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Direct simulation of physical processes on a kinetic level is prohibitively expensive in
aerospace applications due to the extremely high dimension of the solution spaces. In this
paper, we consider the moment system of the Boltzmann equation, which projects the kinetic
physics onto the hydrodynamic scale. The unclosed moment system can be solved in conjunc-
tion with the entropy closure strategy. Using an entropy closure provides structural benefits
to the physical system of partial differential equations. Usually computing such closure of
the system spends the majority of the total computational cost, since one needs to solve an
ill-conditioned constrained optimization problem. Therefore, we build a neural network sur-
rogate model to close the moment system, which preserves the structural properties of the
system by design, but reduces the computational cost significantly. Numerical experiments are
conducted to illustrate the performance of the current method in comparison to the traditional
closure.

I. Introduction
In rarefied gas dynamics, the continuum assumption is no longer applicable and one has to rely on a more general

description of the physical system at hand, which is given by kinetic equations such as the Boltzmann equation [1].
These equations arise in a variety of other applications as well, such as neutron transport [2], radiative transport [3]
and semiconductors [4]. The Boltzmann equation is a high dimensional integro-differential equation, with phase
space dependency on time, space and particle velocity. This high dimensionality of the phase space presents a severe
computational challenge for massive numerical simulations.
Several methods for phase space reduction have been proposed to solve the Boltzman equation, including the discrete

ordinate/velocity methods [2, 5, 6] and moment methods [7–11]. Discrete ordinate methods evaluate the velocity
space at specific points, which yields a system of equations only coupled by the integral scattering operator. While
computationally efficient, these methods suffers from numerical artifacts, which are called ray effects [5]. Moment
methods eliminate the dependency of the phase space on the velocity variable by computing the moment hierarchy of
the Boltzmann equation. Due to the structure of the advection term, the resulting moment system is unclosed. One
distinguishes moment methods according to the modelling of their closure. The classical 𝑃𝑁 closure uses a simple
truncation that results in a system of linear hyperbolic equations. The main drawback of this method is its numerical
artifacts, specifically large oscillations of the particle density, which may result in negative particle concentrations. This
effect is particularly present in the streaming particle regime [12].
A moment closure, which preserves important physical and mathematical properties [13] of the Boltzmann equation,

is constructed by solving a convex constrained optimization problem, which is based on the entropy minimization
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principle [8, 11].The method, which is commonly referred to as 𝑀𝑁 closure, is accurate in the diffusive limit [14] and
unlike the 𝑃𝑁 closure, this method is also accurate in the streaming limit [15]. Although the 𝑀𝑁 closure is methodically
superior to the 𝑃𝑁 closure, it is by far more expensive to compute. Garret et al. [9] have demonstrated, that in a high
performance implementation, more than 80% of the computational time of the whole solver is required for the solution
of the entropy minimization problem. This motivates the development of a neural network surrogate model to accelerate
the 𝑀𝑁 closure.
Several machine learning inspired methods have been proposed recently. The authors of [16] close the moment

system by learning the gradient of the highest order moment. In [17], the authors pursue two strategies. First, they
use a encoder-decoder network to generate generalized moments and then learn the moment closure of system with its
dynamics in mind. Second, they learn directly the correction term to the Euler equations. In [18], Galilean invariant
machine learning methods for partial differential equations are developed using the conservation dissipation formalism.
Using convolutional networks, a closure for the one dimensional Euler-Poisson system was constructed in [19]. In [20],
a dense neural network was used to model the deviation from the Maxwellian in the collision term of the Boltzmann
equation. The authors of [21] use neural networks to reproduce physical properties of known magnetized plasma
closures. In [22], fully connected, dense and discrete Fourier transform networks are used to learn the Hammett-Perkins
Landau fluid closure. Physics informed neural networks were employed to solve forward and inverse problems via the
Boltzmann-BGK formulation to model flows in continuum and rarefied regimes in [23], to solve the radiative transfer
equation [24] and the phonon Boltzmann equation in [25]. In [26], the authors propose a data driven surrogate model
of the minimal entropy closure using convex splines and empirically convex neural networks. To ensure convexity at the
training data points, the authors penalize a non symmetric positive definite Hessian of the network output.
The goal of this publication is to construct a deep neural network surrogate to model the entropy closure of the

moment system of the Boltzmann Equation. The neural network and maps a given moment to its minimal mathematical
entropy. In contrast to the work proposed in [26], the neural network is input convex by design using the methods
of Amos et al. [27]. By this ansatz, the learned closure automatically inherits all structural properties of the entropy
closure for the moment system. The derivative of the network with respect to the moments maps to the corresponding
optimal Lagrange multipliers of the entropy minimization problem. We train the neural network on the output, the
Lagrange multiplier and additionally on the reconstructed moments, whereas in [26], the authors train on the output, the
reconstructed moments and the Hessian of the network.
The remainder of this paper is structured as follows. In Section II, we briefly present the Boltzmann equation and its

properties. We give a review to the moment method and the minimal entropy closure. In Section III, we present the input
convex neural network approach. Then we construct the neural network closure as a surrogate model to the minimal
entropy closure. We show that the neural entropy closure has an entropy entropy-flux pair, fulfills a local dissipation
law, is hyperbolicity preserving and invariant in range. Furthermore, it fulfills the H-theorem and the moment system
conserves mass. We discuss the generation of training data and propose two algorithms for data generation. Lastly we
describe the training and inference of the neural network on dimension reduced input data. Section IV describes the
kinetic scheme for solving the moment system and its interplay with the neural network surrogate model. Section V
contains a selection of 1𝐷 and 2𝐷 numerical test cases, where we demonstrate our findings.

II. Kinetic equations and the moment method
Classical kinetic theory is profoundly built upon the Boltzmann equation, which describes the space-time evolution

of the one-particle kinetic density function 𝑓 (𝑡, x, v) with 𝑡 > 0, 𝑥 ∈ X ⊂ R3, v ∈ V ⊂ R3 in a many-particle system,

𝜕𝑡 𝑓 + v · ∇x 𝑓 = 𝑄( 𝑓 ). (1)

The left-hand side of the equation describes particle transport, while the right-hand side models collisions. If the
particles only collide with a background material one can model this behavior with the linear Boltzmann collision
operator

𝑄( 𝑓 ) (v) =
∫

V
B(v∗, v) [ 𝑓 (v∗) − 𝑓 (v)] 𝑑v∗, (2)

where the collision kernel B(v∗, v) models the strength of collisions at different velocities. If the interactions among
particles are considered, the collision operator becomes nonlinear. For example, the two-body collision results in

