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Cite This: https://doi.org/10.1021/acsomega.2c00317 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: There is a growing trend toward the use of interaction
network methods and algorithms, including community-based
detection methods, in various fields of science. The approach is
already used in many applications, for example, in social sciences and
health informatics to analyze behavioral patterns during the COVID-19
pandemic, protein−protein networks in biological sciences, agricultural
science, economy, and so forth. This paper attempts to build
interaction networks based on high-entropy alloy (HEA) descriptors
in order to discover HEA communities with similar functionality. In
addition, these communities could be leveraged to discover new alloys
not yet included in the data set without any experimental laboratory
effort. This research has been carried out using two community
detection algorithms, the Louvain algorithm and the enhanced particle
swarm optimization (PSO) algorithm. The data set, which is used in this paper, includes 90 HEAs and 6 descriptors. The results
reveal 13 alloy communities, and the accuracy of the results is validated by the modularity. The experimental results show that the
method with the PSO-based community detection algorithm can achieve alloy communities with an average accuracy improvement
of 0.26 compared to the Louvain algorithm. Furthermore, some characteristics of HEAs, for example, their phase composition, could
be predicted by the extracted communities. Also, the HEA phase composition has been predicted by the proposed method and
achieved about 93% precision.

1. INTRODUCTION

Since the ancient eras, human civilization has attempted to
discover new and unknown materials, for example, metals and
alloys that can all play a key role in the overall quality of
human life. Since the Bronze Age, alloys have been produced
based on a “basic element” pattern containing one principal
element. Various elements are added to the basic element to
improve selected properties.1 Over the past decades, a new
approach has been introduced to design alloys, which involves
mixing typically five elements or more in equimolar amounts to
produce balanced alloys called high-entropy alloys (HEAs).1

These were initially introduced and developed by Cantor et
al.2 and Yeh et al.3 The entropy of mixing for these complex
alloys is high. The atoms used to create the alloys have a
similar size.6

HEAs have been widely investigated due to their attractive
properties, for example, thermal and electrical conductivity,4

high corrosion resistance,5 and high strength in combination
with high ductility. A parametric method is commonly used to
understand and predict the phase stability, often used in pairs
presented by a two-dimensional diagram.17 Although there are
many parametric and statistical methods in the field of

materials science, machine learning (ML) is considered one of
the most effective methods in materials science.7 ML
algorithms are capable of learning models to explore
communities and provide results effectively.
The purpose of the present study is to introduce a new

model for the HEA interaction network, which is made based
on HEA descriptors. This model measures similarities among
HEA descriptors by creating a network of interactions based
on similarities. Communities are extracted from the interaction
network so that each community comprises similar HEA
compounds. These compositions are available for interpreta-
tion. The outcomes of this paper are communities that can
help anticipate HEA phases and detect HEA functionalities
through the ability to better analyze them. With that, it might
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be possible to suggest more efficient alloys for selected
applications.

2. REVIEW OF LITERATURE
The HEAs containing at least five elements with equal or
similar atomic percentages have high strength.32 These alloys
are different from conventional alloys due to four main effects,
which include the (1) high-entropy effect, (2) sluggish
diffusion effect, (3) lattice distortion effect, and (4) cocktail
effect.32 These effects contribute to the ultimate strength or
hardness of HEAs.32

In a study carried out by Ye et al.,1 the phase formation of
HEAs and their new properties are discussed, such as strength,
mechanical performance at high and cryogenic temperatures,
ductility, hardness, magnetism, and electrical conductivity.
By using ML in HEAs, the design of alloys can be facilitated

and used to discover new compounds with desirable
properties. Dai et al.8 introduced a method that creates a
low dimensional descriptor for predicting the phase content of
HEAs based on their composition. The process behind their
method has several stages: first a coefficient analysis is used to
select closely related highly relevant descriptors. It then
increases dimensions, which is based on the main structure
of primary functions and finally, it is important to select
descriptors to explain the material.8 The main focus is on
predicting the alloy phase composition. Using a Pearson
correlation, the highly correlated descriptors are removed.
They created a new nonlinear descriptor, which analyzes the
relationship between descriptors to eliminate additional
descriptors.8 Based on the study performed, the authors
proposed a framework to collect HEAs data for interpreta-
tion.27 The features are removed which are causing weak phase
predictions.27 The various ML classifiers are used to predict
the HEAs phases the HEA interaction network is not created
to extract similar compounds as a community.27 In a study
performed by Kaufmann and Vecchio,21 a ML method is
applied to HEAs to predict solid solution forming ability.
Thermodynamic and chemical features are used to do
predictions by a random forest model.21 The HEAs descriptors
are not used to compute a hybrid similarity to construct a HEA
interaction network.21 identify similar Based on another study,
the authors presented a structure by using a genetic algorithm
to choose an effective ML model and features for HEAs phase
forecast.22 The content and structural similarity are not
considered by the proposed technique to make a HEAs
interaction network.22 Similar HEAs compositions are not
detected as a cluster.22 To the best of our knowledge, a full
interaction network of HEAs has not yet been created to
analyze it by social network tools. One of the social network
analysis tools is community detection. Communities are a
group of compounds that can be used to improve functionality,
new compound, and new descriptor discovery. Most studies
are about phase detection of alloys by ML methods, which
predict the phase composition of a compound, HEA
communities can be extracted to predict phases more
accurately. In addition, each community consists of HEAs
with a similar descriptor and behavior.
In a study, carried out by M’Barek et al.,26 biological

interaction networks have explored such as genes or proteins.
The communities extracted from these biological networks are
a set of proteins or genes that collaborate on a similar cellular
functionality. By using a genetic algorithm, they presented a
specific fitness function based on the amount of similarity and

interaction between genes.26 They have used the semantic
similarity in a KEGG data set, which they have taken as score
for the structure of communities. It is calculated according to
the semantic similarity method based on a genetic ontology.26

Based on another study, a modified Deepwalk algorithm is
presented by the authors, which predicted a link in the protein-
protein interaction network.31 The feature dimensions are
reduced to integrate the network structure and features for link
prediction,31 an HEA network by using their descriptors that is
used to detect community for similar nodes.31

In another study, the authors proposed a new tool named
MOFSocialNet based on creating social networks using a
metal−organic framework (MOF) database. MOFSocialNet is
able to guide MOF researchers through the vast chemical space
of existing and hypothetical MOFs. For a demonstration, they
used social network analysis to identify the most representative
MOFs in this research data set and to detect MOF
communities.33

