean and standard deviation of direct material cost for the selected features. 

Overall, the large standard deviations indicate high interaction effects among the product 

features. 
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Table 17: Mean elementary effects (EE). The mean elementary effects are based on the Morris method 

(values in EUR). The calculation is based on all unique observations of car c.  

Rank Feature (Xa) Scale Mean EE (µa) Std. EE (σa) 

1 engine performance C 10.16 13.60 

2 rear brake performance C 63.39 4.66 

3 leather interior B 338.07 318.03 

4 engine size C 122.05 5.13 

5 camera system B 187.69 130.64 

6 driver assistance system B 535.23 158.70 

7 standard version (no high performance) B -75.94 63.47 

8 advanced display system B 472.43 115.63 

9 advanced suspension system B 812.55 307.21 

10 standard differential B 51.82 252.90 

   

Next, we analyze the cost behavior of cardinal features. Specifically, the change 

of direct material cost over changing feature values is investigated (i.e., different levels 

of engine performance). Therefore, partial dependence functions (Friedman, 2001) are 

deployed. The partial dependence function of feature Xa is defined as the expected value 

over the joint, marginal distribution over the remaining features XR (Equation 16). The 

marginal distribution can be approximated by Equation 17, where XR
(i) are the 

observations of XR in the training data. Partial dependence functions are usually centered 

to have a mean value of zero. 

f
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To estimate the partial dependence functions, we use the GBR model of car c, 

which was trained on the complete predecessor product generation data set (n = 62,706). 

The calculation of partial dependence is based on all unique observations in the training 

data set (n = 32,880). The partial dependence plots for engine performance, rear brake 

performance, and engine size are depicted in Figure 14. Both engine-specific features 

produce step functions. The cost of rear-brake-performance is invariant for low 

performance levels and first starts to increase with a medium performance level. 
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Figure 14: Partial dependence plots for cardinal features. The partial dependence measures the marginal 

impact of the cardinal features on the direct material cost. The three partial dependence plots 

suggest a non-linear relationship between the cardinal features and direct material cost.  

Next, the elementary effects and partial dependence plots are evaluated by cost 

experts from the part controlling department (Table 18). 
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Table 18: Evaluation of the 6th research aspect: Reliability of machine learning models to estimate the 

relationship between features and manufacturing cost 

Criteria Evaluation feedback from cost experts 

C1: feasibility The mean elementary effects of the binary features could be approved in almost any 

case. The only implausible elementary effect was the standard differential where the 

estimated costs were far less than the actual component cost. This indicates that the 

analysis yields better results for additionally added components (i.e., camera system) 

or advanced versions of components (i.e., advanced suspension system) and is less 

valid for baseline versions of features. The elementary effects of the continuous 

features are also rated as plausible; however, the actual cost behavior is reflected far 

better by the partial dependence plots. The partial dependence plots were appealing 

to the cost experts. In the case of engine performance, the gradient boosted model 

exactly identified the well-known cost hike when passing a performance level 185. 

Here, the costlier V6 engine instead of the 4-cylinder in-line engine need to be 

deployed (P1). The cost behavior of the rear brake performance and engine size also 

correspond to the expected cost patterns (P3, P6). 

C2: utility 

(support) 

The results are considered helpful in many ways. First, rough cost indications about 

features can help optimizing product designs during the product-planning stage (P1, 

P5). Second, the analysis provides the mean cost over all configurations of a car 

model instead of relying only on one reference model. This enables a more holistic 

view on cost management (P4, C1). Third, the elementary effect analysis was 

considered helpful to increase trust into the overall machine learning approach (P8).  

C3: utility 

(insight) 

The standard deviation, however, was unexpectedly high (P2, P4). One controller 

explained that the variance of cost cannot only be attributed to different versions of 

components but also to varying pre-conditions. Hence, depending on the 

configuration, more or less components are added alongside with a given feature (P5). 

For example, advanced track rods are required for plug-in hybrid electric vehicles and 

vehicles with air suspension. Therefore, the cost of an air suspension system is lower 

for a plug-in hybrid vehicle as the costs for the track rod can be shared. 

C4: usability The usability was rated high for providing rough cost estimates during the early design 

stage and the management of cost during new product development (P2, P4, P8). In 

the case of detailed and granular cost calculations at later development stages, the 

approach was not considered usable due to the low accuracy and the lack of 

transparency and interpretability (P4, P8, P9). 

C5: intention  

to use 

The intention to use was rated high for the application at the design stage (P2, P3, P4, 

P8). The approach was well received by cost experts. 

   

Additionally, two-way global sensitivity analysis was conducted to investigate 

interactions between product features. Campolongo and Braddock (1999) proposed an 

extension to the one-factor-at-a-time method, which enables the calculation of second-

order effects. A second-order elementary effect provides a measure of the impact on the 

output due to the interactions between two input factors. A description of calculation of 

the mean two-factor interaction effect can be found in Appendix B. To evaluate the two-

way interaction effects, a sample of feature pairs is selected and discussed with cost 

experts. The sample of feature pairs is based on the 10 most important features (Table 

15) and the GBR model. The ANN model did not produce substantial two-factor 
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interaction effects. Accordingly, only binary features are considered in the analysis. 

Furthermore, the feature standard version is discarded since no distinct association to 

parts and components is given. This selection results in six primary features, namely 

leather interior, camera system, driver assistance system, advanced display system, 

advanced suspension system, and standard differential. To select feature pairs with high 

interaction,  ried an and  opesc ’s H-statistic is calculated for all combinations 

between primary features (Xa) and secondary features (Xb). The statistic introduced by 

Friedman and Popescu (2008) measures how much variation of the prediction depends 

on the interaction between two features.4 Next, for each primary feature the 10 secondary 

features with the highest H-statistic are selected and the mean two-factor interaction effect 

is calculated for each selected feature pair. The sample of 60 feature pairs is evaluated by 

the corresponding cost experts from the part controlling department. In most cases, the 

identified interaction effects could not be confirmed. However, for some combinations 

the GBR model produces reasonable results. For example, the advanced suspension 

system and the high-performance version of rear brake systems both need additional and 

more advanced parts that can be shared when both features are deployed (P5). However, 

only in the case of 7 feature pairs (12%) the interaction effects have been rated as plausible 

by the cost experts. Most interaction effects were rated as spurious and could instead be 

explained by price bundling strategies and the availability of car lines (P1, P4, P8). 

Accordingly, the GBR model might assign higher costs for certain feature pairs as they 

are usually deployed in fully equipped bundles or lines. 

3.5 Discussion and Conclusion 

This chapter investigates the applicability of machine learning and big data 

technology for the estimation of cost of complex products from a multi-generational 

perspective. Thereby, actual benefits and insights of such technology for cost managers 

were analyzed in a case study at a German car manufacturer. Two state-of-the-art machine 

learning algorithms, an ANN and a GBR model, were applied to estimate and analyze 

direct material cost of passenger cars. This in-depth case study is a response to the lack 

of field work of machine learning and big data applications for cost management during 

new product development. The results suggest that machine learning and big data can be 

 

4 The calculation of the H-statistic is based on the Python package sklearn-gbmi 1.0.3. Haygood, R. 

(2020, 4. Juni). sklearn-gbmi 1.0.3. Python Package Index (PyPI). https://pypi.org/project/sklearn-

gbmi/, (accessed September 18, 2020). 
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useful to support and augment the management of cost and the decision-making process 

during new product development. Specifically, machine learning and big data technology 

can lead to more accurate cost estimations, is able to identify the most important cost 

drivers, and can help to determine the average costs of product features reliably. Cost 

experts from the case company found the results encouraging and believed that machine 

learning could improve the efficiency of their cost management process. In sum, machine 

learning and big data are both valid technologies to improve the estimation of direct 

material cost of passenger cars. 

3.5.1 Research Implications 

This chapter has several implications for research and practice. Specifically, the 

following six research aspects were analyzed to investigate the overall research questions: 

How can big data and machine learning technology be applied for complex product cost 

estimation? What are the actual benefits and insights for such technology for the product 

development process? 

1st research aspect (Which machine learning models are appropriate for the 

estimation of manufacturing costs of highly complex products?): Several machine 

learning models have been applied in the context of product cost estimation on part level 

and products with intermediate complexity, whereby more complex models usually 

produced more accurate cost predictions (Deng & Yeh, 2011; Loyer et al., 2016; Stockton 

et al., 2013; Y. F. Zhang et al., 1996). Similarly, we find that machine learning models 

with higher complexity tend to perform better on the estimation of direct material cost of 

passenger cars. The most accurate models are the rather complex GBR and ANN 

algorithms. However, also much simpler models, such as the LAR model, obtained 

comparable predictive accuracy on the (inner-generational) validation set. This indicates 

that limited model complexity is sufficient to produce adequate results for the cost 

estimation within the same product generation. For the inter-generational testing set the 

LAR model yielded a NMAE of 7.86% on total cost estimation and 15.09% on assembly 

level. This corresponds to an increase in prediction error of +3.00 ppt (total) and +1.11 

ppt (assembly) compared to the GBR model. We complement the existing literature on 

product cost estimation by confirming the complexity-accuracy relationship of machine 

learning models for highly complex products with a large variety of features when 

conducting inner-generational cost estimation. Notably, on inner-generational cost 

estimation, the superiority of highly complex models against simpler approach vanishes, 
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indicating that not always high complexity is required to achieve sufficient levels of 

accuracy.  

2nd research aspect (Does big data lead to a substantial increase in cost estimation 

accuracy compared to intermediate amounts of data?): The predictive accuracy of 

machine learning models usually increases with larger training samples, given data 

quality is sufficient (Goodfellow et al., 2016; Grolinger et al., 2014). In the cost estimation 

literature, the number of training examples for product cost estimation is merely of 

intermediate quality with a few hundred observations and only few features (Caputo & 

Pelagagge, 2008; Chou et al., 2010; Loyer et al., 2016). Our results also show that the 

utilization of high-volume data and high number of input features leads to a substantial 

increase in cost estimation accuracy. In particular, the relatively high number of features 

was found to be necessary to capture the complexity of passenger cars. When deploying 

training data with intermediate volume (300 order codes for each car model) and 

intermediate number of features (top 20 most important features), the NMAE increases 

from 0.88% to 3.08%. We add to the cost estimation literature by demonstrating the 

significance of the impact of big data on predictive accuracy. These results are important 

given the recent popularity of big data not only in practice, but also in research 

(Wlodarczyk & Hacker, 2014). 

3rd research aspect (How to improve the predictive performance of multi-

generational product estimation?): Many manufacturing companies incorporate multi-

generational product development; however, most research approaches cost estimation 

primarily from the perspective of a single generation (Cai & Tyagi, 2014; Tyagi et al., 

2015). This study shows that when applying multi-generational product cost estimation, 

it is important to consider the average cost changes from one generation to another. We 

propose a novel method incorporating the estimated net earnings of a product to improve 

cost estimates for multi-generational cost estimation, reducing the NMAE of the GBR 

model for the complete cost estimation from 10.12% to 4.86%. For the assembly-level 

cost, the NMAE of the GBR method decreases from 15.93% to 13.98%. We thereby add 

to existing cost estimation literature by introducing an easy-to-use method, which is 

especially useful when design engineers have only limited information about the cost 

structure of future products. Due to limited data availability many important factors that 

were suggested by cost experts, such as sales volume, technical standards, vertical range 

of manufacture, commodity prices, and manufacturing location, could not be tested. 
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Further research could expand this initial analysis of multi-generational adjustment by 

incorporating additional factors. 

4th research aspect (Does machine learning technology lead to more accurate cost 

estimates than calculations from cost experts when dealing with highly complex 

products?): Most product cost estimation studies compare machine learning models with 

each other (Chou & Tsai, 2012; Deng & Yeh, 2011; Loyer et al., 2016) or with traditional 

statistical models such as regression models (Cavalieri et al., 2004; Verlinden et al., 

2008). Research comparing machine learning methods with estimations from human 

experts based on experience (so-called expert judgment) is limited. Some research 

indicates that machine learning can be more accurate than manual estimates from experts 

for products of rather intermediate complexity (Bendul & Apostu, 2017; Caputo & 

Pelagagge, 2008). We contribute to this stream of literature by showing that state-of-the-

art machine learning models can produce more accurate cost predictions for total product 

costs than cost experts, even for highly complex products such as passenger cars.  

We also show that the performance depends on the level of product detail. On 

more granular cost levels (such as for the assembly levels of body, electrics, chassis, and 

engine), cost experts outperform machine learning methods. Our findings thereby 

challenge the often-perceived superiority of machine learning models in the field of 

product cost estimation (Caputo & Pelagagge, 2008; Cavalieri et al., 2004; Deng & Yeh, 

2011; Loyer et al., 2016; Verlinden et al., 2008). On the assembly level, however, the cost 

prediction accuracy was strongly affected by the accuracy of the generation adjustment 

factors. On the assembly level, due to missing data availability, the adjustment factors 

were much more inaccurate and therefore the machine learning predictions also 

performed much worse. The comparison of different cost granularities (in terms of cost 

breakdown) with expert knowledge on more comparable ground is left for future research.  

Based on the interviews with cost experts we find that complex machine learning 

models are considered most adequate during the design phase and early development 

phase of new product development when there are rapid changes of product designs, low 

integration of expert knowledge, and cost estimates are not used for cost goal setting. 

During the later stages of new product development, more detailed and comprehensible 

cost estimates are required. This is in line with the literature, which suggests that 

analogical cost estimation techniques (i.e., regression models, neural networks) are 

mostly applicable during the design stage of new product development, while analytical 

techniques (i.e., break-down approach, activity-based costing) are more adequate at later 
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development phases (Chou et al., 2010; Farineau et al., 2001). In our interviews, we also 

find that the lack of interpretability and transparency is the most critical limitation for 

practical implementations. This corresponds with Verlinden et al. (2008), who find that 

cost engineers in most cases still prefer more comprehensible models despite being less 

accurate. It would be interesting to further investigate the role of interpretability when 

adopting machine learning models in practice. Future research could examine the trade-

off between accuracy and interpretability in the context of product cost estimation or 

investigate what factors determine the relative importance of interpretability/transparency 

and accuracy when selecting machine learning models for cost estimation. 

5th research aspect (Can machine learning models select the most important cost 

drivers reliably?): Machine learning can potentially be used to select and quantify cost 

drivers for product cost estimation and activity-based costing systems (K. Kim, 2003; 

Kostakis et al., 2008; Loyer et al., 2016). However, little is known about whether the 

machine learning approach actually produces valid and reliable results in this aspect. Our 

findings show that machine learning techniques can indeed capture the most important 

cost drivers reliably. However, the high importance scores indicate that models tend to 

oversimplify the cost driver structure and place too much importance on a small subset 

of features. So far, machine learning is primarily about the identification of patterns and 

correlations and less about the detection of causal relationships (Scholkopf et al., 2021). 

One problem of statistical analysis especially in big databases is thereby the pitfall of 

spurious correlations, where associations between variables are assumed, which are not 

causally justified (Calude & Longo, 2017). Thus, the extraction of knowledge from 

machine learning models yields serious epistemological problems when interpreting 

results and converting them back to conceptual information (Elish & Boyd, 2018). We 

add to the literature by a better understanding about the reliability of machine learning 

and big data technology to extract and quantify cost drivers.  

6th research aspect (Can machine learning models reliably estimate the 

relationship between cost drivers and manufacturing cost?): Some research suggests 

using machine learning methods to get additional cost-engineering insights about the 

relationship between features and manufacturing cost (Chan et al., 2018; Loyer et al., 

2016). We empirically analyze the reliability of machine learning methods to produce 

engineering insights about the cost structure of a product. We thereby answer the call by 

Verlinden et al. (2008) for additional research to identify ways to make complex machine 

learning models more appealing and user friendly to cost engineers. We find that machine 
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learning methods can indeed reliably quantify the average feature costs in most cases. 

However, the evaluation with cost experts revealed that machine learning and big data in 

some cases produce misleading outcomes. This empirical study provides a better 

understanding on the validity of machine learning and big data technology for obtaining 

cost-engineering insights. Cost engineers can benefit from machine learning and big data 

with new and reliable insights about their products, however, need to be careful as 

misleading outcomes can also be produced. This is in line with Partovi and Anandarajan 

(2002) who state that artificial intelligence tools cannot and should not be depicted as a 

replacement for expert judgment. In this study, we trained machine learning models on 

real company data and evaluate results with costs experts, however, we did not 

operationalize the machine learning and big data techniques. Thus, the investigation of 

the operationalization in the development process, the usage in development teams, and 

the establishment of human-machine interfaces are left for further research.  

3.5.2 Limitations 

The results of this study must be seen in the light of some limitations. First, we 

implement a single-case design where the findings are neither statistically generalizable 

nor reproducible, potentially underlie biased qualitative data collection, and subjective 

interpretations (Cooper & Slagmulder, 2004b). Despite the common concerns of case 

study research, the limitations come along with the major strengths of the approach: We 

are able to obtain detailed insights into the applicability of such technology in an actual 

environment; we can qualitatively examine the properties of machine learning and big 

data usage; and we analytically generalize the cost estimation literature (Yin, 2018). 

Finally, the results are limited by only considering direct material costs. Due to limited 

data availability of other cost types, the analysis of total manufacturing cost was out of 

scope. Nonetheless, the study covers a large proportion of the total cost of passenger cars.  
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3.6 Appendix B 

Table 19: Model implementation and hyperparameter tuning 

Model Implementation 

ANN The implementation of the (back-propagation) ANN is based on the libraries keras (Chollet & 

others, 2015) and tensorflow (Abadi et al., 2015). To tune the hyperparameters, we employed 

a combination of grid search and randomized search. First, the topology is selected, which 

defines the structure of the neural network by its layers and nodes. Second, we adjust the 

activation function, initialization method, optimizer, learning rate, dropout rate, number of 

epochs, and the batch size. The loss of the optimization algorithm is calculated by the mean 

squared error. To find an adequate topology, that sufficiently fits the complexity of the 

problem, we apply grid search. To compare different topologies, we first defined a baseline 

model. The baseline neural network is trained with the Adam optimizer (Kingma & Ba, 

2014). Further, we used the default values of the Keras implementation: linear activation 

function, Glorot uniform (Xavier) initializer, no dropout regularization, 10 epochs, and a 

batch size of 32. We tested the combination of three different depths and widths of hidden 

layers. The width of each hidden layer may be 461 (input layer size), 1,000 and 2,000. An 

increasing width allows for high-order interactions between the features. The depth may be 

one (so-called shallow neural network), two or three hidden layers. The best results had been 

achieved with a two hidden layer topology with 2,000 nodes each. The remaining parameters 

had been tuned with randomized search. Due to the high number of combinations and 

extensive learning time, we chose randomized search for practical reasons. The parameter 

grid covers the activation function: Linear or rectified linear unit (ReLu). In the case of linear 

activation, the layer weight is initialized by Glorot uniform (Xavier). In the case of ReLu, the 

weights are initialized by the He normal method. The optimizer may be Adam or RMSprop. 

The learning rate may be 0.0001, 0.001 or 0.01. The dropout rate may be 0% (no dropout 

regularization), 10% or 50%. We put a dropout layer between each fully connected layer. 

The batch size might be 32 or 64. The default settings are indicated by underline. The range 

of the number of epochs is set from 1 to 20. The randomized search was conducted for 20 

iterations. The limited number of iterations is set due to practical reasons. The parameter 

settings that gave the best results on the validation data set are: Activation: ReLu, layer 

weight initializers: He normal, optimizer: Adam, learning rate: 0.01, dropout rate: 0%, batch 

size: 32, and number of epochs: 11. 

CBR The main hyperparameters of the CBR model are the distance metric, weighting scheme, and 

normalization of continuous variables. For the distance metric, we distinguish between the 

Manhattan or Euclidean distance metric. For the weighting scheme we distinguish between 

equal weights (Chou et al., 2010) and the Binary-Dtree method of  oğan et al. (2008). 

According to the Binary-Dtree method, the weight is 1 (selection) if a feature is present in a 

separate decision tree, otherwise, the weight is 0 (deselection). The weights are taken from 

the DTR model. Since the continuous variables have values above 1, they systematically 

carry more weight. To counter that effect, we normalize the continuous features by min-max 

transformation or standardize by removing the mean and scaling to the standard deviation. 

We performed grid search over all hyperparameters: distance metric (Manhattan or 

Euclidean), weighting scheme (equal weights or Binary-Dtree) and normalization of 

continuous variables (no adjustment, min-max scaling, or standardization). The parameter 

settings that gave the best results on the validation data set are: distance metric: Manhattan, 

weighting scheme: no and adjustment of continuous variables: no.  
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DTR The DTR method is based on the scikit-learn package, which applies the CART (Classification 

And Regression Trees) algorithm. To tune the hyperparameters, we employed grid search. 

The hyperparameters are the maximum depth of the tree, the minimum number of samples 

in the leaf nodes, and the minimum number of samples required to split internal nodes. The 

maximum depth may be unlimited or limited to 10, 15, 20, 25, or 30 nodes. The maximum 

depth is set to prevent overfitting. The minimum number of samples in leaf nodes may be 1, 

2, 4, 6, 8, or 10. The minimum sample split may be 2, 10, or 100. The default settings are 

indicated by underline. The parameter settings that gave the best results on the validation 

data set are: maximum depth of trees: 20, minimum number of samples in leaf nodes: 6, and 

minimum number sample for node splits: 10.  

ELR, 

LAR 

The ELR and LAR algorithms are based on the scikit-learn package. We compared the linear 

least squares regression with L1 (lasso) and L1&L2 (elastic net) regularization. Both methods 

are chosen over the regular OLS regression and ridge (L2) regression since the coefficients 

can be forced to be positive. The positive regression coefficients facilitate the economic 

interpretation of cost drivers. To tune the hyperparameters, we employed grid search. For 

both methods the hyperparameter grid contains the availability of an intercept (yes/no), alpha 

value (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0), and normalization of regressors (yes/no). 

The alpha value is the constant that is multiplied with the penalty term. In the case of 

normalization, the regressors are normalized by subtracting the mean and dividing by the L2-

norm. In the case of ELR, the parameter grid is extended by a mixing parameter that trades 

off the L1 and L2 penalty. The parameter ranges from 0 (L2 penalty) to 1 (L1 penalty). We 

set the mixing parameter to 0.3, 0.4, 0.5, 0.6, or 0.7. The default configurations are indicated 

by underline. The parameter settings of the LAR model, which gave the best results on the 

validation data set are: alpha value: 0.2, intercept: yes, and normalization: no. The parameter 

settings of the ELR model that gave the best results on the validation data set are: alpha value: 

0.2, intercept: yes, normalization: no, and mixing parameter: 0.7. 

GBR The implementation of the GBR model is based on the scikit-learn package. The most relevant 

hyperparameters are the maximum depth of the tree, the number of boosting stages (M) and 

the learning rate (ν) (Elith et al., 2008; Landry et al., 2016; Y. Xia et al., 2017). Y. Xia et al. 

(2017) state that the tree complexity is controlled by two alternative hyperparameters: the 

maximum tree depth (number of edges along the longest path) and the tree size (number of 

terminal nodes in a tree). To tune the aforementioned hyperparameters, we employed grid 

search. Grid search is important when tuning boosted regression tree, since the regularization 

requires the joint optimization of hyperparameters (Elith et al., 2008). The maximum depth 

restricts the number of decision nodes in the trees, which may be 2, 3, or 4. The boosting 

stages may be 100, 1,000, 2,000, or 3,000. The learning rate may be 0.05, 0.1, or 0.15. The 

default settings are indicated by underline. The parameter settings that gave the best results 

on the validation data set are: maximum depth of tree: 3, boosting stages: 3,000 and learning 

rate: 0.1. The GBR model of scikit-learn does not allow multi-target regression. To forecast 

the cost per assembly group, we trained four individual GBR models. 

LSVM The implementation of the (epsilon-insensitive) LSVM model is based on the scikit-learn 

package. To tune the hyperparameters, we employed grid search. The hyperparameters are 

the regularization parameter and the epsilon margin. The regularization parameter controls 

the penalty of observations outside the epsilon distance and prevents overfitting. Errors that 

are lower than the epsilon margin are ignored. The regularization parameter may be 0.1, 0.5, 

1, 1.5, 10, 100. The epsilon parameter may be 0, 1, 10, 100. The default settings are indicated 

by underline. The parameter settings that gave the best results on the validation data set are: 

regularization parameter: 10, and epsilon margin: 0.  
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Table 20: The relationship between the average net earnings (NE̅̅ ̅̅ ) and the average direct material cost 

(DMC̅̅ ̅̅ ̅̅ ). The regression analysis encompasses four car models from the predecessor generation 

(I). 

    

 DMC̅̅ ̅̅ ̅̅ ̅
I 

Const. 3408.5876 
 (3.080) 

  

NE̅̅ ̅̅ I 0.4881** 

  (16.446) 

Observations 4 

R2 99.3% 

Note: **p<0.01 
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Table 21: Background information and further explanation to the evaluations from cost experts. 

3rd aspect: Improving predictive performance for multi-generational product 

estimation 

C1:  feasibility 

 

 

C1:  feasibility 

 

 

 

C1:  feasibility 

 

 

 

 

 

 

 

 

 

 

 

C3:  usability 

 

 

 

 

 

 

 

“The change of cost between two generations can be sufficiently explained with this 

approach quite easily. More accurate estimates can be produced by taking into 

account the sales volume. Other factors such as the vertical range of manufacture, 

location of site, and commodity are of secondary importance.” (C2) 

 

“An important success factor for this approach is the target contribution margin when 

deciding on product characteristics. There will be very little product characteristics 

with a contribution margin less than 30%.” (C3) 

 

“This correlation is not always correct for all features. In some cases, such as exhaust 

emission regulations, the product net earnings do not increase since there is no 

additional value for the customers. In such cases, manual adjustments to the cost 

estimates would be required. On the other side, one could argue that the customers 

will have more money in their pockets over time, which they again spend 

proportionally for mobility. Therefore, the additional cost can be compensated. This 

coincides with the approach from the sales department for the prediction of the sales 

prices at the early stage of new product development. According to the sales 

department, most customers allocate a fixed share for mobility and as the net 

household income increases, the net earnings for products will be higher as well.” 

