Ramsey numbers for set-colorings

Yen Hoang Le

04.04.2022

Advisor: Prof. Dr. Maria Axenovich
Second advisor: Dr. Alex W. N. Riasanovsky
Reviewer: PD Dr. Stefan Kühnlein

Department of Mathematics

Karlsruhe Institute of Technology

Abstract

For $s, t, n \in \mathbb{N}$ with $s \geq t$, an (s, t)-coloring of K_{n} is an edge coloring of K_{n} in which each edge is assigned a set of t colors from $\{1, \ldots, s\}$. For $k \in \mathbb{N}$, a monochromatic K_{k} is a set of k vertices S such that for some color $i \in[s], i \in c(u v)$ for all distinct $u, v \in S$. As in the case of the classical Ramsey number, we are interested in the least positive integer $n=R_{s, t}(k)$ such that for any (s, t)-coloring of K_{n}, there exists a monochromatic K_{k}. We estimate upper and lower bounds for general cases and calculate close bounds for some small cases of $R_{s, t}(k)$.

Acknowledgement

I would like to thank Prof. Maria Axenovich, not only for being my advisor, but also for her wonderful lectures in graph theory and combinatorics, which attracted my interest in these fields. I thank Dr. Stefan Kühnlein for agreeing to review my thesis. I am also grateful for the feedbacks from the discrete mathematics seminar, one of which is from Dr. Torsten Ueckerdt and became a part of the thesis. I thank my second advisor, Alex Riasanovsky, for suggesting the topic of this thesis, and for taking me under his wing, even after he had left his position at KIT. He could have abandoned me, but he didn't.

Contents

1 Introduction 1
1.1 The basics 1
1.2 Outline 2
2 Definitions and main results 3
2.1 Definitions 3
2.2 Main results 5
3 General bounds 6
3.1 Basic bounds 6
3.2 Lower bounds by probabilistic method 10
4 Concrete cases 12
4.1 Bounds for $R_{3,2}(3)$ and $R_{4,2}(3)$ 12
4.2 Bounds for $R_{3,2}(4)$ and $R_{4,3}(4)$ 18
5 Design construction 24
5.1 Basics of design theory 24
5.2 Design colorings 28
6 Hadamard construction and lower bounds for $R_{2 n, n}(3)$ 36
6.1 Basics of Hadamard matrices 36
6.2 Hadamard colorings 38
7 Upper bounds for $R_{s, t}(3)$ 50
7.1 General bounds 50
7.2 Application 55
8 Off-diagonal (s, t) Ramsey numbers 57
9 Conclusion 63
9.1 Main results 63
9.2 A new definition 64
References 67

List of Figures

1 A (4,2)-coloring with no monochromatic K_{3} 4
$2 \mathrm{~A}(4,2)$-coloring with color graphs $G_{1}, G_{2}, G_{3}, G_{4}$. 5
3 (3, 2)-coloring avoiding monochromatic K_{3} 12
4 Witness coloring to the lower bound on $R_{3,2}(3)$ of K_{4} 13
5 Assumption: $(4,2)$-coloring of K_{9} without monochromatic K_{3}. 16
6 [18] All 4-regular graphs on 9 vertices 18
7 Claim A: Assumption and result 19
8 Assumption of Claim B 20
9 Tripartite graphs G_{1}, G_{2}, G_{3} with their partitions A_{i}, B_{i}, C_{i} 21
10 Tripartite graphs $G_{1}, G_{2}, G_{3}, G_{4}$ with partitions 22
11 (9, 3, 1) design coloring 31
12 Extension of a (9, 3, 1) design coloring to $K_{9}+x$ 32
13 Color graphs of c and $c_{H_{2}}$ in color 2 and 3 47
14 Color graphs of $c=c_{H}$ and $c^{\prime}=c_{H_{4}}$ 49
15 Witness coloring to the lower bound $R_{5,3}(3)>4$ 55
16 (3,2)-coloring of K_{4} without monochromatic C_{4} 64
17 Assumption: (3,2)-coloring of K_{5} without monochromatic C_{4} 66

1 Introduction

Given a positive integer k, the Ramsey number $R(k)$ is the least positive integer n such that every 2-edge coloring of a complete graph K_{n} contains a monochromatic K_{k}. Since the first theorem by Frank Plumpton Ramsey in 1930 which proved the existence of $R(k)$, Ramsey theory has been widely and deeply studied. The overall results say that, a sufficiently large object must contain a specific structure. There are various kinds of Ramsey numbers and associated results. However, still very few exact values of Ramsey numbers are known. In this thesis, we study (s, t)-colorings of K_{n}, where each edge of K_{n} is assigned a set of t colors from $\{1, \ldots, s\}$. By $R_{s, t}(k)$ we denote the least positive integer n such that any (s, t)-coloring of K_{n} contains a monochromatic K_{k}. We call $R_{s, t}(k)$ the Ramsey number for set-coloring, or the (s, t) Ramsey number. As for the classical Ramsey number, we will prove that $R_{s, t}(k)$ is well-defined and estimate its bounds. In addition, we show that with the existence of some specific designs and Hadamard matrices, we can gain information about lower bounds of some (s, t) Ramsey numbers. In case of specific resolvable designs, we show that those lower bounds are tight.

1.1 The basics

We assume that the readers are familiar with basic terms in graph theory and combinatorics. We introduce here some definitions that are used throughout this thesis. For undefined terms we refer to books by Diestel [7] for graph theory and Stinson [24], Beth, Jungnickel and Lenz [4] for combinatorics. We consider graphs up to isomorphism and label the vertices explicitly as needed. If two graphs G and H are isomorphic, we write $G \cong H$.

We only deal with finite graphs without loops or multiple edges. For a graph G, its vertex set is $V(G)$, its order $|V(G)|$ is also denoted by $|G|$, its size is the number of edges and is denoted by $\|G\|:=e(G):=|E(G)|$.

For positive integers s, t, we denote by $[s]$ the set $\{1,2, \ldots, s\}$, and call any t-element set a t-set. For any set S, the power set of S is the set containing all subsets of S and is denoted by 2^{S}.

For $n \in \mathbb{N}$. we denote by \mathbb{Z}_{n} the set $\mathbb{Z} / n \mathbb{Z}$ of integers modulo n.
For sets A and B, the symmetric difference of A and B is denoted by $A \Delta B$, is the set containing elements that are either in A or in B (but not in both A and B). That is $A \Delta B=(A \backslash B) \cup(B \backslash A)$.

For graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with $V_{1} \cap V_{2}=\emptyset$, we denote by $G_{1}+G_{2}$ the graph $G_{1} \cup G_{2}$ together with all the edges connecting vertices of G_{1} and G_{2}. That is $G_{1}+G_{2}=(V, E)$ where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}, v \in V_{2}\right\}$. If G_{2}
consists of a single vertex x, we write $G_{1}+x$ for $G_{1}+\{x\}$.
For $n \in \mathbb{N}$, a complete graph on n vertices is denoted by K_{n}, and K_{3} is called a triangle. For sets A, B, C, we denote by $K_{A, B}$ the complete bipartite graph with parts A and B, and by $K_{A, B, C}$ the complete tripartite graphs with parts A, B, C.

For any graph H and any integer $n \geq|H|$, the extremal number ex (n, H) denotes the maximum size of a graph on n vertices that does not contain H as a subgraph. Additionally, $E X(n, H)$ is the set of H-free graphs on n vertices with size ex (n, H).

For integers $1 \leq r \leq n$, the Turán graph $T_{r}(n)$ is the unique r-partite graph on n vertices whose partition sets (often called just "parts") differ in size by at most 1 . We denote $\left\|T_{r}(n)\right\|$ by $t_{r}(n)$. If $n=r \cdot s$ for some $s \in \mathbb{N}$, we also write $T_{r}(n)=K_{r}^{s}$.

Among all r-partite graphs of order n, the graph $T_{r}(n)$ has the largest size. Turán's Theorem states that $T_{r}(n)$ is also has the largest size among all graphs of order n that does not contain K_{r+1} as a subgraph, i.e. $E X\left(n, K_{r+1}\right)=\left\{T_{r}(n)\right\}$.

For any positive integers s, n, an s-coloring of $E\left(K_{n}\right)$ or an s-edge-coloring of K_{n} is a function

$$
c: E\left(K_{n}\right) \rightarrow[s],
$$

where each edge of K_{n} is assigned a color from [s]. A set of edges E is called strong monochromatic if all edges in E have the same color. The classical multicolor Ramsey number $R_{s}(k)$ is the least positive integer n such that any s-coloring of $E\left(K_{n}\right)$ contains a strong monochromatic K_{k}. The classical Ramsey number is $R_{2}(k)$ and we write $R(k):=$ $R_{2}(k)$. Ramsey's Theorem proves that $R(k)$ exists for any $k \in \mathbb{N}$. Moreover, it is known that $\sqrt{2}^{k} \leq R(k) \leq 2^{2 k-3}$ for any $k \in \mathbb{N}$ (see e.g. Diestel [7]). Known results of small Ramsey numbers can be found in a dynamic survey by Radziszowski [20]. We also refer to Graham, Rothschild and Spencer [11] for an overview of Ramsey theory. For related Ramsey theory, we refer to some other variants of Ramsey numbers such as the list Ramsey numbers by Alon et al. [2], and the fractional Ramsey numbers by Jacobson, Levin and Scheinerman [14], as well as by Scheinerman and Ullman [22].

1.2 Outline

In Section 2, we define formally the Ramsey number for set-coloring $R_{s, t}(k)$ as well as the related objects in our study and state the main results of the thesis. We then estimate general bounds for $R_{s, t}(k)$ in Section 3 and compute bounds for some concrete small cases in Section 4. In Sections 5 and 6, we study the connection between (s, t) Ramsey numbers and specific block designs and Hadamard matrices. Section 7 investigates the upper bounds of $R_{s, t}(3)$. In Section 8, we introduce the off-diagonal version of Ramsey numbers for set-colorings and estimate its bounds. Section 9 summarizes the results of the previous sections and poses some open problems for further study.

2 Definitions and main results

2 Definitions and main results

We first define formally the Ramsey number for set-colorings and related terms.

2.1 Definitions

In the following, let s, t, n, k be positive integers such that $s \geq t, n \geq k$ and let G be any non-empty graph. We call c an (s, t)-coloring of G if c is an edge coloring of G where each edge is colored with t distinct colors from $[s]$. More formally, c is a function

$$
c: E(G) \rightarrow\binom{[s]}{t}
$$

where $\binom{X}{k}:=\{S \subseteq X:|S|=k\}$. We also call an (s, t)-coloring a set-coloring.
Let c be an (s, t)-coloring of G. A set of edges $E \subseteq E(G)$ is monochromatic if there is some color $i \in[s]$ such that $i \in c(e)$ for all edges $e \in E$. A set of vertices $S \subseteq V(G)$ is monochromatic if the set of edges $\{u v: u, v \in S, u \neq v\}$ is monochromatic. A graph G is called monochromatic if $V(G)$ is monochromatic. We denote by $R_{s, t}(k)$ the least $n \in \mathbb{N}$ such that for any (s, t)-coloring of K_{n}, there exists a monochromatic K_{k}. We call $R_{s, t}(k)$ the Ramsey number for set-coloring, or for short the (s, t) Ramsey number. We will prove in Proposition 3.2 that $R_{s, t}(k)$ is well-defined.

If c is an (s, t)-coloring of K_{n} that has no monochromatic K_{k}, we say that c witnesses a lower bound on $R_{s, t}(k)$ or c is a witness coloring to the lower bound $R_{s, t}(k)>n$. To prove a lower bound $n<R_{s, t}(k)$, it is sometimes useful to construct a coloring of K_{n} where each edge does not necessarily have exactly t colors but at least t of them. We now define c as an $\left(s, t^{+}\right)$-coloring of G if c is an edge coloring of G, where each edge has at least t colors from $[s]$, i.e. c is a function

$$
c: E(G) \rightarrow\binom{[s]}{t^{+}}
$$

where $\binom{X}{k^{+}}:=\{S \subseteq X:|S| \geq k\}$. Clearly if c is an (s, t) coloring of K_{n}, then c is also an $\left(s, t^{+}\right)$-coloring of K_{n}.

Let c be an $\left(s, t^{+}\right)$-coloring of G. For any edge $e \in E(G)$, we call the set $c(e)$ the color set or color combination of e, and define $c(G):=\{c(e): e \in E(G)\}$. For $i \in[s]$ and any vertex $u \in V(G), N_{i}(u)$ denotes the set of neighbors of u which are connected to u by an edge with color i, i.e.

$$
N_{i}(u):=\{v \in N(u): i \in c(u v)\} .
$$

Let c be an $\left(s, t^{+}\right)$-coloring of G. For $i \in[s]$, let G_{i} be a subgraph of G with vertex set $V(G)$ and edges with color i, that means for vertices $u, v \in V(G), u v \in E\left(G_{i}\right)$ if and
only if $i \in c(u v)$. We call G_{i} the color graph of c (in color i). Observe that for all colors $i \in[s], c$ has a monochromatic K_{k} in color i if and only if G_{i} contains K_{k} as a subgraph.

In this thesis, we identify colors $1,2,3,4$ with red, blue, green and orange, respectively.

Remark 2.1. $R_{2,1}(k)$ is the classical Ramsey number and $R_{s, 1}(k)$ with $s \geq 2$ is the classical multicolor Ramsey number.

Example 2.2. Figure 1 shows different ways to demonstrate a (4, 2)-coloring of K_{4}. Two distinct colors are chosen from $\{1,2,3,4\}$ to color each edge. In this coloring there is no monochromatic triangle. In particular, $R_{4,2}(3)>4$. For vertex u_{1}, the red neighborhood is $N_{1}\left(u_{1}\right)=\left\{u_{2}, u_{4}\right\}$, the blue neighborhood is $N_{2}\left(u_{1}\right)=\left\{u_{2}\right\}$, further the green neighborhood is $N_{3}\left(u_{1}\right)=\left\{u_{3}, u_{4}\right\}$ and the orange neighborhood is $N_{4}\left(u_{1}\right)=\left\{u_{3}\right\}$.

Figure 1: A (4, 2)-coloring with no monochromatic K_{3}

Figure 2 shows another (4,2)-coloring of K_{4}, which contains a monochromatic $K_{3}: 4 \in$ $c\left(u_{1} u_{2}\right) \cap c\left(u_{1} u_{3}\right) \cap c\left(u_{2} u_{3}\right)$. The color graph G_{4} has a triangle $u_{1} u_{2} u_{3}$.

Figure 2: A (4,2)-coloring with color graphs $G_{1}, G_{2}, G_{3}, G_{4}$.

2.2 Main results

For all $s, t, k \in \mathbb{N}$ with $s>t, k \geq 3$, we have bounds for $R_{s, t}(k)$:

$$
\left\lceil\frac{k}{e} \cdot s^{-\frac{1}{k}} \cdot\left(\frac{s}{t}\right)^{\frac{k-1}{2}}\right\rceil \leq R_{s, t}(k) \leq 2-\frac{s}{s-t}+C_{s, t} \cdot\left(\frac{s}{t}\right)^{s k}
$$

where $C_{s, t}=\frac{s}{s-t}\left(\frac{t}{s}\right)^{2 s}$.
For all $n \in \mathbb{N}$, if there exists a Hadamard matrix of order $2 n$, then we have a better lower bound for $R_{2 n, n}(3)$:

$$
R_{2 n, n}(3)>4 n
$$

For all $v, k, \lambda \in \mathbb{N}$ such that $v>k \geq 2$, if there exists a resolvable (v, k, λ) design, then for $s=\frac{\lambda(v-1)}{k-1}$,

$$
R_{s, s-\lambda}\left(\frac{v}{k}+1\right)=v+1 .
$$

For definitions of (resolvable) designs and Hadamard matrices, see Sections 5 and 6. The existence of a resolvable design gives the exact values of some $R_{s, t}(k)$. However, as for Hadamard matrices, this method is only applicable to some specific parameters s, t, k.

3 General bounds

In this section we compute general bounds for $R_{s, t}(k)$.

3.1 Basic bounds

We first consider ($s, 1$)-colorings, or s-colorings. We remind the reader that $R_{s, 1}(k)=$ $R_{s}(k)$ is the classical multicolor Ramsey number and again refer to Graham, Rothschild and Spencer [11] for further information.

Proposition 3.1. For all positive integers s, k such that $s \geq 2$,

$$
R_{s, 1}(k)=R_{s}(k) \leq s^{s k}
$$

Proof. Let $n:=s^{s k}$ and c any s-coloring of K_{n}. We show that there exists a monochromatic K_{k} in c.