In another study carried out by Ahajjam et al.,25 a scalable
and deterministic approach is proposed to identify commun-
ities using leader nodes called the community leader
recognition approach. Their approach has two main steps:
the first step is to retrieve the leaders and the second step is to
identify the community using the similarities between the
nodes. Two important issues in their work are community
recognition and leader detection in complex networks.25 The
network leader nodes are responsible for disseminating the
influence and then, using the similarities between the nodes,
the communities around the leader are formed. In social
networks, the central nodes are responsible for spreading the
intrusion. The advantage of this method is that there is no
need for prior knowledge of the number of leaders and
communities. They start by finding a leader to identify the
most effective nodes and then extract the communities. For
each leader, a community is obtained by calculating the
similarity between the nodes.25 They distinguish communities
based on the similarities of the nodes with the leader, who are
all in the leader’s neighborhood. They used real social network
data sets and used the Jaccard, Salton, Human Development
Index (HDI) and Human Poverty Index (HPI) to calculate the
similarity for finding out which works best in finding the leader
of their method.25

In a study carried out by Zhao et al.,28 a community
detection algorithm based on graph compression is introduced,
which is effective in large networks. The compressed graph is
first obtained by repeatedly merging nodes of degree one or
two with their bigger degree neighbors. Then, two indexes,
namely, the density and quality of nodes, are defined to
evaluate the probability of nodes as the seed of a community.
With these two criteria in a compressed social network, the
number of communities and the initial members of the related
community are determined.28 They use the real social network
data set to evaluate their method. There is no similarity
computation between nodes to create a HEA interaction
network.
In a study conducted by Rostami et al.,30 a community

detection based on a genetic algorithm is presented for feature
selection, which has three steps. It first calculates the
similarities of the features, then the features are classified
into clusters by community detection algorithms, and finally
the features are selected by a genetic algorithm with repair
operation based on a new community. A community detection
method is used in their approach to divide features into
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different groups. Using Pearson correlation similarity, the
similarity of the features is examined.30 Clustering is performed
on features, and a threshold is set for determining the number
of features in each cluster to reach that number using random
repair or score repair. Their proposed method selects the
optimal number of features, which is automatically determined
based on the overall feature structure and their internal
similarities.30 They achieved accurate results in community
detection by the genetic algorithm.30

In a study conducted by Ozaki et al.,20 the pruning method
was added to the Louvain algorithm to optimize computational
time while maintaining the quality of the community detection
and its process. Using this method simplifies the entire process
as calculations on the quality of the clusters do not occur at
each phase for all nodes, but instead, such calculations are
done for nodes that are used in the next phase of the
community detection. Ozaki et al.20 have applied the Louvain
algorithm to network that have similarity among nodes
calculated based on a Cosine similarity.20

The novelty of this paper lies in establishing an interaction
network for HEAs that has not been implemented in the field
of alloy metallurgy so far. In addition, an interaction network
analysis method has been used to analyze the HEAs. This
particular method uses ML algorithms for the alloy community
detection, along with the Louvain algorithm and the particle
swarm optimization algorithm.

3. PROPOSED METHOD
In this section, we present our approach for community
detection based on interaction networks of HEAs, using the
concepts of Louvain and modified particle swarm optimization
(PSO) algorithms. The community members are HEAs that
are merged to find the best community number by the Louvain
method and by the modified PSO, which are considered the
node connections. Our method solves the community
detection problem by maximizing an objective function called
modularity.
Initially, a descriptor for HEAs is selected and a

preprocessing is carried out. Communities are extracted by
Louvain and by modified PSO algorithms. Our approach is
based on the following five steps:

• Data set was preprocessed to perform ML algorithms.
• Descriptor content similarity was calculated.
• Interaction network of HEAs was created.
• Descriptor structural similarity was calculated.
• Communities that maximize the objective function were

extracted

The data set used in this paper contains 90 HEA alloys, as
listed in Table 1 in ref 1, each of which is characterized by six
descriptors (Appendix A).1 δ is the atomic size difference.9

ΔHmix (in kJ/mol) is the mixing enthalpy, calculated using eq
1:1

∑ ∑Δ = Ω = Δ
= ≠ = ≠

H c c H c c4
i i j

n

ij i j
i i j

n

ij i jmix
1, 1,

mix

(1)

Sc (in kB/atom, where kB is Boltzmann’s constant) is the
configurational entropy of mixing for an ideal solid solution.1 φ
is a single dimensionless thermodynamic parameter for
designing HEAs.6 εRMS is the root-mean-square residual strain,
usually measured through the energy storage density of the
elastic pressure.10 VEC is considered an important parameter
in the selection of the valence electron concentration of the
alloys due to the lack of robust atomic size difference.1 It
should be noted that the data class label can also be called
phase, which is not considered in these calculations, and the
most important challenge in the current article is to find the
relationship among similar alloy types. The six descriptors and
a portion of the data set are listed in Table A1 in Appendix A,
the first column of which contains the number for each
chemical composition of the HEA alloy used in the results in
Section 5. The second column in Table A1 gives the HEA
chemical composition, and the other six columns show the
values of the six descriptors for each composition.
Algorithm 1 shows the pseudocode of the proposed method

that detects communities using Louvain and PSO algorithms:

The flowchart of the proposed method is shown in Figure 1.
There are three stages in the proposed method. The first stage
is preparing the data, which consists of three steps including
HEA feature selection, feature vector creation, and normal-
ization. The second stage is creating an HEA interaction
network by using similarity and pruning graph methods. The
third step is to apply a ML algorithm that extracts communities
from the network. Finally, the modularity is measured, which
shows the quality of the communities.

3.1. Data Normalization. Normalization is used when the
provided data values are not in the same range and have
different intervals to prevent properties and descriptors that
contain large values to dominate the overall performance of the
system. Additionally, the normalization can potentially
minimize the impact of out-of-range scales and maintains all
inputs in a single interval. In the present article, min−max
normalization was used for property values to normalize the
property values to the interval [0, 1] using eq 2:13

Table 1. Comparison of Quality of Community Detection
and Extraction Using Modularity Criteria with the
Developed Louvain Algorithm and the Particle Swarm
Optimization Algorithm

community detection algorithm modularity criteria

developed Louvain algorithm 0.7130
PSO algorithm 0.8912
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′ =
−

−
v

v min
max min

A

A A (2)

where minA and maxA indicate the current minimum and
maximum values of the properties found in A. The original
values and the normalized values of the properties are
presented as v and v′, respectively. As can be seen in eq 2
used above, the maximum and minimum values are 1 and 0.13

3.2. Content Cosine Similarity Criteria. Content cosine
similarity is measured based on the internal angle between two
vectors and determines whether the selected vectors are
considered codirectional.11 As shown in the data set in
Appendix A, each property of a single composition can be
analyzed and compared to another compound.1 Equation 3
shows the content cosine similarity as follows11

=
∑

∑ ∑
x y

x y

x y
content cosine similarity ( , )

( )i i i

i i i i
2 2

(3)

where xi represents the ith property of the first compound and
yi is the ith property of the second compound.