(C1) 

 

“The net earnings are available already in the early phase of new product development. 

Therefore, this approach is applicable to estimate the cost change. However, one 

need to make sure that the net earnings match the technical descriptions of a product. 

Sometimes at the early stages, the pricing by the sales department is conducted with 

little alignment and agreement with the technical department. As a result, the 

estimated direct material cost based on the technical descriptions can differ from the 

estimated direct material cost based on pricing information.” (C4) 

 

4th aspect: Comparison of cost estimation accuracy: Machine Learning vs. expert 

judgment 

C1:  feasibility 

 

 

 

 

C2:  usability 

(support) 

 

 

C2:  usability 

(support) 

 

 

 

 

 

C5:  intention to use 

 

 

 

“The cost split on assembly level is not always consistent over the generations. In 

practice for each project and generation the composition of cost must be discussed 

and adjusted if required. The cost adjustment can be roughly conducted by a small 

number of key features.” (C1) 

 

“I need the resilience of the cost predictions and detailed information such as the 

underlying assumptions. In the decision-making process it is important to be 

persuasive and engage the team on a joint cost goal.” (C3) 

 

“In some situations, these analyses are helpful to quickly generate ‘first sight’ cost 

estimates. Especially, as we receive much more cost prediction requests, which 

cannot be handled manually anymore. However, one problem is the complexity of 

such tools. I am afraid that many people won’t accept such estimates as they are less 

comprehensible. This is problematic, especially when the produced cost estimates 

place limitations on people such as cost goals.” (C4) 

 

“Maybe we all must learn to trust such tools when they are sufficiently accurate without 

having to explain everything in detail again and again. It would be interesting to test 

such tools in practice. I could image that delivering cost ranges instead of precise 

cost values could increase acceptance.” (C5) 
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5th aspect: Reliability of machine learning-based cost driver selection 

C1:  feasibility 

 

 

 

 

C2:  usability 

(support) 

 

 

 

 

C2:  usability 

(support) 

 

 

 

C4:  usability 

“The engine performance is indeed the most important cost driver; however, I would not 

claim that this feature alone explains 38% of all cost. More likely, the model does 

not only consider direct effects but also indirect effects of engine performance such 

as gearbox, cooling system, brake system, tire, etc.” (C4) 

 

“This analysis can help increasing trust into machine learning models. However, the 

acceptance highly depends on who you are talking to. One individual may be fine 

with a black-box model while others want to have more information. In addition, it 

helps to conduct further prioritization of our list of key product features. This is 

important as the effort of data collection can be reduced for less important features.” 

(C2) 

 

“This prioritization helps focusing on the essential cost drivers during new product 

development. Moreover, such tools are easier to use when less cost drivers need to 

be adjusted.” (C3) 

 

 

“This analysis can also be helpful for the cost optimization program of 

[AutomotiveCompany]. Thereby, the cost reduction focus can be placed on the right 

components: What components are highly important, and what are less worthwhile 

to examine in detail?” (C5) 

 

6th aspect: Reliability of machine learning models to estimate the relationship 

between features and manufacturing cost 

C1:  feasibility  

 

 

 

C2:  usability 

(support) 

 

 

 

C2:  usability 

(support) 

 

 

 

 

C2:  usability 

(support) 

 

 

 

C5:  intention to use 

 

 

 

 

 

 

 

“An important input factor is the purchasing volume of components. It is possible that 

an 18-inch braking disk with high purchasing volume is less expensive than the 

smaller 16-inch disk with low volume.” (P6) 

 

“At the planning stage of product development, standard prices from the sales 

department are used to approximate the cost of combustion engines.  …  The 

utilization of actual costs per performance can help making better decisions at 

choosing the optimal engine performance for a given market.” (P1) 

 

“This global sensitivity analysis certainly is interesting. I have never conducted a 

business case with interdependencies between product features. This would be 

impossible to calculate manually due to the enormous complexity. Therewith, better 

product decisions can be made, since the complete product range can be considered 

and not only one reference configuration.” (P5) 

 

“This analysis also helps to identify cost outliers for certain parts. For some special 

parts with low take rates suppliers have above average margins.  …  Therefore, the 

reference model does not truly reflect the actual mean cost over the product range.” 

(C1) 

 

“This analysis is helpful for the planning teams of product platforms. When discussing 

the engine performance and engine size of a new car, we immediately must point out 

all cost effects. In practice this is extremely difficult.  …  If due to a larger engine 

the installation space is getting too tight and new crash measures or pedestrian 

protection is required, the actual cost can be identified not until the very end of 

product design. But still, we need this discussion of cost at the early phase where the 

decisions are made.” (P3) 
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Calculation of the mean two-factor interaction effect 

The calculation of the secondary elementary effect (SEEab) in the case of a binary 

primary feature Xa is denoted in Equation 18. The two-factor interaction effect (EEab) is 

calculated by subtracting the elementary effects of both features (Equation 13) from the 

secondary elementary effect. The mean two-factor interaction effect (µab) can be 

considered as a global sensitivity measure for two-way interactions. 

   

SEEab(X  = {
f
 G(Xa= , Xb= ,  ) −  f

 G(Xa= , Xb= ,  )    if Xb ∈ B

f
 A(Xa= , Xb=Xb+1,  )  −  f

 A(Xa=0,  )        if Xb ∈ C
 (18) 

EEab(X  = SEEab(X  −  EEa(X  −  EEb(X   (19) 

μ
ab
= 

 

n
∑EEab(X

(i) 

n

i= 

 (20) 

σab= √
 

n- 
∑ (EEab(X

(i)) − μ
ab
 
2

n

i= 

 (21) 

 

where 

  

f
  m

: machine learning model m :={A(NN), G(BR)}  
B: binary features  
C: cardinal features  
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4 Machine Learning in Product Cost 
Estimation: The Trade-Off between 
Accuracy and Explainability 

Abstract 

This chapter investigates the trade-off between accuracy and explainability of 

machine learning models in the context of product cost estimation during new 

product development. First, we empirically confirm the often-implied inverse 

relationship between explainability and accuracy from the perspective of cost 

experts. Second, we show that the importance of explainability relative to accuracy 

perceived by cost experts in different situations during new product development is 

an important factor when selecting between alternative machine learning models. 

Third, we identify several factors that determine the perceived relative importance 

of explainability to accuracy during new product development: phase of product 

development, information uncertainty, level of cost granularity, and the gap between 

target cost and planned cost. This experimental study shows that complex machine 

learning models, such as GBR (gradient boosted regression), are only adequate in 

few situations of product development. Machine learning models are adequate 

during the early development phase when dealing with low information uncertainty, 

high level of cost granularity, and a low gap between target cost and planned cost. 

In the majority of cases, more basic models such as CBR (case-based reasoning) and 

multiple linear regression (MLR) are preferred, although they are much more 

inaccurate.  

Keywords:  Machine learning; Cost estimation; Interpretability problem; 

Design of experiments 
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4.1 Introduction 

The application of machine learning models for cost management during new 

product development yields new and enriching opportunities in many aspects (Caputo & 

Pelagagge, 2008; Loyer et al., 2016; Q. Wang, 2007). However, the applicability of 

complex machine learning methods is often limited by the ability to provide explainable 

results (Chou et al., 2010; Coussement et al., 2017). In the context of machine learning, 

explainability is the ability to demonstrate the reasons for a behavior or the ability to 

produce insights about the cause of an outcome (Gilpin et al., 2018). To achieve 

acceptance, machine learning systems must provide sufficient explanations of their 

decisions and predictions. There are machine learning models that are more explainable 

than others, and there is often a trade-off between accuracy and explainability. Accuracy 

in this context is defined as the predictive performance of an estimation model based on 

the difference between the predicted values and the actual results. Usually, the most 

accurate machine learning models are not very explainable, and vice versa (Adadi & 

Berrada, 2018). This inverse relationship between explainability and accuracy is known 

as the interpretability problem. As a consequence, state-of-the-art machine learning 

techniques with high accuracy are often referred to as black boxes (G.-H. Kim et al., 

2004). This is problematic since explainability is often required to build trust and 

acceptance of machine learning models (X. Zhang et al., 2021). The trade-off between 

explainability and accuracy is well-known in the cost management literature (Cavalieri et 

al., 2004; Loyer et al., 2016; Verlinden et al., 2008). Cost management during new 

product development involves planning and reporting activities, including cost goal 

setting and decision making support (Wouters et al., 2021). For these tasks, explainability 

is needed to interact with cross-functional development teams. At the same time, 

sufficient predictive accuracy is necessary to make informed decisions with regards to the 

profitability of future products. This chapter empirically investigates the trade-off 

between explainability and accuracy in the context of product cost estimation depending 

on several factors during new product development.  

Artificial intelligence research has attempted to solve the interpretability problem 

by introducing XAI, which aims to make artificial intelligence systems more 

understandable to users (Adadi & Berrada, 2018). However, improving explainability of 

complex machine learning models is difficult and usually only possible to a limited extent 

(Barredo  rrieta et al.,     ;    ert‐ treib et al.,     ;  inkov et al.,      . At the same 

time, it is suggested that the applicability of complex machine learning models depends 
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on the relative importance of explainability and accuracy for certain tasks and situations 

(Baryannis et al., 2019; Lee & Shin, 2020; Rey et al., 2017). Since the relative importance 

between situations can be different, machine learning models at different levels of 

complexity are required. During new product development however, it is mostly 

unknown which factors determine the relative importance between explainability and 

accuracy. Why is explainability (relative to accuracy) more important in one situation 

than in another? In this chapter, we raise the following research question: Which factors 

determine the relative importance between explainability and accuracy for product cost 

estimation during new product development? 

 An experimental study is applied to investigate this research question. A 

fractional factorial experiment with cost experts from a German car manufacturer (with 

the disguised name AutomotiveCompany) is conducted to analyze the impact of five 

factors. The participants are product controllers that are dealing with product cost 

estimation during new product development. Statistical tests are conducted to analyze the 

effects of different treatment conditions on the importance of explainability to accuracy. 

In addition, the findings are triangulated with qualitative data to validate the hypothesized 

argumentations.  

This chapter contributes to the literature in several ways. First, we empirically 

confirm the often-implied inverse relationship between both attributes from the 

perspective of product controllers (Cavalieri et al., 2004; Loyer et al., 2016; Verlinden et 

al., 2008). Second, we empirically confirm the often-assumed significance of the relative 

importance of explainability to accuracy in the model selection process for product cost 

estimation (Cavalieri et al., 2004; Loyer et al., 2016; Verlinden et al., 2008). As a result, 

this experiment shows that complex machine learning models, such as GBR, are only 

adequate in few situations during product development. In most cases, more basic models 

such as the CBR and MLR are preferred unless being much more inaccurate. This 

challenges the current research trend of using complex machine learning technology for 

cost estimation (Caputo & Pelagagge, 2008; Cavalieri et al., 2004; Chou & Tsai, 2012; 

Deng & Yeh, 2011; Loyer et al., 2016; Verlinden et al., 2008). Third, we identify several 

factors that determine the relative importance of explainability to accuracy during new 

product development: phase of product development, information uncertainty, level of 

cost granularity, and the gap between target and planned cost (further referred to as target 

cost gap). Specifically, we show that explainability is more important than accuracy in 

the fuzzy front-end stage, when dealing with low uncertainty, low level of cost 
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granularity, and high target cost gap. We thereby extend the XAI literature stream by 

introducing context-specific factors that significantly influence the relative importance of 

explainability to accuracy. So far, most research in this area is conceptual and the 

literature mostly considered general factors, such as the need for interaction with models 

(Frias-Martinez et al., 2005), the available trust (Alonso et al., 2015) or consequences of 

inaccurate predictions (Baryannis et al., 2019).  

This chapter is structured as follows: In section 4.2 we provide an overview about 

the interpretability problem, explainable artificial intelligence, and factors that are 

expected to determine the trade-off between accuracy and explainability. In section 4.3, 

we provide an economic and technology acceptance perspective of the underlying 

problem and formulate five hypotheses that are based on the new product development 

literature. In Section 4.4, the fractional factorial experiment is described. Section 4.5 

discusses the validity and reliability of the experiment and Section 4.6 reports on the 

significance of the factors. Section 4.7 evaluates the findings with qualitative data and 

Section 4.8 concludes the chapter.  

4.2 Literature Review 

In the following, we introduce the interpretability problem and define the terms 

interpretability and transparency in the context of machine learning. We then present the 

current approach to tackle the interpretability problem and specify factors that determine 

the trade-off between both attributes. 

4.2.1 The Interpretability Problem of Machine Learning Algorithms 

The interpretability problem describes the inverse relationship between accuracy 

and explainability of machine learning algorithms. In general, machine learning models 

can be evaluated by the three dimensions: accuracy, interpretability, and efficiency (Liu 

et al., 2016). High interpretability is required to make the reasoning of machine learning 

models more understandable to users and developers. As an example, explanations are 

needed for justification, improvement, and knowledge discovery (Adadi & Berrada, 

2018). However, “t e  ost acc rate    [artificial intelligence]/ML [machine learning] 

 odels  s ally are not very e plainable” (Adadi & Berrada, 2018, p. 52145). This can be 

explained by the different levels of complexity of machine learning models. Complex 

models have higher flexibility than basic approaches, allowing for more complex 

problems to be solved (Barredo Arrieta et al., 2020). On the other side, highly complex 
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models, such as deep neural networks, display poor interpretability, which makes 

validation by analysts or domain experts much more difficult (Huysmans et al., 2011). 

Rudin (2019, pp. 206–207) questions the “widespread belief that more complex models 

are more accurate, meaning that a complicated black box is necessary for top predictive 

performance”. Moreover, when dealing with problems with reasonable features and 

structured data, there is often no substantial difference in accuracy between complex and 

simple machine learning models. Nonetheless, the highest accuracy scores for large data 

sets and complex problems are often only achieved by models with high complexity that 

even experts have problems to interpret, which then creates stress between interpretability 

and accuracy. 

 Gunning and Aha (2019) formalized the trade-off between explainability and 

predictive performance by arranging several machine learning models at different levels 

of complexity (deep learning, random forests, support vector machines, Bayesian belief 

nets, and decision trees) along the two dimensions. Thereby, deep learning was classified 

as having high accuracy but low explainability; and decision trees were specified with the 

highest explainability and lowest accuracy. Barredo Arrieta et al. (2020) extended the 

representation of the trade-off between model interpretability and accuracy, which is 

depicted in Figure 15. 
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Figure 15: Trade-off between model interpretability and performance (representation from Barredo 

Arrieta et al. (2020)) 

4.2.2 The Difference Between Transparency and Interpretability 

Gilpin et al. (2018) describe explainability as the ability to provide reasons for a 

decision or produce insights about the cause of an outcome to gain trust of users. Lipton 

(2018) considers explainability as an umbrella term for transparency and interpretability, 

dividing explainability into the two categories transparency (how does the model work?) 

and interpretability (what can the model tell me?). Transparency can be considered at the 

level of the entire model, of individual parameters, and at the level of the training 

algorithm. Gedikli et al. (2014) states that transparency facilitates the understanding of 

the reasoning of a model, where transparency can be distinguished between objective 

transparency (the model reveals the actual mechanisms) and user-perceived transparency 

(the model reveals the mechanisms important to users). Interpretability is a domain-

specific and subjective concept; accordingly, there is no formal definition (Lipton, 2018; 

Rudin, 2019). An attempt had been made by Doshi-Velez and Kim (2017, p. 2), defining 

interpretability as t e “ability to e plain or to present in  nderstandable ter s to a 

   an”.  nterpretability can be ac ieved by te t al descriptions, vis ali ations, local 

explanations near the input point, and examples of decisions with similar inputs (Lipton, 

2018). In addition, high interpretability can be achieved by linear associations and 

monotonic functions that enable intuitive reasoning (Hall & Gill, 2018). 
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4.2.3 Explainable Artificial Intelligence 

Artificial intelligence research aims to solve the interpretability problem with 

XAI. Adadi and Berrada (2018) describe XAI as a research field that aims to demystify 

black boxes and make results from artificial intelligence systems more understandable to 

users and developers. The objective is to develop models with higher explainability while 

maintaining high levels of accuracy. Thereby, explanations from artificial intelligence 

systems must use communicable representations such as visual and logical forms, to 

reduce the room for misinterpretation (Preece, 2018). Guidotti et al. (2019) present a 

classification scheme for XAI models, where a method needs to explain its results, 

provides representations to inspect the model, or provides a transparent solution for the 

problem. XAI tends to refer to a movement in reaction to the transparency and trust 

concerns of artificial intelligence systems, more than to a formal approach (Adadi & 

Berrada, 2018).  

The main objectives of XAI are verification, improvement, knowledge discovery, 

and compliance to legislation (Meske et al., 2020; Samek et al., 2017). Further, developers 

can only improve machine learning systems if the model can be interpreted, and its 

weaknesses are reliably determined. Users of artificial intelligence systems primarily 

need e plainability to co pare t e syste ’s reasoning wit  own arg  entations and 

analyze the reliability of results (Meske et al., 2020). Doshi-Velez and Kim (2017) argue 

that explanations are required because of the incompleteness in problem formalization 

and problem understanding. Finally, the data used to train models may contain human 

biases and prejudices, which poses a critical risk to the validity of machine learning 

applications. If trained on biased data, machine learning models can lead to unfair and 

incorrect behavior (Guidotti et al., 2019). XAI can help to detect biases and solve 

unintended behavior.  

Explainable artificial intelligence encompasses several methods, which make 

opaque machine learning models more explainable. Hall and Gill (2018) present three 

steps for establishing explainable and trusting models, which are 1) achieving a deep 

understanding of data sets, 2) using models with interpretable inner workings, and 3) 

applying techniques that generate explanations for highly complex models. Another 

technique is post hoc interpretability, which involves the provision of explanations from 

the output of black-box models after training is completed (Peake & Wang, 2018). 

Thereby, the high accuracy levels of complex machine learning models can be 

maintained, while improving the comprehensibility of models through additional 
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explanations. Nonetheless, the improvements of explainability through XAI are limited 

and these techniques usually cannot completely solve the interpretability problem 

( lonso   Magdalena,     ; Barredo  rrieta et al.,     ;    ert‐ treib et al.,     ; 

Linkov et al., 2020).  

4.2.4 Factors that Determine the Importance of Accuracy and 
Explainability 

Despite the attempts of XAI to improve interpretability without sacrificing 

accuracy, a fundamental trade-off remains. Therefore, data scientists need to choose 

between machine learning methods according to the specific accuracy and interpretability 

needs in a given situation and task (Boehm et al., 2019; Tripathi et al., 2021). 

Compromising between the accuracy and complexity of machine learning models can be 

subjective and the way to reach a balance is usually achieved through discussions 

(González et al., 2007; Rey et al., 2017). The assessment of models requires an agreement 

between data and business experts. Thus, looking for a good trade-off is one of the most 

challenging tasks in system modeling (Alonso & Magdalena, 2011). Therefore, task-

adaptive and user-adaptive machine learning systems have been proposed to select 

models according to the interpretability needs in a given situation (Frias-Martinez et al., 

2005; Lee & Shin, 2020). For example, Lee and Shin (2020) propose a task-dependent 

system, where white-box and black-box algorithms are compared according to their 

accuracy scores when interpretability is not required (i.e., when developing a chatbot for 

customer service). When, however, interpretability is required (i.e., when developing a 

recommender system) only white-box algorithms are evaluated. Then, the model is 

selected with the highest accuracy score and an acceptable level of interpretability.  

Some research has considered factors that make explainability or accuracy 

relatively more important and thereby determine the machine learning model selection 

process. First, explainability is usually more important when the objective is to integrate 

knowledge of human experts in the machine learning system and to interact with models 

to improve predictions (i.e., add new or modify decision rules in decision trees) (Alonso 

et al., 2015; Frias-Martinez et al., 2005). An explainable model can be more easily 

improved when users know why a system produces certain results and the system can be 

adjusted accordingly (Adadi & Berrada, 2018). Second, significant costs of inaccurate 

predictions can place more importance on accuracy relative to explainability (Baryannis 

et al., 2019). Third, explainability is more important when a machine learning model 

needs to be validated against the prior knowledge of human experts (Alonso et al., 2015). 
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If a problem is analyzed in-depth and already validated in actual applications, 

explainability is less relevant (Doshi-Velez & Kim, 2017). Fourth, explainability is more 

important when there is low trust toward artificial intelligence systems and there is the 

need to convince recipients of outcomes (Alonso et al., 2015). Using explainable models 

justifies outputs and builds trust into models (Adadi & Berrada, 2018). Fifth, 

explainability is more important when the primary goal is to understand the data and 

discover relationships between variables (Adadi & Berrada, 2018; Baryannis et al., 2019). 

Sixth, in the case of legally and ethically relevant tasks exact explanations are required 

and black-box models are not acceptable (Ribeiro et al., 2016). Explainable models 

contribute to the auditability of artificial intelligence systems by providing explanations 

to regulatory stakeholders (Barredo Arrieta et al., 2020). Finally, explainability is more 

important when there is only limited time to understand outcomes from machine learning 

models. In more profound analyses and scientific fields, users of artificial intelligence are 

willing to spend much more time to understand results compared to simpler tasks (Doshi-

Velez & Kim, 2017).  

4.2.5 Knowledge Gap and Research Question 

The selection of machine learning models in many practical applications depends 

on the relative importance of accuracy and explainability for a given task. Since the 

relative importance may be different under certain situations, more or less complex 

machine learning models are adequate. However, it is mostly unknown what determines 

the relative importance between explainability and accuracy in the context of cost 

estimation during new product development. Why is explainability (relative to accuracy) 

in one situation more important than in another? In this study, we raise the following 

research question: Which factors determine the relative importance between 

explainability and accuracy for product cost estimation during new product 

development? 

4.3  Theory and Hypothesis Development 

4.3.1 An Economic Formalization of the Problem 

We can formalize the model selection problem under the trade-off between 

accuracy and explainability with the economic model of production possibility curves and 

indifference curves. The economic model describes the choice between two goods based 

on the personal preferences of an individual. The production possibility curve describes 
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the transformation between two goods. In most applications a concave transformation is 

assumed. The indifference curve represents all combinations of goods with an equal level 

of utility to which an individual is indifferent. The shape of an indifference curve reflects 

the individual preference according to the relative importance between the goods. To find 

an optimal combination of two goods, the marginal rate of transformation is compared 

to the marginal rate of substitution. The marginal rate of transformation is defined by the 

slope of the production possibility curve, whereas the marginal rate of substitution is 

defined by the slope of the indifference curve. Figure 16 formalizes the optimal choice 

of accuracy and explainability in two situations. Thereby, the production possibility curve 

reflects the inverse relationship between accuracy and explainability of machine learning 

models. The relative importance between explainability and accuracy in certain situations 

is described by indifference curves. Each situation shapes an individual indifference curve 

according to the specific preferences. In this illustration, situation B exhibits a higher 

relative importance of explainability to accuracy than situation A. In other words, in 

situation B an individual would give up more accuracy for additional explainability than 

in situation A. 
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Figure 16: Illustration of the production possibility curve (PPC) between explainability and accuracy and 

indifference curves (IC). In situation B the importance of explainability to accuracy is higher 

than in situation A. 

4.3.2 A Technology Acceptance Perspective on the Problem 

Another theoretical perspective on the trade-off between accuracy and 

explainability is provided by the technology acceptance model (TAM) (Davis et al., 

1989). The model introduces perceived ease-of-use and perceived usefulness as 

antecedents of actual system use of new technology. The factors of interpretability (or 

comprehensibility or completeness) and accuracy are commonly part of information 

quality, which determines perceived ease-of-use (Demoulin & Coussement, 2020; van 

der Linden & van de Leemput, 2015; Wixom & Todd, 2005; Zhu et al., 2012). In the 

model of Demoulin and Coussement (2020), representational information quality 

encompasses interpretability and intrinsic information quality includes accuracy. 

Additionally, the acceptance of new information technology often depends on the target 

users and the task environment (Moon & Kim, 2001). In order to incorporate task 

environment into the model, Dishaw and Strong (1999) extended the TAM by the task-

technology fit (TTF) theory. In the context of information systems, task-technology fit is 

defined by “the matching of the functional capability of available software with the 

activity de ands of t e task” (Dishaw & Strong, 1998, p. 109). In the TAM-TTF model 

the assessment of users about perceived ease-of-use and perceived usefulness of 

information technology is not only determined by the characteristics of technology but 
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also by the tasks for which they are deployed (Dishaw & Strong, 1999). The integrated 

model of TAM-TTF model is depicted in Figure 17. 

 

Figure 17: Integrated TAM-TTF model according to Dishaw and Strong (1999) 

The integrated TAM-TTF model serves as a theoretical background concept for 

the underlying problem in this study. The model puts technology acceptance into 

perspective with interpretability and accuracy. Furthermore, the model describes the 

influence of task environment on technology adoption. Thereby, the TAM-TTF model 

describes the evaluation process of machine learning models depending on the relative 

importance of explainability and accuracy across different situations and tasks. In other 

words, when representational information quality is necessary to solve a task in a certain 

situation, white-box algorithms are more appropriate. When more importance is placed 

on intrinsic information quality, black-box algorithms are more likely to be chosen. 

4.3.3 Hypothesis Development 

In the following, we identify five factors which we expect to influence the relative 

importance of explainability and accuracy for cost management during new product 

development.  