Let $V:=V\left(K_{n}\right)$ and fix a $v_{1} \in V$. By the pigeonhole principle, there are $\left\lceil\frac{n-1}{s}\right\rceil=$ $\left\lceil\frac{s^{s k}-1}{s}\right\rceil=s^{s k-1}$ edges at v with a common color, say $i_{1} \in[s]$. Let $V_{1} \subseteq N_{i_{1}}\left(v_{1}\right),\left|V_{1}\right|=$ $s^{s k-1}$. Similarly, let $v_{2} \in V_{1}$, then there is some color $i_{2} \in[s]$ and set $V_{2} \subset V_{1}$ with $\left|V_{2}\right|=\frac{\left|V_{1}\right|}{s}=s^{s k-2}$ such that all edges between v_{2} and V_{2} have color i_{2}. In the same manner, we define a sequence of vertices v_{i} and sets $V_{i}, i \in[s k], i \geq 2$, as follows: $v_{i} \in V_{i-1}, V_{i} \subset V_{i-1},\left|V_{i}\right|=s^{s k-i}$ such that all edges between v_{i} and V_{i} have the same color. Then for any $i, j, l \in[s k]$ with $j, l>i$ we have that $c\left(v_{i} v_{j}\right)=c\left(v_{i} v_{l}\right)$. By the pigeonhole principle, there are at least k vertices from $\left\{v_{i}: i \in[s k]\right\}$ that send the same color to the vertices in $\left\{v_{i}: i \in[s k]\right\}$ with higher index. By construction, these k vertices form a monochromatic set in c, which completes the proof of the proposition.

Proposition 3.2. The Ramsey number $R_{s, t}(k)$ is well defined, i.e. for any positive integers $s, t, k, s \geq t$, there exists a positive integer n such that any (s, t)-coloring of K_{n} contains a monochromatic K_{k}.

Proof. In an (s, t)-coloring of any complete graph, there are $\binom{s}{t}$ possible ways to color each edge. We can consider each possible color combination as a single color and apply Proposition 3.1. We have

$$
R_{s, t}(k) \leq R_{\binom{s}{t}}(k) \leq\binom{ s}{t}^{k\binom{s}{t}}
$$

which proves the existence of $R_{s, t}(k)$.
Remark 3.3. For this upper bound $n=\binom{s}{t}^{k\binom{s}{t}}$ and an (s, t)-coloring of K_{n}, we not only find a monochromatic K_{k} in some color $i \in[s]$, but a clique of size k whose all edges have the same color combination, i.e. a K_{k} that is monochromatic in t colors.

It is clear that $R_{s, t}(k) \leq R_{s, t}(l)$ if $k \leq l$. We now consider how the number $R_{s, t}(k)$ behaves if we change the parameters s and t.

Proposition 3.4. For all positive integers $s, t, k, s \geq t$, we have
(i) $R_{s, t}(k) \leq R_{s+1, t}(k)$.
(ii) If $t \geq 2$ then $R_{s, t}(k) \leq R_{s-1, t-1}(k)$.
(iii) If $t \geq 2$ then $R_{s, t}(k) \leq R_{s, t-1}(k)$.

Proof. Let n be a lower bound of $R_{s, t}(k)$ for some $n \in \mathbb{N}$, and c be an (s, t)-coloring of K_{n} without monochromatic K_{k}.

Since an (s, t)-coloring of K_{n} is also an $(s+1, t)$-coloring of K_{n}, c is an $(s+1, t)$-coloring of K_{n} avoiding monochromatic K_{k}. Thus $R_{s+1, t}(k)>n$, or n is also a lower bound on $R_{s+1, t}(k)$, which proves Item (i).

For Item (ii), we define a new coloring c^{\prime} of K_{n} from c by removing one color on each edge as follows. For any edge $u v \in E\left(K_{n}\right)$ such that $s \in c(u v)$, let $c^{\prime}(u v)=c(u v) \backslash\{s\}$. For any other edge, i.e. for all $u v \in E\left(K_{n}\right)$ such that $s \notin c(u v)$, let $c^{\prime}(u v)=c(u v) \backslash\{\min \{c(u v)\}\}$. Now the new coloring c^{\prime} still has no monochromatic K_{k} and is an ($s-1, t-1$)-coloring of K_{n}. Thus $R_{s-1, t-1}(k)>n$, proving (ii).

Similarly, for Item (iii), we define a new coloring c^{\prime} from c as follows: for any edge $u v \in E\left(K_{n}\right), c^{\prime}(u v)=c(u v) \backslash\{\min \{c(u v)\}\}$. Then c^{\prime} still has no monochromatic K_{k} and is an $(s, t-1)$-coloring of K_{n}. Hence we have $R_{s, t-1}(k)>n$ and $R_{s, t}(k) \leq R_{s, t-1}(k)$.

Alternatively we can prove Item (iii) by applying Items (i) and (ii). Item (i) implies that $R_{s, t}(k) \leq R_{s+1, t}(k)$, and by Item (ii), $R_{s+1, t}(k) \leq R_{s, t-1}(k)$, hence $R_{s, t}(k) \leq R_{s, t-1}(k)$.

Corollary 3.5. For all positive integers $s, t, k, s \geq t$,

$$
R_{s, t}(k) \leq R_{s, 1}(k)=R_{s}(k) .
$$

Proof. We apply Proposition 3.4 (iii) multiple times and obtain:

$$
R_{s, t}(k) \leq R_{s, t-1}(k) \leq R_{s, t-2}(k) \leq \cdots \leq R_{s, t-1}(k)
$$

Another way to prove Corollary 3.5 is to replace the color set of each edge with only one color, in order to create an ($s, 1$)-coloring. Let $n \in \mathbb{N}$ and c be an (s, t)-coloring of K_{n} without monochromatic K_{k}. We define c^{\prime} as an s-coloring of K_{n} as follows: For any edge $u v \in E\left(K_{n}\right)$, let $c^{\prime}(u v)=\max \{c(u v)\}$. Then c^{\prime} also has no monochromatic K_{k}, hence $R_{s, 1}(k)>n$ and $R_{s, 1}(k) \geq R_{s, t}(k)$.

Corollary 3.6. For all positive integers s, t, k with $s \geq t$,

$$
R_{s, t}(k) \leq s^{s k}
$$

Proof. By applying Corollary 3.5 and 3.1 we have $R_{s, t}(k) \leq R_{s, 1}(k)=R_{s}(k) \leq s^{s k}$.
Corollary 3.7. For all positive integers s, t, k with $s \geq t$,

$$
R_{s, t}(k) \leq(s-t+1)^{k(s-t+1)} .
$$

If $s=2 t$ then

$$
R_{2 t, t}(k) \leq(t+1)^{k(t+1)}
$$

We note that this upper bound on $R_{s, t}(k)$ is an improvement over the bounds in Propositions 3.2 and 3.6.

Proof. We apply Proposition 3.4 (ii) multiple times and obtain

$$
R_{s, t}(k) \leq R_{s-1, t-1}(k) \leq \cdots \leq R_{s-t+1,1}(k) .
$$

The statement now follows from Proposition 3.1.

Starting from an (s, t)-coloring of K_{n} without monochromatic K_{k}, we can construct an ($m s, m t$)-coloring of K_{n}, for a factor $m \in \mathbb{N}$, with the same property. The following proposition shows that a lower bound for $R_{s, t}(k)$ is also a lower bound for $R_{m s, m t}(k)$.

Proposition 3.8. For all positive integers s, t, m with $s \geq t$,

$$
R_{s, t}(k) \leq R_{m s, m t}(k) .
$$

Proof. Suppose c is an (s, t)-coloring of K_{n} without monochromatic K_{k}, then $R_{s, t}(k)>n$. We construct from c an $(m s, m t)$-coloring c^{\prime} of K_{n} without monochromatic K_{k} in order to prove $R_{m s, m t}(k)>n$, which then implies $R_{s, t}(k) \leq R_{m s, m t}(k)$.

Let $e \in E\left(K_{n}\right)$ be an arbitrary edge and write $c(e)=\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}$ where $c_{i} \in[s]$ and pairwise distinct for all $i \in[t]$. Now let $c^{\prime}(e)$ be defined from $c(e)$ as

$$
\begin{aligned}
c^{\prime}(e)= & \left\{m\left(c_{1}-1\right)+1, \ldots, m\left(c_{1}-1\right)+m, m\left(c_{2}-1\right)+1, \ldots, m\left(c_{2}-1\right)+m,\right. \\
& \left.\ldots, m\left(c_{t}-1\right)+1, \ldots, m\left(c_{t}-1\right)+m\right\} \\
= & \left\{m\left(c_{i}-1\right)+j: i \in[t], j \in[m]\right\} .
\end{aligned}
$$

We prove that c^{\prime} is an $(m s, m t)$-coloring of K_{n} that contains no monochromatic K_{k}.
First note that any color of $c^{\prime}(e)$ has the form $m\left(c_{i}-1\right)+j$ for some $i \in[t]$ and $j \in[m]$. Since $c_{i} \in[s]$ for all $i \in[t]$, we have

$$
m(1-1)+1 \leq m\left(c_{i}-1\right)+j \leq m(s-1)+m,
$$

hence $1 \leq m\left(c_{i}-1\right)+j \leq m s$. Therefore there are $m s$ possible colors for c^{\prime}. Next, we show that any two colors of $c^{\prime}(e)$ are distinct. Consider for $c^{\prime}(e)$ any two colors $m\left(c_{i}-1\right)+k$ and $m\left(c_{j}-1\right)+l$ where $i, j \in[t]$ are distinct and $1 \leq k, l \leq m$. By the definition of $c, c_{i} \neq c_{j}$. Without loss of generality, suppose that $c_{j}=c_{i}+p$ for some $p \in[s-1]$. Then

$$
\begin{aligned}
m\left(c_{j}-1\right)+l & =m\left(c_{i}+p-1\right)+l \\
& =m\left(c_{i}-1\right)+m p+l \\
& \geq m\left(c_{i}-1\right)+m+1 \\
& >m\left(c_{i}-1\right)+k .
\end{aligned}
$$

In particular, $m\left(c_{j}-1\right)+1 \neq m\left(c_{i}-1\right)+k$, i.e any two colors of $c^{\prime}(e)$ are distinct. Thus $\left|c^{\prime}(e)\right|=t$ for any edge $e \in E\left(K_{n}\right)$ and c^{\prime} is an ($m s, m t$)-coloring of K_{n}.

Note that for an edge $e \in E\left(K_{n}\right)$, if $r \in c^{\prime}(e)$ for some color $r \in[m s]$, then there exist positive integers $i \in[s], j \in[m]$ such that $r=m(i-1)+j$ and $i \in c(e)$.

Now assume for the sake of contradiction that c^{\prime} has a monochromatic $G \cong K_{k}$ in color r for some $r \in[m s]$, that is $r \in c^{\prime}(e)$ for all edges $e \in E(G)$. Then there exist positive integers $i \in[s], j \in[m]$ such that $r=m(i-1)+j$ and $i \in c(e)$ for all edges $e \in E(G)$. It follows that c has a monochromatic K_{k} in color i, which is a contradiction to the assumption of c. Therefore, c^{\prime} has no monochromatic K_{k}, which proves $R_{m s, m t}(k)>n$.

As a result we have the classical Ramsey number as a lower bound for $R_{2 m, m}(k)$ by applying Proposition 3.8 with $s=2, t=1$.

Corollary 3.9. For all $m, k \in \mathbb{N}$,

$$
R(k)=R_{2,1}(k) \leq R_{2 m, m}(k) .
$$

For classical Ramsey numbers we have the following comparison.
Corollary 3.10. For all $k \in \mathbb{N}$,

$$
R_{3,2}(k) \leq R_{2,1}(k)=R(k) \leq R_{4,2}(k) .
$$

Proof. Corollary 3.9 with $m=2$ implies $R_{2,1}(k) \leq R_{4,2}(k)$. The inequality $R_{3,2}(k) \leq$ $R_{2,1}(k)$ follows from Proposition 3.4 (ii).

Sometimes it is easier to construct an $\left(s, t^{+}\right)$-coloring of K_{n} without monochromatic K_{k} than an exact (s, t)-coloring. We show that such an $\left(s, t^{+}\right)$-coloring suffices to prove a lower bound $R_{s, t}(k)>n$.

Proposition 3.11. For all positive integers s, t, n, k with $s \geq t$, suppose c is an $\left(s, t^{+}\right)$coloring of K_{n} without monochromatic K_{k}. Then $R_{s, t}(k)>n$.

Proof. For any edge $u v$ of K_{n} that has more than t colors, we delete colors on $u v$ such that $u v$ has t colors left. Formally, for any $e \in E\left(K_{n}\right)$ with $c(e)=\left\{i_{1}, \ldots, i_{t+r}\right\} \subseteq[s]$ for $1 \leq r \leq s-t$, let $c^{\prime}(e):=\left\{i_{1}, \ldots, i_{t}\right\}$. For all edges $e \in E\left(K_{n}\right)$ with $|c(e)|=t$, let $c^{\prime}(e):=c(e)$. Then c^{\prime} is an (s, t)-coloring of K_{n} without monochromatic K_{k}. Therefore $R_{s, t}(k)>n$.

3.2 Lower bounds by probabilistic method

In 1947, Erdős [8] introduced the probabilistic method in proving a lower bound for $R(k)$:

$$
R(k) \geq 2^{k / 2}
$$

Spencer [23] used Lováz Local Theorem with the probabilistic method to attain a slightly better lower bound:

$$
R(k) \geq k \cdot 2^{k / 2}[(\sqrt{2} / e)+o(1)]
$$

For an overview of the probabilistic method, see Alon [1]. Now we use the probabilistic method to determine a lower bound for $R_{s, t}(k)$.

Theorem 3.12. For all $s, t, k, n \in \mathbb{N}$ such that $s \geq t, k \geq 3$ and $n=\left\lfloor\frac{k}{e} \cdot s^{-\frac{1}{k}} \cdot\left(\frac{s}{t}\right)^{\frac{k-1}{2}}\right\rfloor$,

$$
R_{s, t}(k)>n
$$

i.e. there exists an (s, t)-coloring of K_{n} without monochromatic K_{k}.

Note that $R_{s, t}(k)>n$ also means $R_{s, t}(k) \geq\left\lceil\frac{k}{e} \cdot s^{-\frac{1}{k}} \cdot\left(\frac{s}{t}\right)^{\frac{k-1}{2}}\right\rceil$.
Proof. We modify the proof of Graham, Rothschild and Spencer in [11] for (s, t)-colorings. We color edges of K_{n} uniformly and independently at random, each edge gets a t-set from $[s]$ with probability $1 /\binom{s}{t}$. Consider a set U of k vertices. If U is monochromatic in some color $i \in[s]$, then each edge in U has $(t-1)$ remaining colors that can be chosen from $[s] \backslash\{i\}$. Therefore, for any edge e induced by U, we have

$$
\mathbb{P}[i \in c(e)]=\frac{\binom{s-1}{t-1}}{\binom{s}{t}}=\frac{t}{s} .
$$

Thus the probability that U induces a clique whose each edge contains color i is $\left(\frac{t}{s}\right)^{\binom{k}{2}}$, since U has $\binom{k}{2}$ edges. Moreover, there are s possibilities to choose a color that all edges in U have, and $\binom{n}{k}$ possible cliques of order k in K_{n} that can be monochromatic. Let A

3 General bounds

denote the event "There is some monochromatic $K_{k}{ }^{*}$ ", then the probability of the event A is

$$
\begin{aligned}
& \mathbb{P}[A]=\mathbb{P}\left[\text { There is some monochromatic } K_{k}\right] \\
&=\mathbb{P}\left[\bigcup_{U \subseteq V\left(K_{n}\right)}^{|U|=k}\right. \\
& \leq \sum_{U \subseteq V\left(K_{n}\right)}^{|U|=k} \\
& \mathbb{P}[U \text { is monochromatic }] \\
&=s\binom{n}{k}\binom{t}{s}^{\binom{k}{2}} .
\end{aligned}
$$

By the assumption, $n<\frac{k}{e} \cdot s^{-\frac{1}{k}} \cdot\left(\frac{s}{t}\right)^{\frac{k-1}{2}}$, which implies

$$
s^{\frac{1}{k}} \cdot \frac{e n}{k}\left(\frac{t}{s}\right)^{\frac{k-1}{2}}<1
$$

It follows that

$$
s\left(\frac{e n}{k}\right)^{k}\left(\frac{t}{s}\right)^{\frac{k(k-1)}{2}}<1
$$

On the other hand, $\binom{n}{k} \leq \frac{n^{k}}{k!} \leq\left(\frac{e n}{k}\right)^{k}$, thus

$$
\mathbb{P}[A] \leq s\binom{n}{k}\left(\frac{t}{s}\right)^{\binom{k}{2}} \leq s\left(\frac{e n}{k}\right)^{k}\left(\frac{t}{s}\right)^{\frac{k(k-1)}{2}}<1 .
$$

Therefore $\mathbb{P}\left[A^{C}\right]>0$, and there must be some (s, t)-coloring of K_{n} that has no monochromatic K_{k}.