3.3. Structural Jaccard Similarity Criteria. The Jaccard
index is mainly used for a comparison of the structural
similarity of a data set.12 The value of the Jaccard similarity
coefficient between two data sets is usually obtained by
dividing the number of common properties of the two available
sets by the total properties of the two sets.12 Because the input
of the interaction network graphical structure is required for
the calculation of the Jaccard criterion, the matrix obtained by
content cosine similarity must be examined first with different
thresholds to find the appropriate value and create the desired
graphical representation of the network, so that structural
similarities can be measured using the established graph. The

Figure 1. Flowchart of the proposed method with details. The process is done in three phases including the preprocess, creation of the HEA
interaction network, and ML algorithms.
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threshold to obtain a graph for the content cosine similarity
analysis was set at 0.98 in the current study.
The description of the structural Jaccard similarity criteria is

shown in eq 4:12

=
| ∩ |
| ∪ |

v v
N N

N N
structural Jaccard similarity ( , )i j

i j

i j (4)

where vi and vj are the two nodes representing the compounds
of HEAs, |Ni ∩ Nj| denotes the common properties of the two
compounds vi and vj, and |Ni ∪ Nj| are all the properties of vi
and vj. It is also important to note that this particular criterion
can be applied to all common pairs of attributes.
3.4. α Coefficient. The calculation of the parameters for

content and structural similarity results in two matrices with
similarity values. To detect communities, a hybrid similarity
matrix is needed as input that contains similar properties. The
α coefficient determines the effect of each of the similarities.
The α coefficient also determines the possible effect of each of
these common similarities as well as the effect of structural
Jaccard similarity. The α coefficient also determines the proper
effect of each of content and structural similarities. The output
of this phase is a hybrid similarity matrix as required for the
community detection algorithm.

4. COMMUNITY DETECTION
Each community in the interaction network shows the alloys
that have dependencies between each other to perform the
same functionality in an equal community.
4.1. Theoretical Notation Definitions. A complex

network can be mapped to the graph G(V,E), where V is the
node set and E is the edge set. A network C(v,e) is said to be
subnetwork, if v is the subset of V and e is the subset of E.
Let A be the adjacency matrix; two nodes are adjacent if they

have an edge between them. If there exists a link between
vertex i and vertex j, then Aij = 1; otherwise Aij = 0. A weighted
network has weight w joined to the edges, where w is a real
number.
Communities in networks are the groups of nodes, which are

more profoundly connected to each other than to the rest of
the nodes within the network. Community detection is the key
characteristic, which may well be utilized to extract valuable
information from networks.29

4.2. Louvain Algorithm. The content of science studies
can usually be represented as complex networks, in which the
topology of interconnected vertices is obtained from either an
organized or random compound.14 The Louvain algorithm is a
metaheuristic method that is introduced to identify and detect
communities and groups within the provided graph. In
addition, each extracted group represents a community, and
this type of algorithm is considered to be an ascending
clustering method.15 Furthermore, a parameter called modu-
larity is used to determine the quality of the obtained
communities in this algorithm, and the maximization of this
particular parameter is considered to be of great importance.
This specific parameter selects the type of communities that
are integrated with the target vertex and creates highly modular
communities.15 Despite difficulties in the calculation of
modularity in large graphs, the Louvain algorithm can
overcome this issue by speeding up the processing of large
graphs.15 This unique property of the algorithm led to its
popularity.16 It is also essential to add that the Louvain
algorithm is considered the fastest and most effective algorithm

for community detection that tends to operate tirelessly to
achieve maximum modularity. The implemented algorithm is
divided into two phases that are alternately repeated. Imagine
that the procedure begins through a weighted interaction
network with N nodes. It first places each node in a separate
community, which has just as many nodes as the current
network, and then examines the possible neighbors for each
node and evaluates the precise rate of modularity, which is
accomplished through the removal of the nodes from its
related community and transfering them to its neighboring
community. Finally, the targeted nodes are placed within the
community with the highest possible modularity rate (positive
rate); otherwise, it will remain in the current community.
Afterward, this process is repeated alternately for all the
interaction network nodes of HEAs until no new enhance-
ments are achieved and the first stage of the process is
essentially completed.17 Although this process is repeated
several times for each node, the first stage is completed when a
local maximum modularity is reached and the rate of
modularity remains stable. Examining the order of the nodes
in the output of the algorithm may affect the computational
load that requires further study.
The overall performance quality of the Louvain algorithm

for the community detection can be obtained using the
modularity rate ΔQ, which is calculated through transferring
isolated node i to the C community via eq 5:17

Δ =
Σ +

−
Σ +

−
Σ

−
Σ

−
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ÅÅÅÅÅÅÅÅÅÅÅ
i
k
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2 2

2 2 2

in i in tot i

in tot i

,
2

2 2

(5)

where Σin is the sum of the links found within the community
C, Σtot is the total weight of the links connected to the nodes
within the community C, ki is the total weight of links
associated with node i, ki,in is the sum of the weights of the
links connected from node i within the community C, and m is
the total weight of all the network links. When node i is
transferred from its related community, a similar term is often
used to evaluate the modularity changes and adjustments, and
the modularity changes can be measured through the removal
of node i from its related community and its replacement in
the neighboring community.17

The second stage of this particular algorithm involves
establishing a new network of nodes that have previously found
their community during the first phase. The weight of the links
among new nodes is reached through the total weight of the
links between nodes in two respective communities, and the
links between the nodes in the same community can
potentially lead to an inner circle of the community in the
newly established networks. After the second phase is
completed, the initial phase of the algorithm can then be re-
applied in the previously created weighted network to evaluate
the obtained results more accurately, and the combination of
these two phases is is termed as a pass. As a result, the overall
number of meta-communities decreases with each iteration,
and its highest computational load occurs in the initial phase.
In fact, these phases are to be continued until the maximum
modularity is reached and no further changes occur. This
particular algorithm can represent highly complex networks
and often operates hierarchically so that the final obtained
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communities are created and established through an iterative
process of integration.
Moreover, the height of the hierarchy is determined through

the number of iterations, which is usually discovered to be
small; take note that this algorithm can possibly have various
advantages, such as the visibility of courses that can easily be
conducted as well as reaching the targeted outcome without a
need for individual attendance or any type of monitoring. Next,
it should also be added that the algorithm operates quite as fast
and can calculate the modularity rate simply based on Formula
5, which after several repeated courses tends to reduce the
number of obtained communities through the integration
method. The maximum conduction period of this particular
method is related to the initial iteration in the first phase.17

