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Abstract

In times of highly interconnected systems, condentiality becomes a crucial security quality

attribute. As xing condentiality breaches become more costly the later they are found,

software architects should address condentiality early in the design time. During the

architectural design process, software architects use Architectural Design Decisions (ADDs)

to handle the degrees of freedom, i.e. uncertainty. However, ADDs are often subjected

to assumptions, and unknown or imprecise information. Assumptions may turn out to

be wrong and need to be revised. This re-introduces uncertainty. Thus, uncertainty at

design time prevents from drawing precise conclusions about the condentiality of the

system. It is therefore necessary to assess their impact at architectural level before making

a statement about condentiality. So far, this assessment is manual and very tedious, and

requires a great deal of knowledge about uncertainties, their characteristics and impact on

the condentiality of systems. Current approaches dealing with uncertainties in software

systems do not consider them at design time, i.e. in software architectures, but often in

other contexts such as self-adaptive systems.

To close this gap, we make the following contributions: First, we propose a novel

uncertainty categorization approach to assess the impact of uncertainties in software

architectures. Based on that, we provide an uncertainty template that enables software
architects to structurally derive types of uncertainties and their impact on architectural

element types for a domain of interest. Second, we provide an Uncertainty Impact Analysis
(UIA) that enables software architects to specify which architectural elements are directly

aected by uncertainties. Based on structural propagation rules, the analysis automatically

derives further architectural elements which are potentially aected.

We evaluate the structural quality, applicability and the purpose of the uncertainty
template. We show that underlying categories full principles of good classications, such

as orthogonality, exhaustiveness and dierentiability. We demonstrate its capability to

derive uncertainty types, their impact and how it enables the reuse of knowledge and

creation of awareness. Lastly, we illustrate the relevance of the uncertainty template by

showing that it can classify uncertainties in software architectures more accurately and

thus make more precise statements about their impact on the system compared to existing

taxonomies. The UIA is evaluated with regard to usability, functionality, and accuracy. We

show that the UIA increases the usability by reducing the required amount of expertise

when dealing with uncertainties compared to a manual analysis. Using the large-scale

open-source contract tracing application called Corona Warn App (CWA) as case study, we

show that the UIA reduces the amount of elements to be examined by 85% compared to the

amount of a manual analysis. We further illustrate how it enables architects to explicitly

manage uncertainties during design time. Using the CWA case study, we show that the

UIA achieves 100% recall of the actually aected elements, while maintaining 44%-91%

precision.
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Zusammenfassung

In Zeiten vernetzter Systeme ist Vertraulichkeit ein entscheidendes Sicherheitsqualitäts-

merkmal. Da die Behebung von Vertraulichkeitsverletzungen kostspieliger wird, je später

sie entdeckt werden, sollten Softwarearchitekten diese bereits in der Entwurfsphase be-

rücksichtigen. Während des Architekturentwurfsprozesses treen Architekten Entwurfs-

entscheidungen um Ungewissheit zu reduzieren. Allerdings unterliegen Entscheidungen

oft Annahmen und unbekannten oder ungenauen Informationen. Annahmen können sich

als falsch erweisen und müssen revidiert werden. Dies verursacht erneut Ungewissheit.

Ungewissheiten zur Entwurfszeit machen genaue Schlussfolgerungen über die Vertrau-

lichkeit des Systems daher unmöglich. Es ist also notwendig, ihre Auswirkungen auf

Architekturebene zu bewerten, bevor eine Aussage über die Vertraulichkeit getroen

wird. Bisher ist diese Bewertung manuell und mühsam und erfordert ein großes Maß an

Wissen. Derzeitige Ansätze berücksichtigen Ungewissheiten nicht zur Entwurfszeit, sprich

in Softwarearchitekturen, sondern in anderen Bereichen wie z.B. bei selbst-adaptiven

Systemen.

Diese Lücke wollen wir wie folgt schließen: Erstens stellen wir einen neuen Ansatz zur

Kategorisierung von Ungewissheiten vor. Darauf aufbauend stellen wir eine Ungewissheits-
schablone zur Verfügung, die es Architekten ermöglicht, Typen von Ungewissheiten und

deren Auswirkungen auf Architekturelementtypen für eine Domäne strukturell abzulei-

ten. Zweitens stellen wir eine Ungewissheits-Auswirkungs-Analyse vor, die es Architekten
ermöglicht zu spezizieren, welche Elemente direkt von Ungewissheiten betroen sind.

Basierend auf strukturellen Ausbreitungsregeln leitet die Analyse automatisch weitere

Elemente ab, die potenziell betroen sein könnten.

Es wird die strukturelle Qualität, Anwendbarkeit und Zweck der Schablone evaluiert.

Wir erläutern, dass die Kategorien Prinzipien wie Orthogonalität, Vollständigkeit und Un-

terscheidbarkeit erfüllen. Außerdem zeigenwir, dass sie dabei hilft Ungewissheitstypen und

deren Auswirkungen abzuleiten, sowie Wiederverwendbarkeit und Bewusstsein schat.

Schließlich veranschaulichen wir die Relevanz der Schablone, indem wir zeigen, dass sie im

Vergleich zu bestehenden Taxonomien Ungewissheiten in Softwarearchitekturen genauer

klassizieren und somit präzisere Aussagen über deren Auswirkungen machen kann. Die

Analyse wird im Hinblick auf Benutzerfreundlichkeit, Funktionalität und Genauigkeit

bewertet. Wir demonstrieren, dass die Analyse die Benutzerfreundlichkeit erhöht, indem

sie die erforderliche Menge an Fachwissen beim Umgang mit Ungewissheiten im Vergleich

zu einer manuellen Analyse reduziert. Anhand der Kontaktnachverfolgungs-Applikation

Corona-Warn-App zeigen wir, dass die Analyse die Anzahl der zu untersuchenden Elemente

im Vergleich zu einer manuellen Analyse um 85% reduziert. Darüber hinaus veranschau-

lichen wir, wie sie Architekten ermöglicht, Ungewissheiten während der Entwurfszeit

explizit zu verwalten. Anhand der Fallstudie zeigen wir, dass die Analyse eine 100%ige

Ausbeute bei einer Präzision von 44%-91% hat.
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1. Introduction

1.1. Motivation

In times of highly interconnected systems, condentiality becomes a critical security

quality attribute. The International Organization for Standardization (ISO) describes con-
dentiality as "property that information is not made available or disclosed to unauthorized

individuals, entities, or processes" [35]. Compared to other quality attributes such as

reliability and performance, condentiality has legal and social implications [61]. Hence,

software manufacturers must consider condentiality at every stage of the development to

ensure compliance [61]. Not only is concrete protection against security threats necessary,

but also compliance with legal requirements, such as the European General Data Protection

Regulation (GDPR). It demands, for instance, that storing and processing EU citizens’ data

only take place on servers located in the EU [28]. Further, condentiality highly aects

user acceptance. For instance, Facebook issued a new privacy policy for its messenger

service WhatsApp, enabling them to collect metadata about sender, receiver or time a

message was sent. After the announcement of the change, download numbers for Signal, a

rival messenger service, have risen from 246.000 to 8.8 million in the following week [34].

According to Boehm and Basili [12], nding and xing software issues, such as breaches

in condentiality, become more costly the later they are found. As nding condentiality

issues manually is a cumbersome task, software architects dened architectural conden-

tiality analyses based on the ow of data and the denition of data ow constraints within

the software architecture to evaluate condentiality in the design time [30, 61, 13].

During the architectural design process, various design issues, design alternatives or

trade-os for competing requirements need to be considered [45]. Those decisions are

also known as Architectural Design Decisions (ADDs). Jansen and Bosch [37] introduce a

new perspective on software architecture as being a "set of architectural design decisions"

[37]. This view is widely accepted in the scientic community. With each ADD taken, the

software architecture ideally becomes more accurate as more and more degrees of freedom

(i.e. uncertainty) are removed. This phenomenon is described by the cone of uncertainty,
rst introduced by McConnell [46]. However, in the early design time, ADDs are often

subjected to assumptions due to imprecise or unknown information. These assumptions

may turn out to be wrong at a later stage, so that ADDs have to be revised. This re-introduces

further uncertainty in the process of making rational ADDs and can thus enlarge the cone

of uncertainty again [45]. As a consequence, the presence of uncertainty, especially in the

early stages of the architectural design process, discourages drawing precise conclusions

about the condentiality of the overall system [30]. Further, some assumptions may

not be resolvable during design time because the necessary information to resolve the

accompanying uncertainty is not available until, for instance, the system gets deployed.

1
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Therefore, architects need to analyse the impact these uncertainties have on other ADDs,

or according to Jannsen’s and Bosch’s perspective [37], on which elements of the software

architecture. We describe this eect as propagation of uncertainty, since elements of an

architecture can be indirectly and therefore less obviously aected by uncertainty. Hence,

a sound understanding of uncertainty and the propagation of uncertainty plays a crucial

role when reasoning about the condentiality of a system at design time. We therefore

propose to consider uncertainty as rst-class entity in the course of the architectural

software development process but especially in the software architecture [26]. This makes

it possible to not only represent uncertainty in the architectural model, but also to analyse

its propagation eects and impact on condentiality in a more structured way.

To do so, it is important to be able to identify and classify uncertainties in the architecture.

A classication by categories helps to group uncertainties with a similar impact in order

to better understand their characteristics and propagation eects. So far, interdisciplinary

uncertainty taxonomies such as the one proposed byWalker et al. [73] have been adapted to

better t the needs of software architects [52, 14]. The majority of existing taxonomies are

used to categorize uncertainties in Self-adaptive Systems (SASs) [21, 49], thus uncertainties

at runtime. None of the available taxonomies are used to categorize uncertainties at

architectural level. However, there are approaches that try to handle uncertainty in early

software architectures by providing tool support such as the works proposed by Esfahani et

al. [23] or Lytra and Zdun [45]. Those tools are mainly used to guide the architect through

the decision making process. Here, uncertainty is limited to the impact of individual ADDs

on quality properties, which cannot be precisely predicted but quantied using fuzzy

mathematical methods [18]. By combining various ADDs, the tools are capable to reason

about the impact on quality properties with fuzzy logic. One of the weaknesses of common

tools is that they are not able to incorporate uncertainties into architectural models and

other artefacts [44]. Further, the limitations are too narrow, as uncertainty does not only

prevail due to unknown eects of ADDs.

Although a lot of research has been done in recent years to understand the impact of

uncertainty in software development, there is still a "gap in the understanding of what

constitutes uncertainty and the sources of uncertainty" [32] so that it is "essential to

consolidate the knowledge on uncertainty and its sources in a standardised format" [32].

Further, to the best of our knowledge, current approaches do not investigate the impact of

uncertainty on condentiality at the architectural level, nor the general propagation of

uncertainty in software architectures. This is what we aim to do in this thesis.

1.2. Motivating Example

Figure 1.1 illustrates a simple architectural diagram which shows two services Component
A and Component B, as well as the deployment locations Cloud Server (EU), Cloud Server
(Non-EU) and an On Premise Server. EU/Non-EU describes whether or not the location of the

server is within the European Union. Further, it illustrates an activity diagram that refers to

the behaviour of Component A. The dashed boxes represent uncertainties that are added

to the architecture as a rst-class entity. At the beginning of the architectural design

process, there are various uncertainties (as indicated by the question marks). For instance,

2
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method()
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Behaviour
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Figure 1.1.: Simple Architectural Diagram showing Uncertainty [30]

the communication type can be encrypted or unencrypted. Further, the services can be

either deployed to an on premise server or somewhere in the cloud. Likewise, the internal

behaviour of the components, as well as their handling of user data, may be uncertain.

Another source of uncertainty is the user behaviour. Each of the uncertainties, as indicated

in Figure 1.1, is assigned to an element of the software architecture, i.e. components,

communication, resource environment, and usage behaviour.

Uncertainties that exist due to ADDs that have not yet been made can still be eliminated

in the course of the design process. An example is the communication type to be used.

Others, such as the uncertain behaviour of components, can also be eliminated through

knowledge acquisition during the design process. Whether user-related data is stored

should already be claried in the requirements. If this information is missing, it can

also be obtained during the design process. The deployment location, in turn, can be

specied by software architects. However, the underlying uncertainty is not completely

eliminated, as it is only clear at the deployment time. The uncertainty therefore persists,

at least partially, in the form of an assumption. These can be revoked in the course of

the design process and also afterwards. In contrast, user behaviour can only be described

statistically or by empirical values. Uncertainty inevitably remains until the system is

actually running, albeit with statistical means and design decisions in a reduced form.

Although uncertainties can have an impact on various quality attributes of the system such

as reliability or availability [26], we only focus on those with an impact on condentiality.

Therefore, most uncertainties concern user data and how or where it is stored, transferred

and used.

For each of the uncertainties shown in Figure 1.1, we described where they have a

direct impact, i.e. to which architectural elements they can be assigned. Further, we

elaborated some characteristics with regard to resolution time and manageability. What is

missing is another important characteristic of uncertainty: propagation. Uncertainty can

be assigned to one element but have an impact on another ADD or, according to Jansen

and Bosch [37], on other elements. We describe these eects as uncertainty propagation,
because uncertainty propagates from one element of the architecture to another. In those

cases, uncertainties have an indirect impact on architectural elements. For example,

3
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the deployment of a system has an impact on the choice of communication, as cloud

deployment demands the usage of encrypted communication. If not, user-related data

could be intercepted and the condentiality of the system would no longer be guaranteed.

Therefore, the uncertainty Deployment Location has an impact on the architecture element

Communication. Furthermore, it is important to know whether a component processes

user data or not, due to the GDPR [28]. Consequently, the uncertainty User Data Stored
propagates to architectural elements describing the resource environment such as servers.

This is only a small sample of possible propagation eects, but it demonstrates how

important it is to take them into account. While this example is very small and easy to

analyse manually, larger architectures won’t. Here, it will be advantageous to use an

automatic analysis that can determine the impact on condentiality based on explicitly

dened uncertainty types in an architecture.

1.3. Research Goals and Contributions

The goals of this thesis are twofold: First, we want to be able to analyse and assess the

impact of uncertainties on the condentiality at design time. Therefore, we analyse the

relationship between ADDs and uncertainties with a foreseeable impact on condentiality.

To asses uncertainties and their impact, we propose new and enhanced categories to

categorize uncertainties in software architectures. The categories are based on available

uncertainty taxonomies and related literature. They dier from all previous ones because,

on the one hand, they incorporate the evaluated and combined ndings of a large number

of existing taxonomies, and, on the other hand, they allow a categorisation of uncertainties

in software architectures for the rst time.

Based on the categories, we propose an uncertainty template that guides software

architects through the process of identifying and analysing uncertainties in software

architectures. Also, we provide an approach how software architects can use the uncer-

tainty template to extract types of uncertainties and their impact on types of architectural

elements based on existing ADDs. A template lled in by experienced architects creates

awareness as less experience software architects can instantiate actual uncertainties in

actual software architectures, and asses their impact based on the previously dened

uncertainty types.

The second goal is to reduce manual eort and required expertise when analysing

the impact and propagation of uncertainties in software architectures. To that end, we

extend an available Architectural Description Language (ADL) called Palladio Component

Model (PCM) [56] by the capability to model uncertainty as rst-class entities in software

architectures. Based on that extension, we create an Uncertainty Impact Analysis (UIA)

which reduces the required expertise and manual eort when analysing the impact and

propagation of uncertainties in software architectures. To achieve the goals, the following

research questions (RQs) have to be answered in the course of this thesis:
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RQ1: How to analyse the impact of uncertainty on the condentiality
of a system at design time?

RQ1.1: How to describe the relationship between uncertainty and
condentiality in software architectures?
Our goal is to elaborate the relationship between uncertainties and ADDs

and how it is possible to derive uncertainties from them. The focus is on

ADDs with a foreseeable impact on condentiality.

RQ1.2: How to categorise uncertainties in software architectures
with an impact on condentiality?
To that end, we aim to derive categories based on existing uncertainty

and design decision taxonomies. Also, we want to describe the process of

nding those categories.

RQ1.3: How can the categorisation be illustrated?
Here, our goal is to provide a template which enable architects to categorize

ADDs and their related uncertainties in a structured manner.

RQ1.4: How can the template be used to derive uncertainties and
assess their impact on the software architecture?
To answer this question, we strive to describe a systematic approach on how

to derive types of uncertainties and their possible impact on architectural

elements based on existing ADD. Our goal is further to demonstrate how

this approach can be used to annotate software architectures with actual

uncertainties and how it is possible to derive and asses their impact.

RQ2: How to support the annotation and propagation of uncertainties
in software architectures?

RQ2.1: How can uncertainty be represented in the software archi-
tecture?
Here, we will extend the Palladio Component Model (PCM) by uncertainty

as rst-class entity. Characteristics of this elements shall be inspired by the

categories presented in RQ 1.2.

RQ2.2: How does uncertainty propagate in the architecture?
To answer this question, we plan to dene and implement an Uncertainty

Impact Analysis (UIA) based on the extended PCM.

1.4. Outline

This thesis is structured as follows: Chapter 2 provides the fundamentals for this thesis such

as condentiality, Component Based Software Engineering (CBSE) or the PCM. Chapter 3

presents the related work in the domain of uncertainty. In Chapter 4 we illustrate the

relationship between uncertainties, ADDs and architectural elements which provides the

basis for our contributions. In Chapter 5, we asses existing uncertainty- and architectural

related taxonomies and provide our own categorization approach. Based on that, we
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1. Introduction

present our uncertainty template in Chapter 6, including an approach to derive types of

uncertainties and their impact based on existing ADDs. Chapter 7 presents our Uncertainty

Impact Analysis. In Chapter 8, we evaluate our approach. We conclude this thesis with

Chapter 9 and provide ideas for future work.
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2. Foundations

This chapter provides the foundations for this thesis. Section 2.1 introduces the quality

property condentiality and illustrates its importance. Further, Section 2.2 denes uncer-
tainty and illustrates its relationship to information. Section 2.3 introduces the Component

Based Software Engineering (CBSE), which is the underlying concept of this thesis. Sec-

tion 2.4 introduces the Eclipse Modelling Framework (EMF). Section 2.5 presents the used

Architectural Description Language (ADL) - the Palladio Component Model (PCM). Lastly,

Section 2.6 introduces a change propagation analysis framework.

2.1. Confidentiality

Condentiality, together with integrity and availability, forms the so-called CIA triad.

Together, the three quality attributes represent the cornerstone of Information Security [64].

Integrity refers to the accuracy and completeness of data whereas availability describes

that data is available when needed [64]. The International Organization for Standardization
(ISO) denes condentiality as "property that information is not made available or disclosed

to unauthorized individuals, entities, or processes" [35]. Condentiality therefore concerns

data that is to be protected from unauthorised access. Although data and information

have an etymological dierence ("information consists of processed data" [2]) we use both

terms interchangeably in the course of this thesis. Furthermore, we restrict ourselves to

condential data. So when we talk about data in general, we always refer to condential

data. Otherwise, the term "public data" will be used if public, i.e. non-condential, data is

meant. There are various examples of condential data, rst and foremost user-related data,

such as social security numbers or passwords. Another example is GPS data, from which

user-related data can be derived. In addition, non-personal data can also be condential,

such as secret keys for the creation of certicates.

According to Boehm and Basili [12], nding and xing software issues, such as breaches

in condentiality, become more costly the later they are found. Condentiality must

therefore be respected early in the software development process, such as in the software

architecture design time. To that end, software architects dened architectural con-

dentiality analyses based on the ow of data and the denition of data ow constraint

within the software architecture description. Using access control policies, such analyses

enable to evaluate condentiality in the early software architecture design time [30, 61,

13]. However, uncertainties in the early architecture make it dicult for these analyses to

draw clear conclusions [28, 22].
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2.2. Uncertainty

Uncertainty in general can be described as "any deviation from the unachievable ideal

of completely deterministic knowledge of the relevant system" [73]. This denition also

emphasizes the fact that uncertainty can’t typically be eliminated completely, or at least

not in a practically meaningful way [21]. In order to make uncertainty manageable

and better understandable, researchers created taxonomies [73, 52, 14], and identied

sources of uncertainty [21, 51]. There is a general consensus that uncertainty is divided

into two basic types: epistemic uncertainty and aleatory uncertainty [73, 44, 52, 14].

Epistemic uncertainty describes the lack of knowledge and can be mitigated by gathering

more information. However, new information can reduce uncertainty but also lead to

an increase, as new knowledge can reveal previously unknown uncertainties [73]. In

contrast, aleatory uncertainty is caused by the inherent variability of the nature or due

to random events [28]. Consequently, this type of uncertainty cannot be reduced by

acquiring more information. Some authors map aleatory uncertainty to irreducibility

and epistemic uncertainty to reducibility [72]. A dierent view is provided by Esfahani

and Malek [21] who disagree as "both the reducible and irreducible uncertainties can

have aleatory and epistemic components" [21]. They argue that aleatory and epistemic
represent the essence of uncertainty whereas reducibility and irreducibility refer to the

managerial aspect. We share this view, because although aleatory uncertainty is caused

by randomness, it often can be modelled using statistical methods. An example is the

modelling of user behaviour which is aleatory by nature but is often modelled via statistical

means [56]. As this makes uncertainty more manageable, it reduces uncertainty to a certain

extent. Nevertheless, statistics can only make predictions. Thus, by denition, there can

be no certainty about the actual outcome. To that end, Esfahani and Malek [21] propose

a concept called the spectrum of uncertainty, which illustrates the relationship between

information and uncertainty. This concept is shown in Figure 2.1.

Irreducible Uncertainty

Mitigated Uncertainty

Reducible Uncertainty Knowledge

Remaining Uncertainty

Certainty Complete Information Current Information Ignorance

Figure 2.1.: Spectrum of Uncertainty [21]

The concept illustrates the spectrum of uncertainty by using a linear scale of available

information with the idealistic certainty at one end, where all information is available, and

total ignorance at the other, where no information is available. Two arrows indicate the

exible states current information and complete information along the knowledge scale.
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This produces a spectrum with the three areas irreducible uncertainty, reducible uncertainty
and knowledge, i.e. no uncertainty. First, knowledge indicates the amount of information

already acquired, and therefore the mitigated uncertainty. Reducible uncertainty represents

the area between the current information and the complete information as this type of

uncertainty can be reduced by acquiringmore information. Therefore, complete information
represents the maximum threshold to which current information can move. Irreducible
uncertainty represents the range between complete information and certainty, as no further
information is capable to reduce this type of uncertainty. It should be noted that the

ranges can be of dierent sizes and even zero. This is the case if for instance all reducible

uncertainty is actually reduced so that current information and complete information fall

to the same point. Similarly, it is possible that the system to be described is not aected

by irreducible uncertainty. In this case, complete information and certainty are identical.

Ideally, certainty, complete information and current information are then at the same point,

so that only knowledge prevails. However, this should be rather theoretically possible

as already the presence of human user input is a source of irreducible uncertainty. More

generally, any form of environment or context can create irreducible uncertainty. Other

sources of uncertainty are the environment, available resources, organizational structures,

missing requirements or unexplored design alternatives [31, 44].

2.3. Component-based Soware Engineering

Component Based Software Engineering (CBSE) is a software programming paradigm

where functionality is bundled as software packages - the so called components. Architec-
tures which are developed according to this principle are called CBSAs. A comprehensive

introduction into CBSE is provided by Szyperski et al. [67]. They describe three key charac-

teristic of components. First, components are units of independent deployment. Second,

components are units of third-party composition. Third, components have no (externally)

observable state. To be composable, each component has provided and required interfaces,

which together form the component signature. Provided interfaces describe the functionality
that a component is able to provide, whereas required interfaces describe which other

components, or specically which specic interfaces are needed to function. Software

System

    AdminInterfaceProxy

          TicketMachine
    TicketSelling

     TripPlanning

   CreditCardChanges

           <<database>>              
               TicketDB

selling

planning

admin

purchase

charges

AdminInterface

MachineInterface

Credit  
Card  

Agency

Figure 2.2.: CBSA Example - Ticket Machine
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architects use basic components to create composite components, thus building a hierarchy

of components [56]. The topmost component can thus be described as the system, which

in turn has interfaces to interact with. Figure 2.2 shows a simple example of software

components that together represent a system. In addition to components and interfaces,

CBSE is characterised by the ability to represent other concepts as rst class entity, such

as the ones illustrated in Table 2.1. The supported concepts depend on the ADL used, so

please note that Table 2.1 only provides an excerpt of possible concepts supported by the

PCM. Other ADL may support other concepts, or use a dierent naming.

Concept Description

Basic Component Basic entity that bundles functionality

Composite Component Composition of several components

Component Repository Collection of available components

Interface (provided / required) Means by which components connect

Assembly Context Provide context to instantiate components

Assembly Set of assembly contexts

Connector Link between interfaces

Resource Container Set of processing resources for hosted components

Link Connects resources containers

Usage Behaviour Representation of the system’s usage

Table 2.1.: First Class Entities in the PCM (Excerpt)

CBSE has several advantages over object-oriented or procedural development approaches,

such as separation of concerns, the encapsulation of functionality, reusability and facili-

tated evolution [56]. Further, components can easily be encapsulated as services, which

enables their applicability in Service-oriented Architectures (SOAs) and the Microservice

architecture [9]. However, CBSE also has its disadvantages, since components are usually

considered as black boxes, which means that software architects only know the component
signatures in the rst place, but have no knowledge about the internals. But if these are

needed, for example, to carry out condentiality analyses, this view complicates the situa-

tion. In general, CBSE is the fundamental concept for a variety of successful component

models such as the Enterprise JavaBeans model
1
or the .NET model

2
.

2.4. Eclipse Modeling Framework

The Eclipse Modelling Framework (EMF)
3
is an Eclipse extension for modelling and data

integration [15]. EMF provides various concepts and tools to dene and extend meta-

models based on the meta-meta model Ecore. Ecore is an Essential MOF (EMOF) compatible

1
https://docs.oracle.com/javaee/5/tutorial/doc/bnbls.html

2
https://dotnet.microsoft.com/

3https://www.eclipse.org/modeling/emf/
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meta-meta model, which is an implementation of a subset of Meta-Object Facility (MOF).

The EMF environment provides various tools to support the creation of Eclipse plug-ins

for graphical model editors or automatic code generation. The exchange format is XML

Metadata Interchange (XMI)
4
, so that instances of the Ecore model, such as the PCM model

are persisted in XMI format.

2.5. Palladio Component Model

The Palladio Component Model (PCM) is a domain-specic meta-model to describe CBSEs.

The Palladio Workbench is a platform that provides tools and concepts to model and

analyse instances of the PCM model with regard to quality characteristics [55]. Although

its main purpose is the prediction of performance characteristics, various add-ons have

been proposed to e.g. analyse scalability characteristics of SASs at design-time [7], or to

provide maintainability predictions on architectural level [57]. An overview of the PCM

approach is provided in Figure 2.3.

The PCM is divided into four sub-models, which represent dierent views on the soft-

ware architecture: the Component Specications also know as Component Model [55], the
Assembly Model, the Allocation Model and the Usage Model [56]. The Component Model
species the components which included a model of the component behaviour. Further,

it denes required and provided interfaces for each component. Provided interfaces are

the services a component can oer to other components whereas required interfaces

specify which external services the component needs, in order to full its purpose [55].

The Assembly Model is used to explicitly describe the wiring of the components, i.e. the

structure of the system. The Allocation Model describes the allocation of components and

connections to physical resources. The Usage Model species the workload induced by

4https://www.omg.org/spec/XMI/2.5.1/About-XMI/

Performance Measurements

Usage Model

Allocation Model

Assembly Model

Component Model

Palladio 
Approach

<<Add On>> 

Maintainability Prediction

<<Add On>> 

Data Flow Analysis

Figure 2.3.: The Palladio Approach - Overview [55]
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the system’s end user [55]. Reussner et al. [56] provide a sound overview regarding the

technical aspects of the PCM.

Figure 2.4 shows the classication of the PCM in the four modelling layers as proposed

by the MOF standard of the Object Management Group (OMG)
5
. The model layers are

numbered from M0 to M3. Between the layers there is a one-to-many relationship, i.e. a

model of a higher layer can represent several models of a lower layer. Models at layer M0

are called Originals. In our case, Originals are the software systems. M1 models are referred

to asModels and describe, for instance, the system’s architecture. The PCMmodel is located

at M2, the meta-model layer. As the PCM is a domain-specic meta-model, it is limited to

the description of architectures in the domain of CBSE. However, the PCM itself is based on

a M3 layer model called Ecore which is a meta-meta model with self-describing capabilities.

Ecore comes with the Eclipse Modelling Framework as elaborated in the previous section.

Meta-Meta Model
(Ecore)M3

Meta Model
(PCM)

<<instanceof>>

M2

Model
(Architecture)

<<instanceof>>

M1

Originals
(Software System)

<<instanceof>>

<<instanceof>><<represents>>

<<represents>>

<<represents>>

<<represents>>

M0

Figure 2.4.: Meta-Modelling - Basic Concepts [15]

2.6. KAMP Approach

The Karlsruhe Architectural Maintainability Prediction (KAMP) framework is a change

propagation analysis tool that analyses the eects of change requests due to change

propagation in software systems on the architectural level. The analysis is conducted from

both, the technical and the organizational perspective and concerns the whole software life-

cycle [57]. Change requests can be implemented in various ways resulting in dierent eort

when it comes to the adaption of code and other related artefacts such as tests, deployment

or the architecture itself [57]. This is closely related to the overall maintainability of the

system as a low eort indicates high maintainability [66].

5https://www.omg.org/mof/
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Change propagation analyses dierentiate between three sets of changing elements,

which is illustrated in Figure 2.5. The change set is composed of the elements that are

directly aected by the initial changes. In contrast, the aected set consists of the elements

that are actually aected by changes due to change propagation eects. However, the

exact determination of this set is impossible for greater systems, because the problem

can be reduced to the undecidable halting problem [1]. Therefore, change propagation

analysis, such as KAMP, always provide an over-estimation of possibly aected set - the

impact set. As shown in Figure 2.5, the change set is a subset of the aected set which in

turn is a subset of the impact set.

Change

Affected

Impact

Figure 2.5.: Change Propagation Analysis - Overview [58]

The KAMP framework extends the Palladio approach and has been instantiated for

various domains, such as Information Systems (IS), referred to as KAMP4IS and Business

Processes (BP), called KAMP4BP [58]. Each implementation denes dierent types of

possible (initial) change requests as well as various propagation rules. The overall core

process, however, is consistent and is divided into three phases: the preparation phase, the
impact phase (sometimes also referred to as analysis phase) and the postanalyze phase [57,
66, 58]. Rostami et al. [57] provide a formalisation of the process. In the preparation phase,

software architects rst model the corresponding software architecture using the Palladio
Workbench. Architects can then annotate the software architectures with additional context
information such as test cases, build congurations, or object-relational database mappings

[58]. Finally, the initial change requests are modelled. For each change request, software

architects specify which architectural elements have to be initially modied. The input

thus consists of an annotated architecture model, as well as the specication of the change

requests. The dened propagation rules are iteratively applied in the second phase. Thus,

starting from the initial change requests, KAMP calculates elements that may be aected by

this change. Besides the propagation based on the structure of the software architecture,

KAMP also provides the possibility to dene other propagation types. For instance, it is

possible to determine the impact on organisational tasks, such as test cases to be changed,

build congurations and other aected artefacts [57]. Thereby, it is possible to rene the

initial structural propagation by dening further rules, so that the result of the propagation

is more ne-grained [58]. In the postanalyze phase, the results of the propagation are

processed. Based on the base architecture, which is the initial annotated architecture, and

the target architecture, which represents the architecture after propagation, KAMP creates

a task list that contains all the necessary tasks to implement change requests.
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3. RelatedWork

This chapter outlines related work and their contribution to the proposed thesis. We

conducted an extensive literature review with regard to existing works of uncertainty

in software architectures, particularly in relation to the impact on the condentiality

of a system. The ndings are summarized in the following sections, which are loosely

categorized according to their content.

The focus of our work is to analyse i) where uncertainty emerges in the software architec-

ture ii) how uncertainty can be represented as rst-class entity in software architectures

iii) how uncertainty propagates in software architectures and thus impacts the overall

condentiality. The literature review reveals that current approaches do not adequately

cover these points. It also shows that the focus of current research is on the runtime

analysis of uncertainty. So far, there are papers that deal with uncertainty at design time,

but none of them deal with uncertainty explicitly in software architectures. This is the

gap we want to close with this thesis.

3.1. Literature Review

The ndings presented in this chapter are the result of an literature review which was

conducted using the digital libraries IEEE
1
, ACM

2
and SpringerLink

3
. The web search

engine Google Scholar
4
provided further approaches and general information.

["Uncertainty Impact Analysis"]
OR

["Software Architecture" AND "Condentiality" AND "Uncertainty"]
OR

["Software Architecture" AND ["Condentiality" OR "Uncertainty" ]]
OR

["Architectural Design Decision" AND "Condentiality" ]
OR

["Software Design Decision" AND "Impact on Condentiality" ]

Apart from the search string "Uncertainty Impact Analysis", each query resulted in

at least one related work. More related work was identied by analysing outgoing and

ingoing references, as well as provided by the supervisors of this thesis.

1
http://ieeexplore.ieee.org

2
http://portal.acm.org

3
http://www.springerlink.com

4
http://scholar.google.com
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3. Related Work

3.2. Findings

Condentiality Analyses: Design-time condentiality analyses are not new to scientic

research [61, 62, 13, 30]. Although all of the approaches found do not take uncertainties

explicitly into account, they are nevertheless the basis of this thesis as they might be

extended by uncertainty characteristics. Seifermann et al. [62] propose a data-driven

analysis to cope with condentiality at architectural level. The approach integrates Data

Flow Diagrams (DFDs) in the PCM to specify condentiality constraints on architectural

level. Boltz et al. [13] present an analysis process to nd condentiality issues on the

architectural level for industrial Internet of Things (IoT) systems. Although this approach

provides a solid condentiality analysis for the design time, it does not take into account

potential uncertainties in the analysed software architecture and their impact on the

accuracy of the analysis. Hahner et al. [30] provide an approach to model data ow con-

straint for design-time condentiality analyses based on Seifermann et al. [61]. Therefore,

they specied a Domain-specic Language (DSL) using architectural terminology, so that

software architects can specify data ow constraints on the architectural level. The results

of the analysis are presented at the architecture level so that the architecture domain does

not have to be left. Again, this approach does not consider uncertainty at all.

Walter et al. [74] elaborate that dynamic changes in production environments are in-

evitable, but need to be managed to preserve condentiality. According to their denition,

"a dynamic change can be every context change during runtime, which is detectable during

runtime and foreseeable during design-time" [74]. Although they consider changes during

runtime, the denition does not cover uncertainty comprehensively, as changes need to

be foreseeable during design-time, which is certainly not always the case.

Uncertainty: Garlan [26] justies why uncertainty should be considered as rst-class
entity in design, implementation and deployment of software systems. So far, uncertainty

in software systems is mainly considered by implementing self-adaption capabilities

[49, 52, 21, 47]. This is the case, if software systems are capable to adapt their behaviour

dynamically at run-time to handle dierent situations inwhich components fail, unforeseen

changes in environment or unexpected user behaviour occur [14]. Self-adaptive Systems

(SASs) monitor the current state of the system and apply adaption strategies to control the

system behaviour. An example is the RAINBOW approach presented by Cheng and Garlan

[19]. Further, Esfahani and Malek [21] identify and classify sources of uncertainties and

their impact in SASs. The work aims to demonstrate the importance of uncertainty in SASs

and explains their most important characteristics. Musil et al. [49] provide patterns on how

to handle uncertainty in SASs. The Systematic Literature Research (SLR) by Hezavehi et al.

[31] indicates that most of the available work deals with uncertainty treatment at runtime

using SASs). They also point out that there is a gap in handling uncertainty at runtime.

This is one of the gaps we want to close in this thesis as we focus on the investigation

of uncertainty at design-time. However, related work dealing with uncertainties in SASs

inuences our ideas and concepts, as these provide valuable content. Other domains

are Cyber-Pyhsical Systems (CPSs), the modelling of uncertain behaviours [48] or the

representation of uncertainty in development processes [38].
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The recently published work of Hezavehi et al. [32] and Troya et al. [72] again emphasize

the actuality of uncertainty in software systems. In [32], the authors identify key ndings

based on the current perception of the research community on uncertainty. The work

revealed that there is a "lack of systematic approached for managing uncertainty" [32]. In

general, the study revealed that consensus in the community only exists with regard to

primary uncertainty characteristics such as nature or the necessity to address uncertainty

at design time and runtime. There is no consensus, for example, on whether SASs alone

are sucient to manage uncertainty in software systems. Whereas Hezavehi et al. [32]

provide a recent overview from the community perspective, Troya et al. [72] present an

extensive SLR on current uncertainty representations in software models. By doing that,

the authors provide an overview on available approaches dealing with uncertainty and

existing notations and formalisms to represent it. Further, they propose a categorization

into dierent types. Especially, this work elaborates that "software models are still falling

short for explicitly representing uncertainty and eectively dealing with it" [72].

One of the goals of this thesis is the categorization of ADDs based on their uncertainty

character. Therefore, uncertainty-related categories are necessary. We extract possible

categories and ideas for new categories from available uncertainty taxonomies, which are

presented in the following. Walker et al. [73] dene a "conceptual basis for the systematic

treatment of uncertainty in model-based decision support activities" [73]. Further, the work

provides our denition of uncertainty as being "any deviation from the unachievable ideal

of completely deterministic knowledge of the relevant system" [73]. As main contribution,

the authors propose a taxonomy based on the three dimensions location, level and nature.
The taxonomy is supposed to be applicable to all model-based decision support. It further

is the basis for other taxonomies such as the one proposes by Perez-Palacin and Mirandola

[52] and Bures et al. [14].

Perez-Palacin and Mirandola [52] condense and enhance the work of Walker et al. [73]

to create an uncertainty taxonomy which is more suitable for modeling software systems.

The taxonomy consists of three dimensions, namely location, nature and level. Whereas

nature and level are very similar to the same-named dimensions in [73], location is slightly

adjusted to better t the needs of software modelling. It describes uncertainties concerning

the completeness and the accuracy of models, as well as the input parameters used to

calibrate the models. An analogy to Model-Driven Engineering highlights the main focus

of the taxonomy, which is the classication of uncertainties in software models.