We apply Theorem 3.12 for $s=m t$.
Corollary 3.13. For all $m, t, k \in \mathbb{N}$,

$$
R_{m, t}(k)>\left\lfloor\frac{k}{e} \cdot(m t)^{-1 / k} \cdot m^{\frac{k-1}{2}}\right\rfloor .
$$

For $s=m, t=1$, we obtain the following well-known lower bound on $R_{m}(k)$.
Corollary 3.14. For all $m, k \in \mathbb{N}$,

$$
R_{m, 1}(k)=R_{m}(k)>\left\lfloor\frac{k}{e} \cdot m^{-\frac{1}{k}} \cdot m^{\frac{k-1}{2}}\right\rfloor .
$$

Remark 3.15. By Proposition 3.8, for all $m, t, k \in \mathbb{N}$, we have $R_{m t, t}(k)>R_{m, 1}(k)$ and hence

$$
R_{m t, t}(k)>\left\lfloor\frac{k}{e} \cdot m^{-\frac{1}{k}} \cdot m^{\frac{k-1}{2}}\right\rfloor .
$$

This is an improvement over the bound in Corollary 3.13.

4 Concrete cases

A general method to prove a lower bound $n<R_{s, t}(k)$ is to construct an (s, t) or $\left(s, t^{+}\right)$coloring of K_{n} whose color graphs are the Tuán graphs $T_{k-1}(n)$. We will develop this concept in the next sections. First we consider $R_{s, t}(k)$ for some small parameters s, t, k.

Let $s, t, k \in \mathbb{N}$, some trivial cases are: If $s=t$, then $R_{t, t}(k)=k$, and for $k=2$, $R_{s, t}(2)=2$. For $t=1$, we get the classical (multicolor) Ramsey numbers, so we only consider cases where $t>1$ here. The next nontrivial case is then $R_{3,2}(3)$.

4.1 Bounds for $R_{3,2}(3)$ and $R_{4,2}(3)$

In a (3,2)-coloring of a triangle, there are three possibilities to color an edge, with $\{1,2\}$, $\{1,3\}$, or $\{2,3\}$. We show that if any two edges in a triangle get the same color set, then the triangle is monochromatic.

Proposition 4.1. The only (3,2)-coloring of K_{3} without monochromatic K_{3} has all 3 possible color combinations on 3 edges, $c\left(K_{3}\right)=\{\{1,2\},\{1,3\},\{2,3\}\}$ (see Figure 3).

Figure 3: $(3,2)$-coloring avoiding monochromatic K_{3}
Proof. Let $i, j, k \in\{1,2,3\}$ pairwise distinct. Let c be a (3,2)-coloring of a triangle $u_{1} u_{2} u_{3}$ and suppose that two edges have the same color combination. Without loss of generality, $c\left(u_{1} u_{2}\right)=c\left(u_{1} u_{3}\right)=\{i, j\}$. If $c\left(u_{2} u_{3}\right) \in\{\{i, j\},\{i, k\}\}$, then $u_{1} u_{2} u_{3}$ is monochromatic in color i. If $c\left(u_{2} u_{3}\right)=\{j, k\}$, then the triangle is monochromatic in color j, which proves the proposition.

Proposition 4.2. We have that $R_{3,2}(3)=5$. Moreover, the witness coloring to the lower bound $R_{3,2}(3)>4$ is unique up to permutation of colors and is given in Figure 4.

We remark that in this unique (3,2)-coloring (up to permutation of colors) of K_{4} without monochromatic K_{3}, any two non-adjacent edges have the same color set.

Proof. Figure 4 illustrates a (3, 2)-coloring of K_{4} avoiding monochromatic triangles, thus shows the lower bound $R_{3,2}(3)>4$. In this coloring, any triangle in K_{4} has all three possible color sets: $\{\{1,2\},\{1,3\},\{2,3\}\}$. By Proposition 4.1, this is the only (3,2)coloring of K_{4} that has no monochromatic K_{3}.

Figure 4: Witness coloring to the lower bound on $R_{3,2}(3)$ of K_{4}
For the upper bound, fix some vertex $u \in V\left(K_{5}\right)$. By Proposition 4.1, to avoid a monochromatic K_{3}, any two edges at u must have different color combinations. There are 4 edges incident to u, but only 3 possible color combinations: $\{1,2\},\{1,3\},\{2,3\}$. Thus, there must be one color set which appears at least twice. By Proposition 4.1, there is a monochromatic K_{3}.

Now we can use Proposition 4.2 to prove an upper bound for $R_{4,2}(3)$. For the lower bound, we construct a ($4,2^{+}$)-coloring without monochromatic K_{3} using Turán graphs.

Theorem 4.3. We have that $8<R_{4,2}(3) \leq 10$.
Proof. To prove the upper bound, let c be a $(4,2)$-coloring of $G \cong K_{10}$. We show that c has a monochromatic triangle. Fix some vertex $u \in V(G)$. Then u is incident to 9 edges, each is colored with 2 colors, so we have 18 colors in total. Without loss of generality, we assume that at least $\left\lceil\frac{18}{4}\right\rceil=5$ edges at u have color 1 . Note that for this proof, we just ignore the second color on those edges. Let $V:=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \subset V(G)$, such that $V \subseteq N_{1}(u)$, i.e. for all $v \in V, 1 \in c(u v)$. Let $H=G[V]$ be the induced subgraph on V, note that $H \cong K_{5}$. If any edge in H has color 1, i.e. there exist $i, j \in[5]$ such that $1 \in c\left(v_{i} v_{j}\right)$, then u, v_{i}, v_{j} will form a monochromatic triangle in color 1 . Otherwise, if color 1 is not used on any edge of H, then we have a $(3,2)$-coloring of H. By Proposition 4.2, there is one monochromatic triangle in H, and so in G.

$$
\left|\right| \quad\left|\right| \quad\left|\right| \quad\left|\begin{array}{c|c|c}
L_{4} & R_{4} \\
u_{1} & v_{1} \\
u_{2} & v_{2} \\
v_{3} & u_{3} \\
v_{4} & u_{4}
\end{array}\right|
$$

Table 1: Construction of (4, 2)-coloring of K_{8} without monochromatic K_{3}

For the lower bound, we construct a $\left(4,2^{+}\right)$-coloring c of K_{8} where each edge of K_{8} gets at least 2 colors. Label the vertices of K_{8} as $V\left(K_{8}\right)=\left\{u_{1}, v_{1}, \ldots, u_{4}, v_{4}\right\}$. We first define

4 Concrete cases

$G_{k}=K_{L_{k}, R_{k}}, k \in[4]$ as the complete bipartite graphs with bipartitions L_{k}, R_{k}. The elements of L_{k}, R_{k} are shown in Table 1.

Now let $c: E\left(K_{8}\right) \rightarrow 2^{[4]}$ be the coloring with color graphs $G_{k}, k \in[4]$. That means, for any edge $e \in E\left(K_{8}\right)$,

$$
c(e)=\left\{k \in[4]: e \in E\left(G_{k}\right)\right\} .
$$

We will show that any edge in K_{8} has at least 2 colors, or any edge of K_{8} is edge in at least two of the graphs G_{k}.

In the following let $i, j \in[4]$ be distinct. It is clear that any edge of the form $u_{i} v_{i}$ is an edge of all graphs $G_{k}, k \in[4]$. Other edges have the form $u_{i} v_{j}, u_{i} u_{j}$ or $v_{i} v_{j}$. We claim that these edges are in exactly two of the graphs G_{k}. In order to prove that, we first define a 4×4 matrix $H=\left(h_{i, j}\right)_{i, j=1}^{4}$ as follows: for any $i, k \in[4], h_{i, k}=1$ if and only if $u_{i} \in L_{k}$ and $v_{i} \in R_{k}$, otherwise $h_{i, k}=-1$ if and only if u_{i}, v_{i} are swapped in G_{k}, that is if $u_{i} \in R_{k}$ and $v_{i} \in L_{k}$. Then the matrix H is determined as follows

$$
H=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

We observe that $u_{i} v_{j}$ is an edge of G_{k} if and only if u_{i} and v_{j} lie in different partitions of G_{k}, or $h_{i, k}=h_{j, k}$. On the other hand, $u_{i} u_{j} \in E\left(G_{k}\right)$ is equivalent to $v_{i} v_{j} \in E\left(G_{k}\right)$, both if and only if $h_{i, k} \cdot h_{j, k}=-1$, i.e. u_{i} and u_{j} lie in different partitions of G_{k}.

Let $r_{i}, i \in[4]$ be the rows of H. Notice that the inner product of any two rows of H is 0 , i.e for distinct $i, j \in[4]$,

$$
0=\left\langle r_{i}, r_{j}\right\rangle=\sum_{\substack{k=1 \\ h_{i, k}=h_{j, k}}}^{4} 1+\sum_{\substack{k=1 \\ h_{i, k}=h_{j, k}}}^{4}-1,
$$

which implies

$$
\left|\left\{k \in[4]: h_{i, k}=h_{j, k}\right\}\right|=\left|\left\{k \in[4]: h_{i, k} \cdot h_{j, k}=-1\right\}\right|=2 .
$$

This means every edge of the form $u_{i} u_{j}, v_{i} v_{j}, u_{i} v_{j}$ where $i, j \in[4]$ distinct, is contained in exactly two of the graphs $G_{1}, G_{2}, G_{3}, G_{4}$.

Since all color graphs c are bipartite, c contains no monochromatic K_{3}. By Proposition 3.11, $R_{4,2}(3)>8$, which completes the proof of the theorem.

The following improves Theorem 4.3.

Theorem 4.4. We have that $R_{4,2}(3)=9$.
Proof. The lower bound is given by Theorem 4.3. To prove that $R_{4,2}(3) \leq 9$, let c be a $(4,2)$-coloring of K_{9}. We assume for the sake of contradiction that c has no monochromatic K_{3}. For the proof, we will use a result from Proposition 4.2 that in a (3,2)-coloring of K_{4} without monochromatic K_{3}, any two non-adjacent edges have the same color set.

First we prove the following statements:
(i) $\left|N_{i}(u)\right|=4$ for all $u \in V\left(K_{9}\right)$ and $i \in[4]$.
(ii) $\left|N_{i}(u) \cap N_{j}(u)\right| \leq 2$ for all $u \in V\left(K_{9}\right)$ and $i, j \in[4], i \neq j$.

Let u be a vertex in K_{9}. There are 8 edges at u which need 16 colors. By the pigeonhole principle, there is one color $i \in[4]$ that appears at least 4 times on those edges, i.e. $\left|N_{i}(u)\right| \geq 4$. On the other hand, since there is no monochromatic triangle in color $i, K_{9}\left[N_{1}(u)\right]$ has no edge in color i, thus we have a $(3,2)$-coloring of $K_{9}\left[N_{1}(u)\right]$. If $\left|N_{i}(u)\right| \geq 5$, then Proposition 4.2 implies that $K_{9}\left[N_{1}(u)\right]$ contains a monochromatic triangle in some color $j \in[4] \backslash\{i\}$, a contradiction. Therefore, $\left|N_{i}(u)\right| \leq 4$, which implies $\left|N_{i}(u)\right|=4$. Now the remaining colors $[4] \backslash\{i\}$ have to appear 12 times in total on the edges from u to $N(u)$. By the same argument, $\left|N_{j}(u)\right|=4$ for all $j \in[4]$, which proves Item (i).

To prove (ii), assume that $\left|N_{i}(u) \cap N_{j}(u)\right| \geq 3$ for some $i, j \in[4], i \neq j$, i.e. there are 3 distinct vertices $x, y, z \in V\left(K_{9}\right)$, such that $c(u x)=c(u y)=c(u z)=\{i, j\}$. The edges $x y, y z, x z$ are not colored with i or j, otherwise there would be a monochromatic triangle in color i or j. Hence, $c(x y)=c(y z)=c(x z)=\{k, l\}$ with $k, l \in[4] \backslash\{i, j\}$. The triangle $x y z$ is then monochromatic in color k and l, a contradiction, which proves Item (ii).

Now let $u_{i}, i \in[9]$, be the vertices of K_{9}. We first consider u_{1} and claim that without loss of generality the following hold:
(iii) $N_{1}\left(u_{1}\right)=\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $N_{1}\left(u_{1}\right) \cap N_{2}\left(u_{1}\right)=\left\{u_{2}, u_{3}\right\}$.
(iv) $c\left(u_{2} u_{3}\right)=c\left(u_{4} u_{5}\right)=\{3,4\}$.
(v) $c\left(u_{1} u_{4}\right)=\{1,3\}$ and $c\left(u_{1} u_{5}\right)=\{1,4\}$.

By Item (i), without loss of generality, suppose that $1 \in c\left(u_{1} u_{i}\right)$ for $i \in\{2,3,4,5\}$. It follows that there is no edge in color 1 in $K_{9}\left[\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}\right]$. The second color on each edge $\left\{u_{1} u_{2}, u_{1} u_{3}, u_{1} u_{4}, u_{1} u_{5}\right\}$ is chosen from colors $\{2,3,4\}$. There is some color $j \in\{2,3,4\}$ which appears at least twice on those edges. Without loss of generality, $j=2$ and $c\left(u_{1} u_{2}\right)=c\left(u_{1} u_{3}\right)=\{1, j\}=\{1,2\}$. In addition, by Item (ii), $\left|N_{1}\left(u_{1}\right) \cap N_{2}\left(u_{1}\right)\right| \leq 2$. Then $\left|N_{1}\left(u_{1}\right) \cap N_{2}\left(u_{1}\right)\right|=2$ and Item (iii) follows.

Next, we prove Item (iv). Triangle $u_{1} u_{2} u_{3}$ is not monochromatic, hence $c\left(u_{2} u_{3}\right)=\{3,4\}$. Since we have a $(3,2)$-coloring in $K_{9}\left[\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}\right]$ and by Proposition 4.2, edge $u_{4} u_{5}$
has the same color set as $u_{2} u_{3}$, thus $c\left(u_{4} u_{5}\right)=\{3,4\}$, proving Item (iv).
Since $\left|N_{i}(u) \cap N_{j}(u)\right| \leq 2$ by Item (ii), and by Item (iii) we have $N_{1}\left(u_{1}\right) \cap N_{2}\left(u_{1}\right)=$ $\left\{u_{2}, u_{3}\right\}$, it follows that $2 \notin c\left(u_{1} u_{4}\right) \cup c\left(u_{1} u_{5}\right)$. We consider triangle $u_{1} u_{4} u_{5}$, since $u_{1} u_{4}$ and $u_{1} u_{5}$ are not colored with $2, c\left(u_{1} u_{4}\right), c\left(u_{1} u_{5}\right) \in\{\{1,3\},\{1,4\}\}$. If $c\left(u_{1} u_{4}\right)=c\left(u_{1} u_{5}\right)$, then $u_{1} u_{4} u_{5}$ is monochromatic in color 3 or 4 , a contradiction. Hence $c\left(u_{1} u_{4}\right) \neq c\left(u_{1} u_{5}\right)$. Without loss of generality, let $c\left(u_{1} u_{4}\right)=\{1,3\}$ and $c\left(u_{1} u_{5}\right)=\{1,4\}$, and Item (v) follows.

Next we consider $N_{2}\left(u_{1}\right)$ and prove the following:
(vi) Without loss of generality, $N_{2}\left(u_{1}\right)=\left\{u_{2}, u_{3}, u_{6}, u_{7}\right\}$.
(vii) $c\left(u_{2} u_{3}\right)=c\left(u_{6} u_{7}\right)=\{3,4\}$
(viii) $c\left(u_{1} u_{6}\right)=\{2,3\}, c\left(u_{1} u_{7}\right)=\{2,4\}$.

By Item (i), $\left|N_{2}\left(u_{1}\right)\right|=4$ and since $2 \notin c\left(u_{1} u_{4}\right) \cup c\left(u_{1} u_{5}\right),\left|N_{2}\left(u_{1}\right) \cap\left\{u_{6}, u_{7}, u_{8}, u_{9}\right\}\right|=2$. Without loss of generality, assume $2 \in c\left(u_{1} u_{6}\right) \cap c\left(u_{1} u_{7}\right)$. In total we have $N_{2}\left(u_{1}\right)=$ $\left\{u_{2}, u_{3}, u_{6}, u_{7}\right\}$, which is Item (vi).

Consider $K_{9}\left[\left\{u_{2}, u_{3}, u_{6}, u_{7}\right\}\right]$, by Item (vi) we must have a (3, 2)-coloring of K_{4} without color 2, Proposition 4.2 implies that $c\left(u_{6} u_{7}\right)=c\left(u_{2} u_{3}\right)=\{3,4\}$, showing Item (vii).

By Items (i) and (ii), we may write $c\left(u_{1} u_{6}\right)=\{2, i\}$ and $c\left(u_{1} u_{7}\right)=\{2, j\}$ for some $i, j \in\{3,4\}$. If $i=j$, then by Item (vii), vertices u_{1}, u_{6}, u_{7} would form a monochromatic triangle in color i, thus $i \neq j$ or $c\left(u_{1} u_{6}\right) \neq c\left(u_{1} u_{7}\right)$. Without loss of generality, $c\left(u_{1} u_{6}\right)=\{2,3\}, c\left(u_{1} u_{7}\right)=\{2,4\}$, and Item (viii) follows. We now have the situation in Figure 5.

Figure 5: Assumption: $(4,2)$-coloring of K_{9} without monochromatic K_{3}.