Also, the qualitative limitations and boundaries of modularity
have been eliminated, due to the multilevel nature of the
algorithm. Finally, it is also worth mentioning that the isolated
nodes are transferred from one community to another, in the
first phase of the algorithm.17 The probability of merging two
separate communities through transfer of nodes one-by-one is
considered extremely low. However, take note that these
communities can very well be merged later, after the
consolidation of the nodes is complete.17

4.3. Community Detection Based on the Particle
Swarm Optimization Algorithm. Kennedy and Eberhart
initially introduced the PSO algorithm in 1995, which was
inspired by the characteristics and behavior of birds.24 The
PSO algorithm is considered to be one of the most important
and useful swarm intelligence algorithms, which frequently
offers better overall solutions compared to other available
algorithms. The mobility found within the particles, which is
an array (90 × 1) of nodes, is potentially the best possible way
to update each particle for community detection.19 Opti-
mization of the algorithm may lead to rapid convergence as
well as a reduction in the rate of references to the
proportionality function, which is directly related to the
modularity criterion of community quality.19 For example,
suppose there is a major optimization issue found in the
dimensional space of d, where Xi = (Xi1, Xi2, ..., Xid) and Vi =
(Vi1, Vi2, ..., Vid) are the position and velocity vectors,
respectively. Let pbesti be the best possible solution for particle
i (i = 1, 2, ..., Psize) and gbest be the best possible solution
among any type of particle. Furthermore, collaborative and ML
of particles are also conducted in each update of pbesti and
gbest. Besides, with each iteration of the PSO algorithm, the
current velocity and position of the particles can also be
updated using eqs 6−8 as follows:23

+ = + + [ − ] +

+ [ − ]

V t wV t c rand pbest X t c

rand gbest X t

( 1) ( ) ( )

( )

i i i i

i

1 1 2

2 (6)

ρ
+ =

< +l
m
ooo
n
ooo

X t
sig V t

( 1)
1, if ( ( 1))

0, otherwise
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in which the parameter t represents the iteration of the
conducted algorithm, w is essentially the inertia coefficient, c1
and c2 are the learning rates, rand1 and rand2 are random
numbers that are uniformly generated in the interval [0, 1],
and ρ generally functions as a predefined threshold.23

4.3.1. Optimal PSO Algorithm and Group Learning. Given
that independent communities are obtained by sorting the set
of HEA compounds in the interaction network of L(G)
materials, they are optimal communities and smaller than G.
To identify independent communities in a network, there is a
need to discover independent communities in the correspond-
ing line graph. The developed PSO algorithm is used along
with group learning techniques resulting in LEPSO, which can
be used to optimize the results obtained by linear graph
segmentation.23

4.3.2. Presentation of Community Detection Using
Optimal PSO. The linear graph for the chemical composition
of alloys is represented as L(G) = ⟨N, E⟩, where N = (n1, n2, ...,
nk), in which a part of L(G) can be presented as Xi = (Xi1, Xi2,
..., Xid) and k = |N|. In the case where the initial value was
assumed to be Xij = m, then the results may indicate that there
is a relationship between the two compounds e = ⟨nj, nm⟩ and
the Xi particles, specifically when nj and nm are found within the
same communities as L(G). In order to determine the initial
community as the optimal type, each PSO must first be
considered as an array of alloy compounds. In this regard, the
matrix proximity of the primary interaction network gains the
materials using the connected and linked nodes. Some of the
potential drawbacks of this design include random initialization
of the particles and frequent updates of the particle locations.
Moreover, this issue is often so major that the particle
components may potentially display links that have never
existed before. To solve such problems, particles are
recommended to be presented on a list of regular neighbors.23

The foundation of this particular design is essentially based
on the use of data distribution of the neighbors for each node
as a representative of an alloy composition, which potentially
ensures that newly entered particles used in the process of
transference or initialization are all allowed. However, the
complete removal of unauthorized particles as well as the
prevention of the production of local optimal communities,
with the use of repetitive binary division and automated
community detection methods, are all considered some of the
potential advantages of this optimization method in PSO.23

4.3.3. Particle Fitness Function in the Optimal PSO. The
comprehensible definition of community can encourage
researchers to introduce new and different types of quality
indicators to evaluate the possible benefits of a partition. The
main assumption behind modularity is that the edge density of
a cluster should be higher than the predicted density of the
sub-graph, so the nodes can randomly be linked. In order to
complete the discretization process of the provided algorithm,
each node and its relationship with the other available nodes
has to be individually analyzed and checked. Therefore, the
link between the initial compound and the other compositions
is obtained first, and the adjacency matrix is established
subsequently. Finally, the particle fitness function that can
determine the quality of final-phase communities, also known
as modularity is shown in eq 923:
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In this equation, f it(Pi) is the particle proportionality and
fitness value of Pi, m is the number of communities found in
the C partition of the network as G = ⟨N, E⟩, lc is the number
of edges that link the vertices in the community, which is
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shown as c ∈ C, dc is the sum of the nodes within C, and |E| is
the total number of edges found in G.
4.3.4. Update of Particle Speed and Position. 4.3.4.1. Par-

ticle Speed Update. An optimal particle velocity updating
algorithm called GbestGenerator is used to avoid the local
optimization method, which applies a voting-based clustering
technique to take full advantage of valuable hidden community
patterns found in less efficient particles and gbest values. In case
the proportion of gbest does not improve in Tmax consecutive
iterations, meaning that if the swarm particles are trapped in,
member particle clusters MPS are created through the
selection of all available gbest particles within the Tmax and
its consecutive iteration particles leading to the combination of
the right MPS particles to produce new gbest particles.
Accordingly, each particle can potentially have a minimum
and a maximum speed for velocity.23

Equation 6 suggests that the inertia coefficient shown as w is
considered extremely significant in the implementation of
particle velocity updates. The adjustment strategy of w can be
well expressed using eq 10, which is described as follows23

= −
−

+w w w
t t

t
w( )t max min

max

max
min

(10)

where wmax and wmin are the initial and final inertia coefficients,
respectively, tmax is the representation of the maximum
iteration, and t indicates the current iteration. As can be
seen in eq 10, in the initial stage (t = 0), the parameters wmax

and wt are both considered correspondence of each other.
When t is too close to tmax, wt gradually decreases toward wmin.
Furthermore, due to the algorithm converges in the early
stages, larger coefficient values are needed for the particles to
be faster in velocity, while in later stages, much smaller

coefficient values are provided to the particles to gradually
enhance their overall stability.