Bures et al. [14] enhance the uncertainty taxonomy proposed by Perez-Palacin and

Mirandola [52] to "better t the needs of uncertainty in access control in Industry 4.0

Systems". In addition to nature and level, the authors propose the category source of
uncertainty. In terms of content, this category largely corresponds to location as proposed

by Perez-Palacin andMirandola [52] andWalker et al. [73]. Further, they identied patterns

per type of uncertainty that serve as adaption strategies for access control rules, when

unexpected situations (induced by uncertainty) occur in the system. Yet, the taxonomy

is elaborated to classify uncertainties in use-cases and scenarios in Industry 4.0 systems,

where the dynamic adaption of access control rules is required. Although we require a

taxonomy for a dierent purpose, this work serves as a basis and a source of ideas.

Hezavehi et al. [31] provide a taxonomy of uncertainty in SASs, based on a profound

SLR. Given the nature of the studied system, the authors focus on uncertainty due to
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the "dynamicity and unpredictability of a variety of factors existing in software systems".

However, their taxonomy is inuenced by a number of other works such as [52, 26, 21, 73,

54], so that it includes important uncertainty-related categories including valuable options

for each category. Furthermore, the study shows that of the 51 papers examined, only two

explore uncertainty from the design time perspective, another 13 from both design and

runtime, and 36 focus only on runtime. Although it’s main purpose is the classication of

uncertainties in SASs, we use it as basis for our classication process.

Ramirez et al. [54] propose a taxonomy to classify sources of uncertainties at require-

ments, design and execution time. The authors present a template to describe uncertainties

and facilitate organization, including elds such as name, classication, context, impact or

related sources. However, we do not want to classify sources of uncertainties but uncer-

tainties themselves. Nevertheless, especially their taxonomy of uncertainty sources at the

design level provides valuable information for our classication process. Cámara et al. [16]

summarize the works proposed in [31, 54, 22] to provide both, a taxonomy for uncertainties

and sources of uncertainties. They explain the sources with numerous examples, which are

very helpful as a source of inspiration. Further, the authors provide multiple theories and

techniques for uncertainty management, but unfortunately for SASs only. Given examples

for management theories are fuzzy sets, possibility theory, probability theory or game

theory. For each theory, they provide a pointer to an available technique implement-

ing this theory. Lastly, the authors describe uncertainty representation techniques and

self-adaptive models such as the MAPE-K loop and the RAINBOW framework.

Troya et al. [72] provide an uncertainty taxonomy based on an extensive SLR on uncer-

tainty in software models. Their taxonomy is dierent to the one proposed by [73, 52, 31,

14]. Yet, the authors draw parallels between their proposed categories and those available.

The authors introduce several types of uncertainty, such as measurement uncertainty,
design uncertainty or behaviour uncertainty. For each, the authors also identify notations

and formalisms to represent the various types of uncertainty. Due to the relevance and

the scientic basis (SLR based on 123 paper) this work is another inspiration for our thesis.

Uncertainty management requires not only to detect uncertainties but to create pro-

cesses and tools to mitigate uncertainties. Several authors propose various mitigation

strategies for dierent categories of uncertainties. For instance, Perez-Palacin and Mi-

randola [52] provide mitigation strategies according to the location, whereas [32, 54, 24]
provide a categorisation according to the emerging time of the uncertainties. Further,

Cámara et al. [16] provide several theory-based techniques such as fuzzy sets, probability

or game theory. Nevertheless, uncertainty mitigation is out of the scope of this thesis.

Architectural Design Decisions: Our goal is to use ADDs as the functional instrument

to analyse the impact of uncertainty on the condentiality of the system at design time.

Therefore, a sound understanding is required. Bhat et al. [11] present a SLR with more

than 200 papers from the last four decades focusing on the topic of architectural decision

making, and especially a sound understanding of ADDs. Another SLR about design decision

documentation is provided by Alexeeva et al. [3], which includes 96 papers from 2004

to 2015. The authors classify current approaches by the dimensions goal, formalisation,
context, extension, tool-support and evaluation. Altogether, this indicates the importance

of this topic in scientic research. Kruchten [43] presents an ontology for architectural
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design decision, and proposes to make them a rst-class entity. The author identies three

general types of design decisions: Existence decisions, property decisions and executive

decisions. For each of them, he provides further options and examples. Also, he identies

and describes possible relationships between design decisions. We use this ontology as

basis for the categorization of ADDs.

The work of Jansen and Bosch [37] is an often-cited paper providing the denition of

an software architecture as "the composition of a set of architectural design decisions".

Further, it provides a comprehensive denition of an architectural design decision (ADD),

including a well elaborated explanation of its elements. We use it as reference for our

understanding of an ADD. Also, Jansen and Bosch [37] propose a model for ADDs as

foundation for an approach called Archium, which enables to dene and maintain the

relationships between ADDs throughout the entire life-cycle of software systems.

Gerdes et al. [27] provide a tool called Decision Buddy to support the design decision

process. Instead of uncertainty, they consider design constraints to be the most impor-

tant factor in the design process. Consequently, uncertainty is not considered to any

signicant extent. Koziolek [41] presents a tool called PerOpteryx. It explores various
design alternatives for several design decisions, called degrees of freedom, to obtain the

most suitable candidates with regard to quality attributes such as cost or performance.

Although degrees of freedom can, to some exten,t be described as uncertainty in relation to

the design alternative to be chosen, an explicit modelling of uncertainties is not intended.

In particular, the tool does take into account uncertainties that cannot be resolved by

choosing a design alternative.

Ntentos et al. [50] elaborate a reusable ADD meta model and instantiate it for various

design decisions in the Microservice domain. To that end, the authors identify model

elements such as category, decision, domain class, pattern or practice. For each category, var-
ious coarse-grained design alternatives are represented by decision elements. Fine-grained

decisions are represented by the elements pattern and practice. Each decision aects one

ore multiple domain classes. Although the authors arm that their model reduces the eort

required to reduce the uncertainty in the design process, they do not consider uncertainty

as rst-class entity.

Uncertainty in Software Architectures: Architectural decision making problems under

the inuence of uncertainty can be investigated from both design-time and run-time

[23]. The latter perspective is mostly covered by SASs, as described previously. For the

design-time perspective, tools have been developed to guide the architect through the

decision making process. For instance, Esfahani et al. [23, 22] present GuideArch, a tool
to handle uncertainty in early software architectures. The authors "accept uncertainty

as a natural component of architecting a software system" but the scope of uncertainty

in this work is limited to "not knowing the exact impact of architectural alternatives on

properties of interest". With GuideArch, software architects can incrementally make and

rene ADDs to explore possible design alternatives. For each alternative, the tool calculates

the expected quality properties based on fuzzy values. Features such as dening priorities,

dependencies, conicts and constraints between ADDs enable a realistic representation of

the decision making process. Although this tool is able to guide an architect during the

decision making process, it is not able to satisfy our denition of uncertainty, which goes
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beyond not knowing the exact impact of architectural alternatives on quality properties.

Another tool to support the documentation and decision making process of recurring ADDs

under uncertainty is presented by Lytra and Zdun [45]. Using fuzzy logic, expert architects

can specify the expected, but still uncertain impact of each design alternative on quality

attributes. This is stored as fuzzy models in a model repository. User architects can specify

requirements, based on which an inference system infers appropriate design decision.

Again, this tool only aims to guide the decision making process instead of analysing the

impact of uncertainty on quality properties such as condentiality.

Famelis and Chechik [24] present a tool-supported approach called Design-Time Uncer-
tainty Management (DeTUM). As a foundation, they introduce the DeTUM model which

describes the stages of design-time uncertainty articulation, deferral and resolution. In the

rst stage, uncertainty is accepted and introduced. During the deferral stage, uncertainty

remains stable whereas it is resolved in the resolution stage. Gathering more information

enables to proceed to the second or the last stage. However, the authors emphasise that this

can also uncover new uncertainties. In general, the approach enables software architect to

identify and manage uncertainty during the design process, in order to be able to make

decisions under uncertainty. The authors assume that for each decision, all alternatives

must be known in beforehand. Uncertainty is therefore only taken into account to the

extent that, at a given point in the design process, it is unclear which alternative is the

best.

The position paper by Lupafya [44] is closest to our research questions. The author

aims to develop a "conceptual framework that allows architects and developers to consider

uncertainty in the context of software architectures". Second, he aims to realize "the

concepts in the form of a workbench of tools for managing uncertainty at the architectural

level." As a rst step, the author provides a categorisation of lack of knowledge in software

development, where his denition of uncertainty is a sub-category of involuntary, incom-

plete knowledge. He further clearly dierentiates between uncertainty, inconsistency,

inaccuracy and the absence of knowledge. Although this work has a large intersection

with our work, (especially in the area of a conceptional framework for uncertainties), the

author has not published any further progress so far.
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In this chapter, we elaborate the relationship between uncertainty and condentiality

in software architectures (RQ1.1). In Section 4.1, we introduce our view on software

architectures, Architectural Design Decisions (ADDs), and their role in the design process.

This includes the presentation of the Cone of Uncertainty. Section 4.2 presents the general

relationship between ADDs, architecture elements, uncertainty and condentiality and how it

is possible to derive uncertainties from existing ADD. We focus on ADDs with a foreseeable

impact on condentiality. In Section 4.3 we illustrate how to extract uncertainties and

their impact from existing ADDs. This is complemented by an exemplary application to a

collection of ADDs. This chapter is concluded by Section 4.4, which summarizes the main

contributions with regard to RQ1.1.

4.1. Soware Architecture, ADDs and the Cone of Uncertainty

Jansen and Bosch [37] describe software architectures as "the composition of a set of

architectural design decisions" [37] (ADDs). Further, they provide a denition of ADD as

being "a description of the set of architectural additions, subtractions and modications

to the software architecture, the rationale, and the design rules, design constraints and

additional requirements that (partially) realize one or more requirements on a given

architecture" [37]. Based on that denition, the authors elaborate the importance of

considering ADDs as rst class entity in the software architecture. We adopt this view,

also due to the general acceptance in the research community. In the course of the design

process, software architects take many ADDs. Each decision taken thus contributes to the

construction of the overall software architecture, or as per the view of Jansen and Bosch

[37], the aggregate of all decisions is the architecture.
At the beginning of the design process, the degrees of freedom, i.e. the uncertainties,

are at a very high level. This phenomenon is metaphorically described by the cone of
uncertainty [46], and is represented in Figure 4.1. The original concept of the cone of
uncertainty refers to the holistic software development process, including the requirements

phase up to the completion of the software [46, p.31f]. To that end, we focus on the design

process only. Nevertheless, the inuence of uncertainty extends beyond the design process.

For this reason, Figure 4.1 indicates that uncertainty is not completely eliminated at the

end. In general, the cone illustrates that there is a lot of uncertainty at the beginning, since

only the initial concept is made and no further design decisions have yet been made. In the

course of the design process, architects acquire further knowledge and make a variety of

decisions. Both are closely intertwined and ideally reduce the cone. This eect is visualised

by the narrowing cone. In early design time, ADDs are often subjected to assumptions due

to imprecise or unknown information. Since ADDs are not to be considered in isolation
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Figure 4.1.: The idealized Cone of Uncertainty [46]

but depend on others [17, 60, 27], assumptions often need to be made, in order to make

progress in the design process. These assumptions may turn out to be wrong at a later

stage, so that ADDs have to be reversed. This introduces further uncertainty and can thus

enlarge the cone of uncertainty again [45].

4.2. ADDs, Architecture Elements and Uncertainties

The relationship between uncertainty, ADDs and architectural elements is illustrated in

Figure 4.2. Uncertainty, ADD and Architecture Element are elements we consider as rst-

class entity. The other keywords are merely constructs that exist for a better understanding

of the relation, but which are not modelled. The focus is therefore on the relationships

between the key elements (indicated by the solid lines). The other relationships (dashed

lines) are not considered in more detail. Whereas the impact of ADDs on condentiality is

usually known in advance, the impact of uncertainty on condentiality is what we aim to

analyse in this thesis. This is what the question mark is supposed to express. We identied

the following relationships between uncertainty, architecture element and ADD:

ADDs are taken to reduce degrees of freedom within an architecture, i.e. to reduce the

cone of uncertainty. That is the trivial part of the relationship because every decision that

has not yet been taken induces uncertainty, or the other way around, each ADD resolves

the underlying uncertainty in its choice. For instance, uncertainties about the kind of

communication is resolved by taking the ADD that species the communication. Dealing

with it is therefore relatively uncomplicated, as such uncertainties will be resolved by the

end of the design time. Nevertheless, it is important to identify those uncertainties as they

indicate which ADDs have not yet been made.
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Figure 4.2.: The Relationship between ADDs, Uncertainty and Condentiality

However, not all uncertainties can be resolved by taking an ADD (see multiplicity of

the resolvedBy relation). These uncertainties are either epistemic or aleatory in nature (cf.

Section 2.2), hence uncertainty prevails due to missing knowledge or due to the variability

of the problem which needs to be described. In both cases, uncertainties have an impact

on ADDs as software architects are forced to make assumptions if they take ADDs under

uncertainty. These assumptions may turn out to be wrong at a later stage, so that ADDs

have to be reversed. This introduces further uncertainty and can thus enlarge the cone
of uncertainty again. Although some of these uncertainties can be eliminated during

design time, others cannot. For example, uncertainty about the behaviour of an external

component can be eliminated by knowledge acquisition during design time, whereas

uncertainty about user behaviour can only be eliminated at runtime. However, both

uncertainties have an impact on ADDs such as the choice of a component or the modelling

of user interfaces which must be decided at design time. So there are two basic sources of

uncertainties in the architectural design process: First, the lack of information, including

ADDs that have not yet been made, missing requirements and missing knowledge in general.

Second, assumptions that have to be made when making ADDs.

Yet the overarching goal is to assign uncertainties to concrete architectural elements.

According to Jansen and Bosch [37], we can extract these relationships via the ADDs,

since each ADD has an impact on elements of the architecture. Thus, we can transitively

determine on which architectural elements an uncertainty has an inuence. As motivated
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in Section 1.2, there are two types of impact: direct and indirect. First, uncertainties are
assignable to concrete architecture elements of a certain type. This is what we describe

as direct impact. Second, uncertainties propagate through the architecture and have a

(less obvious) impact on other architectural elements. This is what we describe as indirect
impact or uncertainty propagation.

4.3. Extracting Uncertainties

In the following, we discuss how uncertainties and their impact can be extracted from

existing ADDs. In particular, we address the challenges and the knowledge required to

do this, and suggest what knowledge can be reused. Since software architectures can

be viewed as a "set of architectural design decisions" [37], we can identify uncertainties

in architectures from existing ADDs. This allows for a more structured approach when

extracting uncertainties. ADDs are therefore only a means to an end, on the one hand

to extract uncertainties in general, and on the other hand to assign their impact and

propagation eects in the architecture to concrete elements.

According to the previous section, each ADD that is not yet taken can be seen as

uncertainty. This kind of uncertainty is resolvable by the respective ADD. As ADDs aect

certain elements of the architecture, these uncertainties have a direct impact on those

very elements. Therefore, software architects have to analyse the ADDs with regard to

the elements they aect. This information is reusable for CBSAs because the underlying

principles are the same for each architecture instance. ADDs are extracted from existing

literature or software architecture design documents in order to examine where and how

uncertainty aects them. However, it is not part of this thesis to provide a comprehensive

guide on how to extract ADDs. This is covered by other scientic work such as [3].

Further, ADDs often depend on each other [17, 60, 27]. Thus, as soon as an ADDA depends

on another ADD B that has not yet been taken, the associated uncertainty of the ADD B also

aects the elements of ADD A. Consequently, this uncertainty has an indirect impact on the

elements of ADD A. This information is also widely reusable, as dependencies between ADD

are not domain specic. Uncertainties that do not correspond to an ADD that has not yet

been made become apparent in the course of the design process by making assumptions.

Every assumption exists because of an uncertainty that could not been eliminated at the

time of the decision. Therefore, these uncertainties have a direct impact on the very

elements that are in turn aected by the associated ADD. Especially the knowledge about

possible assumptions is not trivial knowledge. However, these kinds of uncertainties need

to be identied, as they are not necessarily apparent when making decisions. Especially

here, it is of great advantage that this knowledge is collected and reused in a structured way.

Example: In the following, we show exemplarily how it is possible to identify uncertainties,

determine to which architectural elements they can be assigned (i.e. where they have

an direct impact) and specify where they have an indirect impact (via propagation). The

identication of potential ADDs, possible design alternatives, the relationships between

ADDs and especially the required assumptions are based on the expertise of the architect.
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Figure 4.3.: Extract Uncertainties from ADDs - Example

Figure 4.3 illustrates four ADDs (the angular shapes) and six uncertainties (the elliptical

shapes), including their relationships. The following ADDs are identied: Distribution
decides whether a system is centralized or decentralised. Communication determines

whether the communication between software components is encrypted or unencrypted.

Deployment Location denes where the components are to be deployed, which can be either

on-premise or using a external cloud provider. Persistence species whether data has to be

stored encrypted or not. Each ADD aects certain element in CBSAs: Distribution aects the
overall system structure. Communication aects the interfaces which are considered as rst-
class entities in CBSE. Deployment Location aects the resources such as servers, whereas

Persistence aects the database components. Again, this collection of ADDs, including their

design alternatives are for illustrative purpose only and do not represent a comprehensive

system at all. When it comes to uncertainty extraction, software architects can rst identify

the rather trivial uncertainties which are the ones corresponding to each ADD. Therefore,

the uncertainties Distribution, Communication, Deployment Location and Persistence are
identied (elliptical shapes), including the solves relationships with the respective ADDs

(angular shapes). As previously described, these uncertainties can be assigned to instances

of the respective architecture element types. For example, the uncertainty Communication
can be assigned to any communication element in an architecture where the type of

communication is still uncertain.

In a second step, software architects identify which ADDs depend on each other. For

instance, encrypted communication is necessary as soon as the system is designed in a

decentralised manner. Consequently, uncertainty distribution also impacts the Commu-
nication (i.e. indirect impact). Similarly, when deploying in the cloud, it is necessary
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for services to communicate in encrypted form. In addition, the data must be stored in

encrypted form. This is not the case with on-premise deployments. Hence, the uncertainty

Deployment Location has an impact on the communication and the way data is persisted.

The information gathered in this way thus shows which other elements can be indirectly

inuenced by uncertainties.

Lastly, software architects make assumptions when taking ADDs. At this point we assume

for the time being that architects do not yet have any knowledge, so that they have to make

assumptions about everything. For instance, communication can be unencrypted if the

transmitted data is not condential, regardless of the deployment location and distribution.

The information whether or not transmitted data is condential is not yet available. Of

course, it can be obtained when the requirements have been specied. Nevertheless, this

way of thinking helps us to identify further uncertainties and, above all, to investigate

where these have an impact. Another example is the trustworthiness of a provider. If

cloud deployment is chosen, architects must trust their handling of condential data. This

means, for example, that they do not give any third party access to the system. However,

one can only assume that providers are trustworthy. This uncertainty remains for the

future. Nevertheless, it can already be identied and analysed at the design time. For

each uncertainty, the directly aected architectural elements are identied. Consequently,

uncertainties due to assumptions can be assigned to the elements that are aected by the

respective ADD.

Altogether, several steps are necessary. First, one needs to identify the ADDs and

analyse which architectural elements they aect. Further, it is necessary to investigate

the dependencies between ADDs in order to extract the indirect impact of uncertainties on

architectural elements. Finally, software architects need to consider what assumptions they

havemade, explicitly or implicitly, whose discarding has an impact on the architecture. This

step-by-step approach makes it possible to dene a process with which software architects

can derive uncertainties and their eects on architectural elements in a structured way.

This is one of the goals of this thesis

4.4. Conclusion

In this chapter, we presented the relationship between uncertainty, ADDs, architecture
elements and condentiality (RQ1.1). In doing so, we have shown how takingADDs can both

reduce and increase the cone of uncertainty. Lastly, we discussed how software architects

can use existing ADDs to derive uncertainties and their impact, which is exemplarily applied

to a collection of ADD. In particular, we highlighted that a structured approach would be

benecial in this matter.
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Uncertainties

In this chapter, we present how to categorize uncertainties in software architectures with

an impact on condentiality (RQ1.2). As described in Chapter 4, ADDs are a means to

an end to extract uncertainties and to investigate their propagation eects in software

architectures. Therefore, it is necessary to categorise not only the uncertainties, but also

the ADDs in the context of which they occur. Based on existing taxonomies and other

related work (cf. Chapter 3), we collect and assess available categories for both ADDs and

uncertainties. Generally, such taxonomies are elaborated for a specic purpose. Therefore,

it is necessary to assess and adapt them for our purpose, which is the categorization of

uncertainties in CBSAs with an impact on the condentiality of the overall system. So

far, existing taxonomies and other related work do not aim to categorize uncertainties

in software architectures, which is why a categorization template is necessary for this

purpose. We rst present and assess available ADD- and uncertainty related categories in

Section 5.1. To nally answer RQ1.2, we propose our selection of ADD- and uncertainty

related categories in Section 5.2.

5.1. Assessment of Available Categories

In Chapter 3, we presented related work with regard to ADDs and uncertainties in software

systems. For both cases, we extract possible categories as follows: First, we collect and

assess available taxonomies, as they provide categories explicitly. In a next step, we

analyse related work with regard to similar categories, even if the authors do not explicitly

employ the terms category, dimension, type, option or something similar. This helps us

to substantiate already identied categories with further sources, as well as to extract

further categories that have not yet been identied. If authors use dierent terms to

describe the same category, we align the vocabulary to avoid confusion. Each category is

further specialized and provides several options. A standardisation of the terms category
and option should serve the purpose of better understanding. Therefore, we use only the

terms category and option, regardless whether the authors use terms like dimension [73] or

characteristic [21]. When assessing taxonomies and other sources of possible categories, it

is absolutely necessary to consider the purpose and the scope of the respective work.

In the following, we provide a brief overview of the available sources and their scope:

Both, Kruchten [43], and Jansen and Bosch [37] provide taxonomies to classify ADDs

in software systems which is exactly what we intend to do. Walker et al. [73] lay the

foundation for model-based uncertainty taxonomies and provide an interdisciplinary

framework for systematic uncertainty analysis. The second taxonomy is presented by
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Perez-Palacin and Mirandola [52]. This work is based in the taxonomy proposed byWalker

et al. [73] but focuses more on describing uncertainties in the modeling of SASs. This

taxonomy focuses on uncertainties in models with regard to structure and composition.

As software architecture is usually described as model, this taxonomy provides valuable

input for our classication. Esfahani and Malek [21] does not provide an uncertainty

taxonomy but enumerates further possibilities for uncertainty categories in SASs. They

propose the concept of the spectrum of uncertainty based on knowledge which we adapted

in Section 2.2. Hezavehi et al. [31] present a taxonomy for uncertainties in SASs, that is

based on a SLR and that includes the works presented previously. Bures et al. [14] adapt

the taxonomy of Perez-Palacin and Mirandola [52] to be able to categorize uncertainty in

access control in Industry 4.0 systems. The proximity of this work to ours allows for a high

degree of reusability of proposed categories and options, although not on a one-to-one

basis.

In another work, Hezavehi et al. [32] provide an overview of uncertainty in SASs from a

community perspective. In contrast, Troya et al. [72] provide a recent SLR about uncertainty

representation in software models. Both works are highly interesting since their actuality

illustrates the current state of the art. The works of Ramirez et al. [54], Cámara et al.

[16], and Famelis and Chechik [24] do not provide fully elaborated categories in form of a

taxonomy, but they provide valuable input for the categorization process.

Current taxonomies and most of the related work with regard to uncertainty in software

systems therefore mostly cover the area of SASs. Therefore, we cannot reuse proposed

categories one by one as we want to describe and classify uncertainties in CBSAs. Categories

created exclusively for SASs are omitted for the sake of clarity. Nevertheless, each work is

to be assessed with regard to the suitability for our purpose. In the following, we provide

a detailed description of available categories for both, categorizing ADDs (Section 5.1.1)

and uncertainties (Section 5.1.2).

5.1.1. ADD-related Categories

In this section, we present available categories and options to categorize ADDs with regard

to their architectural characteristics and impact on condentiality. Table 5.1 provides an

overview of the extracted categories including their options. The categories are mainly

extracted from Jansen and Bosch [37] and Kruchten [43].

Category ADD Class categorizes ADDs in four major classes: existence decisions, non-
existence decisions, property decisions and executive decisions [43]. Existence decisions are
further rened into structural decisions and behavioural decisions. Structural decisions refer
to the creation of elements such as subsystems, layers, partitions or components whereas

behavioural decisions describe how those elements interact. Kruchten [43] refers to them

as one class, although both classes represent two dierent concepts in CBSAs. In contrast,

Non-existence decisions only express the opposite of the aforementioned existence decisions.
In both cases, such decisions usually refer to specic elements. On the contrary, property
decisions often cannot be related to specic element as they often express cross-cutting

concerns. To that end, Kruchten [43] dierentiates between positively expressed decisions,
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Architectural
Category

Description Options Descriptions Source

ADD Class Categorization

of ADDs into

classes

Existence

decisions

Expresses the existence of

elements and artefacts in

the system (structural

decisions) and how they

interact (behavioural

decisions)

[43]

Non-

existence

decisions

Ban-Decisions: Opposite

of existence decisions

[43]

Property

Decisions

Describe ADDs dening

rules or constraints

[43, 37]

Executive

decisions

Aect matters of nance,

methods, education,

training, organization,

technology and tools

[43]

Attributes Relevant

attributes for

each ADD

Epitome Short textual description

of the ADD

[43]

Rational Justication of ADD [43, 37]

Scope Scope in time,

organization or in design

[43]

State Current status of the ADD [43]

History Author and date when

ADD was taken

[43]

Cost Estimated costs [43]

Risk Risk due to uncertainty in

problem domain or

novelty of solution domain

[43]

Additional

Require-

ments

Requirements that need to

be adressed by additional

ADDs

[37]

Relationship Possible

relationships

between ADDs

Enables Decision B enables A (but

does not take it)

[43, 37]

... ... [43]

Table 5.1.: Overview of available architectural-related Categories including their Options

such as rules or guidelines, and negatively expressed decisions, such as constraints. Finally,

executive decisions aect the business environment, development process, education and

training, the organizations, and the choice of technology and tools. Kruchten [43] cites

as a major dierence to the previous classes that such decisions do not concern specic

elements. As an example, he presents the technology decision that "The system is devel-

oped using J2EE" [43]. However, in times of Microservices, it is arguable whether or not
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such decisions can or cannot refer to, for instance, specic components [9]. Overall, this

category is highly suitable for our own categorization.

Category Attributes are used to describe ADDs more precisely [43]. The options epitome,
rational, scope, state and history are more suitable to describe ADDs in a management

process which is not what we aim to do. Options cost and risk illustrate the need to choose

ADDs conscientiously, as otherwise high economic damage can occur. Also, Kruchten [43]

identies various relationships between ADDs, which can be considered as stand-alone

category. The following options are available: constraints, excludes, enables, subsumes,
conicts with, overrides, compromise, is bound to, is an alternative to, is related to. For the
sake of clarity, the relations are not described in detail. Nevertheless, this category shows

that ADDs must always be analysed in relation to each other. Hence, the denition of a

category for relationships is inevitable. Jansen and Bosch [37] consider software architec-

ture as set of ADDs making those decisions a rst-class entity. They also identify options

to describe ADDs. As with Kruchten [43], these include rational and design constraints.
Further, they identify the option additional requirements which are requirements that need

to be satised by other ADDs.

Category Relationship describes various relationships between ADDs. Both Kruchten

[43], and Jansen and Bosch [37] present several possible relationships such as enables,
subsumes, override or conicts with.

5.1.2. Uncertainty-related Categories

This section provides an overview of available categories to describe characteristics of

uncertainties from various point of views. Some approaches provide elaborated uncer-

tainty taxonomies [73, 52, 14, 31], others enumerate possible categories in a less structured

manner [21, 32, 72, 24]. We standardise the terminology as described previously. For each

category/option, we argue whether or not it is suitable for our purpose or how it can in-

spire our categorization process. Table 5.2 provides an overview of the available categories.

Category Location is a widely recognised category for uncertainty and is described by

[14, 31, 73, 52, 72]. Each of them provide a slightly dierent denition of this category,

depending on the scope of the respective work. Location is either dened as category that

describes where uncertainty manifests itself within the model [73, 52, 72] or within the

entire system [31, 14]. The dierences really become noticeable in the options which are

presented in Table 5.3.

In the following, we describe all options in detail with regard to the dierent views

of the respective authors. Several authors identify the context as a possible location

for uncertainties: According to Walker et al. [73] the context represents the boundaries
of the system to be modelled. This includes "uncertainty about the external economic,

environmental, political, social, and technological situation that forms the context for

the problem being examined" [73]. Perez-Palacin and Mirandola [52] refer to context

uncertainty when there is uncertainty about the information to be modelled. In contrast,

Hezavehi et al. [32] describe this option as the execution context, including humans that

30



5.1. Assessment of Available Categories

Uncertainty
Category

Description Source

Location Describes where uncertainty manifests itself

within the system

[14, 31, 73,

52, 72]

Level Describes how much is known about the

uncertainty on a scale from deterministic

knowledge to total ignorance

[73, 31, 52,

14]

Nature Describes the character of uncertainty [73, 52, 31,

14, 44, 72]

Manageability Describes the manageability character of

uncertainty with regard to its reducibility

[21, 73]

Emerging Time Describes when uncertainty is

acknowledged during the cycle of the system

[31, 54, 32]

Impact on non-

functional Properties

Describes how uncertainty aects

non-functional properties the system

[32]

Relationship Relationship between uncertainties [54, 32]

Source Potential sources of uncertainty [52, 21, 31,

44]

Table 5.2.: Overview of available uncertainty-related Categories

interact with or aect the system. Finally, Bures et al. [14] dene uncertainty in the context

as any uncertainty with regard to the system’s context and the system’s input data. Each of

the denitions addresses several fundamentally dierent concepts. Overall, the denition

of the category context is very overloaded as it includes several conceptionally dierent

locations of uncertainties, as for instance uncertainties due to unknown system boundaries,

unknown environmental circumstances, uncertainties in the system to be modelled as

well as the uncertain behaviour of external actors [72].

Another possible location for uncertainty is described asmodel structural. Again, various
dierent views exist. Walker et al. [73] mention uncertainty in the structure of the model

itself, in the behaviour of the system and relationships between inputs and variables. The

denition of Perez-Palacin and Mirandola [52] is mainly adopted from Walker et al. [73]

and describes uncertainties in the accuracy of the structure of the model, i.e the elements

and relationships that exist in a model. According to Hezavehi et al. [31], this location

represents uncertainties due to various conceptional models, which represent the same

system dierently. Bures et al. [14] describe model structural as uncertainty within the

design of the system, i.e. uncertainty related to the occurrence of components and their

wiring. Lastly, Troya et al. [72] refer to uncertainties with regard to the existence of

entities in a model, as well as possible design alternatives. Again, the explanations include

several concepts of CBSAs such as input variables, the structure of a system, the behaviour

of entities and their relationship. Each of these concepts represent valid locations of

uncertainties, but they should be clearly structured and considered separately from each

other.
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Category: Location
Option Descriptions
Context - Refers to the boundaries of the system to be modelled incl.

external economic, environmental, political, social, and

technological situation [73]

- Refers to the boundaries of the meta-model [52]

- Refers to system context and the system’s input data [14]

- Refers to execution context and humans interacting with it [31]

Model Structural - Refers to the structure of the system, its behaviour and the

relationships between elements [73]

- Refers to the model elements and their relation [52]

- Refers to the existence of entities [72]

- Refers to possible design alternatives [72]

- Refers to various conceptional models representing the same

system dierently [31]

- Uncertainty about system components, their wiring and

hardware resources [14]

Model Technical - Uncertainty induced by software and hardware errors [73]

Inputs - Uncertainty due to uncertain input types and values [73]

- Uncertainty due to the actual value of inputs [52]

- Uncertainties due to measurement deviations [72]

Model

Parameters

- Uncertainty in data for model parameter calibration [73, 52]

Model outcome

uncertainty

- Accumulated uncertainty induced by the uncertainties of all

other locations [73]

System

Behaviour

- Uncertainties in the actual behaviour of the system [14]

- Uncertainties in the actual behaviour of the system including

possible actions, the underlying motivation and point in time,

and the actual parameters or the actions [72]

Belief

Uncertainty

- Uncertainty about statements about the system or the

environment [72]

Table 5.3.: Overview of available Options for the Uncertainty Category Location

Model Technical is based on [73] and describes uncertainty induced by software errors

due to software bugs or design errors in algorithms, and hardware errors due to failures

in technical equipment. It is questionable whether software errors could not be assigned

directly to system components and hardware errors to the system environment, i.e. whether

it is necessary to consider these locations separately.

Walker et al. [73], Troya et al. [72] and Perez-Palacin and Mirandola [52] identify the

Inputs of the system as separate location where uncertainty can occur. According to

Walker et al. [73], uncertainty prevails not only in the type of the inputs that cause system
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changes, but also in their possible values. Perez-Palacin and Mirandola [52] only mention

the actual value of possible inputs. In contrast, Troya et al. [72], dene this option as

uncertainty due to measurement deviations. Whereas the rst two denitions represent a

useful conceptional location of uncertainties, the last rather describes a potential source

of uncertainties.

Both, Walker et al. [73] and Perez-Palacin and Mirandola [52] identify model parameters
as another possible location of uncertainties. In both cases, parameter uncertainty describes

uncertainties in methods and data for model parameter calibration, which is not required

for our approach. Model outcome uncertainty is the accumulated uncertainty induced by

the uncertainties of all other categories, which propagate through the model and reect

uncertainties in model analyses outcome [73]. In a sense, this type of uncertainty is the

one we try to analyse with our approach. Hence, it is not part of the categorization process,

but rather the overall result.

Uncertainties in the system behaviour is another location which is already partly covered

by the model structural denition of Walker et al. [73]. Yet, uncertainties in the system
behaviour is explicitly dened by Bures et al. [14] and Troya et al. [72]. Bures et al. [14]

provide a rather general denition of this location as they describe it as "uncertainty in the

actual behaviour of the system" [14]. Troya et al. [72] expand this by uncertainties in the

actual behaviour of the system including possible actions, the underlying motivation and

point in time, and the actual parameters or the actions. Clearly, the denition of Troya

et al. [72] also includes uncertainties in input parameters, which we consider as separate

option. Uncertainties in system behaviour should therefore be explicitly considered in our

categorisation process

Belief uncertainty is referred to as "second-order uncertainty" [72] and describes uncer-

tainty about statements about the system or the environment made by belief agents. This

uncertainty is not specically assignable to the system, but rather to belief agents such as

software architects. It is therefore rather less important for our categorisation.

Category Level describes how much is known about the uncertainty on a scale from

deterministic knowledge to total ignorance. Although this category is dened in the same

way by [73, 31, 52, 14], the underlying idea is very dierent. Whereas Walker et al. [73] and

Hezavehi et al. [31] describe the dierent levels by how much knowledge lacks to achieve

deterministic knowledge, Perez-Palacin and Mirandola [52] and Bures et al. [14] describe

the levels by orders of ignorance. Table 5.4 illustrates this by separating the options into

two areas, as indicated by the bold line. In the following, both concepts are explained in

more detail.

Walker et al. [73] employ the terms statistical uncertainty, scenario uncertainty, recognised
ignorance and total ignorance. Statistical uncertainty is any uncertainty that can be described
with statistical means. In other words, one is aware of the uncertainty and capable to

describe it adequately using statistical expression (e.g. failure rate of a CPU). Scenario
uncertainty refers to plausible descriptions on how a system might develop in the future.

The dierence between statistical and scenario uncertainty is that the former can be

expressed using stochastic terms whereas the latter involves choosing from a range of

discrete possibilities, because too little information is available to adequately describe the

outcomes statistically
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Category: Level
Option Descriptions
Statistical

Uncertainty

Any uncertainty that can be described with statistical means [73, 31]

Scenario

Uncertainty

Refers to available descriptions (=scenarios) on how a system might

develop in the future [73, 31]

Recognized

Ignorance

Uncertainty is accepted but no mitigation strategy exist, i.e. cannot be

described using statistical means or scenarios. Further divided in

reducible and irreducible ignorance. [73]

Total Ignorance One does not even now what is unknown [73]

0
th
Order Lack of uncertainty, i.e. knowledge [52, 14]

1
st
Order Lack of knowledge but awareness of uncertainty, i.e. known uncertainty

[52, 14]

2
nd

Order Lack of knowledge and lack of awareness of uncertainty [52, 14], i.e.

unknown uncertainty

3
th
Order Lack of process to nd out what is unknown [52, 14]

4
th
Order Uncertainty about orders of uncertainty, i.e. meta-uncertainty [52]

Table 5.4.: Overview of available Options for the Uncertainty Category Level

The next level is recognised ignorance where uncertainty is accepted but cannot be

described using statistical means or scenarios. The authors further divide recognised
ignorance in reducible ignorance and irreducible ignorance, where reducible ignorance can
be resolved by conducting further research and irreducible ignorance cannot. However,
it is arguable if reducibility and irreducibility only applies to recognized ignorance. For
instance, one can argue that user behaviour is irreducible in its nature but can be described

using statistical means. This uncertainty characteristic therefore needs further attention

and will be discussed in the course of this thesis.

Lastly, total ignorance refers to "not even know what we do not know" [73], hence the

architects is not aware of uncertainties at this level. Especially the last level does not

apply for our approach, as we only consider uncertainties that we know and in particular

we know the location of. As already said, this classication is based on the fact that the

gradual descent of levels requires a higher amount of knowledge to get closer to ideal

determinism. More precisely, uncertainty that can be described by statistical means is

closer to determinism than uncertainty that can only be handled by creating potential

future scenarios, and so on. Hezavehi et al. [31] adopt only statistical uncertainty and

scenario uncertainty, and neglect the remaining levels. Here it is questionable whether

each uncertainty can be described by statistical means or by scenarios, which is why we

consider the option recognized ignorance to be particularly important.