4 Concrete cases

Next we consider u_{8}, u_{9} and prove the following:
(ix) $c\left(u_{1} u_{8}\right)=c\left(u_{1} u_{9}\right)=\{3,4\}$.
(x) $c\left(u_{8} u_{9}\right)=c\left(u_{4} u_{6}\right)=c\left(u_{5} u_{7}\right)=\{1,2\}$.

By Item (i), we have that $\left|N_{3}\left(u_{1}\right)\right|=\left|N_{4}\left(u_{1}\right)\right|=4$. On the other hand, by Items (iii) and $(\mathrm{vi}), N_{1}\left(u_{1}\right) \cup N_{2}\left(u_{1}\right)=\left\{u_{2}, \ldots, u_{7}\right\}$. It follows that edges $u_{1} u_{8}$ and $u_{1} u_{9}$ are not colored with 1 and 2, proving Item (ix) that $c\left(u_{1} u_{8}\right)=c\left(u_{1} u_{9}\right)=\{3,4\}$.

For triangle $u_{1} u_{8} u_{9}$ it follows that $c\left(u_{8} u_{9}\right)=\{1,2\}$. Consider $N_{3}\left(u_{1}\right)$ which is $\left\{u_{4}, u_{6}, u_{8}, u_{9}\right\}$ by (v) and (viii), in $K_{9}\left[\left\{u_{4}, u_{6}, u_{8}, u_{9}\right\}\right], c$ is a (3,2)-coloring with colors $\{1,2,4\}$. By Proposition 4.2, $c\left(u_{4} u_{6}\right)=c\left(u_{8} u_{9}\right)=\{1,2\}$. Similarly, for $N_{4}\left(u_{1}\right)=\left\{u_{5}, u_{7}, u_{8}, u_{9}\right\}, c$ is in $K_{9}\left[\left\{u_{5}, u_{7}, u_{8}, u_{9}\right\}\right]$ a (3,2)-coloring with colors $\{1,2,3\}$, hence $c\left(u_{5} u_{7}\right)=c\left(u_{8} u_{9}\right)=$ $\{1,2\}$, which shows Item (x).

Finally, we consider the edges at u_{4} and prove that
(xi) $c\left(u_{4} u_{7}\right)=\{1,3\}$.

We have that $u_{1}, u_{6} \in N_{1}\left(u_{4}\right)$, and by Item (i), $\left|N_{1}\left(u_{4}\right) \cap V\left(K_{9}\right) \backslash\left\{u_{1}, u_{6}\right\}\right|=2$. Since c has no monochromatic triangle in color $1, u_{2}, u_{3}, u_{5} \notin N_{1}\left(u_{4}\right)$. Therefore, $N_{1}\left(u_{4}\right) \cap\left\{u_{7}, u_{8}, u_{9}\right\}=2$. On the other side, we have $c\left(u_{8} u_{9}\right)=\{1,2\}$ by Item (x), the edges $u_{4} u_{8}$ and $u_{4} u_{9}$ cannot both have color 1 , which implies that $u_{7} \in N_{1}\left(u_{4}\right)$.

Similarly, $\left|N_{3}\left(u_{4}\right) \cap V\left(K_{9}\right) \backslash\left\{u_{1}, u_{5}\right\}\right|=2$. We have $3 \notin c\left(u_{4} u_{6}\right) \cup c\left(u_{4} u_{8}\right) \cup c\left(u_{4} u_{9}\right)$ to avoid monochromatic triangle in color 3. Moreover, by Item (vii), $c\left(u_{2} u_{3}\right)=\{2,3\}$, thus $3 \notin c\left(u_{4} u_{2}\right) \cap c\left(u_{4} u_{3}\right)$. Therefore, $3 \in c\left(u_{4} u_{7}\right)$. Altogether we have $c\left(u_{4} u_{7}\right)=\{1,3\}$, which is Item (xi).

Now consider u_{7}, we have $\left|N_{4}\left(u_{7}\right) \cap V\left(K_{9}\right) \backslash\left\{u_{1}, u_{6}\right\}\right|=2$. Then $4 \notin c\left(u_{7}, u_{5}\right) \cup c\left(u_{7} u_{8}\right) \cup$ $c\left(u_{7} u_{9}\right)$ to avoid monochromatic triangle in color 4 . The color set of edge $u_{7} u_{4}$ is already determined by Item (xi). In particular, $4 \notin c\left(u_{7} u_{4}\right)$, hence $4 \in c\left(u_{7} u_{2}\right) \cap c\left(u_{7} u_{3}\right)$. This is a contradiction, since $u_{2} u_{3} u_{7}$ forms a monochromatic triangle in color 4 . This completes the proof of the theorem.

Following personal communication with Dr. Torsten Ueckerdt [25], we have a shorter proof of Theorem 4.4 using a result of Meringer [18]. Here, the author listed all 4-regular graphs of order 9 (see Figure 6).

Alternative proof of Theorem 4.4. Let c be a (4,2)-coloring of K_{9} without monochromatic K_{3}. By Item (i) above, $\left|N_{i}(u)\right|=4$ for all vertices $u \in V\left(K_{9}\right)$ and colors $i \in[4]$. Therefore, each color graph $G_{i}, i \in[4]$, is a 4-regular graphs that contain no triangles. However, all 4 -regular graphs on 9 vertices do contain a triangle. Hence, any $(4,2)$-coloring of K_{9} must contain a monochromatic triangle.

Figure 6: [18] All 4-regular graphs on 9 vertices

At this point, we recall Corollary 3.10 for $k=3$:

$$
R_{3,2}(3)=5 \leq R(3)=6 \leq R_{4,2}(3)=9 .
$$

4.2 Bounds for $R_{3,2}(4)$ and $R_{4,3}(4)$

We can find an upper bound for $R_{3,2}(4)$ by using information about $R_{3,2}(3)$. Proposition 4.2 says that any (3,2)-coloring of K_{5} contains a monochromatic triangle. The next proposition shows that a $(3,2)$-coloring of K_{5} either contains a monochromatic K_{4}, or two monochromatic K_{3}, each of a distinct color.

4 Concrete cases

Proposition 4.5. Suppose c is a $(3,2)$-coloring of K_{5} that avoids monochromatic K_{4}. Then there exist distinct $i, j \in[3]$ such that c has a monochromatic K_{3} in color i and a monochromatic K_{3} in color j.

Proof. We proceed with a proof by contradiction. Let u_{1}, \ldots, u_{5} be vertices of K_{5}. By Proposition 4.2, without loss of generality, the triangle $u_{1} u_{2} u_{3}$ is monochromatic in color 1. By assumption, c has no monochromatic triangle in color 2 or 3 . In $u_{1} u_{2} u_{3}$, the color of each edge has the form $\{1, i\}$ for $i \in\{2,3\}$. Hence, color 2 or 3 must appear at least twice in $u_{1} u_{2} u_{3}$. On the other hand, since c has no monochromatic K_{3} of color 2 or 3, color 2 or 3 can appear at most twice in $u_{1} u_{2} u_{3}$. Therefore, $u_{1} u_{2} u_{3}$ has exactly two edges that are colored the same. Without loss of generality, $c\left(u_{1} u_{2}\right)=c\left(u_{1} u_{3}\right)=\{1,2\}$ and $c\left(u_{2} u_{3}\right)=\{1,3\}$. Note that u_{1} is then incident to 2 edges with color 2 . In the following we show that the other two edges at u_{1} avoid color 2 .

Claim A: $\quad c\left(u_{1} u_{4}\right)=c\left(u_{1} u_{5}\right)=\{1,3\}$ and $c\left(u_{4} u_{5}\right)=\{1,2\}$.

(a) Assumption for contradiction of Claim A: $2 \in c\left(u_{1} v\right)$.

(b) Claim A: $c\left(u_{1} u_{4}\right)=$ $c\left(u_{1} u_{5}\right)=\{1,3\}, c\left(u_{4} u_{5}\right)=$ $\{1,2\}$.

Figure 7: Claim A: Assumption and result
Let $v \in\left\{u_{4}, u_{5}\right\}$. For the sake of contradiction, suppose that $2 \in c\left(u_{1} v\right)$ (see Figure 7 (a)). Since $u_{1} u_{2} v$ is not monochromatic in color $2, c\left(u_{2} v\right)=\{1,3\}$. Similarly, since $u_{1} u_{3} v$ is not monochromatic in color $2, c\left(u_{3} v\right)=\{1,3\}$. Now we have $c\left(u_{2} u_{3}\right)=c\left(u_{2} v\right)=c\left(u_{3} v\right)=\{1,3\}$, a contradiction. Thus, $c\left(u_{1} u_{4}\right)=c\left(u_{1} u_{5}\right)=\{1,3\}$. Since $u_{1} u_{4} u_{5}$ is not monochromatic in color 3, we have $c\left(u_{4} u_{5}\right)=\{1,2\}$, which proves Claim A.

Now we have the situation in Figure 7 (b). Next we prove the following.

Claim B: $\quad c\left(u_{2} u_{4}\right)=c\left(u_{3} u_{4}\right)=\{2,3\}$.
By the symmetry of u_{2}, u_{3}, without loss of generality, we prove $c\left(u_{3} u_{4}\right)=\{2,3\}$. For the sake of contradiction, suppose that $1 \in c\left(u_{3} u_{4}\right)$ (see Figure 8 (a)). Note that $u_{3} u_{4}$ is edge of two $K_{4}:\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $\left\{u_{1}, u_{3}, u_{4}, u_{5}\right\}$. Both of these K_{4} now have 5 edges with

4 Concrete cases

color 1 . Since each of the induced subgraphs on $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $\left\{u_{1}, u_{3}, u_{4}, u_{5}\right\}$ is not monochromatic in color 1, it must follow that $c\left(u_{2} u_{4}\right)=c\left(u_{3} u_{5}\right)=\{2,3\}$ and we have the situation in Figure 8 (b). On the other hand, the triangle $u_{2} u_{3} u_{4}$ is not monochromatic in color 3 , thus $c\left(u_{3} u_{4}\right)=\{1,2\}$. Since $u_{3} u_{4} u_{5}$ is now monochromatic in color 2 , we have a contradiction to the assumption on c, which completes the proof of Claim B.

Figure 8: Assumption of Claim B

By Claims A and B, $c\left(u_{2} u_{3}\right)=\{1,3\}$ and $c\left(u_{2} u_{4}\right)=c\left(u_{3} u_{4}\right)=\{2,3\}$. Then the triangle $u_{2} u_{3} u_{4}$ has color 3 on all edges, which is a contradiction to our assumption on c. This completes the proof of the proposition.

Theorem 4.6. We have that $9<R_{3,2}(4) \leq 14$.
Proof. For the upper bound, let $u \in V\left(K_{14}\right)$, then u is incident to 13 edges. There are 3 possible ways to assign colors to each edge, $\{1,2\},\{1,3\}$ or $\{2,3\}$. By the pigeonhole principle, there is one color combination that appears at least $\left\lceil\frac{13}{3}\right\rceil=5$ times. Without loss of generality, let $V:=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $c(u v)=\{1,2\}$ for all $v \in V$. If $K_{14}[V]$ contains a monochromatic K_{4}, so does K_{14}. If $K_{14}[V]$ has no monochromatic K_{4}, Proposition 4.5 implies that there are one monochromatic triangle in color i and one in color j, with $i, j \in\{1,2,3\}$ and $i \neq j$. The triangle in color i or j forms together with u a monochromatic K_{4} in color 1 or 2, proving the upper bound.

For the lower bound, we form a suitable (3, 2^{+})-coloring c of K_{9} by defining complete tripartite graphs G_{1}, G_{2}, G_{3} as follows. Label the vertices of K_{9} as $V\left(K_{9}\right)=V=\{(i, j)$: $\left.i, j \in \mathbb{Z}_{3}\right\}$. For all $i \in \mathbb{Z}_{3}$, we define the partite sets of G_{1}, G_{2}, G_{3} :

- $A_{i}:=\left\{(i, j): j \in \mathbb{Z}_{3}\right\}$ and $G_{1}:=K_{A_{o}, A_{1}, A_{2}}$,
- $B_{i}:=\left\{(j, i): j \in \mathbb{Z}_{3}\right\}$ and $G_{2}:=K_{B_{0}, B_{1}, B_{2}}$,
- $C_{i}:=\{(j, k): j+k \equiv i(\bmod 3)\}$ and $G_{3}:=K_{C_{0}, C_{1}, C_{2}}$.

4 Concrete cases

Explicitly, for $i, j, k, l \in \mathbb{Z}_{3}$ and distinct vertices $(i, j),(k, l) \in V$,

- $\{(i, j),(k, l)\} \in E\left(G_{1}\right)$ if and only if $i \neq k$,
- $\{(i, j),(k, l)\} \in E\left(G_{2}\right)$ if and only if $j \neq l$,
- $\{(i, j),(k, l)\} \in E\left(G_{3}\right)$ if and only if $i+j \not \equiv k+l(\bmod 3)$.

The structure of the tripartite graphs and their partitions can be seen in Figure 9.

Figure 9: Tripartite graphs G_{1}, G_{2}, G_{3} with their partitions A_{i}, B_{i}, C_{i}

Let $v:=(i, j)$ and $w:=(k, l)$ be distinct elements of $V, i, j, k, l \in \mathbb{Z}_{3}$. We claim that $\{v, w\}$ is an edge of at least two of the graphs G_{1}, G_{2}, G_{3}. Note that for $j, l \in \mathbb{Z}_{3}$, if $j \neq l$, then $j \not \equiv l(\bmod 3)$. We consider 4 cases.

Case 1: Suppose $i=k$ and $j \neq l$. By definition, $v w \notin E\left(G_{1}\right)$ and $v w \in E\left(G_{2}\right)$. Moreover, we have $i+j \neq i+l=k+l$, and since $i, j, k, l \in \mathbb{Z}_{3}, i+j \not \equiv k+l(\bmod 3)$. That means v and w lie in different partite sets of G_{3}, hence $v w \in E\left(G_{3}\right)$.

Case 2: If $i \neq k$ and $j=l$, then $v w \in E\left(G_{1}\right) \backslash E\left(G_{2}\right)$. Similarly to Case 1, we have $i+j \not \equiv k+l(\bmod 3)$, thus $v w \in E\left(G_{3}\right)$.

Case 3: Now suppose $i \neq k, j \neq l$ and $i+j \equiv k+l(\bmod 3)$. Then $v w \in E\left(G_{1}\right) \cap$ $E\left(G_{2}\right)$ and $v w \notin E\left(G_{3}\right)$.

Case 4: Finally, suppose $i \neq k, j \neq l$ and $i+j \not \equiv k+l(\bmod 3)$. By definition, $v w \in E\left(G_{1}\right) \cap E\left(G_{2}\right) \cap E\left(G_{3}\right)$, which completes the proof of the claim.

We now define c as the coloring with color graphs G_{1}, G_{2}, G_{3}, i.e. for all edges $v w \in$ $E\left(K_{9}\right)$,

$$
c(v w)=\left\{i \in[3]: v w \in E\left(G_{i}\right)\right\} .
$$

Then c is a $\left(3,2^{+}\right)$-coloring and by construction of G_{1}, G_{2}, G_{3}, c contains no monochromatic K_{4}. Proposition 3.11 implies that $R_{3,2}(4)>9$.

We can construct a $(4,3)$-coloring of K_{9} without monochromatic K_{4} in a similar way and attain a lower bound for $R_{4,3}(4)$.
Theorem 4.7. We have that $R_{4,3}(4)>9$.
Proof. To build a $(4,3)$-coloring of K_{9} without monochromatic K_{4}, we first define the color graphs $G_{1}, G_{2}, G_{3}, G_{4}$ as follows. Let $V:=\left\{(i, j): i, j \in \mathbb{Z}_{3}\right\}$ be the vertex set of K_{9} and let $G_{1}, G_{2}, G_{3}, G_{4}$ be the complete tripartite graphs with parts $A_{i}, B_{i}, C_{i}, D_{i}$ respectively for $i \in \mathbb{Z}_{3}$, where

- $A_{i}:=\left\{(i, j): j \in \mathbb{Z}_{3}\right\}$,
- $B_{i}:=\left\{(j, i): j \in \mathbb{Z}_{3}\right\}$,
- $C_{i}:=\left\{(j, k): j, k \in \mathbb{Z}_{3}\right.$ and $\left.j+k \equiv i(\bmod 3)\right\}$,
- $D_{i}:=\left\{(j, k): j, k \in \mathbb{Z}_{3}\right.$ and $\left.k-j \equiv i(\bmod 3)\right\}$.

Explicitly, for $i, j, k, l \in \mathbb{Z}_{3}$ and distinct vertices $(i, j),(k, l) \in V$,

- $\{(i, j),(k, l)\} \in E\left(G_{1}\right)$ if and only if $i \neq k$,
- $\{(i, j),(k, l)\} \in E\left(G_{2}\right)$ if and only if $j \neq l$,
- $\{(i, j),(k, l)\} \in E\left(G_{3}\right)$ if and only if $i+j \not \equiv k+l(\bmod 3)$,
- $\{(i, j),(k, l)\} \in E\left(G_{4}\right)$ if and only if $j-i \not \equiv l-k(\bmod 3)$.