4.3.4.2. Positional Particle Update. Based on the previously
provided Formula 7, the positional vector components are
assigned to either particles 0 or 1, which is not very suitable for
the display of particles with respect to the neighbor.
Accordingly, the previous position of the particles is related
to the previous community and the current new position can
be related to the final community. Therefore, the value of Xij as
a part of i is obtained from an integer within the range from 1
to deg(ni), meaning that Xij ∈ {1, 2, ..., deg(ni)} can essentially
improve the PSO and the searching abilities of the system. The
particle positional updates are shown in great detail using
following eqs 11 and 12:23
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where k = rand × deg(nj), k ≠ Xij(t), deg(nj) is the degree of the
vertex found in nj, and ρ is the threshold set by the user.
Another noteworthy point to mention involves the

generated positional value based on the distribution degree,
which indicates that if the value of node vj is greater than those
of its surrounding neighbors or if sig(Vij(t + 1)) is ever greater
than the value of ρ, the neighbors of the nodes must then be
transferred to the currently selected neighbors. Therefore, the
sigmoid function sig() function found within eq 11 is modified
to solve this issue. The particle position is very likely to change

Figure 2. Weighted interaction network of 90 HEAs, where all compounds are connected to each other. The HEA interaction network is fully
connected before applying the threshold.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c00317
ACS Omega XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/10.1021/acsomega.2c00317?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00317?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00317?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00317?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00317?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


through the particle velocity reduction procedure, causing the
PSO to gradually converge in the global optimization.23

5. RESULTS AND DISCUSSION

In view of the novelty of this study, several experiments were
carried out to evaluate the efficiancy of the proposed method.
In order to detect the HEA interaction network, the similarity
of alloy features must be addressed. The weighted interaction
network of the HEAs is shown in Figure 2, where the weight of
the links between the compounds determines the degree of
similarity among them. This particular interaction network was

initially formed based on the content and structural similarity
of the alloy descriptors. Besides, all compositions were linked
leading to the formation of a complete graph. The primary
interaction network had 90 sets of nodes corresponding to the
HEA compounds, and each compound is shown by the
number presented in results as defined in Appendix A. As
shown in Figure 2, every compound was linked to every other
compound using 3968 edges. The interaction network is an
undirected graph where all compounds are connected to each
other. The degree of each node in the HEA interaction
network is the number of edges that it has to other nodes. The

Figure 3. Degree distribution of the HEA interaction network. The degree distribution presents the probability distribution of degrees over the
whole network. The degree of each compound is the number of edges that it has to other compounds.

Figure 4. Impact of threshold and α on the HEA interaction network. The threshold prunes the weak connection in the HEA network. The α
coefficient determines the value of content and structural similarity.
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degree distribution shows the probability distribution of
degrees over the whole network. The degree distribution
diagram for the graph constructed is shown in Figure 3. As
shown in Figure 3, the average degree based on the diagram is
14.20, which is the probability distribution of these degrees
over the network. The next step is illustrated in Figure 4, an α
coefficient value of 0.9 and a threshold of 0.6 are both applied
to the network, which eliminates less similar nodes and weak
connections. As shown in Figure 4, the resulting interaction
network contains 632 edges to maintain the communications
among all 90 nodes. In Figure 4, the nodes are drawn with the
size reflecting the degree of each node.
As presented in Figure 5, the Louvain algorithm has been

applied to the HEA interaction network, which extracts 13
communities with an overall quality of approximately 0.71. For
these 13 communities shown in Figure 5, each community is
indicated by a unique color, and the compounds in every
community are fully connected. As shown in Figure 6, the
communities are also extracted with the optimal PSO

algorithm using the HEA interaction network in 100 iterations.
The 13 optimal communities by PSO are displayed with an
enhanced quality of approximately 0.89 shown in Figure 6.
Because the compositions of each community are not
connected to the other communities’ compounds, the
communities obtained from the optimal PSO algorithm have
a higher quality modularity parameter. The analysis of each
community shows that the neighbors of every compound have
the same phase label and include similar elements.
In this paper, the measurement criteria for both community

recognition algorithms are the main parameters for assessing
the quality of communities.14 If the number of edges found in a
community is not more than a random diagram, it can be
concluded that the modularity is zero. Another point to note is
the maximum modular value, which is basically obtained when
all the internal nodes within a community are connected and
there is no external edge to other communities.14 One of the
basic features of modularity is the ability to compare different
communities with various methods. Because other algorithms

Figure 5. Community detection with the use of the developed Louvain algorithm. Any colored community shows a community and the
compounds have similar functionality and descriptors.

Figure 6. Community detection with the use of an optimal PSO algorithm. Any colored community presents a community of HEA compound that
is extracted by the PSO algorithm.
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do not necessarily extract the same results, many existing
criteria cannot assess the quality of communities. Therefore,
using the Louvain’s hierarchical bottom-up method, analysis of

modularity trends in the process of dividing or merging
communities can be investigated. The maximum value of this
parameter is considered as the best outcome. Moreover, the

Figure 7. Four community samples obtained through the developed Louvain algorithm. These four communities are selected as an example from
the results that present the functionality of the proposed method.

Figure 8. Four community samples obtained through the PSO method. These four communities are selected as an example from the results that
present the functionality of the proposed method.
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modularity of each community is a scalar value between −1
and 1, which essentially measures the density of the
community’s internal links in comparison with the links
found between communities;15,16 a modularity between 0.3
and 0.7 indicates a strong community.18 Because this criterion
is closer to 1, the communities are high quality. According to
the experimental result, the modularity of both optimal
algorithms in this paper is upper than 0.7 (Table 1).
The four communities are, as an example, shown in Figure 7,