4.3.3.1 Development Phase Progress 

The progress of a development project can be defined by the stage in the product 

development process in terms of timewise or conceptual maturity. It can be divided into 

the fuzzy front-end (FFE) phase and the development phase (J. Kim & Wilemon, 2002). 
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The FFE covers the period from opportunity identification until the start of development. 

The FFE includes product strategy formulation, ideation, product definition, and project 

planning (Khurana, 1998). During the early stages of new product development 

companies develop the product concepts and determine whether they should invest in the 

development of the product (Moenaert et al., 1995). This phase is characterized by 

complex information processing, ad hoc decision-making, and a dynamic and an 

interactive nature (Florén et al., 2018). J. Kim and Wilemon (2002) describe the 

information for decision making in the FFE phase as qualitative, approximate, and 

informal. In regard to cost estimation accuracy, there is often just a first sight estimate, 

which is mostly based on the experience of cost experts (Rush & Roy, 2000). In the later 

development stages, detailed cost estimates based on precise cost calculations are 

available. Thereby, companies tend to use computer-based tools to calculate 

manufacturing costs in greater detail. The development phase is characterized as 

quantitative, precise, and formal (J. Kim & Wilemon, 2002). While the FFE phase is 

about creating a blueprint and deciding on product feasibility, the development phase is 

about creating the product and making it happen. Accordingly, we assume that for the 

conceptual work of the FFE phase explainability is more important than accuracy due to 

the complex information processing and the qualitative and approximate nature. On the 

other side, we expect that for the implementation work of the more detailed development 

phase, accuracy is more important than explainability due to the focus on concept 

realization and its precise nature. 

Another characteristic of the FFE phase is that decision-making is often based on 

assumptions. The selection of cost estimation methods is largely dependent on the 

progress of new product development and the available amount of information (Curran et 

al., 2007). This creates a dilemma for R&D managers. As new product development 

projects proceed, the quality of cost estimates increases due to the amount of information 

available. However, the influence on total cost decreases as more and more product 

characteristics are already determined. Reliable cost information is often obtained only in 

the late phase of product development (Bode, 2000). During the development phase, 

decisions are increasingly based on actual information and facts. In the early phase, 

development teams build on several assumptions that determine interpretations and 

actions (Hey et al., 2007). Planning too detailed in the very early phase is a common 

mistake in the front end of engineering programs (Lucae et al., 2014). Too much detail in 

the early phase increases the dependence on more assumptions that can result in rework 

and lower performance during later stages. In general, we expect that the assumptions for 
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the cost estimates during the early phase need to be explained in greater detail, compared 

to the facts available in the development phase. In sum, we expect that the relative 

importance of explainability to accuracy is higher during the FFE phase of new product 

development (lower progress) than in the development phase (higher progress). 

H1: The importance of explainability relative to accuracy is higher in the FFE design 

phase of new product development than for the development phase. 

4.3.3.2 Information Uncertainty 

Information uncertainty is an important property of new product development 

projects, which can be defined as the ambiguity or lack of information caused by the “lack 

of definition, lack of knowledge or lack of tr st in knowledge” (Wynn et al., 2011, p. 4). 

Information uncertainty during new product development stems from various sources 

such as environment, technology, consumer, competition, and resources (Song & 

Montoya-Weiss, 2001). High task uncertainty of new product development projects 

places more importance on intensive communication in teams and results in greater 

information processing requirements (Tushman & Nadler, 1978). Further, perceived 

technological uncertainty moderates the relationships between cross-functional 

integration, synergy of resources, and efficiency in the development process (Song & 

Montoya-Weiss, 2001). Therefore, projects with high uncertainty should be executed 

using an organic approach (i.e., autonomous team structure) that promotes the ability of 

teams to process information (Patanakul et al., 2012). Thereby, the perception of high 

uncertainty increases the positive impact of cross-functional teamwork on the 

performance of projects. For more unpredictable and uncertain settings, product 

development is characterized by experimental and iterative problem solving approaches 

(Brown & Eisenhardt, 1995; Eisenhardt & Tabrizi, 1995). In the context of XAI 

applications, explainability is more important when the objective is to integrate 

knowledge of human experts in the machine learning system and to interact with models 

in order to improve predictions (Alonso et al., 2015; Frias-Martinez et al., 2005). All in 

all, we expect that expert knowledge is more important under uncertain conditions, which 

corresponds with a higher need for manual adjustments of cost estimates. 

 One way to cope with uncertainty is to create assumptions about unknown future 

events and variations of assumptions to engage in contingency planning (Allaire & 

Firsirotu, 1989). During new product development, there are often many assumptions 

toward the benefits of new products (Berchicci & Bodewes, 2005). Further, cost estimates 
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often require many assumptions to create leeway to satisfy technical requirements and 

organizational objectives (Tyebjee, 1987). We expect that consumers of forecasts have 

lower expectations about accuracy when dealing with information uncertainty. In these 

cases, rough cost estimates are more likely to be accepted. On the contrary, we expect 

that accuracy is more important if there is certainty about information. In this case, cost 

experts can rely on facts rather than assumptions. Due to the importance of expert 

knowledge and dependence on assumptions, we expect explainability to be more 

important than accuracy when dealing with uncertainty.  

H2: The importance of explainability relative to accuracy is higher in the case of high 

information uncertainty than for low information uncertainty. 

4.3.3.3 Cost Granularity 

Costs can be estimated at different levels of granularity, ranging from total cost of 

products to individual parts. Cost granularity therefore defines the level of detail or level 

of aggregation of cost with which a product can be described. At each of these levels, a 

specific (management) team is likely responsible for achieving the cost goals. At a more 

granular level, development teams primarily deal with realizing detailed tasks of few 

components, while at more aggregated level, people primarily deal with management 

tasks and overall product idea generation. For example, members of SE teams need to 

concrete solutions for their specific parts, whereas the team responsible for the overall 

product achieves goals by managing lower-level teams. Thereby, development teams at 

higher cost granularity (i.e., SE teams) mainly work with homogenous sets of few 

components. As no direct lateral coordination between SE teams is required, 

explainability is less important. The main objective is to find an optimal solution for the 

specific set of components and, therefore, accuracy is needed. A detailed decomposition 

of cost allows for more accurate cost control (Filomena et al., 2009). Product development 

at more aggregated level (low-cost granularity) involves a heterogeneous set of many 

components, which involves the management of multiple and diverse teams and the 

optimization of the overall concept of a product. For example, the overall team must 

understand the reasons for high costs so they can make trade-offs and discuss actions with 

SE teams. This coordination task requires explainability for the main part. Tseng et al. 

(2005) state that in the conceptual design work breadth of data is more important than 

precision, while during the detailed design stage data needs to be precise. Thus, we expect 

a higher importance of explainability to accuracy when managing costs on low-cost 
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granularity (i.e., complete product level) compared to high cost granularity (i.e., 

component-level).  

H3: The importance of explainability relative to accuracy is higher in the case of low-

cost granularity than for high-cost granularity. 

4.3.3.4 Product Novelty 

The technological innovation literature often describes technology novelty by the 

familiarity with a given technology (Tatikonda & Rosenthal, 2000). Product novelty is 

the “uniqueness and newness of a product” and t e “infrequency and rarity of the product 

design” (Horn & Salvendy, 2009, p. 228). Henderson and Clark (1990) distinguish 

between radical innovation and incremental innovation. A radical innovation establishes 

a new set of core designs that are assembled in a new architecture. An incremental 

innovation improves and extends established product designs. Thereby, the individual 

components are refined, while the core designs of components and the overall architecture 

remains the same. Incremental innovations adopt existing products and are targeted 

toward existing markets (Reid & Brentani, 2004). Pullen et al. (2009) state that radical 

and incremental innovation need different strategies, processes, and organizational 

factors for product development. Moreover, radical and incremental innovation can be 

distinguished by the level of market and technology uncertainty (Herstatt et al., 2004). 

Radical innovations involve high technical uncertainty, resulting from the use of non-

existing technologies. Furthermore, radical innovations involve high market uncertainty 

where the needs and requirements of customers are mostly unclear (Patanakul et al., 

2012). Incremental innovations, on the other side, have low technical and market 

uncertainty. Since we control for information uncertainty as a separate factor in the 

experiment, we develop the hypothesis independently from the uncertainty aspect. 

Incremental innovation is characterized by the change of existing products (Abdul Ali et 

al., 1993; A. Ali, 1994). Thereby, incremental innovations often rely on internal 

information (Herstatt et al., 2004). Project teams must be familiar with the work done in 

the past, to successfully establish products with incremental innovation (Patanakul et al., 

2012). Moreover, managers use evaluation criteria more thoroughly when making project 

continuation or termination decisions for incremental projects in contrast to radical ones 

(Schmidt et al., 2009). Thereby, technical criteria is primarily used to review incremental 

projects, while financial criteria is mostly used for radical ones (Schmidt et al., 2009). 

Consequently, we expect that in the case of incremental innovation it is important to be 

knowledgeable about the technical background of the cost estimates. Accordingly, we 
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expect that development teams are asked to conduct in-depth comparisons with the 

predecessor product. When dealing with radical products, explainability is less important 

since there is no direct predecessor that can be used as a reference. In conclusion, we 

expect that the relative importance of explainability to accuracy is higher for incremental 

innovation than in radical innovation.  

H4: The importance of explainability relative to accuracy is higher in the case of 

incremental innovations (low novelty) than for radical innovations (high novelty).  

4.3.3.5 Target Cost Gap 

In the early product development process, when first cost estimates are being 

made, the difference between the cost estimate and the cost target becomes clear. We 

refer to this difference as the target cost gap, and we expect this to matter for the relative 

importance of explainability and accuracy. Target cost gap is defined by the difference 

between the cost goal of a product and the planned cost of the current technical solution. 

The target cost gap thereby refers to how demanding development teams perceive their 

task of developing a product that meets the cost goals as well as all other product 

requirements. After realizing the gap between target cost and planned cost, the next step 

is to establish measures on decreasing or even closing the cost gap. Often, this is a 

complex task leading to trade-off discussions on product characteristics. Based on the 

requirements of product features, trade-offs between costs and functionalities are 

conducted, where non-essential functionalities are sacrificed in order to afford more 

important components (Thore Olsson et al., 2018). We expect that an increasing cost gap, 

will demand more explanations and discussions due to the higher cost pressure on the 

project. 

The development of a product that attains the cost goal and also satisfies the 

requirements of customers involves a number of cost management methods such as value 

engineering, functional analysis, quality function deployment, and design for 

manufacture and assembly (Ax et al., 2008). Value engineering, for example, examines 

the relationship between the functions and costs of a product and validates alternative 

product designs (Al-Qady & El-Helbawy, 2016). The effective implementation and 

application of these methods requires detailed information about the product and costs 

(Everaert et al., 2006). We expect that an increasing cost gap, will demand more 

explanations due to the need for detailed information to operate the cost management 



4.4 Research Method 

 

106 

methods. In sum, we expect that the importance of explainability is higher, when there is 

a large overshoot of the estimated costs over the cost goal. 

H5: The importance of explainability relative to accuracy is higher in the case of high 

target cost gaps than for low target cost gaps. 

Figure 18 provides an overview of the five factors which are expected to 

determine the relative importance of explainability to accuracy of cost management 

during new product development. The relative importance between both attributes is 

expected to determine the selection of machine learning models.  

 

Figure 18: Model overview of the factors and corresponding hypotheses 

4.4 Research Method 

4.4.1 Experimental Design 

The factorial within-subject experiment employs a 2 (FFE/early development phase) x 2 

(low/high information uncertainty x 2 (complete/assembly cost granularity) x 2 

(incremental/radical product novelty) x 2 (low/high target cost gap) design. Since the 

participants of this study come from one organization, AutomotiveCompany, the 

experimental task is tuned to the specific case company context. This makes the 

experiment realistic and practical in its application.  

The importance of explainability to accuracy is measured directly and indirectly. 

For the indirect measure, we use several cost estimation models with different levels of 

explainability and accuracy. In the experiment, the participants first rate multiple models 

            

             

            

           

               

              

              

              

              

            

        

  

  

  

  

  

      

      



4 Machine Learning in Product Cost Estimation: The Trade-Off between Accuracy and 

Explainability 

 

107 

according to their perceived explainability and accuracy score. In a second step, the 

participants are asked to select a model they considered appropriate for solving a common 

cost estimation task under different conditions. The experimental conditions are based on 

the five factors from the prior developed hypotheses. Since each factor is varied over a 

level of two, a full factorial design would result in a rather impractical amount of 25 = 32 

treatment combinations. Considering that high-order interaction effects are less relevant 

to answer our research question, we apply a fractional factorial design using half a 

fraction of the original design. Due to the factorial within-subject design, the 

manipulation is obvious to the participants. However, the potential change of behavior 

(so-called carry-over effect) during the experiment is less critical in this experiment and 

is minimized by randomization. Instead, we use the awareness of the manipulation to 

obtain additional information during the subsequent discussions. At the end of each 

experiment, we discuss the manipulated factors with each participant and thereby gather 

additional information about the impact of each factor. Thus, qualitative data is used to 

validate the reasoning in our hypotheses and obtain additional arguments. Qualitative data 

is also gathered to explain any unexpected results. 

4.4.2 Sample 

Participants were cost experts from three product controlling departments of 

AutomotiveCompany, who are responsible for the management of direct material costs: 

complete vehicle controlling, assembly controlling, and parts controlling. Complete 

vehicle controllers are responsible for the overall cost management of full costs from the 

FFE phase until the end of production. At AutomotiveCompany the FFE phase launches 

around 70 months before the start of production (SOP). The assembly controllers are 

specialized on the management of direct material costs and are responsible for managing 

the product design phase, which starts about 60 months before SOP. The assembly 

controlling is split into five sub-assembly groups: exterior body, interieur body, electrics, 

chassis, and engine. Parts controllers are specialized on individual components and are 

responsible for the management of the product development phase, which starts about 45 

months before SOP. The early product development (EPD) phase covers the 

implementation of concepts, while the late product development phase encompasses 

sourcing and homologation. Further, part controllers participate in the SE teams. In these 

teams, representatives from various business areas jointly develop the parts and 

components. A tentative and simplified representation of the product development 

process at AutomotiveCompany is showcased in Figure 19.  
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Figure 19: Approximate timeline of the product development process at AutomotiveCompany. Months 

before SOP are in parentheses.  

To select participants for the experiment, stratified convenience sampling is 

applied. Since we expect different results over the five sub-assembly groups, an equal 

quota is utilized to prevent biases. Using convenience sampling is no limitation, since we 

don’t ai  at generali ing to a full sample and the assignment to the conditions is not 

affected by the selection process. In total, 40 product controllers participated in the 

experiment. To select suitable participants, we only included controllers with a total work 

experience of at least three years at the three sub departments. For example, a controller 

that spent two years in part controlling and one year in assembly controlling would be 

included in the sample. Table 22 provides an overview of the sampling process. Machine 

learning users can be divided into three groups: artificial intelligence novices, data 

experts, and artificial intelligence experts (Mohseni et al., 2018). Artificial intelligence 

novices have no or only little know-how on artificial intelligence systems. Therefore, 

artificial intelligence novices will probably have the most difficulties understanding the 

functionality and results of artificial intelligence systems. The participants of this study 

can mostly be regarded as members of this group. 
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Table 22: Participant sampling 

1. Sample universe 2. Selection criteria 3. Sample strategy 

Complete 20 Complete 17 Complete 10 

Assembly 23 Assembly 17 Assembly 10 
engine:  6 engine:  4 engine:  2 

chassis:  5 chassis:  4 chassis: 2 

ext. body:  5 ext. body:  2 ext. body: 2 

int. body:  4 int. body:  4 int. body: 2 

electrics:  3 electrics:  3 electrics: 2 

Parts 73 Parts 45 Parts 20 
engine:  15 engine:  10 engine:  4 

chassis:  10 chassis:  7 chassis:  4 

ext. body:  17 ext. body:  9 ext. body:  4 

int. body:  17 int. body:  12 int. body:  4 

electrics:  14 electrics:  7 electrics:  4 

      

4.4.3 Experimental Task and Conditions 

In the following, the experimental task and the conditions are explained. It is 

important to introduce a task which all participants from the three sub departments are 

familiar with. In general, the responsibilities and the spectrum of tasks of the three 

departments are quite different. A common denominator between the three departments 

is, however, the cost estimation of product features (i.e., head-up display, panoramic 

roof). At AutomotiveCompany the impact on cost for each change in design of a 

development project is evaluated and reported to project management. Accordingly, the 

participants are provided with the following task: The product planning team requests a 

change of product design for a car model during development. Your objective is to predict 

the updated costs for the new design. This task is repeated several times under various 

conditions.  

The manipulations of the independent variables are summarized in Table 23. The 

treatment levels and descriptions were discussed with the head of the part controlling 

department of AutomotiveCompany beforehand, to ensure that the manipulation was 

sufficient.  
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Table 23: Coding of the manipulations of independent variables 

Factor Code Level Description 

    

Development 

phase 

progress 

-1 FFE The task is conducted 70 months before SOP. 

+1 EPD The task is conducted 45 months before SOP. 

    

Information 

uncertainty 

-1 low 

There is much certainty about the underlying technology, costumer, 

and competitor environment. The properties and requirements of 

the product are determined and approved. 

+1 high 

There is little certainty about the underlying technology, costumer, 

and competitor environment. The properties and requirements of 

the product are vague and not yet approved. 
    

Cost 

granularity 

-1 complete Your objective is the estimation of complete vehicle costs. 

+1 assembly Your objective is the estimation of costs on assembly level5. 
    

Product 

novelty 

-1 increm. 
Your objective is to estimate the cost of a successor car with a 

direct predecessor. 

+1 radical 
Your objective is to estimate the cost of a new car without any 

predecessor. 
    

Target cost 

gap 

-1 low 
The estimated costs of the current design surpass the target costs by 

5%. 

+1 high 
The estimated costs of the current design surpass the target costs by 

20%. 
    

    

The conditions are based on the fractional factorial design with half a fraction, 

which results in 25−1 = 16 treatment combinations. The design provides a V-resolution 

where no main effect is confounded by three-factor interactions (or higher). Further, two-

factor interaction effects are unconfounded by other two-factor interactions. The 

experimental design matrix is depicted in Table 24.  

 

5 The assembly cost granularity assigns the product costs to four groups of components: engine, 

chassis, body, and electrics. 
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Table 24: Experimental design matrix: Treatment combinations (conditions) of the 2V
 −  fractional 

factorial design 

Conditions 
Development 

phase progress 

Information 

uncertainty 

Cost 

granularity 

Product 

novelty 

Target cost 

gap 
1 -1 -1 -1 -1 +1 

2 +1 -1 -1 -1 -1 

3 -1 +1 -1 -1 -1 

4 +1 +1 -1 -1 +1 

5 -1 -1 +1 -1 -1 

6 +1 -1 +1 -1 +1 

7 -1 +1 +1 -1 +1 

8 +1 +1 +1 -1 -1 

9 -1 -1 -1 +1 -1 

10 +1 -1 -1 +1 +1 

11 -1 +1 -1 +1 +1 

12 +1 +1 -1 +1 -1 

13 -1 -1 +1 +1 +1 

14 +1 -1 +1 +1 -1 

15 -1 +1 +1 +1 -1 

16 +1 +1 +1 +1 +1 

      

4.4.4 Dependent Variable Measurement 

The dependent variable of this research is the relative importance of explainability 

to accuracy (EtA), which is measured directly with a Likert scale (S) and indirectly with 

the aid of three cost estimation models (M). For the direct measurement, we ask 

participants about the perceived relative importance of explainability to accuracy with a 

10-point Likert scale (EtAS). The bipolar Likert scale ranges from 10 (explainability is 

most important) to 1 (accuracy is most important). For the indirect measurement (EtAM), 

participants first rate three machine learning models with different levels of complexity 

according to their perceived explainability and accuracy. Then, each time they consider 

the cost estimation task, the participants were asked to choose between these models to 

solve the experimental task. The relative importance of explainability to accuracy in any 

given condition can then be derived from the selected model and the rating of that 

partic lar  odel’s perceived explainability and accuracy. The model selection is based 

on the intention to use construct of Agarwal and Prasad (1998). Venkatesh et al. (2003) 

introduces three determinants for intention to use: the degree to which the system 

improves job performance, the degree of ease-of-use, and the extent of social implications 

by using the system. The applied explainability evaluation can be considered as 

application-grounded, as domain experts and a real application were involved (Doshi-

Velez & Kim, 2017) 
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EtA
S = Explainability to Accuracy based on Likert scale (22) 

EtA
M = Explainability to Accuracy based on model choice (23) 

   
An OLS regression analysis is conducted for both EtA measures to test the main 

effects of the five factors on the relative importance of explainability to accuracy. In the 

regression analysis, we investigate 640 observations (40 participants x 16 treatment 

combinations). We standardize both variable measures for each participant, since the 

mean explainability to accuracy score and their variance over the conditions is highly 

subjective. 

In the following sections, we further describe the indirect approach for measuring 

explainability to accuracy. First, we describe the evaluation of models according to the 

perceived explainability and accuracy. Then, we select three models with high expected 

variation according to both attributes. Following this, we describe each model and explain 

the model implementation. At the end, we describe the archival costing and technical data 

that is used to train and test the models. 

4.4.4.1 Model Evaluation According to Accuracy and Explainability 

Explainability is the combination of transparency and interpretability. Both sub-

attributes are evaluated individually and combined by average. The transparency 

measure is based on the items measures by Gedikli et al. (2014) and Berkovsky et al. 

(2017). Gedikli et al. (2014) aimed to compare different explanations in recommender 

syste s.  n t eir   estionnaire t ey ask to rate “to w ic  extent the different explanation 

interfaces were s ited to increase t e transparency of t e syste ” (Gedikli et al., 2014, 

p. 379). The question was followed by a short definition of transparency: “ ransparency 

means that the explanation interface helps you to understand how the recommendation 

syste  works” (Gedikli et al., 2014, p. 379-380). The construct was measured on a seven-

point scale from not at all to very much. The work of Berkovsky et al. (2017) investigates 

trust as a major factor for the success of recommender systems. User-trust is compared 

with the constructs of competence, transparency, intention to re-use, and overall model 

tr st.   e transparency constr ct is p rased as “   nderstand t e best the [sic] reasons for 

t e s ggestions provided ...” (Berkovsky et al., 2017, p. 291). We measure transparency 

on three seven-point scale items ranging from I strongly disagree to I strongly agree. 

• T1: “I can fully understand how the cost estimation model works.” 

• T2: “I can understand the best reasons for the results provided by the model.” 
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• T3: “I understand how the model comes to its solution.” 

The interpretability construct is based on the work of Piltaver et al. (2016) and 

Demoulin and Coussement (2020). In the survey of Piltaver et al. (2016), task users are 

requested to give subjective opinions on several classification trees. Thereby, respondents 

rate how comprehensible several variations of decision trees are. An easy-to-comprehend 

classification tree is described as follows: “  can  se t e knowledge represented by t e 

classification tree as soon as I read it for the first time; I can easily remember it; I can 

e plain it to anot er person wit o t looking at t e fig re.” (Piltaver et al., 2016, p. 337). 

To analyze factors that determine the usage of text mining tools, Demoulin and 

Coussement (2020) measure interpretability by three items: “It would be easy to interpret 

what text-mining outputs mean. Text-mining outputs would be easily interpretable. The 

measurement units for text-mining outputs would be clear.” (Demoulin & Coussement, 

2020, p. 7). We measure interpretability on two seven-point scale items ranging from I 

strongly disagree to I strongly agree.  

• I1: “The explanation of results is obvious to me.” 

• I2: “I can explain the results to another person.” 

In the context of cost estimation, accuracy measures the ability of a method or 

model to predict the actual cost for a project or activity. In this study, the construct of 

accuracy is based on the definition of Dysert (2007) describing accuracy as the degree to 

which an estimate differs from the actual values. Thus, cost estimation accuracy indicates 

the degree to which the estimated cost may vary from the final cost for a project. We 

measure accuracy on a seven-point scale ranging from not accurate to very accurate.  

• A: Please rate the accuracy of the following models. Accuracy of a cost estimate 

is defined as the deviation of the forecasted cost from the actual cost of a project.  

4.4.4.2 Selectable Cost Estimation Models to the Participants 

We select three models with different expected levels of explainability and 

accuracy: CBR, MLR, and GBR. In the following, we evaluate each model individually 

according to both attributes and subsequently provide short descriptions of the machine 

learning methods.  

For the purpose of explainability, CBR shows its core strength. Neither complex 

algorithms are deployed, nor complex associations between dependent and independent 
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variables are assumed. The CBR method functions in a highly transparent manner where 

the source of the estimated cost and the underlying solution is known at any time 

(Duverlie & Castelain, 1999). However, the effectivity of CBR highly depends on the 

similarity toward past cases. In case of high innovations, the predictive performance 

might be limited due to the lack of sufficiently similar cases from the past (Roy, 2003). 

Further, the method is limited by the ability to inter-/extrapolate cost and consider 

interdependencies between product features. In sum, we expect high explainability but 

low accuracy for the CBR approach in the context of product cost estimation.  

Due to the linear design and the non-existing interdependencies between features, 

the results of MLR are easily interpretable based on the regression coefficients (James et 

al., 2013). With the regression model, one can easily comprehend the cost behavior of the 

model. Thereby, the prediction is credible on a term-by-term basis (Smith & Mason, 

1997). The cost prediction performance of MLR methods is robust, yet often lower than 

more complex state-of-the-art machine learning models, failing to capture nonlinearities 

and interdependencies between input variables (Loyer et al., 2016). We expect medium 

explainability and medium accuracy for the MLR model.  