In contrast, Perez-Palacin and Mirandola [52] describe ve levels of ignorance along

the spectrum between deterministic knowledge (zeroth order) and total ignorance (fourth

order) which is based on the work of Armour [4]. The zeroth order represents the lack of
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uncertainty, i.e. the idealistic presence of absolute knowledge. The rst order of uncertainty
describes that a subject lacks knowledge but is aware of that, which the authors refer

to as known uncertainty. The second order of uncertainty describes that a subject lacks

knowledge and awareness, which is described as unknown uncertainty. In this case, a

subject does not know that a specic uncertainty exists but has adequate means to detect

such uncertainties eventually. The third order represents the lack of process to move

unknown uncertainty to known, which describe the circumstances that no means exist to

detect such uncertainties. The fourth order represents the meta uncertainty and describes

uncertainty about the order of uncertainty. Bures et al. [14] adopt this taxonomy except

that the fourth level (meta-uncertainty) is removed due to impracticality.

For our approach, second, third and especially the fourth order do not provide any

valuable benet, as we can only analyse the impact of uncertainties that were identied

beforehand, i.e. uncertainties at the rst order. For uncertainties of the other levels,

approaches exist that deal with the detection of previously unknown uncertainties. In

the case of SASs, for example, monitoring is a suitable means of detecting unknown

uncertainties in behaviour [26]. However, detecting unknown uncertainties is out of the

scope of this thesis. Therefore, the categorisations proposed by [52, 14] is only partially

suitable for our use case.

When comparing the two dierent approaches to describe the level of uncertainty, the

following mapping can be applied: statistical uncertainty, scenario uncertainty an recognized
ignorance can be mapped to the rst order of uncertainty (i.e. known uncertainty) whereas

total ignorance can be mapped to the second order. In a sense, the categorisation proposed

by Walker et al. [73] is a more ne grained view on known uncertainties (rst order),
which is what we want to classify.

CategoryNature is addressed by almost all papers that deal with uncertainty. As described

in Section 2.2, nature refers to the essence of uncertainty and is divided into epistemic
and aleatory [73, 52, 31, 14, 44, 72] (see Table 5.5). Epistemic uncertainty is caused by

the imperfection or lack of knowledge. Therefore, it can be mitigated by gathering more

information. In contrast, aleatory uncertainty is caused by the inherent variability of the

nature or due to random events [28]. Consequently, this type of uncertainty cannot be

reduced by acquiring more information. Some authors use the term variability instead of

aleatory [73]. However, this is an interchangeable term in the literature for the same term

[31]. Nature is the only category that is widely accepted and always dened similarly.

Category: Nature
Option Descriptions
Aleatory Caused by the inherent variability of the nature or due to random

events [73, 52, 31, 14, 44, 72]

Epistemic Caused by the imperfection or lack of knowledge [73, 52, 31, 14, 44, 72]

Table 5.5.: Overview of available Options for the Uncertainty Category Nature
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Category Manageability refers to the management of uncertainty which is proposed

by Esfahani and Malek [21], and consists of the options reducible and irreducible (see
Table 5.6). The rst option describes uncertainty that can be reduced (i.e. managed) by

acquiring additional knowledge. Option two expresses that if something is fundamentally

unknowable, the associated uncertainty is irreducible. Although we already justied in

Section 2.2 that aleatory uncertainty is irreducible in its nature, and epistemic is reducible,

we consider this category to be important as it describes a dierent view on uncertainties.

However, it is questionable whether uncertainty can always be binarily assigned to one of

the two options, or whether there should not be others. Walker et al. [73] use the terms

reducible and irreducible to divide their uncertainty level recognized ignorance (cf. category
Level). This demonstrates that a certain connection exists between this category, and the

categories nature and level. Although it is clear that aleatory uncertainty can never be

completely reduced, it can, be at least partially reduced by describing the uncertainty with

statical means if possible.

Category: Manageability
Option Descriptions
Reducible Uncertainty can be reduced by acquiring more knowledge

Irreducible Uncertainty cannot be reduced if something is inherently

unknowable

Table 5.6.: Overview of available Options for the Uncertainty Category Reducibility

Category Emerging Time is a category that describes when uncertainty is acknowledged
or appears during the cycle of a system. It is describes by several works such as [54, 72,

31, 32]. The options corresponds to known software development phases, also specied

by the Rational Unied Process (RUP) [42]. Some of the available options are presented

in Table 5.7. Although we consider uncertainties at architectural level, thus at the design

time, it will be necessary to address other phases as well. Hence, this category provides

valuable input for our categorization process.

Category: Emerging Time
Option Descriptions
Requirements Time Uncertainty arises during requirements time [54, 72]

Design Time Uncertainty arises during design time [54, 32, 72, 31]

Verication Uncertainty arises during the verication of the models [72]

Testing Uncertainty arises during testing [32, 72]

Implementation Uncertainty arises during implementation of the system [72]

Run Time Uncertainty arises during run time [54, 32, 72, 31, 52]

Table 5.7.: Overview of available Options for the Uncertainty Category Emerging Time
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Category Impact describes the way uncertainties aect non- functional properties of a

given system. To that end, Hezavehi et al. [32] provide the options performance, resource
consumption and safety (see Table 5.8). As already mentioned in Chapter 1, current

approaches do not investigate the impact of uncertainty on the non-functional property

condentiality which is what we aim to do in this thesis. Nevertheless, this proposed

category indicates the importance to consider the impact of uncertainties on non-functional

properties.

Category: Impact
Option Descriptions
Performance Impact of uncertainty on the performance of a system [32]

Resource

Consumption

Impact of uncertainty on the performance of a system [32]

Safety Impact of uncertainty on the safety of a system[32]

Table 5.8.: Overview of available Options for the Uncertainty Category Impact

Category Relationship describes how uncertainties are related to each other. Ramirez

et al. [54] propose a taxonomy of sources of uncertainties and how they are related to

each other. This realisation contributes signicantly to the fact that we cannot consider

uncertainties in isolation, but must always see them in relation to each other. As presented

in Table 5.9, Ramirez et al. [54] dene the two options directed and related. The rst

option describes a directed relationship between two uncertainties such as an uncertainty

causing another uncertainty. The latter describes that two uncertainties are somehow

related to each other, without further specifying the characteristics of the relationship.

For our categorization process, it is therefore necessary to elaborate and dene potential

relationships between uncertainties.

Category: Relationship
Option Descriptions
Directed Directed relationship between uncertainties [54]

Related Unspecied relationship between uncertainties [54]

Table 5.9.: Overview of available Options for the Uncertainty Category Relationship

Category Source is another frequently mentioned category of uncertainties. Table 5.10

provides an incomplete overview of available sources, such as uncertainty due to ab-
straction or due to changing resources. A comprehensive overview of available sources is

provided by Cámara et al. [16]. However, we consider sources of uncertainties as entities

that we want to categorise with our categories. Therefore, the sources of uncertainties are

rather to be considered as the input of our categorization process and not as category.
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Category: Source
Option Descriptions
Abstraction Uncertainty due to omitting details for simplicity reasons [21]

Incompleteness Uncertainty due to (known) missing elements of the model [52]

Human in the

loop

Uncertainty due to the unpredictability of humans [21]

Changing

resources

Uncertainty due to the dynamicity of the system’s resources

Sensing Uncertainty due to inaccurate or broken sensor values

... ...

Table 5.10.: Overview of available Options for the Uncertainty Category Source (Excerpt)

Conclusion: The literature search shows that some categories occur more often (cf. nature,
location, level) and some do not (cf. emerging time). This is due to the fact that most of the

works build on each other, but adapt the proposed categories for their needs. It is always

important to note for which purpose an uncertainty categorisation is made. Examples are

more general categorisations [73], categorisations for SASs [51] or for access control [14].

Further, the denitions of the categories and especially those of the specied options vary

considerably in some cases. For this reason, it is important that we specify the categories

and options of our approach precisely, in order to avoid confusion with existing categories

of other approaches.

5.2. Proposed Categories

In the following, we present the ADD- and uncertainty related categories. For each cate-

gory, we provide the following information: First, a detailed denition of category and

options, including examples where possible. Second, the foundations on which the cat-

egories/options are based. Third, the expected added benet of the categories and their

options. The rst part contributes substantially to the understanding of the respective

category/option. The second part aims to substantiate the right of the category/options to

exist. The third part explains how users can process and use the information provided by

the category/option. In the end, the proposed categories should help to assess uncertainties

and their impact on condentiality in CBSAs.

5.2.1. ADD-related Categories

In this section, we present our selection of categories and options used to categorize

ADDs in CBSAs. An overview is provided in Table 5.11. In the following, each ADD-related

category is explained in detail.
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Architectural
Category Description Options Descriptions

ADD Class Categorization of

ADDs into classes

Structural

Decision

Expresses the existence of

elements and artefacts in

the system

Behavioural

Decision

Expresses how elements

interact

Property

Decision

Describes ADDs dening

rules or constraints

Executive

decision

Aects matters of nance,

methods, education, train-

ing, organization, technol-

ogy and tools

Amount of

Alternatives

Extensibility of

known sets of design

alternatives

Closed Set Final set of alternatives

Open Set More alternatives are

added in the future

Probability of

Revisability

Expresses whether it

is more or less likely

that a taken ADD will

be revised in the

future.

Likely Higher probability that a

decision will be revised

later

Unlikely Probability that decision

will be revised later is low

Possibility of

Revisability

Expresses whether it

is actually possible to

revise an ADD after it

was taken

Yes ADD can be revised in the

future

No ADD can’t be (practically)

revised in the future

Costs of

Revision

Expresses the

expected costs of a

potential revision

High Expected costs to revise an

ADD are high

Low Expected costs to revise an

ADD are high

Table 5.11.: Overview of the proposed ADD-related Categories including their Options

Category ADD Class enables to categorize ADDs into four major classes, where each

option corresponds to a respective class. ADDs can be categorized as structural decisions,
behavioural decisions, property decisions and executive decisions. Structural decisions express
the existence (or if expressed negatively the non-existence) of elements of CBSAs. This

includes the creation of subsystems, layers, partitions, components and other rst-class

entities such as interfaces. Behavioural decisions concern the relationship between ele-

ments, i.e. how elements interact and communicate with each other. Property decisions
express design guidelines and rules (if expressed positively), and constraints (if expressed

negatively). The main dierence between structural and behavioural decisions on the one

hand, and property decisions on the other, is that the latter cannot be related to specic

types of elements, as it aects several element types and therefore has a rather overar-
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ching inuence. Finally, executive decisions aect matters of nance, methods within the

development process, education and training of people, overall organizational decisions,

and especially technology and tools.

This category and options are mainly adopted from the taxonomy proposed by Kruchten

[43]. Only the former category existence decisions is divided into the two categories struc-
tural decisions, behavioural decisions, which are two dierent concepts in CBSAs according to

Reussner et al. [56]. The former non-existence decisions are part of the respective structural
and behavioural decisions, since the categorisation would be unnecessarily inated. It has

to be noted that this categorisation does not always have to be unambiguous. For instance

given the ADD: ’Components must communicate via facades’ which, on the one hand, leads

to the creation of the structural elements Facade and, on the other hand, describes how

components communicate with each other. Thus, this ADD can be categorised as both,

structural and behavioural decision. Although this ADD aects the communication of

components in general, it is not categorised as property decision, as it aects specic types
of elements.

With this category, architects should be able to better understand the basic idea of an

ADD, in order to better assess possible eects on condentiality. For example, when a

behavioural decision is made, an architect should investigate whether the communica-

tion/interaction needs special protection in terms of condentiality breaches.

Category Amount of Alternative is based on the fact that ADDs come with an amount

of possible alternatives from which architects need to select one at a certain point during

the design time. The basic idea of this category refers to the extensibility of known sets

of design alternatives [41]. closed set refers to the ADDs where all possible alternatives

are known at the time of the decision. For instance, when deciding on certain design or

communication patterns, architects choose from a well-known and closed set of existing

patterns. Another example is the selection of access control mechanisms, where architects

choose one of the available mechanisms such as Attribute-based Access Control (ABAC)

or Role-based Access Control (RBAC). One can argue that new patterns or mechanisms,

and consequently further design alternatives will be developed in the future, but by

the time the architect makes a decision each currently available design alternative is

known. Open set refers to the situation where some alternatives are known at the time

an architects makes a decision, but other alternatives are likely to emerge in the course

of the software development process, e.g. through the acquisition of more knowledge.

For example, architects have to select a component for a specic purpose from a set of

previously available components. However, it is likely that more alternative components

will become available, as architects gain more knowledge about other software vendors

oering such components. The main dierence is that with closed set it is assumed that all

design alternatives are known, whereas with open set it is deliberately said that further

possibilities will be added. Although we speak of sets, we do not restrict ourselves to

nite or innite sets in the mathematical sense. For example, although the alternatives for

calibrating a sensor value are potentially innite (since real numbers could be used), in

our sense they are known beforehand and thus can be described as closed set. The edge
case of a decision without previously known alternatives can be assigned to the open set,
since further alternatives must be added in the course of the software design.
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The idea of extending known set of design alternatives is based on the work of Koziolek

[41]. In addition, this category is inspired by Esfahani et al. [22] who describe that

a software architecture "results from selecting a viable alternative for each and every

decision". According to the authors, each alternative can have a dierent impact on the

software architecture’s non-functional properties. In doing so, they explain that it is not

always possible to precisely describe the impact of known alternatives on these properties,

which induces uncertainty. We transfer this concept to uncertainties in the design process,

i.e. that not only the possible impacts of the alternatives are unknown, but also the possible

alternatives themselves.

With regard to the classication of an ADD, its underlying uncertainty and the impact

on condentiality, this category should help as follows: For each alternative of a closed set,
the impact on condentiality can be assessed or at least estimated [22]. Subsequently, the

best alternative can be chosen and thus the underlying uncertainty can be at eliminated.

In the case of an open set, it is still possible to compare the currently available alternatives

and select one of them. However, the underlying uncertainty cannot be completely elimi-

nated, as possible further alternatives can lead to the revision of the ADD. In general, it

can be assumed that ADDswith a closed set aremoremanageable than those with an open set.

Category Probability of Revisability denes whether it is more or less likely that

a taken ADD will be revised in the future. The options likely and unlikely describe the

directions of the continuous spectrum of the possibility of a revision. Likely is intended to

suggest that an ADD is likely to be changed whereas unlikely indicates, that a revision will

probably not be made. For instance, fundamental decisions about the system structure, the

distribution or authentication are less likely to be revised. In contrast, decisions regarding

the system environment such as the deployment location are more likely to be revised,

due to unpredictable changes in the environment.

This category is inspired by architectural change impact analyses such as the one

proposed by Rostami et al. [57]. ADDs made during the design process can be revised

due to, for example, incorrect assumptions or changed requirements [57]. Nevertheless,

decisions have to be made to drive the design process ahead, even if this is based on

assumptions. At this point, we do not consider a division into discrete value ranges or

percentage points to be purposeful. Such a determination is often very dependent on the

application area and can often only be determined very imprecisely.

For software architects, it would be helpful to know which decisions are more or less

likely of being revised. Decisions that probably will not be revised in the future can be

taken without further consideration. However, if a revision is likely, architects should look

more closely at the impact of possible revisions.

Category Possibility of Revisability is based on the fact that in some cases ADDs cannot

be revised at all, or not with reasonable eort and cost. This circumstance is expressed by

this category with the respective options yes and no for revisability and non-revisability.

For instance, decisions about the fundamental structure of the system cannot be revised

without reasonable eort and costs. It can be argued that in theory any decision can be

revised by rewriting the entire software. However, the aim of this category is to dene

whether an ADD can be practically revised or not.
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Again, this category is inspired by architectural change impact analyses and should be

seen in combination with the category probability of revisability. For software architects,
information about the possibility of revisability is important as decisions that cannot

be revised must be treated with caution. If such a decision is inuenced by too many

uncertainties due to assumptions at any point in the design process, it should not be made

yet. Beforehand, as many uncertainties as possible should be eliminated through, for

example, further knowledge acquisition.

Category Costs of Revision describes the required costs to redesign parts of the software

architecture due to a revised ADD. But some decisions are "cheaper" than others when

it comes to their revision. Therefore, we introduce this category with the option high
and low to express the expected costs of a potential revision. For instance, adding new

access rights will probably be cheaper than changing a component, as components need

to be implemented or purchased, whereas new access rights can be added by a system

administrator in a few minutes.

Likewise, this category is based on the insights of the two previous categories. The

rationale and benets for software architects are similar. ADDs involving high costs of

change should be decided later when uncertainty is present. In other words, uncertainties

that could lead to high costs when the accompanying ADD is revised, should be given

higher priority. A quantication by means of specic amounts of money or hours of work

is also not expedient here, as a precise statement on this is part of an entire branch of

research [57].

5.2.2. Uncertainty-related Categories

This sections presents the categories/options to categorize uncertainties in CBSAs. They

are explained in detail in the course of this section. An overview is provided in Table 5.12.

Uncertainty
Category

Description Options Descriptions

Location Describes where

uncertainty manifests

itself within the

architecture

System

Structure

Refers to the structure of

components, their wiring and

communication

System

Behaviour

Refers to the behaviour of the

systems and its components

System

Environment

Refers to the system’s context,

including hardware resources

and the external situation

Input Refers to the inputs provided by

external actors
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Type Describes how much is

known about the

uncertainty

Statistical

Uncertainty

Information available to describe

uncertainty with statistical

means

Scenario

Uncertainty

Known descriptions available on

how a system might develop in

the future

Recognized

Ignorance

Uncertainty accepted but no

mitigation strategy exists, i.e. it

cannot be described using

statistical means or scenarios

Nature Describes the essence

of uncertainty

Aleatory Caused by the inherent

variability of the nature or due to

random events

Epistemic Caused by the imperfection or

lack of knowledge

Architectural

Element Type

Architectural

elements to which an

uncertainty can be

assigned

Commu-

nication

Uncertainty assignable to the

communication

Hardware

Resource

Uncertainty assignable to

hardware resources

Component Uncertainty assignable to

components

Interface Uncertainty assignable to

interfaces

Usage

Behaviour

Uncertainty assignable to

elements describing the

behaviour

Manageability Describes if more

knowledge or other

appropriate means can

reduce the uncertainty

Fully

Reducible

Uncertainty fully reducible

Partial

Reducible

Uncertainty at least partially

reducible

Irreducible Uncertainty won’t be reduced

Impact on

Condentiality

Describes the impact

on condentiality if

uncertainty persists

Direct Direct impact on condentiality

Indirect Impact, only in conjunction with

other factors

None No impact on condentiality
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Severity of

the Impact

Describes the severity

of the impact on

condentiality if

uncertainty persists

High Loss of condentiality expected

Low Condentiality cannot be

guaranteed any more

None No loss of condentiality

expected

Resolvable by

ADD

Describes whether

uncertainty can

(partially) be resolved

by taking an ADD

Yes

(+ reference)

Uncertainty can be resolved by

taking an ADD

No Uncertainty is not resolvable by

taking an ADD

Resolution

Time

Describes time at

which uncertainty is

resolved at the latest

Requirements

Time

As soon as requirements are

claried

Design Time As soon as design is nished

Deployment

Time

As soon as system is deployed

for the rst time

Runtime As soon as knowledge gained

from ongoing operations is

available

Never No resolution possible

Root Cause Describes the root

cause for the

uncertainty

Assumption Uncertainty due to assumption

Missing

Information

Uncertainty due to missing

knowledge

Table 5.12.: Overview of proposed uncertainty-related Categories including their Options

Category Location describes where uncertainty manifests itself within the architec-

ture. Here, we propose the following options: system structure, system behaviour, system
environment and input. To create the system structure, software architects compose com-

ponents via their provided and required interfaces. This process is referred to as wiring

and determines which instantiated components communicate with each other.

Option system structure thus describes uncertainties due to the design of the system

including the choice of components, their composition into composite components, their

wiring via provided and required interfaces, the structure of the interfaces, as well as the

data that is provided and required. As the composition of components can be continued

up to system level (the system is considered as the top composite component), system
structure also covers uncertainties with regard to the system interfaces. In the early stages

of system design, for example, it is still uncertain whether the software architects choose

an internally developed component, or another component that is conceptually the same

but provided by a third-party vendor. In that case, the internal structure and the interface

design might be unknown. However, this option only refers to the structure and not to

the behaviour of components. This is covered by the option described hereafter.
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System behaviour refers to uncertainties due to the actual behaviour of the system,

respectively its components. This includes uncertainties about data that is processed and

especially stored by components. The internal behaviour of components may be unknown

if, for example, it has not yet been dened, or components are only available as black

boxes. In addition, this option includes uncertainties due to software errors that may cause

the system to behave dierently than expected.

System environment describes uncertainties in the actual context where the system

is executed. This includes in particular uncertainties about hardware resources and the

allocation of system components to those resources. However, this does not include the

structure of these resources, such as their communication. Further, it includes uncertainties

due to external economic, environmental, political, social, and the technological situation.

Examples are uncertainties due to volatile deployment locations, changing cloud providers

or other unexpected technological changes.

Input describes uncertainties due to the type of inputs and their actual values provided

by external actors. Uncertainties arise from the unpredictability of humans or from a lack of

knowledge about external systems that interact with the system under consideration. While

system behaviour describes uncertainties within the system, input describes uncertainties

outside the system.

Category location is based on available locations as presented in Section 5.1.2. Each

option discussed is based on the ndings of previous uncertainty taxonomies, as well as

other related work. However, we adapted the available options to better t the needs of

CBSAs, and to align the locations with the models of the PCM (see Section 2.5). System
structure is mainly adopted from option model structural as presented by [73, 52, 31, 72,

14] and model technical [73]. However, we explicitly exclude uncertainties regarding the

behaviour of the system [73] and the hardware resources [73, 14]. The focus is on the

existence of entities [72], their relation [52] and possible design alternatives on system

level [31, 72]. This separation is in line with the PCM [56], as our denition of system
structure roughly corresponds to the Assembly Model. In this way, we hope to achieve

a better mapping from possible locations of uncertainties to the widely used and often

validated software architecture views of the PCM.

System behaviour describes the behavioural-related parts ofmodel structural as described
by Walker et al. [73], but is mainly based on the denition provided by Bures et al. [14].

Again, we do no consider the system behaviour as part of the system structure, as they
describe two fundamentally dierent concepts of CBSAs. As with the previous category,

this option can be roughly mapped to the Component Model of the PCM.

System environment is based on the respective denition of Bures et al. [14] but also

includes further context-related locations as proposed by Walker et al. [73] and Hezavehi

et al. [31]. Nevertheless, the focus is on the execution context and excludes uncertainties

due to humans as added by [31, 14]. With regard to the PCM, the system environment can
be mapped to the specication of the hardware resources which are used in the Allocation
Model. Due to its focus, the PCM concentrates on the denition of the resource environment

only. Nevertheless, we consider uncertainties due to external economic, environmental,

political, social and technical situations as part of the context which is in line with the

ndings as presented in Section 5.1.2. Therefore, those aspects are added to our denition

of the system environment.
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Input combines the user related parts of the option context as proposed by [73, 14, 31],

as well as the option input as dened by [73, 52, 72]. In the PCM, the user input is modelled

in the Usage Model. The majority of the locations identied in Section 5.1.2 can be found

in our category. Nevertheless, we adapt most of them to better t the needs of locating

uncertainties in CBSAs with a focus on PCM. Only options model outcome uncertainty
and belief uncertainty are removed completely. Regarding model outcome uncertainty,
we already explained that this type of uncertainty is the one we try to analyse with our

approach and should be considered as the overall result. Belief uncertainty is excluded, as

it rather describes the uncertainties within the software architects’ statements. This type

of uncertainty is what we try to reduce by providing a comprehensive description of each

category and location in the course of this thesis.

In general, software architects should be able to represent uncertainties as rst-class

entities within software architectures. This category provides several possible locations

that mostly map to specic PCM models. That enables software architects to categorise

given uncertainties and already roughly assign them to the respective PCM models, thus

to locations within software architectures. In consequence, they can better specify where

which uncertainty has an impact, which is one of the goals of this thesis.

Category Type illustrates how much knowledge lacks to achieve the ideal, but usually

unachievable deterministic knowledge. We therefore employ a gradual scale, the extremes

of which are the unattainable determinism at one end, and complete ignorance at the other.

The three options statistical uncertainty, scenario uncertainty and recognised ignorance
divide that scale into three areas where statistical uncertainty is closer to determinism

than scenario uncertainty, which is in turn closer to determinism than recognised ignorance.
Statistical uncertainty is any uncertainty that can be adequately described with statistical

means such as the failure rate of hardware devices or the expected number of user accesses.

Scenario uncertainty refers to any uncertainty that can be described by providing scenarios

such as one of the possible access control methods or known deployment locations. In those

cases, there is not enough information available to describe the uncertainty with statistical

means, but only to create possible future scenarios about how the uncertainty could be

resolved. Recognised ignorance describes the circumstance that uncertainty is accepted but

can be neither described with statistical means, nor with possible scenarios. A reason for

this is, for example, that too little knowledge is available to form suitable scenarios. For

instance, software architects still have little knowledge about the internal behaviour of

available components, so that they cannot create valid scenarios for comparison purposes.

In summary, describing uncertainty by statistical means requires more knowledge about

the prevailing uncertainty compared to creating potential scenarios. Likewise, being able

to create potential future scenarios is closer to determinism than just being aware that

uncertainty prevails.

This category is based on the level denition of Walker et al. [73]. As already explained,

statistical uncertainty, scenario uncertainty and recognized ignorance map to the known
uncertainties, i.e. the rst level of the orders of ignorance according to Perez-Palacin and

Mirandola [52]. Thus they represent a more ne grained view on known uncertainties,
which is exactly what we want to analyse in more detail. Anything beyond the rst level,

i.e. achieving awareness and providing processes to achieve awareness, is not part of
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this thesis. This is due to the simple fact that once we use our template to categorise

uncertainties, we are already at the rst level because we know them. Hence, our use

case does not require the remaining levels proposed by Perez-Palacin and Mirandola [52].

Although Walker et al. [73] use the term "level" for this category, we refrain from using

this term to not be confused with the widely accepted level denition of Perez-Palacin and

Mirandola [52]. Further, we only use a subset of the levels dened by Walker et al. [73]. In

particular, we omit the option total ignorance for the same reason we omit the remaining

levels of Perez-Palacin and Mirandola [52]. Moreover, Walker et al. [73] further divide

recognized ignorance into reducible ignorance and irreducible ignorance. In our case, the

reducibility character of uncertainties is covered by a separate category which is in line

with the ndings provided by [21].

A classication of existing uncertainties into these three options can help software

architects as follows: Statistical uncertainties can be handled well due to statistical signi-

cance. Software architects can statistically describe which occurrence is most likely. In

terms of scenario uncertainty, software architects could simulate existing future outcomes.

Finally, for recognized ignorance architects are at least aware that uncertainty prevails, so

that they can use adequate means to reduce uncertainty in a focused way.

Category Nature refers to the essence of uncertainty and is divided into epistemic and
aleatory. Epistemic uncertainty is caused by the imperfection or lack of knowledge.

Therefore, more knowledge can (but not necessarily) lead to the resolution of uncertainty.

If, for example, the internal behaviour of a component is unknown, this uncertainty can be

mitigated by gathering information about its internals. In contrast, aleatory uncertainty is

caused by the inherent variability of the nature or due to random events. For instance,

the failure of components, although statistically describable, is absolutely random and

therefore aleatory. Consequently, aleatory uncertainty cannot be reduced by acquiring

more information.

As indicated in Section 5.1.2, Nature is widely accepted by current researchers [73, 52,

31, 14, 44, 72]. We also share this view on the uncertainties, which is why we adopt the

category without any changes. For software architects, dierentiating between aleatory

and epistemic uncertainty is useful as it allows to decide whether the acquisition of further

knowledge is appropriate.

Category Architectural Element Type describes to which architectural element types

uncertainties can be assigned. The available options are communication, hardware resource,
component, interface and usage behaviour. Due to cross-cutting concerns, uncertainties

may aect multiple element types which is why this category is not exclusive.

The idea of this category is based on the principle of CBSAs, where each of the options

refer to rst-class entities, so that it is possible to exactly specify to which elements

uncertainties can be assigned. ADLs generally allow a more precise description of software

architectures, which is why it is possible to specify exactlywhere uncertainties canmanifest

themselves in the architecture. In CBSAs not only components and hardware resources are
rst-class entities, but also interfaces and the communication [56]. Further, ADLs such

as the PCM also provide the possibility to model the usage behaviour, which enables the

representation of usage behaviour as rst-class entity, too. Therefore, uncertainties due to
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usage behaviour can be assigned to the respective architectural elements that represent

the usage behaviour. The dierence to category location is the degree of abstraction. While

category Location conceptually describes where uncertainty manifests itself, this category

describes the specic elements to which uncertainties can be assigned. For example,

uncertainty about the internal structure and behaviour of a component represents two

dierent concepts according to category location. However, from a purely technical point

of view, both are assigned to a specic component. In order to conceptually understand

and specically dene where uncertainty manifests itself, both categories are necessary.

With regard to the analysis of the impact of uncertainties, this category enables a map-

ping of uncertainties to architectural elements. With this information, software architects

can understand where uncertainties may have an potential impact within the software

architecture.

Category Manageability refers to the possible management of uncertainty. To manage

uncertainty, software architects can either acquire more knowledge or apply other methods,

such as statistics or fuzzy methods [22]. As options, we propose fully reducible, partial
reducible and irreducible. Fully reducible describes uncertainty that can be reduced, i.e.

eliminated, by acquiring additional knowledge or by applying other methods. Irreducible
describes that if something is fundamentally unknowable and cannot be managed with

adequate methods, the associated uncertainty is irreducible. In this case, no further

knowledge and no method is able to reduce the uncertainty and thus manage it. It should

be noted that more (and potentially innite) knowledge does not necessarily lead to

the complete elimination of uncertainty. Moreover, circumstances that are described by

statistical means are always only an expected approximation of the facts to be described. In

those cases, uncertainty is neither fully, nor irreducible. This is what we refer to as partial
reducible. On the one hand, for example, uncertainty about authentication mechanisms

to be used can be fully reduced if the associated ADD is taken. On the other hand, the

number of expected user accesses can be described by studies and statistics and therefore

made manageable. However, the associated uncertainty is not fully reducible due to

the unpredictability of human behaviour, and is therefore only partially reducible. The

uncertainty of whether a system can handle all possible inputs, for example, is irreducible,

since no knowledge and no procedure can check an innite input space. Even a supposedly

high test coverage cannot reduce this due to the inherent nature of the problem.

Manageability in terms of reducibility and irreducibility is proposed by [21, 73]. Re-

ducibility, however, does not describe whether the uncertainty can be reduced completely

or only partially. Yet, we consider this information very important for a more accurate

assessment of the manageability of uncertainties. Further, the authors only dene the

extent to which knowledge can contribute to reducing uncertainties or not. Other methods,

such as the description of uncertain circumstances through statistics, are not taken into

account. However, statistical descriptions of inherently uncertain things are often used,

especially in computer science, for example when modelling user behaviour, failure rates

of hardware components or in queuing theory. Those uncertainties are still inherently

uncertain, but from a management perspective they are easier to handle than uncertainties

that are not describable at all.

48



5.2. Proposed Categories

Knowing to what extent uncertainties can be made manageable is essential for software

architects. This information is crucial for uncertainty mitigation, as it allows to identify

whether or not an existing uncertainty can be at least partially reduced. But irreducible

uncertainties should by no means be neglected. This information is also valuable, as the

impact of such uncertainties must be closely observed.

Category Impact On Condentiality is used to asses whether the persistence of un-

certainty hast either direct, indirect or no (=none) impact on condentiality. The rst

option applies, if uncertainty has direct impact on the condentiality, regardless of the

presence and/or absence of other uncertainties and already taken ADDs. Uncertainty about

whether condential data is being transmitted, for example, has a direct impact on the

condentiality of a system. Without this knowledge, no valid statement can be made. We

speak of indirect impact, if it depends on other factors whether an uncertainty has an

impact on the condentiality of a system or not. Such factors are missing knowledge or

ADDs that have not yet been made, basically other uncertainties. Looking, for example, at

the uncertainty about the deployment location. There is only an impact on condentiality

when user-related data is processed or stored there [28]. The uncertainty about the de-

ployment location is thus linked to the uncertainty about the processing of user-related

data. In the case of none, an uncertainty has no eect on the condentiality of the system,

whether it is resolved or not. Other quality attributes are not in the scope of this thesis.

The impact of uncertainty on non-functional properties such as performance, resource

consumption and safety is motivated by Ramirez et al. [54]. This motivates that it is

necessary to assess what impact uncertainties might have on the condentiality of a

system, should they prevail. Further, the distinction between direct and indirect is based

on our realisation that many statements about a possible impact are often context-sensitive.

Although this distinction is not based on any work found, we consider it important with

regard to the benets for software architects.

The persistence of uncertainties has implications for the predictive validity of a system’s

condentiality. Software architects therefore need to know whether a specic uncertainty

has or has no impact on the condentiality. However, research shows that the impact

of an uncertainty can often only be determined as a function of other factors (i.e. with

indirect impact). Yet, knowing which uncertainties have direct impact is essential as these

are the uncertainties that architects need to consider in any case.

Category Severity of the Impact refers to the signicance of the impact on conden-

tiality, if uncertainty persists. To that end, we introduce the options high, low and none
to provide a basic quantication scheme. High indicates that a loss in condentiality is

expected, if the uncertainty prevails. For instance, not knowing the internals of a compo-

nent probably results in a loss of condentiality. As described previously, this depends

on the information whether or not a component receives user-related data in the rst

place. This category always refers to the worst case so that it is not necessary to include

dependencies on other uncertainties. Low refers to uncertainties where the expected loss

in condentiality is small. Nevertheless, condentiality cannot be guaranteed any more.

None refers to uncertainties that do not have any impact on the condentiality of the

system.
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The basis of this category is the Common Vulnerability Scoring System (CVSS) [20]

which introduces impact metrics to assess the severity of software vulnerabilities, including

a metric to measure the impact on condentiality. This metric also suggests the three

options high, low and none. Yet, their denitions need to be adapted to our needs.

The goal is to eliminate uncertainty completely. However, software architects should

be able to assess which uncertainties have a high or low impact. This allows a targeted

allocation of the available but limited resources when mitigating these uncertainties. This

category therefore primarily serves software architects as a ranking, i.e. to assess which

uncertainties should be dealt with rst.

Category Resolvable by ADD expresses if the respective uncertainty can be (at least

partially) eliminated by taking an ADD or not. Therefore, we propose the option yes and no
where yes provides a reference to a description of the respective ADD. As many possibilities

exist to describe and document ADD, we do not further specify how this reference must

look like. Examples of yes and no are as follows: The uncertainty about the communication
type is removed by the choice of the ADD that determines the communication type. Hence,

the uncertainty is resolvable by a specic ADD. In contrast, the uncertainty about the

trustworthiness of a provider cannot be resolved by an ADD. The statement whether an

uncertainty can be completely or only partially eliminated by an ADD is outsourced to

category manageability.
This category is based on the architectural-related category relationship, as presented

in Section 5.1.1 which states that ADDs cannot be considered in isolation, but always in

relation to each other [43, 17, 60, 27]. Since uncertainties can represent ADDs that have not

yet been taken (c.f. Chapter 4), the concept of relationship can be applied to the relationship
between uncertainties and ADDs. In this case, the specic type of relationship is referred

to as resolvable by.
In relation to an uncertainty impact analysis, this category contains valuable informa-

tion. It clearly shows what action a software architect must take to resolve an uncertainty,

specically what ADD to take. Non-resolvable uncertainties are marked, so that software

architects can use appropriate resources in a targeted manner to reduce an uncertainty as

far as possible.

Category Resolution Time refers to the time in the software development process

when uncertainty is resolved at the latest. To that end, we propose the following options:

requirements time, design time, deployment time, runtime and never. Requirements time
describes that uncertainties are resolved at the latest when the requirements are claried.

For instance, the uncertainty whether or not data is condential is to be dened during

the requirements time. Design time refers to a resolution as soon as the design is nished.

Main representatives are uncertainties that can be resolved by taking a respective ADD,

such as the uncertainty about the used database system. Deployment time refers to the

time when the system is deployed for the rst time. A good example is the uncertainty

about the deployment location. Although being able to specify the deployment location

earlier, the point in time when this uncertainty is resolved at latest, is the deployment
time. In fact, a decision made beforehand only relates to assumptions that architects have

made. In contrast, uncertainties that require knowledge gained from ongoing operations
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are categorized with runtime. This could be uncertainties about the actual behaviour

of humans. Never refers to uncertainties that won’t be resolved. An example of this is

the trustworthiness of an external provider, which can never be fully conrmed despite

agreements.

Resolution time is mainly inspired by the available category emerging time which is

proposed by [54, 72, 31, 52]. However, the basic idea of emerging time is to specify when

uncertainty is acknowledged or appears. In this thesis, though, we aim to investigate

the impact of uncertainties at architectural level, thus during design time. Therefore, we

cannot investigate uncertainties that are acknowledged afterwards. We are interested in

the uncertainties that are known at design time, but which we are well aware might not be

resolved at design time. The reason why we do not dene the earliest possible resolution

time is that otherwise all uncertainties could be resolve by specifying a requirement during

requirements time.

For software architects, this category is important because it makes statements about

when they can "forget" about uncertainties. Uncertainties that are resolved at the latest

at requirements and design time must be taken into account during the design process.

Uncertainties that could only be resolved at a later time must be managed by architects by

other means, such as introducing self-adaptive capabilities.

Category Root Cause describes the two possible root causes for uncertainty from the

design time perspective. Either, uncertainty prevails due to assumptions or due to missing
information. Assumptions describe everything we have to predict about the future in order

to make ADDs. One example is the uncertainty about the suitability of access control

mechanisms. It is possible to decide on a mechanism, but its suitability can only be

assumed. In contrast, missing information refers to everything we should know by now

but do not know yet. Uncertainty about the behaviour of a component, for example, is

based on knowledge that does not yet exist.

This category is based on Figure 4.2 which describes the relationship of ADDs, assump-

tions and uncertainties: On the one hand, missing information leads to not being able

to make a decision. A decision that has not yet been taken implies uncertainty. On the

other hand, it is sometimes necessary to make assumptions in order to take an ADD. This

induces further uncertainty, as assumptions may turn out to be wrong. Both, missing

information and assumptions cause uncertainty. Yet this category is not to be interchanged

with the category nature and manageability. In particular, uncertainties categorised as

missing information are not necessarily epistemic or reducible. For example, not knowing

the natural variability of a GPS sensor is missing information of an aleatory nature which

can only partially reduced.