for communities extracted based on the developed Louvain
algorithm. For example, in the blue community (Figure 7),
SrCaYbMgZn, SrCaYbMgZn0 . 5Cu0 . 5 , and SrCaY-
bLi0.55Mg0.45Zn are in a single community with similar
elements including Sr, Ca, Yb, Mg, and Zn which are found
in these alloys with equal functionality. The number of
elements in the blue community (Figure 7) is five and six,
where two alloys SrCaYbMgZn0.5Cu0.5 and SrCaY-
bLi0.55Mg0.45Zn have the same number of elements and
contain common elements. The alloys in the blue community
(Figure 7) are amorphous. The descriptor values for the alloys
in the blue community (Figure 7) vary in ranges: δ [15.25,
16.37], ΔHmix [−10.6, −13.12], Sc [1.61, 1.75], φ [−0.017,
0.61], εRMS [0.1565, 0.1699], and VEC [4.09, 4.2]. The yellow
community (Figure 7) included nine HEA compounds, such as
C o C r F e N i A l N b 0 . 7 5 , A l 0 . 5 C o C r C u F e N i T i 1 . 2 ,
Al0.5CoCrCuFeNiTi1.4, Al0.5CoCrCuFeNiTi1.6, CuAlNiCoCr-
FeS i , A l 0 . 5CoCrCuFeNiTi 1 . 8 , CoCrFeNiAlNb0 . 2 5 ,
Al0.5CoCrCuFeNiTi2.0, and FeCoNiCrCuAl3.0. They have five
common elements including Al, Co, Cr, Fe, and Ni. The HEA
compounds in the yellow community are multiphase alloys.
They contain six and seven elements and their descriptors have
a similar range for three compounds. The δ parameter is in the
range [6.1, 7.31], ΔHmix in the range [−18.86, −10.56], Sc in
the range [1.67, 1.95], φ in the range [3.91, 6.26], εRMS in the
range [0.0605, 0.0729], and VEC in the range [6.63, 7.51].
The green community included nine HEA compounds, such as
Al0.5CrFeNiCoCuTi0.8, CuCoNiCrAlFeTiV, FeCoNiCrC-
uA l 2 . 0 , F eC oN iC rCuA l 2 . 3 , F eC oN iC rCuA l 2 . 8 ,
Al0.5CoCrCuFeNiTi1.0, CoCrFeNiTi0.5, CuNi2FeCrAl1.5, and
Cu0.5Ti0.5CrFeCoNiAl0.5. They have three common elements
including Cr, Fe, and Ni. The HEA compounds in the green
community are multiphase alloys. The δ parameter is in the
range [5.33, 6.57], ΔHmix in the range [−13.94, −8.05], Sc in
the range [1.57, 2.08], φ in the range [5.53, 8.79], εRMS in the

range [0.0525, 0.0656], and VEC in the range [6.71, 7.78].
The red community (Figure 7) included PdPtCuNiP,
TiZrCuNiBe, ZrHfTiCuCo, ErTbDyNiAl, and ZrHfTiCuNi
alloys. All alloys within a red community consist of five
elements. Furthermore, ZrHfTiCuNi and ZrHfTiCuCo have
common elements such as Zr, Hf, Ti, and Cu. All the alloys
within that community are amorphous. The descriptor values
for alloys in the red community are in the range δ [9.29,
13.74], ΔHmix [−23.52, −37.6], φ [−2.24, 0.42], εRMS [0.0952,
0.1429], VEC [4.4, 9.2], and Sc is 1.61, equal for all alloys in
the red cluster.
The four communities are illustrated in Figure 8, which is

obtained based on the PSO algorithm. As an example, the
yellow community included FeCoNiCrCuAl, AlCrCuFeMnNi,
NiCoFeCrAl0.375, MnCrFe1.5Ni0.5Al0.3, and CoCrFeNiPd com-
pounds. The common elements in a community are Fe, Ni,
and Cr. The alloys in the yellow community (Figure 8) contain
five and six elements. Two alloys FeCoNiCrCuAl and
AlCrCuFeMnNi have the same number of elements and
contain five common elements. Some alloys in the yellow
community (Figure 8) are multiphase, and some of them are
single phase (FCC). The descriptor values for the alloys in the
yellow community (Figure 8) vary δ in the range [4.12, 5.39],
ΔHmix in the range [−7.99, −4.78], Sc in the range [1.48,
1.79], φ in the range [13.54, 16.16], εRMS in the range [0.0406,
0.0536], and VEC in the range [7.19, 8.8]. The blue
community included SrCaYbLi0.55Mg0.45Zn, SrCaYbMgZn,
and SrCaYbMgZn0.5Cu0.5, which is the same as in the blue
community (Figure 7) extracted by the Louvain method. The
green community (Figure 8) included 14 HEA compounds,
such as AlCo3CrCu0.5FeNi, CoCrCuFeNiTi0.8, CoCrCuFeNi-
Ti, CuNi2FeCrAl0.9, CuNi2FeCrAl1.2, MnCrFe1.5Ni0.5Al0.5,
FeCoNiCrCuAl1.5, FeCoNiCuAl, FeNi2CrCuAl, Fe-
Ni2CrCuAl1.2, Al0.5CrFeNiCoCuTi0.6, Al0.5CoCrCuFeNiTi0.4,
Al0.5CoCrFeNi, and AlCo2CrCu0.5FeNi. They have common
elements, such as Fe and Ni. The HEAs contain five and six
elements. All the HEA compounds in the green community
(Figure 8) are multiphase. The δ parameter is in the range
[4.6, 6.12], ΔHmix in the range [−9.09, −5.22], Sc in the range
[1.52, 1.92], φ in the range [8.92, 13.02], εRMS in the range
[0.0454, 0.0605], and VEC in the range [7.0, 8.2]. The red
community (Figure 8) included PdPtCuNiP, TiZrCuNiBe,
ZrHfTiCuCo, ErTbDyNiAl, and ZrHfTiCuNi alloys, which is

Table 2. Precision of Louvain and PSO Algorithms in the Phase Prediction of HEA Alloys Indicates That Communities Can
Improve the Phase Prediction Precision

community
number

compound phase
by PSO

community prediction
phase by PSO

precision by
PSO %

compound phase by
Louvain

community prediction phase
by Louvain

precision by
Louvain %

1 38 30 78 19 18 94
2 19 17 89.5 18 13 2
3 1 1 100 5 2 40
4 2 1 50 1 1 100
5 1 1 100 2 1 50
6 1 1 100 1 1 100
7 1 1 100 1 1 100
8 9 9 100 1 1 100
9 9 9 100 14 14 100
10 5 5 100 18 18 100
11 3 3 100 5 5 100
12 1 1 100 3 3 100

total average precision 93.125 total average precision 88.019
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Table A1. Precision of Louvain and PSO Algorithms in the Phase Prediction of HEA Alloys Indicates That Communities Can
Improve the Phase Prediction Precision

compound number HEA alloy composition δ (%) ΔHmix (kJ/mol) Sc (kB/atom) φ εRMS VEC