While individual regression trees are easy to interpret visually, it is not the case 

for a combination of trees such as GBR. Due to the difficulty in obtaining explanations 

from complex ensembles, gradient boosting is often referred to as a black box (Hatwell 

et al., 2021). Yet, GBR is often the most accurate model for estimating product costs 

compared to other models (Loyer et al., 2016; Shin, 2015). Therefore, the explainability 

is expected to be low, but the accuracy to be high. The expected explainability and 

accuracy scores of the three models are summarized in Table 25. In the following, we 

provide the main characteristics and describe the implementation of the three models. 
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Table 25: Selection of machine learning models and the expected levels of explainability and accuracy 

Model Expected accuracy Expected explainability 

CBR low high 

MLR medium medium 

GBR high low 

   

4.4.4.3 Case-Based Reasoning (CBR) 

CBR systems are inspired by the processes of remembering in human reasoning 

(Chen & Burrell, 2001). The method attempts to solve a problem by remembering and 

comparing it to similar cases from the past. The system then adopts the solution gained 

from prior cases to solve a new case. The CBR cycle consists of four sub-phases (Hu et 

al., 2016): 

(1) To solve a new case/problem, the system retrieves the most similar case from a 

set of previous cases (case base) according to a similarity measure (retrieve) 

(2) In case of sufficient similarity, the new case is solved by adapting the solution of 

the retrieved case (reuse) 

(3) In case of insufficient similarity, the solution of the retrieved case is revised. 

(revise)  

(4) The confirmed solution is retained and stored in the case base (retention) 

In the context of product cost estimation, the actual cost of past products is used 

as prior cases. Each instance in the case base is described by k input variables (x1,...,xk) 

and a cost label y. To predict the cost for a new case, the historical cost of the most similar 

case is adopted. First, the similarity scores for all cases in the case base are calculated. 

Then, the case with the highest overlap is selected. In case of sufficient similarity, the 

cost of the selected case is used to predict the cost of the new case. The similarity between 

a new case N and an old case S can be calculated as the weighted sum of similarities of 

each input variable f(Ni,Si). The similarity f for the i-th variable can be calculated by the 

Manhattan or Euclidean distance. 
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Similarity(N,S  = 
∑ wi f(Ni,Si  
k
i= 

∑ wi
k
i= 

 (24) 

   

4.4.4.4 Multiple Linear Regression (MLR) 

A common approach to estimate the relationship between several independent 

input variables (x1,...,xk) and a continuous dependent variable y is the MLR model. The 

cost estimate y can be expressed as a linear combination of the input features x in addition 

to a stochastic error term ϵ.  

   
y = β  + β  x  + ... + βk xk + ϵ  (25) 

   
The regression coefficients β are obtained by the least-squares-method. By 

minimizing the sum of squared prediction errors, an optimal solution for the parameter 

vector β can be derived. Thereby, the coefficients express the impact of the input factors 

on the product cost. One assumption of regression models is the independence of 

independent variables, whereas otherwise, the cost estimates can be inaccurate (S.-G. 

Wang et al., 1990). To account for this effect, we apply the Least Absolute Selection and 

Shrinkage Operator, which allows for parameter shrinkage during regression and 

automatically conducts variable selection (Chan et al., 2018). Less important variables 

for estimating the cost are automatically discarded and multicollinearity can be reduced.  

4.4.4.5 Gradient Boosted Regression (GBR) 

Boosting is an important approach in machine learning, which was developed by 

Freund and Schapire (1997). The approach involves the combination of many simple 

models (so-called base learners) to produce a single powerful ensemble model. The 

ensemble 𝐹(x) is calculated as the weighted sum of multiple base learners fm(x). The 

expansion coefficient at each iteration is denoted as βm. 

   

F(x) = ∑ β
m
 f
m
(x)

M

m= 

 (26) 

   
Thus, an additive model is created by sequentially fitting base learners to the 

current residuals at each iteration. This approach has been refined by Friedman (2001) 

and Friedman (2002) by introducing the TreeBoost algorithm using regression trees as 

base learners. Thereby, it combines the advantages of the boosting approach and 
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regression trees, which are computational efficiency and conceptual simplicity (Shin, 

2015). In each iteration, the residuals between the current ensemble and actual values are 

used to train an additional decision tree. To update the ensemble, the predicted values of 

the additional decision tree are added to the corresponding results of the current ensemble. 

Further, a learning rate can be deployed to increase the generalizability of the ensemble 

model. 

4.4.4.6 Implementation of Models 

The three models were trained on archival costing data from AutomotiveCompany. 

Four car models over two generations were used to train and test the supervised machine 

learning models. Each model was trained on data from the predecessor generation (in 

total 135,725 observations of different car configurations) and tested on the subsequent 

generation (in total 129,074 observations). The models were used to estimate the direct 

material cost of passenger cars. The costs can be expressed at two levels: complete vehicle 

level and assembly level (body, electrics, chassis, and engine). The costing data is 

described by multiple product characteristics. Most characteristics are categorical (i.e., 

polyurethane, leather, Alcantara leather coating for steering wheels) or on a binary scale 

(i.e., head-up display available or not available). The categorical variables are one-hot 

encoded. 10 product characteristics are cardinal (i.e., engine performance). Overall, the 

costing data is labeled with 461 product features. For a more detailed description of the 

data set, see chapter 3.4.3.1. Hyperparameters were tuned on a small subset of the training 

data from the predecessor generation. A detailed description of the implementation of 

models can be found in Table 19 in Appendix B. The selected models were implemented 

in Python with the scikit-learn package from Pedregosa et al. (2011). 

4.4.5 Procedure 

The experiment consists of four phases: introduction, model rating, evaluation of 

conditions, and discussion. The four phases are accompanied by a questionnaire 

(Appendix C). In the introduction phase, we provide background information on 

machine learning. Further, we gather supplementary data about the participants, such as 

prior experience in product controlling and machine learning, as they might be 

influencing factors on the relative importance of explainability to accuracy.  

In the model-rating phase, the models are rated according to their perceived 

transparency, interpretability, and accuracy. First, the participants are provided with 

standardized descriptions for each model. As an example, the description of the CBR 
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method is depicted in Figure 20. The description of MLR and GBR can be found in 

Appendix C (Figure 28 and Figure 29). Subsequently, the participants are asked to rate 

the perceived transparency according to the items T1, T2, and T3.  

 

Figure 20: Description of the CBR method 

To evaluate the interpretability of the models, participants are further familiarized 

with the models by watching short video clips from a demonstration tool. For each 

machine learning model, the demonstration tool estimates the direct material cost based 

on a common set of product features. Thereby, each model provides individual 

explanations for the estimated costs. We created short video clips about the usage of the 

demonstration tool to ensure comparability among participants. In each video clip, the 

machine learning models carry out the same procedure: First, the entry form of product 

features is presented to the participants (Figure 30 in Appendix C) and the cost of a given 

product configuration is calculated. Second, two features are changed, and the new costs 

are calculated. Third, the specific explanations for the updated costs are showcased. The 

length of each video clip amounts to approximately 1 minute. The explanation of the CBR 

model is threefold. In the first step, the identification key of the most similar case is 

presented. In the second step, a list of differences between the target feature values and 

the feature values of the retrieved case is provided. In the third step, the bill of materials 

of the retrieved case is showcased, to obtain costs on part level and additional information 

such as part descriptions and sourcing information. The demonstration tool of the CBR 

model is displayed in Figure 21. The explanation of the MLR model depicts the 

regression formula of the linear model. Therewith, the cost for each feature can be 

retrieved from the corresponding regression coefficients (Figure 31 in Appendix C). The 
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GBR model is intentionally presented as a black box (Figure 32 in the Appendix C), 

where neither calculation steps nor explanations are provided. In this case, the participants 

are provided only with the estimated costs. After presenting the three video clips, the 

interpretability of each model is evaluated according to the items I1 and I2. 

 

Figure 21: Demo Tool: CBR 

To rate the accuracy of models, the participants are provided with the actual results 

for the inter-generational testing set for total- and assembly-level direct material cost 

prediction. To evaluate the predictive performance, the three models are compared 

according to the NMAE metric, where lower values are preferable. The NMAE is defined 

by 
MAE

 

n
∑ y

i
n
i= 

, where MAE denotes the mean absolute error and yi are the actual costs. The 

overall total cost estimation performance is calculated as the average NMAE over the 

four car models. In the case of total vehicle cost estimation, the GBR model performed 

best (NMAE of 4.86%). The NMAE of the MLR model amounts to 7.86%. The CBR 

model corresponds to the highest error (10.16%). The same order applies to the accuracy 

scores on assembly level. In the case of assembly-level cost estimation, the mean NMAE 

is calculated by the average NMAE of the four assembly groups (body, electrics, chassis, 

and engine) over three car models. The multi-target prediction is conducted for car b, car 

c, and car d. Car a is discarded, since no assembly-level costing data was available. The 

most accurate prediction is delivered by the GBR model (NMAE of 13.98%), second by 

MLR (15.09%) and third by the CBR model (18.75%). Table 26 summarizes the actual 
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cost prediction accuracy of the three models. The perceived accuracy measure is based 

on item A. 

Table 26: Prediction of the total- and assembly-level cost for the subsequent product generation. The 

predictive accuracy is measured by the NMAE metric. Standard deviation over cars and 

assembly groups are provided in parenthesis. 

 NMAE [%] 

Model Total cost  Assembly cost  

CBR 10.16 (3,68) 18.75 (8.96) 

MLR 7.86 (3.44) 15.09 (9.41) 

GBR 4.86 (1.63) 13.98 (6.60) 

   

In the evaluation phase, the participants evaluate the perceived relative 

importance of explainability to accuracy for each experimental condition. First, the direct 

measurement on the 10-point Likert scale is applied (EtAS). Second, participants are 

asked to select a model to solve the experimental task. Based on the model choice in each 

condition, the corresponding explainability and accuracy score can be derived from the 

prior rated scores of the models (EtAM).  

In the discussion phase, each participant is asked about the effect of each factor 

on the importance of explainability and accuracy. For each situation of a given factor (i.e., 

FFE and EPD phase of development phase progress) we ask whether explainability or 

accuracy would be more important. We are also interested in the reasons, examples, and 

notions behind those decisions. The gathered qualitative data serves three purposes. First, 

we use the data to validate the arguments from our hypotheses. Second, the qualitative 

data enables us to identify additional arguments behind the expected results not included 

in our hypotheses. Third, in the case of insignificant or unexpected results we can find 

out why a variable may not be effective or results in a different outcome. 

Throughout the experiment, the treatment combinations are randomly ordered for 

each participant. To prevent confusion during the presentation and evaluation of models, 

the rating of transparency, interpretability, and accuracy are not ordered randomly. We 

use a fixed order: CBR, MLR, and GBR. The experiments are conducted by screen shared 

audio conferences. As the participants are German native speakers, all questions and 

instruction are translated into German. The mean duration of the experiments amounts to 

60.92 min (SD 8.51). The average work experience amounts to 10.57 years (SD 6.80). 

The average machine learning experience amounts to 2.00 (SD 1.13) on a 7-point Likert 
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scale. Accordingly, most participants can be regarded as machine learning novices 

(Mohseni et al., 2018). 

4.5 Validity and Reliability of Variable Measures 

In the following, the validity and reliability of the variable measures and 

assumptions are analyzed. Specifically, we analyze six underlying assumptions and 

aspects of the interpretability problem. First, the three models are compared according to 

their predictive performance. We expect that the three models have an increasing level of 

accuracy (CBR < MLR < GBR), see Table 25. For total- and assembly-level cost 

prediction, the order of accuracy is in line with the expected order, see Table 26. 

Consequently, we can confirm the assumption of increasing predictive accuracy over the 

three models. 

Second, we analyze the perceived explainability scores from the perspective of 

product controllers. We expect a decreasing level of explainability over the three machine 

learning models (CBR > MLR > GBR), see Table 25. The average scores of perceived 

explainability for the three models are summarized in Table 27. The mean score of each 

model is calculated as the mean over all participants. The transparency measure is based 

on the average of the three items T1, T2, and T3. The interpretability measure is based on 

the average of the two items I1 and I2. Explainability is calculated as the average of 

transparency and interpretability scores for each participant individually. The Cronbach's 

alpha of the three items of transparency amounts to 0.964. The Cronbach's alpha of the 

two items of interpretability amounts to 0.957. Due to the two-item measurement, we 

additionally calculated the Spearman–Brown coefficient, which equally amounts to 

0.957. The statistics are based on 120 observations (40 participants x 3 models). 

Accordingly, we observe excellent internal consistency (reliability) for the transparency 

and interpretability measures. On the other side, the high alpha values indicate 

redundancy of items. Redundancy makes the test instrument less efficient since little 

additional information is obtained by the extra items (Cronbach, 1951). The acceptable 

range of alpha values varies across scholars. Some authors consider alpha values up to 

0.96 to be sufficient, while other regard maximum alpha values of 0.98 as acceptable 

(Taber, 2018). However, the results indicate that a combination of several constructs 

might not be necessary when measuring interpretability and transparency. Transparency 

and interpretability are highly positively correlated. The correlation coefficient amounts 

to 0.84 over the 120 observations. The CBR model achieves the highest scores for 

explainability, second highest is MLR and least explainable is the GBR model. These 
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results are consistent with the expected order of explainability over the three models. 

Further, high content validity of the explainability measure is achieved since both sub-

attributes (transparency and interpretability) are introduced and evaluated separately. 

Furthermore, there is high consistency in the assessment of explainability across 

participants: 29 participants agreed on the explainability order of CBR > MLR > GBR.6 

The consistency of the assessment over several raters indicates high inter-rater reliability. 

Overall, we can confirm the expected order of explainability of the three machine learning 

models.  

Table 27: Comparison of the perceived scores of accuracy and explainability for the three machine 

learning models. The table depicts the mean and standard deviation over all participants. The 

values are based on the items T1, T2 and T3 (transparency), I1 and I2 (interpretability) and A 

(accuracy). 

Model Accuracy Explainability Transparency Interpretability 

CBR 3.25 (1.26) 6.69 (0.38) 6.78 (0.45) 6.60 (0.55) 

MLR 4.58 (1.01) 6.08 (0.79) 6.29 (0.77) 5.86 (1.06) 

GBR 5.85 (0.95) 2.67 (0.95) 3.46 (1.41) 1.88 (0.96) 

     

Third, we analyze the assumption about the inverse relationship between accuracy 

and explainability of the three models. Based on the interpretability problem, we expect 

a negative correlation between both attributes. The relationship between the evaluated 

accuracy and explainability scores of the three models is depicted in Figure 22. The 

perceived scores yield a significant negative correlation between accuracy and 

explainability over the three models. The correlation coefficient over the 120 observations 

(40 participants x 3 models) amounts to r = -0.586, p-value < 0.001. Moreover, the 

association between explainability and accuracy follows the concave transformation 

function depicted by Barredo Arrieta et al. (2020) (see Figure 15). Therefore, we can 

confirm that some models perform primarily on accuracy, while others perform mainly 

on explainability and that this trade-off is actually perceived by people. The consistency 

toward the interpretability problem ensures construct validity. 

 

 

6 37 participants agreed on the order CBR ≥ MLR > GBR 
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Figure 22: Perceived explainability and accuracy over the three models: gradient boosted regression 

(GBR), multiple linear regression (MLR), and case-based reasoning (CBR). The scatter plot 

suggests an inverse relationship between perceived explainability and accuracy.  

Fourth, we expect that the relative importance of explainability to accuracy is 

important when choosing between alternative machine learning models in different 

situations during new product development. The frequency distributions of the selected 

models over the perceived importance of explainability to accuracy for each participant 

and treatment condition (40 x 16 observations) is depicted in Figure 23. The three 

distributions show that the model selection strongly depends on the perceived relative 

importance of explainability to accuracy. In situations primarily requiring explainability, 

CBR is selected; whereas the GBR model is used in situations which demand mainly 

accuracy. This is in line with the expected association between the perceived importance 

of explainability to accuracy and the selection of machine learning models. To further 

analyze the strength of the impact of the relative importance of explainability to accuracy 

for model selection, we used analysis of variance (ANOVA). The ANOVA yields 

significant differences, F-statistic = 608.72, p-value < 0.001, among the means of 

perceived importance of explainability to accuracy (EtAS) over the three models. We can 

confirm that the perceived importance of explainability to accuracy plays a significant 

role when cost experts select between alternative cost estimation models.  
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Figure 23: Model selection over perceived importance of explainability to accuracy in different 

situations. The gradient boosted regression (GBR) model is mostly selected in situations with 

low levels of perceived explainability to accuracy (accuracy is more important), whereas the 

case-based reasoning (CBR) model is mainly chosen in situations with high levels of 

perceived explainability to accuracy (explainability is more important). 

Fifth, we expect a high correlation between the direct and indirect measurement 

since both proxy the perceived importance of explainability and accuracy in a given 

situation. The correlation coefficient between both standardized measures over the 640 

observations (40 participants x 16 conditions) amounts to r = 0.819, p-value < 0.001. Both 

variable measures are standardized for each participant individually. Figure 24 depicts 

the scatter plot between both standardized measures and the linear regression line. 

Accordingly, we observe strong internal consistency (reliability) between both 

dependent variable measurements.  
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Figure 24: Scatter plot between the direct and indirect measurement of the relative importance between 

explainability and accuracy. Both measures are standardized for each participant individually. 

The scatter plot and the regression line indicate a strong linear relationship between both 

variable measures.  

Sixth, we analyze the variation of the relative importance of explainability to 

accuracy for different situations during new product development. We expect that the 

relative importance of explainability to accuracy depends on various conditions and task 

characteristics. To analyze this assumption, we depict boxplots for both EtA scores over 

the 16 conditions (Figure 25), which suggest strong variation of EtA scores. To 

statistically test the differences, ANOVA is conducted. The ANOVA yield significant 

differences among the means over the 16 conditions (F-statistic = 6.994 for EtAS and F-

statistic = 5.266 for EtAM). For both EtA measures the p-value is less than 0.001. 

Therefore, we can confirm the expected variation of explainability to accuracy over 

different situations during new product development.  
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Figure 25: Boxplots of the importance of explainability to accuracy scores (EtA) over the experimental 

conditions. Mean EtA scores are indicated by circles. For both variable measures, by Likert 

scale and by model selection, the boxplots suggest different importances of explainability 

relative to accuracy (different means and medians) over the 16 treatment combinations.  

4.6 Results 

In the following, the effect of the five factors on the relative importance of 

explainability to accuracy in the context of cost estimation is analyzed. Since we use an 

OLS regression analysis to test the main effects of the five factors, we first evaluate the 

assumptions of linear regression with binary independent variables. First, we checked the 

assumption of normality with the aid of quantile-quantile-plots where we find no 

abnormalities (Figure 33 in Appendix C). Additionally, we conducted a Kolmogorov-

Smirnov normality test on the residuals. For both EtA measures the normality assumption 

can be confirmed (p-value = 0.138 for EtAS and p-value = 0.222 for EtAM). Second, we 

used residual plots to check for homoscedasticity (Figure 34 in Appendix C). The 

residual plots exhibit equal variance for both dependent variables. Third, we checked the 

homogeneity of variance between treatments. In doing so, we conducted a Levene's test 

over the 16 treatment combinations. We can confirm equal variances between the groups 

for both EtA measures (p-value = 0.427 for EtAS and p-value = 0.740 for EtAM). 
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Table 28: Main effects of the five factors on the relative importance of explainability to accuracy. The 

importance of explainability to accuracy is measured by scale (EtAS) and model selection 

(EtAM). Both EtA measures are standardized for each participant individually.

 EtAS EtAM 

   

Constant 0 0 

 (0) (0) 
   

Development phase progress -0.2421*** -0.2345***  
(-6.559) (-6.232) 

   

Information uncertainty 0.0906* 0.0441 

 (2.454) (1.172) 
   

Cost granularity -0.0867* -0.0729+ 

 (-2.348) (-1.937) 
   

Product novelty -0.0320 -0.0862* 

 (-0.866) (-2.291) 
   

Target cost gap 0.2462*** 0.1809*** 

 (6.670) (4.807) 
   

Observations 640 640 

R2 13.6% 10.2% 
+p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001 

  

The results of the regression analysis are summarized in Table 28. Supporting 

H1, we observe a significant negative correlation between development phase progress 

and both EtA measures. During the EPD phase of new product development (high 

progress), more importance is placed on accuracy relative to explainability. In the FFE 

stage (low progress), explainability is more important. As hypothesized in H2, 

information uncertainty is positively correlated with the relative importance of 

explainability to accuracy. The factor equally produces a positive effect on both EtA 

measures. However, the effect is only significant for the direct EtA measurement. We 

address the differences between the measures in the discussion section (Section 4.7). 

Supporting H3, the cost granularity is negatively correlated with the relative importance 

of explainability to accuracy. The higher the cost granularity (i.e., assembly level cost), 

the more importance is placed on accuracy relative to explainability. The effect is 

significant for EtAS and marginally significant and EtAM. As expected in H4, product 

novelty is negatively correlated with the relative importance of explainability to accuracy 

for both EtA measures. However, the result is only significant for the indirect EtA 

measurement. Finally, we can confirm the positive association of target cost gap and the 

relative importance of explainability to accuracy (H5). The main effects of the five factors 

on the direct measurement are depicted in Figure 26. 
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Figure 26: Main effects of the five factors on explainability to accuracy by scale. The figure illustrates 

that explainability is more important than accuracy (higher EtAS value) for the FFE 

development phase, high information uncertainty, complete cost granularity, incremental 

product novelty (slightly), and high target cost gaps.  

The mean EtAS over the treatment combinations and participants amounts to 5.68 

(SD 2.32) on a 10-point Likert scale indicating that in average explainability is slightly 

more important than accuracy. Accordingly, participants tend to select simpler cost 

estimation methods in most situations. Despite being much more inaccurate, cost experts 

mostly chose either the CBR or the MLR model in almost 74% of the cases (Figure 27). 

In only 26% of the cases the more complex GBR model was considered to be adequate.  

 

Figure 27: Frequency of models selected by the participants to solve the cost estimation task in several 

conditions (40 x 16 observations) 

We further tested for interaction effects between the independent variables. 

However, no significant second-order effects (or higher) could be identified. The five 

factors explain 13.6% of the variance of EtAS and 10.2% of EtAM. We assume that the 



4 Machine Learning in Product Cost Estimation: The Trade-Off between Accuracy and 

Explainability 

 

129 

explained variance is limited by the difficulty of processing five factors with different 

levels. Research has shown that the capacity of processing information is limited to 

approximately 7 cognitive entities at once (Miller, 1956). We expect that the scenario 

evaluations with 10 entities (5 factors x 2 situations) are prone to errors due to intuition 

and spontaneity. The high complexity can lead to evaluations that might contradict prior 

assessments and therefore reduce the explained variance of the dependent variables. 

Moreover, there was no significant difference in the mean EtA scores between the three 

controlling departments (complete, assembly, and parts). Further, we find no significant 

associations between work experience or machine learning experience from participants 

and the average explainability to accuracy ratings. 

4.7 Discussion 

For the discussion of results, we will draw on the qualitative information gathered 

during the experiment. We asked participants to articulate some of the reasons why one 

attribute, explainability or accuracy, would be more important in both situations of a given 

factor. We also asked follow-up questions to make sure that we understand the arguments 

correctly and their context in which they are effective.  

We conducted a content analysis, which combines a deductive and inductive 

approach. During the deductive phase, we assigned the participants’ state ents to the 

arguments from our hypotheses. We thereby compare the explanations provided by the 

participants with the arguments from our hypotheses. Some of t e participants’ reasons 

reiterate our theoretical arguments, which are collected in Panel A of Table 29-33. In the 

inductive phase, we obtain new arguments from the remaining participants’ statements. 

Some reasons mentioned by the participants suggest other arguments supporting our 

hypotheses (Panel B). We further develop these arguments, drawing on new literature. 

Furthermore, reasons mentioned by the participants might help to understand unexpected 

results (Panel C). We develop possible theoretical explanations for the results, drawing 

on the participants comments and new literature.  

4.7.1 Development Phase Progress 

The results in the experiment supported H1: We found a negative relationship 

between development phase progress for both EtA measures. The importance of 

explainability relative to accuracy is higher in the FFE phase than in the EPD phase of 

new product development. The arguments we developed for H1 are summarized in Table 
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29, together with several quotes from the experiment. These provide support for the 

theoretical arguments and provide more confidence about the validity of the results of the 

experiment. The participants’ state ents did not s ggest ot er arg  ents for   .  

Table 29: Evaluation of the factor development phase progress (FFE or EPD) 

Panel A: Quotes supporting original arguments for the hypothesis (deductive) 

1) FFE: Explainability 

is more important 

due to the focus on 

conceptual work 

(doing the right 

things). 

 

“Explainability is important while accuracy is less important, since the project framework 

needs to be developed first.”  Parts controller 14  

“The FFE phase is about product ideas where I decide based on rough estimates.” 

(Complete vehicle controller 24) 

“In the FFE phase, I have big levers [for cost improvement], which do not need to be 

calculated in detail.”  Complete vehicle controller 15  

2) EPD: Accuracy is 

more important 

due to the focus on 

realization and 

implementation 

work (doing the 

things right). 

“In the EPD phase I need accuracy. I need to demonstrate profitability, since I substantiate 

and materialize the concepts.”  Complete vehicle controller 24  

“At the latest at the stage of pricing a feature it is extremely important to know the exact 

costs, otherwise there is the danger of producing at a loss.”  Assembly controller 22  

3) FFE: Explainability 

is more important 

since more 

assumptions are 

required (less 

decisions are 

made). 

 

 

 

“Here in the FFE phase it is important to be clear about the assumptions and why you 

come to certain decisions. At later stages I need to know on what assumptions the 

decisions were based.”  Assembly controller 22  

“In the FFE phase much is undecided, thereby I do not need to calculate to the last penny. 