This category provides another view on uncertainty which has more of a temporal

character, and is detached from nature and manageability. In particular, it helps software

architects to understand how uncertainties and ADDs are related. Assumptions tend to

have an impact in the future, as assumptions cannot be reduced before they are disproved.

In contrast, missing information tends to result from the past. As already mentioned, the

point of view is always design time.
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5.3. Conclusion

In this chapter, we assessed existing ADD- and uncertainty-related categories from available

taxonomies and other literature. The identication of implicitly suggested categories is

based on our ability to examine continuous text for possible categories. Despite this

limitation, we extracted three ADD-related categories including 13 options, and eight

uncertainty-related categories including 37 options. For each category and option, we

assessed their (un-)suitability for our categorization approach. Based on that, we proposed

our selection of ADD- and uncertainty related categories (RQ1.2). To that end, we provided
a detailed denition of both, categories and options including some examples. In addition,

we have outlined the foundations of each category and option, as well as their expected

benet when categorizing uncertainties in software architectures.

52



6. Uncertainty Template and Application

This chapter presents our uncertainty template which enables software-architects to derive

and categorize types of uncertainties based on existing ADDs, and to investigate their

possible propagation eects within Component Based Software Architectures (CBSAs). It

is based on the ndings of Chapter 4 and Chapter 5, namely the relationship between

ADDs and uncertainties, and the categories to categorize them. Unlike other works in this

research area such as Perez-Palacin and Mirandola [52] and Hezavehi et al. [32], we speak

of a template rather than a taxonomy. The reason for this is that a taxonomy aims at the

systematic and holistic classication of a domain of interest, which is not our goal. We

rather want to provide a tool with which software architects can better derive and and

asses the potential impact of uncertainties in software architectures.

In addition, we illustrate how the template enables software architects to systematically

identify types of uncertainties based on existing ADDs. Also, we demonstrate how software

architects can systematically derive on which ADDs, and consequently on which types of

architectural elements the uncertainties can have an impact. It has to be noted that a lled-

in template is not bound to a specic architecture, hence can be reused for several software

architectures within one domain of interest. In addition, we demonstrate how software

architects can use the lled template to instantiate actual uncertainties, i.e. to annotate a

specic software architecture with uncertainties. We further propose our concept of the

propagation of uncertainties and illustrate how the lled-in template supports the analysis

of uncertainty propagation. Lastly, we illustrate how software architects could use the

template to assess the severity of impact of actual uncertainties within CBSAs.

The structure of the chapter is as follows: Section 6.1 provides a running example of a

CBSA, as well as a collection of ADDs with which the structure and usage of the uncertainty
template are illustrated. RQ1.3 asks how the categories from the previous chapter can

be illustrated. For this, we propose our uncertainty template whose overall structure is
outlined in Section 6.2. Section 6.3 presents an approach on how to systematically derive

possible uncertainty types and their potential impact on architectural element types. In

this section, we also apply the approach for illustration purposes. Section 6.4 explains how

software architects can use the uncertainty template to instantiate actual uncertainties

and assign them to elements of an existing software architecture. Again, the approach

is illustrated using the running example mentioned before. Section 6.5 introduces the

concept of uncertainty propagation. Section 6.6 illustrates how combinations of statements

can help to assess the severity of the impact of uncertainties more precisely. Altogether,

this contributes to the derivation and assessment of uncertainties and their impact in

software architectures (RQ1.4). The chapter is concluded by Section 6.7.
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6.1. Running Example and Collection of ADDs

Figure 6.1 displays a small, illustrative CBSA to demonstrate our proposed approach. It

shows two services Component A and Component B. Component A has a provided interface

which is required by the requiring interface of Component B. The communication between

both interfaces is represented as rst-class entity. Further, Component A is deployed on

Server 1, whereas Component B is deployed on Server 2. Lastly, a human shaped pictogram

indicates that external actors interact with the system.

Component A Component B

Server 1 Server 2

<<deploy>> <<deploy>>

<<uses>>

Figure 6.1.: Software Architecture - Running Example

In previous works, software architects could have identied the following ADDs. It

should be noted that the ADDs presented have no claim to completeness or correctness,

but are for presentation purposes only. We claim that the presented ADDs are generally

applicable and not bound to the architecture illustrated in Figure 6.1.

Deployment Location (A1) Software components can be deployed to various deployment

locations, such as on-premise and cloud servers. The type and actual location of the server

(i.e. country, continent) can be relevant, as data protection regulations might prohibit the

processing or storage of condential data for certain locations.

Communication Type (A2) Software components need to communicate to each other

when connected via provided and required interfaces to oer services. Thereby, communi-

cation can be encrypted using various dierent encryption mechanisms. Encryption is

necessary when condential data, such as user relevant data, is transmitted and when the

communication is via publicly accessible networks, i.e. the internet.

Persistence of User Data (A3) Components oer services for which they require to

process user data. In some cases, however, user data needs to be persisted which is also

subjected to data protection regulations.

Choice of Component (A4) Software architects might develop components in house or

buy them from third party vendors. Therefore, they need to choose from various dierent

components. As users may be entering private data, such as credit card details, it can be

crucial to know how the components function internally to determine how they process

this data.
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6.2. Structure of the Uncertainty Template

In Chapter 4, we elaborate the following relationships between ADDs, architecture elements

and uncertainties: Uncertainties are either resolved by, and/or have an impact on ADDs.

Moreover, ADDs have an impact on architectural element types. In this way, the impact

of uncertainties on architectural elements and thus the overall software architecture can

be determined transitively by using the respective ADDs as a means to an end. This

relationship is once again depicted in Figure 6.2, which is a simplication of Figure 4.2.

It shows the (uncertainty template-) relevant elements only, namely architecture element,
uncertainty and ADD. Further, the multiplicities are slightly adjusted compared to Figure 4.2

due to practical reasons which is further explained in the course of this section. Whereas

the overall structure of the uncertainty template is based on the previously described

relationships, the actual possible values, i.e. the categories and their options, result from

the proposed uncertainty and ADD-related categories dened in Chapter 5.

ADDUncertainty

[0..1] resolvedBy

[1..*] impactOn

Architecture
Element

[1..1] impactOn
<<transitive>>

[1..*] impactOn

Figure 6.2.: The Relationship between ADDs and Uncertainty (based on Figure 4.2)

The structure of the uncertainty template is outlined by Table 6.1. It already includes

some exemplary ADDs (ADD1 - ADD3) and uncertainties (U1 - U5). The two main headers

ADD-related Categories and Uncertainty-related categories coarsely divide the uncertainty
template in two areas, where the rst area is for categorising the respective ADDs, and the

second area is for categorising the respective uncertainty types. For the sake of clarity, we

omit most of the categories. The entire uncertainty template is available in our data set

[10]. The ADD-related categories correspond to the ones proposed in Section 5.2.1, whereas

the uncertainty-related categories correspond to the ones proposed in Section 5.2.2. Each

identied ADD exists once and has a name (column ADD), an unique identier (column

ID) and is categorised according to the ADD-related categories (column ADD Class to Cost
of Revision). One to several uncertainty types can be assigned to each ADD, so that the

resulting cell structure always indicates which uncertainty types are related to which ADDs.

We refer to a row representing one ADD and the uncertainty types related to that ADD as

multi row. As explained in Chapter 4, each ADD not yet taken induces uncertainty. For this

reason and as an invariant, the rst uncertainty type in a multi row always corresponds to

the respective ADD, representing the resolvedBy relationship. The remaining uncertainties

in a multi row indicate the uncertainty-related impactOn relationship, as those uncertainty

types might have an impact on the respective ADD.
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ADD-related
Categories

Uncertainty-related
Categories

ADD ID Uncertainty
Type

ADD
Class ... Costs of

Revision Location ... Architectural
Element Type ... Resolvable

by ADD Root Cause

ADD 1 A1 U1 A1 decided? Structural ... High

System

Structure

... Component ... Yes (A1)

Missing

Information

U2 A2 decided?

System

Behaviour

...

Hardware

Resource

... Yes (A2) Assumption

U1 A1 decided?

System

Structure

... Component ... Yes (A1)

Missing

Information

U4 Uncert. 4 Input ... Usage Behaviour ... No Assumption

ADD 2 A2

... ...

Behavioural ... Low

... ... ... ... ... ...

U3 A3 decided? ... Communication ... Yes (A3)

Missing

Information

ADD 3 A3

U5 Uncert. 5

Executive ... High

... Component ... No Assumption

... ... ... ... ... ... ... ... ... ... ... ... ...

Table 6.1.: Exemplary Version of the Uncertainty Template (Excerpt)



6.3. Uncertainty Type Derivation

As previously mentioned, we slightly adjust the multiplicities in Figure 6.2 compared

to its initial Figure 4.2. More precisely, the impactOn relationship between ADDs and

Architecture Element is changed from one-to-many to one-to-one, and the resolvedBy rela-

tionship between uncertainty and ADD from none-to-many to none-to-one. Both changes

serve exclusively to improve the clarity of the uncertainty template and have no eect on

its expressiveness. The rst change is based on the idea that an ADD represented by a

multi row should only have an eect on a single architecture element. This makes it more

obvious on which architectural element type the respective ADD, but also the associated

uncertainty types have an impact. However, if an ADD actually has an eect on several

architectural element types, this can be simulated simply by inserting them several times

into the template by using dierent identiers. This even gives us the advantage of a

more ne-granular view of a potential impact. The latter adjustment is based on the same

reasoning, as it should always be clear which ADD resolves an uncertainty type. In the

case an uncertainty type can be resolved by several ADDs, it is again possible to insert it

several times by using dierent identiers.

In the schematic uncertainty template (see Table 6.1), U1 is resolved by ADD1, U2 by ADD2
and U3 by ADD3. Further, U1 has an impact on ADD2. Besides that, the uncertainty types U4
and U5 are not resolvable by any ADD but have an impact on ADD2 and ADD3 respectively.
Uncertainty types, unlike ADDs, can therefore occur more than once. Nevertheless, an

uncertainty type that appears several times is always uniquely identied (column ID), has
the same name (column Uncertainty Type) and categorized in exactly the sameway (columns

Location to Root Cause). The architectural-related impactOn relationship (between an ADD

and the architectural element) is implicitly represented by the uncertainty-related category

Architectural Element Type of each rst uncertainty type of a multi row. In Table 6.1, for

example, ADD1 has an eect on components, which is why option Component is selected for
U1. Although this presentation induces information duplication (an uncertainty type can

occur several times), it has the advantage that it is evident for each ADD which uncertainty

types have an inuence on it and how they are categorised. Furthermore, the implicitly

dened impactOn relationships seem complicated at a rst glance. However, we explain in

the next section why this is useful and how it helps to systematically derive uncertainty

types and their possible impact on architectural element types.

6.3. Uncertainty Type Derivation

In this section, we provide a systematic approach on how software architects can derive

uncertainty types and their potential impact on software architectures from existing

ADDs. The assessment of the severity of the impact of actual uncertainties is not part of

this section but is covered in the course of this chapter. In general, uncertainty types

can be identied in other ways, too. For instance, experienced software architects can

collect uncertainties in workshops or from existing software projects. The approach using

the uncertainty template is therefore only one possibility. Further, it has to be said that

collecting potential ADDs is not part of this thesis, as this is already covered by numerous

other related works such as [63, 3]. We present our uncertainty type derivation approach

in Section 6.3.1 and conduct it in Section 6.3.2.

57
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6.3.1. Uncertainty Type Derivation Approach

Figure 6.3 illustrates our approach to systematically extract uncertainty types from existing

ADDs, enhance the template by uncertainty types which are not resolvable by any ADD,

and transitively derive the possible impact of uncertainty types on other architectural

element types. It is mainly inspired by the process to extract uncertainties in Section 4.3.

In the following we briey explain each of the steps:

Step 0 
Collect ADDs from various sources

Step 1
Add next ADD to template 

Step 2 
Extract uncertainty type from ADD 

Step 3
Add uncertainty type to respective multi-

row 

Step 4 
Categorize ADD 

No

Step 5
Verify next uncertainty regarding its

impact on ADDs

Each uncertainty
examined?

Each ADD 
examined?

Yes

No

Impact on 
ADD?

Step 6
Add uncertainty to respective multi row  

Yes

No

Already  
categorized?

Step 7
Categorize uncertainty  

Yes

No

Step 8
Collect other uncertainties from various

sources

Yes

More uncertainties
found?

Yes

No

Step 9
Determine direct impact on  
architectural element type

Step 10 
Determine indirect impact on 
architectural element types

Each uncertainty
examined?

No

Yes

Figure 6.3.: Activity Diagram describing the Uncertainty Type Derivation Approach
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In Step 0, ADDs are to be collected from various sources. As previously described, this

should be rather considered as preliminary work and is therefore not considered to be part

of the actual approach. For each of the collected/available ADDs, the subsequent steps are

performed. Given a certain collection of ADDs, software architects start with Step 1. First,
software architects need to add an ADD to the template. Therefore they need to create

a multi row and assign a unique identier, for instance a consecutive number preceded

by the letter A. As described in Chapter 4, each ADD can be considered as uncertainty if

not yet decided. Therefore, software architects can extract an uncertainty type from an

ADD by simply re-formulating it as a question (Step 2). In Step 3, the extracted uncertainty

type needs to be added to the rst row of the multi row, represented by the respective

ADD. Similar to the previous step, software architects need to assign an unique identier,

for instance a consecutive number preceded by the letter U. In Step 4, the ADDs need

to be categorized according to the denition of the architectural-related categories (cf.

Section 5.2.1). As indicated by the colour coding, Step 1 to Step 4 are repeated for each ADD.

Consequently, each ADD has been "transformed" into an uncertainty. In the following,

those uncertainties are to be examined.

In Step 5, software architects identify for each added uncertainty type on which other

ADDs they could have an impact. For the uncertainty types that correspond to the respective

ADDs (result of Step 2), this question is linked back to the relationship or dependency

between ADDs. This question corresponds to a separate eld of research and has already

been addressed among others by [50, 27, 17, 3, 45]. If an uncertainty type to be veried

results from another source (c.f. Step 8), software architects must also investigate on which

existing ADDs each uncertainty type can have an impact. An impact exists, for example,

if the actual choice of an ADD depends on another still uncertain ADD. Accordingly, the

ADD can be made either when the uncertainty is resolved or on the assumption of how the

uncertainty might be resolved. If an uncertainty type has an impact on an ADD, it must

be added to the associated multi row (Step 6). If not, Step 6 and Step 7 are skipped and

one must proceed with the next uncertainty, if available. Again, an uncertainty type that

is added several times (i.e. an uncertainty type that aects several ADDs) has the same

identier. If the uncertainty has not yet been categorised, the software architects must do

that in Step 7. Otherwise, this step can be skipped because the information already exists

and only needs to be copied. In case the uncertainty corresponds to an ADD (result of Step
2), the two uncertainty-related categories Architectural Element Type and Resolvable by
ADD are already dened. In the rst case, the selected option corresponds to the type of

architectural elements on which the ADD has an impact. The latter is only a reference to the

identier of the accompanying ADD. As described in Chapter 4, there are also uncertainty

types which, on the one hand, cannot be resolved by taking an ADD, but which have an

impact on it. Step 5 to Step 7 need to be executed for each of them.

In Step 8 further uncertainties must be collected once for a domain of interest. Similar

to Step 0, this task requires software architects to extract other uncertainties from sources

such as previous (similar) software projects, design decision documents or workshops.

Finding assumptions that have beenmade during the design process or missing information

can help identify uncertainties. After collecting and classifying ADDs and uncertainty

types, it is now to conclude on which (further) architectural element types uncertainties

can have an impact.
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In Section 4.3, we dierentiate between direct and indirect impact. Uncertainties have a

direct impact on an architectural element, if they can be assigned to it. If the uncertainty

assigned to one element has an impact on another, we speak of indirect impact. This

information is implicitly provided on type level by a lled-in template and can be extracted

as follows: The direct impact can be determined immediately via the category Architectural
Element Type (Step 9). To determine possible indirect impacts of an uncertainty type, we

must identify in which multi rows it occurs (Step 10). For each multi row, the aected

architecture element type is given by the rst uncertainty type, as it represents the

accompanying ADD. Uncertainty types in multi rows can therefore have an indirect impact

on the element types specied by the rst row. Of course, it is possible that both types

are the same, i.e. the directly aected element type is the same as the indirectly aected

element type. In these cases, we do not speak of propagation, as the uncertainty only

aects one element type.

A major advantage of using our structured uncertainty template is the fact that a lled-in
uncertainty template can be relevant to multiple software architectures within a domain

of interest as it is dened on type level. That means, uncertainty types can be relevant

for several architectures within the domain of interest. Furthermore, the template is

iteratively extendable. For example, more ADD can be added while repeating Step 1 to Step
4 as indicated by the colour coding. The same applies to uncertainty types when executing

Step 8 (repeat Step 5 to Step 7 afterwards). In addition, it is possible to add not yet identied

relationships between ADDs (i.e. between ADDs and uncertainty types) subsequently by

repeating Step 5 and Step 6.
Nevertheless, the approach consists of various manual steps, such as Step 0, Step 5 and

Step 8. They require a non-negligible amount of manual work, knowledge and expertise.

However, Step 0 is not part of the approach and Step 5 is at least partially covered by related
approaches [50, 27, 17, 3, 45]. A key factor for the success of the approach is Step 8 because
to the best of our knowledge, there is neither a collection of uncertainties (or uncertainty

types) at architectural level, on which software architects can rely, nor an existing process

to extract uncertainty types systematically. But as described before, uncertainties can be

derived from assumptions and missing information in the design process, so software

architectures are not completely without a suitable mean.

6.3.2. Uncertainty Type Derivation Approach - Example

We now conduct our uncertainty derivation approach from Section 6.3.1 based on the

collection of ADD from Section 6.1. This exemplary application of the uncertainty type

derivation approach serves only to illustrate the process and has no claim to completeness,

nor to correctness of the content. Table 6.2 shows the completely lled uncertainty template,
which we extend by line numbers for explanatory purposes (lines 1-10).

Step 0 is already performed in Section 6.1 resulting in the ADDs A1 to A4. In this case,

the architectural model of a CBSA and our expertise leads to the collection of ADDs. Now,

each ADD has to be added to the template (Step 1). Therefore, four multi rows are to be

created to which the respective ADDs are inserted. In Table 6.2, those are lines one to two,

three to ve, six to seven, and eight to ten. Of course, the actual size of the multi rows is

not known before hand. Identiers and names correspond to the collection of ADDs.
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6.3. Uncertainty Type Derivation

ADD-
related

Categories

Uncertainty-
related

Categories

# ADD ID Uncertainty Type ... Architectural
Element Type

1 U1 Where is deployed?

Hardware

Resource

2

Deployment

Location
A1

U3 Is user data stored?

...

Component

3 U2 How is communicated? Communication

4 U1 Where is deployed

Hardware

Resource

5

Commu-

nication

Type

A2

U5 Is condential data

transmitted?

...

Interface

6 U3 Is user data stored? Component

7

Persistence

of User Data
A3

U1 Where is deployed?

...
Hardware

Resource

8 U4 Which component is

chosen?

Component

9 U6 What is the user behaviour Usage Behaviour

10

Choice of

Component
A4

U7 What is the behaviour of

the component?

...

Component

Table 6.2.: Uncertainty Template - Running Example (Excerpt)

In the following (Step 2 and Step 3), each ADD is transformed into the respective uncer-

tainty type and added to the rst row of the accompanying multi row. This produces the

following uncertainty types: "Where is deployed?" (U1) results from Deployment Location
(A1) and is inserted in line one. "How is communicated?" (U2) results from Communication
Type (A2) and is inserted in line three. "Is user data stored?" (U3) results from Persistence of
User Data (A3) and is inserted in line six. "Which component is chosen?" (U4) results from
Choice of Component (A4) and is inserted in line eight. In the subsequent Step 4, the ADDs

are classied according to the categories. The ADD-related categories are omitted for the

sake of clarity.

Step 5, Step 6 and Step 7 are executed twice: First for the uncertainties that correspond

to the ADDs and that result from Step 2. Second, for the uncertainties found in Step 8. In
the following, we describe how software architects can perform those steps based on the

uncertainties resulting from Step 2. The required information for Step 5 and Step 6 is based
on the description of the ADDs A1 - A4 in Section 6.1. This is an example of how software

architects could extract dependencies between ADDs from other sources, such as their

description. For instance, the GDPR demands that user data must be stored within the

EU [30]. The deployment location can therefore depend on whether user data is stored

61



6. Uncertainty Template and Application

or not. The persistence of user data must be prohibited if there is an illegal deployment

location. This bi-directional dependency leads to the creation of line two and line seven,

i.e. the insertion of U3 in the multi row belonging to A1, and the insertion of U1 in the

multi row belonging to A3. Further, specic deployment locations, such as deployment

in a public cloud, demand a specic encryption type, hence this has an impact on the

communication type. This leads to the insertion of U1 to A2 (line four). The fact that there
is no bi-directional connection between A1 and A2 is a decision made for this scenario and

is the responsibility of the architect, in this case us. Accordingly, we have decided that the

communication type has no inuence on the deployment location, but must be oriented

towards it. The extent to which this decision is right or wrong is not important. Much more

important is the circumstance that it is possible to correct this decision later if it turns out

to be wrong. Afterwards, software architects have to categorize the added uncertainties.

In the example, most of the uncertainty-related categories are omitted for the sake of

clarity, and because the selected options only become necessary for the assessment of

the severity of the impact. It is only category architectural element type that is relevant
at this point. For each related ADD, it has to be decided which architectural element it

aects. Deployment Location (A1), for instance, aects hardware resources. Therefore,
the accompanying uncertainty type U1 aects the architectural element type Hardware
Resource. This procedure is repeated for A2 to A4.

In Step 8, further uncertainty types are to be identied, i.e. those that do not originate

from an untaken ADD. As previously described, Step 5, Step 6 and Step 7 are to be repeated

for those newly identied uncertainties. Each uncertainty type is categorized and added

to the respective multi row, hence to the ADD on which it has an impact. To that end,

the textual description of the ADDs A1 - A4 in Section 6.1 serve as a source of information.

For the communication type (A2), it is explained that communication encryption is only

relevant if, for instance, the providing interface provides condential data. This leads to

line ve, i.e. to the insertion of "Is condential data transmitted?" (U5) to A2. According
to the description, it should be possible to assign these uncertainty types to interfaces,

which is why this is selected for category Architectural Element Type. At this point, one
can argue whether U5 can and should be formulated as ADD, too. Although we have

decided against this for this example, it can be corrected retrospectively. This further

shows that the approach can be executed iteratively and the content of the template can

thus be further improved. When choosing an appropriate component for a specic use case

(A4), it can be necessary to know both, the behaviour of the users interacting with that

component and the internal behaviour of the component itself. This leads to the insertion

of "What is the user behaviour?" (U6) and "What is the behaviour of the component?" (U7) to
lines nine and ten, respectively. As described in Section 2.5 and Section 5.2.2, the usage

behaviour is considered as rst class entity in CBSA, which is why U6 is to be assigned to

the architectural element type usage behaviour. U7 is to be assigned to components. At

this point, a limitation of the approach becomes apparent, as the lled uncertainty template
does not reveal the dependencies between the uncertainties within a multi row. This,

however, has an impact on the order of how uncertainties might have to be resolved. With

regard to the communication type (A2), one can argue that it is more important to rst

identify whether or not condential data is transmitted (U5) before one determines the
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deployment location (U1), otherwise the deployment location will to some extent dictate

the behaviour of an interfaces, and its component respectively.

In Step 9 and Step 10, we determine the conclusive impactOn relationship between each

uncertainty type and architectural element types which consists of the conjunction of

directly and indirectly aected elements. Step 0 to Step 7 enable to immediately identify

the direct impact of uncertainty types on architectural elements, as this information is

provided by category architectural element type. For instance, U1 directly aects hardware

resources. In addition, U1 aects A2 and A3 which are characterized by U2 and U3. As U2
aects the communication, and U3 aects components, we can summarize that U1 has
impact on hardware resources, the communication and components. This needs to be

done for U2 to U7 in the same way.

6.4. Uncertainty Annotation

In the previous section, we explained how to derive uncertainty types and how to deter-

mine to which types of architectural elements they can be assigned. This information

is available in the form of a completed uncertainty template like the one we provided in

Table 6.2. However, one of the goals of our thesis is to annotate existing architectures with

actual uncertainties. In the following, we therefore use the example from Figure 6.1 to

demonstrate how the uncertainty template helps to instantiate uncertainties and assign

them to the correct elements of an architecture. We now distinguish between uncertainty

and uncertainty type, and between architecture element and architecture element type,

since we are now looking at a concrete architecture. Figure 6.4 exemplies how software

architects can annotate an architecture.

Component A

?

Component B

Server 1 Server 2

<<deploy>> <<deploy>>

Deployment
location ?

?

How is 
communicated?

?

User data 
stored?

Confidential
data transm.?

<<uses>>

Which component 
is chosen?

?

?

Behaviour of the 
component?

User 
behaviour ?

User data 
stored?

?

Figure 6.4.: Uncertainty Annotation - Running Example

The uncertainty types U1 - U7 are instantiated and assigned to concrete architectural

elements as depicted in Figure 6.4. Each uncertainty corresponds to a dashed box, whereas

the line indicated to which element it is actually assigned. Of course, it is possible that
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uncertainties are instantiated several times. An example is "Is user data stored?" (U3),
which is instantiated once for Component A and again for Component B. Moreover, it can

be expressed that an uncertainty only applies to certain elements. "Where is deployed?"
(U1), for example, is only instantiated once and assigned to Server 2 which means, that the

deployment location for Server 1 is certain, according to the software architect. Where

which uncertainties are actually assigned is up to the software architect using the template,

as this depends on his or her concrete architecture.

6.5. Uncertainty Propagation

One goal of this thesis is to assess the impact of uncertainties in software architectures.

However, before the impact can be assessed, it must rst be determined which elements

could potentially be aected by which uncertainties. The direct impact is already covered

by annotating software architecture with uncertainties, hence by the previous section. In

the following, we provide the terminology and the process to determine indirectly aected

elements.

6.5.1. Terminology

We motivated our research by elaborating the importance of the analysis of uncertainty

propagation in Chapter 1 and Chapter 4. As described in those chapters, uncertainties

either directly or indirectly aect architectural elements. For the latter, we introduce the

term uncertainty propagation. The idea is based on the similarity to change propagation
analyses such as the KAMP approach (cf. Section 2.6). Based on change propagation analyses,
we dene the terms uncertainty set, aected set and impact set as illustrated in Figure 6.5.

The uncertainty set refers to a set of architectural elements of a specic architecture

which are aected by instantiated uncertainties, or in other words, all elements on which

uncertainties have a direct impact. The impact set is a result of the usage of our uncertainty
template which provides an overestimation of the architectural elements that might be

aected. In other words, all elements on which uncertainties have a direct impact, plus the

ones on which they might have an indirect impact. In contrast, the aected set states which
architectural elements are actually aected, either directly or indirectly. As with change
impact analyses, it is not the aim (and practically not possible) to determine the aected

set precisely [58]. Our approach is only to provide a "good" overestimation which includes

each element that is actually aected, and not too many mistakenly aected elements. In

Uncertainty
Set

Affected Set

Impact Set

Figure 6.5.: Uncertainty Propagation - Terminology
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the following, we explain how to derive an impact set, based on instantiated uncertainties

in a software architecture, and a lled uncertainty template.

6.5.2. Determining the Impact Set

The starting point is a lled uncertainty template with which software architects already

annotated a software architecture. The process is identical either for one single uncertainty

or for a collection of uncertainties, irrespective of their type. But for the sake of simplicity,

we describe the process for one uncertainty only. By denition, the impact set consists
of the architectural element that is directly aected by an uncertainty plus the ones that

might be aected. The rst part is trivial, since it corresponds exactly to the element at

which the uncertainty is annotated. The second part is based on the information provided

by Step 5.2 of our Uncertainty Type Derivation Process (cf. Section 6.3). It species the

architectural element types on which a respective uncertainty type might haven an impact.

Then, only the architectural elements that correspond to these type(s) have to be included

in the impact set. Again, it should be noted that this procedure provides an overestimation

of the aected set, as every element of a given type is included, regardless of whether

the uncertainty actually has an impact on that element or not. Nevertheless, it is an

improvement on the initial situation, as without the template potentially all elements of

an architecture would have to be examined.

To improve the impact set, i.e. to sort out some of the wrongly classied elements, the

software architect can analyse the original impact set manually. For instance, software

architects can use contextual information to subsequently discard the uncertainties that

have no impact at all. This could be, for example, information about the data ow, re-

quirements or ADDs that have already been made. Another possibility could be to dene

structural propagation rules which determine only those elements that are "reachable" by

an uncertainty. Those rules are based on the structural properties of software architectures.

Either way, each improvement could potentially decrease the impact set and thus the

number of elements to be examined.

Component A

?

Component B

Server 1 Server 2

<<deploy>> <<deploy>>

Deployment
location ?

<<uses>>

Figure 6.6.: Uncertainty Propagation - Running Example

65



6. Uncertainty Template and Application

Example: For the sake of simplicity, we use the example from the previous section but

consider only one uncertainty. The example (enhanced by the propagation) is illustrated

by Figure 6.6. Potential propagation eects (i.e. the indirect impact of uncertainties)

are exemplied by the three green arrows starting at the uncertainty of type "Where
is deployed?" (U1), which is assigned to Server 2. According to the lled uncertainty
template, uncertainties of type U1 can impact the architectural element types component
and communication. With that information, we know that this uncertainty can only

aect Component A, Component B and the communication entity between them. These

three elements thus form the initial impact set. In particular, neither the two interfaces,

nor Server 1 need to be examined afterwards. The impact set can now be improved

manually. For example, we assume that instances of U1 only aect components and their

directly reachable elements deployed on the hardware resource to which the uncertainty is

annotated. This exemplary structural propagation rule removes Component A. Further, we
know (due to a previously made ctive design decision) that the communication between

those two components uses encryption mechanisms. Therefore, the manually cleaned

impacts set nally consists only of Component B. Using structural propagation rules, as

well as context information enables to reduce the impact set to one element only.

6.6. Uncertainty Impact Assessment

Besides the identication, annotation and propagation of uncertainties, RQ1.4 also asks

about the assessment of uncertainties. Therefore, we demonstrate in this section how

software architects could use the uncertainty template and its categories to asses annotated
and propagated uncertainties regarding their impact on condentiality. It should be added

that this is explicitly not about assessing whether or not an uncertainty actually has an

impact. Rather, the focus is on assessing the severity of a potential impact. The basis is

the completion of the processes as described in Section 6.3 - Section 6.5. In those sections,

most of the ADD- and uncertainty related categories are not of high importance, as they

are only necessary to annotate uncertainties and determine their propagation eects. This

is dierent when it comes to the assessment of the severity of the impact of uncertainties.

In Section 5.2.1 and Section 5.2.2, we elaborated for each category independently how it

can contribute to the assessment of the impact of uncertainties. In the course of this section,

we exemplify how the combination of certain categories can help to assess the impact even

more precisely. For each combination of categories, we present one or several choices

of options. Software architects can use these suggestions when they try to assess the

impact of an actual uncertainty whose type is categorized with exactly the same options.

In addition to the general assessment of the impact of uncertainty (especially regarding

their impact on the condentiality of a system), the categories could also be used for

prioritisation purposes. The combination of certain categories could therefore contribute

to answer the following question: "Which uncertainty should be considered next?".
At this point, we would like to emphasise that the proposed combinations do not claim

to be exhaustive and only indicate how software architects could use the template for

assessment purposes. Moreover, it is not feasible to fully explore all combinations of

categories due to the large number of options available (15 categories, 42 options). We
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therefore only show a selection of combinations that have proved relevant or interesting

in the course of our research. They are based on our profound knowledge of uncertainties,

but do not arise from a systematic study. We exemplarily applied these guidelines on

instantiated uncertainties in Section A.1.

Probability, Possibility and Cost of Revision: The three architectural-related cate-

gories Probability of Revisability (likely, unlikely), Possibility of Revisability (yes, no) and
Costs of Revision (high, low) are strongly interrelated. These categories are relevant for each
rst uncertainty type of a multi row of the template, as they correspond to the associated

ADD. For example, if it is possible (yes), likely and at the same time expensive (high costs)

to revoke an ADD, the associated uncertainty should be treated with caution. High costs,

on the other hand, could be neglected, if it is unlikely that an ADD will be revoked. The

combination likely, no and high/low initially appears contradictory. This combination

could occur, for example, if ADDs are initially considered likely to be revisable due to many

uncertainties, but cannot be revised due to their fundamental impact on the design of

the system. In such a scenario, the other uncertainties should be dealt with before the

ADD-related uncertainty is resolved.

Probability of Revisability and Root Cause: The architectural-related category Prob-
ability of Revisability (likely, unlikely) and the uncertainty-related category Root Cause
(missing Information, assumption) can be combined as follows: ADDs are more likely to be

revised when they are based on several assumptions, i.e. on uncertainties that cannot be

resolved by acquiring missing information. This is because the assumptions may turn out

to be wrong, so that the ADD that depends on them must be revised. To prevent this, all

assumptions should be evaluated in detail before an ADD is made, especially if the ADD is

already likely to be revised. This can be transferred to the uncertainty representing the

respective ADD, as each aecting uncertainty whose Root Type is assumption should be

considered rst.

Impact on Condentiality and Severity of the Impact: The combination of the cate-

gories Impact on Condentiality (indirect, direct) and Severity of the Impact (high, low) is
probably the most obvious one when it comes to the assessment of the impact of uncer-

tainties on the condentiality of the system. If uncertainties with direct and high impact

can be resolved during the design process, software architects should do so. Otherwise,

such uncertainties should be carefully tracked.

Manageability, Resolution Time and Root Cause: The categories Manageability (fully
reducible, partial reducible, irreducible), Resolution Time (requirements time, design time,
deployment time, run time, never) and Root Cause (missing information, assumptions) could
be combined to asses whether uncertainties can and should be resolved during design time

and, if resolved (partially), how much attention is still needed afterwards. If an uncertainty

is fully reducible during requirements or design time and based on a missing information,
the impact on the condentiality can probably be neglected, as software architects should

be able to resolve it. In case it is only partial reducible (same options for the remaining

categories), software architects should be aware that an impact might not be completely
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impossible. If an uncertainty is partially reducible to the extent that an assumption is made,

software architects should apply appropriate means to be able to check the assumption
at the given resolution time (deployment or run time). Uncertainties categorized in this

way could presumably have an impact on condentiality, if the assumptions turn out to

be wrong. Nevertheless, not all combinations are likely to make sense, as they seem to

be contradictory. For instance, if an uncertainty can never be resolved, it is probably also

irreducible and vice versa. Other combinations with one of the two options do not seem

logical. However, each of the three categories aims to provide a dierent perspective for

assessing the impact of uncertainty, so illogical combinations do not necessarily mean that

the categories and options are ill-dened.

6.7. Conclusion

In this chapter, we presented our uncertainty template, a tool with which software architects
can structurally identify types of uncertainties and their possible propagation eects based

on a previously identied set of ADDs. In addition to the general structure (Section 6.2), we

outlined a process for how software architects can use the template to derive uncertainty

types in Section 6.3. Further, we presented in Section 6.4 how software architects can use

a lled template to annotate software architectures with instantiated uncertainties. In

Section 6.5, we introduced the terminology for the propagation of uncertainties, which is

based on the idea of change impact analyses. In doing so, we have shown the extent to

which software architects can both determine and reduce the so-called uncertainty impact
set. Finally, we illustrated in Section 6.6 how software architects can use the template to

assess uncertainties and their impact.

The uncertainty template has several advantages. First and foremost, the lled-in un-
certainty template can be reused for other (similar) architectures which enables a reuse

of knowledge. Also, it provides the possibility to systematically derive and structurally

depict types of uncertainties. It is further easy to extend, so that it is initially possible to

deal with incomplete knowledge about possible uncertainties. The uncertainty template
can also create awareness, as the person using a lled template may not necessarily be

the one who had it completed. In other words, more experienced software architects have

the knowledge to complete the uncertainty template for a certain domain, for instance, for

software architectures in the area of IS, whereas less experienced software architects use it

to identify and instantiate possible uncertainties in their actual software architecture. This

means that users of a completed template no longer have to nd out for themselves which

types of uncertainties exist and which architectural elements they aect. Propagation also

potentially reduces the number of architectural elements to be investigated, as one only

has to consider a maximum of those elements that correspond to the respective element

type on which an uncertainty type has an eect. Without this information (i.e. without

the template, the type derivation and the propagation process), it would be necessary to

examine all elements for a possible impact for each uncertainty respectively.

In the course of this chapter, we also sketched some limitations and drawbacks. Due to

structural constraints, it was necessary to adjust the relationships (i.e. the multiplicities)

between uncertainties, ADDs and architectural elements with respect to our results from
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Chapter 4. To that end, we explained why these changes have no restriction on the expres-

siveness of the template, as the original multiplicities can be simulated by information

duplication. Our process is based on the availability of a collection of condentiality-

relevant ADDs which could be seen as a drawback. Yet, this is not part of this thesis, as we

consider these to be provided by dierent sources. Furthermore, two non-trivial manual

steps have to be conducted to ll the template: First, it has to be manually identied

which uncertainty types might aect which ADDs. Second, additional uncertainties are

to be identied manually based on other sources of information. Again, let us point out

that these steps are only necessary to ll the template initially. In the case of subsequent

(multiple) use, these steps are omitted. Using some sample combinations of categories,

we have shown how the template can provide insights into the impact of an uncertainty.

Although the illustrated implications between the dierent options chosen are interesting,

an all-quantied statement is probably impossible due to the amount of possible domains of

interests, eventual uncertainties and software architectures. In general, we assume that the

actual impact is always dependent on the system under consideration. Another drawback

to this point is the lack of tool support for the annotation and automatic propagation of

uncertainties for software architectures. To the best of our knowledge, there is no tool that

explicitly enables to annotate software architectures with uncertainty as a rst class entity.

Manual propagations based on (structural) propagation rules can be tedious, especially

for larger architectures. In order to support the annotation of software architectures, as

well as to automate propagation, we present our Uncertainty Impact Analysis (UIA) in the

following chapter.
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This chapter elaborates how to support the annotation and propagation of uncertainties in

software architectures (RQ2). To that end, we extends the Palladio ComponentModel (PCM)

by the capability to represent uncertainties in software architectures as rst-class entity

(RQ2.1). Based on that, we present our Uncertainty Impact Analysis (UIA), which supports

the annotation and automates the propagation of uncertainties in software architectures

(RQ2.2). Figure 7.1 illustrates the concept of the UIA, including the integration of the

enhanced PCM.