Figure 10 illustrates the graphs $G_{1}, G_{2}, G_{3}, G_{4}$ with their partite sets.

Figure 10: Tripartite graphs $G_{1}, G_{2}, G_{3}, G_{4}$ with partitions

Let $i, j, k, l \in \mathbb{Z}_{3}$ and $v:=(i, j)$ and $w:=(k, l)$ be distinct elements of V. We claim that $\{v, w\}$ is edge of exactly three of the graphs $G_{1}, G_{2}, G_{3}, G_{4}$.

Before analyzing different cases of i, j, k, l as before, we consider vector $d:=(i-k, j-l)$. First note that \mathbb{Z}_{3} is a Galois field and $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ is a vector space. Then $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ is an affine plane of order 3 , where each point (x, y) lies on 4 lines from 4 parallel classes for $x, y \in \mathbb{Z}_{3}$ (see Beth et al. [4]). The vector d (as point in this affine plane) can be written as $d=m u$, where $m \in \mathbb{Z}_{3}$ and $u \in\{(0,1),(1,0),(1,1),(1,2)\}$. Now we consider 4 cases and write \equiv for $\equiv(\bmod 3)$.

Case 1: Suppose $i=k$ and $j \neq l$. Then $d=(i-k, j-l)$ must have the form $d=m \cdot(0,1)=(0, m)$ for some $m \neq 0$, i.e. $j=l+m$ for $m \in\{1,2\}$. By definition, $v w \notin E\left(G_{1}\right)$ and $v w \in E\left(G_{2}\right)$. Moreover, $i+j=i+l+m \not \equiv i+l=k+l$, thus $v w \in E\left(G_{3}\right)$. For $G_{4}, j-i=l+m-i \not \equiv l-i=l-k$, thus $v w \in E\left(G_{4}\right)$.

Case 2: If $i \neq k$ and $j=l$, then $d=m(1,0)=(m, 0), m \neq 0$, that is $i=k+m$ for $m \in\{1,2\}$. Then $i+j=k+m+j \not \equiv k+j=k+l$, which implies that $v w \in E\left(G_{3}\right)$, and $j-i=j-(k+m)=l-k-m \not \equiv l-k$, thus $v w \in E\left(G_{4}\right)$. Clearly, $v w \in E\left(G_{1}\right)$ and $v w \notin E\left(G_{2}\right)$.

Case 3: Suppose $i \neq k, j \neq l$ and $i+j \equiv k+l$. Then $i-k \equiv l-j=-(j-l)$. It follows that $d=m(1,2)=(m, 2 m)$ for $m \neq 0$, since $2=-1$ in \mathbb{Z}_{3}. We have $i=k+m$ and $j=l+2 m$, hence $i+j=k+l+3 m \equiv k+l$, which means $v w \notin E\left(G_{3}\right)$. Since $j-i=l+2 m-k-m=l-k+m \not \equiv l-k$, we have $v w \in E\left(G_{4}\right)$. Clearly $v w \in E\left(G_{1}\right) \cap E\left(G_{2}\right)$.

Case 4: Finally, suppose $i \neq k, j \neq l$ and $i+j \not \equiv k+l$. By definition, $v w \in$ $E\left(G_{1}\right) \cap E\left(G_{2}\right)$. There is only one possibility left for vector d, namely $d=m(1,1)$ for $m \neq 0$. It means $i=k+m$ and $j=l+m$. It follows that $i+j=l+k+2 m \in$ $\{l+k+2, l+k+1\}$. In particular, $i+j \not \equiv l+k$, thus $v w \in E\left(G_{3}\right)$. For G_{4}, we have $j-i=(l+m)-(k+m) \equiv l-k$, thus $v w \notin E\left(G_{4}\right)$. This completes the proof of the claim.

We now define coloring c as follows: For any edge $v w$ of K_{9}, let

$$
c(v w)=\left\{i \in[4]: v w \in G_{i}\right\} .
$$

Then c is a $(4,3)$-coloring with color graphs $G_{1}, G_{2}, G_{3}, G_{4}$ and by construction, all color graphs are tripartite and contain no K_{4}. Therefore, c has no monochromatic K_{4}, which proves $R_{4,3}(4)>9$.

Remark 4.8. Theorems 4.6 and 4.7 were presented in the chronological order how we approached the problems. Alternatively, we can prove the lower bound of Theorem 4.6 as a result of Theorem 4.7. By Proposition 3.4 (ii), $R_{4,3}(4) \leq R_{3,2}(4)$, and Theorem 4.7 implies that $R_{3,2}(4)>9$.

5 Design construction

Considering the proof of Theorem 4.7, we can label the vertices of K_{9} in a different way such that

$$
\left(\begin{array}{ccc}
(0,0) & (0,1) & (0,2) \\
(1,0) & (1,1) & (1,2) \\
(2,0) & (2,1) & (2,2)
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

then the partite sets of the tripartite graphs $G_{1}, G_{2}, G_{3}, G_{4}$ are listed in Table 2.

$$
\begin{array}{llll}
A_{0}=\{1,2,3\} & B_{0}=\{1,4,7\} & C_{0}=\{2,4,9\} & D_{0}=\{1,5,9\} \\
A_{1}=\{4,5,6\} & B_{1}=\{2,5,8\} & C_{1}=\{3,5,7\} & D_{1}=\{3,4,8\} \\
A_{2}=\{7,8,9\} & B_{2}=\{3,6,9\} & C_{2}=\{1,6,8\} & D_{2}=\{2,6,7\}
\end{array}
$$

Table 2: Partitions of color graphs in a $(4,3)$-coloring without monochromatic K_{4}
This is a resolution of a $(9,3,1)$ design that we will define below. We raise the question whether Theorem 4.7 can be generalized, or whether a particular design could yield a lower bound on some Ramsey numbers. We first introduce basic terms and well-known results in design theory. For an overview of the history of design theory, we refer to Wilson [27].

5.1 Basics of design theory

In this section let t, v, k, λ be positive integers such that $v \geq k \geq t$.
A $t-(v, k, \lambda)$ design is a pair (V, \mathcal{B}) with point set V and a multiset \mathcal{B} of sets (called blocks) of points with

- $|V|=v$,
- $|B|=k$ for any $B \in \mathcal{B}$, and
- each set of t points is a subset of exactly λ blocks.

We often refer to \mathcal{B} as the design without mentioning V. A $t-(v, k, \lambda)$ design is also denoted by $S_{\lambda}(t, k, v)$. If $\lambda=1$, we call $S_{1}(t, k, v):=S(t, k, v)$ a Steiner system of order v.

Two designs $\left(V_{1}, \mathcal{B}_{1}\right)$ and $\left(V_{2}, \mathcal{B}_{2}\right)$ are isomorphic if there exists a bijection $\phi: V_{1} \rightarrow V_{2}$ such that

$$
\left\{\{\phi(x): x \in B\}: B \in \mathcal{B}_{1}\right\}=\mathcal{B}_{2} .
$$

The bijection ϕ is then called an isomorphism.
If \mathcal{B} is a $t-(v, k, \lambda)$ design then the number of blocks in \mathcal{B} is $b:=|\mathcal{B}|=\lambda \cdot\binom{v}{t} /\binom{k}{t}$. If $b=v$, the design is called symmetric. Since the number of blocks plays an important
role in our application, we also write for convenience (v, b, k, λ) designs.
Let $\mathcal{B}:=\left\{B_{i}: i \in[b]\right\}$ a $t-(v, b, k, \lambda)$ design with point set $V=\left\{x_{1}, \ldots, x_{v}\right\}$. The incidence matrix of \mathcal{B} is a $v \times b$ matrix $A=\left(a_{i, j}\right)$ such that

$$
a_{i, j}= \begin{cases}1, & \text { if } x_{i} \in B_{j} \\ 0, & \text { if } x_{i} \notin B_{j}\end{cases}
$$

If $I \subseteq[v]$ is a set of size $1 \leq i \leq t$, then the number of blocks containing I is

$$
r_{i}=\lambda \cdot\binom{v-i}{t-i} /\binom{k-i}{t-i} .
$$

If $t=2$, then each point of V is contained in

$$
r:=r_{1}=\frac{\lambda(v-1)}{k-1}
$$

blocks.
In design theory, an important question is when a particular design exists. We see that if a $t-(v, k, \lambda)$ design exists, then b and r_{i} must be positive integers. As a result, necessary conditions for the existence of a $t-(v, k, \lambda)$ design are

$$
\begin{equation*}
\binom{k-i}{t-i} \left\lvert\, \lambda \cdot\binom{v-i}{t-i}\right. \text { for all } 0 \leq i \leq t-1 . \tag{1}
\end{equation*}
$$

We call (1) the divisibility conditions. For $t=2$, the necessary divisibility conditions (1) reduce to:

$$
\left\{\begin{array}{l}
k(k-1) \mid \lambda v(v-1) \tag{2}\\
(k-1) \mid \lambda(v-1)
\end{array}\right.
$$

An open problem in design theory for a long time was the Existence Conjecture: for any fixed parameters $t, k, \lambda \in \mathbb{N}$, there exists a $t-(v, k, \lambda)$ design for any $v \in \mathbb{N}$ if v is sufficiently large and satisfies the divisibility conditions. Wilson [26] proved the conjecture for $t=2$. Recently, Keevash [15] proved the conjecture by a method which he called randomized algebraic constructions. An alternative proof was given by Glock et al. [10], based on iterative absorption.

For our purpose, we consider furthermore a particular kind of designs - the resolvable designs.

A parallel class of a $t-(v, k, \lambda)$ design (V, \mathcal{B}) is a set of pairwise disjoint blocks forming a partition of the point set V. A partition of \mathcal{B} into parallel classes is called resolution. If a design has a resolution, then it is called resolvable.

A Steiner triple system is $S(t, 3, v)$. A resolvable Steiner triple system is called a Kirkman triple system.

Since each block has k elements, each parallel class has $\frac{v}{k}$ blocks. There are b blocks in \mathcal{B}, thus the number of parallel classes is $\frac{b k}{v}$.

In this section, we only consider designs with $v>k \geq t=2$. We call such a $2-(v, k, \lambda)$ design a balanced incomplete block design (BIBD) and write (v, k, λ) or (v, b, k, λ) design. Note that in this case $(t=2)$, the number of blocks is

$$
b=\frac{\lambda \cdot v(v-1)}{k(k-1)} .
$$

Example 5.1. A $(7,3,1)$ design is unique up to isomorphism. This particular design is referred to as the Fano plane. We have $V=[v]=[7], k=3, \lambda=1$, and \mathcal{B} contains triples $B_{i}, i \in[7]$, as blocks.

$$
\begin{aligned}
& B_{1}=\{1,2,3\} \\
& B_{2}=\{1,4,5\} \\
& B_{3}=\{1,6,7\} \\
& B_{4}=\{2,4,6\} \\
& B_{5}=\{3,5,7\} \\
& B_{6}=\{3,4,7\} \\
& B_{7}=\{2,5,6\}
\end{aligned} \quad A=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) .
$$

Each pair of points are contained in exactly 2 blocks. The Fano plane is symmetric, since $v=b=7$, but not resolvable, since $3 \nmid 7$. Its incidence matrix A is a 7×7 matrix.

Example 5.2. This example shows a resolvable $(4,2,1)$ design, which is unique up to isomorphism. Here we have $V=v=[4], k=2, \lambda=1$, then $b=6$. The number of parallel classes is $s=b k / v=3$, each parallel class has $v / k=2$ points. A resolution is $\mathcal{B}=\mathcal{B}_{1} \dot{\cup} \mathcal{B}_{2} \dot{\cup} \mathcal{B}_{3}$,

$$
\begin{array}{ccc}
\mathcal{B}_{1} & \mathcal{B}_{2} & \mathcal{B}_{3} \\
B_{1}=\{1,2\} & B_{3}=\{1,3\} & B_{5}=\{1,4\} \\
B_{2}=\{3,4\} & B_{4}=\{2,4\} & B_{6}=\{2,3\} .
\end{array}
$$

This is an affine plane of order 2 with 4 points and 6 lines. In general, an affine plane of order q is equivalent to a $\left(q^{2}, q, 1\right)$ design, the lines in the affine plane correspond to the blocks of the design. Such a design is always resolvable.

Theorem 5.3. (Stinson [24]) For any prime power q, there exists a resolvable $\left(q^{2}, q, 1\right)$ design.

The $(9,3,1)$ design in Table 2 refers to the affine plane $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, as mentioned in the proof of Theorem 4.7.

Let \mathcal{B} a resolvable (v, b, k, λ) design, then the number of parallel classes of \mathcal{B} is

$$
s:=\frac{b k}{v}=\frac{k}{v} \cdot \frac{\lambda v(v-1)}{k(k-1)}=\frac{\lambda(v-1)}{k-1}=r .
$$

Clearly, $k \mid v$ must be satisfied. Together with the condition (2), it implies that the necessary condition for the existence of a resolvable (v, k, λ) is

$$
\begin{equation*}
v \equiv k \quad(\bmod k(k-1)) . \tag{3}
\end{equation*}
$$

Ray-Chaudhuri and Wilson [21] proved that (3) is also the sufficient condition for $k=3$ and $\lambda=1$.

Theorem 5.4. [21] A Kirkman triple system $S(2,3, v)$ exists for $v \in \mathbb{N}$ if and only if $v \equiv 3(\bmod 6)$.
In this case, $b=\frac{v(v-1)}{6}$ and $s=\frac{v-1}{2}$.
For a $(v, k=4, \lambda=1)$ design, $b=\frac{v(v-1)}{12}$ and $s=\frac{v-1}{3}$. In 1971, Ray-Chaudhuri and Wilson together with Hanani proved in [13] that the neccesary condition (3) is also sufficient for the existence of a resolvable $(v, 4,1)$ design.

Theorem 5.5. [13] A resolvable $(v, 4,1)$ design exists if and only if $v \in \mathbb{N}$ with $v \equiv 4$ $(\bmod 12)$.

Keevash [16] resolved the Existence Conjecture for general cases. For sufficiently large v, the divisibility condition (1) is also sufficient for the existence of a (resolvable) $t-(v, k, \lambda)$ design.

Theorem 5.6. [16] For all $k, t, \lambda \in \mathbb{N}$ with $k \geq t$ there exists $n_{0}=n_{0}(k, t, \lambda) \in \mathbb{N}$ such that for all $v \geq n_{0}$, if $k \mid v$ and $\binom{k-i}{t-i} \left\lvert\, \lambda\binom{v-i}{t-i}\right.$ for all $0 \leq i \leq t-1$, then there is a resolvable $t-(v, k, \lambda)$ design.

With $t=2$ we have the following corollary.
Corollary 5.7. For all $k, \lambda \in \mathbb{N}$ with $k \geq 2$ there exists $n_{0}=n_{0}(k, \lambda) \in \mathbb{N}$ such that for all $v \geq n_{0}$, if $k \mid v$ and $(k-1) \mid \lambda(v-1)$, then there is a resolvable (v, k, λ) design.

Proof. The divisibility condition (1)

$$
\binom{k-i}{t-i} \left\lvert\, \lambda \cdot\binom{v-i}{t-i}\right. \text { for all } 0 \leq i \leq t-1
$$

implies for $t=2$:

$$
\left\{\begin{array}{l}
k(k-1) \mid \lambda v(v-1), \tag{2}\\
(k-1) \mid \lambda(v-1)
\end{array}\right.
$$

With $k \mid v$ and $(k-1) \mid \lambda(v-1)$, the condition $k(k-1) \mid \lambda v(v-1)$ is always satisfied. The corollary then follows from Theorem 5.6.

We emphasize here that our aim is not to construct (resolvable) designs. Constructions of designs are extensively described in the literature on designs, for example by Lindner and Rodger [17] for Steiner or Kirkman systems, by Beth, Jungnickel, and Lenz [4] for general designs. Our purpose is to build colorings and find bounds for certain Ramsey numbers based on existing designs.

5.2 Design colorings

We assume again for the rest of this section that v, b, k, λ are positive integers with $v>k \geq 2$, unless otherwise stated. We can construct a coloring with desired properties based on an existing resolvable design. Recall that for a resolution of a resolvable (v, b, k, λ) design, there are v / k blocks in each parallel class and the number of parallel classes is

$$
s=\frac{b k}{v}=\frac{\lambda(v-1)}{k-1},
$$

which implies

$$
s-\lambda=\frac{\lambda(v-1)-\lambda(k-1)}{k-1}=\frac{\lambda(v-k)}{k-1} .
$$

If a (v, b, k, λ) design is resolvable, then clearly $k \mid v$ and $s, s-\lambda$ are positive integers.
Definition 5.8 (Design coloring). Let (V, \mathcal{B}) be a resolvable (v, b, k, λ) design. Then there exists a resolution $\mathcal{B}=\mathcal{B}_{1} \dot{\cup} \ldots \dot{\cup} \mathcal{B}_{s}$ with parallel classes $\mathcal{B}_{1}, \ldots, \mathcal{B}_{s}$, where $s=b k / v$. For any $i \in[s], \mathcal{B}_{i}$ is a partition of $[v]$ into v / k disjoint blocks: $\mathcal{B}_{i}=\left\{B_{i, 1}, \ldots, B_{i, v / k}\right\}$, where $B_{i, j}$ is a block of the design \mathcal{B} for any $j \in[v / k]$, and $\dot{\cup}_{j=1}^{v / k} B_{i, j}=V$.