1 Al0.5CoCrCuFeNiTi0.2 4.93 −4.15 1.86 17.41 0.0487 8.12
2 Al0.3CoCrFeNi 3.76 −7.27 1.54 19.99 0.037 7.88
3 Al0.5CrCuFeNi2 4.2 −2.51 1.52 20.44 0.0414 8.45
4 CoCrFeNi 0.3 −3.75 1.39 3583.31 0.0039 8.25
5 CoFeMnNi 3.55 −4 1.39 24.51 0.0353 8.5
6 CoCrMnNi 3.45 −5.5 1.39 23.99 0.0343 8
7 CoCrFeNiPd 4.46 −7.04 1.61 15.95 0.0446 8.8
8 CoCrCu0.5FeNi 0.84 0.49 1.58 627.5 0.0083 8.56
9 CuNiCoFeCrAl0.5V0.2 4.15 −2.5 1.86 26.49 0.0409 8.16
10 CuNiFeCrMo 3.58 4.64 1.61 28.97 0.0356 8.2
11 CuNiCoFe 1.14 5 1.39 223.55 0.0114 9.5
12 CuNiCoFeMn 3.18 1.76 1.61 41.04 0.0316 9
13 CuNi2FeMn2Cr 3.57 −0.49 1.55 33.58 0.0356 8.43
14 CuNi2FeCrAl0.2 2.94 0.12 1.44 44.59 0.0289 8.77
15 CuNi2FeCrAl0.4 3.86 −1.7 1.5 24.87 0.0381 8.56
16 CuNi2FeCrAl0.5 4.2 −2.51 1.52 20.44 0.0414 8.45
17 Cu0.75NiCoFeCrAl0.25 3.25 −0.71 1.72 42.39 0.032 8.4
18 Cu0.5NiCoFeAl0.5Cr 4.37 −4.6 1.75 20.16 0.0431 8
19 Cu0.5NiCoCrAl0.5Fe2 4.08 −3.53 1.68 23.06 0.0403 8
20 Cu0.5NiCoCrAl0.5Fe3 3.84 −2.84 1.57 24.99 0.0379 8
21 Cu0.5NiCoCrAl0.5Fe3.5 3.74 −2.58 1.52 25.76 0.0368 8
22 FeCoNiCrCu 1.03 3.2 1.61 369.34 0.0103 8.8
23 FeNi2CrCuAl0.2 2.94 0.12 1.44 44.59 0.0289 8.77
24 FeCrMnNiCo 3.27 −4.16 1.61 34.71 0.0325 8
25 FeCoNiCrCuAl0.3 3.42 0.16 1.79 44.96 0.0337 8.47
26 FeCoNiCrCuAl0.5 4.17 −1.52 1.77 25.77 0.0411 8.27
27 FeNi2CrCuAl0.6 4.49 −3.27 1.53 17.39 0.0443 8.36
28 NiCoFeCrMo0.3 2.38 −4.15 1.54 62.1 0.0235 8.09
29 NiCoFeCrMo0.1Al0.3 3.9 −7.26 1.62 20.05 0.0385 7.84
30 NiCoFeCrAl0.25 3.48 −6.75 1.53 23.78 0.0342 7.94
31 NiCoFeCrAl0.3 3.76 −7.27 1.54 19.99 0.037 7.88
32 NiCoFeCrAl0.375 4.12 −7.99 1.56 16.16 0.0406 7.8
33 VCuFeCoNi 2.2 −2.24 1.61 84.95 0.022 8.6
34 TaNbHfZrTi 4.99 2.72 1.61 16.9 0.0499 4.4
35 TaNbVTi 3.93 −0.25 1.39 26.07 0.0397 4.75
36 TaNbVTiAl0.25 3.83 −4.82 1.53 25.84 0.0387 4.65
37 TaNbVTiAl0.5 3.74 −8.4 1.58 24.28 0.0377 4.56
38 TaNbVTiAl1.0 3.57 −13.44 1.61 20.38 0.036 4.4
39 WNbMoTa 2.31 −6.5 1.39 60.87 0.0231 5.5
40 WNbMoTaV 3.15 −4.64 1.61 41.18 0.0315 5.4
41 Al20Li20Mg10Sc20Ti30 5.16 −0.4 1.56 16.17 0.0515 2.8
42 GdTbDyTmLu 5.07 0 1.61 18.76 0.0515 3
43 HoDyYGdTb 0.81 0 1.61 701.52 0.0081 3
44 YgdTbDyLu 1.37 0 1.61 245.87 0.0137 3
45 AlCo3CrCu0.5FeNi 4.88 −7.25 1.62 12.52 0.0482 7.93
46 Al0.8CrCuFeMnNi 5.15 −3.97 1.79 15.73 0.0512 7.66
47 AlCo2CrCu0.5FeNi 5.17 −7.67 1.71 11.83 0.0511 7.77
48 AlCrCuFeMnNi 5.39 −5.11 1.79 13.54 0.0536 7.5
49 Al0.5CoCrFeNi 4.6 −9.09 1.58 12.23 0.0454 7.67
50 Al0.5CoCrCuFeNiTi0.4 5.49 −6.42 1.9 13.02 0.0543 7.98
51 Al0.5CrFeNiCoCuTi0.6 5.92 −8.4 1.92 10.36 0.0586 7.85
52 Al0.5CrFeNiCoCuTi0.8 6.26 −10.11 1.92 8.54 0.0621 7.73
53 Al0.5CoCrCuFeNiTi1.0 6.53 −11.6 1.93 7.23 0.0649 7.62
54 Al0.5CoCrCuFeNiTi1.2 6.76 −12.89 1.92 6.26 0.0671 7.51
55 Al0.5CoCrCuFeNiTi1.4 6.94 −14.02 1.91 5.47 0.069 7.41
56 Al0.5CoCrCuFeNiTi1.6 7.09 −15.01 1.9 4.85 0.0706 7.31
57 Al0.5CoCrCuFeNiTi1.8 7.21 −15.86 1.89 4.34 0.0719 7.22
58 Al0.5CoCrCuFeNiTi2.0 7.31 −16.6 1.88 3.91 0.0729 7.13
59 CoCrFeNiTi0.5 5.33 −11.56 1.58 7.91 0.0525 7.78
60 CoCrFeNiAlNb0.25 6.1 −14.66 1.72 5.26 0.0605 7.1
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the same as the red community (Figure 7) extracted by the
Louvain method.
Considering the communities in the present article, it can be