I have many unknowns of the technical solutions available that €100 or €200 more or 

less do not matter.”  Parts controller 5  

 “In the FFE phase I need explainability. Especially when innovative parts need to be 

calculated, such as new active roll stabilization concepts, we have dozens of 

assumptions for the cost calculation. When the selling price does not cover the 

estimated costs, the controlling and sales department are at loggerheads and must 

explain their assumptions.”  Parts controller 18) 

4) EPD: Accuracy is 

more important, 

since more facts 

are available to 

rely on (more is 

decided). 

“At a later time, orders are partly placed, and specific information is already known. In 

addition, I have actual costs and precise calculations of the product. When I have a 

circuit diagram in the late phase, I can precisely calculate the cost [of the wiring].” 

(Parts controller 3) 

“The product is already defined as such and therefore will not be questioned.” 

(Parts controller 8) 

Panel B: New arguments and quotes supporting the hypothesis (inductive) 

Panel C: Arguments and quotes that help understand unexpected results (inductive) 

  

4.7.2 Information Uncertainty 

The results of the experiment supported H2: The importance of explainability 

relative to accuracy is higher in the case of high information uncertainty than in low 

information uncertainty. The arguments we developed for H2 are summarized in Panel A 

in Table 30 alongside with several statements from the experiment.  
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 ne participant’s state ent sti  lated  s to consider anot er t eoretical arg  ent 

for H2. As indicated in Panel B of Table 30, the participant mentioned that the 

assumptions may change more often, making accuracy less important. Due to the fast-

moving nature of product development at high uncertainty, the calculation of highly 

accurate cost estimates is not necessary. This argument is in line with the increasingly 

agile product development processes, where every modification of a product that affects 

the costs must be considered when tracking product costs (Germani et al., 2011). Short 

duration of validity could be another theoretical argument why higher information 

uncertainty makes accuracy less important than explainability. 

One participant helped us to come up with a theoretical explanation for the 

unexpected result of why the indirect measure is not significant. Some participants stated 

that the more accurate GBR model was often more useful in the case of high information 

uncertainty as it provides an easy and quick way to calculate many product designs. 

Manual adjustments would often be required when applying the CBR and MLR models 

to achieve high accuracy, which are not always necessary in the case of the GBR model. 

If many scenarios or different product designs need to be evaluated, a complex machine 

learning method is therefore more adequate. This corresponds to Deng and Yeh (2010), 

who state that machine learning is beneficial when conducting design-to-cost approaches, 

since  ac ine learning  odels don’t rely on human-based judgment and they can quickly 

update cost when the design of a product changes during new product development. 
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Table 30: Evaluation of the factor information uncertainty (high or low) 

Panel A: Quotes supporting original arguments for the hypothesis (deductive) 

1) High uncertainty: 

Explainability is 

more important, 

due to manual 

adjustments to 

integrate expert 

knowledge. 

„In case of information uncertainty explainability is more important. The results of such 

models often must then be further adjusted, this has to be somehow explained.” 

(Parts controller 10) 

„When dealing with information uncertainty explainability is more important. I need to 

know how numbers can be influenced”  Assembly controller 22  

2) High uncertainty: 

Explainability is 

more important 

since more 

assumptions 

concerning 

technology and 

market 

environment are 

required. 

“In case of uncertainty, explainability is more relevant as there are more active 

discussions. Furthermore, the assumptions are not set and need to be fixed. These 

assumptions are then often questioned along with the [cost estimation] model.” 

(Parts controller 2) 

3) Low uncertainty: 

Accuracy is more 

important since 

more facts and 

certain 

information is 

available to rely 

on. 

“In case of high information certainty, the reference is fixed. When the reference is 

accepted explainability is less important. Consequently, accuracy can be higher.“ 

(Parts controller 5) 

“In case of information certainty, the assumptions are agreed upon, 'That is how it is…'. 

Therefore, I need to give less explanations.”  Parts controller 17   

“In case of high certainty, the goal is often to reach the key competitor. To do so I need 

accuracy.”  Parts controller 9  

Panel B: New arguments and quotes supporting the hypothesis (inductive) 

4) High uncertainty: 

Accuracy is less 

important due to 

the low duration 

of validity. 

“There is no need to calculate down on the last penny when everything will look different 

in two months.”  Assembly controller 28  

Panel C: Arguments and quotes that help understand unexpected results 

(inductive) 

5) High uncertainty: 

Complex machine 

learning models 

are more adequate 

when the cost of 

many different 

designs and 

scenarios need to 

be estimated.  

“Complex models such as GB  can also be used to optimize product designs. [...] The 

calculation of many different product designs by hand would otherwise take too long.” 

(Parts controller 1)  

  

4.7.3 Cost Granularity 

The results of the experiment supported H3: The importance of explainability 

relative to accuracy is higher in the case of aggregated, low cost granularity (total cost) 

than in the case of detailed, high cost granularity (assembly-level costs). The arguments 
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we developed for H3 are summarized in Panel A of Table 31 together with several 

statements from the experiment. 

  e participant’s state ents also s ggest two more theoretical arguments for H2, 

which are summarized in Panel B of Table 31. First, participants explained that the 

relative cost prediction performance of total- and assembly-level cost is important to 

consider when selecting a machine learning model. The larger prediction error of the 

assembly level was considered by many participants in the model selection process to be 

critical.7 In the case of total cost prediction, accuracy is therefore less important due to 

the relatively high level of accuracy. A minimum level of predictive accuracy is required 

to ensure the applicability of cost estimates in practice (Verlinden et al., 2008). The 

minimum level of predictive accuracy of cost estimates depends on several factors, such 

as the phase during new product development (Li Qian & Ben-Arieh, 2008) and the error 

compared to alternative methods (i.e., manual calculations) (Caputo & Pelagagge, 2008). 

This leads to another theoretical argument where in the case of assembly cost prediction, 

accuracy is more important, because of the relatively low accuracy, which did not exceed 

an acceptable threshold. Second, one participant mentioned that on a higher cost 

granularity more specialized knowledge is necessary. In such cases, it is usually difficult 

for non-experts to join discussions and challenge cost forecasts. Understanding specific 

jargon and asking the right questions is difficult for non-experts when interacting with 

domain expert teams (Markus, 2001). Therefore, less explainability is needed when 

specialized knowledge is required. The necessity of expert knowledge on more granular 

cost levels could be another argument why explainability is more important on more 

detailed cost levels.  

 

 

 

7 In the case of total cost estimation, the NMAE ranges from 4.86% (GBR) to 10.16% (CBR). On 

assembly level, the NMAE ranges from 13.98% (GBR) to 18.75% (CBR). 
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Table 31: Evaluation of the factor cost granularity (complete or assembly level) 

Panel A: Quotes supporting original arguments for the hypothesis (deductive) 

1) Complete: 

Explainability is 

more important 

due to the 

heterogeneous set 

of many 

components. 

“The complex settling and prioritization of product features between the assemblies 

requires explainability: ‘The chassis assembly gets the air spring; therefore, we will 

have an inferior interior [in the body assembly]’. The total cost matters in accordance 

with the target properties.”  Complete vehicle controller 13  

“Explainability is important for the reconciliation and comparison with other projects with 

internal and external benchmarks.”  Parts controller 36  

2) Assembly: 

Accuracy is more 

important due to 

the homogenous 

set of few 

components. 

“Since the granularity is higher on assembly level there is the expectation of a higher 

accuracy due to the reduced complexity.”  Complete vehicle controller 7   

Panel B: New arguments and quotes supporting the hypothesis (inductive) 

3) Assembly: 

Accuracy is more 

important due to 

the relatively low 

accuracy of 

multi-target 

predictions. 

“The inaccuracy is much higher on the assembly level. Since the roughly 20% accuracy 

score of the CBR method is by far too inaccurate, I inevitably need to use more accurate 

models such as ML  or GB .”  Parts controller 8  

“I am automatically more accurate on the complete vehicle level.” 

(Assembly controller 11)  

4) Assembly: 

Explainability is 

less important due 

to specialized 

knowledge. 

“On a certain level of detail and cost granularity there are less experts that are 

knowledgeable. For example, in the case of calculations of highly innovative production 

processes, where you need to become acquainted with a highly specialized topic first.” 

(Parts controller 31) 

Panel C: Arguments and quotes that help understand unexpected results 

(inductive) 

  

4.7.4 Product Novelty 

The results of the experiment only partly supported H4: The importance of 

explainability relative to accuracy is higher in the case of incremental innovation than for 

radical innovation. As the direct measurement is not statistically significant, we cannot 

completely confirm the significance of this factor. The arguments we developed for H4 

are summarized in Panel A of Table 32 together with several participant statements. 

  e participant’s state ents also sti  lated anot er argument for H4, which is 

summarized in Panel B of Table 32. Two participants explained their choice of machine 

learning model by the difficulty to provide accurate estimates in the case of radical 

innovation compared to incremental innovation. When dealing with radical innovation, 

accuracy is more important because of the relatively low level of accuracy as cost 

estimations must be conducted from scratch. In the case of incremental innovation, 
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accuracy is less important, because of the relatively high level of accuracy due to the 

availability of existing cost references. This corresponds to the nature of incremental 

products, which commonly involves familiar technologies, known markets, and high 

predictability of outcomes (Schmidt et al., 2009). Accordingly, the statements suggest 

another theoretical argument where the high accuracy of incremental innovation makes 

accuracy relatively less important compared to radical innovation. 

 e also  sed participant’s state ents to co e  p wit  an e planation why the 

direct measure is not significant. Three distinct explanations were suggested. First, one 

participant mentioned that a similar approach to the CBR method is normally used for 

incremental innovation and therefore represents the current practice at 

AutomotiveCompany. The fit of the CBR method to the approach commonly applied 

when estimating the cost of incremental innovations could be one explanation why more 

importance is placed on explainability in the case of the indirect measure but not for the 

direct measure. Literature considers that the behavior of individuals is not just determined 

by their beliefs and attitudes, but also by their habits (Burton-Jones & Hubona, 2006). In 

most cases, the frequency in which a behavior has been carried out in the past is also a 

reliable predictor of future action (Ajzen, 2002). In the context of technology acceptance, 

the experience with information technology has a positive impact on system usage 

through habit formation (Burton-Jones & Hubona, 2006). The longer an individual has 

used a system, the more likely it will become a habitual tool. Second, a participant 

explained that in the case of radical innovation there is more focus on conceptual work 

where more explainability is needed. The conceptual work could be one theoretical 

explanation why more importance is placed on explainability during radical innovations. 

Radical innovation involves the identification of new concepts, while incremental 

innovation improves a given solution by modifying available concepts (Norman & 

Verganti, 2014). Third, two participants stated that in the case of radical projects more 

assumptions are required that need to be explained. The larger number of assumptions 

could be another explanation why radical innovation makes explainability more important 

than accuracy. Radical innovations build on several assumptions about the future 

customer value and the company's solutions to satisfy the customer needs (Gudem et al., 

2014). In addition, radical innovation redirects a company to new markets, which implies 

turning away from existing assumptions (Herrmann et al., 2007).  
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Table 32: Evaluation of the factor product novelty (radical or incremental) 

Panel A: Quotes supporting original arguments for the hypothesis (deductive) 

1) Increm.: 

Explainability is 

more important, 

due to in-depth 

comparisons with 

the predecessor. 

“With existing predecessor projects explainability is more important. Everyone is raising 

questions about how it was with the predecessor project.”  Parts controller 3  

“Everyone would ask why, if it costs €10 more compared to the predecessor project.” 

(Parts controller 31) 

“Here the acceptance is much more important. One is always more critical in the case of 

successor projects.”  Complete vehicle controller 15  

2) Radical: 

Accuracy is 

more important 

since no 

comparisons 

with the 

predecessor are 

requested. 

 

“In radical projects accuracy is more important. Nobody can challenge that I might be 

wrong in this case.”  Complete vehicle controller 15  

“I don't need to explain myself, since there is no real predecessor project. I have a larger 

playing-ground with radical projects. The more possibilities I have, the more artificial 

intelligence tools can be applied.”  Parts controller 1  

“In case of radical projects there is no predecessor so the necessity for explainability is 

reduced.”  Parts controller 3) 

Panel B: New arguments and quotes supporting the hypothesis (inductive) 

3) Increm.: Accuracy 

is less important 

due to the 

relatively high 

level of accuracy. 

“One is already more accurate in case of successor projects. Explainability is more 

important here.”  Parts controller 16   

4) Radical: Accuracy 

is more important 

due to the 

relatively low 

level of accuracy. 

“In case of radical projects, a more or less similar reference is first needed, which means 

there will be lower accuracy. Consequently, I need a model that increases this 

accuracy.”  Parts controller 6  

 

Panel C: Arguments and quotes that help understand unexpected results 

(inductive) 

5) Increm.: 

Explainability is 

more important 

since the CBR 

model fits the 

current the 

practice. 

“I'd rather choose CB  in successor projects since we do it like this when dealing 

with incremental projects. Therefore, explainability is more important.” 

(Parts controller 25)  

6) Radical: 

Explainability is 

more important 

due to the focus on 

conceptual work. 

„In radical projects I need more explainability. Thereby, I do not need to calculate down 

to the last penny. Moreover, I need to know the design configuration of the new car. 

What features does it have? How is the car conceptualized?”  Parts controller 14) 

7) Radical: 

Explainability is 

more important 

since more 

assumptions are 

required. 

“Explainability is more important in radical projects since I have many assumptions that 

I need to explain in this situation.”  Parts controller 18  

“In radical projects I need more explainability since I need to estimate costs for new 

components. Often, I need to explain the calculation steps and the underlying 

assumptions.”  Parts controller 4  
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4.7.5 Target Cost Gap 

The results of the experiment supported H5: The importance of explainability 

relative to accuracy is higher in the case of high target cost gap than in low target cost 

gap. The arguments we developed for H5 are provided in Panel A of Table 33 together 

with several statements from the participants. 

Some participants’ state ents stimulated us to consider two more theoretical 

arguments for H5. As indicated in Panel B of Table 33, some participants mentioned that 

when dealing with high cost gaps explainability becomes more important due to the low 

acceptance of target costs. Goal commitment is negatively related to goal difficulty (Erez 

& Zidon, 1984). Therefore, extreme levels of goal difficulty limit the effectivity of goal 

setting (Yukl & Latham, 1978). In the field of XAI, explainability is more important when 

there is low trust into a machine learning model (Alonso et al., 2015). The low acceptance 

of target costs could be another theoretical argument why higher target cost gaps make 

explainability more important than accuracy. Still, it should be mentioned that 

understanding and trust are linked but not mutually dependent: One can trust a model in 

its predictions without being able to explain it, and vice versa (Hall & Gill, 2018). 

Furthermore, participants stated that accuracy is more important to validate the cost gap 

when dealing with lower target cost gaps. High prediction errors could mistakenly discard 

a profitable product when costs are overestimated or mistakenly include low-margin 

products when costs are underestimated. When comparing cost forecasts and cost goals, 

a high accuracy level of cost forecasts is important to correctly select products with high 

margins and discard loss-making products (Joseph & Vetrivel, 2012). This suggests 

another argument for H5, where the validation of the cost gap makes accuracy more 

important when dealing with low target cost gaps.  
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Table 33: Evaluation of the factor target cost gap (high or low) 

Panel A: Quotes supporting original arguments for the hypothesis (deductive) 

1) High target cost 

gap: Explainability 

is more important 

due to a higher 

pressure on the 

project. 

“The project is in greater focus in the case of 20% target cost gap. It is likely that the 

project will not pass the next development milestone and will be halted.” 

(Complete vehicle controller 7) 

“In the case of 20% I need explainability. There are cost workshops where each part and 

even special equipment is questioned.”  Parts controller 18  

2) Low target cost 

gap: Explainability 

is less important 

due a lower 

pressure on the 

project. 

“There are less questions with 5%. In other words, I need less explainability. The 

purchasing department can then catch up to the remaining 5% with purchasing 

performance.”  Parts controller 17) 

“I am more in a comfort zone in a situation with a 5% deviation. No one is bothered since 

other problems of other projects are more important.”  Complete vehicle controller 19) 

3) High target cost 

gap: 

Explainability is 

more important 

due to the 

requirement of 

detailed 

information. 

“With deviations of 20% I need explainability. I need to identify the drivers and reasons 

why I am that far away from the target.”  Parts controller 14  

“I need to know where I can find opportunities for improvement. Therefore, I need 

additional information, such as sourcing data or technical drawings.” 

(Parts controller 1)  

Panel B: New arguments and quotes supporting the hypothesis (inductive) 

4) High target cost 

gap: Explainability 

is more important 

due to a low 

acceptance of 

target cost. 

“In a situation with 20% cost gap, I must bring people on board. Otherwise, the target cost 

won't be accepted.” (Assembly controller 23) 

“There are many questions of how the target development is formed and what is behind 

that target cost with such deviations.” (Parts controller 3) 

5) Low target cost 

gap: Accuracy is 

more important as 

the target 

deviation needs to 

be validated. 

“With cost gaps of 5% I need accuracy since I need to make sure the cost gap is indeed 

only 5%.”  Parts controller 9  

“A prediction error of 5% is more critical in the case of 5% cost gap then in the case of 

20% cost gap.” (Parts controller 31) 

Panel C: Arguments and quotes that help understand unexpected results 

(inductive) 

  

4.8 Conclusion 

This chapter investigates factors influencing the relative importance of 

explainability to accuracy in the context of cost estimation during new product 

development. By conducting a within-subject fractional factorial experiment, we 

statistically test five factors that are expected to determine the relative importance 

between explainability to accuracy: development phase progress, information 

uncertainty, cost granularity, product novelty, and target cost gap. We show that the 
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adequacy of machine learning methods for cost estimation significantly depends on the 

specific situations and conditions during new product development.  

4.8.1 Research Implications 

This paper provides several contributions to the literature. First we empirically 

confirm that people perceive the trade-off between accuracy and explainability. The cost 

estimation literature often assumes an inverse relationship between accuracy and 

explainability without empirical evaluation (Cavalieri et al., 2004; Loyer et al., 2016; 

Verlinden et al., 2008). Our experiment shows that both attributes are indeed significantly 

negatively correlated (r = -0.586). Moreover, the relationship matches the transformation 

curve depicted in Barredo Arrieta et al. (2020). 

Second, we provide evidence that the relative importance of explainability to 

accuracy matters for the selection of machine learning methods for cost estimation. In the 

integrated technology acceptance model, accuracy and explainability are important 

factors expressing the information quality of a system and thereby positively influence 

the use and value of information technology (Wixom & Todd, 2005). In the machine 

learning model selection process, accuracy and explainability are expected to be main 

determinants for the adequacy of a model (Boehm et al., 2019; Tripathi et al., 2021). In 

the cost estimation literature, interpretability is expected to be a limiting factor of machine 

learning methods (Cavalieri et al., 2004; Loyer et al., 2016). Often more simpler cost 

estimation models are used despite being less accurate compared to machine learning 

models (Verlinden et al., 2008). We contribute to this stream of literature by empirically 

confirming that the relative importance of explainability to accuracy is a significant factor 

in the model selection process. However, we find that other factors, such as the 

availability of common practices of solving a cost estimation task at a company and the 

ability to calculate many different product designs, are also important when selecting 

between machine learning models for cost estimation. We show that despite having much 

higher perceived accuracy (GBR 5.85 in contrast to 4.58 and 3.25 of MLR and CBR on 

a 7-point Likert scale), the complex machine learning method was considered adequate 

in only few situations of new product development. The GBR was selected in 26.09% of 

the cases, while the much simpler MLR and CBR methods are perceived adequate in most 

cases (73.91%). We add to the cost estimation literature by demonstrating the significance 

of the relative importance of explainability to accuracy in the machine learning model 

selection process. We confirm that the lack of interpretability is indeed a major limitation 

for product cost estimation in practice when applying machine learning. Our findings 
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therefore challenge the current research trend of using machine learning within the 

environment of product cost estimation (Caputo & Pelagagge, 2008; Cavalieri et al., 

2004; Chou & Tsai, 2012; Deng & Yeh, 2011; Loyer et al., 2016; Verlinden et al., 2008).  

Third, we identify several factors that determine the relative importance of 

explainability to accuracy of machine learning methods for product cost estimation during 

new product development. The XAI literature identified several general factors based on 

theoretical approaches and conceptual frameworks that influence the selection of machine 

learning models such as the need for interaction with models (Alonso et al., 2015; Frias-

Martinez et al., 2005), the available trust (Alonso et al., 2015), consequences of inaccurate 

predictions (Baryannis et al., 2019), and the need to validate outcomes (Alonso et al., 

2015). We add to this literature stream by empirically testing the importance of context-

specific factors. Especially for product cost estimation during new product development, 

we investigated five factors that determine the relative importance between explainability 

and accuracy: 

• Development phase progress: Explainability relative to accuracy is more important 

in the FFE design phase than in the EPD phase. This factor matters due to the 

difference between conceptual and implementation work and because of the 

different number of assumptions required.  

• Information uncertainty: Explainability relative to accuracy is more important in 

the case of high information uncertainty than for low information uncertainty. This 

factor is important because of the requirement of manual adjustments, the necessity 

of assumptions, and different durations of validity of product designs. 

• Cost granularity: Explainability relative to accuracy is more important in the case 

of low cost granularity (i.e., total cost) than for high cost granularity (i.e., assembly 

cost). The homogeneity of components, the difference of accuracy levels of cost 

estimates, and the requirement of specialized knowledge for different cost 

granularities make this factor important. 

• Product novelty has a significant impact on machine learning model selection but 

has no significant impact on the importance of explainability relative to accuracy. 

On the one side, the need for comparisons with predecessors and the low level of 

accuracy make accuracy more important in the case of radical innovation; on the 

over side, the focus on conceptual work and the requirement of many assumptions 

make explainability more important in radical innovation. Overall, we cannot 
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confirm the statistical significance of this factor on the relative importance of 

explainability to accuracy.  

• Target cost gap: Explainability relative to accuracy is more important in the case 

of high target cost gaps than for low target cost gaps. This factor matters since it 

affects the pressure on the project, the required level of detail of information, the 

acceptance of cost goals, and the need for validation of the current cost gap.  

In sum, we contribute to the literature by identifying several factors that 

significantly determine the importance of explainability relative to accuracy and the 

model choice for cost estimation during product development. These findings are relevant 

given the popularity of machine learning in product cost estimation (Caputo & Pelagagge, 

2008; Chou et al., 2010; Deng & Yeh, 2011; Loyer et al., 2016) and the often-discussed 

interpretability problem in this field (Cavalieri et al., 2004; Loyer et al., 2016; Verlinden 

et al., 2008).  

4.8.2 Limitations 

The generalizability of findings is limited by certain aspects. First, the 

experimental task covers the estimation of cost during the rather early phase of new 

product development. For the estimation of costs at later phases other factors might be 

relevant. Second, the experiment is conducted at a case company with very little 

experience with machine learning applications. As the participants can be regarded as 

artificial intelligence novices (average machine learning experience of 2.00 on a 7-point 

scale), the selection between models might be different in other environments with more 

experienced machine learning users. Third, as this study incorporates a within-subject 

design, it is subject to the typical limitations regarding fatigue and carry-over effects. 

Carry-over effects are mitigated by randomization, while the awareness of the changing 

factors was used on purpose to get insights into the underlying reasoning behind the 

selection of machine learning models. Finally, the within-subject design with five factors 

was challenging for participants to distinguish between treatment combinations. In some 

cases, the participants mentioned that they focused mainly on a subset of factors and used 

the remaining factors to adjust for nuances. This might lead to inconsistent results, which 

also reduces the coefficient of determination of the regression analysis. 

4.8.3 Future Research 

This experiment opens some promising avenues for further research. On the one 

hand, the discussions at the end of the experiment introduced two new potential factors 
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that could also play a significant role for the relative importance of explainability to 

accuracy: the level of hierarchy and the complexity of parts.  

 “The information need of recipients does highly depend on the project environment and 

the level of management hierarchy.  …  The higher the hierarchy level, the broader 

and less detailed the results should be. In lower levels of hierarchy, there are more 

experts and therefore explainability is needed.”  Complete vehicle controller 7  

 

Top managers usually prefer more aggregated information for economic decision-

making, while middle management needs information in greater detail (Odar et al., 2015). 

Aggregated information is required for strategic planning tasks, while more detailed 

information is necessary on operation control tasks (Gorry & Scott Morton, 1989). 

Accordingly, we expect that the importance of explainability relative to accuracy is higher 

in the case of interactions with middle/low management than in the case of top 

management. 

“When dealing with technical black boxes, such as electronic control units, there are 

anyhow less questions. In the case of simple and tangible parts everyone has a say, 

and it gets complicated.”  Parts controller 26  

 

It is expected that the need for explainability is lower in the case of highly complex 

components, where mainly domain experts are involved. Non-experts struggle with the 

jargon, finding the right questions to raise when interacting with experts (Markus, 2001). 

Moreover, non-experts require information in an accessible way. Therefore, we expect 

that the importance of explainability relative to accuracy is higher when dealing with low 

part complexity than in the case of high part complexity. 

On the other hand, it would be interesting to analyze antecedents of relative 

importance of explainability to accuracy in other areas during new product development. 

As this experiment covers only the aspect of cost estimation, other aspects of cost 

management or decision making are left for future research.  
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4.9 Appendix C.  

Questionnaire and experimental procedure 

1. Introduction 

a. Department: ____________ 

b. Work experience (in years): ______ 

c. Experience with machine learning 

very low −−−−−− very high 

2. Introduction of the three machine learning models 

3. Model rating (CBR, MLR, GBR): Transparency 

a. I can fully understand how the cost estimation model works. 

I strongly disagree −−−−−− I strongly agree 

b. I can understand the best reasons for the results provided by the model. 

I strongly disagree −−−−−− I strongly agree 

c. I understand how the model comes to its solution. 

I strongly disagree −−−−−− I strongly agree 

4. Presentation of video clips of the three machine learning models 

5. Model rating (CBR, MLR, GBR): Interpretability 

a. The explanation of results is obvious to me. 