Let $V\left(K_{v}\right)=V$ and for $i \in[s]$, let G_{i} be the complete (v / k)-partite graph, whose parts are the blocks $\left\{B_{i, j}: j \in[v / k]\right\}$ of the parallel class \mathcal{B}_{i}.

An edge coloring c of K_{v} is called a (v, b, k, λ) design coloring of K_{v} if c has color graphs G_{i}, i.e. for all edges $x y$ of K_{v},

$$
c(x y):=\left\{i \in[s]: x y \in E\left(G_{i}\right)\right\} .
$$

Lemma 5.9. Suppose that (V, \mathcal{B}) is a resolvable (v, b, k, λ) design and c is a (v, b, k, λ) design coloring of K_{v}. Then c is an $(s, s-\lambda)$-coloring of K_{v}, where $s=b k / v$.

Proof. Note that s is the number of parallel classes in a resolution of \mathcal{B}. Since c is a (v, b, k, λ) design coloring, there is a resolution $\mathcal{B}=\mathcal{B}_{1} \dot{\cup} \ldots \dot{\cup} \mathcal{B}_{s}$ such that for any $i \in[s]$, the color graph G_{i} of c is the complete (v / k)-partite graph whose parts are v / k blocks of \mathcal{B}_{i}. Clearly, there are s color graphs, hence there are s possible colors for c. We just need to show that each edge of K_{v} has exactly $(s-\lambda)$ colors, or is edge of $(s-\lambda)$ of the color graphs G_{i}.

For a parallel class $\mathcal{B}_{i}, i \in[s]$, we can write $\mathcal{B}_{i}=\left\{B_{i, 1}, \ldots, B_{i, v / k}\right\}$, where $B_{i, j}$ are blocks of $\mathcal{B}, j \in[v / k]$. Let $x, y \in V=V\left(K_{v}\right)$ be distinct vertices. For $i \in[s],\{x, y\}$ is an edge of G_{i} if and only if x, y are not in the same partition, thus not in the same block $B_{i, j}$ for all $j \in[v / k]$. By the definition of \mathcal{B}, x and y are both contained in λ blocks. In particular, there are exactly λ parallel classes where x and y lie in the same block. Accordingly, in the remaining $(s-\lambda)$ parallel classes, x and y are in different blocks. It follows that $\{x, y\}$ is an edge of $(s-\lambda)$ of the color graphs G_{i}. This proves that c is an $(s, s-\lambda)$-coloring of K_{v}.
Remark 5.10. If a resolvable (v, b, k, λ) design exists, then a (v, b, k, λ) design coloring is an $(s, s-\lambda)$-coloring of K_{v} for $s=b k / v$, where all color graphs G_{i} are the Turán graphs $T_{v / k}(v)=K_{v / k}^{k}$.

We will prove that the opposite direction also holds, i.e. if all color graphs of an $(s, s-\lambda)$ coloring are the Turán graphs $K_{v / k}^{k}$, then that coloring is a (v, b, k, λ) design coloring.
Proposition 5.11. Let v, s, t be positive integers with $s>t$. Suppose c is an (s, t) coloring of K_{v} such that for all $i \in[s]$, color graphs G_{i} of c are the Turán graphs $T_{n}(v)$ for some $n \in \mathbb{N}$ with $n \mid v$. Then there exists a resolvable (v, b, k, λ) design such that c is a (v, b, k, λ) design coloring, where $k=\frac{v}{n}, b=\frac{s v}{k}, \lambda=s-t$.
Proof. Let $V:=V\left(K_{v}\right)$. For $i \in[s]$, since G_{i} is the Turán graph $T_{n}(v)$, we can assume that G_{i} has partite sets $B_{i, j}, j \in[n]$. We consider $B_{i, j}$ as blocks, then each block contains $v / n=k$ vertices. Let $\mathcal{B}=\left\{B_{i, j}: i \in[s], j \in[n]\right\}$. We show that (V, \mathcal{B}) is a resolvable (v, b, k, λ) design.

Since there are s color graphs, we have in total $s \cdot n=\frac{s v}{k}=b$ blocks. Let x, y be distinct vertices of K_{v}. Since c is an (s, t)-coloring, $\{x, y\}$ is an edge in t color graphs. In other words, $\{x, y\}$ is not an edge in $s-t=\lambda$ color graphs, which implies that x and y lie in the same partite set in λ color graphs. That means x, y are contained in λ of the blocks $B_{i, j}$. Therefore, \mathcal{B} is a (v, b, k, λ) design.

Further, for $i \in[s]$, let $\mathcal{B}_{i}=\left\{B_{i, j}: j \in[n]\right\}$, i.e. \mathcal{B}_{i} contains all partite sets of color graph G_{i}. Then \mathcal{B}_{i} is a disjoint partition of V for all $i \in[s]$ and $\dot{\cup}_{i \in[s]} \mathcal{B}_{i}=\mathcal{B}$ is a resolution of \mathcal{B} into parallel classes \mathcal{B}_{i}. This proves that \mathcal{B} is resolvable.

Moreover, for any $i \in[s]$, color graph G_{i} of c is the complete (v / k)-partite graphs whose partite sets are the blocks in the parallel class \mathcal{B}_{i}. Thus c is a (v, b, k, λ) design coloring.

We prove that a resolvable design coloring implies a lower bound for a Ramsey number.
Proposition 5.12. If there exists a resolvable (v, b, k, λ) design, then a (v, b, k, λ) design coloring has no monochromatic $K_{\frac{v}{k}+1}$. In particular we have

$$
R_{\frac{b k}{v}, \frac{b k}{v}-\lambda}\left(\frac{v}{k}+1\right)>v .
$$

Proof. Let c be a (v, b, k, λ) design coloring of K_{v}. By Lemma 5.9, c is a $\left(\frac{b k}{v}, \frac{b k}{v}-\lambda\right)$ coloring of K_{v}. Let G_{i} be the color graphs of $c, i \in[b k / v]$, i.e. G_{i} is the Turán graph $T_{v / k}(v)$. It follows that G_{i} does not contain $K_{\frac{v}{k}+1}$ as a subgraph for all $i \in[b k / v]$, thus c contains no monochromatic $K_{\frac{v}{k}+1}$. This completes the proof of the proposition.

It turns out that this lower bound is best possible. We now state our main result for a resolvable (v, b, k, λ) design.

Theorem 5.13. If there exists a resolvable (v, b, k, λ) design, then we have

$$
R_{\frac{b k}{v}, \frac{b k}{v}-\lambda}\left(\frac{v}{k}+1\right)=v+1 .
$$

We need some steps for the proof. The main idea is follows: given a (v, b, k, λ) coloring of K_{v} without monochromatic K_{n} with $n=\frac{v}{k}+1$, one cannot extend this coloring to a larger clique than K_{v} without creating a monochromatic K_{n}. On the other hand, every coloring of K_{v} without monochromatic K_{n} must have a design construction, which is again not extendable. These two facts then prove the theorem. We now define a coloring extension formally.

Definition 5.14. For positive integers s, t, k, n_{1}, n_{2} with $s \geq t$ and $n_{2} \geq n_{1}+1$, let c_{1} be an (s, t)-coloring of $K_{n_{1}}$ and c_{2} be an (s, t)-coloring of $K_{n_{2}}$. We say c_{2} is an extension of $c_{1}\left(\right.$ to $\left.K_{n_{2}}\right)$ if $K_{n_{2}}$ has a subgraph $H \cong K_{n_{1}}$ such that $c_{2}(e)=c_{1}(e)$ for all $e \in E(H)$.

If both c_{1} and c_{2} have no monochromatic K_{k}, then c_{2} is called a K_{k}-free extension of c_{1}.
If c_{1} has a K_{k}-free extension, then c_{1} is called K_{k}-free extendable, otherwise we say c_{1} is K_{k}-free maximal.

Lemma 5.15. Let \mathcal{B} be a resolvable (v, b, k, λ) design and $s:=b k / v$. Let c be a (v, b, k, λ) design coloring of K_{v}. Then c is $K_{\frac{v}{k}+1}-f r e e ~ m a x i m a l . ~$

Proof. First note that c is an $(s, s-\lambda)$-coloring that has no monochromatic $K \frac{v}{k}+1$ by Propositions 5.9 and 5.12 . Let $\mathcal{B}=\mathcal{B}_{1} \dot{\cup} \ldots \dot{\cup} \mathcal{B}_{s}$ be a resolution with parallel classes $\mathcal{B}_{1}, \ldots, \mathcal{B}_{s}$ and blocks $B_{i, j}, i \in[s], j \in\left[\frac{v}{k}\right]$. Let G_{i} be the corresponding color graphs of c, i.e. G_{i} are the Turán graph $T_{v / k}(v)$ for all $i \in[s]$.

It suffices to show that any extension coloring of c to K_{v+1} has a monochromatic $K_{\frac{v}{k}+1}$. For the sake of contradiction, let $H:=K_{v}+x$ for a vertex $x \notin V\left(K_{v}\right)$ and assume c^{\prime} is an extension of c to $K_{v}+x$. Note that $H \cong K_{v+1}$ and c^{\prime} is an $(s, s-\lambda)$-coloring of K_{v+1}. We consider c^{\prime}, there are v edges at x. By the pigeonhole principle, there exists a color $i \in[s]$ that appears at least $\lceil m\rceil$ times on these v edges, where $m=\frac{v(s-\lambda)}{s}$. With $s=\frac{\lambda(v-1)}{k-1}$ and $s-\lambda=\frac{\lambda(v-k)}{k-1}$, we have

$$
\begin{aligned}
m & =\frac{v(s-\lambda)}{s}=\frac{v \lambda(v-k)}{k-1} \cdot \frac{k-1}{\lambda(v-1)} \\
& =\frac{v(v-k)}{v-1} \\
& =\frac{(v-1)(v-k)}{v-1}+\frac{v-k}{v-1} \\
& =(v-k)+\frac{v-k}{v-1}
\end{aligned}
$$

Since $0<\frac{v-k}{v-1}<1,\lceil m\rceil=v-k+1$, thus there are at least $(v-k+1)$ edges with color i at vertex x. Moreover, $v-k+1=k\left(\frac{v}{k}-1\right)+1$. Since each partite set of G_{i} has k vertices, there is at least one edge with color i from x to all (v / k) partite sets $B_{i, j}, j \in\left[\frac{v}{k}\right]$, of the complete (v / k)-partite graph G_{i}. Together with a monochromatic $K_{v / k}$ in G_{i}, these edges forms a monochromatic $K_{\frac{v}{k}+1}$ of c^{\prime} in color i. This proves that c is not $K_{\frac{v}{k}+1}$-free extendable.

Example 5.16. A $(9,3,1)$ design is unique up to isomorphism and resolvable. Table 2 shows a resolution of it with blocks $A_{i}, B_{i}, C_{i}, D_{i}$ for $i \in \mathbb{Z}_{3}$ and a corresponding design coloring. There are 4 parallel classes, each of which contains 3 blocks. Each color graph associates with a parallel class of the resolution. We have $R_{4,3}(4)>9$. Let $G \cong K_{9}$ and c be a $(9,3,1)$ design coloring of K_{9}. See figure 11 for illustration.

Figure 11: $(9,3,1)$ design coloring
Now add a vertex x to K_{9} and let c^{\prime} be an extension of c to $G+x$. Note that both c and c^{\prime} are (4,3)-colorings. There are 9 edges at x, hence 27 colors are needed. There is some color $i \in[4]$ that appears on at least $\lceil 27 / 4\rceil=7$ of these 9 edges at x, say color 1, i.e. $\left|N_{1}(x)\right| \geq 7$. Then x is connected to all 3 partite sets A_{0}, A_{1}, A_{2} of G_{1}. This implies that c^{\prime} has a monochromatic K_{4} in color 1 (see Figure 12). Thus c is not K_{4}-free extendable.

Figure 12: Extension of a $(9,3,1)$ design coloring to $K_{9}+x$
Lemma 5.17. Suppose there exists a resolvable (v, b, k, λ) design and

$$
s:=\frac{b k}{v}, n:=\frac{v}{k}+1 .
$$

Then an $(s, s-\lambda)$ coloring of K_{v} without monochromatic K_{n} must be a (v, b, k, λ) design coloring.
Proof. Let c be an $(s, s-\lambda)$ coloring of K_{v} without monochromatic K_{n}. By Proposition 5.11, it suffices to show that all color graphs of c are Turán graphs $T_{v / k}(v)=K_{v / k}^{k}$.

For $i \in[s]$, we consider the size of color graph G_{i} of c. Since c has no monochromatic K_{n}, G_{i} has size at most

$$
e\left(G_{i}\right) \leq e x\left(v, K_{n}\right)=t_{\frac{v}{k}}(v)=\binom{v}{2}-\frac{v}{k}\binom{k}{2} .
$$

On the other hand, since each edge has $(s-\lambda)$ colors, the total number of edges of all color graphs is

$$
\begin{aligned}
\sum_{i=1}^{s} e\left(G_{i}\right) & =(s-\lambda)\binom{v}{2} \\
& =s\binom{v}{2}-\lambda\binom{v}{2} \\
& =s\binom{v}{2}-\frac{b k(k-1)}{v(v-1)} \cdot \frac{v(v-1)}{2} \quad\left(\text { since } b=\frac{\lambda v(v-1)}{k(k-1)}\right) \\
& =s\binom{v}{2}-b\binom{k}{2} \\
& =s\binom{v}{2}-s \frac{v}{k}\binom{k}{2} \\
& =s\left[\binom{v}{2}-\frac{v}{k}\binom{k}{2}\right] \\
& =s \cdot t_{\frac{v}{k}}^{k}(v) .
\end{aligned}
$$

If there is a color graph G_{i} with $e\left(G_{i}\right)<t_{v / k}(v)$ for some $i \in[s]$, then there must be a color graph G_{j} with $j \in[s], j \neq i$, such that $E\left(G_{j}\right)>t_{v / k}(v)$, which is a contradiction to the maximum size of G_{j}. Therefore, all color graphs G_{i} must have equal size and have exactly $t_{v / k}(v)$ edges. It means all color graphs G_{i} of c are the Turán graph $T_{v / k}(v)$, thus c is a (v, b, k, λ) design coloring by Proposition 5.11.

Now we can prove the main theorem.
Proof of Theorem 5.13. The lower bound is by Proposition 5.12. To prove the upper bound, for the sake of contradiction, assume c^{\prime} is an $(s, s-\lambda)$-coloring of K_{v+1} without monochromatic $K_{\frac{v}{k}+1}$. Let x be a vertex of K_{v+1} and c be the restriction of c^{\prime} on $E(G)$ with $G:=K_{v+1}-{ }^{k}$, i.e. $c=\left.c^{\prime}\right|_{E(G)}$. Then c is an $(s, s-\lambda)$-coloring of K_{v} and has no monochromatic $K_{\frac{v}{k}+1}$. In particular, c^{\prime} is a $K_{\frac{v}{k}+1}$ free extension of c. By Lemma 5.17, c is a (v, b, k, λ) design coloring. Lemma 5.15 implies that c is not $K_{\frac{v}{k}+1}$-free extendable, which is a contradiction. This proves the upper bound $R_{s, s-\lambda}\left(\frac{v}{k}+1\right) \leq v+1$ and completes the proof of the theorem.

In the following we present some consequences of Theorem 5.13.
With the existence of a resolvable $(9,3,1)$ design we have the exact value of $R_{4,3}(4)$, which extends Theorem 4.7.

Corollary 5.18. We have that $R_{4,3}(4)=10$.
This is a special case of affine planes $\left(q^{2}, q, 1\right)$ with $q=3$. For general affine planes of order q we have the following result.

Corollary 5.19. For any prime power q, we have

$$
R_{q+1, q}(q+1)=q^{2}+1 .
$$

Proof. By Theorem 5.3 there exists a resolvable $\left(v=q^{2}, k=q, \lambda=1\right)$ design. With

$$
s=\frac{\lambda(v-1)}{k-1}=\frac{q^{2}-1}{q-1}=q+1
$$

and $s-\lambda=q$, the statement follows from Theorem 5.13.
Example 5.20. Example 5.2 shows an affine plane of order $q=2$, or a resolvable $(4,2,1)$ design. A $(4,2,1)$ design coloring c is a $(3,2)$-coloring of K_{4} which has no monochromatic K_{3}. Let $V\left(K_{4}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, then

$$
\begin{aligned}
& c\left(u_{1} u_{2}\right)=c\left(u_{3} u_{4}\right)=\{2,3\}, \\
& c\left(u_{1} u_{3}\right)=c\left(u_{2} u_{4}\right)=\{1,3\}, \\
& c\left(u_{1} u_{4}\right)=c\left(u_{2} u_{3}\right)=\{1,2\} .
\end{aligned}
$$

and we have $R_{3,2}(3)=5$. Since the design is unique up to isomorphism, so is the coloring c. We just proved Theorem 4.2 in an alternative way.