𝑄( 𝑓 ) =
∫

V

∫
S2

B(cos 𝛽, |v − v∗ |)
[
𝑓 (v′) 𝑓 (v′

∗) − 𝑓 (v) 𝑓 (v∗)
]
𝑑𝛀𝑑v∗, (3)
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where {v, v∗} are the pre-collision velocities of two colliding particles, and {v′, v∗′} are the corresponding post-collision
velocities and S2 is the unit sphere. The right-hand side is a fivefold integral, where 𝛽 is the so-called deflection angle.
In the following, we use the notation

〈·〉 =
∫

v
· dv (4)

to define integrals over velocity space.
The Boltzmann equation is a first-principles model based on direct modeling. It possesses some key structural

properties, which are intricately related to the physical processes and its mathematical existence and uniqueness theory.
We briefly review some of these properties, where we follow [7, 13]. First, the time evolution of the solution is
invariant in range, i.e. if 𝑓 (0, x, v) ∈ 𝐵 ⊂ [0,∞), then 𝑓 (𝑡, x, v) ∈ 𝐵 ⊂ [0,∞) for all 𝑡 > 0. Particularly this implies
non-negativity of 𝑓 . Second, if 𝜙 is a collision invariant fulfilling

〈𝜙𝑄(𝑔)〉 = 0, ∀𝑔 ∈ Dom(𝑄), (5)

the equation

𝜕𝑡 〈𝜙 𝑓 〉 + ∇x · 〈v𝜙 𝑓 〉 = 0 (6)

is a local conservation law. Third, for each fixed direction v, the advection operator, i.e. the left-hand side term of
Eq. (1), is hyperbolic in space and time. Forth, let 𝐷 ⊂ R. There is a twice continuously differentiable, strictly convex
function 𝜂 : 𝐷 → R, which is called kinetic entropy density. It has the property

〈𝜂′(𝑔)𝑄(𝑔)〉 ≤ 0, ∀𝑔 ∈ Dom(𝑄) s.t. Im(𝑔) ⊂ 𝐷. (7)

Applied to Eq. (1), we get the local entropy dissipation law

𝜕𝑡 〈𝜂( 𝑓 )〉 + ∇x · 〈v𝜂( 𝑓 )〉 ≤ 0. (8)

Usually we set 𝐷 = 𝐵. Lastly, the solution 𝑓 fulfills the H-theorem.
The Boltzmann equation is an integro-differential equation model defined on a seven-dimensional phase space. With

the nonlinear five-fold integral, it is challenging to solve accurately and efficiently. The well known moment methods
encode the velocity dependence of the Boltzmann equation in a moment vector 𝑢 ∈ R𝑁+1 of order 𝑁 [7, 13]. The
moments are calculated with respect to a vector of basis functions 𝑚(v) ∈ R𝑁+1 by integrating over the velocity space,

𝑢(𝑡, x) = 〈𝑚 𝑓 〉 . (9)

Common choices for the basis functions are monomials and spherical harmonics, depending on the application. Typically,
they include the collision invariants defined in Eq. (5). The moment vector satisfies the system of transport equations

𝜕𝑡𝑢(𝑡, x) + ∇x · 〈v𝑚(v) 𝑓 〉 = 〈𝑚(v)𝑄( 𝑓 )〉 , (10)

which is called moment system. By construction, the advection operator depends on 𝑓 and thus, the moment system is
unclosed. Moment methods aim to find a meaningful closure for this system. Since the kinetic equation dissipates
entropy and fulfill a local entropy dissipation law, one can close the system by choosing the reconstructed kinetic density
𝑓 out of all possible functions 𝑔 that fulfill 𝑢(𝑡, x) = 〈𝑚𝑔〉 as the one with minimal entropy ℎ. The minimal entropy
closure can be formulated as a constrained optimization problem for a given set of moments 𝑢.

ℎ(𝑢) = 〈𝜂( 𝑓𝑢)〉 = min
𝑔∈𝐹

〈𝜂(𝑔)〉

s.t. 𝑢 = 〈𝑚𝑔〉
(11)

where 𝐹 = {𝑔 : Range(𝑔) ⊂ 𝐷}. The set R of all moment vectors 𝑢 for which a solution exists is called the set of
realizable moments. These are all moments that belong to a kinetic density function 𝑓 that fulfills the invariant range
property of the kinetic equation. This condition is enforced by the constraint of the optimization problem of Eq. (11),
which is called realizability constraint. For all moment vectors 𝑢 for which a solution exists, this solution is unique and
of the form

𝑓𝑢 = 𝜂′∗ (𝛼(𝑢) · 𝑚), (12)
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where the Lagrange multiplier 𝛼 : R𝑁+1 → R𝑁+1 maps 𝑢 to the solution of the dual problem

𝛼𝑢 (𝑢) = argmax
𝛼∈R𝑁+1

{𝛼 · 𝑢 − 〈𝜂∗ (𝛼 · 𝑚)〉} (13)

and 𝜂∗ is the Legendre dual of 𝜂. Inserting 𝑓𝑢 into the moment system (10) gives a closed system of equations in space
and time. The function

ℎ(𝑢) = 𝛼𝑢 · 𝑢 − 〈𝜂∗ (𝛼𝑢 · 𝑚)〉 (14)

is convex in 𝑢 and a suitable entropy functional for the moment system in Eq. (10), see [7] . Furthermore, the derivative
of ℎ recovers the optimal Lagrange multipliers of Eq. (13),

d
d𝑢

ℎ = 𝛼𝑢 (15)

This minimal entropy closure also conserves the above listed structural properties of the Boltzmann equation . We
present the above properties for the moment system for the sake of completeness, where we follow [7, 11]. First, the
invariant range property of the solution 𝑓 translates to the set of realizable moments R, which can be described as
the set of moments corresponding to a kinetic density with range in 𝐵. One demands that 𝑢(𝑡, x, v) ∈ R for all 𝑡 > 0.
Second, if a moment basis function 𝑚𝑖 (v) is a collision invariant, then

𝜕𝑡𝑢(𝑡, 𝑥) + ∇x · 〈v𝑚 𝑓𝑢〉 = 0, (16)

is a local conservation law. Third, one can write Eq. (10) as a symmetric hyperbolic conservation law in 𝛼𝑢 . Forth, for
𝑢 ∈ R, ℎ(𝑢) and 𝑗 (𝑢) = 〈v𝜂( 𝑓𝑢)〉 is a suitable entropy and entropy-flux pair compatible with the advection operator
〈v𝑚 𝑓𝑢〉 and yield a semi-discrete version of the entropy dissipation law.