UIA
(Propagation)

UIA 
(Annotation)

Architect
(User)

Software 
Architecture

input

Software 
Architecture

(enhanced by 
specific 

uncertainties)

specify

Uncertainty
Types

input

Architect
(Expert)

Template

guides

input

PCM4U

output

Impact of 
Uncertainty

Uncertainty 
Propagation 

Rules

input

use

instance of

output

Figure 7.1.: Overview of the Approach

As described in the previous chapter, we dierentiate between types of uncertainties

and instantiated uncertainties. Uncertainty types are elaborated by more experienced

software architects, for a specic domain of interest, and by using our uncertainty template.
Less experienced software architects can use those uncertainty types to annotate their

CBSA. Further, our uncertainty template enables to derive the direct and indirect impact of
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uncertainties on other architectural elements which we refer to as uncertainty propagation.
So far, this process is conducted manually without tool support. This gap is to be lled

by our proposed analysis. To dierentiate between experienced and less experienced

software architects, we distinguish between two stakeholder roles: Expert Architects and
User Architects. Both roles are illustrate by Figure 7.1, including their tasks as well as

inputs and outputs.

Expert architects specify types of uncertainty by using our uncertainty template. A
collection of uncertainty types serves as input for the UIA. User architects use the analysis to
annotate their existing architecture by actual uncertainties. Based on a selected uncertainty

type, the analysis is designed to help in nding all elements of an architecture on which

an uncertainty can be annotated. Based on pre-dened uncertainty propagation rules,

the analysis automatically calculates the impact of the uncertainties, i.e. it determines to

which other elements the instantiated uncertainties could potentially be propagated.

The structure of this chapter is as follows: Section 7.1 introduces implementation as-

pects, including the meta modelling and the class structure of the UIA. In Section 7.2, we

present the specication of uncertainty types, as well as the supported types of archi-

tectural elements. Section 7.3 briey introduces how user architects can use the analysis

to annotate their architectures with uncertainties. Afterwards, Section 7.4 provides a

profound explanation of the actual propagation mechanisms including the presentation of

two exemplary algorithms. In Section 7.5, we illustrate how the UIA enables user architects
to assess uncertainties and their impact. In Section 7.6 we dierentiate our analysis from

the existing KAMP approach. We discuss limitations and possible improvements of the UIA

in Section 7.7. This chapter is concluded by Section 7.8.

7.1. Overview

Technically, our approach is to extend the Palladio ComponentModel (PCM) (cf. Section 2.5),

which is the ADL we use to model CBSAs. The PCM is based on the Eclipse Modelling

Framework (EMF) (cf. Section 2.4) and is dened on M2 level. To extend the PCM by

the capability of annotating software architectures with uncertainties, one has several

possibilities, such as extending the PCM meta-model itself, stereotyping or referencing. We

decided to apply the last one as we consider it to be the most stable and the most straight

forward solution. In order to extend the PCM, we create several models which reference

each other, and in particular, the PCM meta-model itself.

Figure 7.2 illustrates the dierent models and the model hierarchy which we created

to implement the UIA. Model ADD describes the Architectural Design Decisions (ADDs),

including a set of attributes which correspond to the ADD-related categories of the uncer-
tainty template. Instances therefore represent collections of instantiated (i.e. identied)

ADDs. Model UncertaintyType represents the uncertainty types, including a set of attributes

which correspond to the uncertainty-related categories of the uncertainty template. Similar

to ADDs, instances of this model represent a collection of identied uncertainty types.

Model UncertaintyTemplate references both, UncertaintyType and ADD and represents our

uncertainty template. Each of the models are to be created by expert architects. Model

Uncertainty describes the uncertainty-related model elemtents. In particular, this includes
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Figure 7.2.: Uncertainty Impact Analysis - Models and Model Hierarchy

the relationships to uncertainty types, ADDs and architectural elements. As illustrated in

Figure 7.2, instantiated uncertainties always reference the uncertainty template which

they are based on, as well as the architectural model (i.e. instances of PCM models) which

they reference. Lastly, model UncertaintyPropagation describes the model elements re-

quired for the uncertainty propagation. Instances are created automatically by the UIA.

Conceptionally, we have multiple modelling levels, as expert architects instantiate models

which are then used by user architects. Similarly, user architects dene models which in

turn are used by the UIA to produce the actual propagation result. However, EMF limits

the available levels to M2 and M1 only. Therefore, we technically realize multiple levels by

referencing, which is a common approach when extending available meta-models such as

the PCM. In particular, dening one single uncertainty meta-model would be impracticable

at this point as various roles instantiate dierent model elements at dierent points in

time.

Figure 7.3 illustrates a strongly simplied class diagram of the UIA. The aliation of the

entities to the models is highlighted with colours. The division according to the creators is

further indicated by the dotted lines. Again, the ADD- and UncertaintyType- related entities

are part of the UncerteinatyTemplate model, which is why they belong to the same part.

For the sake of simplicity, we omit most of the enums that represent the architectural and

uncertainty-related categories. Enum ArchitecturalElementTypes represents the types of
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<<Enum>>
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Figure 7.3.: Uncertainty Impact Analysis - Class Diagram

architectural elements that are supported by the UIA, i.e. to which uncertainties can be

assigned. CausingUncertainty and UCImpactEntity are propagation-specic entities used by

the UIA when calculating the propagation eects. In the following sections, we explain

each part of the UIA in more detail, including how software architects can use the analysis.

7.2. Specification of Uncertainty Type Models

In Chapter 6, we introduced our uncertainty template which enables software architects

to derive uncertainty types based on existing ADDs. We consider this task to be executed

by expert architects as it requires manual eort and a non-negligible amount of expertise.

Once this process is completed, a collection of categorised ADDs and uncertainty types

is available. Of course, it is not required to use the uncertainty template to identify

possibles types, but nevertheless recommended. The architects’ task is now to provide

this information in the form of an ADD and UncertaintyType model (and nally combined

as UncertaintyTemplate model). Here, the EMF framework already provides tool support in
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form of tree editors which is why we do not implement this functionality. For each ADD-

and uncertainty related category of the uncertainty template, we provide a respective

enum that contains the relevant options. Expert architects therefore only need to create

both models and add instances of type ADD and UncertaintyType, including the desired
options. Yet this happens with a single exception: For category Architectural Element
Type, the uncertainty template supports general concepts of CBSE only, such as interfaces
or components, and is not bound to a specic ADL. However, the PCM allows for a more

specic, i.e. a more ne-grained collection of types of architecture elements to which

uncertainties could be assigned or propagated. In order to exploit this possibility, we

therefore support more element types as specied in the uncertainty template.

Architectural
Element Type

Palladio
Concept

Description

System System Refers to the whole system

Hardware

Resource

Resource

Container

Refers to hardware resources such as servers

Basic Component

Type

Basic Component Refers to components in repository (not

instantiated)

Component

Instance

Assembly

Context

Refers to instantiated top level components

Basic Component

Behaviour

RDSEFF Refers to inner component behaviour

descriptions

Communication

Component

Assembly

Connector

Communication between all top level

components

Communication

Resource

Linking Resource Describes communication between hardware

resources

System Interface Role Refers to the system’s provided and required

interface

Component

Interface Instance

Assembly

Context & Role

Refers to interfaces of instantiated top level

components

Component

Interface Type

Role Refers to interfaces of component types (not

instantiated basic components)

Usage Behaviour Entry Level

System Call

Refers to the actual usage of the system by

external actors

Table 7.1.: Supported Architectural Element Types and Mapping to PCM Concepts

Table 7.1 illustrates the architectural element types which are currently supported

by the UIA, including a mapping to available PCM concepts. Be aware that this is only

the current state as further (more specic) element types might be supported in the
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future. The PCM denes various architectural elements to which uncertainties can and

will be assigned, but their technical names do not always t our purpose. In the course

of the implementation, it became apparent that the technical PCM names are often not

meaningful enough. For instance, the technical Element Assembly Connector describes
the communication between components in software architecture. A more suitable name

in this case is therefore Communication Component. But more important, the PCM uses

the same technical elements to describe syntactically identical, but semantically dierent

elements. The technical element Role for instance, refers to interfaces in general. As we

want to distinguish between interfaces on component and system level, as well as between

interfaces of instantiated components and component types, it is not possible to use the

technical names. In case of Component Interface Instance, we have to combine two PCM

concepts to identify the desired architectural element as no suitable concept is available

for mapping. Although we decided against specifying the System option when dening the

template, the analysis oers this as a fallback mechanism. This is only for practical reasons,

as a referenceable architectural element type should be dened for each uncertainty type.

Overall, the collection of the presented architectural element types provides the follow-

ing two advantages: First, an alignment between the concepts of our uncertainty template

and the PCM. Second, a more ne-grained view of architectural elements in CBSAs that

might be aected by uncertainties. The denition of more specic architectural element

types requires the expert architect to decide which option to choose. In some cases, the

decision is trivial as there is an one-to-one mapping between the architectural element

types specied in the uncertainty template and the one supported by the UIA. For instance,

Hardware Resource or Usage Behaviour are identical. With regard to interfaces, expert archi-
tects have to decide whether the derived uncertainty types should be assignable to system

interfaces, component interfaces of instantiated components or to component interfaces

of uninstantiated components. The same applies for components. All in all, it enables the

architect to specify even more precisely to which architectural elements uncertainties can

be annotated and to which architectural element types they might propagate.

7.3. Uncertainty Annotation

In order to be able to annotate software architectures with uncertainties, user architects
require two types of models: First, an instance of an UncertaintyTemplate model that

species uncertainty types for their domain of interest. Second, an existing PCM-based

software architecture, i.e. instances of a Component Model, Assembly Model, Allocation
Model, and Usage Model (cf. Section 2.5). To actually instantiate an uncertainty and assign

it to a specic element, a user architect selects one of the available uncertainty types.

Each uncertainty type denes to which architectural element type it can be assigned.

As soon as a type is selected, the UIA automatically proposes each element to which the

uncertainty can be assigned. This is illustrated by Figure 7.4 which is a screenshot of the

actual UIA tool. This step is repeated for each uncertainty a user architect wants to create.

Each instantiated uncertainty instance is added to an Uncertainty model instance. This

model can be saved and reloaded to either display existing uncertainties, add new ones or
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delete resolved uncertainties. In doing so, user architects can manage their uncertainty

annotations throughout the software design process and beyond.

Figure 7.4.: Create New Uncertainty Dialogue - Screenshot

7.4. Uncertainty Propagation

In Section 6.5, we introduced the terminology of uncertainty propagation, including the
denition of the uncertainty set, the aected set and the impact set. Thereby, we also explain
how the uncertainty template can be used to derive the impact set and why doing this on

type level produces a vast overestimation of the actual aected set. Manual post-analyses

could reduce this overestimations, but they are tedious and require expertise. Yet, this is

precisely what is supposed to be avoided by using the analysis. Therefore we propose

structural propagation rules which determine only those elements that are "reachable" by

an uncertainty. This possibility is implemented and is explained in more detail hereafter.

Note that this section requires considerable prior knowledge of the structure of the PCM.

More detailed information can be found here [56]. In the following, we rst provide

general information with regard to the uncertainty propagation rules, followed by a brief

description of the technical realisation and some examples of existing algorithms.

7.4.1. Uncertainty Propagation Algorithms

The uncertainty propagation rules are algorithms which traverse PCM-based architec-

tures to identify reachable architecture elements. The starting element is dened by the

uncertainty which is to be propagated, i.e. the element to which the uncertainty is as-

signed. When traversing the architecture, the algorithms collect the elements that are

both, structurally reachable and whose types correspond to one of those dened by the

respective uncertainty type (dened via impactOnElementTypes). Note that this list can be

empty, indicating that no propagation is to be conducted. So far, ten dierent architectural

element types are identied (cf. Section 7.2). As each combination of start and end element

type theoretically needs to be supported, a total of 100 algorithms is required. The current

77



7. Uncertainty Impact Analysis

prototypical implementation comprises 13 algorithms, which we consider to be the most

relevant ones.

7.4.2. Technical Realisation

Our propagation is technically realised by using the KAMP framework (cf. Section 2.6) due

to the similarity of change propagation analysis and uncertainty propagation analysis. As

illustrated in Figure 7.3, UCImpactEntity and CausingUncertainty are the two relevant classes
that are required for the propagation. CausingUncertainty wraps the actual uncertainties
to be propagated, but adds a list of PCM entities describing the propagation path. This is

possible as each Palladio concept (cf. Table 7.1) inherits from Entity. For each architectural

element (i.e. Entity) that is aected by one or several uncertainties, an instance of UCIm-
pactEntity is created. Given a collection of uncertainties to be propagated as input, the UIA

automatically creates an UCImpactEntity, where the aected element corresponds to the

element directly aected by the uncertainty, and the list of causing elements contains one

CausingUncertainty that wraps the actual uncertainty.
The UIA is able to automatically choose which algorithms to execute, as each uncer-

tainty has an uncertainty type which species on which architectural element types this

uncertainty might have an impact. So starting element type and zero to several indirectly

aected element types together provide the required information to choose the specic

propagation algorithms. For each indirectly aected element (i.e. the result of the propaga-

tion), the UIA either creates a new UCImpactEntity and adds a CausingUncertainty containing
the causing uncertainty, or if the element is already aected by another uncertainty, it

simply adds a CausingUncertainty to the list. If there are multiple paths from a start element

to an end element, then multiple CausingUncertainty instances are created that wrap the

same uncertainty but have dierent paths.

The output therefore consists of two sets of UCImapctEntity instances: First, the entities
that reect the directly aected architectural elements (via uncertainty annotation). Second,

the entities that describe the architectural element which are indirectly aected by one

or several uncertainties (via uncertainty propagation). Consequently, the unprocessed

output is ordered according to aected architectural elements. This form of presentation

is conditioned by the use of the KAMP framework. But we need a dierent form of

representation, i.e. a sorting according to uncertainties and the elements aected by them.

Therefore, the UIA automatically transforms the output by iterating over the collection

of aected entities in order to derive for each uncertainty the architectural elements it

aects, including the paths. Again, if there are multiple paths between the same start

and end element, the aected element is included twice. In the following, we sketch two

uncertainty propagation algorithms.

7.4.3. Uncertainty Propagation Algorithm - Examples

We provide a textual explanation of some of the algorithms. For the sake of simplicity, we

decide against the illustration via (pseudo-) code as some of the algorithms work from

top to bottom (i.e. beginning at the starting element), others from bottom to top (i.e.

beginning with all potential ending elements) and yet others starting somewhere in the
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middle due to technical peculiarities of the PCM. Further, the (pseudo-) code notation gets

even more complicated as recursion is required frequently. It further has to be noted that

the algorithms are very simplied and only sketch the actual way of traversing the PCM

models. A detailed representation has no added value at this point, but can be looked up

using the well-documented code under [10].

7.4.3.1. From Communication Component to Hardware Resource

Allocation Context 2Allocation Context 1

Assembly Context 2

<<deploy>>

Assembly Context 1

Component A Component B

How is
communicated? 

?

Server 1

<<deploy>>

Figure 7.5.: Propagation from Communication Component to Hardware Resources

Figure 7.5 shows a strongly simplied architecture diagram which combines some PCM

models for illustration purposes. Component A and Component B are instantiated in a

separate assembly context, which are both allocated on the same server. To realize the

allocation, the PCM uses the concept of allocation context. The uncertainty type How is
communicated? is assignable to architectural elements of type Communication Component
and has an impact on Hardware Resources. Given this uncertainty type, the user architect
instantiates this type by annotating the communication component that connects both,

Assembly Context 1 and Assembly Context 2. The algorithm to propagate uncertainties from

communication components to hardware resources is as follows:

1. Extract providing and requiring interface connected by Communication Compoent

2. Do for both interfaces

2.1. Extract Assembly Context

2.2. Extract Allocation Context

2.3. Extract Hardware Resource

2.4. Create UCImpactEntity for Hardware Resource (if not yet created)

2.5. Add CausingUncertainty, including the path
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With regard to Figure 7.5, the UIA creates two CausingUncertainty instances, both con-

taining the same uncertainty but a dierent path, and which are both added to the same

UCImpactEntity at Server 1. Propagation is now complete and the output is available to the

user.

7.4.3.2. From System Interface to Component Interface Type

System

Assembly Context A

Composite Component A

Assembly Context B

?

Which subjects
acces the
interface?

Assembly Context C

Component C

Component B

Figure 7.6.: Propagation from System Interface to Component Interface Type

Again, Figure 7.6 shows a strongly simplied architecture diagram. Component B
and Component C are encapsulated by Composite Component A. Delegation connectors

connect the interfaces from the basic components, to the composite component to the

system interface. Further, it illustrates the assembly contexts that encapsulate Component
B and Component C to build Composite Component A, as well as the assembly context

that encapsulates (i.e. instantiated) Composite Component A. The uncertainty type Which
subjects access the interface? is assignable to architectural elements of type System Interface
and has an impact on Component Interfaces Type. Given this uncertainty type, the user
architect instantiates this type by annotating the required system interface. The algorithm

to propagate uncertainties from system interfaces to hardware resources is as follows:

1. Extract Delegation Connector which connects System Interface and AssemblyContext

2. Extract Assembly Context

3. Do if encapsulated component is Composite Component

3.1. Extract Delegation Connectors which connect respective Composite Component
Interface with encapsulated Assembly Contexts
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4. Repeat previous step until encapsulated component is Basic Component

5. Do for each found Basic Component

5.1. Extract respective Interface Type of component

5.2. Create UCImpactEntity for Component Interface Type (if not yet created)

5.3. Add CausingUncertainty, including the path

With regard to Figure 7.6, the UIA creates two CausingUncertainty instances, both con-

taining the same uncertainty but a dierent path. Each of them is added to a dierent

UCImpactEntity (one refers required interface of Component B, the other one refers the
required interface of Component C).

7.4.4. Termination

A common problem in traversing models, especially in change impact analysis, is the

termination of algorithms [58]. However, the UIA distinguishes between input and output

sets, whereby the algorithms process all elements of the input set one after the other and

store the results in the output set. In particular, this means that the input set is not changed

during propagation and the uncertainty propagation analysis terminates as soon as each

uncertainty (i.e. the input) is propagated. In contrast to the KAMP approach, propagation is

only carried out in one step. The further use of the output as input for a next propagation

step is currently not planned, but could be done in the future. Nevertheless, it is possible

that architecture models have (illegal) cyclical dependencies, so that the traversal may not

terminate. Since checking the models for correctness is beyond the scope of this thesis,

we assume correctly modelled architectures, especially without cycles. From these aspects

it can be concluded that propagation always terminates in correct architecture models.

7.5. Uncertainty Assessment

When assessing uncertainties, a distinction must be made between two areas. On the one

hand, determining the impact of uncertainty and, on the other hand, assessing the impact.

The UIA supports the software architect in both.

In determining the impact, the UIA helps as follows: First, it enables the manage-

ment of uncertainties in general, i.e. user architects can annotate their architectures and

store/reload/enhance this information. As shown in Figure 7.7, the UIA visualizes the

instantiated uncertainties, including their uncertainty type and the architectural element

to which they are assigned. Second, it automatically calculates an improved impact set
based on predened propagation rules, i.e. it determines the impact of uncertainties with

regard to the architectural elements which they might aect. Although it is still necessary

to manually assess whether an impact actually exists at this point, this is limited to the

elements of the impact set. Since we assume that the impact set contains only a part of all

possible architectural elements, the UIA helps insofar as it can presumably reduce the set of

elements to be assessed. This manual assessment can be based on contextual information
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such as the data ow, requirements, information about exchanged data or decisions already

made, as described in Section 6.5.

Figure 7.7.: Uncertainty Management - Screenshot

In assessing the impact, the UIA helps as follows: As described in Section 6.6, the cat-

egories of the uncertainty types can be used to asses (i.e. to compare) uncertainties at

type level. Therefore, the analysis helps by visualizing the type-related information. More

precisely, for each uncertainty type, user architects can retrieve the selected options for

the architectural- and uncertainty related categories. Based on that, user architects can
manually compare existing uncertainties based on the guidelines provided in Section 6.6.

Similarly, the analysis visualises the propagation results. As indicated, counting metrics

such as Number of Aected Elements can help to assess the impact of uncertainties. There-

fore, we exemplarily implement a functionality that sorts propagated uncertainties by

the amount of elements they aect. It must be emphasised again that the current state of

the UIA is to be considered a proof-of-concept implementation and does not claim to be a

mature tool.

7.6. Dierentiation from KAMP

In the previous sections and chapters, we describe the similarity to the KAMP approach

which is used to calculate the impact of changes by propagation change requests. Although

the concept of propagating via architectural models, specically Palladio models, is not

new, we dier from KAMP in that we provide the possibility to propagate uncertainties. This

includes modelling uncertainties as a rst class entity, the knowledge of what propagation

algorithms should look like, and the interpretation of the results. All in all, we use the basic

idea of KAMP in a dierent context, especially with the aim of enabling non-experts to take

on expert tasks, which is the annotation, propagation and assessment of uncertainties.

7.7. Limitations and Improvements

The functional scope of the UIA is limited. In particular, not all the necessary propagation

algorithms are implemented yet. Further, subsequent analysis of whether an impact

is present or not must still be carried out manually, although presumably reduced to

a smaller amount of potential impacts. In order to decrease the impact set further, we
propose the integration of design time data ow analyses such as the one proposed by

Seifermann et al. [62]. Thereby, uncertainties could be propagated along identied data
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ows in addition to the structural propagation. This could make it possible to sort out

wrongly aected elements, i.e. to decrease the impact set. Another limitation is that the

assessment of the uncertainty impact is still to be conducted manually. However, these

limitation is less serious, as it could be remedied by further implementation work, as

demonstrated by the exemplary implemented functionality to count the amount of aected

elements. An imminent limitation is that the improvement of the impact set through the

use of the structural propagation algorithms may remove architectural elements that are

actually aected. For instance, Figure 7.8 illustrates two components which are deployed

on dierent servers. Further, the uncertainty type Is user data processed? is instantiated

and annotated to Component B. Expert architects identied that this type has potential

impact on Hardware Resources, so in this case on Server 1 and Server 2. Due to the structural
propagation algorithms, the UIAwould currently only identify Server 2 as indirectly aected
element. However, it is conceivable that Component B exchanges condential data with

Component A, which in turn stores it on Server 1. Consequently, this uncertainty also aects
Server 1. So in this particular case, an element that is actually aected is not included in

the impact set when using the UIA. In order to overcome these limitations, we propose

again the integration of design time data ow analyses in order to nd further aected

elements.

Component A Component B

Server 1 Server 2

?

Is user data
processed?

Figure 7.8.: Limitation of the Structural Limitation: Green Path is found whereas the red

Path is not.

7.8. Conclusion

In this chapter, we extended the PCM by the capability to represent uncertainty as rst-class

entity (RQ2.1). Based on that, we presented our Uncertainty Impact Analysis (UIA) that

enables software architects to manage uncertainties as follows: First, it enables less experi-

enced architects to annotate their architecture with uncertainties based on pre-dened

uncertainty types. Second, it automatically propagates instantiated uncertainties (RQ2.2).
Third, it helps to assess the impact of uncertainties. We introduced the stakeholders roles
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of the expert architect and the user architect to dierentiate between experienced and less

experienced architects.

Beside an overview of the technical implementation, we explained how expert architects
can prepare their knowledge about uncertainty types and their propagation eects in order

to make it accessible for the user architects. Further, we explained how user architects can
use the UIA to annotate software architectures with uncertainties, and how the analysis

supports the uncertainty management process. In addition, we described how the UIA uses

structural propagation algorithms to determine the impact set for given uncertainties. In

doing so, we explicitly addressed the schematic structure of two algorithms. Lastly, we

discussed the termination of the algorithms, the dierentiation to the KAMP approach, as

well as current limitations and possible improvements.
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In this chapter, we evaluate our approach. The evaluation is twofold. In the rst part, we

evaluate our uncertainty template including the proposed ADD- and uncertainty-related

categories. In the second part, we evaluate our Uncertainty Impact Analysis (UIA). To

structure our evaluation process and to minimize the risk of "collecting unrelated, mean-

ingless data" [6], we use a Goal-Question-Metric (GQM) plan [6]. The approach is based on

the assumption that specifying the goals rst contributes to evaluating in a "purposeful

way" [5]. To that end, Basili et al. [5] propose a framework that consists of three levels:

First, goals need to be dened on the conceptual level. Thereupon, questions are dened

on the operational level to "characterize the object of measurement" [5]. Finally, metrics

are derived to (quantitatively) answer the questions, and to evaluate the accomplishment

of the predened goals. The structure of this chapter is based on Hahner [29].

Section 8.1 presents the goals and questions. The evaluation data is outlined in Section 8.2.

We present the evaluation design in Section 8.3, which is used to answer the questions.

In Section 8.4 we present and discuss the evaluation results which is followed by the

discussion of the threats to validity in Section 8.5. Section 8.6 outlines the assumptions

and limitations of our approach. The evaluation results are summarized in Section 8.7.

This chapter is concluded by Section 8.8 which provides information on the availability of

the evaluation data in order to reproduce the evaluation.

8.1. Goals and Questions

The aim of this chapter is to evaluate whether the research questions (RQs) from Section 1.3

have been answered satisfactory. In RQ1, we ask about the impact of uncertainties on the

condentiality of a system at design time, hence the impact on software architectures. This

includes the denition of categories to categorise types of uncertainties and a template to

illustrate the categorisation. Further, RQ1 also asks about how the template can be used

to derive and asses the impact of uncertainty types on software architectures. In RQ2, we
ask about how to support the annotation and propagation of uncertainties in software

architectures. We derive the following evaluation goals based on the research questions:

G1 Structural Quality: The uncertainty template shall provide a high structural quality

regarding the categories and the options.

G2 Applicability: The uncertainty template shall enable the derivation of uncertainty

types and their impact on software architectures based on existing ADDs.

G3 Purpose: The uncertainty template creates awareness and enables the reuse of

knowledge while being more precise than existing approaches.
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G4 Usability: The Uncertainty Impact Analysis (UIA) simplies the annotation and

propagation of uncertainties by reducing the required amount of expertise and

manual eort.

G5 Functionality: The UIA is capable to support the uncertainty annotation and propa-

gation.

G6 Accuracy: The UIA nds the aected set, albeit over-approximated.

8.1.1. G1 - Structural Quality

G1 evaluates the structural quality of the template, including the categories and their

options. Bedford [8] provides a collection of principles that can be used to evaluate

classication schemes, such as the categories we provide within this thesis. In general,

a high structural quality promotes better comprehension, prevents misunderstandings

and reduces the risk of incorrect categorisation. To that end, the authors stress the

importance that "no two categories should overlap or should have exactly the same scope

and boundaries" [8]. We refer to that as orthogonality (Q1.1). This concept allows an
individual and independent classication of an uncertainty according to each category at a

given point in time. According to Bedford [8], a classication schema is usually dened as

hierarchy from top to bottom. Sub-categories (i.e. our options) need to be dened "in the

light of its parent" [8], so that the intention of the options for each category increases while

their extension decreases [8]. Fernandez and Eastman [25] refer to that as generalization
and specialization between dierent levels of abstraction (Q1.2). Options at the same level

of abstraction enable the holistic division of a respective category which promotes to

evaluate their exhaustiveness (Q1.3) and their dierentiation (Q1.4). On the one hand,

the options of a category should be exhaustive enough that relevant uncertainties and

ADDs can be classied with at least one. On the other hand, they should be dierentiable

enough so that each uncertainty and each ADD can be classied with only one option at

most. This supports the classication process as it reduces ambiguity. To evaluate G1, we
dene the following questions:

Q1.1 Are the categories orthogonal, in terms of their statement of impact?

Q1.2 Are the options dened at the same level of abstraction?

Q1.3 Can uncertainties and ADDs be described with at least one option for each category?

Q1.4 Can uncertainties and ADDs be described with at most one option for each category?

8.1.2. G2 - Applicability

G2 evaluates the applicability of the uncertainty template. We discuss its ability to derive

and categorize types of uncertainties from existing ADDs (Q2.1) as well as its ability to

derive their impact on software architectures (Q2.2). Otherwise, the template would not

contribute to the overall objective of the thesis. To evaluate G2, we dene the following
questions:
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Q2.1 Can the uncertainty template be used to derive and categorize uncertainty types

based on existing ADDs?

Q2.2 Can the uncertainty template be used to systematically derive the impact of uncer-

tainty types on software architectures?

8.1.3. G3 - Purpose

Having shown that the template is structurally sound (G1) and also practically applicable

(G2), we now evaluate in G3 that it has a purpose. According to Bedford [8], evaluating

the purpose of a contribution is one of the main goals of an evaluation. This is in line with

the general view that (scientic) contributions should always serve a purpose. Without a

purpose, our uncertainty template does not dierentiate from existing approaches. Speci-

cally, we demonstrate that the template increases reusability of knowledge and also creates

awareness (Q3.1). Reusability increases the benet, as knowledge once collected is made

more easily accessible to others. Awareness, on the other hand, enables people to become

aware of situations that would otherwise remain hidden from them. The evaluation of the

purpose is to show in particular why related approaches are not sucient for our specic

use case and why our approach is more precise (Q3.2). To evaluate G3, we dene the
following questions:

Q3.1 Are uncertainty types once identied relevant for multiple scenarios within the same

domain?

Q3.2 Is the classication of uncertainties at the architectural level more precise with our

template than with existing approaches?

8.1.4. G4 - Usability

Goal G4 evaluates the usability of the UIA. First, we consider the knowledge software

architects require to use our analysis (Q4.1). Here, we distinguish between required

domain concepts necessary to conduct a manual analysis, an analysis from an expert’s

point of view and from a user’s point of view. Next, we evaluate to what extent the UIA

can reduce the necessary eort in determining the impact of uncertainties (Q4.2). If this is
not suciently reduced, the additional eort caused by the use of UIA could compromise

the usability. To evaluate G4, we dene the following questions:

Q4.1 How much and which knowledge is required to use the UIA in order to annotate

software architecture with uncertainties and to determine their impact?

Q4.2 Can the UIA reduce the set of model elements that must necessarily be considered

when analysing the propagation eects of uncertainties?
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8.1.5. G5 - Functionality

G5 evaluates the functionality of the Uncertainty Impact Analysis. In doing so, we evaluate

whether it can support the annotation of uncertainty, as well as the propagation of un-

certainty (Q5.1). Both capabilities are key characteristics of our approach. Consequently,

they should be supported by our analysis as otherwise, the analysis would not contribute

to the overall goal of this thesis. To evaluate G5, we dene the following question:

Q5.1 Can the UIA support uncertainty annotation and uncertainty propagation?

8.1.6. G6 - Accuracy

In G6, we evaluate the quality of the propagation results, i.e. the accuracy of the UIA. To

do this, we examine the precision and completeness of the impact set calculated by the UIA

(Q6.1). A precise estimate is to be preferred to an excessive overestimation. Nevertheless,

it is more important that the calculated impact set is complete, i.e. it includes the elements

which are actually aected. More technically, the aected set should be a true subset of
the calculated impact set so that software architects can retrospectively extract all the

elements actually aected from the set of calculated elements. To evaluate G6, we dene
the following question:

Q6.1 How precise and comprehensive is the uncertainty propagation?

8.2. Evaluation Data

This section presents the evaluation data that is used throughout this evaluation.

8.2.1. Uncertainty Template - Reference Set

Throughout this thesis, we collect a variety of uncertainties which we iteratively use

to verify the suitability of the current state of our uncertainty template. We refer to

this collection as reference set. More specically, we use the reference set to iteratively

test the suitability of the dened categories and their options. We iteratively apply our

Uncertainty Type Derivation Approach (cf. Section 6.3.1) on sources such as [56, 31, 21, 28]

to collect ADDs and other uncertainties with a foreseeable impact on the condentiality.

This iterative process allows us to both, incrementally dene new categories as well

as to improve and rene existing ones. Apart from the limitation to CBSA with a focus

on condentiality, the reference set is not designed for any specic domain of interest.

Therefore, the uncertainties found could potentially be relevant across domains, which we

believe they are. Since the reference set is used to create and rene the categories, it is

only of limited use for evaluating the categories. Table A.1 sketches the reference set by

using the uncertainty template notation we propose in Chapter 6. In total, the reference

set consists of 12 ADDs (RA1 - RA12) and 24 uncertainties (RU1 - RU24).
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8.2.2. Case Study: Corona Warn App

The Corona Warn App (CWA) serves as case study for the evaluation whenever applicable

[40]. It is characterised by the following qualities:

1. The CWA is designed according to the CBSE paradigm, which is the underlying

principle of our approach

2. The CWA is an open source project. Design documents are freely accessible [68].

3. The CWA is a real system in operation which was releases at June 16, 2020 [33] and

as of January 12, 2022 has been downloaded by 40.2 million users [39].

4. The aim of the project is to preserve condentiality by applying high data protection

standards.

5. It was already utilised as case study in a related work, including a detailed review of

all design documents [71].

Due to these characteristics, this case study is particularly suitable for our evaluation,

because i) The component-based approach allows us to model the software architecture

with our ADL - the Palladio Component Model ii) The available documentation [68] and the

previous work [71] can serve as sources for ourUncertainty Type Derivation Approach, i.e. to
collect ADDs and uncertainties iii) It is a contact tracing app which has high condentiality

requirements, so condentiality is in the focus which is in line with our focus.

8.2.2.1. Soware Architecture of the CWA

Unfortunately, there is no available software architecture model of the CWA that shows all

the necessary components together and at the required level of abstraction. Furthermore,

modelling with the PCM requires the denition of several views (cf. Section 2.5) which is

not in line with the design documents provided by the CWA documentation [68]. Conse-

quently, it was necessary to review the available design documents in order to extract the

necessary information to create a Palladio-based version of the CWA. The modelling follows

the General Model Theory principles mapping, abstraction and pragmatism proposed by

Stachowiak [65]. In particular, the parts of the architecture that we do not consider relevant

are not modelled, i.e. we abstract from the architecture of the CWA. The architecture model

is illustrated by Figure A.1.

8.2.2.2. Uncertainty Template based on CWA

Table A.2 sketches the identied types of uncertainties which are based on the CWA case

study. It uses the notation we proposed in Chapter 6, i.e. the uncertainty template. Although
the lled uncertainty template presented in Table A.2 is based on CWA-related sources only,

we assume that it is suitable for similar CBSA, specically in the domain of Contact Tracing

Systems (CTS). As the CWA focuses on maintaining condentiality, the template should be

relevant for other systems with the same focus. In total, the template consists of 22 ADDs

(CA1 - CA22) and 28 uncertainties (CU1 - CU28).
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8.2.2.3. Collections of Instantiated Uncertainties

The CWA is a real-world case study, which has already passed the design time to a large

extent. Only minor features are still being added. Since CU1 - CU28 are based on decisions

made and other problems solved, the CWA architecture is free of instances of these types.

Nevertheless, for evaluation we need to instantiate uncertainties based on the types from

Table A.2 and assign them to concrete elements of the CWA architecture illustrated by

Figure A.1. In other words, we deliberately bring uncertainty back into the architecture in

order to investigate its possible impact. In the following, we briey present two collections

of instantiated uncertainties used in the course of this evaluation. Both collections are

created using our UIA, thus there are available as instantiated Uncertainty models in our

data set [10].

Collection 1: The rst collection is an unsorted list of one instantiated uncertainty per

type. So, based on the types CU1 - CU28we instantiate the uncertainties ICU1 - ICU28, where
ICUx is based on the type CUx. The elements aected are randomly selected and only match

the expected type. Furthermore, the instantiations do not follow any principle and do not

correspond to any realistic use case. This collection is therefore probably unsuitable for

analysing the impact of uncertainties. Nevertheless,it instantiates each of the 28 available

uncertainty types so that it can be used to illustrate which types of uncertainties can be

instantiated and propagated. This is not the case with Collection 2 as presented in the

following.

Collection 2: The second collection is divided into four scenarios, with each scenario

corresponding to what we consider a more realistic use case of how uncertainties might

exist. Combined, the four scenarios instantiate all types that can also be propagated using

the current state of the UIA. In particular, no instances of types CU1, CU4, CU6, CU12, CU22
and CU26 are included, as the propagation rules for these are currently still missing. This

limitation of the evaluation data is unfortunately necessary, as we are not able to analyse

uncertainties that cannot be propagated. Since the scenarios cover the entire CWA-based

template except for the excluded types, they are at least not less meaningful than randomly

instantiated uncertainties. The basic idea, however, is that scenarios can help to make

the evaluation more understandable, as they provide a certain structure. Therefore, we

assume the scenarios to be more suitable to evaluate our analysis.

The scenarios are as follows: Scenario 1 aects mostly the CoronaWarnAppServer, in-
cluding its hardware resources, communication components and interfaces. It includes

the uncertainties S1_1 - S1_7. The basic idea is that one component is still subjected to

uncertainties whereas the remaining components are not. This is the case, for example,

when one component is still in planning / development while the remaining components

are already implemented. Scenario 2 refers to uncertainties with regard to deployment

locations, the kind of storage used, and the data to be stored. It includes the uncertainties

S2_1 - S2_7. In this scenario, the majority of the design decisions are already taken but the

resource environment is still subjected to uncertainty. Scenario 3 refers to uncertainties

with regard to user behaviour, input data and user authentication. It includes the uncer-

tainties S3_1 - S3_8. The idea here is that the interfaces of the system boundary are not

fully dened. Scenario 4 contains uncertainties that can be assigned to the system rather
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than to concrete elements. It includes the uncertainties S4_1 - S4_4. The purpose of this
scenario is to analyse uncertainties that could have a system-wide impact.

8.2.3. Uncertainty Types of Related Approaches

We collect types of uncertainties from related approaches, including how they are cat-

egorised. The aim is to categorise these uncertainties in the course of the evaluation

with our approach. Yet, our focus is exclusively on the classication of uncertainties at

design time, in particular those with an impact on the software architecture. Uncertainties

specically for other areas, such as Self-adaptive System (SAS), are out of scope. Therefore,

we lter the collected ones based on this criterion. Table A.3 illustrates a collection of

uncertainties based on the work of Perez-Palacin and Mirandola [52].