I strongly disagree −−−−−− I strongly agree 

b. I can explain the results to another person. 

I strongly disagree −−−−−− I strongly agree 

 

6. Presentation of empirical test results for each machine learning model 

7. Model rating (CBR, MLR, GBR): Accuracy 

Please rate the accuracy. Accuracy of a cost estimate is defined as the 

deviation of the forecasted cost from the actual cost of the project. 

Not accurate −−−−−− Very accurate 

8. Experimental task 

The product planning team requests a change of product design for a car 

model during development. Your objective is to predict the updated costs 

for the new design. 
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9. Condition evaluation (16 treatment conditions) 

a. Relative importance of explainability to accuracy in this scenario. 

Accuracy −−−−−−−−− Explainability 

b. In this scenario I intend to use the following method. 

 GBR −  MLR −  CBR 

10. Discussion of each of the five factors 

When comparing both situations of a given factor, what is more important: 

explainability or accuracy? Why? 
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Figure 28: Description of the MLR method 

 

Figure 29: Description of the GBR method 
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Figure 30: Demo Tool: Entry of features. The entry form consists of the 125 most important features 

according to the GBR model. The same features for each model are used, to make sure that the 

models are only distinguishable by their explanations. 

 

Figure 31: Demo Tool: MLR 
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Figure 32: Demo Tool: GBR 

  

Figure 33: Quantile-quantile plots for explainability to accuracy by scale (EtAS) and by model selection 

(EtAM). The quantile-quantile plots of both variable measures suggest that residuals are 

normally distributed. 
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Figure 34: Residuals vs. fits plots for explainability to accuracy by scale (EtAS) and by model selection 

(EtAM). The residuals vs. fits plots of both variable measures suggest homoscedasticity of 

residuals. 

 

 



5 Cost Reduction Performance with Target Costing: The Role of Product Design 

Interdependence and Uncertainty about Target Cost Difficulty 

 

149 

5 Cost Reduction Performance with 
Target Costing: The Role of 
Product Design Interdependence 
and Uncertainty about Target Cost 
Difficulty 

Abstract 

Target costing involves the challenge to meet a specific and usually difficult 

product cost goal during product development. Cost goals that are seen as difficult 

but doable can enhance motivation and performance. However, setting such goals and 

improving performance will not always be possible in complex product development 

activities, which are the focus of this study. The empirical study is based on 

proprietary target costing data of development projects in a car company, uniquely 

combining data on cost reduction during the development stage and the production 

stage of new products. This study shows that product design interdependence 

moderates the impact of target cost difficulty on cost reduction performance. Product 

development projects become interdependent when these products share technology, 

such as common parts or product platforms. Interdependence makes product 

development more complex, and teams may have less complete task knowledge. As a 

result, specific, difficult target cost goals less positively improve cost reduction 

performance. Furthermore, this study shows that uncertainty about target cost 

difficulty reduces cost reduction performance during development. Because of 

complexity and resulting uncertainty, it may not be feasible to always set cost goals 

on such a level, that these are difficult but doable. When target cost difficulty is 

uncertain, teams may at some point conclude that a cost target is easy, and they would 

be able to reduce costs more than required. This may lead teams to reduce their cost 

reduction efforts and aim for reaching the cost target instead of achieving maximum 

cost reduction performance. We show that some cost reduction performance is shifted 

from the development to the production phase and that this is associated with less cost 

reduction performance in total. 

Keywords:   Target costing; New product development; Goal setting theory; 

Uncertainty; Product design interdependence; Modularity; Product 

platforms; Parts commonality 
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5.1 Introduction 

The life-cycle stage of product development is crucial for managing the costs and 

profitability of products (Booker et al., 2007; Cooper & Slagmulder, 2004b; T. Davila, 

2000; A. Davila et al., 2009; A. Davila & Wouters, 2004). More degrees of freedom exist 

to influence the design, features, and performance of a product, thereby affecting future 

costs and revenues, compared to the later production stage. Furthermore, cost reduction 

solutions are implemented earlier—from the start of production, instead of gradually 

during the production stage—so total cost savings are larger (Afonso et al., 2008). Finally, 

the costs of redesign activities are avoided, compared to when a product is first completely 

developed, launched, and subsequently needs to be changed in order to implement cost 

saving measures.  

Target costing represents the approach for managing product costs during new 

product development that has often been studied in management accounting research 

(Ansari et al., 2006). The essential idea is that, first, the allowable product cost is 

determined by the attainable sales price and the required profit margins and second, the 

product cost is evaluated during the product development stage. If the estimated product 

cost exceeds the allowable product cost, the product design needs to be adjusted. In its 

purest form (also called the cardinal rule), product development cannot be completed 

until solutions have been found to meet the target cost (Cooper & Slagmulder, 1999). 

Thus, target costing involves the challenge for employees, typically in teams, to meet a 

specific and typically quite challenging goal (Booker et al., 2007). As predicted by goal 

setting theory (Locke & Latham, 2002), the presence of specific and challenging cost 

targets can lead to achieving more cost reduction during product development than 

general do-your-best goals (Everaert & Bruggeman, 2002; Everaert & Swenson, 2014; 

Gopalakrishnan et al., 2015). 

However, target costing may not so straightforwardly enhance motivation and 

performance in a more complex organizational product development context. The effects 

of target costing are more intricate in organizational settings that also involve the need to 

manage the cost of shared resources (A. Davila & Wouters, 2004), where complexities 

from concurrent engineering play a role (Gopalakrishnan et al., 2015), where other, 

implicit incentives for developers exist (Mihm, 2010), and information overload may 

occur from the combination of costing information and nonfinancial performance 

measures in product development (Henri & Wouters, 2020). 
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The current chapter also addresses target costing in a more complex product 

development context, which is characterized by product design interdependence and 

uncertainty about target cost difficulty. First, we investigate the effect of product design 

interdependence on cost reduction performance in a target costing context. Firms may use 

not only target costing for separate, independent product development projects, but they 

may also manage costs through coordinated product development decisions across 

product development projects. Examples are the deliberate use of common parts or 

common processes (A. Davila & Wouters, 2004; Labro, 2004). As product development 

projects are more interdependent, more coordination is required and there are fewer 

degrees of freedom for teams to reduce the costs of their own product. We hypothesize a 

negative relationship between product design interdependence and cost reduction 

performance. More coordination requirements due to greater product design 

interdependence also means that product development is more difficult, and teams may 

have less complete task knowledge. Incomplete task knowledge can make goal setting 

less effective for increasing motivation and performance (Hirst, 1987). Therefore, we 

expect that product design interdependence reduces the effectiveness of specific and 

challenging cost goals for improving cost reduction performance. Accordingly, we 

hypothesize that product design interdependence moderates the relationship between 

target cost difficulty and cost reduction performance.  

Second, we investigate the effects of uncertainty about target cost difficulty. A 

firm aiming to set goals that are difficult but doable, in line with goal setting theory 

(Locke & Latham, 2002), may actually set goals that turn out to be very easy or practically 

impossible to achieve. In the complex organizational context of target costing, the 

difficulty of cost goals may be uncertain because of long lead times of product 

development, which create uncertainty about future sales prices, product attributes, and 

costs. Moreover, long supply chains create uncertainty about the relationship between 

market prices and targets for the manufacturing costs of individual parts (Stadtherr & 

Wouters, 2021). We expect that uncertainty about target cost difficulty reduces the 

effectiveness of having specific goals for improving cost reduction performance. If goals 

turn out to be difficult but doable, they would be expected to enhance motivation and 

improve cost reduction performance. But, if it becomes clear during product development 

that the goal is easily achievable and the product cost will likely land below the cost 

target, employees may react differently. Instead of going for the maximum cost reduction 

performance, employees may slow down and try to land with a product cost that is around 

the target cost. More cost reduction performance is not required. By doing so, teams 
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would exploit fewer cost reduction opportunities during the product development stage 

and potentially leave more of these for later, during the production stage of the product. 

Therefore, we hypothesize a negative relationship between cost reduction performance 

during development and cost reduction performance during production, and this 

relationship would be moderated by target cost attainment.  

Furthermore, by considering both, cost reduction performance during 

development as well as during production, we investigate a basic premise of target 

costing. The fundamental idea of target costing is that the product development stage 

offers more degrees of freedom for changing the product than the production stage and, 

therefore, more potential for reducing costs exist during product development than during 

production. Reversely, achieving less cost reduction performance during development 

and postponing some cost reduction performance to the production stage, would result in 

less cost reduction performance in total, so when looking at the development and 

production stages together. Therefore, we hypothesize that achieving relatively more cost 

reduction performance during development than production is associated with greater 

total cost reduction performance. 

The empirical research is based on proprietary archival data of a car company. 

The case company represents a complex product development setting with 

interdependence and uncertainty about target cost difficulty. For several hundreds of 

different parts, the data include the part cost at several points in time (at start of 

development, start of production, and 12 months after start of production), the part cost 

target (at start of development and start of production), and several part characteristics. 

We used these data for measuring cost reduction performance, target cost difficulty, and 

target cost attainment. Product design interdependence is measured in two ways: A 

variable for each part that describes how many other parts that are included in a particular 

car affect that part’s tec nical design, and by t e distinction of platfor  parts vers s  at 

parts. Hat parts are used for one car project only and interdependence is low. Platform 

parts are used over multiple projects because these encompass the basic architecture of a 

product, providing the basis for a series of derivative products. Interdependence is high 

for platform parts.  

We find that cost reduction performance is positively related to target cost 

difficulty and negatively related to product design interdependence. We also find support 

for the hypothesized moderating effect: The relationship between target cost difficulty 

and cost reduction performance is weaker for parts with greater interdependence. 
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Furthermore, several results are consistent with the slowing down behavior because of 

uncertainty about cost target difficulty in the case company. Descriptively, we find a 

positive, nonlinear relationship between cost reduction performance and target cost 

attainment, suggesting that cost reduction performance during development flattens as 

target cost attainment is greater. Specifically, regarding our hypotheses, we find a 

negative relationship between cost reduction performance during development and during 

production and, as hypothesized, this relationship is moderated by target cost attainment. 

As target cost attainment is better, the negative relationship between cost reduction 

performance during development and during production is stronger. Furthermore, we 

construct a measure that captures the extent to which cost reduction is taking place more 

during development than during production, and we find that this measure is positively 

related to total cost reduction.  

The contribution of this paper is to provide a better understanding of the 

effectiveness of target costing in more complex organizational product development 

contexts. First, our finding that target cost difficulty is related to more cost reduction 

performance during product development is based on archival company data, and thereby 

complements results from earlier studies that were based on experimental tasks (Everaert 

& Bruggeman, 2002; Gopalakrishnan et al., 2015). Second, we demonstrate that in a 

complex product development context, product design interdependence and uncertainty 

about target cost difficulty may both limit the effectiveness of target costing. Product 

design interdependence is associated with less cost reduction performance, and it 

moderates the relationship between target cost difficulty and cost reduction performance. 

Uncertainty about target cost difficulty means target costs cannot always be determined 

as difficult, but doable goals. This study uniquely combines data on cost reduction during 

the development and the production stage, and it shows that uncertainty about target cost 

difficulty leads to shifting cost reduction performance to the production stage and limits 

total cost reduction. These findings on product design interdependence and uncertainty 

about target cost difficulty complement earlier studies that have investigated the role of 

target costs in more complex organizational contexts (A. Davila & Wouters, 2004; 

Gopalakrishnan et al., 2015; Henri & Wouters, 2020; Mihm, 2010). 
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5.2 Literature Review and Hypotheses Development 

5.2.1 Target Costing 

Target costing represents the approach for managing product costs during new 

product development that has often been studied in management accounting research. 

Target costing is a principal technique for managing life-cycle costs during the product 

design and development stage (Ewert & Ernst, 1999; Kato, 1993) based on a strategic, 

systematic profit planning process (Ansari et al., 2006; Cooper & Slagmulder, 1999). 

Target cost management improves the generation of new ideas for product development 

and the reduction of cost (Tani, 1995). Target costing is mostly adopted in assembly-

oriented firms facing intense competitive pressure, and high environmental uncertainty 

(Dekker & Smidt, 2003; Scarbrough et al., 1991; Tani et al., 1994). Ax et al. (2008) 

confirm the positive association between target costing adoption and the intensity of 

competition, however, could not support the relationship between perceived 

environmental uncertainty and target costing. Target costing is more likely to be adopted 

when senior managers gain cash-based compensation and is avoided when mangers are 

offered stock-based compensation, as target costing facilitates or inhibits their personal 

bonus (Navissi & Sridharan, 2017). The adoption of target costing in organizations often 

requires a change of attitude; from depicting costs as an output of product design towards 

the perception of cost as a result of market-driven requirements and prices (Ibusuki & 

Kaminski, 2007). 

Target costs are calculated as the maximum cost of a future product, ensuring the 

profitability goals, whilst meeting all relevant customer requirements (Everaert et al., 

2006). Compared to many other cost management methods with an internal focus, target 

costing takes an external perspective by incorporating the target sales prices (Yoshikawa 

et al., 1994). Further, target costing is an important approach for interorganizational cost 

management, as it fosters the collaboration of design teams across organizations to jointly 

manage costs (Cooper & Slagmulder, 2004b). The decision on the maximum cost depends 

on the estimated actual cost of a future product (also called drifting cost) and the 

allowable cost (Everaert et al., 2006). The allowable cost is calculated by deducting the 

target profit margin from the planned sales price. Cost goals need to be clearly specified 

for each development team to ensure that the overall profit goals of a company are 

achieved (Tanaka, 1993). The target costing process can be expanded toward the 

suppliers, where the allowable costs of a part constitute the ultimate purchasing price that 
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the firm pays the supplier (Ellram, 2006). However, the estimated costs often exceed the 

allowable cost and there is no guarantee that the allowable costs can be achieved by 

designers and suppliers (Cokins, 2002; Cooper & Slagmulder, 1999). Therefore, it is 

necessary to find a balance between the attainability of cost goals and the profitability of 

products, and target costs often lie in-between the allowable costs and the forecasted 

actual costs (Monden & Hamada, 1991; Tani et al., 1994). To reduce the gap between 

target costs and current costs, several engineering techniques can be applied such as 

quality function deployment, value engineering, and design for manufacture and 

assembly (Cooper & Slagmulder, 1999). Target costing can be combined with other 

managerial accounting techniques such as life cycle costing, activity-based costing, and 

Kaizen costing (Woods et al., 2012). Cost reduction performance is higher for derivative 

products with low complexity than for radical innovations with high complexity (Everaert 

et al., 2000). Further, participating in the process of target cost setting and evaluating 

performance on controllable information positively impact the reduction of cost (Monden 

et al., 1997). 

5.2.2 The Importance of Goal Setting Theory for Target Costing 

One important reason for the potential beneficial effects of target costing is the 

motivational effect that the specific and difficult cost target provides. We define target 

cost difficulty as how demanding teams perceive their task for developing a product that 

will meet the target cost as well as all other requirements at the end of the product 

development process. Cost estimates for initial designs often exceed the target cost 

(Cooper & Slagmulder, 2004a) so teams must find solutions to reduce costs. We define 

cost reduction performance during product development as how much a team is able to 

reduce the estimated cost of their product during the product development process.  

Several studies in target costing found that specific, difficult cost targets lead to 

more cost reduction during product development than general do-your-best goals 

(Everaert & Bruggeman, 2002; Everaert & Swenson, 2014; Gopalakrishnan et al., 2015). 

Gopalakrishnan et al. (2015) investigate the cost reduction performance of specific and 

general cost goals under sequential and concurrent new product development processes. 

In their experiment, design groups of three are required to redesign a small toy truck 

according to certain product requirements. Groups with specific cost goals achieved 

significantly higher cost reduction than groups with general (do-your-best) goals in the 

sequential process, while no superior cost reduction performance was observed in the 

case of concurrent product development. Everaert and Bruggeman (2002) analyze the 



5.2 Literature Review and Hypotheses Development 

 

156 

impact of cost goal specificity under high and low time pressure during product 

development. Participants in an experiment needed to design a carpet either with the 

general goal to minimize the product cost, or with a specific, quantitative cost goal. The 

specific cost target led to higher cost reduction performance under low time pressure 

compared to a general goal, whereby the provision of cost targets did not deteriorate the 

quality of designs. Under high time pressure, however, no significant improvement for 

cost goal specificity was observed. Finally, Everaert and Swenson (2014) describe their 

experiences with using a teaching case for target costing. Small teams redesign toy trucks 

having either the general goal to minimize cost, or the specific goal to achieve a particular 

target cost. Teams with specific goals engage in higher levels of cooperation, while teams 

with do-your-best goals have lower motivation and lack in criterions to assess their 

progress. Studies in accounting investigating budget goals outside product development 

also found that specific, difficult budget goals were associated with higher performance 

(Webb et al., 2010). 

The effect of target costs on cost reduction performance can be explained with 

goal setting theory (Locke, 1968). Goal setting improves task performance when goals 

are specific, adequately challenging, individuals have sufficient ability, feedback is 

provided, rewards are granted, the supervisor is supportive, and goals are accepted (Locke 

et al., 1981). Goals affect performance through the direction of attention toward relevant 

activities, mobilization of additional effort, increasing persistence, and usage of task-

relevant strategies (Locke & Latham, 2002). The effects of goal setting theory have been 

applied and validated for individuals, groups, and organizations (Locke & Latham, 2002). 

Figure 35 provides the main components of the goal setting theory. Two major 

properties of goals are specificity and difficulty. Specificity describes t e “degree of 

  antitative precision” (Locke et al., 1981, p. 4) to which a goal is declared in a clear and 

unambiguous manner, so that individuals understand what needs to be accomplished and 

allows measuring the progress of a task (Aunurrafiq et al., 2015). Goal specificity 

primarily reduces the variability of task performance by decreasing the vagueness about 

what needs to be achieved (Locke et al., 1989). The second main component is difficulty, 

which can be distinguished between goal difficulty and task difficulty. The term goal 

difficulty describes the specific level of required performance for a given task, whereas 

task difficulty refers to the nature of the activity to be carried out (Locke et al., 1981). 

Goal difficulty is usually defined as an increase in required production of a given task 

during a given time period (Campbell & Ilgen, 1976). There is strong evidence for a 
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positive linear association between the difficulty of goals and task performance, but only 

given sufficient commitment of individuals (Erez & Zidon, 1984; Locke & Latham, 

2002). 

Although the overall relationship between goal difficulty and task performance is 

positive, effects are subtler for very high levels of goal difficulty. Goal commitment plays 

an important role in the relationship between goal difficulty and task performance. Task 

performance is positively related to goal difficulty when goals are accepted and 

negatively related when goals are rejected. Goal commitment is problematic for very 

difficult goals that seem unattainable, no matter what. Because of this negative 

association between goal commitment and difficulty, goal setting theory predicts an 

inverse U-shaped relationship between goal difficulty and task performance (Erez & 

Zidon, 1984). Furthermore, goal importance plays a moderating role in the relationship 

between goal difficulty and task performance. The importance of goal attainment to 

individuals, including the importance of results of a task, also facilitate goal commitment 

(Locke & Latham, 2002). Further, important goals elicit persistent striving towards goal 

attainment (Miner, 2005). 

 

Figure 35: Important components of goal setting theory. Source: Locke and Latham (2002) 

Since target costing is often done in (cross-functional) teams (Ansari et al., 2006; 

Dekker & Smidt, 2003; Wijewardena & Zoysa, 1999), it is also relevant to consider goal 

setting theory for teams. A meta-analysis of the effect of goal setting on group 
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performance (Kleingeld et al., 2011) found a robust positive effect of specific group goals 

versus nonspecific goals on the performance of groups. “ oal setting t  s appears to be 

at least as effective at t e gro p level as at t e individ al level” (Kleingeld et al., 2011, 

p. 1294). 

Thus, prior research often found a relationship between difficult individual and 

team goals. Yet, the literature does not provide evidence supporting this relationship in 

the context of target costing for the performance of development teams in actual 

organizations. The arguments above imply that the effectiveness of target costing arises 

from specific, difficult goals that motivate employees and teams in product development 

to achieve more cost reduction performance, leading to the following hypothesis: 

H1: Target cost difficulty and cost reduction performance during product development 

are positively related. 

However, studies in accounting show that the relationship between target 

difficulty and performance is often more complex (Bonner & Sprinkle, 2002; Feichter et 

al.,     ; Matějka,      . For example, Cheng et al. (2007) investigated goal conflict 

when people are assigned multiple goals, and they did not find a direct relationship 

between perceived overall goal difficulty and task performance, but this was mediated by 

goal conflict. Arnold and Artz (2015) found only a weak direct association between target 

difficulty and performance at the level of firm performance. But, the relationship between 

target difficulty and performance was negative for very difficult targets after controlling 

for target flexibility. Webb et al. (2013) found that higher targets can increase 

performance through higher effort, in the sense of working harder on known tasks. But, 

higher targets may also reduce performance by hindering outside-the-box thinking for the 

discovery of efficiency improvements for these tasks.  

In the context of product development, too, the effectiveness of target costing is 

more intricate. Product development occurs in a highly complex organizational context, 

making it much more difficult to understand how target costing could lead to cost 

reduction and greater profitability of new products. For example, cost information may 

be incomplete and needs to be complemented with other kinds of information for 

managing product development activities, but this can cause information overload (Henri 

& Wouters, 2020). Moreover, engineers with specialized and private knowledge might 

overengineer their components and increase costs, because they overestimate the 

importance of their parts, they want to showcase their technical expertise, or avoid risks 
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(Mihm, 2010). Furthermore, some activities in product development sometimes occur 

simultaneously and iteratively, also called concurrent engineering. Some later 

development activities (i.e., technical product design) already start before earlier 

activities (i.e., concept development) have been fully completed (Gopalakrishnan et al., 

2015). This means that some parts are already starting to be designed before all product 

specifications and features have been finalized, and consequently, later changes of these 

specifications or features necessitate making technical design adjustments. Compared to 

sequential product development, design teams receive new information more frequently 

and their goals change more often. Concurrent engineering greatly complicates product 

development activities and causes additional cognitive demands. Teams are more likely 

to have only incomplete task knowledge. As a result, having specific and challenging cost 

goals may be less effective for enhancing motivation and cost reduction performance 

(Hirst, 1987). Gopalakrishnan et al. (2015) found that groups with a specific cost goal 

have higher cost reduction performance than groups assigned a general cost goal only in 

the case of a sequential product development process, but not in a concurrent product 

development process. In this study, we investigate two complexities regarding the 

effectiveness of target costing, which arise from uncertainty and interdependence. 

5.2.3 Effectiveness of Target Costing: Product Design Interdependence 

Product design interdependence is the first complexity investigated in this study 

that may impact the effectiveness of target costing. We define product design 

interdependence in this study as the extent to which teams, when making product 

development decisions for their product, need to consider product development choices 

that other teams make for other products.8 Firms also manage costs through coordinated 

product development decisions across product development projects. Examples are the 

deliberate use of common parts, common processes, or modular designs (A. Davila & 

Wouters, 2004; Degraeve et al., 2004). The focus shifts from managing the profitability 

of an individual product through target costing to managing the profitability of a product 

group (Granlund & Taipaleenmäki, 2005). The motivation is that some costs can also be 

affected by the combined effect of design choices from different product development 

projects, and these costs can hardly be addressed within the scope of the separate projects. 

 

8 Product design interdependence differs from interdependence in the study of target costing of 

Kee and Matherly  (2021). That considered independence because of new products sharing production 

capacity. 
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Warehousing costs, for example, could be driven by the number of different stock-

keeping units, R&D costs by the total number of different elements designed (i.e., parts, 

versions), purchasing transaction costs by the number of suppliers of the company, and 

manufacturing costs may be affected by the number of production runs. Nonetheless, the 

reduction of the number of different parts, production runs, or suppliers not necessarily 

lead to a reduction in cost, as the cost per unit may increase due to lager difficulties 

(Labro, 2004). Therefore, structural cost management is needed, which involves 

organizational design, process design, and product design, in order to generate an 

adequate cost structure (Anderson & Dekker, 2009). As an example, a car manufacturer 

may not only focus on the target costing approach of single car models, but also conducts 

cost management of parts and components, which are used across different car models 

(i.e., engine, axles, head-up displays).  

Using common components or product platforms are important approaches in 

order to coordinate the technical design decisions during new product development over 

various products, which aim to decrease the overall cost for a group of products or 

increase total profit for the company. These approaches are especially important when 

launching many different products to the market. However, these approaches increase the 

interdependencies between product development projects. Development teams have 

fewer degrees of freedom for reducing the costs of their own product. Product design 

interdependence reduces the possibilities for achieving cost reduction performance in 

target costing.  

H2: Product design interdependence is associated with less cost reduction performance 

during product development. 

Product design interdependence also makes product development more difficult. 

Development teams need to exchange more information with other teams, they need to 

understand more about the development activities and product designs of other teams, 

and they need to find solutions for their own product design under more restrictions. Their 

task outcomes are more strongly influenced by the actions of others, and fully 

understanding such influences is difficult. As a result, employees may have less complete 

task knowledge (Hirst, 1987). Task knowledge refers to the knowledge about performing 

activities that are required for achieving particular goals, including knowing which 

activities to select or adjust under particular circumstances. Task knowledge is required 

so employees, stimulated by specific and difficult goals, can develop effective and 

efficient actions plans. Having less complete task knowledge hampers such cognitive 
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activities, and some efforts might be misdirected and spent on irrelevant activities (Hirst, 

1987). Incomplete task knowledge due to product design interdependence could therefore 

reduce the impact of goals on performance. 