𝜕𝑡ℎ(𝑢) + ∇x 𝑗 (𝑢) = ℎ′(𝑢) · 〈𝑚𝑄( 𝑓𝑢 (𝛼𝑢)〉 ≤ 0 (17)

Note that convexity of ℎ(𝑢) is crucial for the entropy dissipation property. Lastly, the moment system fulfills the
H-theorem.
A numerical method to solve the moment system therefore consists of an iterative discretization scheme for the

moment system (10) and a Newton optimizer for the dual minimal entropy optimization problem in Eq. (13). The former
scheme can be a finite volume or discontinuous Garlerkin scheme, for example. The drawback of the method is the high
computational cost associated with the Newton solver. The optimization problem in Eq. (13) needs to be solved in
every grid cell at every time step of the PDE solver. The computational effort to solve the minimal entropy optimization
problem grows over-proportionate with the dimension 𝑁 of the moment basis 𝑚. Using three basis functions, the
optimizer requires 80% of the computation time and 87% when using seven basis functions, as Garrett et al. have
demonstrated in a computational study [10]. Furthermore, the optimization problem is ill-conditioned, if the moments 𝑢
are near the boundary of the realizable set R [8]. At the boundary 𝜕R, the Hessian of the objective function becomes
singular and the kinetic density 𝑓𝑢 is a sum of delta functions [28].

III. Neural entropy closures
In the following, we propose a neural network to solve the minimal entropy closure problem of Eq. (13), which

preserves the intricate structure of the moment system and the Boltzmann equation. The advantage of a neural network
compared to a Newton optimizer is a significantly lower computational expense. Instead of inverting a possibly near
singular Hessian multiple times, a trained neural network only needs a comparatively small amount of fast tensor
operations to compute the closure.

A. Design of the neural network closure
A neural network N𝜃 : R𝑛 ↦→ R𝑚 is a parameterized mapping from an input 𝑥 to the network prediction N𝜃 (𝑥).

In this work, we focus on dense neural networks. A multi-layer neural network N𝜃 is a concatenation of non-linear
(activation) functions 𝑓𝑘 applied to weighted sums of the previous layer’s output 𝑧𝑘−1. An 𝑀 layer network can be
described in tensor formulation as follows.

𝑧𝑘 = 𝑓𝑘 (𝑊𝑘 𝑧𝑘−1 + 𝑏𝑘 ), 𝑘 = 1, . . . , 𝑀 (18)
𝑥 = 𝑧0, (19)

N𝜃 (𝑥) = 𝑧𝑀 (20)
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where𝑊𝑘 is the weight matrix of layer 𝑘 and 𝑏𝑘 the corresponding bias vector. In the following, we denote the set of
all trainable parameters of the network, i.e. weights and biases by 𝜃. With the correct trainable parameters, a neural
network is capable of approximating any given target function with arbitrary accuracy [29], however it is not trivial how
to choose them. Usually, one chooses a set of training data points 𝑇 =

{
(𝑥 𝑗 , 𝑦 𝑗 )

}
𝑗∈𝐽 to input in a loss function, for

example the mean squared error

𝐿 (𝑥, 𝑦; 𝜃) = 1
|𝐽 |

∑︁
𝑗∈𝐽



𝑦 𝑗 − N𝜃 (𝑥 𝑗 )


2
2 . (21)

Then one can set up the process of finding suitable weights, called training of the network, as an optimization problem

min
𝜃

𝐿 (𝑥, 𝑦; 𝜃) (22)

The optimization is often carried out with gradient-based algorithms, such as stochastic gradient descent [30] or related
methods as ADAM [31], which we use in this work.
The proposed neural network based closure for the minimal entropy problem, called neural entropy closure, is a

network that maps a realizable moment vector 𝑢 ∈ R to the entropy functional ℎ(𝑢) in Eq. (14), which is the objective
functional of the entropy optimization problem in Eq. (11). Assuming the neural network is trained, we have the
following relations,

ℎ𝜃 :=N𝜃 ≈ ℎ(𝑢), (23)

𝛼𝜃 :=
d
d𝑢

N𝜃 ≈ d
d𝑢

ℎ = 𝛼𝑢 , (24)

𝑓𝜃 :=𝜂′∗ (
d
d𝑢

N𝜃 · 𝑚) ≈ 𝜂′∗ (𝛼𝑢 · 𝑚) = 𝑓𝑢 , (25)

𝑢𝜃 :=
〈
𝑚𝜂′∗ (

d
d𝑢

N𝜃 · 𝑚)
〉
≈

〈
𝑚𝜂′∗ (𝛼𝑢 · 𝑚)

〉
= 𝑢, (26)

by using Eq. (12), Eq. (15) and the definition of the moment. These relations give a set of possible loss functions for the
network training and a workflow for the neural network accelerated kinetic solver. We choose ℎ, 𝛼𝑢 and 𝑢 as network
outputs, since 𝑓𝑢 is dependent on the velocity variable v. The loss function of the network then becomes

𝐿 (𝑢, 𝛼𝑢 , ℎ; 𝜃) =
1
|𝐽 |

∑︁
𝑗∈𝐽



ℎ(𝑢 𝑗 ) − N𝜃 (𝑢 𝑗 )


2
2 +



𝛼𝑢 (𝑢 𝑗 ) − 𝛼𝜃 (𝑢 𝑗 )


2
2 +



𝑢 𝑗 − 𝑢𝜃 (𝑢 𝑗 )


2
2 . (27)

We demand that the neural entropy closure preserves the structure of the moment system of the Boltzmann equation,
which is described in Section II. The invariant range property of 𝑓𝜃 depends solely on the range of 𝜂′∗. Popular choices
for the kinetic entropy density 𝜂 are Maxwell-Boltzmann, Bose Einstein or Fermi-Dirac. In this work, we focus on the
Maxwell-Boltzmann entropy, which has the following definition, Legendre dual and derivative.

𝜂(𝑧) = 𝑧 ln(𝑧) − 𝑧, 𝑧 ∈ 𝐷 = R+ (28)
𝜂′(𝑧) = ln(𝑧), 𝑧 ∈ 𝐷 = R+ (29)
𝜂∗ (𝑦) = exp(𝑦), 𝑦 ∈ R (30)
𝜂′∗ (𝑦) = exp(𝑦), 𝑦 ∈ R (31)