Unfortunately, it is not possible for us to extract further collections from other works,

as either no specic types of uncertainties are explained and categorised, or they cannot

be used for our purpose. For instance, Hezavehi et al. [31] propose a taxonomy including

categories such as location, nature, spectrum, emerging time and source. Furthermore,

the authors name some exemplary uncertainties, which they unfortunately only classify

according to the category source. The other categories are ignored. Cámara et al. [16] use

the taxonomy provided by [31] to categorize an exemplary collection of uncertainty types.

This collection consists only of uncertainties specically for SAS, such as "What is the range
of a possible sensor value?" or "What is the response time of the sensor?". Ramirez et al. [54]

propose a taxonomy based on the categorymitigation techniques and on the three dierent

levels requirements time, design time and runtime. However, the uncertainties mentioned

as examples are rather process-related and cannot be transferred to software architectures

in a reasonable way. For instance, the authors propose uncertainties such as "Are there any
missing or ambiguous requirements?", "Are there unexplored design alternatives?" or "Is there
a lack of numerical precision in a measurement?".

8.3. Evaluation Design

In this section, we explain how we intend to answer the previously dened questions. We

discuss the evaluation for each goal separately. Wherever possible, we use the CWA case

study and additional information from the past section to carry out the evaluation.

8.3.1. Preface

The original GQM approach focuses on dening metrics that can be used to quantitatively

answer the questions and thus demonstrate the fullment of the initial goals. However, it

is not always possible to dene valid metrics, due to several reasons. First, the evaluation

of classication schemes (such as our uncertainty template) is classically argumentative in

nature. Apart from conducting user studies, such schemes are often evaluated in terms

of whether generally applicable principles have been adhered to [8]. Furthermore, the

uniqueness of our approach and the lack of comparable evaluation data makes it dicult

to dene valid quantitative metrics. For this reason, the following evaluation is often based
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on argumentation. It is backed up wherever possible with references to related literature

and to the data we collected in Section 8.2.

8.3.2. G1 - Structural Quality

The rst evaluation goal is the investigation of the structural quality of the uncertainty
template. In Chapter 5 we dened various categories and options to categorize ADDs and

uncertainties. We evaluate these both argumentatively and by applying them to a case

study. In both cases, we use a selection of principles to evaluate classication schemas

provided by Bedford [8].

8.3.2.1. Q1.1 - Orthogonality

This question aims to evaluate the orthogonality of the categories in terms of their state-

ment of impact. By denition, orthogonality means that no two categories overlap so

that the message of one category cannot be generated by the concatenation of (several)

others. Since it is not practical to examine all possible combinations of categories, we

proceed as follows: First, we justify why we can make a division into two independent,

non-overlapping areas. Each category is an exclusive part of one of these two areas. This

reduces the set of potentially orthogonal categories to be examined in advance, as this

subdivision is intended to prevent overlaps of categories from one of these areas at a time.

As experts, we know best which categories could be orthogonal to each other. Therefore,

we can enumerate those categories that could potentially be orthogonal but which are not

(with justication) and which are (with explanation why this is not critical). Wherever

necessary, we reference categorised uncertainties and ADDs from both, our reference set

(see Table A.1) and the CWA case study (see Table A.2). Orthogonality can be recognised, for

example, by the fact that two options of a category always occur together. Here again, the

available evaluation data can help us identify or dismiss potentially orthogonal categories.

Strictly speaking, the result is not universally valid since we do not compare all possible

combinations of categories.

8.3.2.2. Q1.2 - Level of Abstraction

In question Q1.2, we evaluate the level of abstraction of the respective options. A deni-

tion at the same level of abstraction improves understanding and in particular promotes

answers to the next two questions. Similar to the previous question, we evaluate this

argumentatively. Therefore, we assess each category independently, i.e. we enumerate

those categories whose options are not dened on the same level of abstraction. In those

cases, we argumentatively explain why this is not critical. Wherever possible, we refer to

related literature to back up our statements.

8.3.2.3. Q1.3 - Exhaustiveness

Question Q1.3 evaluates the exhaustiveness of the respective categories which is another

quality principles for good categorization schemas [8]. In other words, we evaluate if each
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uncertainty and ADD can be described with at least one option. What is important here is

that we focus on exhaustiveness with regard to uncertainties in software architectures. In

particular, the options do not strive for general exhaustiveness, i.e. being able to classify

uncertainties in other domains such as SASs.

To evaluate the exhaustiveness, we proceed as follows: Similar to the previous question,

we discuss argumentatively for each category separately why the options are likely to

be exhaustive. Thereby, we refer to the evaluation data to support our reasoning. More

specically, we highlight those categories where it is not always possible to select a suitable

option. In order to make a quantiable assessment, we present for each category how

many uncertainties could be classied with at least one option. Here, we refer to the

uncertainties from our reference set (see Table A.1) and the CWA case study (see Table A.2).

At this point we would like to emphasise that we do not want to evaluate the content of the

two lled uncertainty templates, but the categories and their options. In particular, we do

not want to show whether the identied uncertainties and ADDs are correctly categorised.

8.3.2.4. Q1.4 - Dierentiability

In Question Q1.4 we discuss the dierentiability of the options of the respective categories
which is another structural quality of classications according to Bedford [8]. Whereas the

exhaustiveness (Q1.3) aims to asses whether uncertainties and ADD can be classied with

at least one of the available options, dierentiability refers to the classication with at most

one of the available options. This questions evaluates two sub-aspects: Firstly, the options

should not overlap (i.e. orthogonality at option level) which means that options and their

denitions are clearly delineated. Secondly, it has to be evaluated to what extent several

options could be considered when categorising uncertainties. Altogether, we evaluate

whether or not it is clear which option to choose for a certain category.

While the evaluation of exhaustiveness is largely based on objective, logical reasoning,

this does not apply to dierentiability. This is because reasoning about an unambiguous

classication is very subjective, i.e. one person might categorise one entity with a dierent

option than another. In order to obtain meaningful evaluation results, we proceed as

follows: For each of the categories we argue, if possible, why a unique classication is

probably achievable. If necessary, we identify ambiguously interpretable categories to

the best of our knowledge and belief. Here, we refer to the evaluation data whenever

possible. In order to make a quantiable assessment, we present for each category how

many uncertainties could be clearly classied and how many are subjected to ambiguity.

Here, we refer to the uncertainties from our reference set (see Table A.1) and the CWA case

study (see Table A.2). As with Q1.3, the aim is to evaluate the categories and their options,

not to evaluate the content of the two completed templates.

8.3.3. G2 - Applicability

The second goal of this thesis is to demonstrate the applicability of our uncertainty template.
First, we discuss its ability to derive and categorize uncertainty types based on existing

ADDs. Second, we evaluate its ability to systematically derive the impact of uncertainty

types on software architectures. In doing so, we follow the approach that we dened in
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Section 6.3.1 and illustrated in Figure 6.3. We therefore demonstrate the applicability by

applying it to the CWA case study. The ADDs, that serve as the basis for the approach,

are derived from a collection of condentiality requirements presented by [71]. In his

work, Tobias [71, 70] structurally examines the design documents of the CWA [68] in

order to extract the condentiality requirements dened therein. In addition, we examine

the CWA design documents [68] by ourselves to gather more design decisions and other

uncertainties.

8.3.3.1. Q2.1 - Uncertainty Type Derivation and Categorization

In question Q2.1, we evaluate the ability of the template to enable the derivation and

categorization of uncertainties based on existing ADDs. To that end, we exemplarily apply

Step 1 to Step 8 of the approach dened in Section 6.3.1 to the CWA case study. This includes

to derive the impact on relationships between the evaluated ADDs as well as the extracted

uncertainties.

8.3.3.2. Q2.2 - Uncertainty Type Impact Derivation

Question Q2.2 evaluates the ability of the template to enable the derivation of the impact

of uncertainty types on the software architecture, i.e. their direct and indirect impact

on architectural elements. To that end, we exemplarily apply Step 9 and Step 10 of the

approach dened in Section 6.3.1 to the CWA case study.

8.3.4. G3 - Purpose

The previous goals aim to discuss the structural quality of the template as well as its

applicability. Now, we evaluate to what extent the template also has a purpose, as this is

one of the main objectives of evaluations in general. The focus is on evaluating to what

extend the uncertainty template is able to increase the reuse of knowledge and whether

or not it can create awareness. We also want to evaluate whether or not it enables a

more precise classication of uncertainties at the architecture level compared to existing

approaches that deal with uncertainties.

8.3.4.1. Q3.1 - Reuse of Knowledge and Creation of Awareness

Question Q3.1 asks for the relevance of uncertainty types for multiple scenarios. In

particular, it is to be evaluated to what extent once identied types of uncertainty promote

the reusability of knowledge and also create awareness. This question shall be discussed

once argumentatively and once by comparing our self-dened reference set to the one

we extracted based on the CWA documentation [68]. The reference set is illustrated in

Table A.1 whereas the CWA-based template is illustrated by Table A.2. Although the lling

of the reference set was completed before starting on the CWA-based template, we claim

that both templates are independent of each other. To be precise, we tried to ll the

CWA-based template as far as possible without the previously collected knowledge and

only based on the existing sources [68, 71]. In order to be able to compare the two, it

was necessary to adjust the terminology in some cases. It was ensured that neither the
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content nor the meaning was changed. Only an alignment of the names has taken place.

For instance, "Data to be stored" and "Data Persistence" is aligned to Persistence of Data
(What) (RA4, CA2).

8.3.4.2. Q3.2 - Relevance

This question evaluates the purpose and relevance of the template in general. More

specically, we discuss the benet of our template in terms of its ability to do something

that existing (related) approaches are not able to do - the classication of uncertainties

at architectural level, i.e. precisely in CBSAs. To do so, we proceed as follows. First, we

argumentatively discuss the relevance by comparing our approach with available related

approaches. In particular, we refer to the suitability of existing categories. For this purpose,

we discuss how many of our categories could be adopted unchanged, how many had to

be adapted for our purposes and how many are entirely new. A large number of adapted,

or completely new categories allow conclusions to be drawn about the unsuitability

of existing approaches. To achieve a fair comparison with other approaches that deal

with uncertainties, we only consider our uncertainty-related categories as presented in

Section 5.2.2.

In addition, we also compare uncertainties categorised with our template with existing

approaches. For this we apply existing classication approaches to the uncertainty types

which are based on the CWA case study. We consider the approaches of Perez-Palacin

and Mirandola [51], Hezavehi et al. [31] and Bures et al. [14] to be the most advanced

and most relevant approaches in this eld of research which is why we take these into

account. Thereby, we discuss to what extent our template classies uncertainty types

more precisely than existing approaches. We exemplarily discuss this based on a selection

of uncertainty types, but also provide an overview with regard to the entire CWA-based

uncertainty template.

Following the other direction, we use the uncertainties extracted (and categorised) by

Perez-Palacin and Mirandola [52] (see Table A.3) and categorize them with our approach.

Again, we discuss to what extent our template classies them more precisely than the one

proposed by [52]. In both cases, the comparison of our uncertainty template with existing

approaches is not a comprehensive review. First, we only compare based on a selection of

uncertainty types which we do not consider to be exhaustive in the rst place. Further,

a fair comparison is not always possible because existing approaches do have another

purpose, i.e. they aim to categorize uncertainties in dierent domains such as SAS [52, 31]

or for access control [14].

8.3.5. G4 - Usability

We start the evaluation of the UIA with regard to its usability. To that end, we discuss

the required knowledge that is necessary to analyse the impact of uncertainties on the

architecture, from their extraction up to their propagation and assessment. We further

compare the amount of architecture elements that must be considered when examining

the propagation of uncertainties with both, a manual approach and our approach.
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8.3.5.1. Q4.1 - Required Knowledge

Question Q4.1 asks about the required knowledge to analyse uncertainties and their

propagation eects using the UIA compared to a manual uncertainty analysis. As it is

hard to quantify knowledge, we focus on which knowledge is required and discuss the

amount qualitatively [29]. Therefore, we gather dierent concepts and tasks which need

to be understood and executed when analysing uncertainties and their impact. Ideally,

using the UIA reduces the required knowledge, as fewer tasks need to be performed

and thus understood. For this reason, the concepts presented not only describe areas

of knowledge, but also tasks to be carried out. We dierentiate between the manual

uncertainty impact analysis and the use of our analysis. The latter is further divided

into the view of expert architects and user architects, since expert architects perform tasks

which are required for user architects to be completed. Although expert architects do not

necessarily use the UIA, but rather provide the input, we decide to include their required

knowledge and tasks to achieve a fair comparison. As manual analysis we therefore refer
to the procedure of manually extracting types of uncertainties, deriving their impact,

as well as their instantiation, propagation and assessment, i.e. without the help of the

uncertainty template, the type derivation approach and the UIA. Based on the knowledge

about uncertainty type derivation, uncertainty propagation and assessment gathered in

Chapter 6, and the required knowledge to use the UIA in Chapter 7, we gather the following

domain concepts and tasks:

C1 Uncertainties in CBSAs, i.e. understanding basic principles of uncertainty, such as the

cone of uncertainty.

C2 Palladio, i.e. knowing how to use the PCM to model software architectures.

C3 Uncertainty Type Extraction, i.e. collecting potential types of uncertainties which are

relevant for a certain domain of interest.

C4 Uncertainty Type Categorization, i.e. categorizing identied types of uncertainties

according to our categorization approach.

C5 Uncertainty Type Impact Derivation, i.e. identifying on which types of architectural

elements uncertainty types can have an impact.

C6 Uncertainty Template Model Creation, i.e. transferring the knowledge into the UIA

C7 Uncertainty Impact Analysis (UIA), i.e. knowing how to use the UIA.

C8 Uncertainty Annotation, i.e. annotating software architectures with uncertainties.

C9 Uncertainty Propagation, i.e. determine architectural elements where uncertainties

might have an impact.

C10 Uncertainty Impact Validation, i.e. using context information to determine if impact

actually exists

C11 Uncertainty Impact Assessment, i.e. assessing the impact of uncertainties with regard

to the condentiality.
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8.3.5.2. Q4.2 - Amount of Elements

This question discusses the amount of architectural elements that must necessarily be

considered when examining the propagation eect of uncertainties. Without our approach,

each architectural element of a software architecture must be considered as it might be

potentially aected by an uncertainty. In contrast, the uncertainty template and UIA provide

a collection of potentially aected architectural elements which we refer to as impact set.
Based on Rostami et al. [58], we dene the following two metrics:

𝑟𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 =
𝐼𝑚𝑝𝑎𝑐𝑡𝑆𝑒𝑡𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

𝑛
(8.1) 𝑟𝑢𝑖𝑎 =

𝐼𝑚𝑝𝑎𝑐𝑡𝑆𝑒𝑡𝑢𝑖𝑎

𝑛
(8.2)

Metric 8.1 is dened as the ratio, 𝑟𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 , of the amount of potentially aected elements

to the number of all elements 𝑛 where 𝐼𝑚𝑝𝑎𝑐𝑡𝑆𝑒𝑡𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 corresponds to the amount of

elements of the impact set calculated using the uncertainty template only. Similarly, metric

8.2 describes the ratio, 𝑟𝑢𝑖𝑎 , of the amount of the potentially aected elements according

to the UIA to all possible elements. Elements that can be reached via several paths are only

listed once in the impact set.

The interpretation of the metrics is as follows: The minimum value is
𝑥
𝑛
where 𝑥

corresponds to the amount of propagated uncertainties. This indicates that no propagation

occurs and no further elements have to be analysed. The maximum value is
𝑛
𝑛

= 1,

indicating that each element of a software architecture needs to be analysed. Any value

less than one indicates that fewer elements need to be examined after the propagation

is conducted. In order to obtain valid evaluation results, the produced impact sets must

be comprehensive, i.e. the actually aected elements should be part of the respective

impact sets. Otherwise, the ratio could be low, falsely suggesting that only a small number

of elements need to be considered. Evaluating the comprehensiveness, i.e. the recall, is

covered by Q6.1. Consequently, when assessing the evaluating results of this question, it

is necessary to include the results of question Q6.1.
The evaluation is performed using the scenarios presented in Section 8.2. For each

scenario, we calculate the two metrics independently in order to evaluate to what extend

using our approach reduces the amount of architectural elements to be analysed. These

scenarios consist only of an exemplary selection of uncertainties. It is therefore not a

comprehensive review, as we do not consider our selection to be comprehensive in the

rst place. Further, the amount of uncertainties per scenario inuence the results so that

no generalization is possible here. The aim of this question is rather to show whether our

approach is suitable for reducing the number of elements, and not by how much.

8.3.6. G5 - Functionality

Besides the usability, we also aim to evaluate the functionality of the UIA. To this end,

we discuss whether the UIA is capable to support the annotation and propagation of

uncertainties in software architectures.
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8.3.6.1. Q5.1 - Uncertainty Annotation and Propagation

This question evaluates whether the functionality of the UIA is sucient to annotate

and propagate uncertainties in software architectures. A prerequisite for the uncertainty

annotation is the representation of uncertainties in software architectures. "Represent" in
this context means the following: Uncertainties are to be modelled as rst class entities.

This includes, in particular, the possibility of providing them with characteristics such as

a certain type or the architectural element they aect. This enables to attach uncertainties

to the elements where they have a direct impact, which we refer to as uncertainty anno-

tation. For this purpose, common concepts of CBSE are to be supported, so that dierent

architecture element types can be annotated.

Uncertainty propagation refers to the core capability of (automatically) calculating

the architectural elements on which instantiated uncertainties have a indirect impact.

As our approach uses structural propagation rules, each combination of starting and

ending architectural element type should be supported, otherwise uncertainties may not

be annotated correctly resulting in faulty propagation results.

Since there is no comparable tool and the literature often only provides coarse-grained

functional requirements (e.g. there is a "lack of systematic approaches for managing

uncertainty" [32]), it is not possible to check our approach against an eligible list of

requirements. We therefore evaluate the functionality quantitatively based on our CWA

case study. To that end, we use the uncertainty types CU1-CU28 and their instances ICU1-
ICU28 to evaluate whether or not the uncertainties can be annotated to the element to

which they actually belong. Further, we evaluate if the uncertainty analysis is capable of

propagating the instantiated uncertainties.

8.3.7. G6 - Accuracy

The last evaluation goal evaluates the accuracy of the UIA with regard to the precision

and completeness of the propagation results (Q6.1), usually referred to as precision and
recall. We conduct the evaluation using the CWA case study. In particular, we calculate the

precision and recall for each of the four scenarios.

8.3.7.1. Q6.1 - Precision and Recall

Question Q6.1 evaluates the accuracy of the UIA from two perspective: the functional

accuracy and the accuracy after incorporating context-related information. First, we

discuss whether or not the UIA identies the architectural elements it is supposed to nd.

We refer to that as functional accuracy, as we evaluate the functional correctness of the

propagation algorithms. In particular, it is not a question of whether the elements found

are actually aected by uncertainty, but whether they have been correctly identied as

potentially aected. Therefore, we rst manually identify which architectural elements

are structurally aected by uncertainty propagation according to the underlying structural

propagation rules which form the basis for the implemented algorithms. Then, we conduct

the automatic propagation using the UIA and compare the results to the manual analysis.

We classify the results of the UIA for the uncertainties of each scenario as follows: true-
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positive (structurally aected element included), true-negative (structurally not aected

element not included), false-positive (structurally not aected element included) and false-
negative (structurally aected element not included). Based on that, we derive the metrics

of binary classications [53]:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
true-positive

true-positive+ false-positive 𝑅𝑒𝑐𝑎𝑙𝑙 =
true-positive

true-positive+ false-negative

In a second step, we discuss the accuracy of the propagation results after incorporating

context-related information. For each scenario we proceed as follows: We manually assess

the elements that are actually aected by the uncertainties by using context information

such as design decisions, requirements or information about the data ow. Thus, we

determine the aected set manually. Afterwards, we conduct and compare the UIA results,

i.e. the impact set with the previously (manually) dened aected set. Again, we apply the

precision and recall metric for each scenario as follows: true-positive (element in aected
set and in impact set), true-negative (element not in aected set and not in impact set),
false-positive (element not in aected set but in impact set and false-negative (element in

aected set but not in impact set). We briey explain for each element the reason for its

classication.

Please note that both perspectives represent fundamentally dierent aspects of accuracy

and, above all, are dierently "dicult" to determine. The rst perspective is tedious to

determine manually, but it is structured and unambiguous. One simply needs to apply the

structural propagation rules manually to examine which elements the UIA should identify.

The second perspective is quite the opposite: Here it is necessary to manually determine

for each uncertainty which elements it actually aects. This is not based on structured

rules, but on knowledge and experience and is above all characterised by subjectivity.

Hence, dierent experts could therefore obtain diverging results given the same initial

situation. However, as our case study is suciently small, and as we have the expertise to

analyse uncertainties, we are condent that we can accomplish this task satisfactorily.

8.4. Results and Discussion

In this section, we show and discuss the results of our evaluation in the order of the GQM

plan we elaborated in the previous sections.

8.4.1. G1 - Structural Quality

G1 evaluates the structural quality of the uncertainty template. Therefore, question Q1.1
evaluates the orthogonality of the categories, while question Q1.2 evaluates the level

of abstraction of the options. Further, the options are evaluated with regard to their

exhaustiveness (Q1.3) and dierentiation (Q1.4).
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8.4.1.1. Q1.1 - Orthogonality

This question is twofold. We begin by arguing why we can consider the architectural-

related categories and the uncertainty-related categories separately. This allows us to focus

on potential orthogonality only within the two areas. The argumentation at this point is

almost trivial, as the respective categories have a dierent purpose. In the rst case, we

categorize ADDs, whereas in the second case we categorize uncertainties. However, this

argument is further supported by the sources of the respective categories as described in

Section 5.2.1 and Section 5.2.2. The sources of the ADD-related categories and the sources

of the uncertainty-related categories have no intersection.

Within the architectural-related categories, the categories Probability of Revisability,
Possibility of Revisability and Costs of Revision all refer to the revisability of an ADD.

While the latter is clearly dierent from the rst two, the rst two initially appear partially

orthogonal. Onemight think that the probability is always unlikely when something cannot

be revised. However, ADD (CA3) indicates the opposite. The point here is the location of

persistence, which can change more likely in cloud-based systems such as the CWA, but in

principle cannot be changed once data has been (incorrectly) persisted somewhere. We

therefore conclude that the architectural-related categories are not orthogonal.

Within the uncertainty-related categories, several pairs seem suspicious with regard

to orthogonality: First, Location and Architectural Element Type both express locality

characteristics. It is also noticeable that the following applies for each uncertainty from our

evaluation data: If the option System Environment is selected for Location, the Architecture
Element Type always corresponds to Hardware Resource. For the remaining options in

these two categories, there are no other noticeable ndings. Even if both categories do not

seem to be fully orthogonal to each other, this is not a big issue in our humble opinion.

The reason for this is the denition of both categories: While category Location is based on
view level, category Architectural Element Type is on element level within the respective

views. Since elements such as interfaces can occur in several views, it is reasonable to

distinguish between them. Also, categories Type and Nature have similarities, as aleatory

events can often be described by statistical means. However, CU6, RU10 and RU14 show
that this is not always the case. Moreover, both categories are based on work that also

lists them (albeit modied) as distinct categories, too [14, 52].

Another conspicuous nding emerges from the examination of categories Impact on
Condentiality and Severity of the Impact. The evaluation data reveals that a direct impact

always implies a high severity. However, this circumstance is hardly surprising, as we

suppose that uncertainties with a direct impact automatically have a high severity. How-

ever, for the indirect impact, the choice between high and low is more than necessary, as

the evaluation data show. It is not necessary to assume that this makes it impossible to

distinguish between the two categories with regard to their core message. For this reason,

partial orthogonality can be accepted for these two categories.

Finally, the evaluation data suggest a further correlation between categories Root Cause
and Resolution Time. If missing information is selected, the Resolution Time is almost

always either design time or the temporally preceding requirements time. Assumption
always indicate deployment time, runtime or never. These implications do not apply only

to the two uncertainties CU10 and RU19. Although the evaluation data convey a certain
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orthogonality, we would like to point out that both categories look at two completely

dierent aspects. Resolution Time is used to describe the temporal character of uncertainties.

Root Cause is dened from within the design time (which is an option of Root Cause), but
describes the overall reason why uncertainty exists. To the best of our knowledge, there

are no further categories that seem to be orthogonal.

8.4.1.2. Q1.2 - Level of Abstraction

In this question we deal with the abstraction level of the options. For this purpose, we

list hereafter the categories whose options are not clearly dened at the same level of

abstraction. Binary classications such as high/low, yes/no or likely/unlikely are trivially

dened at the same level of abstraction. In the following, we therefore only consider

non-binary classications. For the evaluation, we proceed in the order in which categories

are presented in Chapter 5.

We start by evaluating the architectural-related categories: The options for category

ADD Class are based on the taxonomy provided by Kruchten [43]. The author provides

another level of abstraction as he combines option structural decision and behavioural
decision under existence decision. According to the author, the remaining options property
decision and executive decision are located on the same level as existence decision. We have

not followed this division of levels, as in our opinion structure and behaviour are two

fundamentally dierent concepts that cannot be assigned to one sub-category. This is

in line with Reussner et al. [56]. Since each of the options describes a basic ADD class,

we locate them at the same level of abstraction. Category Amount of Alternatives is
composed of closed set and open set which both describe the characteristics of a collection

of alternatives. Hence, both the options are on the same level of abstraction.

We continue with the evaluation of the uncertainty-related categories: The options

for category Location correspond to the views dened by the PCM [56]. Therefore, we

expect them to be on the same level of abstraction. Type is used to dierentiate between

dierent types of Level 1 uncertainties, i.e. known uncertainties as dened by Perez-Palacin

and Mirandola [52] and Bures et al. [14]. Each option characterizes a dierent type of

uncertainty within the rst level. Therefore, we consider them on the same level of

abstraction.

Nature is a well established category and dened by various related approaches such as

[73, 52, 31, 14, 44, 72]. They all agree that the two options aleatory and epistemic divide
nature in those two areas. Architectural Element Type describes possible rst-class entities
of CBSAs. Solely option usage behaviour suggests that is not on the same level as the

remaining options. However, as described by Reussner et al. [56], CBSE enables software

architects to describe the usage behaviour as rst class entity in software architectures,

which shifts this option to the same level of abstraction as the others.

Category Manageability dierentiates between fully reducible, partial reducible and
irreducible. Since all the options similarly refer to the manageability aspect of uncertainties,

it can be claimed that the level of abstraction is the same. Category Impact on Condentiality
consists of none, direct and indirect impact. Direct and indirect represent the existence of
an impact whereas none represents the absent of an impact. Consequently, this category

violates the principle of same level of abstraction. Nevertheless, our research showed that
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it is necessary to dierentiate between direct and indirect impact, but also to provide the

possibility to express that their is no impact. Another solution would be to dene two

categories: one category indicating the binary decision between impact and no impact

(yes/no), and another indicating the type (direct/indirect). However, this complicates the

categorisation process, as for no impact the choice of type makes no sense. In order to

avoid this problem and at the same time full the previously identied requirements, we

have decided to deliberately break the principle of the same level of abstraction at this

point.

Regarding category Resolution Time, the options requirements time, design time, deploy-
ment time and runtime refer to potentially nite time spans, whereas in the case of never
it is questionable whether it is a time span in the true sense of the word. Here we slightly

break up the concept of the same level of abstraction for practical reasons. With option

never, we had to provide an unusual time span which was necessary to characterize the

resolution time of some uncertainties, such as CU23, CU27, RU14 and RU17. Nevertheless,
the remaining options correspond to common terms of the software development process

[36]. Thus, their meaning is widely known and accepted so that we do not assume that

the additional option causes misunderstanding.

Root Cause dierentiates between missing information and assumption. Both options are

dened from the perspective of the design time and have a rather temporal character to

describe the reason why uncertainty prevails. When categorising the uncertainties of the

CWA, we observed that neither category is more specic or generalisable than the other.

This indicates that both are on the same level of abstraction. The remaining categories

are binary, as already explained at the beginning, which is why an evaluation at these

points is trivial. Overall, we can satisfactorily conclude that the respective options of the

categories (with some less serious exceptions) are dened at the same level of abstraction.

8.4.1.3. Q1.3 - Exhaustiveness

The evaluation for this question is twofold: First, we argumentatively discuss why the

options for each category are exhaustive, in terms of the capability to categorize uncer-

tainties in software architecture with, at least, one of the provided options. Second, we

demonstrate the exhaustiveness based on our reference set and the CWA case study.

We start by evaluating the architectural-related categories: Category ADD Class is
based on the widely accepted taxonomy of Kruchten [43]. We derive its exhaustiveness

based on its recognition and our evaluation data [10]. Category Amount of Alternatives
consists of open set and closed set. Possible design alternatives are either fully known

by the time software architects make the decision (=closed set) or not yet fully known

(=open set). This binary-like denition leads us to conclude that ADDs must fall into

one of the two sets and that the two options are therefore exhaustive. Probability of
Revisability divides the probability scale holistically in two areas and can therefore be

considered as exhaustive. Possibility of Revisability is a binary classier, hence the options

are exhaustive per denition. Costs of Revision aims to avoid precise quantications in

terms of specic amounts of money or necessary working hours. It is apparent that high
and low are sucient to say whether a revision is rather expensive or rather cheap. A

precise quantication is not possible at this point, as costs can be assessed dierently from
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system to system [57]. The need for a more ne-grained division has not emerged, at least

with regard to the examined case study.

We continue with the evaluation of the uncertainty-related categories: Locations is
based on the four dierent views on software architectures as dened by Reussner et al.

[56]. The division into these views has been evaluated several times, which is why we

conclude that uncertainties in software architectures are assignable to at least one of these

views. Category Type describes uncertainties on the 1
st
level, i.e. known uncertainties.

Option recognized ignorance act as kind of fallback, as uncertainties are neither describable
with statistical means, not as by developing scenarios. Consequently, we conclude that

uncertainties can always be categorized using on of the given options. The exhaustive

categorization of the nature in either aleatory of epistemic is widely accepted by the

scientic community [73, 52, 31, 14, 44, 72]. We see no reason to question this. For

category Architectural Element Type the evaluation data demonstrate that the available

options are not exhaustive. For instance, RU1, RU8, CU1, CU23, CU17, CU18 indicate that
a specic option is missing - the system. Each of the mentioned uncertainties have in

common that they are to be assigned to the system, instead of a specic element type. In a

previous version of our uncertainty template, this option was part of category Architectural
Element Type. However, we decided to remove it as it violates the level of abstraction

(cf. Q1.2). Further, the system would include all the other options which could lead to

misunderstanding when categorizing uncertainties. For practical reasons, we circumvent

this limitation in our UIA by allowing uncertainties to be assigned to the system itself.

Category Manageability dierentiates between fully reducible, partial reducible and
irreducible. Since these options completely divide the theoretical scale of reducibility, any

uncertainty should fall into at least one of these three areas. The evaluation data show

nothing to the contrary. Uncertainties can either have direct, indirect or no Impact on
Condentiality. As described in the previous section, direct and indirect represent the
existence of an impact whereas none represents the absence of an impact. Logically, this

is a binary choice and thus exhaustive per denition. The same reasoning applies for

categories Severity of the Impact and Resolvable by ADD. Category Resolution Time divides
the software development process into several phases. Yet, well known and accepted

phases such as Validation, Testing or Maintenance [36] are not part of this category. This
is because, for example, testing extends over several already dened phases. To avoid

confusion, we decided not to include any further options as in our opinion, the options

provided are sucient to classify uncertainties in software architectures in terms of their

resolution time. The evaluation data also indicate that no further option is needed. The

exhaustiveness of category Root Cause is based on our ndings of Chapter 4, where

we already discussed why uncertainties in software architectures are caused by either

assumptions or missing information.
In order to consolidate our argumentative evaluation with quantitative results, we anal-

yse for each category how many uncertainties could be classied with at least one option.

The reference set (see Table A.1) consists of 12 ADDs and 24 uncertainties. Consequently

12/12 and 24/24 indicates the optimum, meaning that the options for the respective cate-

gory were exhaustive enough to classify the respective ADD or uncertainty. With regard

to the CWA (see Table A.2), the optimum values are 22/22 and 28/28, respectively. Table 8.1
reects the evaluation results we previously collected argumentatively. For each category,
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the options are suciently exhaustive so that uncertainties and ADDs can be categorized

with at least one option. The only outlier is category Architectural Element Type, for which
we already provided an extensive explanation. Finally, we can conclude that the options

are suciently exhaustive.

Category Reference Set CWA
ADD Class 12/12 22/22

Amount of Alternatives 12/12 22/22

Propability of Revisability 12/12 22/22

Posibility of Revisability 12/12 22/22

Costs of Revision 12/12 22/22

Location 24/24 28/28

Type 24/24 28/28

Nature 24/24 28/28

Architectural Element Type 22/24 24/28
Manageability 24/24 28/28

Impact on Condentiality 24/24 28/28

Severity of the Impact 24/24 28/28

Resolvable by ADD 24/24 28/28

Resolution Time 24/24 28/28

Root Cause 24/24 28/28

Table 8.1.: Exhaustiveness of the Options sorted by Category and Case Study

(Interesting Cases highlighted in Colour)

8.4.1.4. Q1.4 - Dierentiability

The evaluation for this question is twofold. First, we argumentatively discuss the dif-

ferentiability of the options for each category. In other words, we explain why a clear

choice of one of the available options is probably achievable. Second, we demonstrate the

dierentiability based on our reference set and the CWA case study.

We start by evaluating the architectural-related categories: Category ADD Class is
based on the taxonomy presented by Kruchten [43]. Although the taxonomy dening

this category is well established, we consider the options to be ambiguous. The reason is

how you want to classify ADD. Although the denitions of the dierent classes are rather

unambiguous, the usage is not. For instance "Data Minimization"(CA9) and "Logging"(CA14)
have both, a behavioural character and a property character. CA9 can describe the behaviour
of the system, i.e. that data minimization is actually executed, as well as the constraint

(=property), that data minimization has to be carried out. The same applies for CA14, where
the ADD either refers to how logging is performed or that it is required that logging is

performed. Either way, each possibility is sound. On the other hand, it is precisely this

ambiguity that allows us to clarify the actual meaning of the respective ADD. With regard

to CA9, for instance, we decided to categorize it as behavioural decision indicating that

we refer to the way data minimization is performed where for CA14, we categorized it as
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property decision, indicating that logging is a constraint that need to be fullled. So we

conclude that the ambiguity in this case actually brings advantage in terms of clarifying

the intention.

The remaining architectural categories are, in our opinion, not aected by ambiguity as

the respective options are considered to be binary. Again, we do not want to evaluate the

content of the templates, but the categories and options. Of course, it is not always clear

whether, for example, the costs are high or low. But that is not the point of this evaluation
question. Rather, it is clear what is meant by high and low, so that architects only need to

be able to determine whether the expected costs of the ADD are either high or low when

lling in the template. In general, the choice of the respective option is of course highly

dependent on the domain of interest and thus also on the systems to be described. For the

remaining categories, there is no ADD in the evaluation data where we notice any issue

regarding the selection of the appropriate option.

We continue with the evaluation of the uncertainty-related categories: Similar to cate-

gory ADD Class, determining the Location of uncertainties can sometimes be ambiguous

due to a similar reason. Depending on how one interprets an uncertainty, it can be assigned

to a dierent location. For instance, "Which authentication mechanisms are used?" (CU16)
and "What kind of access control is used?" (RU6) both are uncertainties that could be located

within the system behaviour as well as within the system environment. In both cases, the

uncertainties could be due to not knowing how authentication and access control are actu-

ally implemented (i.e. system behaviour) versus not knowing which technological choice

has been made (i.e. system context). For RU6, this could mean that either it is uncertain

how RBAC is implemented or whether RBAC or ABAC is chosen. Similar to category ADD
Class, this ambiguity enables to clarify the actual meaning of the respective uncertainty.

Since the options themselves correspond to the established views of the PCM, we claim

that the denitions do not overlap.

The usage of category Type could be aected by ambiguity if software architects can

describe the uncertainty with either statistical means or by dening scenarios. However,

our precise denitions of those two options indicate that statistical uncertainty is closer to

determinism as scenario uncertainty. Thus, software architects should always use statistical
means if possible so that the ambiguity does not occur. This enables to clearly categorize

each of the collected uncertainties in our evaluation data.

Category nature is widely used and therefore unambiguous with regard to the denition

of aleatory and epistemic. However, many authors claim that "it is not always easy to

clearly distinguish between these categories of uncertainty" [73], as it "may depend on

the point of view" [52]. However, we did not encounter any cases in our evaluation data

where we found it dicult to clearly identify an option. This is in line with the insights

of Esfahani and Malek [21], who dierentiate between the theoretical and philosophical

debates, and the practical application. In Section 6.2, we argue why uncertainties are likely

to (directly) aect multiple Architectural Element Types which would introduce ambiguity.

Due to our decision to include such uncertainties several times in the template, this form

of ambiguity is structurally eliminated. Each option corresponds to a well-dened type of

CBSAs, so that confusion can be ruled out at this point.

Category Manageability dierentiates between fully reducible, partial reducible and
irreducible. Since these options completely divide the theoretical scale of reducibility
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in three, non overlapping areas we consider this category to be unambiguous. Further,

evaluation data demonstrates that this also applies for the actual usage of this category

as in no point of time, we had trouble to identify which kind of reducibility applies for

an uncertainty. Impact on Condentiality is a two-step binary decision. First, software

architects must determine whether an uncertainty has an impact on condentiality or not.

In case they identify a potential impact, they must further asses whether this impact is

direct or indirect. Due to the denition, an overlap of the options is therefore impossible.

However, the denitions of direct and indirect could be misunderstood so that is might

not always be clear which option to choose.

Severity of the Impact is subjected to the point of view of software architects, especially

to the domain of interest for which they complete the template. While the binary decision

allows for an unambiguous decision, the actual severity may depend on the software

architect’s perspective. However, we did not encounter any cases in our evaluation data

where we found it dicult to clearly identify an option. Resolvable by ADD is a rather

structural dened category whose choice is clearly determined by the structure of the

template.