5 Design construction

Now we consider design colorings with Kirkman triple systems.
Corollary 5.21. For all $n \in \mathbb{N}$, we have

$$
R_{3 n+1,3 n}(2 n+2)=6 n+4
$$

Proof. Let $v=6 n+3$. By Theorem 5.4 there exists a Kirkman triple system of order v, or a resolvable $(v, k=3, \lambda=1)$ design. Then the number of parallel classes in a resolution of the design is

$$
s=\frac{v-1}{2}=3 n+1,
$$

and $s-\lambda=s-1=3 n$. The corollary follows by Theorem 5.13 with $\frac{v}{k}=2 n+1$.

Corollary 5.22. For any $n \in \mathbb{N}$, we have

$$
R_{4 n+1,4 n}(3 n+2)=12 n+5 .
$$

Proof. Let $v=12 n+4$. By Theorem 5.5, there exists a resolvable $(v, 4,1)$ design. The corollary follows by Theorem 5.13 with parameters

$$
\begin{aligned}
& s=\frac{b k}{v}=\frac{v-1}{3}=4 n+1, \\
& s-\lambda=s-1=4 n, \\
& \frac{v}{k}=\frac{12 n+4}{4}=3 n+1 .
\end{aligned}
$$

Proposition 5.23. We have that $R_{7,4}(3)=9$.
Proof. There exists a resolvable $(8,14,4,3)$ design. A resolution is listed below.

$$
\begin{array}{rcccc}
\mathcal{B}_{1} & \mathcal{B}_{2} & \mathcal{B}_{3} & \mathcal{B}_{4} \\
B_{1,1}=\{1,2,3,4\} & B_{2,1}=\{1,2,5,6\} & B_{3,1}=\{1,2,7,8\} & B_{4,1}=\{1,3,5,7\} \\
B_{1,2}=\{5,6,7,8\} & B_{2,2}=\{3,4,7,8\} & B_{3,2}=\{3,4,5,6\} & B_{4,2}=\{2,4,6,8\} \\
& & \mathcal{B}_{6} & & \\
\mathcal{B}_{5} & \mathcal{B}_{7} & \\
B_{5,1}=\{1,4,6,7\} & B_{6,1}=\{1,3,6,8\} & B_{7,1}=\{1,4,5,8\} & \\
B_{5,2}=\{2,3,5,8\} & B_{6,2}=\{2,4,5,7\} & B_{7,2}=\{2,3,6,7\} &
\end{array}
$$

The proposition follows from Theorem 5.13.

With the result of Keevash's study [16] on the existence of resolvable designs, we get the following.

Theorem 5.24. For all $k, \lambda \in \mathbb{N}$ with $k \geq 2$, there exists $n_{0}=n_{0}(k, \lambda) \in \mathbb{N}$ such that for all $v \geq n_{0}$, if $k \mid v$ and $(k-1) \mid \lambda(v-1)$, then for $s=\frac{\lambda(v-1)}{k-1}$,

$$
R_{s, s-\lambda}\left(\frac{v}{k}+1\right)=v+1
$$

Proof. By Corollary 5.7, for all $v \geq n_{0}$, there exists a resolvable (v, k, λ) design with s parallel classes. The statement follows from Theorem 5.13.

Remark 5.25. We emphasize the condition that v must be sufficiently large for Theorem 5.24. For example, consider the design $(v=6, k=3, \lambda=2)$. The divisibility conditions are satisfied: $k \mid v$ and $(k-1) \mid \lambda(v-1)$. For $s=\frac{\lambda(v-1)}{k-1}=5$, it would follow that $R_{s, s-\lambda}\left(\frac{v}{k}+1\right)=R_{5,3}(3)$ equals 7 . We will show later in Proposition 7.8 that $R_{5,3}(3)=5$. The reason is that v is not large enough for Theorem 5.24. More precisely, v is not large enough for the existence of a resolvable (v, k, λ) design in this case. There is a unique $(6,3,2)$ design (see Colbourn and Dinitz [6]) and it is not resolvable. The blocks of the design are listed below, the number of blocks is $b=10$.

$$
\begin{array}{lllll}
B_{1}=\{1,2,3\} & B_{3}=\{1,3,5\} & B_{5}=\{1,5,6\} & B_{7}=\{2,4,5\} & B_{9}=\{3,4,5\} \\
B_{2}=\{1,2,4\} & B_{4}=\{1,4,6\} & B_{6}=\{2,3,6\} & B_{8}=\{2,5,6\} & B_{10}=\{3,4,6\} .
\end{array}
$$

6 Hadamard construction and lower bounds for $R_{2 n, n}(3)$

We recall the proof of Theorem 4.3. To prove the lower bound $R_{4,2}(3)>8$, we constructed a $(4,2)$-coloring of K_{8} without monochromatic triangle. The matrix H describing this coloring is

$$
H=H_{0}=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

This is a Hadamard matrix which we will define below. In this section we study the connection between Hadamard matrices and certain (s, t)-colorings without monochromatic triangle. We start with definitions and known results for Hadamard matrices.

6.1 Basics of Hadamard matrices

A Hadamard matrix of order n is an $n \times n$ matrix H with coefficients +1 or -1 such that

$$
H H^{T}=n I
$$

If H is a Hadamard matrix, then so is H^{T}. Any two columns and any two rows of H are orthogonal. If we permute rows or columns of H or multiply some rows or columns by -1 , the resulting matrix is again a Hadamard matrix and is called equivalent to H. If two Hadamard matrices H and H^{\prime} are equivalent, we write $H \sim H^{\prime}$.

A Hadamard matrix H is called standardized if the first row and the first column contain only +1 . Any Hadamard matrix can be transformed to a standardized one. If we delete the first row (or column) of a standardized Hadamard matrix, then the remaining rows (or columns) have as many +1 as -1 .

For a Hadamard matrix $H=\left(h_{i, j}\right)_{i, j=1}^{n}$, we denote the columns of H by h_{i} and rows of H by $r_{i}, i \in[n]$.

Example 6.1.

(i) Both (1) and (-1) are Hadamard matrices of order 1.
(ii) A standardized Hadamard matrix of order 2 is

$$
\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)
$$

(iii) Hadamard matrices of order 4 are for example

$$
\begin{array}{ll}
H_{1}=\left(\begin{array}{rrrr}
\mathbf{1} & \mathbf{1} & 1 & 1 \\
\mathbf{- 1} & \mathbf{1} & -1 & 1 \\
-\mathbf{1} & \mathbf{1} & 1 & -1 \\
\mathbf{1} & \mathbf{1} & -1 & -1
\end{array}\right), & H_{2}=\left(\begin{array}{rrr}
\mathbf{1} & \mathbf{- 1} & \mathbf{- 1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} \\
1 & \mathbf{1} \\
1 & -1 & 1 \\
\hline & -1 \\
1 & 1 & -1 \\
-1
\end{array}\right), \\
H_{3}=\left(\begin{array}{rrrr}
1 & -\mathbf{1} & 1 & 1 \\
1 & \mathbf{1} & -1 & 1 \\
1 & \mathbf{1} & 1 & -1 \\
1 & \mathbf{- 1} & -1 & -1
\end{array}\right), & H_{4}=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
\mathbf{- 1} & \mathbf{1} & \mathbf{1} & \mathbf{- 1} \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right) .
\end{array}
$$

All of these are equivalent to H_{0} from above. We can transform H_{0} to H_{1} by permuting the first two columns, to H_{2} by permuting the first two rows. We attain H_{3} from H_{0} by negating the second column and H_{4} from H_{0} by negating the second row.

A popular interest in the study of Hadamard matrices is the existence of such. Below is a necessary condition.

Theorem 6.2. (Stinson [24]) If there exists a Hadamard matrix of order $n>2$, then $n \equiv 0(\bmod 4)$.

The Hadamard Conjecture states that there exists a Hadamard matrix of order n for all $n \in \mathbb{N}$ with $n \equiv 0(\bmod 4)($ see $[24])$. For study on the existence and construction of specific Hadamard matrices, see for example Paley [19], Baumert, Golomb and Hall [3].

Hadamard matrices have a strong connection to a class of designs.
Theorem 6.3. [24] Let m be positive integer with $m>1$. Then there exists a Hadamard matrix of order $4 m$ if and only if there exists $a(v=4 m-1, k=2 m-1, \lambda=m-1)$ design.

Note that for this design, the number of blocks is $b=\frac{\lambda v(v-1)}{k(k-1)}=4 m-1=v$, thus it is a symmetric design.

Given a Hadamard matrix H of order n, a $(4 m-1,2 m-1, m-1)$ design can be induced as follows. Since every Hadamard matrix is equivalent to a standardized one, we can assume that H is standardized. We delete the first row and column of H, and replace in the remaining matrix every " -1 " entry with " 0 ". Then the resulting matrix A is the incidence matrix of a symmetric $(4 m-1,2 m-1, m-1)$ design.

Conversely, let A be the incidence matrix fo a $(4 m-1,2 m-1, m-1)$ design. Now replace every entry of " 0 " with " -1 ", then add a row and column of " 1 ". The resulting matrix is a Hadamard matrix of order $4 m$.

Example 6.4. The incidence matrix of the $(7,3,1)$ design in Example 5.1 is equivalent to a Hadamard matrix of order 8 .

$$
A=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}\right), \quad H=\left(\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) .
$$

6.2 Hadamard colorings

We state and prove our main result for Hadamard matrices.
Theorem 6.5. If there exists a Hadamard matrix H of order $n \in \mathbb{N}$, n even, then

$$
R_{n, \frac{n}{2}}(3)>2 n .
$$

Note that theorem 6.5 is not tight for $n=2$, since $R_{2,1}(3)=R(3)=6>4+1=5$.
Definition 6.6. For any integer $n \geq 2$ and any Hadamard matrix $H=\left(h_{i, j}\right)_{i, j=1}^{n}$, we define the set system $\mathcal{S}=\mathcal{S}_{H}=\left\{S_{1}, \ldots, S_{n}\right\}$ such that for all $i, k \in[n], S_{k} \subseteq[n]$ and $i \in S_{k}$ if and only if $h_{i, k}=-1$.

We then define the edge coloring $c=c_{H}: E\left(K_{2 n}\right) \rightarrow 2^{[n]}$ of $K_{2 n}$ as follows. First, fix some partition of $V\left(K_{n}\right)$ into two n-element sets $L=\left\{u_{1}, \ldots, u_{n}\right\}$ and $R=\left\{v_{1}, \ldots, v_{n}\right\}$. Then for all $k \in[n]$, let

$$
\begin{aligned}
& L_{k}:=\left\{u_{i}: i \in[n] \backslash S_{k}\right\} \cup\left\{v_{i}: i \in S_{k}\right\} \\
& R_{k}:=V\left(K_{2 n}\right) \backslash L_{k} .
\end{aligned}
$$

Additionally, for all $k \in[n]$, let $G_{k}:=K_{L_{k}, R_{k}}$, the balanced complete bipartite graph with parts L_{k} and R_{k}. Finally, for every $u v \in E\left(K_{2 n}\right)$, let $c(u v):=\left\{k \in[n]: u v \in E\left(G_{k}\right)\right\}$, i.e. c is the coloring with color graphs G_{k}. We call c_{H} a Hadamard coloring of $K_{2 n}$ (induced by H).

Note that for $i, k \in[n], u_{i} \in L_{k}$ means $v_{i} \in R_{k}$, which occurs if and only if $h_{i, k}=1$ and we say the pair $\left(u_{i}, v_{i}\right)$ is fixed in G_{k}. Otherwise if $u_{i} \in R_{k}$, we say $\left(u_{i}, v_{i}\right)$ is swapped, which is the case if and only if $h_{i, k}=-1$. The set \mathcal{S}_{H} describes which pairs are swapped and is called the swapping set of c_{H}.

Example 6.7. We consider H_{4} from Example 6.1 and the associated Hadamard coloring.

$$
H_{4}=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

The swapping set $\mathcal{S}_{H_{4}}$ is determined by the columns of H_{4}. The first column implies that the pair $\left(u_{2}, v_{2}\right)$ is the only pair that is swapped in G_{1}, i.e. $u_{2} \in R_{1}$ and $v_{2} \in L_{1}$. Similarly, the second column implies that in color graph G_{2}, only the pair (u_{3}, v_{3}) is swapped. We have $\mathcal{S}_{H_{4}}=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ where $S_{1}=\{2\}, S_{2}=\{3\}, S_{3}=\{4\}, S_{4}=$ $\{2,3,4\}$. The induced Hadamard coloring is of the following scheme.

The swapped pairs are marked bold. Each color graph is a complete bipartite graph $K_{4,4}$.

We first show a property of a Hadamard coloring that u_{i} and v_{i} have complementing roles in its color graphs.

Proposition 6.8. Let H be a Hadamard matrix of order n with $n \in \mathbb{N}, n \geq 2$ and c_{H} be the corresponding Hadamard coloring of $K_{2 n}$. Then for all $i \in[n]$ and any vertex w of $V\left(K_{2 n}\right) \backslash\left\{u_{i}, v_{i}\right\}$, the following hold:
(i) $u_{i} w \in E\left(G_{k}\right)$ if and only if $v_{i} w \notin E\left(G_{k}\right)$,
(ii) $N_{k}\left(u_{i}\right)=\left(N_{k}\left(v_{i}\right)\right)^{C}=V\left(K_{2 n}\right) \backslash N_{k}\left(v_{i}\right)$,
(iii) $c\left(u_{i} w\right)=\left(c\left(v_{i} w\right)\right)^{C}=[2 n] \backslash c\left(v_{i} w\right)$.

Proof. If $u_{i} w \in E\left(G_{k}\right)$, then u_{i} and w lie on two partite sets of G_{k}. Without loss of generality, let $u_{i} \in L_{k}$ and $w \in R_{k}$. Then $v_{i} \in R_{k}$, which implies $v_{i} w \notin E\left(G_{k}\right)$. The opposite direction follows similarly, which proves Item (i). Item (ii) follows from Item (i) and implies Item (iii) directly.

Let H be a Hadamard matrix of order n and c_{H} be the induced Hadamard coloring of $K_{2 n}$. An edge e of $K_{2 n}$ has one of the forms $u_{i} u_{j}, v_{i} v_{j}$ or $u_{i} v_{j}$, for some $i, j \in[n]$. We examine when e is an edge of color graph $G_{k}, k \in[n]$.

Proposition 6.9. Let $H=\left(h_{i, j}\right)_{i, j=1}^{n}$ be a Hadamard matrix of order n for a positive integer $n \geq 2$ and c_{H} be the Hadamard coloring induced by H. Let $i, j, k \in[n], i \neq j$ and w a vertex of $K_{2 n}$. Then the following are equivalent:
(i) $h_{i, k} \cdot h_{j, k}=1\left(\right.$ or $\left.h_{i, k}=h_{j, k}\right)$,
(ii) $u_{i} v_{j} \in E\left(G_{k}\right)$,
(iii) $u_{j} v_{i} \in E\left(G_{k}\right)$,
(iv) $u_{i} u_{j} \notin E\left(G_{k}\right)$,
(v) $v_{i} v_{j} \notin E\left(G_{k}\right)$.

Proof. We look into the pair $\left(h_{i, k}, h_{j, k}\right)$ and the relationship between the pairs $\left(u_{i}, v_{i}\right)$ and $\left(u_{j} v_{j}\right)$ in G_{k}. There are 4 cases which are shown in Table 3.

$$
\begin{array}{c|lccc|}
\left(h_{i, k}, h_{j, k}\right)=(1,1) & \left(h_{i, k}, h_{j, k}\right)=(1,-1) & \left(h_{i, k}, h_{j, k}\right)=(-1,1) & \left(h_{i, k}, h_{j, k}\right)=(-1,-1) \\
L_{k} & R_{k} & L_{k} & R_{k} & L_{k} \\
u_{i} & v_{i} & u_{i} & v_{i} & R_{i} \\
u_{k} & u_{i} & L_{k} \\
u_{j} & v_{j} & v_{j} & u_{j} & u_{j}
\end{array} v_{j} \quad v_{i} \quad u_{i}
$$

Table 3: $h_{i, k} \cdot h_{j, k}$ determines edges and non-edges in G_{k}
It is clear that $u_{i} v_{j} \in E\left(G_{k}\right)$ means also $u_{j} v_{i} \in E\left(G_{k}\right)$. The edge $u_{i} v_{j}$ is an edge in the bipartite graph G_{k} if and only if the pairs $\left(u_{i}, v_{i}\right)$ and (u_{j}, v_{j}) are both fixed or both swapped in G_{k}, i.e. $\left(h_{i, k}, h_{j, k}\right) \in\{(1,1),(-1,-1)\}$. Thus we have the equivalence of Items (i), (ii) and (iii). Moreover, if ($\left.u_{i}, v_{i}\right)$ and $\left(u_{j}, v_{j}\right)$ are both fixed or both swapped in G_{k}, then u_{i} and u_{j} are on the same partite set of G_{k} and so $u_{i} u_{j} \notin E\left(G_{k}\right)$. The same holds for $v_{i} v_{j}$. Edges $u_{i} u_{j}$ and $v_{i} v_{j}$ are contained in G_{k} only in the other two cases $\left(h_{i, k}, h_{j, k}\right) \in\{(1,-1),(-1,1)\}$, which shows the equivalence of Items (iv), (v) and (i).