By construction, the neural entropy closure is of invariant range, since 𝑓𝜃 (𝑣) = exp( dd𝑢N𝜃 · 𝑚(𝑣)) > 0. Interchanging
the entropy functional by a neural network does not affect the conservation property of the moment system. Consider the
hyperbolicity requirement. In order to define the Legendre dual of ℎ, it must be convex. In the proof of the hyperbolicity
property, which is conducted in [13] for 𝛼𝑢 and 𝑢 as the system variable, ℎ′′ (respectively ℎ′′∗ ) must be symmetric
positive definite. As a consequence, ℎ(𝑢) and therefore the neural network 𝑁𝜃 (𝑢) must be strictly convex in 𝑢. Strict
convexity of the entropy functional ℎ is the crucial requirement for the related properties entropy dissipation and the
H-theorem [13].
Convex neural networks have been inspected in [27], where the authors propose several deep neural networks that

are strictly convex with respect to the input by design. The design is led by the following principles [32]. First, a positive
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sum of convex functions is convex. Second, let 𝑓 : R𝑛 → R be the concatenation of the functions ℎ : R𝑘 → R and
𝑔 : R𝑛 → R𝑘 . Then 𝑓 (𝑥) = ℎ(𝑔(𝑥)) is convex, if ℎ is convex, ℎ is non-decreasing in each argument and all 𝑔𝑖=1,...,𝑘 are
convex. Applying these conditions to the definition of a layer of a neural network, Eq. (18), we get that all entries of the
weight matrix𝑊𝑘 must be positive in all layers except the first. Furthermore, the activation function of each layer must
be strictly convex. However, in practice it turns out that very deep networks with positive weights have difficulties to
train. The authors therefore modifies the definition of a hidden layer in Eq. (18) to

𝑧𝑘 = 𝑓𝑘 (𝑊 𝑧
𝑘
𝑧𝑘−1 +𝑊 𝑥

𝑘 𝑥 + 𝑏𝑧
𝑘
), 𝑘 = 2, . . . , 𝑀, (32)

𝑧𝑘 = 𝑓𝑘 (𝑊 𝑥
𝑘 𝑥 + 𝑏𝑧

𝑘
), 𝑘 = 1, (33)

where𝑊 𝑧
𝑘
must be non-negative, and𝑊 𝑥

𝑘
may attain arbitrary values. This approach is related to the idea of residual

neural networks [33]. We choose the strictly convex softplus function ln (1 + 𝑒𝑥) as layer activation function for
𝑓𝑘 , 𝑘 = 1, . . . , 𝑀 − 1 and a linear activation for the last layer, since we are dealing with a regression task.

B. Training Data
The inputs to the neural entropy closure are realizable moments 𝑢 ∈ R and it is trained on the corresponding

Lagrange multipliers 𝛼 ∈ R𝑁+1 and the values of the entropy functional ℎ(𝑢, 𝛼) defined in Eq. (13). The last output
of the network is u itself, where is measured, how well the network can reconstruct the input moment, see Eq. (26).
The training datset therefore consists of triplets (ℎ(𝑢, 𝛼𝑢 , 𝛼𝑢 , 𝑢), which have the relations described in Eq. (13) and
Eq. (14). Unfortunately, R is unbounded, since 𝑢0 = 〈 𝑓 〉 ≥ 0, if 𝑓 ≥ 0 and thus all non-negative moments of order zero
are realizable. A strategy to characterize the realizable set, is to consider normalized moments [34]

𝑢 =
𝑢

𝑢0
= [1, 𝑢1

𝑢0
, . . . ,

𝑢𝑁

𝑢0
]𝑇 ∈ R𝑁+1, (34)

𝑢𝑟 = [𝑢𝑟1 , . . . , 𝑢
𝑟
𝑁 ]𝑇 ∈ R𝑁 , (35)

where we call 𝑢 the normalized moments and 𝑢𝑟 the reduced normalized moments. Analogously, we define the set of
normalized realizable moments R and the reduced normalized realizable moments as R𝑟

R = {𝑢 ∈ R : 𝑢0 = 1} ⊂ R𝑁+1, (36)

R𝑟
=

{
𝑢𝑟 ∈ R𝑁 [1, 𝑢𝑇 ]𝑇 ∈ R

}
⊂ R𝑁 . (37)

Both, R and R𝑟
are bounded and convex [34, 35]. In [34], the authors have derived expressions for R𝑟

up to moment
order 𝑁 = 4 and one spatial dimension, i.e. 𝑉, 𝑋 ⊂ R1 for monomial basis functions.

1 ≥ 𝑢𝑟1 ≥ −1 (38a)

1 ≥ 𝑢𝑟2 ≥ (𝑢𝑟1)2 (38b)

𝑢𝑟2 −
(𝑢𝑟1 − 𝑢𝑟2)2

1 − 𝑢𝑟1
≥ 𝑢𝑟3 ≥ −𝑢𝑟2 +

(𝑢𝑟1 + 𝑢𝑟2)2

1 + 𝑢𝑟1
(38c)

(𝑢𝑟2)3 − (𝑢𝑟3)2 + 2𝑢
𝑟
1𝑢

𝑟
2𝑢

𝑟
3

𝑢𝑟2 − (𝑢𝑟1)2
≥ 𝑢𝑟4 ≥ 𝑢𝑟2 −

(𝑢𝑟1 − 𝑢𝑟3)2

(1 − 𝑢𝑟2)
(38d)

where equality indicates the boundary 𝜕R𝑟
. Here, the basis functions are monomials. The realizable set for higher order

moments can be characterized using the more general results in [28]. This characterization enables a sampling strategy
for training data, where one first samples uniformly in R𝑟

and afterwards solves the dual entropy minimization problem
in Eq. (13) using 𝑢, to compute 𝛼𝑢 and ℎ(𝑢, 𝛼𝑢), see Algorithm 1. The algorithm has some drawbacks. First, we do not
solve Eq. (13) exactly, but numerically with a tolerance 𝜏. As a result, the neural network accuracy is bounded from
below by 𝜏. In practise however, a Newton optimizer is more accurate than the training accuracy of a neural network.
Second, the optimization problem Eq. (13) becomes ill-conditioned near the boundary 𝜕R𝑟

and singular at 𝜕R𝑟
, so we

can not generate training data at the boundary using this approach. Lastly, necessary and sufficient conditions for 𝜕R𝑟

are only derived for V,X ⊂ R1. Necessary conditions for V,X ⊂ R𝑑 , 𝑑 = 2, 3 are stated in [35] for 𝑁 ≤ 2. In 1D 𝑀1,
they simplify to

‖𝑢𝑟 ‖ ≤ 1. (39)
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Algorithm 1: Data generation with uniform sam-
pling of R

Result:
{
(𝑢 𝑗 , 𝛼 𝑗 , ℎ 𝑗 )

}
𝑗∈𝐽

Set 𝑁 , |𝐽 | ;
Set the training accuracy 𝜏 > 0;
Set the boundary distance 𝛿 > 0;
for 𝑗 = 1, . . . , |𝐽 | do
Sample 𝑢 𝑗 using Eq. (38) such that
dist(𝑢 𝑗 , 𝜕R) > 𝛿;
Solve Eq. (13) for 𝛼𝑢, 𝑗 using a Newton
optimizer with tolerance 𝜏;
Compute ℎ 𝑗 using Eq. (14);

end

Algorithm 2: Data generation with uniform sam-
pling of Lagrange multipliers

Result:
{
(𝑢 𝑗 , 𝛼 𝑗 , ℎ 𝑗 )