Empirical studies provide mixed support for the moderating effect of 

interdependence on the relationship between goal setting and performance. Hirst (1988) 

investigated how the effect of goal setting on intrinsic motivation was moderated by 

interdependence (this study did not investigate performance). For tasks with pooled 

interdependence, the assignment of specific and difficult goals raises intrinsic motivation, 

but for tasks with reciprocal interdependence, the assignment of specific and difficult 

goals reduced intrinsic motivation. Hirst and Yetton (1999), however, found that task 

interdependence did not moderate the effects of specific, difficult budget goals on the 

level of performance. Those goals increased performance, compared to do-your-best 

goals, on both low (pooled) and high (reciprocal) interdependent tasks.  

In context of target costing and coordinated design decisions, product design 

interdependence refers to product design interdependencies between teams (or between 

product development employees) that each have their own cost goal for their own product. 

Studies in the goal setting literature mostly looked at interdependence between individual 

team members who have a common team goal (Kleingeld et al., 2011). The common goal 

may stimulate the individuals to collaborate more, but it may also stimulate free-riding 

behavior. For example, Aubé and Rousseau (2005) found that task interdependence 

moderated the relationship between the goal commitment of teams and their performance. 

Very few studies, however, considered task interdependence between individuals (or 

between teams) that do not have a common goal, which suggest that the interdependence 

negatively moderates the relationship between goal setting and performance. The 

experimental study of Saavedra et al. (1993) on the performance appraisal task showed 

that individual goals with reciprocal task interdependence lead to lower quantity and 

quality, compared to individual goals with pooled interdependent tasks or group goals 

with reciprocal interdependent tasks. In the tower-building task of T. R. Mitchell and 

Silver (1990) with high task interdependence, individual goals lead to worse results than 

group goals, a mix of individual goals and group goals, and no specific goals. 

The interdependencies with other teams essentially increase the complexity of a 

tea ’s (or individ al’s  task.  t dies t at investigated the role of task complexity are 

therefore indirectly related to our focus of task interdependence and incomplete task 

knowledge. The meta-analysis of Wood et al. (1987) supported the moderating role of 
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task complexity. The positive performance effects of specific and difficult goals (vs. do-

your-best goals) was greater on simple tasks than on complex tasks. Also, the positive 

performance effects of difficult goals (vs. moderate or easy goals) was greater on simple 

tasks than on complex tasks. This meta-analysis included studies at the individual level. 

However, the meta-analysis for teams of Kleingeld et al. (2011) did not find that task 

complexity would moderate the effect of specific, difficult group goals (versus do-your-

best goals) on group performance. 

These arguments imply that product design interdependence may not only 

constrain the possibilities for achieving cost reduction performance in target costing, but 

also limit the effect of specific, difficult goals on cost reduction performance, leading to 

the following hypothesis:  

H3: Product design interdependence moderates the relationship between target cost 

difficulty and cost reduction performance during product development. 

5.2.4 Effectiveness of Target Costing: Uncertainty About Target Cost 
Difficulty 

This study also investigates another source of complexity that may impact the 

effectiveness of target costing, namely uncertainty about target cost difficulty. To 

enhance motivation and improve cost reduction performance, target costs should be 

difficult but doable. However, target setting is generally difficult (Feichter et al., 2018) 

and setting cost targets in product development at the appropriate level of difficulty will 

not always be possible. Uncertainty about target cost difficulty refers to lacking 

information at the start of the product development process for setting a cost target at such 

a level, that it will be difficult (but often possible, with much effort) to meet the target 

cost at the end of the product development process. As a result of this uncertainty, 

achieving the target cost sometimes turns out to be unexpectedly easy, other times, it 

appears to be simply impossible. 

Long development lead times are one reason for this uncertainty about target 

difficulty. Developing a product can take years and at the start, limited information is 

available about products that will be competing in the market, future sales prices 

customers are willing to pay, and technological developments that affect product 

performance and costs. Target cost difficulty may also be uncertain in target costing 

because of supply chain structures. Reasoning from the sales prices to the allowable unit 

manufacturing cost is not simply a matter of subtracting the required profit margin. 
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Instead of one sales price, many different sales prices must be considered, if different 

product variations are sold at different sales prices in different countries. Instead of only 

the required profit margin, many margins and costs need to be considered, if products are 

distributed to the multiple points of sale via several links in long supply chains (Stadtherr 

& Wouters, 2017). Furthermore, from the sales price that arrives at the manufacturer, the 

nonmanufacturing costs are subtracted and then, the allowable unit manufacturing costs 

is disaggregated to major components and parts. So, there is a long and uncertain path 

fro  t e f t re sales price of a prod ct to today’s  an fact ring target cost for an 

individual part. For all such reasons, when cost goals are being determined, it may not be 

clear how difficult it will be to achieve those goals.  

Studies in the literature on goal setting theory and studies in accounting have 

considered t e  ncertainty for setting goals. “  ong t e biggest i pedi ents to goal 

setting is environ ental  ncertainty” (Latham, 2009, p. 170), meaning that the required 

information for setting goals may not be available, or become outdated due to a fast-

changing environment. When the uncertainty raises, it becomes more and more difficult 

to be motivated by a goal and perform better (Latham, 2009). One reason for this effect 

is that it is difficult to adjust goals that turn out to be set at a too difficult or too easy 

challenging level. Adjusting goal difficulty on the basis of new information that becomes 

available is more difficult when goals are more challenging and specific (Polzer & Neale, 

1995). Research looking at the effects of very difficult or very easy goals on motivation 

and performance basically found an inverted U-shaped relationship between goal 

difficulty and performance (Fang et al., 2005). Difficult but doable goals are associated 

with the highest performance, but very easy and very difficult goal are associated with 

lower performance (Latham & Locke, 1991). This inverted-U relationship between goal 

difficulty and performance occurs when individuals reduce or redirect their efforts to meet 

w at is re  ired of t e  and t ereby adj st t eir perfor ance to t e goals. “ nce a 

reference point (goal) is set, people view the outcome as binary, you either fail or succeed 

in achieving your goal. If one has no chance at succeeding, then effort decreases as it will 

be wasted on a task certain to fail. If one has a task that is very easy, then effort decreases 

once the goal is met, even though one may have been capable of greater performance” 

(Burdina et al., 2017, p. 78).9 

 

9 For example, it is reported that cab drivers are more likely to quit working once they reach their 

income goals on rainy days where they considerably earn more (Camerer et al., 1997). 
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We expect similar effects in the context of target costing. Specifically, teams work 

on projects for developing a part and they review the progressing design. The 

manufacturing cost is estimated, based on what is known about the current, semi-finished 

design. Besides costs, the design will also be evaluated in terms of the other requirements, 

such as product characteristics. As an example, the design of a passenger car also needs 

to satisfy the requirements for engine power, fuel consumption, emissions, noise, weight, 

safety, and aerodynamics. Target costing can also be seen from the perspective of stage-

gate reviews (Hertenstein & Platt, 2000). Suppose the estimated product cost exceeds the 

cost target and teams believe achieving the cost target is challenging but could be 

possible. Stimulated by that level of goal difficulty, teams are stimulated to come up with 

solutions for improving the design, trying to meet all targets at a lower cost. These 

products may land at the target cost or above it (so still not fully meet the cost target), but 

everything has been done trying to achieve the target cost. However, suppose the product 

cost is already below the cost target (better than needed), or the product cost is still above 

the target, but teams believe it will be very easy to achieve the target. With such a low 

level of goal difficulty, teams are likely to slow down their cost reduction efforts. These 

products likely end very close to their cost target.  

Thus, we expect that teams who, in the course of the progressing product 

development project, perceive a considerable likelihood of landing above the cost target 

(i.e., not achieving the target), are motivated to perform better. However, teams, who 

perceive a considerable likelihood of landing below the cost target (i.e., better than 

needed), may slow down and aim to achieve the target cost. Assuming that slowing down 

in front of an easy target is a stronger effect than speeding up when facing a difficult 

target, most products would end up with a cost that does not meet the target. 

These performance enhancing and inhibiting effects of target cost attainment are 

modeled in Figure 36. At the start of product development, it is uncertain which cost 

levels are realistically attainable and, therefore, current costs at the start of product 

development (CC0) are assumed to be normally distributed around the target cost (TC), 

so CC0:= N(100, 30) and TC := 100. Teams start their development activities, which can 

increase or decrease the current cost after product development (CCs). This impact of 

their development activities on c rrent costs (∆CC) is assumed to be normally distributed 

∆CC := N(0, 5) and CCS := CC0   ∆CC. Target cost attainment is defined as (TC – 

CCS)/TC, which is the black line in Figure 36. Positive values indicate the favorable 

result that the target cost has been attained and costs are below the target; negative values 
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indicate that costs are above the target and so the target has not been attained. However, 

the impact of SE teams on costs may not be symmetrical, due to performance enhancing 

and inhibiting effects. In the case of a cost overrun at the start of product development 

(CC0 > TC), teams are stimulated to perform better and reduce the gap by a factor E. The 

current cost after product development is calculated as CCS := CC0 – E(CC0 – TC    ∆CC, 

whereby E := 0.5 in our simulations. The higher the cost gap, the higher the absolute cost 

reduction performance during development becomes. In the case of underrunning the 

target cost at the start of product development (CC0 < TC), teams slow down their 

performance to aim for the target cost. The current cost after product development is 

calculated as CCS := TC   ∆CC. As a result of both effects, the distribution of target cost 

attainment distribution is negatively skewed. The simulation of the performance 

enhancing and inhibiting effect produces a mean target cost attainment of -0.060 with a 

mode of -0.016. A negative skewed distribution is present when the mean is less than the 

mode, as is the case here. 

H4: The distribution of target cost attainment distribution after product development is 

negatively skewed. 



5.2 Literature Review and Hypotheses Development 

 

166 

 

Figure 36: Simulation of the performance enhancing and inhibiting effects of target costs on target cost 

attainment. When current costs are higher than the target at the start of product development 

(CC0 > TC), teams are stimulated to perform better and reduce the cost gap. When costs are 

below the target at the start of product development (CC0 < TC), teams slow down their 

performance and aim for the target cost. Together, the performance enhancing and inhibiting 

effects produce a left-skewed distribution, which is characterized by a mean that is lower than 

the mode (left from the mode on the x-axis).  

So, teams can do more or less during product development to find and implement 

solutions for improving the design and reducing the product cost. If a team needed to do 

less in terms of optimizing the product design, more cost reduction potential is left in the 

product design. The remaining cost reduction potential may, to some extent, be shifted to 

the production stage of the product. We define cost reduction performance during 

production (CRPP) as how much a team is able to reduce the cost of their product after 

product development, so during the production stage of the product. Less cost reduction 

is possible during production when more cost reduction has already been achieved during 

development. These arguments imply a tradeoff between achieving cost reduction 

performance during product development or during production, leading to the following 

hypothesis: 

H5: Cost reduction performance during the product production stage is negatively 

related to cost reduction performance during the development stage. 

The extent to which this effect occurs, may depend on how easy or difficult it was 

to achieve the cost target during product development. We define target cost attainment 

as the extent to which a team was able to achieve a product design with a cost that meets 

the target cost. A team fearing to not achieve the target cost experiences more pressure, 
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compared to a team that feels secure about achieving the target. The greater pressure could 

lead a team to take less sustainable cost reduction measures that negatively affect cost 

reduction possibilities during production. For example, the team may reduce the quality 

of the product, leading to product design changes during production, or it could select 

cheaper suppliers that later cause more problems during production. As a result, the 

negative impact of cost reduction during development on cost reduction during 

production could be stronger in the case of low target cost attainment. If there is less 

pressure, a team not only needs to reduce costs less during development, but it may also 

do this in ways that less negatively affect subsequent cost reduction during production. 

They can develop a product that can later continue to be further improved, also in terms 

of cost, without having to take actions during production that partly undo and correct 

earlier cost reduction measures that were implemented during product development. The 

less the team is able to meet the cost target at the end of product development, the greater 

it probably experienced pressure and stress during product development. Thus, target cost 

attainment would moderate the relationship between cost reduction during development 

and during production in the following way: The more difficult it is to achieve target costs 

during product development, i.e., less target cost attainment, the stronger the subsequent 

cost reduction performance during the production stage will be affected, leading to the 

following hypothesis: 

H6: The negative relationship between cost reduction performance during the 

production and product development stages is moderated by target cost attainment. 

5.2.5 The Premise of Target Costing 

The premise of target costing, as mentioned above, is that cost reduction is more 

feasible during product development than during production (Dowlatshahi, 1992; Keys, 

1990). During product development, many decisions are being made that largely 

determine the product cost, such as the characteristics of the product, the underlying 

architecture of the product, the detailed technical design, selection of technologies, 

technical standards, components, materials, and suppliers (Krishnan & Ulrich, 2001). 

Obviously, these decisions influence each other. The choice of a particular technology, 

for example, has implications for the kinds of components that will be used, which 

focusses the choice of suppliers. Changing one element has consequences for many other. 

The solution space is small, however, because many restrictions apply, for example, 

concerning technical feasibility, legislation, technical standards, and customer 
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preferences. Still, more degrees of freedom for making decisions exist during product 

development than during the production stage.  

As an illustrative example: To save weight, space, and costs in a battery-electric 

vehicle, a new alloy steel for some axles and other parts of the drive train needs to be 

developed; moreover, manufacturing these parts with this new alloy steel requires 

particular process conditions (i.e., temperatures), for which the production equipment 

needs to be adjusted. Developing new parts and changing the production equipment might 

be feasible during the development stage of a car, but changing the design of the car, the 

parts, and the production process is less feasible during the production stage. These 

arguments imply that possibilities for reducing costs that are not actually implemented 

during product development may not always be transferrable to the production stage, 

leading to the following hypothesis: 

H7: Achieving relatively more cost reduction performance during development than 

during production is associated with greater total cost reduction performance. 

5.3 Research Method 

5.3.1 Research Site  

The study has been done on the basis of proprietary archival data on product 

development projects at a car company. This was a suitable research site for several 

reasons. First, because the company had been using target costing to manage costs during 

new product development since many years. Second, because this company kept an 

extensive database on product costs and other relevant variables throughout the 

development and production stages. The company used a pre-calculation system for 

tracking the estimated current cost and target cost of parts during product development, 

and a post-calculation system for tracking the actual costs during production. Third, 

because we had access to new product development teams to gain insight into the target 

costing process, the meaning of the archival data, and thereby the possibility to identify 

valid variable measures. New product development was performed in SE teams, including 

members form the technical development, procurement, sales, production/logistics, 

controlling, and quality departments. The SE teams were accountable for meeting the 

target costs for their specific parts during development and manage costs reduction during 

the production stage. SE teams were provided with feedback about the current cost gap 

by bi-monthly cost reports. Due to an increasing competitive pressure and disruptive 



5 Cost Reduction Performance with Target Costing: The Role of Product Design 

Interdependence and Uncertainty about Target Cost Difficulty 

 

169 

changes in the automotive industry, the company experienced difficulties meeting their 

cost goals at the time the research was conducted. The researcher participated in SE teams 

and team meetings of the product controlling department.  

New product development takes about five years in this company. The early phase 

of new product development involves the ideation and conceptualization of new car 

models. About three years before start of production, the so-called serial development 

starts, and product development is primarily performed by SE teams. At the beginning of 

the serial development phase, the target cost and current cost are calculated at the part 

level and are recorded in the pre-calculation system. After start of production, the post-

calculation system is deployed until the end of production of the car model. 

5.3.2 Data 

We obtained data for several thousands of parts that were related to development 

projects for twelve different vehicle models. For each vehicle development project, the 

parts in the bill of materials were detailed in the pre-calculation system. These parts range 

from small parts (i.e., screws) to entire components (i.e., headlights) and to pre-assembled 

systems (i.e., front axle system). For each part, the target costs and current cost are 

updated continuously and reported bi-monthly. Target costs (TC) specify the cost goals 

of parts based on the sales price and the target profit margin. Current costs (CC) are the 

estimated cost for the current technical solution. For many parts, we could collect cost 

data at three points in time: target cost and current cost at start of serial development (t0), 

target cost and current cost at the start of production (tS) and current cost 12 months after 

SOP (tS+12). These data points are illustrated in Figure 37. The cost data during production 

came from the post-calculation system, which contained data about the direct material 

costs of parts after the start of production. The so-called complex bill of materials of a car 

model contains all configurable parts, i.e., 20 different steering wheels or 6 different 

versions of headlights. In addition, we could collect several descriptive variables for each 

part, such as the responsible SE team and carry-over information (hat or platform part).  

For some parts, not all these data points were available, either because at time of 

this study, the part had not reached 12 months after SOP, or because historical data were 

not comparable. Due to a modification of the pre-calculation system, the historical bills 

of materials can only be accessed until a certain point in time. If the start of serial 

development of a car model was prior this date, we used the costing data that was firstly 
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available. The maximum offset between t0 and the availability of historical bills of 

materials over the 12 car models amounts to 5 months.  

Overall, the bills of materials of the twelve car models included 8,254 individual 

parts at t0 and 9,527 parts at tS, of which 3,708 parts were specified at both t0 and tS. Thus, 

many parts were added, replaced, or discarded during serial development. We discarded 

parts with incomplete information of relevant variables and dropped outliers according to 

the z-score and Cook's distance, resulting in 3,611 parts. In the following, we focus on 

parts where the current costs exceed the target costs at t0, resulting in a sample of 1,827 

parts. For this sample, the mean target cost at the start of serial development (TC at t0) 

was €30.93 with a large standard deviation of €193.47. The mean current cost the same 

moment (CC at t0) was €35.60 with a standard deviation of €218.94. Finally, the 1,827 

parts from the pre-calculation system were merged with the respective one-year-after-

SOP complex bills of materials, resulting in 597 parts with data on the current costs at 

t=0, t=SOP and t=SOP+12.10  

 

10 For two car models, the complex bills of materials were not available. 
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Figure 37: Current product cost, target product cost, cost reduction performance during the development 

stage (from t0 to ts) and cost reduction performance during the production stage (from ts to 

ts+12) 

5.3.3 Variable Measurement 

Our dependent variables concern the cost reduction performance of parts achieved 

during development and during production. Cost reduction performance during 

development (CRPD) is measured as the relative reduction of current cost between t0 and 

tS. A positive CRPD value indicates a positive performance, so a cost reduction; a 

negative value indicates a cost increase. Descriptive statistics for all variables are 

provided in Table 34. 

   

C PD = 
CC − CCS

CC 

 
(27) 

where   
CC : Current cost, t = 0  
CCS: Current cost, t = SOP  

   
Cost reduction performance during production (CRPP) is measured as the relative 

current cost reduction during the first year after start of production (tS to tS+12). A positive 

CRPP value indicates a reduction of cost during the first year in production.  
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C PP = 
CCS − CCS+  

CCS
 

(28) 

where   
CCS+  : Current cost, t = SOP+12  

   
Total cost reduction performance (CRPT) refers to both the development and 

production stage, and this is measured as the relative reduction of current cost between t0 

and tS+12.  

   

C PT = 
CC − CCS+  

CC 

 
(29) 

   
The independent variables and control variables in this study are target cost 

difficulty, product design interdependence, target cost attainment, goal importance, and 

task uncertainty. We measure target cost difficulty by the relative cost gap (GAP0) 

between the current cost and target cost at t0. A higher cost gap indicates a more difficult 

cost goal for SE teams at the start of the serial development phase.  

   

GAP0= 
CC − TC 

TC 

 
(30) 
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Table 34: Descriptive statistics of the dependent and independent variables 

Statistic Mean 
Standard  

deviation 
Median Observations 

CRPD  
(cost reduction performance during development) 

0.003 0.300 0.000 1,827 

CRPP  
(cost reduction performance during production) 

0.040 0.357 0.030 597 

CRPT  
(total cost reduction performance) 

0.031 0.447 0.069 597 

GAP0  
(target cost difficulty) 

0.219 0.328 0.120 1,827 

IF  
(number of influencing product features) 

1.885 1.052 2 597 

TCA  
(target cost attainment) 

-0.174 0.348 -0.099 1,827 

CRPDoP  
(cost reduction performance during development over 

production) 

-0.065 1.230 0.061 584 

ln(relTC0)  
(goal importance) 

0.002 0.011 0.000 1,827 

CTC  
(task uncertainty) 

0.034 0.296 0.000 1,827 

 

To measure product design interdependence, the distinction between hat parts and 

platform parts is relevant. The so-called hat concerns the upper part of the vehicle and 

determines its visual appearance, such as height, number of doors, and silhouette. It 

consists of an inside structure and visible parts such as side frames, roof, hood, fender, 

doors, trunk lid, and bumpers. The platform is the low part of the car where the 

powertrain, chassis subassemblies, and seats are connected. Not much of this is visible 

from the outside. Hat parts are used for one vehicle model only, while platform parts are 

shared between multiple vehicle models. Therefore, product design interdependence is 

measured at two levels: high for platform parts and low for hat parts. Of the 1,827 

individual parts, 667 (36.5%) are platform parts and 1,160 (63.5%) are hat parts. 

Additionally, we measure product design interdependencies by the number of 

influencing product features (IF). Some parts have multiple versions and which version 

to use depends on other parts in the configuration of the car. The IF number of a part is 

the number of features of other parts that determine the feasibility of using a particular 

part. The IF number is lower if the part is less dependent on the configuration of a vehicle, 

so if the part is not affected much by other features of a vehicle. For example, suppose 

the version of the head-up display depends on whether the vehicle is a left- or right-hand 
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drive, the dashboard material, and the type of windshield. In that case, the IF number of 

a head-up display would be three, because three features need to be checked to select the 

appropriate version of this part. It also means that the SE team responsible for the head-

up displays needs to coordinate with three other SE teams. The number of different head-

up displays that are needed could be much more than three, because the three IF could 

create many constrains that necessitate a large number of different versions of the head-

up display. As another example, the tow eye is an extreme case: Its design is independent 

from the rest of the vehicle and so the IF number is 0. Therefore, there is only one version 

of it. Data on IF were available for 597 parts in the post-calculation system, and of these, 

442 (74.0%) parts are dependent on other features (IF > 0) and 155 (26.0%) are 

independent (IF = 0).11  

 Pplatf := 1 if Platform part, 0 Hat part. 

IF := number of influencing product features 

We measure target cost attainment (TCA) as the relative deviation between target 

cost and current costs after product development, so at tS. A positive TCA value indicates 

a positive (i.e., a favorable) result, meaning that the current costs are below target costs, 

a negative value indicates a target cost overrun.  

   

TCA = 
TCS − CCS

TCS
 

(31) 

 
where   

TCS: Target cost, t = SOP  
   

Cost reduction performance during development versus production is measured 

by comparing both cost reduction performances, after z-standardization (
X – μ

σ
) , Cost 

reduction performance during development over production (CRPDoP) is calculated by 

the difference between both standardized cost reduction variables. A positive value 

indicates that relatively more cost reduction is realized during development compared to 

 

11 The number of influencing features is not available in the pre-calculation system and can only 

be retrieved from the corresponding complex bills of materials.  
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cost reduction during production. 13 outliers have been dropped according to the 3-sigma 

rule.  

   

C PDoP = Z(CRPD) – Z(CRPP) 
(32) 

where   
Z: z-standardization   

   

We control for the effects of goal importance and task uncertainty. The 

measurement of goal importance is based on the target cost of a part relative to the total 

target cost of a car in t = 0 (relTC0). We expect that parts with a higher impact on total 

cost will have higher perceived goal importance. The mean relative target cost amounts 

to 0.002 (SD 0.011). However, the distribution of part value is highly skewed to the right; 

the target cost in t0 ranges fro  € .    to € ,   , w ile     of t e parts are below a TC 

of €  .  .  e e pect t at t e difference of TC between €  and €     as   c   ig er 

i pact on perceived i portance, t an t e difference between € ,    and € ,   .  o 

account for the skewness of part values, we apply logistic transformation.  

   

ln(relTC
 
 = ln (

TC 

∑ TC car
) 

(33) 

   
Finally, task uncertainty during new product development arises in the company 

because the target cost of a part can change during development when substantial product 

changes are implemented. Such changes increasingly take place in case of high 

uncertainty about the technology, costumer, and competitor environment. Accordingly, 

we measure task uncertainty by the change of target cost during development (CTC). The 

change of target cost is calculated by the relative change of target cost between t0 and tS. 

From the 1,827 individual parts, 739 (40.45 %) parts changed their target cost during 

development.  
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CTC = 
TCS − TC 

TC 

 
(34) 

   

5.4 Results 

5.4.1 Cost Reduction Performance and Target Cost Difficulty (H1) 

We first analyze the relationship between target cost difficulty and cost reduction 

performance during development (H1). Figure 38a shows the scatter plot and linear 

regression line between both variables, indicating a positive relationship. We conduct 

several multivariate OLS regression models to statistically test this effect, see Table 35.12 

Model 1 includes target cost difficulty (GAP0), task uncertainty (CTC) and goal 

importance (ln(relTC0)) and is based on all observations (3,611 parts). Model 2 is based 

on more relevant observations, namely parts that require cost reduction during 

development (cost gaps at t0: current costs above target costs) (1,827 parts). The positive 

and statistically significant coefficient for target cost difficulty (GAP0) supports H1. 

As we use goal setting theory as our theoretical framework, we additionally 

investigate the premise of the inverted-U relationship between goal difficulty and task 

performance to provide further robustness on the applicability of goal setting theory in 

the context of target costing. As we expect that the inverted U-shape relationship between 

target cost difficulty and CPRD is primarily in place for intermediate levels of target cost 

difficulty, we discard observations with very easy goals less than 2.6% GAP0 (5th 

percentile) and very hard goals higher than 33.3% GAP0 (85th percentile), resulting in a 

subset of 1,459 parts (80% of observations). Figure 38b depicts the mean CRPD over 

eight equally sized bins of GAP0 to further bring out the relationship between both 

variables. The binned scatter plot shows an inverted-U-shape association for the cost gap 

from 2.6% to 21.8%. Model 3 statistically analyzes the inverted-U relationship for the 

1,326 parts (72.58%) in the range of 2.6% and 21.8% GAP0. It shows a significantly 

negative second-degree effect of cost gap at t0, confirming the inverted-U association for 

intermediate goals. An explanation for the positive relationship beyond 21.8% GAP0 

could be mounting cost pressure. Such large target cost gaps create a high-pressure area 

 

12 For each OLS regression model (Model 1 – Model 11), we further perform residual analysis, 

where we do not find any abnormalities. 