Resolution Time is unambiguous with regard to the denitions of the options as they

correspond to generally accepted, clearly delineated phases of the software development

process. However, it might not always be clear by which phase an uncertainty will be

resolved at the latest. We encountered this problem several times in the evaluation data. For

instance, "Are the access control rules correct?" (RU18) usually resolves at the latest during

runtime, as soon as the rules are executed in the running system. However, one could argue

dierently here, since a rule may never be executed and thus its correctness can never

be checked. Further, "Correct design for secure architecture?" (CU23) could theoretically

never be resolved. Nevertheless, in the case of CU23, we have chosen design time as we
consider the architecture to be secure, when it follows the guidelines of secure software

architectures, for instance by using reference architectures or frameworks. In our opinion,

this specic uncertainty is resolved at latest by the time the design is nished. This example

again indicates that the usage of the template depends on the point of view, which in this

case is ours. The Root Cause is another binary decision that is to be made from the design

time perspective. Consequently, there is no overlap in the denition. Choosing either

assumption or missing information again is subjected to the point of view. As we already

explained several times that we consider uncertainties from the point of view of the design

time, the choice of the appropriate option should be unambiguous.

In order to illustrate our argumentative evaluation with quantitative results, we show

in Table 8.1 for each category how many uncertainties could be classied successfully or

ambiguously. The reference set (see Table A.1) consists of 12 ADDs and 24 uncertainties.

Consequently 12/12 and 24/24 indicates the optimum, meaning that the options for the

respective category were exhaustive enough to classify the respective ADD or uncertainty.

With regard to the CWA (see Table A.2), the optimumvalues are 22/22 and 28/28, respectively.
An exception is category Architectural Element Type, as we identied two respectively four

uncertainties in the previous question (Q1.3), for which no meaningful classication is

possible. Therefore, neither successful nor ambiguous classication is possible so that the

optimum values are adapted.

106



8.4. Results and Discussion

Table 8.2 reects the evaluation results we previously collected argumentatively. As

described in the introduction of Q1.4, the evaluation of the dierentiability consists of two

aspects - i) non-overlapping denitions and ii) unambiguous categorization. With regard

to the rst aspect, we conclude that the denitions allow a suciently clear distinction

between the dierent options within each category. Although this is mainly based on our

humble opinion, we have adequately discussed this aspect for each category. In relation

to the second aspect, we have identied the categories where we either had diculties

in making an unambiguous classication ourselves, or where we assume, based on our

knowledge, that there could be ambiguous classication possibilities. As indicated by

Table 8.2, those categories are ADD Class, Location and Resolution Time. Nevertheless,
we conclude for each category that the options are suciently dierentiable so that

uncertainties and ADDs can usually be categorized with only one reasonable option. A

more detailed description of the ambiguously classied uncertainties can be found in the

evaluation data [10].

Reference Set Corona Warn AppCategory
Successful Ambiguous Successful Ambiguous

ADD Class 9/12 3/12 14/22 8/22
Amount of Alternatives 12/12 0/12 22/22 0/22

Propability of Revisability 12/12 0/12 22/22 0/22

Posibility of Revisability 12/12 0/12 22/22 0/22

Costs of Revision 12/12 0/12 22/22 0/22

Location 20/24 4/24 24/28 4/28
Type 24/24 0/24 28/28 0/28

Nature 24/24 0/24 28/28 0/28

Architectural Element Type 22/22 0/22 24/24 0/24

Manageability 24/24 0/24 28/28 0/28

Impact on Condentiality 24/24 0/24 28/28 0/28

Severity of the Impact 24/24 0/24 28/28 0/28

Resolvable by ADD 24/24 0/24 28/28 0/28

Resolution Time 22/24 2/24 26/28 2/28
Root Cause 24/24 0/24 28/28 0/28

Table 8.2.: Dierentiability of the Options sorted by Category and Case Study

(Interesting Cases highlighted in Colour)

8.4.2. G2 - Applicability

This goal is evaluated by applying the uncertainty type derivation approach as presented in

Section 6.3.1 to the CWA case study. Step 1 to Step 8 are executed in order to derive and

categorize tpye osf uncertainties (Q2.1) based on a collection of ADDs. Step 9 and Step
10 are executed to determine the direct and indirect impact of the uncertainty types on
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architectural elements (Q2.2). Due to the large amount of ADDs collected in a preliminary

work, we only show the steps based on selected uncertainty types. The complete results

are available in the form of a lled uncertainty template under [10]. During the evaluation

of G2, we do not aim to evaluate the content of the uncertainty template, i.e. whether or
not ADDs, uncertainty types and their relationships are identied and categorized correctly.

The focus is to demonstrate that by using our Uncertainty Type Derivation Approach, the
uncertainty template supports the extraction of uncertainty types and their impact on

software architectures.

8.4.2.1. Q2.1 - Uncertainty Type Derivation and Categorization

This question discusses the ability of the template to derive and categorize uncertainties

based on existing ADDs. To that end, we exemplarily apply Step 1 to Step 8 of the approach
dened in Section 6.3.1 to the CWA case study. Table A.2 presents the result of the steps

in an abbreviated form, as the categories are omitted for illustration purpose. The entire

lled-in template is available under [10]. We present the steps exemplarily for "Persistence
of Data (What)"(CA2) and "Choice of DB System"(CA15).

In Step 1, CA2 is to be added to to template. Therefore, we create a multi row with with

only one line for the time being (more lines are to be added in following cycles) and insert

name ("Persistence of Data (What)") and id CA2. For Step 2 We extract the uncertainty type

"What data is persisted?" by simply reformulating CA2 as question. We further dene an

unique id, e.g. CU2. The uncertainty type CU2 is added to the rst row in the multi row

of CA2 by inserting name and id (Step 3). In Step 4, CA2 is to be categorized according to

the denitions provided by Section 5.2.1. Step 1 to Step 4 are repeated to add CA15 and
to extract uncertainty type "What kind of storage is used?" (CU15) to the template. For

illustration purpose, the rst loop terminates as we do not examine any further ADD. In

the following, the currently added uncertainty types are examined.

In Step 5, it is now to validate whether CU2 has an impact on any other ADD that has

been added to the template. We identify that it has an impact on CA15, as the kind of

storage might depend on the kind of data that needs to be persisted. During Step 6, CU2
is added to the multi column representing CA15. In Step 7, CU2 is not yet categorized.
Therefore, it has to be categorized according to the denitions provided by Section 5.2.2.

Be aware that CU2 already occurs in two multi columns for structural reasons. However,

the classication has to be carried out only once. Step 5 is repeated for CU15 but no impact

is identied. Consequently, the second loop terminates and we continue with the next

step.

Having extracted each uncertainty type from the existing ADDs, as well having de-

termined their impact on others, it is know to identify further uncertainty types from

other sources (Step 8). More specic, types of uncertainties that do not correspond to an

ADD and therefore have not been identied in the previous steps. For instance, the CWA

documentation [68] states that "The Corona-Warn-App server does not store or process

any condential information requiring trust or secrecy" [68]. Although "Persistence of Data
(What)"(CA2) already covers parts of that information, we decided to add "Is the data to

be persisted condential?"(CU24) as additional uncertainty which might inuence other

design decisions. For each uncertainty type identied in this step, Step 5 to Step 7 are to
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be repeated. In our case, CU24 has an impact on CA2 (Step 5) which is why we add it to the

respective multi row (Step 6). Finally, CU24 has to be categorized. As this is only an excerpt

of the actual process, we provide a short summary on the identied ADDs, uncertainty

types and additional impact on relationships between the types of uncertainties and ADDs.

• ADDs classied: 22

• Uncertainty types derived: 22

• Additional uncertainty types: 6

• Additional impact relationships derived: 35

Based on the 22 ADDs, 22 uncertainty types could logically be derived. After the ex-

amination of [71] and [68], six more uncertainty types are identied. Of course, these

absolute values do not provide any information about the suitability of our approach, as

more detailed investigations of the sources could further increase these gures. More

striking, however, are the 35 additionally derived impact on relationships (Step 6). In other

words, in 35 cases, we are able to identify that an uncertainty type has an impact on the

decision of another ADD. This information is used in the following to identify not only the

direct (and trivial) impact of uncertainty types on architectural elements, but also their

indirect impact.

8.4.2.2. Q2.2 - Uncertainty Type Impact Derivation

Question Q2.2 evaluates the ability of the template to derive the impact of uncertainty

types on architectural element types, i.e. on software architectures. We exemplarily apply

Step 9 and Step 10 of the approach dened in Section 6.3.1 to the CWA case study (cf.

Section 8.2). Although these steps are carried out for all the uncertainty types collected so

far, we only present them for the following ones: "What data is persisted?" (CU2), "What
kind of storage is used?" (CU15) and "Is the data to be persisted condential?" (CU24).

... Uncertainty
related Categories

ADD ID Uncertainty Type ... Architectural
Element Type

CU2 What data is persisted? ... ComponentPersistence

of Data

(What)

CA2

CU24 Is the data to be persisted

condential?

...

Hardware

Resource

CU15 What kind of storage is

used?

... Component

Choice of

DB System
CA15

CU2 What data is persisted? ... Component

Table 8.3.: Collection of Uncertainty Types to be examined for direct and indirect Impact
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Table 8.3 highlights the uncertainty types under examination which are based on the

result of the previous question. For the three uncertainty types CU2, CU15 and CU24 we
iteratively determine on which architectural element types they might have a direct (Step
9) and/or indirect impact (Step 10). Starting with CU2, we can determine its direct impact

on element type Component by simply extracting the information provided by category

Architectural Element Type. It further has a potential indirect impact on element type

Hardware Resoruce as it occurs in the multi row of CA15 (resolved by CU15) which aects

hardware resources. CU15 directly aects element type Hardware Resource. Any further

indirectly aected elements types cannot be identied as it does not occur in any other

multi column of Table 8.3. In the case of CU24, the directly and indirectly aected element

types are equal, indicating that no propagation occurs. As this is only an excerpt of the

actual process, we provide a short summary on the identied direct and indirect impactOn
relationships:

• Uncertainty types examined: 24

• Direct impactOn relationships: 24

• Indirect impactOn relationships (same element type): 21

• Indirect impactOn relationships (dierent element types): 19

Of the 28 uncertainty types identied in the previous question, four (CU1, CU17, CU18,
CU23) cannot not be used, as they do not specify category Architectural Element Type (cf.
Q1.3) which is indispensable to derive the direct and indirect impact. Based on the 24

remaining uncertainty types, 24 direct impactOn relationships can be derived. Further,

in 21 cases we elaborate that the directly aected element type matches the indirectly

aected element type so that no propagation occurs. Again, these absolute values do not

provide any information about the suitability as a larger amount of previously identied

uncertainty types can increase those values. Nevertheless, it is striking that with our

structured approach it is possible to uncover 19 cases where uncertainty types might

have an indirect impact on other architectural element types, hence propagate trough

the software architecture. This suggests that the uncertainty template not only helps to

determine direct impact, but also to extract non-trivial propagation eects. With this

information, it is possible to assess the impact of uncertainty types more accurately, as

software architects now have an understanding of the other element types that uncertainty

types may aect.

8.4.3. G3 - Purpose

G3 evaluates the purpose of the uncertainty template. Therefore, Q3.1 evaluates to what

extend it is able to provide reuse of knowledge and to what extend it can also create

awareness. In Q3.2 we compare our approach with existing approaches to demonstrate

that we provide a more precise classication of uncertainty types at the architectural level.
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8.4.3.1. Q3.1 - Reuse of Knowledge and Awareness

We evaluate the capability of the uncertainty template to provide reuse of knowledge and

to create awareness in two ways. First, argumentatively and second, by comparing our

reference set and the one we completed based on the CWA. Software architects use the

uncertainty template to classify types of uncertainties and collect them in a structured way.

This includes in particular the manual and cumbersome determination of the impact on

other ADDs, hence on other types of architectural elements. Once classied, the uncertainty

types can be reused across several software architectures within the domain of interest for

which the template is created, i.e. lled in. Further, using our uncertainty template creates

awareness with regard to uncertainties in the following two scenarios: First, software

architects can use existing and already completed uncertainty templates as source of

information for theirs. In doing so, they might identify types of uncertainties which they

have not yet considered to be important. Be aware that uncertainties, like ADDs, can

be domain specic, as well as relevant for several domains, or also generally applicable.

Therefore, software architects still have to assess whether or not an uncertainty type is

relevant for their domain.

The second scenario refers to the instantiation of uncertainty types. Most importantly,

we believe that less experienced software architects can use pre-lled templates to annotate

their software architectures with concrete uncertainties. In particular, they do not need

to know which types of uncertainties exist, nor which architectural elements they might

aect directly as well as indirectly. The categories also allow inexperienced software

architects to evaluate their instantiated uncertainties using the guidelines we dened

in Section 6.6. In summary, the concept of the uncertainty template enables reuse of

knowledge and creates awareness when creating and specically when using it.

To evaluate Q3.1 quantitatively, we compare our reference set (see Table A.1) to the

uncertainty template based on the CWA (see Table A.2). More specically, we analyse the

amount of uncertainty types shared across both templates. Note that we created both

uncertainty templates consecutively, but independent of each other. This enables us to

determine the overhead that could be avoided, if the reference set were used as knowledge

base for the creation of the CWA-based template. Table 8.4 illustrates the uncertainty types

that are shared across both templates. It shows that from the 22 uncertainty types identied

while creating the reference set, 12 are also part of the CWA-based uncertainty template.

Further, Table 8.4 reveals that 16 of the 32 impactOn relationships are within this collection

of 12 uncertainty types. Thus, if one had taken the reference set as a basis, the reuse

of knowledge would have been possible for 12 uncertainty types including 16 impactOn
relationships. Not to be neglected is the necessary eort to check the uncertainties for

suitability. Yet, we claim that this is signicantly less in relation to the eort required to

categorise uncertainty types and identify their impacts. Although these absolute values

do not allow any general statements, they nevertheless show that the template enables

knowledge to be reused, as any value greater than zero implies that knowledge is reused.

In addition to that, we analyse the remaining uncertainty types of the reference set with

regard to their relevance for the CWA-based uncertainty template. So we determine those

uncertainty types that could not be identied from the available sources [68, 72] but might

relevant for CBSA in the domain of CTS. Due to the more general scope of the reference set,
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Uncertainty Type ID
(Reference Set)

ID
(CWA)

What is the distribution? RU1 CU1
How is communicated? RU2 CU12
Where is deployed? RU3 CU20
What data is persisted? RU4 CU2
How is data persisted? RU5 CU4
Which authentication mechanisms are used? RU6 CU16
Which component is chosen? RU8 CU18
What data is provided? RU9 CU9
What data is entered? RU10 CU6
Is the data anonymized? RU11 CU22
What is the structure of the interface? RU12 CU8
Is the data to be persisted condential? RU16 CU24
Summary: Matching: 12 / 24

impactOn-Relationships: 16/30

Table 8.4.: Shared Uncertainty Types

the remaining uncertainties are potentially equally relevant for the CWA-based uncertainty

template. Table 8.5 shows the remaining uncertainties with regard to their relevance for

the domain of CTS. In no case have we found any argument why the uncertainty type

should not be relevant. Consequently, there are 12 more uncertainty types and another

Uncertainty Type ID
(Reference Set)

Relevant for
CWA

What kind of access control is used? RU7 3

Is condential data transmitted? RU13 3

Is the deployment provider trustworthy? RU14 3

Is user data stored/processed? RU15 3

Can access control cover all matters? RU17 3

Are the access control rules correct? RU18 3

What is the behaviour of the component? RU19 3

Is the component currently compromised? RU20 3

Is the component’s provider trustworthy? RU21 3

Which subjects access the interface? RU22 3

Is the data entered correct? RU23 3

What is the user behaviour? RU24 3

Summary: Relevant: 12 / 12

impactOn-Relationships: 14/30

Table 8.5.: Remaining Uncertainty Types
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14 impactOn-relationships which are potentially relevant for the CWA-based uncertainty

template but which were not identied based on the the available sources when creating

it. Hence, the usage of the reference set as additional source of information even creates

awareness. Altogether, the entire reference set could potentially be integrated into the

uncertainty template for contact tracing systems, enabling reuse of knowledge and the

creation of awareness. Although it is not possible to evaluate this in the time available, the

reference set could serve as a general starting point for more specic uncertainty templates,

where "specic" refers to the focus on particular domains of CBSA-based software systems.

8.4.3.2. Q3.2 - Relevance

This question evaluates the purpose and the relevance of the uncertainty template and the

categories by comparing it to related approaches. We discuss why our categories enable a

more precise classication of uncertainties on architectural level. When speaking about

architectural level, we refer to Component Based Software Engineering (CBSE) as described

in Section 2.3. So, in particular, we are discussing about uncertainties in Component Based

Software Architectures (CBSAs) and not software architectures in general.

To answer question Q3.2 we proceed as follows: First we discuss the relevance of

our approach argumentatively by highlighting the dierences to related approaches. In

particular, we address the suitability of our categories compared to categories of other

approaches. At this point, we give an overview to the extent to which we have adopted

or modied categories from other approaches. Finally, we rst categorise uncertainties

already classied by us with the categories of other approaches and second, we categorise

uncertainties categorised with other approaches with our approach. In both cases, we

discuss why our approach is more precise with regard to classication of uncertainties at

architectural level than existing approaches. Precise in this case means that our classica-

tion allows more detailed statements regarding the impact of uncertainties on CBSAs, with

a focus on condentiality.

In Chapter 3 we provide a detailed overview of related approaches that deal with

uncertainties in various domains. Many of the available approaches consider uncertainties

in the domain of SASs [52, 26, 19, 31, 32] but also in other domains such as CPSs [75], object

behaviour modeling [48] or specically for access control [14]. Although some approaches

allow the classication of uncertainties inmodels [51] or at design time [22], all of them lack

the ability to explicitly refer to entities such as interfaces, communication or components,

but this is exactly what CBSA is all about. It can therefore be assumed that none of the

available approaches are capable of classifying uncertainties at the architectural level

suciently. This is exactly the gap we are addressing with the provision of our template,

i.e. our proposed categories.

In order to show quantitatively that existing approaches are probably not suitable to

classify uncertainties at the architectural level, Table 8.6 illustrates to what extent we

adopted, adapted or discarded existing categories and their options which are explained in

detail throughout Section 5.1.2. Be aware that those categories are not to be interchanged

with the ones we propose. Even if names are matching, we usually adapt the denitions

for our purposes.
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Categories Options
Name Adopted Adapted Discarded Adopted Adapted Discarded

Location 7 0/8 5/8 3/8

Level 7 3/9 0/9 6/9

Nature 7 2/2 0/2 0/2

Manageability 7 2/2 0/2 0/2

Emerging Time 7 0/6 3/6 3/6

Impact 7 0/3 0/3 3/3

Relationship 7 0/2 0/2 2/2

Source 7 0/5 0/5 5/5*

Summary 1/8 5/8 2/8 7/37 8/37 22/37

Table 8.6.: Existing Categories/Options which are adopted, adapted or discarded. (*) indi-

cates that more Options are available in the Literature.

From the eight categories we extract from existing literature literature, only category

Nature is adopted completely, i.e. denition and options remain unchanged. In ve cases,

we adapt parts of the category, so either its underlying idea or some of the options. Category

Manageability, for instance, is adapted to the extend that we reuse its denition as well as

its options. In this case, however, we add another option which is why this category is

classied as adapted. For category Impact, we discard the available options but adopt the

underling idea of categorizing the impact on quality attributes. Three categories are fully

discarded. Altogether, out of 37 dierent options only seven were adopted, eight had to be

adapted and 22 more are discarded. Regarding category Sources all available options are
not extracted in the rst place, as they were too many. The set of discarded options would

therefore even larger if all of them were included. Overall, Table 8.6 indicates that existing

approaches (i.e. their categories and options) are probably not suitable for our need, as to

a large extent many of them are either adapted or discarded completely.

In the following, we further illustrate this statement from the point of view of our

proposed uncertainty categories. More specically, Table 8.7 shows to what extend the

categories and options we propose are adopted, adapted or newly created. From the

ten categories we propose, only Nature is fully adopted. Yet this category is known and

relevant for uncertainties in general, i.e. also outside our eld of research [73]. Five

categories are based on existing categories. Nevertheless, in each of these cases it was

necessary to adapt or extend the denitions and especially the options for our purposes.

More striking is the fact that four new categories are identied that we consider to be

relevant to classify uncertainties at architectural level. This picture also emerges from the

evaluation of the options. Here, it is possible to adopt six out of 32 options. As the majority

of the options is either adapted or completely new, this overview conrms the necessity

for a novel approach that ts the need of classifying uncertainties at architectural level.

We claim that our approach exactly closes this gap.
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Categories Options
Name Adopted Adapted New Adopted Adapted New

Location 7 0/4 4/4 0/4

Type 7 2/3 0/3 1/3

Nature 7 2/2 0/2 0/2

Architectural Element Type 7 0/5 0/5 5/5

Manageability 7 2/3 0/3 1/3

Impact on Condentiality 7 0/3 0/3 3/3

Severity of the Impact 7 0/3 0/3 3/3

Resolvable by ADD 7 0/2 0/2 2/2

Resolution Time 7 0/5 3/5 2/5

Root Cause 7 0/2 0/2 2/2

Summary 1/10 5/10 4/10 6/32 7/32 19/32

Table 8.7.: Proposed Categories/Options which are adopted, adapted or new

To further evaluate whether or not existing approach are capable of classifying uncer-

tainties, we apply the approaches of Perez-Palacin and Mirandola [51], Hezavehi et al.

[31] and Bures et al. [14] to the CWA case study, i.e. to the uncertainty types illustrated in

Table A.2. We rst discuss this in terms of the following collection of uncertainty types:

"What data is persisted?" (CU2), "What data is entered?" (CU6), "How is communicated"
(CU12), "Which authentication mechanisms are used?" (CU16), "Is the data to be persisted
condential?" (CU24). Another view regarding the entire collection (CU1 - CU28) is provided
in the course of this section by creating equivalency classes of uncertainty types. For

each approach, we discuss to what extend it enables precise statement about the classied

uncertainty types.

ID Location Nature Level

CU2 — epistemic 1
st
order

CU6 Input Parameters aleatory 1
st
order

CU12 Model Structural epistemic 1
st
order

CU16 — epistemic 1
st
order

CU24 — epistemic 1
st
order

Table 8.8.: Categorization according to Perez-Palacin and Mirandola [52]

Table 8.8 illustrates the categorization of the selection of uncertainty types with the

approach of Perez-Palacin and Mirandola [52]. In two out of ve cases it is not possible

to determine a valid location, as we do not consider any of the available options to be

applicable. Furthermore, it is noticeable that all uncertainties are assigned to the rst
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order (i.e. known uncertainties), which is only logical since they are known. Otherwise

they would not be part of the table. So this indicates that categories Location and Level are
probably not suitable for the categorization of uncertainties at architectural level. As our

approach also includes category Nature (and many others) we conclude that the approach

presented by Perez-Palacin and Mirandola [52] does not enable to make precise statements.

ID Location Nature Spectrum Emerging Time Sources

CU2 — epistemic

Scenario

Uncertainty

Design Time Incompleteness

CU6 Environment aleatory

Statistical

Uncertainty

Design Time

Human in the

Loop

CU12 Model epistemic

Scenario

Uncertainty

Design Time Incompleteness

CU16 Model epistemic

Scenario

Uncertainty

Design Time Incompleteness

CU24 — epistemic

Scenario

Uncertainty

Design Time Incompleteness

Table 8.9.: Categorization according to Mahdavi et al. [31]

Table 8.9 illustrates the categorization of the selection of uncertainty types with the

approach of Hezavehi et al. [31]. At rst glance, the approach seems to be suitable for our

purpose, as all but two cells are lled. Only in two cases is it not possible, in our opinion,

to categorise the uncertainties on the basis of the available options. What is particularly

striking, however, is the (almost) identical classication of CU2, CU12, CU16 and CU24. If
these uncertainties are to be compared with each other based on this classication, there

is no meaningful statement possible. Our classication, on the other hand, allows a much

more precise statement in this respect as we provide various other categories.

ID Source Nature Level

CU2 System Behaviour epistemic 2
nd

level

CU6 System Environment aleatory 2
nd

level

CU12 System Behaviour epistemic 2
nd

level

CU16 System Behaviour epistemic 2
nd

level

CU24 System Environment epistemic 2
nd

level

Table 8.10.: Categorization according to Bures et al. [14]

Table 8.10 illustrates the categorization of the selection of uncertainty types with the

approach of Bures et al. [14]. Compared to the previous two approaches, this one is still the

most applicable in our opinion. Nevertheless, category Level is similar to the on proposed

by Perez-Palacin and Mirandola [52], hence it oers no added value in our humble opinion.
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In all three cases, we claim that the approaches do not allow the precision that we achieve

with our approach. For example, none of the approaches provides the possibility to dene

the specic location within CBSAs, i.e. the type of architectural element uncertainties

can be assigned to. Further, the approaches are not capable (also because they were not

developed for this purpose) to make any statements about the impact of uncertainties on

the condentiality of the system.

In the following we extend this discussion to all uncertainty types from the CWA-based

uncertainty template (CU1 - CU28). After showing that the other approaches do not allow a

precise distinction between types of uncertainty, we now want to clarify this information

using equivalence classes. Uncertainty types are in a class whenever the options for all

categories are exactly the same. If no option can be dened for a category, it is considered

to be "unknown" which we consider as fall back option for evaluation purposes. Given

the classication in Table 8.9, for instance, the following three equivalence classes can

be identied: {CU2, CU24}, {CU6} and {CU12, CU16}. With a small number of equivalence

classes, many uncertainty types fall into the same class, which means that they cannot

be distinguished from each other at the category level. An evaluation or comparison of

the uncertainty types is therefore not possible, at least within an equivalence class. A

larger amount of equivalence classes thus means that the uncertainty types are largely

categorised dierently from each other which enables dierentiation at category level.

Approach Perez Mahdavi Bures Our
Approach

# Equivalency Classes 3 8 5 21

Table 8.11.: Comparison of the Amount of Equivalency Classes

Table 8.11 illustrates the amount of equivalency classes we identify for the 28 uncertain-

ties (CU1 - CU28). Using the approach of Perez-Palacin and Mirandola [52] to categorize

these uncertainties, we only identied three equivalency classes which means that each

uncertainty type falls in either on of them. Consequently, in many cases there is no

assessment possibility with regard to a possible comparability. For the approaches of

Hezavehi et al. [31] (eight classes) and Bures et al. [14] (ve classes), the same results apply.

Our approach, on the other hand, produces 21 equivalency classes, including 16 which

only consists of one uncertainty type. Consequently, most of the uncertainty types can be

compared to each other by at least one dierently categorized option. This highly indicates

that our approach produces more usable results than the others. Yet, it is conceivable that

in some cases one would want to group types of uncertainties together. At this point, a

larger set of equivalence classes seems to be a disadvantage. In this case, we propose to

use a threshold for classication into equivalence classes. For example, two types could

end up in the same class if they are classied dierently in up to 3 categories

To further support our ndings, we show the other direction in the following. Speci-

cally, we compare uncertainties identied and categorised by Perez-Palacin and Mirandola

[52] by categorising them with our approach. Thereby, we discuss how our approach

is able to provide more precise statement compared to the existing classication. The

classication of the uncertainties PU1 - PU6 according to Perez-Palacin and Mirandola [52]
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is illustrated in Table A.3. It has to be noted that these uncertainties stem from a work that

has its focus on uncertainties in SASs. Therefore, we do not expect that each uncertainty

type can be categorized suciently. Table A.4 shows the classication of PU1 - PU6 with
our approach. We successfully conducted the classication, apart from PU1 and PU6 were
it is not possible to choose an appropriate option for both, category Location and category

Architectural Element Time. However, it is striking that Location in particular is one of

the categories that we adapt from Perez-Palacin and Mirandola [52]. We reason that PU1
and PU6 are uncertainties specic to the modelling of architectures and not uncertainties

in architectures themselves. Since the approach of Perez-Palacin and Mirandola [52] is

specically designed for uncertainties in modelling, but ours is not, we claim that the

inability of our approach in these two individual cases should not be generalised.

On the contrary, the successful classication of the remaining uncertainties with our

approach allows formore precise statements. For instance, based on the guideline presented

in Section 6.6 (especially the combination of categoriesManageability, Resolution Time and
Root Cause) we can compare the uncertainties and conclude that PU3 is an uncertainty

type that is easy to handle and therefore, if instantiated, should be considered rst. Further,

PU4 potentially has a severe impact on the condentiality and, if instantiated, must be

resolved as soon as possible. Those exemplary statements are not readily possible with

the approach by Perez-Palacin and Mirandola [52].

8.4.4. G4 - Usability

G4 evaluates the usability of the UIA with regard to the necessary knowledge (Q4.1) and
the amount of model elements that must be considered (Q4.2) when using our analysis.

8.4.4.1. Q4.1 - Required Knowledge

We evaluate the required knowledge by comparing which concepts need to be understood

and which tasks need to be performed when analysing the impact of uncertainty manually,

and by using our approach. Table 8.12 provides an overview of the concepts C1 - C11 and

illustrates which are required for the manual analysis, from the expert architect’s point of
view, and from the user architect’s point of view.

Basic knowledge about uncertainties in CBSA (C1) is considered to be relevant for each

of the views. The dierences can only be observed in the more specic knowledge areas.

The PCM modelling tool (C2) is the underlying approach that we use to model software

architectures. As described in the course of this section, a manual analysis requires a

sound understanding of the Palladio concepts, including the structure and concepts of the

dierent sub-models. As User architects only annotate existing architectures, they solely

require basic knowledge regarding the elements to which they can assign uncertainties.

Expert architects do not need to know about the internals of the PCM at any point, as we

abstract from this by specifying an independent set of architectural element types. The

mapping between those types and concepts of the PCM is implicitly provided by the UIA.

C3 to C6 are not to be executed by user architects which is why they do not need do

understand the underlying concepts. With regard to C3, expert architects are supported by

our uncertainty type derivation approach. Nonetheless, identifying the impact of uncertainty
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# Manual Analysis Expert Architect User Architect

C1 Yes, because this is the
underlying concept of the

entire approach

Yes, because this is the
underlying concept of the

entire approach

Yes, because this is the
underlying concept of the

entire approach

C2 Yes, profound knowledge

required throughout the

entire process

No, because architectural
element types are

independent of the PCM

Yes, but only basic

knowledge about the

structure

C3 Yes, profound knowlege

required because of the

inexistance of uncertainty

type collections.

Yes, but supported by the

uncertainty template

No, because this not their
responsibility

C4 No, because this concept
only exists when using the

uncertainty template

Yes, but only executed

once for domain of interest

No, because this is not
their responsibility

C5 Yes, profound knowledge

required because this is a

non-trivial task.

Yes, but supported by the

uncertainty type

derivation approach

No, because this is not
their responsibility

C6 No, because this concept
only exists when using the

UIA

Yes, but mainly

corresponds to the

categories of the

uncertainty template.

No, because this is not
their responsibility

C7 No, because this concept
only exists when using the

UIA

No, because this is not
their responsibility

Yes, knowledge required
to use the analysis.

C8 Yes, and has to be

manually conducted.

No, because this is not
their responsibility

Yes, but supported by

analysis

C9 Yes, profound knowledge

required and has to be

manually conducted.

No, because this is not
their responsibility

No, because this is
executed by analysis

C10 Yes, analysis of all
elements found in C9

No, because this is not
their responsibility

Yes, analysis of all
elements found in C9

C11 Yes, and lack of basis for

assessment.

No, because this is not
their responsibility

Yes, but guided by

analysis and guidelines.

Table 8.12.: Required Knowledge to analyse Impact of Uncertainties manually, from the

Perspective of Expert Architects, and from the Perspective of User Architect

types on types of architectural elements is not considered to be trivial. Yet, we claim that

our approach reduces the amount of required knowledge compared to a manual analysis

which is carried out without any structure or guidance. This has already been suciently

discussed in Q3.1.
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The categorization of the extracted uncertainty types (C4) is only to be conducted by

expert architects as this concept only applies for our approach. Nevertheless, this is to

be done only once for uncertainty types within a domain of interest. Furthermore, this

task, which can initially be classied as additional concept, contributes considerably to the

reduction of the necessary knowledge in the course of the analysis, i.e. for the assessment

of the impact. By following our uncertainty type derivation approach, deriving the impact

of uncertainty types (C5) is structurally guided by the uncertainty template. Although
it requires a non-negligible eort to identify the impact in the rst place, we claim that

the structured approach again reduces the amount of required knowledge compared to a

manual analysis.

Transferring the gathered uncertainty type information (C6) into to UIA is to be done

by expert architects only. Besides choosing the more specic architectural element type,
this step does not require any particular knowledge. C7 to C11 are not to be executed by

expert architects as they only provide the input for the actual usage of the UIA. Although

software architects must rst become familiar with our analysis (C7), we assume that this

additional eort is not in proportion to that of a manual analysis. However, we cannot

prove this assumption without extensive user studies. User architects need to annotate their
software architectures with uncertainties (C8). Whereas the UIA automatically proposes

for a selected uncertainty type to which architectural element it can be assigned, a manual

analysis requires architects to do that manually.

C9 is executed automatically by the analysis based on the uncertainty types as specied

by the expert architect, the instantiated and annotated uncertainties, and the pre-dened

structural propagation rules. In a manual analysis, we see this as the most critical point,

since manual propagation is very time-consuming and requires detailed knowledge about

the structure of the PCM models as well as knowledge of how uncertainties can poten-

tially propagate in the architecture. This is where the strength of our approach becomes

particularly apparent.

For the identied architectural elements that are potentially aected, both the person

conducting the manual analysis as well as the user architect need to manually verify

whether or not the impact actually exists (C10). This is necessary because this decision

depends on context-related information, such already taken ADDs. At this point we would

like to emphasise that the aim of this thesis is not to develop an uncertainty assessment
analysis that incorporates the context, but an uncertainty impact analysis that guides the
architect when assessing the impact. Nevertheless, this task depends on the amount of

elements identied in C9. While an experienced architect might identify fewer potentially

aected elements in a manual analysis than the UIA, this is likely to depend on his/her

expertise. Yet it is precisely the latter that we want to reduce with our approach.

The assessment of the impact of the uncertainties (C11) is guided by using the categorises
and the guidelines we propose in Section 6.6. This is not the case when it comes to a manual

analysis. At this point, the additional eort of categorizing the types of uncertainties pays

o. Further, we already exemplarily implemented how the UIA can be enhanced to guide

the assessment of propagated uncertainties based on metrics.

This discussion yields several results. Quantitatively, the manual analysis requires

8 concepts that need to be understood or tasks that need to be executed. In contrast,

user architect’s and expert architect’s view together even require 10 concepts or tasks.
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Seen in this perspective, our approach requires more knowledge. However, there is a

serious dierence when one compares both perspectives qualitatively: the manual analysis

requires a high level of necessary knowledge and eort from start to nish. We consider

C9 in particular to be decisive here, as less experienced architects probably do not identify

at least all the elements that are actually aected. In other words, their impact set may

not include the entire aected set, because this requires expertise that we assume less

experienced software architects do not have. As this step is the basis for the validation

(C10) and assessment (C11) of the impact of uncertainties, it is therefore probably not

possible for less experienced architects to manually analyse uncertainties. Beside the

required amount of knowledge, the discussion further highlights the amount of manual

eort when analysing uncertainties manually. Moreover, the manual approach must be

repeated for each architecture under consideration.

In contrast, our approach clearly separates the necessary knowledge and required eort:

Experienced software architects (i.e. expert architects) still require a non negligible amount

of knowledge to extract types of uncertainties and their impact on architectural element

types, but this preparatory work is only required once within a domain of interest. In

particular, this enables less experiences software architects (i.e. user architects) to annotate
and analyse uncertainties and their impact for the rst time without profound knowledge.

User architects only need to understand six concepts compared to eight concepts when

using a manual analysis. Further, any of the six user architect-related concepts are either

basic domain knowledge (C1, C2) or in some ways guided by the analysis (C7, C8, C10,
C11). This indicates that using our approach reduces the necessary knowledge from the

user architect’s point of view, therefore enables less experienced architects to analyse the

impact of uncertainties in software architectures.

8.4.4.2. Q4.2 - Amount of Elements

QuestionQ4.2 evaluates the amount of elements that need to be considered when analysing

the propagation eects of uncertainties. Therefore, we analyse the four scenarios presented

in Section 8.2. Specically, we analyse the amount of elements aected by the uncertainties

of the respective scenarios. We distinguish between the the impact set calculated by using

the uncertainty template only, and the one calculated by the UIA.

Uncertainties 𝐼𝑚𝑝𝑎𝑐𝑡𝑆𝑒𝑡𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝑟𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝐼𝑚𝑝𝑎𝑐𝑡𝑆𝑒𝑡𝑢𝑖𝑎 𝑟𝑢𝑖𝑎
Scenario 1 7 28 0.2523 17 0.1532

Scenario 2 7 28 0.2523 16 0.1441

Scenario 3 8 34 0.3063 11 0.0991

Scenario 4 4 9 0.0811 9 0.0811

Table 8.13.: Amount of elements to be analysed using the template and the UIA

Table 8.13 illustrate the results of our evaluation. Altogether, the architecture under

consideration consists of 111 elements. In a manual analysis, software architects would

therefore, in the worst case, have to look at each of the 111 elements for each instantiated

uncertainty, i.e. analyse whether there is an impact or not. Based on the dened metrics,
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Table 8.13 shows the results of the evaluation both in absolute terms (𝐼𝑚𝑝𝑎𝑐𝑡𝑆𝑒𝑡𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ,

𝐼𝑚𝑝𝑎𝑐𝑡𝑆𝑒𝑡𝑢𝑖𝑎) and relative to the total number of architectural elements (𝑟𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 , 𝑟𝑢𝑖𝑎).

Nevertheless, those results still depend on the comprehensiveness of the impact sets, which
is evaluated by Q6.1.

Under this constraint, the results are satisfactory, as the remaining amount of elements

to be examined using both approaches is a maximum of ∼ 30% of the total number of

elements. It is also noticeable that the UIA consistently delivers at least the same, but

often better results than using the uncertainty template only. As expected, the results
are dependent on the uncertainties to be propagated, which is why scenario 4 produces
the smallest values. It can be assumed that as the number of uncertainties per scenario

increases, the r-value also increases. Nevertheless, the results highly indicate two things:

First, the UIA improves the overestimation compared to using the uncertainty template only.
Consequently, the denition of structural propagation rules seems to be a valid measure

to reduce the impact set. Second, our approach reduces the amount of elements software

architects still need to analyse when using our approach. At this point, it should be

emphasised that these evaluation results have no claim to general validity, as the situation

is only shown for an exemplary set of instantiated uncertainties on the basis of a simplied

architecture model. Whether our approach thus consistently calculates this small amount

of elements to be investigated (compare to the entire set of architectural element) must

therefore be conrmed in further case studies.