}
𝑗∈𝐽

Set 𝑁 , |𝐽 | ;
Determine 𝐴 ⊂ R𝑁 ;
for 𝑗 = 1, . . . , |𝐽 | do
Sample 𝛼𝑟

𝑗
such that 𝛼 ∈ 𝐴;

Compute 𝛼0, 𝑗 using Eq. (41);
Set 𝛼 𝑗 = [𝛼0, 𝑗 , 𝛼𝑟

𝑗
𝑇 ];

Compute 𝑢 𝑗 using Eq. (12);
Compute ℎ 𝑗 using Eq. (14);

end

A different strategy for generating training data is to sample the Lagrange multipliers 𝛼𝑢 and then reconstruct 𝑢 with
Eq. (12) and Eq. (9). In order to generate normalized moments, we have to construct the image of R which is a 𝑁
dimensional hyperplane. For a monomial basis and the Maxwell-Boltzmann entropy, we get the dependent Lagrange
multiplier by the definition of the moment of order zero.

1 =
〈
𝑚0𝜂

′
∗ (𝛼𝑇𝑚)

〉
= 〈exp(𝛼 · 𝑚)〉 = 〈exp(𝛼𝑟 · 𝑚𝑟 ) exp(𝛼0)〉 , (40)

which we can transform to

𝛼0 = − ln(〈exp(𝛼𝑟 · 𝑚𝑟 )〉), (41)

where 𝛼𝑟 = [𝛼1, . . . , 𝛼𝑁 ]𝑇 and 𝑚𝑟 = [𝑚1, . . . , 𝑚𝑁 ]𝑇 . For numerical stability, one needs to restrict the sampled 𝛼𝑟 to
a bounded set 𝐴 ⊂ R𝑁 , since as 𝑢 approaches 𝜕R, ‖𝛼‖ → ∞. Algorithm 2 summarizes this approach. Computational
resources for both sampling algorithms can be found in the open source framework KiT-RT, see [36].

C. Inference and training of the neural entropy closure
In Section III.B, we have discussed a normalization and a dimension reduction of the input data, which enables the

neural network to train and execute on a bounded and convex set of possible inputs and therefore drastically increases its
reliability. Each unseen data point is in the convex hull of seen data points. Normalization of R allows for a dimension
reduction, thus the neural entropy closure takes normalized reduced moments 𝑢𝑟 as . One can think of the constant zero
order moment being encrypted in the bias term of the first layer. The primary output N𝜃 (𝑢𝑟 ) is trained on ℎ(𝑢, 𝛼),
but the input derivative 𝜕𝑢𝑟 now only reveals 𝛼𝑟

𝜃
. The missing value of 𝛼0 can be computed using Eq. (41). The third

network output, 𝑢𝜃 is computed using Eq. (41), Eq. (12) and Eq. (9). In order to train the network on 𝛼, respectively 𝛼𝑟 ,
we compute the sensitivity of the input derivative of the neural network, which can be thought of training in Sobolev
norm. This concept has been investigated in [37], where the authors find that training in Sobolev norm increases training
accuracy and data efficiency.
After training, the neural network has the task to compute the minimal entropy closure for 𝑢 ∈ R. Inference of a

normalized moment 𝑢 with N𝜃 produces 𝛼𝜃 (𝑢). By considering again the definition of moment zero

1 = 〈𝑚 exp(𝛼𝜃 (𝑢))〉 (42)
⇐⇒ 𝑢0 = 〈𝑚 exp(ln(𝑢0) exp(𝛼𝜃 (𝑢))〉 (43)

we can deduce for 𝑢0 > 0

𝛼𝜃 (𝑢) = [𝛼𝜃 (𝑢)0 + ln(𝑢0), 𝛼𝜃 (𝑢)1, . . . , 𝛼𝜃 (𝑢)𝑁 ]𝑇 . (44)

Then 𝛼𝜃 (𝑢) minimizes the entropy functional for 𝑢, if and only if 𝛼𝜃 (𝑢) minimizes the entropy functional for 𝑢.
Note, that solving the normalized minimal entropy closure, respectively inference of the network with the normalized
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moments can be interpreted as replacing the kinetic entropy density 𝜂 by the normalized kinetic entropy density

𝜂( 𝑓 ) = 𝜂

(
𝑓

〈 𝑓 〉

)
(45)

which is still a strictly convex function and therefore fulfills the hyperbolicity, entropy-dissipation and H-theorem
properties.

IV. Kinetic Scheme for the Moment Method
In this section, we briefly describe the kinetic scheme that is used to solve the moment method described in Section II.

The idea of a kinetic scheme [8–10] is to combine a numerical scheme for hyperbolic conservation laws with an
according velocity space discretization.
A Quadrature approximation of the velocity integral is needed in several parts of the kinetic scheme, namely the

computation of the numerical flux and the collision operator 𝑄.

〈 𝑓 (v)〉 ≈
𝑛𝑞∑︁
𝑞=1

𝑤𝑞 𝑓 (vq), (46)

where 𝑤𝑞 are the quadrature weights and 𝑣𝑞 the corresponding quadrature points. Depending on the dimension 𝑑 of V,
we use different parametrizations and quadrature rules [38, 39], see Table 1.

Table 1 Parametrization of V and used quadrature rule

𝑑 V parametrization of v Quadrature Rule
1 [−1, 1] v = 𝜇 Legendre

2 [−1, 1] × [0, 2𝜋) v =

( √︁
1 − 𝜇 cos(𝜙)√︁
1 − 𝜇 sin(𝜙)

)
Tensorized Gauss-Legendre, projected

2 [−1, 1] × [0, 2𝜋) v =
©­­«

√︁
1 − 𝜇 cos(𝜙)√︁
1 − 𝜇 sin(𝜙)

𝜇

ª®®¬ Tensorized Gauss-Legendre

The spatial discretization is implemented with a finite volume method using a quadrilateral grid in the 2 dimensional
test cases. The notification is similar for the 1 dimensional test case. We consider the flux function

𝐹 ( 𝑓 , v) = ∇x · 〈v𝑚(v) 𝑓𝑢〉 (47)

We denote the moment vector averaged over control volume 𝑖 as 𝑢𝑖 and average Eq. (1) over the area 𝐴𝑖 of the control
volume. The flux function 𝐹 ( 𝑓 , 𝑣) is approximated using an out of the box numerical flux 𝐹𝑛 ( 𝑓𝑢,𝑖 , 𝑓𝑢, 𝑗 , v) at the face of
control volume 𝑖 and its neighbor 𝑗 . This yields the kinetic flux 𝐺 (𝑖, v) at control volume 𝑖