concluded that these clusters essentially have high quality and
accuracy, which can be shown through the modularity
criterion. Table 1 shows the obtained results of the modularity
criterion of community quality using the developed Louvain
algorithm and optimal PSO method. As is shown in Table 1,
the modularity criteria in the developed Louvain algorithm is a
constant value equal to 0.71, and it has not changed. Also, in
optimal PSO, the modularity parameter is started from 0.87
and after 30 iterations, it increased up to 0.89 and after 60
iterations until 150 iterations, it did not change any more.
Therefore, the modularity value by optimal PSO is about 0.89.
Finally, the benefits of HEA community detection are
discussed. In the field of biology and proteins, the analysis of
protein networks is useful because proteins that are in a
community have common behaviors and properties. This
means that proteins of the same community behave similarly.
Therefore, it can be concluded that the purpose of community
detection is to have HEAs with similar elements in their
composition and phases, such as colored community alloys
(Figure 7). Considering the fact that HEAs in a community
have similar properties, one can recognize the properties of
HEAs as soon as the community of alloys is determined. For
example, the maximal number of elements in the alloy could be
predicted according to the communities extracted.
Another advantage of community detection in HEA

interaction networks is the phase prediction using ML

techniques, which is presented in this paper. Because the
most extracted communities have the same phase in the HEA
network, the phase composition of each compound, which is
indistinct, can be anticipated. The unseen compound’s phase
can be identified by the other compounds that are in the same
community. As shown in Table 2, we looked at the number of
phases in the same community. In addition, the precision of
phase prediction is shown in Table 2 showing the phase
forecast by Leuven and PSO, which is approximately 88% and
approximately 93%, respectively.

6. DATA AND SOFTWARE AVAILABILITY
In this study, we have used MATLAB software version R2019a,
which has been referred in https://www.mathworks.com/. As
described and referenced in Section 3, the data set and source
code for this paper are located at the GitHub. The data set
referred https://github.com/rghoochannejad/HEAs-
Community-Detection/tree/Dataset and the source code is
referred at https://github.com/rghoochannejad/HEAs-
Community-Detection/tree/main. The data set to this article
can be found online at https://doi.org/10.1016/j.mattod.2015.
11.026.

7. CONCLUSIONS AND SUGGESTIONS FOR FUTURE
RESEARCH

The present study aimed to present a novelty for community
detection based on ML to detect HEA compounds that behave
similarly to each other. At first, the descriptors of each
compound are analyzed, and then the similarities among the

Table A1. continued

compound number HEA alloy composition δ (%) ΔHmix (kJ/mol) Sc (kB/atom) φ εRMS VEC

61 CoCrFeNiAlNb0.75 6.5 −18.03 1.79 3.95 0.0648 6.91
62 CoCrCuFeNiTi0.8 5.7 −6.75 1.79 11.12 0.0563 8.14
63 CoCrCuFeNiTi 6.12 −8.44 1.79 8.92 0.0605 8
64 CuAlNiCoCrFeSi 6.13 −18.86 1.95 4.15 0.061 7.29
65 CuNi2FeCrAl0.9 5.15 −5.22 1.56 12.08 0.0509 8.08
66 CuNi2FeCrAl1.2 5.6 −6.78 1.57 9.25 0.0556 7.83
67 CuNi2FeCrAl1.5 5.93 −8.05 1.57 7.47 0.0589 7.62
68 Cu0.5Ti0.5CrFeCoNiAl0.5 5.97 −10.84 1.89 8.79 0.0591 7.64
69 CuCoNiCrAlFeTiV 6.34 −13.94 2.08 7.73 0.0631 7
70 FeNi2CrCuAl 5.32 −5.78 1.56 10.94 0.0526 8
71 FeNi2CrCuAl1.2 5.6 −6.78 1.57 9.25 0.0555 7.84
72 FeCoNiCrCuAl0.8 4.92 −3.61 1.79 17.15 0.0487 8
73 FeCoNiCrCuAl 5.28 −4.78 1.79 14.12 0.0523 7.83
74 FeCoNiCrCuAl1.5 5.89 −7.05 1.78 9.9 0.0585 7.46
75 FeCoNiCrCuAl2.0 6.26 −8.65 1.75 7.62 0.0623 7.14
76 FeCoNiCrCuAl2.3 6.4 −9.38 1.73 6.7 0.0638 6.97
77 FeCoNiCrCuAl2.8 6.57 −10.28 1.68 5.53 0.0656 6.71
78 FeCoNiCrCuAl3.0 6.61 −10.56 1.67 5.17 0.0661 6.63
79 FeCoNiCuAl 5.61 −5.28 1.61 10.44 0.0556 8.2
80 MnCrFe1.5Ni0.5Al0.3 4.7 −5.51 1.48 13.89 0.047 7.19
81 MnCrFe1.5Ni0.5Al0.5 5.16 −7.26 1.52 10.62 0.051 7
82 ErTbDyNiAl 13.74 −37.6 1.61 −2.24 0.1429 4.4
83 PdPtCuNiP 9.29 −23.68 1.61 −1.26 0.0952 9.2
84 SrCaYbMgZn 15.25 −13.12 1.61 −0.017 0.1565 4.2
85 SrCaYbMgZn0.5Cu0.5 16.37 −10.6 1.75 0.61 0.1699 4.1
86 SrCaYbLi0.55Mg0.45Zn 15.71 −12.15 1.75 0.2 0.1612 4.09
87 TiZrCuNiBe 12.53 −30.24 1.61 −0.9 0.1268 6.2
88 ZrHfTiCuNi 10.34 −27.36 1.61 −0.27 0.1049 6.6
89 ZrHfTiCuFe 10.43 −15.84 1.61 1.73 0.1059 6.2
90 ZrHfTiCuCo 10.24 −23.52 1.61 0.42 0.1039 6.4
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alloys in terms of phase composition are calculated
accordingly. Second, an interaction network of HEAs is
established, which could very well be linked to the interaction
network. Additionally, both the quality and accuracy of
extractive communities and their modularity criteria have
been analyzed and investigated thoroughly using two methods
of Louvain and PSO algorithms, indicating that the proposed
method has a high quality in community detection. This
evaluation shows that the detected clusters potentially have
robust internal connections among the compounds. Although
the obtained results of the current method were indicative of
high quality and precision, it does not mean that it cannot be
further developed. It is also important to mention that other
methods can be implemented very well in future studies to
determine the more advanced properties of alloys. The present
method can also be developed in larger data sets with
maintaining the quality. The use of other ML methods still
have great potential for obtaining better results, although these
statistical methods and ML algorithms do in fact enhance the
speed of the research conduction in the field of materials
science. The introduced method is not considered as the only
efficient way for community detection, but it can be applied in
other areas of materials science leading to the detection of
other beneficial alloy compositions that can be used in the
industry. Finally, the HEA community detection is useful to
finding new common features of similar alloys. Moreover,
phase prediction is an action, which can be performed by
community detection in this study with a good precision rate.

■ APPENDIX A
The HEA alloy compositions and descriptors of HEAs are
given in Table A1.1
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