8.4.5. G5 - Functionality

G5 evaluates whether the UIA is capable to annotate and propagate uncertainties in

software architectures (Q5.1).

8.4.5.1. Q5.1 - Uncertainty Annotation and Propagation

To answer question Q5.1, we discuss to what extend the UIA is capable to support the

annotation and propagation of uncertainties. The representation of uncertainty as rst

class entity in software architectures is a prerequisite for uncertainty annotation. In

Section 7.1, we illustrated this based on the PCM. Table 7.1 provides an overview of the

currently supported architectural element types for both, uncertainty annotation and

propagation. In our humble opinion, this collection covers the most relevant concepts

of CBSE. As the PCM is only limited to the description of architectures in the domain of

CBSE, we assume that the concept of representing uncertainties as rst-class entity can be

transferred to other ADLs in the same domain.

In the following, we refer to the uncertainties ICU1 - ICU28 as introduced in Section 8.2.

We assess how many of the instantiated uncertainties can successfully be annotated

and propagated. "Successful" in refers to whether an uncertainty can be assigned to the

architectural element where it also has a direct impact, as well as whether the propagation

can be carried out. We derived the following numbers:

• Successfully annotated: 28 of 28

• Successfully propagated: 22 of 28
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For none of the 28 uncertainties it was necessary to dene further architecture element

types, i.e. we were able to assign each uncertainty to the element we believe it aects.

However, in six cases (ICU1, ICU4, ICU6, ICU13, ICU22, ICU26) it was not possible to propa-
gate uncertainties due to the lack of propagation algorithms in our current prototypical

implementation. As already explained, we do not assume that the denition of these

algorithms diers from the others in terms of eort, so they can simply be added. This

limitation therefore only refers to the prototypical implementation, and not to the concept

of our analysis. Therefore, we conclude that the analysis is capable of annotating and

propagating uncertainties. The results are provided in detail in our data set [10].

8.4.6. G6 - Accuracy

The last goal evaluates the accuracy of the UIA regarding the precision and recall of the
propagation results.

8.4.6.1. Q6.1 - Precision and Recall

We distinguish between the functional accuracy and the accuracy using context-related

information. Whereas the rst perspective evaluates to what extend the UIA nds the

elements it is supposed to to, the latter evaluates to what extend it identies the elements

which are actually aected by uncertainties. In both cases, we use the scenarios introduced

in Section 8.2. In each of the four scenarios, we have intentionally added back uncertainty

and analyse how it aects the architecture. So, while for the rst perspective we look

exclusively at uncertainties in isolation, for the second we aggregate information about

certainties and uncertainties of all kinds. For both views, however, we assume that we

have correctly determined the impact at the type level. For the evaluation, this means that

the input in the form of the UncertaintyType model is considered correct. If an element is

not found, this is either because the implementation is faulty (rst perspective) or because

additional, context-relevant information would be necessary to nd it (second perspective).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑅𝑒𝑐𝑎𝑙𝑙𝑐𝑜𝑛𝑡𝑒𝑥𝑡
Scenario 1 1.0000 1.0000 0.7647 1.0000

Scenario 2 1.0000 1.0000 0.6250 1.0000

Scenario 3 1.0000 1.0000 0.9091 1.0000

Scenario 4 1.0000 1.0000 0.4444 1.0000

Table 8.14.: Precision and Recall of the calculated Impact Set

Table 8.14 illustrates the results of the evaluation. As it turns out, we get precision

and recall values of 100% for all four scenarios when determining the functional accuracy.

These perfect values indicate that our implementation is at least functionally correct and

enables the identication of potentially aected elements more easily. However, it is

important to determine how much the UIA overestimates and, in particular, whether it

nds at least all elements that are actually aected. The rst aspect is indicated by a high

precision value, whereas the second is indicated by a high recall value. As illustrated by

Table 8.14, the precision varies between ∼ 44% and ∼ 90%, depending on the scenario.
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With regard to scenario 1, the UIA identies some architectural elements of type commu-
nication component which are not aected because the data transmitted is either publicly

available or the decision to use encryption is already taken. The same applies for scenario
2. In both cases, the precision is acceptable. The precision of scenario 3 is over 0.90, which
means that almost all identied elements are actually aected. In scenario 4, the precision is
only just under 0.45, so that less than every second element is actually aected. This poor

value could be due to the fact that this scenario unfortunately consists of four uncertainties,

of which only one is to be propagated at all. The other three have no indirect impact

according to the underlying UncertaintyType model. Although the available data suggest

that the UIA may overestimate in some cases, we still perceive the results to be satisfactory.

In particular, for exactly these four scenarios, we do not nd any other elements that are

aected but could not be found, which leads to a recall of 100%.

All in all, the results indicate the following: Our UIA seems to be functionally correct.

It also produces suciently accurate results in the form of impact sets. Consequently,
software architects no longer have to examine the entire architecture, but are shown the

elements they need to analyse in more detail. We claim that this task can be carried out

by less experienced architects, as the problem is reduced from the analysis of the entire

architecture to a few elements. Our analysis thus makes it possible for less experienced

architects not only to determine the impact of uncertainties, but also to asses them.

Nevertheless, this needs to be evaluated by a comprehensive user study.

8.5. Threats to Validity

In the following, we discuss the threats to validity for our evaluation. Inspired by the work

of Hahner [29], we also use the schema by Runeson and Höst [59] and discuss internal,

external and construct validity, and reliability separately. Validity in general refers to the

"trustworthiness of the results, to what extent the results are true and not biased by the

researchers’ subjective point of view" [59].

Internal validity describes the extent to which the assessment allows for unfounded

results, usually due to systematic errors and bias [9], as well as additional interferences

due to overlooked or ignored inuences [29]. The uncertainty template is mostly evaluated

argumentatively, which can be biased by subjectivity. Regarding the evaluation of the

exhaustiveness of the categories (Q1.3), we assume that our knowledge gathered during

the elaboration of this thesis is sucient to choose the right option for each uncertainty

and ADD to be classied.

The evaluation of the dierentiability of the categories (Q1.4) is based on our perception

of unambiguous categorization. Although we have tried to discuss as self-critically and

objectively as possible, bias cannot be ruled out. To further reduce this threat we base our

reasoning wherever possible on our reference set and the uncertainty types based on the

CWA case study. Since we extracted the latter ourselves, it cannot be ruled out that we

unintentionally extracted only those that provide satisfactory results.

When evaluating the reuse of knowledge and the creation of awareness (Q3.1), two
threats occur. First, it is possible that the knowledge gathered by lling the reference set

124



8.5. Threats to Validity

inuenced the process of lling the CWA-based uncertainty template. This would bias

the evaluation results, as the templates to be compared should be independent of each

other. To mitigate this threat, we tried to ll the CWA-based template as far as possible

without the previously collected knowledge and only based on the existing sources [68,

71]. The second threat is that we have aligned the terminology of both templates, possibly

changing uncertainty types not only syntactically but also semantically. We may have

accidentality adjusted two previously dierent uncertainties so that they were identical

after the alignment.

In Q4.1, we dened concepts to evaluate the required knowledge when using our UIA.

Those concepts are based on our point of view, so the evaluation could be biased here as

well. For instance, it is possible that we missed essential concepts that are additionally

required when using our UIA. In Q5.1, we evaluated the functionality by counting the

amount of successfully annotated and propagated uncertainties. It is conceivable that

some of the annotated uncertainties should be assigned to other element types that we do

not know yet. Another threat occurs whenever an existing architecture is modelled with a

dierent ADL, since modeling intentionally and unintentionally abstracts from the actual

architecture. This is also the case with the PCM-based architecture of the CWA which is

used to evaluate Q4.2 and Q6.1. Other software architects might have interpreted the

available information dierently, so that the architecture model would be dierent and

consequently produces other results.

We see the biggest threat to internal validity in determining the accuracy of the UIA

(Q6.1), since this is based on uncertainties we instantiated and grouped into scenarios

ourselves. Here, it is conceivable that we have annotated uncertainties on exactly the

architecture elements for which the results are good. In addition it is possible that we have

unintentionally sorted out elements that are actually aected, even though the necessary

information is available, or that we lack knowledge that would be necessary to identify

further elements. Both cannot be excluded, so that a recall of less than 100% is possible.

The external validity refers to the generalizability of the evaluation results with regard

to other contexts [9]. The rst threat occurs as we use the reference set to discuss the

structural quality (Q1.1 - Q1.4) of the uncertainty template. It is of limited use, because

it was exploited for the denition of the categories. Nevertheless, we assume that the

reference set is representative, since it is based on several sources and has been extended

by further uncertainties even after the category denition process was completed. To

further mitigate this threat, we additionally used a second template to evaluate those

question, which is based on the real-world case study Corona Warn App (CWA).

In Q2.1 and Q2.2 we illustrated the applicability of our uncertainty type derivation
approach by exemplarily applying it to the case study. Usually, applicability is evaluated

by conducting user studies from which we had to refrain due to time constraints. In

Q4.1 we try to quantify knowledge, which is a dicult task in general [29]. Again, we

make statements that need to be veried in a user study. In particular, this concerns the

statement that our analysis is probably easy to understand and use.

Further, the results of the accuracy of the analysis (Q6.1) cannot be generalised, because
we do not consider the scenarios to be complete, and we may lack information to determine

actual false negatives. Furthermore, manual analysis depends on the experience of the
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person performing the analysis. Although we have accumulated profound knowledge in

the course of the elaboration of this thesis, it is therefore possible that other architects

obtain dierent and possibly more accurate results.

The biggest threat to external validity is the exclusive use of the CWA case study. Due to

the large number of evaluation questions, we were not able to include further case studies.

So, strictly speaking, our evaluation results are only valid for this specic case study in

the domain of CTS. However, we assume the CWA case study to be suciently suitable and

comprehensive for the evaluation, as already discussed in Section 8.2. The generalizability

must therefore be validated using further case studies from other domains.

Construct validity describes the suitability of our questions and metrics to contribute

to the overreaching goals. To mitigate this threat, we elaborated a comprehensive Goal-

Question-Metric plan. Even if individual questions or metrics prove to be unsuitable, this

should be compensated for by their number. Nevertheless, it turned out that some aspects

cannot be fully evaluated without an additional user study which could not be carried out

due to time constraints.

Lastly reliability refers to the repeatability of the evaluation so that other researchers

can understand and repeat our evaluation. This makes it possible to verify and, in the

best case, disprove that the evaluation results are dependent on the researcher carrying

out the evaluation. To this end, before discussing the results in Section 8.4, we have

presented the evaluation design in Section 8.3. Further, we publish the evaluation data,

including the relevant architecture models, uncertainty-related models, and a prototypical

implementation of the UIA [10] .

8.6. Assumptions and Limitations

In this section, we discuss assumptions and limitations that we made during the design and

the implementation of our uncertainty template and the UIA. The rst assumption concerns

the uncertainty impact derivation approach. Software architects either have the ability
to collect ADDs or a collection is provided by another source. The second assumption

concerns the correctness of the input models for the propagation, in particular the absence

of cycles.

The rst limitation is related to the categories that form the basis of the uncertainty
template. Their purpose is limited to the categorization of uncertainties at design time

in CBSA and with a potential impact on the condentiality of the overall system. The

second limitation is due to the usage of the PCM as ADL, as it does not support some CBSA

concepts out of the box. This limitation is somewhat mitigated by the denition of further

architectural elements. However, we consider the current list to be incomplete because,

for example, Inner Component Instances are not yet supported, i.e. no uncertainties can be

annotated to them. Also, it is not the goal of this thesis to provide a mature tool but rather

prototypical proof-of-concept implementation. A further limitation therefore relates to

the lack of some propagation algorithms, which means that not every uncertainty can be

propagated (cf. Section 7.7).
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8.7. Summary

We close the discussion by summarizing the evaluation results briey. We evaluated the

structural quality (G1), the applicability (G2) and the purpose (G3) of the uncertainty
template, including the architectural- and uncertainty related categories, and the proposed

uncertainty impact derivation approach. We further evaluated the usability (G4), the
functionality (G5) and the accuracy (G6) of our Uncertainty Impact Analysis (UIA).

Goal G1 indicated a good structural quality of the proposed architectural- and uncer-

tainty related categories which form the basis for the uncertainty template. In question

Q1.1, we analysed the orthogonality of the categories with regard to their statement of

impact. We have listed some category pairs that are potentially orthogonal to each other,

but explained why this does not decrease the structural quality. In question Q1.2, we
discussed the level of abstraction within the categories, i.e. the level of abstraction of

the respective options. With one exception, we have concluded that the options for each

category are dened at the same level. We demonstrated the exhaustiveness of the options

Q1.3 using a real-world case study with sucient results. In question Q1.4, we discussed
the dierentiability of the options. Although for three categories it was not always clear

which option to choose, we do not assume that the options as a whole are ambiguously

dened. We conducted the evaluation of G1 on an argumentative basis and by applying it

to a case study. Altogether, we concluded that the uncertainty template has an adequate

structural quality. Nevertheless, further case studies are necessary to discuss whether the

few weaknesses are structural in nature or relate only to the specic case study.

With G2, we evaluated the applicability of the uncertainty template. In particular we

demonstrated in Q2.1 its suitability to derive uncertainty types from ADDs and in Q2.2
its ability to structurally derive the direct and indirect impact on architectural element

types. Although we were not able to conduct a user study due to time constraints, we

demonstrated its applicability based on a real-world case study. In particular, we have

shown that in relation to the number of ADDs and uncertainties investigated, we were able

to uncover several non-trivial indirect relationships. The evaluation also revealed that in

a few cases it was not possible to determine the impact because some uncertainty types

could not initially be assigned to an architectural element. Overall, the evaluation results

are promising for this one case study. Again, the evaluation has to be reproduced with

other case studies.

Goal G3 evaluated the purpose and the relevance of the uncertainty template. In partic-

ular, we demonstrated in Q3.1 how the uncertainty template enables reuse of knowledge

and even creates awareness. Furthermore, in Q3.2, we illustrated the relevance of our

approach by showing that it can classify uncertainties in software architectures more

accurately and thus make more precise statements about their impact on the system.

With G4, we illustrated how the UIA reduces the required amount of knowledge when

analysing the impact of uncertainties compared to a manual, unstructured approach.

Although the discussion in Q4.1 showed that the necessary knowledge is not negligible, at

least for experts doing the preliminary work, it nevertheless showed that for the rst time

less experienced users can analyse uncertainties and their eects without sound knowledge

regarding uncertainties and their propagation eects. Furthermore, we have shown in

Q4.2 that by using the UIA, the proportion of architectural elements to be investigated in
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a specic case study is reduced by 85%. The limitation of the validity of the results due to

a potentially incomplete impact set is removed by the results of Q6.1, as we achieved a

recall of 100% for the impact set under investigation. Although these results still need to

be conrmed by further case studies, they indicate a high level of usability in terms of a

signicant reduction in the necessary work.

Goal G5 evaluated the functionality of the UIA. We demonstrated in Q5.1 that the

UIA is capable to annotate and propagate uncertainties in software architectures. We

demonstrated this for a specic case study in the domain of CTS. Unfortunately, the current

prototypical implementation lacks propagation algorithms, so that some uncertainties

cannot be propagated. However, these can presumably be implemented with little eort.

Altogether, we concluded that the UIA is conceptually capable to annotate and propagate

uncertainties in software architectures.

With G6, we evaluated the accuracy of the propagation results. Therefore, we discussed

inQ6.1 the functional accuracy and compare the impact set with amanually dened aected
set. With regard to the functional accuracy, the evaluation results are highly satisfactory

due to precision and recall values of 100% Therefore, we assume our analysis to be at least

functional correct. The comparison of the impact set and the aected set is based on four

scenarios that consist of several uncertainties. For these scenarios, we obtained precision

values between ∼ 44% and ∼ 90%, but a recall of 100%. Despite overestimation due to some

false-positives, the UIA found at least all the architectural elements actually aected for

these four scenarios. However, further case studies are necessary to verify these results in

other domains and for other systems.

8.8. Data Availability

The evaluation data is publicly available [10]. This includes the various uncertainty-

and PCM- related models, as well as the processed and detailed results of the respective

evaluation ndings. To reproduce our evaluation, we also include the current prototypical

implementation, including an installation guide and sample data.
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To conclude this thesis, we summarize our approach and ndings in Section 9.1. In Sec-

tion 9.2, we provide an outlook for future work. Lastly, we express our acknowledgements

in Section 9.3.

9.1. Summary

The goals of this thesis were twofold. The rst goal was to provide an uncertainty template
that guides software architects through the process of identifying and analysing uncer-

tainties in CBSAs. The second goal was to provide support for uncertainty annotation and

propagation to reduce manual eort and required expertise when analysing the impact of

uncertainties. Our research questions are divided along these contributions.

Our uncertainty template consists of categories to categorize ADDs and uncertainties

in CBSAs. The categories are inspired by existing architectural- and uncertainty related

taxonomies. We have discussed and analysed existing categories in detail to assess whether

they can be discarded, adapted or adopted. In most cases, we had to adapt or discard the

categories for our purposes, as existing approaches do not intend to categorise uncertainties

at design time. The result is a template consisting of 15 categories and 44 options. Based on

that template, we dened a structured uncertainty type derivation approach to extract types

of uncertainties and their impact on architectural element types based on existing ADDs.

To that end, we dened the concept of uncertainty propagation, which occurs if directly

annotated uncertainties indirectly aect other elements in the software architecture. So

the approach enables software architects to iteratively extract several uncertainty types

and their impact within a domain of interest. Once extracted, those types are potentially

relevant for several architectures within that domain. Hence, the approach enables the

reusability and accessibility of knowledge about uncertainty types and their impact on

types of architectural elements.

At instance level, this can be used to determine all potentially aected architectural

elements of a concrete architecture for actual uncertainties. Based on the idea of change
impact analyses, we dened the concepts of the uncertainty set, the aected set and the

impact set where the impact set is an overestimation of the actually aected architectural

elements. Thus, it includes the directly aected architectural elements (via annotation)

and the potentially indirectly aected architectural elements (via propagation). The results

of the uncertainty type derivation approach therefore enable less experienced software

architects to identify the impact set without profound knowledge. More specically,

software architects instantiate types of uncertainties and extract the potentially aected

elements based on the previously dened type-level impacts. However, this needs to be

done manually, i.e. without tool support.
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The second contribution is therefore an Uncertainty Impact Analysis (UIA) which sup-

ports the annotation and propagation of uncertainties in software architectures. To that

end, we extended an Architectural Description Language (ADL) called Palladio Component

Model (PCM) by the capability to express uncertainties as rst-class entity. More experi-

enced architects which we refer to as expert architects use the uncertainty type derivation
approach to identify uncertainty types for a domain of interest. This information, which

can be reused within a domain, serves as input for the UIA. Based on a selected uncer-

tainty type, the UIA automatically proposes each element to which the uncertainty can

be assigned. In addition to that, we elaborated structural propagation rules which aim to

improve the overestimation, i.e. to reduce the impact set. The analysis helps insofar as
the manually tedious structural uncertainty propagation is automated. By separating the

identication of uncertainty types and the instantiation for a concrete architecture, the

analysis allows less experienced architects, which we refer to as user architects, to perform
the analysis of the impact of uncertainties without profound knowledge on existing types

of uncertainties, their characteristics, and especially knowledge on how they might propa-

gate through the architecture and aect other architectural element. The assessment of

the impact is further supported by guidelines based on the combination of categories and

counting metrics.

We evaluated the uncertainty template including the categories and the uncertainty type
derivation approach with regard to structural quality, applicability and purpose. Regarding

the structural quality, we demonstrated the compliance with classication principles such

as orthogonality, level of abstraction, exhaustiveness and dierentiability. We further

illustrated the applicability of the uncertainty type derivation approach based on a current

real-world case study. Regarding the purpose, we evaluated the relevance of our approach

and how it enables reuse of knowledge and the creation of awareness.

We further evaluated the UIA with regard to usability, functionality and accuracy. Con-

cerning the usability, we compared the required knowledge of a manual uncertainty impact

analysis with the required knowledge using our analysis. Although the preliminary work

to identify the uncertainty types still requires a non negligible amount of expertise, the

analysis reduces the required knowledge from the user architect’s point of view. Regard-
ing the functionality, our evaluation revealed that the current state of the analysis lacks

some uncertainty propagation algorithms to successfully propagate all possible types of

uncertainties. However, this gap can be closed with additional implementation eort. The

overall functionality of our prototypical implementation is satisfactory. Lastly, we evalu-

ated the accuracy UIA based on previously dened scenarios that consist of instantiated

uncertainties. For each scenario, we manually determined the aected set and compared it

to the impact set calculated by the UIA. The results show a recall of 100%while maintaining

a precision between ∼ 44% and ∼ 90% depending on the scenario. These results are

satisfactory because the analysis for the scenarios at least automatically identies all the

elements actually aected while being suciently precise.

The thesis aimed to provide an architecture-based uncertainty impact analysis for

condentiality to make uncertainties manageable already at design time. For this purpose,

we have developed a template and an analysis to analyse uncertainties at both type and

instance level. In particular, this separation allows architects for the rst time to analyse

and evaluate the impact of uncertainties without profound knowledge.
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9.2. Future Work

In addition to structural propagation rules, it would be conceivable to integrate data ow

information in order to further improve the overestimation, i.e. the impact set, in a second

propagation step. To this end, it is necessary to examine the extent to which the data ow

has an impact on the propagation of uncertainties. We further recommend the extension

of the supported architecture element types.

The prototypical implementation presented in this thesis is operational in its current

state. Nevertheless, there are a some places that could be improved or extended in the

future. The UIA could be extended by automatically checking the architecture models.

This allows the assumption of correct models to be discarded. The current state of the

UIA exemplarily provides the possibility to sort uncertainties regarding the amount of

elements on which they have an impact. Comparable metrics and the combination of the

categories of the uncertainty types should be elaborated to generate recommendations for

action. This would allow the tool to automatically determine which uncertainties need to

be resolved next. The current implementation should be complemented by the remaining

structural propagation algorithms to allow propagation of all representable uncertainties.

This is labour-intensive, but probably easy to implement.

Also, we propose to create and validate a reference set consisting of uncertainty types

that are relevant across domains. This could serve as a starting point for an expert architect
in lling a domain-specic uncertainty template. Lastly, the quality of the uncertainty
template and the UIA could be enhanced by executing a user study. Possible, still unknown

shortcomings could be discovered and eliminated in this way. In particular, this will be

useful to provide further empirical results on the suitability for supporting the analysis of

the impact of uncertainties at architectural level.
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A. Appendix

A.1. Uncertainty Assessment - Example

In Section 6.6 we proposed how it is possible to assess uncertainties at category level, i.e.

how it is possible to compare two uncertainties of dierent uncertainty types based on

selected options for the respective categories. Further, we presented how using the UIA can

contribute to the assessment of instantiated uncertainties. We illustrate this assessment

process based on the uncertainties ICU1 - ICU28, which are instantiated and assigned to

elements of the CWA case study (cf. Section 8.2). First, we asses the uncertainties ICU1 -
ICU28 based on their types, respectively by comparing the options of each category. In

addition, we assess their impact by using the results of the UIA.

The uncertainties, the template, architecture models and uncertainty-related models

are available in our data set [10]. The goal is to exemplarily illustrate how to asses which

uncertainties should to be given higher priority, because they might have a more severe

impact on the condentiality than others.

We start by combining the options for categories Impact on Condentiality and Severity
of the Impact of the respective types of uncertainties CU1-CU28. The following uncertainties
correspond to types which have both, direct and high impact on condentiality: ICU3,
ICU20, ICU22, ICU23, ICU24, ICU26. In a next step we combine the categories Manageability,
Resolution Time and Root Cause to further compare the selected uncertainties. Whereas

ICU3, ICU20, ICU23, ICU26 are either irreducible or partial reducible, and resolved during

deployment time, runtime or never, ICU22 and ICU24 are fully resolvable during design

time due to missing information. Those two uncertainties are therefore candidates which

could and should be resolved next. The remaining uncertainties are not resolvable during

design time but have a direct, and high impact on the condentiality. Consequently, they

should be carefully tracked.

In addition to the assessment of uncertainties at category level, the UIA provides the

possibility to prioritize instantiated uncertainties based on counting metrics such as

the number of aected elements, or the amount of instantiated uncertainties per type.

The prototypical implementation already provides the possibility to sort the instantiated

uncertainties according to the number of elements they aect. In doing so, the UIA

(automatically) determines the rst three positions: ICU17 (6 elements), ICU20 (5 elements)

and ICU3 (5 elements). In combination with the ndings of the category-based assessment,

it is thus particularly striking that ICU20 is a candidate that should be prioritised higher,

not only at type level but also at instance level.
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A.2. Evaluation Data

This section provided data such as tables and illustrations that we use throughout our

evaluation.

A.2.1. Reference Set

Table A.1 illustrates our reference set in a highly abbreviated version. Due to space con-

straints, the following information is omitted: i) the architectural-related categories, ii) the

uncertainty-related categories apart from category Architectural Element Type, iii) names

and aected architectural element of duplicate uncertainty types. The completely lled

uncertainty template is available in our data set [10]. To ensure distinct identication

throughout the evaluation, the ADDs and uncertainty types are numbered consecutively.

The following rules are applied: Each id is preceded by the letter R for Reference Set,
followed by A for ADD and U for uncertainty, respectively. Each uncertainty that repre-

sents an ADD has the same number, i.e. RUx = RAx. Further uncertainties are numbered

consecutively, starting at the next available number. In total, the reference set consists of

12 ADDs (RA1 - RA12) and 24 uncertainties (RU1 - RU24).

... Uncertainty
related Categories

ADD ID Uncertainty Type ... Architectural
Element Type

Distribution

(System)

RA1 RU1 What is the distribution? ... n/a

RU2 How is communicated? ... Communication

RU3 ... ... ...

RU13

Is condential data

transmitted?

... Interface

RU5 ... ... ...

Communication

Encryption
RA2

RU1 ... ... ...

RU3 Where is deployed? ...

Hardware

Resource

RU14

Is the deployment provider

trustworthy?

...

Hardware

Resource

RU15 Is user data stored/processed? ... Component

Deployment

Location
RA3

RU2 ... ... ...
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RU4 What data is persisted? ... Component

RU16

Is the data to be persisted

condential?

... Component

RU5 ... ... ...

RU10 ... ... ...

Persistence

of Data

(What)

RA4

RU11 ... ... ...

RU5 How is data persisted? ... Component

RU3 ... ...

Persistence

of Data

(How)

RA5

RU4 ... ... ...

Authentication RA6 RU6

Which authentication

mechanisms are chosen?

... Interface

RU7

What kind of access control is

used?

... Interface

RU17

Can access control cover all

matters?

... Interface
Authorization

(AC)
RA7

RU18

Are the access control rules

correct?

... Interface

RU8 Which component is chosen? ... n/a

RU19

What is the behavior of the

component?

... Component

RU20

Is the component currently

compromised?

... Component
Choice of

Component
RA8

RU21

Is the component’s provider

trustworthy?

... Component

RU9 What data is provided? ... Interface

RU22

Which subjects access the

interface?

... Interface

RU7 ... ... ...

RU12 ... ... ...

RU6 ... ... ...

Interface

Access

(Output)

RA9

RU11 ... ... ...
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RU10 What data is entered? ... Interface

RU22 ... ... ...

RU7 ... ... ...

RU23 Is the data entered correct? ... Usage Behaviour

RU11 ... ... ...

RU12 ... ... ...

RU6 ... ... ...

Interface

Access

(Input)

RA10

RU24 What is the user behavior? ... Usage Behaviour

Anonymization

of data

RA11 RU11 Is the data anonymized? ... Component

Interface

Design

RA12 RU12

What is the structure of the

interface?

... Interface

Table A.1.: Uncertainty Template - Reference Set (excerpt)

A.2.2. Corona Warn App

This section provides evaluation data with regard to the CWA case study.

A.2.2.1. CWA Soware Architecture

In Figure A.1, we show a simplied architecture model of the CWA, which combines the

PCM-based Component Model and theAssemblyModel for illustration purposes. It illustrates
the previously mentioned components, as well as the composition of some components.

Furthermore, it shows the "wiring" of the components which forms the overall structure,

i.e the assembly. Among others, the allocation of components to hardware resources is

not shown. However, it can be anticipated that each top level component is allocated to

a dierent server. Further information such as description of hardware resources, data

types, detailed interface denitions or usage models can be found at [10]. The GitHub
project available under [69] contains all the repositories, including requirements, design

documents, source code and other material. A detailed review of all the materials is already

carried out by Tobias [71, 70].

We created the CWA architecture based on the following repositories:

• cwa-documentation
High level overview to create the overall assembly model and allocation model. Sce-
narios to derive usage model. Derivation of component CondentDeliveryNetwork.

• cwa-server
Denition of composite component CoronaWarnAppServer.

• cwa-testresult-server
Denition component TestResultServer.
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Figure A.1.: Architecture Diagram CWA
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• cwa-app-android
Denition of component CoronaWarnApp (Mobile Device).

• cwa-verfification-server
Denition of component VerificationServer.

• cwa-verfification-portal
Denition of component Portal.

A.2.2.2. Collection of ADDs

As indicated in Section 6.3.1, extracting ADDs from existing sources (i.e. Step 0) is not
considered to be part of the approach. Nevertheless, for the sake of completeness, we show

with some examples how we have used the work of Tobias [71, 70] and the CWA design

documents to derive possible ADDs. Altogether, we were able to extract 22 ADDs - CA1 -
CA22.

• "Neither location data, nor the rolling proximity identiers [...] are ever stored centrally."
[68]

– The requirement indicates that it has to be decided what data shall be persisted.

From this, we were able to extract the ADD "Persistence of Data (What)"(CA2).

• "[...] the information that is securely stored on the end device [...]" [68]

– The information indicates that it has to be decided how data shall be persisted.

From this, we were able to extract the ADD "Persistence of Data (How)"(CA4).

• "Diagnosis keys are automatically deleted by the Corona Warning App [...]" [71]

– The requirement indicates that it has to be decided how long data should be

stored. From this, we were able to extract the ADD "Duration of Data Stor-
age"(CA10).

• "Each country has its own separate database, which contains the keys from infected
individuals. " [68]

– This information provided two dierent ADDs: "Data Separation"(CA13) and
"Choice of DB System"(CA15).

A.2.2.3. CWA-based Uncertainty Template

Table A.2 illustrates the uncertainty template which we created based on the CWA docu-

mentation described previously. Due to space constraints, the following information is

omitted: i) the architectural-related categories, ii) the uncertainty-related categories apart

from category Architectural Element Type, iii) names and aected architectural element of

duplicate uncertainty types. The completely lled uncertainty template is available in our

data set [10]. To ensure distinct identication throughout the evaluation, the ADDs and

uncertainty types are numbered consecutively. The following rules are applied: Each id is

preceded by the letter C for Corona Warn App, followed by A for ADD and U for uncertainty,
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respectively. Each uncertainty that represents an ADD has the same number, i.e. CUx =
CAx. Further uncertainties are numbered consecutively, starting at the next available

number. In total, the template consists of 22 ADDs (CA1 - CA22) and 28 uncertainties (CU1 -
CU28).

... Uncertainty
related Categories

ADD ID Uncertainty Type ... Architectural
Element Type

CU1 What is the distribution? ... n/a

Distribution

(System)
CA1

CU23

Correct design for secure

architecture?

... n/a

CU2 What data is persisted? ... Component

CU3 ... ... ...

CU4 ... ... ...

CU6 ... ... ...

Persistence

of Data

(What)

CA2

CU24

Is the data to be persisted

condential?

... Component

CU3 Where is data persisted? ...

Hardware

Resource

CU2 ... ... ...

Persistence

of Data

(Where)

CA3

CU4 ... ... ...

CU4 How is data persisted? ... ...

CU2 ... ... ...

CU3 ... ... ...

CU20 ... ... ...

Persistence

of Data

(How)

CA4

CU24

Is the data to be persisted

condential?

... Component

CU5 ... ... ...Data Processing

(Where)
CA5

CU10 ... ... ...

CU6 What data is entered? ... Interface

CU8 ... ... ...

Interface Access

(Input)
CA6

CU11 ... ... ...
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CU7 What data is provided? ... ...

CU8 ... ... ...

CU11 ... ... ...

CU16 ... ... ...

Interface Access

(Output)
CA7

CU22 ... ... ...

CU8

What is the structure of

the interface?

... Interface

CU6 ... ... ...

CU7 ... ... ...

Interface

Design
CA8

CU17 ... ... ...

CU9

How is meta-data

handled?

... Component

Data

Minimization
CA9

CU10 ... ... ...

CU10

How long is data being

stored?

... Component

Duration of

Data Storage
CA10

CU6 ... ... ...

User

Identication

CA11 CU11

How is user identication

performed?

... Interface

CU12 How is communicated? ... Communication

CU1 ... ... ...

CU3 ... ... ...

CU4 ... ... ...

CU5 ... ... ...

CU20 ... ... ...

CU25

Is communication

intercepted?

... Communication

Communication

Encryption
CA12

CU26 Is data manipulated? ... Communication

CU13

Is data separation

performed?

... Component

CU1 ... ... ...

Data

Separation
CA13

CU12 ... ... ...

CU14 What data is logged? ... Component

Logging CA14

U3 ... ...
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CU15

What kind of storage is

used?

...

Hardware

Resource

CU2 ... ...

Choice

DB system
CA15

CU3 ... ... ...

... CU16

Which authentication

mechanisms are used?

... Interface

Authentication CA16

CU26 Is data manipulated? ... Interface

Choice UI

Pattern

CA17 CU17 Which UI pattern is used? ... n/a

CU18

Which component is

chosen?

... n/a

Choice of

Component
CA18

CU27

Is the component insecure

due to software bugs?

Component

CU19 Is input validated? Interface

... CU6 ... ... ...

CU26 ...

Input

Validation
CA19

CU28

Are SQL Injection

performed?

Usage Behaviour

CU20 Where is deployed?

Hardware

Resource

CU2 ...

Deployment

Location
CA20

CU12 ...

CU21 Is virtualization used?

Hardware

Resource

Virtualization CA21

CU20 ... ... ...

CU22 Is the data anonymised? ComponentAnonymization

of data
CA22

CU6 ... ... ...

Table A.2.: Uncertainty Template - Corona Warn App (excerpt)

A.2.3. Collection of Uncertainty Types from Related Approaches

Table A.3 illustrates a collection of uncertainties based on the work of Perez-Palacin

and Mirandola [52]. This work summarizes uncertainties elaborated by [21, 26, 19] and

categorizes them according to their proposed taxonomy. The taxonomy consists of the

following categories: Location (context, structural, input parameters), Level (1st order - 4th

order) and Nature (epistemic, aleatory). A detailed explanation of those categories and

options is already provided in Section 5.1.2. We omit several uncertainties such as "Is the
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monitoring cycle subjected to model drift?" or "Does noise exist in the sensor values?" as they
are specic for SAS or hardware.

Uncertainty Type ID Location Nature Level

Does the model make

simplifying assumptions?

PU1 Structural / Context Epistemic 1 - 4

What is the behaviour of

humans?

PU2 Context

Epistemic /

Aleatory

1 - 4

How is the interaction

between systems?

PU3 Context / Structural Epistemic 1 - 4

What is the execution

context?

PU4
Context / Structural /

Input Parameter
Epistemic 1 - 4

How do machine learning

algorithms behave?

PU5
Structural /

Input Parameter

Epistemic /

Aleatory

1 - 4

How is the system

evolving?

PU6
Structural /

Input Parameter

Epistemic /

Aleatory

1 - 4

Table A.3.: Collection and Categorization of Uncertainties according to Perez-Palacin and

Mirandola [52]

A.3. Evaluation Results

Table A.4 illustrates the categorization of the uncertainty types PU1 - PU1 (see Table A.3)
with our approach which is used to answer evaluation question Q3.2.
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Uncertainty
Type

ID Location Type Nature
Arch.

Element
Type

Manage-
ability

Impact
on

Conf.

Severity
of the
Impact

Resolv.
by

ADD

Resol.
Time

Root
Cause

Does the model

make simplifying

assumptions?

PU1 —

Scenario

Uncer-

tainty

Epistemic —

Fully Re-

ducible

Indirect Low No

Design

Time

Missing

Informa-

tion

What is the

behaviour of

humans?

PU2 Input

Scenario

Uncer-

tainty

Aleatory

Usage

Behaviour

Partial

Re-

ducible

Indirect Low No Runtime Assumption

How is the

interaction

between systems?

PU3
System

Behaviour

Scenario

Uncer-

tainty

Epistemic

Commu-

nication

Fully Re-

ducible

Indirect Low Yes

Design

Time

Missing

Informa-

tion

What is the

execution

context?

PU4
System

Environ-

ment

Scenario

Uncer-

tainty

Epistemic

Hardware

Resource

Partial

Re-

ducible

Direct High Yes

Deploy-

ment

Time

Assumption

How do machine

learning

algorithms

behave?

PU5
System

Behaviour

Scenario

Uncer-

tainty

Epistemic Component

Partial

Re-

ducible

Indirect Low No Runtime Assumption

How is the

system evolving?

PU6 —

Scenario

Uncer-

tainty

Epistemic —

Partial

Re-

ducible

Indirect Low No Runtime Assumption

Table A.4.: Classication of existing Uncertainty Types with our Approach
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A.4. Acronyms

ADD Architectural Design Decision

PCM Palladio Component Model

ADL Architectural Description Language

GDPR European General Data Protection Regulation

EMF Eclipse Modelling Framework

MOF Meta-Object Facility

OMG Object Management Group

CBSE Component Based Software Engineering

CBSA Component Based Software Architecture

EMOF Essential MOF

API Application Programming Interface

XML Extensible Markup Language

XMI XML Metadata Interchange

SLR Systematic Literature Research

RBAC Role-based Access Control

ABAC Attribute-based Access Control

DSL Domain-specic Language

UIA Uncertainty Impact Analysis

SDQ Software Design and Quality

RUP Rational Unied Process

CVSS Common Vulnerability Scoring System

IoT Internet of Things

DDSA Data-Drive Software Architecture

DFD Data Flow Diagram

SAS Self-adaptive System

SOA Service-oriented Architecture
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KAMP Karlsruhe Architectural Maintainability Prediction

IS Information Systems

BP Business Processes

GQM Goal-Question-Metric

CWA Corona Warn App

CTS Contact Tracing Systems
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