𝐺 (𝑖, v) = 1
𝐴𝑖

〈 ∑︁
𝑗∈N(𝑖)

𝐹𝑢𝑝 (𝑖, 𝑗 , v)𝑙𝑖, 𝑗

〉
, (48)

whereN(𝑖) are all neighboring grid cells of control volume 𝑖 and 𝑙𝑖, 𝑗 is the length of the face of control volume 𝑖 and its
neighbor 𝑗 . Finally, we approximate the integral with a suitable integration rule and get

𝐺 (𝑖) = 1
𝐴𝑖

𝑛𝑞∑︁
𝑞=1

𝑤𝑞

∑︁
𝑗∈N(𝑖)

𝐹𝑢𝑝 (𝑖, 𝑗 , v𝑞)𝑙𝑖, 𝑗 . (49)

This means, that we have to evaluate the numerical flux for each quadrature point and for each equation in the moment
system, which is quite costly but easy to parallelize.
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We discretize the moments of the collision operator similarly. Note that the collision integral simplifies, if the
chosen moments are collision invariants. The collision operator 𝑄( 𝑓𝑢,𝑖), respectively its moments

〈
𝑚(𝑣)𝑄( 𝑓𝑢,𝑖)

〉
at

control volume 𝑖 can be computed using the above described quadrature rule

𝑄( 𝑓𝑢,𝑖 (v)) ≈ 𝑄𝑛 ( 𝑓𝑢,𝑖 (v)) =
𝑛𝑞∑︁
𝑞=1

𝑤𝑞B(v∗𝑞 , v)
[
𝑓𝑢,𝑖 (v∗𝑞) − 𝑓𝑢,𝑖 (v)

]
, (50)

and

1
𝐴𝑖

〈
𝑚(v)𝑄( 𝑓𝑢,𝑖)

〉
≈ 𝐷 (𝑖) = 1

𝐴𝑖

𝑛𝑞∑︁
𝑞=1

𝑤𝑞𝑚(v𝑞)𝑄𝑛 ( 𝑓𝑢,𝑖 (v𝑞)), (51)

which we denote by 𝐷 (𝑖). If there is a source term in addition to the collision term, it can be discretized analogously.
The temporal discretization can be done by any time-stepping scheme for hyperbolic partial differential equation. We
consider the spatial discretization of the kinetic equation as a system of ordinary differential equations

𝜕𝑡𝑢
𝑖 = −𝐺 (𝑖; 𝑡) + 𝐷 (𝑖; 𝑡), (52)

which is then discretized by an explicit Euler method with step size Δ𝑡

𝑢𝑡+Δ𝑡 ,𝑖 = 𝑢𝑡 ,𝑖 + Δ𝑡 (𝐷 (𝑖; 𝑡) − 𝐺 (𝑖; 𝑡)) . (53)

Recall, that we need to compute 𝑓𝑢 using either a numerical Newton solver for the optimization problem in Eq (13)
or by evaluating the neural entropy closure 𝑁𝜃 . Either way, we introduce an error and thus the reconstructed kinetic
density 𝑓𝑢𝑡 does not match exactly the moments 𝑢𝑡 . As a consequence, the updated moment of the next time step 𝑢𝑡+Δ𝑡
is not necessarily realizable [8, 10, 40]. In [8], the authors propose a time-step restriction to preserve realizability of the
finite volume updatem, whereas in [40], the authors change the current moment 𝑢𝑡 ,𝑖 to 〈𝑚 𝑓𝑢〉. This procedure yields
an exact pair of moments and Lagrange multipliers, but comes to the cost of losing the conservation property of the
scheme. Computational resources for the kinetic solver can be found in the open source kinetic solver Kinetic.jl [41, 42].
The neural networks are implemented in tensorflow 2.0 [43] and the computational resources for the networks in this
paper can be found in the repository [44].

V. Numerical Results
In this section, we present numerical results and investigate the performance of the neural entropy closure. First, we

compare the sampling strategies in Algorithm 1 and Algorithm 2. Then we train the networks using the generated data.
Finally, we employ the network in the kinetic solver and compare the results with the benchmark solution, where the
minimal entropy problem is solved with a Newton solver.

A. Comparison of sampling strategies
In this section, we compare networks trained on data using Algorithm 1 and Algorithm 2. By construction, the data

distribution generated by these strategies are completely different, as it is shown in Fig. 1. Figure 2a) shows, that as we
approach the boundary 𝜕R𝑟

, the values of 𝛼 increase rapidly, while the slope is comparatively flat in the middle of the
domain [−1, 1]. Thus, uniform sampling in 𝛼 results in a sparse distribution in the interior of R𝑟

and an accumulation
of data-points near 𝜕R𝑟

. In addition, it is not trivial to select the Lagrange multipliers in a way such that the distance of
the set of corresponding moments is uniform to 𝜕R𝑟

. This can be seen in the left image Fig. 1, where we sample 𝛼 from
a set 𝐴 = [−50, 50] × [−50, 50]. The upper boundary of the set of corresponding 𝑢𝑟 is then concave, however the upper
boundary of R𝑟

is a straight line from (𝑢𝑟1 , 𝑢
𝑟
2) = (−1, 1) to (1, 1).

We perform a synthetic validation test of identical models for the 𝑀1 1D closure once trained on data generated with
Algorithm 1 and once trained on data generated with Algorithm 2. Since in this test case, R is one dimensional and we
can sample the exact same interval with both strategies. We train 50 models for each data set using 10000 training
samples until convergence and compare the models. Figure 2 shows the evaluations of the model using 100000 unseen
test data-points uniformly distributed in R. The left column shows the evaluations 𝑢𝜃 , 𝛼𝜃 , ℎ𝜃 of both models and the
test data 𝑢, 𝛼 and ℎ. The right column shows relative errors of the networks predictions. As expected, Algorithm 1
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a) Sampling with Algorithm 1 b) Sampling with Algorithm 2

Fig. 1 Scatter plots of 𝑅𝑟 for 𝑁 = 2 with data generated from different strategies. Color indicates the value of
the minimum point of the entropy functional.

a) 𝛼1𝜃 and 𝛼1 over 𝑢1 b) Log difference in 𝛼1𝜃

c) Reconstructed 𝑢1𝜃 and 𝑢1 over 𝑢1 d) Log difference in reconstructed 𝑢1𝜃

e) ℎ𝜃 and ℎ over 𝑢1 a) Log difference in ℎ𝜃

Fig. 2 Validation tests for M1 1D networks trained on data-sets generated uniformly in 𝛼 and 𝑢. 103 training
points and 104 testing points. Distance to 𝜕R is 0.01
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performs better in the interior of R in objective functions ℎ, 𝛼 and 𝑢, since in this region, there is more training data
available. However, the advantage of Algorithm 2 near the boundary is not as big as the advantage of Algorithm 1
in the interior, where we experience almost an order of accuracy difference. Note, that the error in ℎ𝜃 decreases, as
𝑢1 → 0, whereas the error in 𝑢𝜃 and 𝛼𝜃 increases in this region. By Eq. (41) and the definition of 𝑢𝜃 , the error in 𝑢𝜃

is nonlinearly dependent on the error in 𝛼𝜃 . The spike in the relative error is due to the proximity of 𝛼 (and) 𝑢 to 0.
Similar behavior can be seen at the roots of ℎ. As a conclusion, we use Algorithm 1 to generate training data for the
models employed in the following test cases.