5 Cost Reduction Performance with Target Costing: The Role of Product Design 

Interdependence and Uncertainty about Target Cost Difficulty 

 

177 

for SE teams, with additional task forces to find cost reduction opportunities and 

additional top management reporting. The higher the target cost gap, the larger the 

pressure to achieve cost reduction performance. However, our results below suggest that 

these measures may have unfavorable consequences later, during the production stage of 

the product. 

  

Figure 38: Relationship between target cost difficulty (GAP0) at the start of product development (t0) and 

cost reduction performance during development (CRPD). 

 

a)   Scatter plot and regression line (1,827 observations). 

The regression line suggests a positive relationship 

between target cost difficulty and CRPD. 

b)   Binned scatter plot for intermediate levels of target 

cost difficulty (1,459 obverstions). The binned scatter 

plot indicates an inverse relationship between target 

goal diffculty and CRPD for observations with a 

GAP0 between 2.6% and 21.8%. 
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Table 35: The effect of target cost difficulty on cost reduction performance during development (CRPD) 

 Cost reduction performance during development (CRPD) 

 Model 1 Model 2 Model 3 

    

Constant 0.0033 

(0.224) 

0.0509* 

(2.115) 

-0.0594 

(-1.505) 
    

GAP0  

(target cost difficulty) 

0.2133*** 

(16.942) 

0.1993*** 

(12.010) 

2.0100** 

(3.014) 
 

  
 

(GAP0)2   -7.5760** 

(-2.706) 
    

CTC  
(task uncertainty) 

-0.7649*** 

(-59.017) 

-0.6513*** 

(-35.340) 

-0.8745*** 

(-37.030) 
    

ln(relTC0)  

(goal importance) 

0.0016 

(0.981) 

0.0079** 

(2.946) 

0.0060* 

(1.976) 
    

Observations 3611 1827 1326 

R2 49.8% 42.0% 51.7% 

Regression coefficients (and t-statistic) 

+p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001 

5.4.2 Cost Reduction Performance and Product Design 
Interdependence (H2 and H3) 

Next, we examine the relationship between product design interdependence and 

cost reduction performance during development. Figure 39 depicts the scatter plot 

between the number of influencing features (IF) and CRPD which indicates a slightly 

negative relationship between IF and CRPD: More product design interdependence seems 

to be associated with less cost reduction during development. Figure 40 compares the 

mean CRPD values for hat and platform parts which shows that the mean CRPD is lower 

(so less cost reduction) for platform parts than for hat parts. Both figures suggest a 

negative association between product design interdependence and CRPD. 

Figure 41 depicts the scatter plots between target cost difficulty and CRPD for 

high and low interdependencies for both variable measurements. Figure 41a indicates a 

strong moderating effect of product design interdependence measured by the difference 

between hat parts and platform parts. Figure 41b shows no interaction effect of product 

design interdependence measured by the number of influencing product features. 
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Figure 39: Scatter plot between the number of influencing features (IF) and CRPD. The regression line 

suggests a slightly negative relationship (597 observations). 

 

Figure 40: Comparison of the mean CRPD between hat and platform parts. The negative number 

indicates that, on average, costs increased during development. This effect was less for hat 

parts. Thus, cost reduction performance was better for hat parts, which have a lower product 

design interdependence. 
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Figure 41: Scatter plot between target cost difficulty at t0 (GAP0) and CRPD, differentiated between 

products with high and low product design interdependencies. Product design interdependence 

is measured on the basis of hat parts versus platform parts and on the basis of the IF number. 

The relationship between GAP0 and CRPD seems to be different for hat parts versus platform 

parts (moderation effect of product design interdependence). This effect is not visible on the 

basis of the IF number. 

Table 36 shows the results of several OLS regression models. Model 4 

investigates the main effect of product design interdependence measured on the basis of 

the distinction between hat parts and platform parts (Pplatf), and Model 5 investigates the 

main effect of product design interdependence measured on the basis of the number of 

influencing features (IF). The negative and statistically significant coefficients for both 

measures of product design interdependence support H2 (although the result in Model 5 

is only marginally significant). Model 6 and Model 7 additionally include the interaction 

effect of product design interdependence and target cost difficulty (GAP0). Model 6 

shows a statistically significant interaction effects of product design interdependence and 

target cost difficulty, supporting H3 that target cost difficulty moderates the relationship 

of product design interdependence and cost reduction performance during development. 

The results for Model 7 do not support H3. 
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Table 36: The effect of product design interdependence on cost reduction performance during 

development (CRPD) 

 Cost reduction performance during development (CRPD) 

 Model 4 Model 5 Model 6 Model 7 

     

Constant 0.0587* 

(2.409) 

0.0980 

(1.514) 

0.0118 

(1.767) 

-0.0208* 

(-2.088) 
     

GAP0 
(target cost difficulty) 

0.2015*** 

(12.123) 

0.3234*** 

(9.893) 

0.2611*** 

(11.804) 

0.3169*** 

(9.083) 
     

CTC 
(task uncertainty) 

-0.6533*** 

(-35.424) 

-0.6893*** 

(-22.795) 

-0.6554*** 

(-35.672) 

-0.6906*** 

(-22.750) 
     

ln(relTC0) 

(goal importance) 

0.0079** 

(2.955) 

0.0123+ 

(1.888) 

0.0075** 

(2.794) 

0.0121+ 

(1.852) 
     

Pplatf 
(platform part)  

-0.0220* 

(-1.979) 

 -0.0211+ 

(-1.906) 

 

     

GAP0×Pplatf   -0.1328*** 

(-4.061) 

 

     

IF 
(number of influencing product 

features) 

 -0.0157+ 

(-1.850) 

 -0.0162+ 

(-1.895) 

     

GAP0× IF    -0.0171 

(-0.534) 
     

Observations 1827 597 1827 597 

R2 42.1% 48.5% 42.6% 48.5% 

Regression coefficients (and t-statistic) 

In Model 6 and Model 7 the independent and moderating variables are mean-centered, except for the 

binary variable Pplatf. 

+p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001 

5.4.3 Cost Reduction Performance and Uncertainty About Target Cost 
Difficulty (H4-H6) 

Because of uncertainty about target cost difficulty, achieving the target cost 

sometimes appears to be difficult, other times it turns out be very easy. According to H4, 

teams react to such outcomes and their cost reduction performance is enhanced or 

restricted, leading to a left skewed distribution of TCA at start of production (Figure 36). 

Figure 42 shows the distribution of target cost attainment and demonstrates the expected 

negative (left) skewness. The mean target cost attainment amounts to -0.174 and the mode 
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amounts to -0.030, supporting H4. This suggests that cost reduction performance is, 

indeed, reduced, when target costs are attained during development.  

 

Figure 42: Target cost attainment (TCA) after product development (1,827 observations). The mean TCA 

is lower (left on the x-axis) than the mode, which indicates a left-skewed distribution. The 

shape of the actual distribution of TCA is similar to the simulated distribution of TCA based on 

the performance enhancing and inhibiting effects in Figure 36. 

Next, we analyze the trade-off between cost reduction performance during the 

development and production stages, and the moderating effect of target cost attainment 

on this relationship. The association between CRPD and CRPP is depicted in Figure 43. 

The scatter plot indicates a negative relationship between both variables. Moreover, the 

mean CRPP is 0.123 in case no cost reduction is realized during development (CRPD = 

0), which is greater than the mean value of CRPP of 0.024 when cost reduction during 

development has taken place (CRPD ≠ 0) (t-Test, p-value = 0.011). In order to specifically 

analyze the linear relationship between CRPD and CRPP, we drop the observations with 

no cost reduction during development (CRPD = 0), since observations with CRPD = 0 

would obscure the linear effect. 
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Figure 43: Scatter plot between cost reduction performance during development and cost reduction 

performance during production. The red regression line, which is based on all 597 

observations, suggests that CRPD has a negative impact on CRPD. The more costs are 

reduced during development, the poorer the cost reduction performance during production. 

Parts with very high CRPD are even connected to negative CRPP values, which correspond to 

an increase in cost. The blue line is based on observations where CRPD is unequal to zero 

(497 observations), so where parts increase or decrease the current cost during development, 

and is comparable to the red line. 

To analyze the inverse relationship between CRPD and CRPP we again conducted 

OLS regression analysis, shown in Table 37. We applied z-standardization to ensure 

comparability of both cost reduction periods. The negative, statistically significant 

coefficient of CRPD in Model 8 supports H5. Cost reduction during production is less, as 

more cost reduction has taken place during development. Model 9 includes the interaction 

effect of CRPD and target cost attainment. The statistically significant coefficient 

supports H6: The negative relationship between CRPD and CRPP depends on TCA during 

product development. The interaction effect is visualized in Figure 44. The regression 

lines are plotted for high and low values of target cost attainment based on Model 9 where 

a high (low) TCA value is indicated by 1 standard deviation above (below) the mean score. 

In the case of high TCA, the current cost after product development (at ts) is at the target 

cost or better than the target cost, and the negative association between CRPD and CRPP 

is less strong. High cost reduction during development still allows cost reduction during 

production. However, if TCA is low, the current cost after product development is above 

the target cost (the cost goal is not achieved), and the negative association between CRPD 
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and CRPP is much stronger. High cost reduction during development even leads to 

negative CRPP (unfavorable, so cost increases).  

 

Figure 44: Moderating effect of target cost attainment on the relationship between cost reduction 

performance during development and cost reduction performance during production. The 

figure suggests that the negative relationship between CRPD and CRPP is moderated by target 

cost attainment (TCA). In the case of high TCA (+1 standard deviation (SD) of TCA, green 

line) the negative impact of CRPD on CRPP is less strong (flatter line). High cost reduction 

performance during development still allows for high cost reduction performance during 

production (positive CRPP). In the case of low TCA (-1 SD of TCA, black line) the negative 

effect of CRPD on CRPP is much stronger (steeper line). The high cost reduction performance 

during development in combination with low target cost attainment even leads to negative 

CRPP values, which correspond to an increase in cost during production. The figure is based 

on Model 9. 
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Table 37: The effect of cost reduction performance during development (CRPD) on cost reduction 

performance during production (CRPP).  

 
Cost reduction performance during production (CRPP) 

 Model 8 Model 9 

   

Constant 0 

(0) 

-0.0434 

(-0.950) 
   

CRPD 
(cost reduction performance 

during development) 

-0.1143* 

(-2.560) 

-0.1983*** 

(-4.094) 
   

TCA 
(target cost attainment) 

 
0.2324*** 

(4.678) 
   

CRPD×TCA 
 

0.0993** 

(3.186) 
   

Observations 497 497 

R2 1.3% 6.4% 

Regression coefficients (and t-statistic) 

+p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001 

All variables are standardized 

Model 8 and Model 9 are without observations where CRPD = 0 

 

5.4.4 The Effectiveness of Cost Reduction During Development and 
Production Stage (H7) 

Finally, we examine the effectiveness of cost reduction during development 

relative to cost reduction during the production stage. The achievement of CRPD relative 

to CRPP is measured by cost reduction performance during development over production 

(CRPDoP). Figure 45 exhibits the scatter plot between CRPDoP and total cost reduction 

performance (CRPT). The plot indicates a positive association between both variables. 

We separately illustrate parts where no cost reduction is realized during development 

(CRPD = 0). For these parts, CRPT corresponds to CRPP and CRPDoP corresponds to 

negative CRPP, which leads to the strong negative association in the scatter plot. The 

data set does not contain any observations where CRPP equals to zero.  

In order to analyze the effect of CRPDoP on CRPT, we again conduct OLS 

regression analysis (see Table 38). Model 10 exhibits a significantly positive effect of 

CRPDoP on total cost reduction performance. The more cost reduction is realized during 

development relative to cost reduction during production, the higher the total cost 

reduction. To further bring out the linear association for parts where the costs changed in 
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both periods, we discard observations where CRPD = 0 (Model 11). Model 11 exhibits a 

much larger regression coefficient and coefficient of determination. All in all, these 

results provide support for hypothesis 7. 

 

Figure 45: Scatter plot between cost reduction performance during development over production 

(CRPDoP) and total cost reduction performance (CRPT) for 584 observations. 96 parts, where 

the CRPD equals zero, are illustrated separately. There are no observations where CRPP 

equals zero. The scatter plot suggests a positive relationship between CRPDoP and CRPT. The 

more cost reduction is placed on the development phase relative to the production phase 

(higher positive CRPDoP values), the better the total cost reduction performance. 
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Table 38: The effect of cost reduction performance during development over 

production (CRPDoP) on the total cost reduction performance (CRPT).  

 
Total cost reduction performance (CRPT) 

 Model 10 Model 11 

   

Const. 0.0560*** 

(3.337) 

0.0247 

(1.497) 
   

CRPDoP 
(cost reduction performance during  

development over production) 

0.0528*** 

(3.875) 

0.1362*** 

(10.140) 
   

Observations 584 488 

R2 2.5% 17.5% 

Regression coefficients (and t-statistic) 

+p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001 

Model 11 is without observations where CRPD = 0 

5.5 Discussion and Conclusion 

This study adds to our understanding of the effectiveness of target costing in a 

complex organizational setting with uncertainty about target difficulty and complex 

supply chains and product structures. Several studies showed that specific, difficult goals 

were associated with more cost reduction performance than do-your-best goals in target 

costing (Everaert & Bruggeman, 2002; Gopalakrishnan et al., 2015). These studies used 

experiments with individual tasks, and as a first contribution, this study complement prior 

research by providing evidence on the relationship between goal difficulty and cost 

reduction performance on the basis of proprietary, archival company data. These data 

include cost targets and cost estimates at several points in time for several hundreds of 

parts. We find that more difficult cost goals are associated with more cost reduction 

performance during product development, which also supports the overall idea of target 

costing. 

Second, we contribute to research on the effectiveness of target costing in a more 

complex product development context. Prior studies considered complexities due to the 

need to manage the costs of shared resources during product development (A. Davila & 

Wouters, 2004). Implicit incentives for product development employees (Mihm, 2010), 

information overload from combining cost information and nonfinancial performance 

measures (Henri & Wouters, 2020), or the complexities of concurrent engineering 

(Gopalakrishnan et al., 2015). We show that two further complex circumstances in 
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product development activities may limit the effectiveness of target costing: product 

design interdependence and uncertainty about target cost difficulty. 

Product design interdependence makes product development activities more 

co ple  by li iting a tea ’s degrees of freedo  for finding and i ple enting cost 

reduction possibilities, and by requiring more coordination with other teams. 

Accordingly, we find a negative relationship between product design interdependence 

and cost reduction performance during development. We also find that product design 

interdependence moderates the relationship between target cost difficulty and cost 

reduction performance during development. This result suggests it is worthwhile to look 

for approaches in which target costing could integrated with cost management strategies 

such as parts commonality that create interdependencies (Labro, 2004). Such approaches 

may have implications for how the costs of common elements are allocated to separate 

target-costing projects (Israelsen & Jørgensen, 2011). 

Uncertainty about target cost difficulty implies that employees, in the course of a 

progressing product development project, may perceive a considerable likelihood of 

landing below the cost target (i.e., do better than needed). They may slow down and aim 

for reaching the cost target instead of achieving maximum cost reduction performance. 

Consistent with such responses, we find a negatively skewed distribution of target cost 

attainment. When some cost reduction performance is not needed during development, it 

can be shifted to the production stage. Accordingly, we find that cost reduction during 

product development and during production are negatively related, and target cost 

attainment moderates that relationship. These findings imply a tradeoff between 

achieving cost reduction performance during product development or during production, 

and the easier it is to achieve target costs during product development, the more cost 

reduction performance will be shifted to the production stage. Notably, this study 

uniquely combined data on cost reduction during the development and the production 

stage. Moreover, we find that by shifting cost reduction from the development stage to 

the production stage, total cost reduction performance is less. Thus, uncertainty about 

target cost difficult can have significant consequences for cost reduction performance, 

and it may limit the effectiveness of target costing.  

These results provide several ideas for future research that is connected to broader 

topics in accounting. The phenomenon of constraining cost reduction performance if the 

target cost can easily be met, has some similarities with the target ratchet effect. Target 

ratcheting refers to managers adjusting targets in the next period based on the actual 
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results in a prior period. Anticipating target ratcheting, employees may limit their effort 

and performance, aiming to meet but not exceed performance targets, for example, in 

order to avoid that performance targets in the next period are adjusted upwardly, which 

is the target ratchet effect (Aranda et al., 2014). For example, Bouwens and Kroos (2011) 

find support for such behavior of managers reducing their effort, but the results of Webb 

et al. (2010) are not consistent with employees constraining their performance because of 

ratcheting concerns. Future research in target costing could investigate variables that have 

also been investigated in ratcheting studies, and which may also influence the 

performance constraining behavior in target costing, such as the presence of implicit 

agreements between managers and superiors that target adjustments based on the 

 anager’s past perfor ance are restricted (Bol & Lill, 2015) or the availability of relative 

performance information for target setting ( asas‐ rce et al.,      . 

Future research could also focus on adjustments of cost targets, in response to 

uncertainty of target cost difficulty. Research in accounting has investigated ex post 

target adjustments that are made during the period, or at the end of the period, when new 

information about goal difficulty becomes available (Kelly et al., 2015). Such adjustments 

are typically done through subjective adjustments (Bol & Smith, 2011; Gibbs et al., 2004; 

Höppe & Moers, 2011). Target adjustments can have beneficial performance effects, such 

as through procedural justice perceptions (Kelly et al., 2015). However, anticipation of 

adjustments may also weaken the incentive effect of targets and reduce performance 

(Arnold & Artz, 2015). Our study demonstrated the problem of too easy targets in target 

costing, which would imply upward target adjustments. These are unusual in prior studies 

(Arnold & Artz, 2015; Kelly et al., 2015). Subjective adjustments for uncontrollable 

events are made to compensate for bad luck, but not to punish for good luck (Bol & Smith, 

2011). Future research in target costing could focus on upward target adjustments when 

cost targets turn out to be too easy. How could such adjustments be implemented? How 

would people react to that in terms of fairness perceptions? Would it be possible to 

stimulate teams to focus less on target cost attainment and more on cost reduction 

performance, encouraging teams to potentially achieve costs below the target costs, if that 

turns out to be possible. This would be related to research that has looked at rewards that 

not flatten completely beyond target achievement (Merchant et al., 2018). At the same 

time, other goals are important in product development, such as time-to-market and 

customer needs (T. Davila, 2000). A greater focus on cost reduction would make it even 

more important to closely monitor that other key goals are still achieved (Booker et al., 

2007). 
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On the other hand, how problematic is our finding that too easy targets are likely 

to make teams constrain their performance and just achieve their cost target (but not do 

better)? Research in accounting has also investigated more nuanced ideas about target 

attainment and slack. Target achievement makes results more predictable, which is 

important for meeting outside expectations and for coordination within the firm (T. 

Davila & Wouters, 2005; Merchant & Manzoni, 1989). Constraining effort and 

performance in order to maximize target cost attainment instead of absolute performance 

may also have favorable effects for the organization. Future research could also try to 

better understand when and why target cost attainment might be more important than 

maximum cost reduction performance. Future research could specifically investigate the 

complex coordination problems, which could result from not meeting or beating target 

costs for many parts. 
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6 Conclusion 
This dissertation thesis aimed to provide a better understanding on the 

management of cost during new product development in a complex and uncertain 

environment. Specifically, we investigate the usage of new technologies, such as big data 

and machine learning, and the application of target costing. Two research foci are 

examined: 1) the applicability of big data and machine learning technology for cost 

management during new product development and 2) the impact of complexity and 

uncertainty on the effectiveness of the target costing approach. In a three-year research 

project in cooperation with a car manufacturer, we developed four studies: a literature 

review, a case study, an experimental study, and a proprietary archival study. In the 

following, we briefly summarize our main contributions, discuss limitations, and suggest 

future research opportunities. 

In the literature review study, we examined use cases, benefits, and issues of big 

data and machine learning technology in management accounting. First, we contribute to 

the literature by providing an overview of various use cases of both technologies in 

managerial accounting. We find that the body of literature is rather small, however, all 

main big data aspects (volume, velocity, variety, and veracity) and various machine 

learning methods can be applied with every main task of management accounting. 

Further, we find that big data and machine learning are mostly used for different tasks. 

Big data is primarily used for descriptive analyses and machine learning is mainly used 

for predictive tasks. Hence, we find that the simultaneous usage of big data and machine 

learning is uncommon in the field of management accounting. Second, we categorize 

benefits and issues of both technologies in the context of management accounting. Our 

systematic review finds that poor data quality and the lack in skills are the most critical 

issues of big data applications. For machine learning the interpretability problem and the 

complex training process are considered problematic. Big data offers opportunities by 

providing new insights, better decision making, and increasing the influential power of 

accountants. In regard with the application of machine learning, we find that higher 

accuracy, time-specific advantages, and larger independence from expert knowledge are 

the main benefits. Moreover, we find that the benefits and issues are highly dependent on 

the specific management accounting task. 

In the third chapter, we investigate the applicability of machine learning and big 

data technology for cost estimation from a multi-generational perspective. We provided 
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empirical evidence for the practicality of these technologies in cost management at a car 

manufacturer on the basis of six research aspects. First, we find that the complex machine 

learning models, such as GBR and ANN, only yield superior cost estimation accuracy for 

the estimation of subsequent product generations. Within the same generation, much 

simpler models, such as LAR, yield similar predictive accuracy levels. Second, we add 

to cost estimation literature by demonstrating the positive impact of big data application 

on predictive accuracy. Third, we propose a novel method incorporating the target price 

of a product to improve cost estimates for multi-generational cost estimation. Fourth, 

machine learning and big data technology was found to be more accurate than manual 

calculations from cost experts for total product costs. Yet, machine learning and big data 

performed less well on more granular cost levels. Finally, the case study shows that 

machine learning techniques are able capture the most important cost drivers (fifth aspect) 

and quantify the average costs of features (sixth aspect) reliably in most cases. We also 

find that machine learning models are most adequate in the product design and early 

development phase of new product development when there are rapid changes of product 

designs, low integration of expert knowledge, and cost estimates are not used for cost 

goal setting. Otherwise, more detailed and comprehensible cost estimates are required. 

The experimental study investigates several factors that influence the relative 

importance of explainability to accuracy in the context of product cost estimation during 

new product development. First we empirically confirm that people actually perceive the 

trade-off between accuracy and explainability. Second, we provide evidence that the 

relative importance of explainability to accuracy matters for the selection of machine 

learning methods for cost estimation. Third, we contribute to the literature by identifying 

four factors that significantly influence the relative importance of explainability to 

accuracy for product cost estimation during new product development. Specifically, we 

introduce the phase of product development, information uncertainty, the level of cost 

granularity, and target cost gap as important antecedents of relative importance of 

explainability to accuracy. We show that despite having much higher accuracy, complex 

machine learning methods are considered adequate in only few situations during new 

product development. Complex machine learning models are more appropriate during the 

early development stage, when dealing with low information uncertainty, high level of 

cost granularity, and a low target cost gap.  

In the proprietary archival study, we uniquely combine data on cost reduction 

during the development and production stage in order to analyze the effectivity of target 
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costing in complex situations with high product interdependencies and uncertainty. First, 

we complement the literature by providing empirical evidence toward the positive impact 

of target cost difficulty on cost reduction performance during product development. 

Second, we show that interdependencies between parts and products can limit the 

effectiveness of cost reduction performance during new product development. Third, we 

find that uncertainty about cost goal difficulty moderates the allocation of cost reduction 

performance during development and the production stage. If teams perceive a 

considerable likelihood of landing below the cost target, they may slow down and don’t 

aim to achieve the maximum cost reduction performance. Thereby, uncertainty about 

target cost difficulty leads to a shift of cost reduction performance from the development 

phase to the production stage, which limits the total cost reduction performance.  

This dissertation thesis is limited by certain characteristics of the longitudinal case 

study research approach and factors related to the specific research methods in the four 

studies. The study-specific limitations were already discussed in each of the four main 

chapters. In the following, we point out the main limitations related to case study research 

approach. In a single-case design the findings potentially underlie biased qualitative data 

collection, subjective interpretations, and are neither statistically generalizable nor 

reproducible (Cooper & Slagmulder, 2004b). Therefore, the conclusions from the cases 

are not automatically transferable to other settings. Yet, this is not the target of this work. 

The objective was to provide a detailed and multifaceted analysis toward the usage of big 

data and machine learning technology and target costing when dealing with high 

complexity and uncertainty in product development. Notwithstanding its limitations, this 

dissertation makes several contributions to the literature by providing a detailed and 

thorough analysis of big data and machine learning and target costing in cost 

management.  

The studies trigger several opportunities for future research. First, we find that the 

body of literature lacks field research, which reports on experienced implementations 

from the perspective of management accountants. Conducting more field work and case 

studies on the application of big data and machine learning at real companies, could 

generate further insights into this nascent topic. Second, it would be fruitful to investigate 

the operationalization of big data and machine learning technology in cost management 

during product development, such as the establishment of human-machine interfaces for 

cost estimation models. Third, future studies could conduct additional research on the 

model selection problem with regard to the accuracy-explainability trade-off. It would be 
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interesting to analyze antecedents of the relative importance of explainability to accuracy 

for other activities in cost management. Fourth, future research could analyze the 

adjustments of cost targets, in response to the uncertainty of target cost difficulty. Future 

research in target costing could also investigate variables that have been investigated in 

ratcheting studies, which may also influence the performance constraining behavior in 

target costing. 
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