Table 2 Validation losses for different closure networks

Layout MSE(ℎ, ℎ𝜃 ) MSE(𝛼, 𝛼𝜃 ) MSE(𝑢, 𝑢𝜃 ) MAE(ℎ, ℎ𝜃 ) MAE(𝛼, 𝛼𝜃 ) MAE(𝑢, 𝑢𝜃 )
𝑀1 2D 18 × 8 1.10e−6 3.39e−5 2.93e−6 1.02e−3 3.36e−3 0.96e−3
𝑀1 1D 10 × 7 7.87e−7 7.52e−4 1.47e−6 7.57e−4 1.26e−2 9.59e−4
𝑀2 1D 15 × 7 1.33e−5 2.81e−4 2.81e−4 3.11e−3 1.23e−2 1.23e−2

All networks are build using the input convex architecture discussed in Section III. Each network has a dense input
layer followed by a block of convex bridge layers defined in Eq. (32). This convex block is described by the layout
column in Table 2, with format width × depth. After the convex block, a convex bridge layer with half the width of the
block followed by a convex output layer is added. The output layer has the same design as a convex bridge layer, but
lacks the softplus activation function, since we deal with a regression task. The validation loss of the neural networks
after training can be seen in Table 2. The networks are trained on an Nvidia RTX 3090 GPU in single-precision
floating-point accuracy. Notice, that the mean absolute error in 𝛼 is significantly higher than the error in ℎ or 𝑢 for all
networks. The reason for this is the high range of values, that 𝛼 can attain, which is inconvenient for the neural network.

B. Computational Efficiency
In the following, we compare the computational efficiency of the neural network surrogate model and the Newton

optimizer in an isolated, synthetic test case. We consider the 𝑀2 closure in 1𝐷 and use only normalized moments. In
contrast to the neural network, the performance of the Newton solver is dependent on the proximity of the moments
𝑢 to the boundary 𝜕R, we consider three test cases. First, the moments are uniformly sampled using Algorithm 1,
second we only draw moments near the center of R and lastly, we use only moments in proximity to 𝜕R. The Newton
solver is implemented in the KiT-RT [36] framework. In the kinetic scheme, there is one optimization problem for each
grid cell. Furthermore, optimization problems of different grid cells are independent of each other. A meaningful and
straight-forward way to parallelize the minimal entropy closure is to employ one instance of the Newton optimizer per
available CPU-core that handles a batch of cells. For comparability, we set the accuracy tolerance of the Newton solver
to single-precision floating point accuracy. On the other hand, we interpret the number of grid cells as the batch size in
of the neural entropy closure. Parallelization is carried out by the tensorflow backend.
We execute the neural network once on the CPU and once on the GPU. The used CPU is a 24 thread AMD Ryzen9

3900x with 32GB RAM and the GPU is a RTX3090 with 20GB RAM. The experiments are reiterated 100 times to
reduce time measurement fluctuations. Table 3 displays the mean timing for each configuration and corresponding
standard deviation. Considering Table 3, we see that the timing of a neural network is independent on the condition of

Table 3 Computational cost for one iteration of the 1D solver in seconds 𝑠

Newton neural closure CPU neural closure GPU
uniform, 103 samples 0.00648 ± 0.00117 s 0.00788 ± 0.00051 s 0.00988 ± 0.00476 s
uniform, 107 samples 5.01239 ± 0.01491 s 0.63321 ± 0.00891 s 0.03909 ± 0.00382 s
boundary, 103 samples 38.35292 ± 0.07901 s 0.00802 ± 0.00064 s 0.00974 ± 0.00475 s
boundary, 107 samples 27179.51012 ± 133.393 s 0.63299 ± 0.00853 s 0.03881 ± 0.00352 s
interior, 103 samples 0.00514 ± 0.00121 s 0.00875 ± 0.00875 s 0.00956 ± 0.00486 s
interior, 107 samples 4.24611 ± 0.03862 s 0.63409 ± 0.00867 s 0.03846 ± 0.00357 s
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the optimization problem, whereas the Newton solver is 6300 times slower on a on a moment 𝑢 with



𝑢 − 𝜕R





2
= 0.01

compared to a moment in the interior. The average time to compute the Lagrange multiplier of a uniformly sampled
moment 𝑢 is 27% higher than a moment of the interior. However, we need to take into account that the neural entropy
closure is less accurate near 𝜕R as shown in Fig. 2. Furthermore, we see that the acceleration gained by usage of the
neural network surrogate model is higher in cases with more sampling data. This is apparent in the uniform and interior
sampling test cases, where the computational time increases by a factor of ≈ 73, when the data size increases by a
factor of 104. The time consumption of the Newton solver increases by a factor of ≈ 840 in the interior sampling case,
respectively ≈ 782 in the uniform sampling case. Note, that in this experiment, all data points fit into the memory of the
GPU, so it can more efficiently perform SIMD parallelization.

Table 4 Computational setup of the test cases

1D M1 Linesource 1D M2 Linesource 2D M1 Periodic
𝑇 (0, 0.7] (0, 0.7] (0, 1.84]
𝑁𝑡 1399 1399 1226
𝑋 [0, 1] [0, 1] [−1.5, 1.5] × [−1.5, 1.5]
𝑁𝑋 100 100 1002

Quadrature Legendre Legendre Tensorized Gauss Legendre
V [−1, 1] [−1, 1] [−1, 1] × [0, 2𝜋)
𝑁V 28 28 200
Basis Monomial Monomial Monomial
CFL 0.05 0.05 0.1
𝜎 1.0 1.0 0.0

C. Inflow into purely scattering homogeneous medium in 1D
Let us first study the particle transports in an isotropic scattering medium. We consider the one-dimensional

geometry, where the linear Boltzmann equation reduces to

𝜕𝑡 𝑓 + 𝜇𝜕x 𝑓 = 𝑄( 𝑓 ) = 𝜎

(
1
2
〈 𝑓 〉 − 𝑓

)
, (54)

and the corresponding moment model becomes

𝜕𝑡𝑢 + 𝜕x 〈𝜇𝑚 𝑓𝑢〉 = 〈𝑚𝑄( 𝑓𝑢)〉 (55)
𝑓𝑢 = 𝜂∗ (𝜕𝑢N𝜃 (𝑢) · 𝑚) (56)

The initial domain is set as vacuum with 𝑓 (0, x, 𝜇) = 0, and an inflow condition is imposed at the left boundary of
domain with 𝑓 (𝑡 > 0, 0, 𝜇 > 0) = 0.5. The detailed computational setup can be found in Table 4. The solution profiles
at final time 𝑡 𝑓 of the neural entropy closed moment system and the benchmark solver are presented in Fig. 3 for the 𝑀1
and 𝑀2 system. In Fig. 4, we see the corresponding errors of the 𝑀1 and 𝑀2 solution for each grid cell. The plots show
the error of the moment vector 𝑢 in 𝑙1 norm as well as the 𝑙1 errors of its components. We notice a slight increase of the
error in the 𝑀2 case, overall it displays a good approximation as well.

D. 2D Test cases
We consider a rectangular domain in two spatial dimensions. The phase space of the Boltzmann equation is thus

five dimensional, where X = [−1.5, 1.5]2, V =
{
𝑣 ∈ R2 : ‖𝑣‖2 < 1

}
and 𝑡 > 0. We consider the 𝑀1 closure with a

monomial basis 𝑚(𝑣) = [1, 𝑣𝑥 , 𝑣𝑦]𝑇 , where 𝑣𝑥 and 𝑣𝑦 are defined in Table 1. The Boltzmann equation reduces to

𝜕𝑡 𝑓 + 𝑣𝑥𝜕𝑥 𝑓 + 𝑣𝑦𝜕𝑦 𝑓 =𝑄( 𝑓 ) (𝑣)

=𝜎

(〈
1
2𝜋

𝑓

〉
− 𝑓

)
,

(57)
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Fig. 3 Comparison of neural closed and benchmark solution at 𝑡 = 0.7. The left figure displays the 𝑀1 and the
right figure displays the 𝑀2 test case.

Fig. 4 Comparison of the systems entropy over time, 𝑀1 case on the left and 𝑀2 case on the right.

where 𝜎 is the scattering coefficient. The corresponding moment system with neural entropy closure reads as

𝜕𝑡𝑢 + 𝜕𝑥 〈𝑣𝑥𝑚 𝑓𝑢〉 + +𝜕𝑦
〈
𝑣𝑦𝑚 𝑓𝑢

〉
= 〈𝑚𝑄( 𝑓 )〉

𝑓𝑢 = 𝜂∗ (𝜕𝑢N𝜃 (𝑢) · 𝑚)
(58)

We inspect the 𝑀1 closure choose the systems initial condition as

𝑢0 = 1.5 + cos(2𝜋𝑥) cos(2𝜋𝑦), (𝑥, 𝑦) ∈ X (59)
𝑢1 = 0.3𝑢0 (60)
𝑢2 = 0.3𝑢0 (61)

The moment system is discretized using the kinetic scheme described in Section IV. We compare the kinetic scheme
once closed using a Newton solver and once closed using the neural entropy closure. We use the solver configuration in
Table 4 and an entropy consistent numerical scheme. We run the simulation until a final time 𝑡 𝑓 = 3.5, which translates
to 1630 time-steps. Figure 5 shows the neural entropy closed solution at time iteration 𝑖 = 60 on the left image and the
relative error of the entropy closed solution compared to the Newton optimizer closed solution on the right image. The
solution snapshot shows no signs of numerical artifacts and indeed, the relative error per grid cell is mostly in the order
of 10−2 or lower. In the second experiment, we run both solvers up to final time 𝑡 𝑓 and compare the propagated error of
the neural entropy closure to the Newton solution, that is configured to solve the entropy optimization problem Eq. (13)
up to machine precision. The results can be seen in Fig. 6. Note, that the mean relative error does not increase over a
threshold of 2.3%.
Lastly, we look at the entropy of the system at each time step. Due to the periodic boundaries, the physical system is

closed. We have chosen the upwind scheme for the numerical flux of the moment system, which is an entropy dissipating
scheme. Figure 6 shows that the Newton and neural entropy closed system both dissipate mathematical entropy over
time and furthermore, the dissipation rate of both schemes is similar. This shows, that the entropy dissipation property
is conserved by the neural entropy closure.

VI. Summary and Conclusion
In this paper we addressed the moment system of the linear Boltzmann equation, its minimal entropy closure, and

the challenges of classical numerical approaches. We introduced a novel convex neural network based approach to
close the moment hierarchy of the linear Boltzmann equation. The nature of the entropy minimization problem allows
clear definition of the convex set of all possible input data for the neural network. On the other hand, the problem is ill

13



Fig. 5 Solution and relative errors in the periodic 2𝐷 test case at iteration 𝑖 = 60.

Fig. 6 Mean relative error of neural entropy closed and Newton closed solution (left) system entropy (right) at
each time step.

14



conditioned on the boundary of the realizable set and thus poses significant challenges for generating training data on
and near the boundary of it. We propose two algorithms to tackle this challenge and compared them in terms of training
and validation performance of the corresponding networks. We found that uniform sampling of R is advantageous to
uniform sampling of the Lagrange multipliers 𝛼.
Next, we have constructed an input convex neural network, that mimics the entropy functional of the moment system

of the Boltzmann equation. We successfully employed this neural entropy closure in several 1D and 2D test cases and
systems of different moment order. We found a good agreement between the neural entropy closed system and the
solutions computed with a conventional Newton solver within the boundaries of the training performance of the neural
networks. As expected, the neural network based closure is significantly more efficient in terms of computational time
compared to a Newton solver.
Several challenges remain to be studied. In higher spatial dimensions and higher order moment systems, it is

not clear how to characterize R directly, thus one needs to apply Algorithm 2 and sample in the space of Lagrange
multipliers. Then, one needs to explore other sampling distributions due to their shown disadvantages compared to
uniform sampling in R. Furthermore, it is preferable to characterize the distance to 𝜕R in terms of 𝛼 in order to
construct an efficient sampling algorithm. Additionally, a rigorous error analysis for the neural entropy closure needs to
be conducted. Further research will be dedicated to a sophisticated sampling algorithm for higher dimensions, and
consider an error analysis of the neural network reconstruction.
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