Now we prove that a Hadamard matrix of order n induces an $\left(n, \frac{n}{2}{ }^{+}\right)$-coloring of $K_{2 n}$, where each edge has at least $n / 2$ colors.

Lemma 6.10. Suppose H is a Hadamard matrix of order n where $n \in \mathbb{N}, n \geq 2$ and let $c=c_{H}$ be the Hadamard coloring of $K_{2 n}$ induced by H. Then the following hold.
(i) For all $i \in[n],\left|c\left(u_{i} v_{i}\right)\right|=n$.
(ii) For all distinct $i, j \in[n],\left|c\left(u_{i} u_{j}\right)\right|=\left|c\left(u_{i} v_{j}\right)\right|=\left|c\left(v_{i} v_{j}\right)\right|=\frac{n}{2}$.

In particular, a Hadamard coloring of $K_{2 n}$ is an $\left(n, \frac{n}{2}^{+}\right)$-coloring of $K_{2 n}$.

Proof. First, we observe that for all $i, k \in[n], u_{i} v_{i}$ is always an edge of G_{k}, thus each edge $u_{i} v_{i}$ have n colors, which proves Item (i).

For $i, j, k \in[n], i \neq j, u_{i} v_{j} \in E\left(G_{k}\right)$ if and only if $h_{i, k} \cdot h_{j, k}=1$ by Proposition 6.9. The case $u_{i} u_{j} \in E\left(G_{k}\right)$ is equivalent to $v_{i} v_{j} \in E\left(G_{k}\right)$, both if and only if $h_{i, k} \cdot h_{j, k}=-1$. Let r_{i} be the rows of $H, i \in[n]$. Since the inner product of every two rows of H is 0 , we have

$$
0=\left\langle r_{i}, r_{j}\right\rangle=\sum_{\substack{k=1, h_{i, k} \cdot h_{j, k}=1}}^{n} 1+\sum_{\substack{k=1, h_{i, k} \cdot h_{j, k}=-1}}^{n}-1 .
$$

Therefore,

$$
\left|\left\{k \in[n]: h_{i, k} \cdot h_{j, k}=1\right\}\right|=\left|\left\{k \in[n]: h_{i, k} \cdot h_{j, k}=-1\right\}\right|=\frac{n}{2}
$$

It follows that for all distinct $i, j \in[n]$, each edge of the form $u_{i} v_{j}, u_{i} u_{j}, v_{i} v_{j}$ is an edge of $\frac{n}{2}$ of the color graphs $\left\{G_{k}: k \in[n]\right\}$. Hence each of these edges get $\frac{n}{2}$ colors, which proves Item (ii).

Proof of Theorem 6.5. Let c_{H} be the Hadamard coloring of $K_{2 n}$ induced by H and G_{i} the corresponding color graphs of c_{H}. By Lemma 6.10, c_{H} is an $\left(n, \frac{n}{2}{ }^{+}\right)$-coloring of $K_{2 n}$. Since all color graphs of c_{H} are bipartite graphs, c_{H} has no monochromatic triangle. By Proposition 3.11, we have $R_{n, \frac{n}{2}}(3)>2 n$.

The following result arises from the equivalence between Hadamard matrices and certain designs.

Corollary 6.11. Suppose there exists a $(4 m-1,2 m-1, m-1)$ design for some integer $m>1$. Then

$$
R_{4 m, 2 m}(3)>8 m
$$

Proof. By Theorem 6.3, there exists a Hadamard matrix of order $4 m$. The corollary follows by Theorem 6.5.

Example 6.12.

- A Hadamard matrix of order 2 implies

$$
R_{2,1}(3)=R(3)>4
$$

It is known that $R(3)=6$, thus the lower bound given by a Hadamard construction in this case is not tight.

- A Hadamard matrix of order 4 implies

$$
R_{4,2}(3)>8
$$

We know from Theorem 4.4 that $R_{4,2}(3)=9$, hence the lower bound given by a Hadamard construction in this case is best possible.

- The $(7,3,1)$ design in Example 5.1 is a $(4 m-1,2 m-1, m-1)$ design with $m=2$ and yields

$$
R_{8,4}(3)>16
$$

- There exists a $(11,5,2)$ design (see Charles and Dinitz [6]), which is a $(4 m-1,2 m-$ $1, m-1)$ design with $m=3$. This is equivalent to the existence of a Hadamard matrix of order 12 and implies

$$
R_{12,6}(3)>24
$$

Remark 6.13. We compare the lower bound of $R_{2 n, n}(3)$ given by the Hadamard construction and the lower bound by the probabilistic method. Let $n \in \mathbb{N}$, by Proposition 3.12,

$$
\begin{aligned}
R_{2 n, n}(3) & >\left\lfloor\frac{3}{e}(2 n)^{-1 / 3} \cdot 2\right\rfloor \\
& =\left\lfloor\frac{6 \cdot 2^{-1 / 3}}{e} n^{-1 / 3}\right\rfloor .
\end{aligned}
$$

By Theorem 6.5, if there exists a Hadamard matrix of order $2 n$, then

$$
R_{2 n, n}(3)>4 n
$$

Accordingly, the existence of a Hadamard matrix of order $2 n$ gives a better lower bound for $R_{2 n, n}(3)$. Moreover, we can construct a witness coloring to the lower bound $R_{2 n, n}(3)>$ $4 n$ with a Hadamard coloring, as opposed to the probabilistic method which is not constructive.

A Hadamard matrix H can be transformed to another Hadamard matrix equivalent to H by permuting rows/columns, or by multiplying rows/columns of H by -1 . An equivalent matrix, however, does not necessarily induce the same Hadamard coloring. In the following we observe how the four operations of Hadamard equivalence affect c_{H} when applied to H.

For the rest of this section, we assume that $H=\left(h_{i, j}\right)_{i, j=1}^{n}$ is a Hadamard matrix of order n with $n \in \mathbb{N}$, n even, $n \geq 2$ and $c=c_{H}$ is the Hadamard coloring of $K_{2 n}$ induced by H with swapping set \mathcal{S}_{H} and color graphs $G_{k}=K_{L_{k}, R_{k}}$ for $k \in[n]$. Moreover, let $H^{\prime}=\left(h_{i, j}^{\prime}\right)_{i, j=1}^{n}$ be an equivalent Hadamard matrix to H which we will define explicitly
in each case. Let $c^{\prime}=c_{H^{\prime}}$ be the Hadamard coloring of $K_{2 n}$ induced by H^{\prime} whose color graphs are G_{k}^{\prime} with partite sets L_{k}^{\prime} and $R_{k}^{\prime}, k \in[n]$. Let $\mathcal{S}_{H^{\prime}}=\left\{S_{k}^{\prime}: k \in[n]\right\}$ be the swapping set of c^{\prime}.

First note that any edge of the form $u_{i} v_{i}$ with $i \in[n]$ always has all n colors in a Hadamard coloring, and so in c^{\prime}. For this reason we only need to consider how other edges are colored in c^{\prime}. We recall the essential fact that by Lemma 6.9, the product $h_{i, k} \cdot h_{j, k}$ determines whether $u_{i} v_{j}, u_{j} v_{i}$ and $u_{i} u_{j}, v_{i} v_{j}$ are edges of a color graph G_{k}. In other words, we can consider all edges of G_{k} by looking into the value of $h_{i, k} \cdot h_{j, k}$ for all $i, j \in[n]$.

Proposition 6.14. For distinct $k, l \in[n]$, let H^{\prime} be the equivalent matrix to H attained by swapping columns k and l of H. Then the color graphs G_{k} and G_{l} are swapped, i.e. $G_{k}^{\prime}=G_{l}$ and $G_{l}^{\prime}=G_{k}$, and $G_{i}^{\prime}=G_{i}$ for all $i \in[n] \backslash\{k, l\}$. For any edge $e \in E\left(K_{2 n}\right)$,
(i) $k \in c^{\prime}(e)$ if and only if $l \in c(e)$,
(ii) $l \in c^{\prime}(e)$ if and only if $k \in c(e)$.

Proof. Swapping columns k and l of H means swapping the sets S_{k} and S_{l}, i.e for all $i \in[n], i \in S_{k}^{\prime}$ if and only if $i \in S_{l}$ and $i \in S_{l}^{\prime}$ if and only if $i \in S_{k}$. Then $h_{i, k}^{\prime}=h_{i, l}$ and $h_{i, l}^{\prime}=h_{i, k}$ for all $i \in[n]$. It follows that for all $i, j \in[n]$,

$$
h_{i, k}^{\prime} \cdot h_{j, k}^{\prime}=h_{i, l} \cdot h_{j, l},
$$

and

$$
h_{i, l}^{\prime} \cdot h_{j, l}^{\prime}=h_{i, k} \cdot h_{j, k} .
$$

By Lemma 6.9 and Table 3, for any edge $e \in E\left(K_{2 n}\right), e \in E\left(G_{k}^{\prime}\right)$ if and only if $e \in G_{l}$, which implies Item (i). Similarly, $e \in E\left(G_{l}^{\prime}\right)$ if and only if $e \in E\left(G_{k}\right)$, which proves Item (ii).

Note that Items (i) and (ii) also hold for any edge of the form $e=u_{i} v_{i}$ for $i \in[n]$, since in this case $c^{\prime}(e)=c(e)=[n]$. Also for any edge e with $k, l \notin c(e)$, we have $c^{\prime}(e)=c(e)$.

Proposition 6.15. Let $i, j \in[n], i \neq j$ and H^{\prime} be attained from H by swapping rows i and j of H. Then the roles of $\left(u_{i}, v_{i}\right)$ and $\left(u_{j}, v_{j}\right)$ are swapped in c^{\prime}. More precisely, for any vertex $w \in V\left(K_{2 n}\right) \backslash\left\{u_{i}, u_{j}, v_{i}, v_{j}\right\}$,
(i) $c^{\prime}\left(u_{i} w\right)=c\left(u_{j} w\right)$ and $c^{\prime}\left(u_{j} w\right)=c\left(u_{i} w\right)$,
(ii) $c^{\prime}\left(v_{i} w\right)=c\left(v_{j} w\right)$ and $c^{\prime}\left(v_{j} w\right)=c\left(v_{i} w\right)$,
(iii) For any edge $e \in\left\{u_{i} u_{j}, v_{i} v_{j}, u_{i} v_{j}, u_{j} v_{i}\right\}$, we have $c^{\prime}(e)=c(e)$.

Proof. By swapping rows i and j of H, we swap i and j in all sets S_{i} of \mathcal{S}_{H}. It means for $k \in[n], i \in S_{k}$ if and only if $j \in S_{k}^{\prime}, j \in S_{k}$ if and only if $i \in S_{k}^{\prime}$. In other words, $h_{i, k}^{\prime}=h_{j, k}$ and $h_{j, k}^{\prime}=h_{i, k}$. For $l \in[n] \backslash\{i, j\}$, the entries in row l of H does not change, that means for $k \in[n], h_{l, k}^{\prime}=h_{l, k}$. Thus for $l \in[n] \backslash\{i, j\}$,

$$
h_{i, k}^{\prime} \cdot h_{l, k}^{\prime}=h_{j, k} \cdot h_{l, k}
$$

and

$$
h_{j, k}^{\prime} \cdot h_{l, k}^{\prime}=h_{i, k} \cdot h_{l, k} .
$$

It follows that the roles of u_{i} and u_{j} are swapped, as well as v_{i} and v_{j}. Let w be a vertex of $K_{2 n}$ such that $w \notin\left\{u_{i}, u_{j}, v_{i}, v_{j}\right\}$, then $w \in\left\{u_{l}, v_{l}\right\}$ for some $l \in[n] \backslash\{i, j\}$. Then by Lemma 6.9,

- $u_{i} w \in E\left(G_{k}^{\prime}\right)$ if and only if $u_{j} w \in E\left(G_{k}\right)$,
- $u_{j} w \in E\left(G_{k}^{\prime}\right)$ if and only if $u_{i} w \in E\left(G_{k}\right)$,
and
- $v_{i} w \in E\left(G_{k}^{\prime}\right)$ if and only if $v_{j} w \in E\left(G_{k}\right)$,
- $v_{j} w \in E\left(G_{k}^{\prime}\right)$ if and only if $v_{i} w \in E\left(G_{k}\right)$.

The first two facts imply that for any $k \in[n], k \in c^{\prime}\left(u_{i} w\right)$ if and only if $k \in c\left(u_{j} w\right)$ and $k \in c^{\prime}\left(u_{j} w\right)$ if and only if $k \in c\left(u_{i} w\right)$. Thus we have Item (i) that $c^{\prime}\left(u_{i} w\right)=c\left(u_{j} w\right)$ and $c^{\prime}\left(u_{j} w\right)=c\left(u_{i} w\right)$. Similarly, Item (ii) follows from the last two facts.

For Item (iii), observe that for all $k \in[n]$,

$$
h_{i, k}^{\prime} \cdot h_{j, k}^{\prime}=h_{j, k} \cdot h_{i, k},
$$

which implies that the relationship between $\left(u_{i}, v_{i}\right)$ and (u_{j}, v_{j}) does not change in G_{k}. Thus the colors of edges $u_{i} u_{j}, v_{i} v_{j}, u_{i} v_{j}, u_{j} v_{i}$ stay the same in c^{\prime}, which completes the proof of the proposition.

Proposition 6.16. Let $k \in[n]$ and H^{\prime} be attained from H by negating column k of H. Then $c^{\prime}=c$.

Proof. Note that except for the column k of H which is negated, all other columns are the same in H^{\prime} as in H. Then for all $l \in[n] \backslash\{k\}$, color graphs G_{l}^{\prime} of c^{\prime} are the same as G_{l} and we only need to consider G_{k}^{\prime}. Column k of H^{\prime} has entries

$$
h_{i, k}^{\prime}=-h_{i, k}
$$

for all $i \in[n]$. For the swapping set \mathcal{S}_{H} it means that $i \in S_{k}^{\prime}$ if and only if $i \notin S_{k}$. For $i \in[n]$, a pair $\left(u_{i}, v_{i}\right)$ is fixed in G_{k}^{\prime} if and only if it is swapped in G_{k}. However, this swapping causes no change in edges of G_{k}, since

$$
h_{i, k}^{\prime} \cdot h_{j, k}^{\prime}=\left(-h_{i, k}\right) \cdot\left(-h_{j, k}\right)=h_{i, k} \cdot h_{j, k}
$$

for all distinct $i, j \in[n]$. That means, for any edge $e \in E\left(K_{2 n}\right), e$ is an edge of G_{k}^{\prime} if and only if e is also an edge of G_{k}. Accordingly, $G_{k}^{\prime}=G_{k}$ and all color graphs stay the same in c^{\prime} as in c, thus $c^{\prime}=c$.

We can transform Hadamard matrix by negating more than one columns. Applying Proposition 6.16 for each column, we obtain the same Hadamard coloring induced by the resulting equivalent matrix.

Corollary 6.17. Let H^{\prime} be attained from H by negating columns of H. Then

$$
c^{\prime}=c_{H^{\prime}}=c .
$$

We consider the last equivalence operation for H.
Proposition 6.18. Let $i \in[n]$ and H^{\prime} be attained from H by negating row i of H. Then the roles of u_{i} and v_{i} are swapped. More precisely,
(i) $c^{\prime}\left(u_{i} v_{i}\right)=c\left(u_{i} v_{i}\right)$,
(ii) $c^{\prime}(e)=c(e)$ for all edges $e \in E\left(K_{2 n}\right)$ that are not incident to u_{i} or v_{i},
(iii) $c^{\prime}\left(u_{i} w\right)=c\left(v_{i} w\right)$ and $c^{\prime}\left(v_{i} w\right)=c\left(u_{i} w\right)$ for any vertex $w \in V\left(K_{2 n}\right) \backslash\left\{u_{i}, v_{i}\right\}$.

Proof. Item (i) is trivial since $c^{\prime}\left(u_{i} v_{i}\right)=c\left(u_{i} v_{i}\right)=[n]$.
For $\mathcal{S}_{H^{\prime}}, i \in S_{k}^{\prime}$ if and only if $i \notin S_{k}$ for all $k \in[n]$. For all $k \in[n], h_{i, k}^{\prime}=-h_{i, k}$ and for all $j \in[n] \backslash i$, we have $h_{j, k}^{\prime}=h_{j, k}$. For $j, l \in[n] \backslash\{i\}$, since

$$
h_{j, k}^{\prime} \cdot h_{l, k}^{\prime}=h_{j, k} \cdot h_{l, k}
$$

Lemma 6.9 implies that the property of edges $u_{j} u_{l}, u_{j} v_{l}, u_{l} v_{j}, v_{j} v_{l}$ does not change in all G_{k}, which proves Item (ii).

For Item (iii), notice that

$$
h_{i, k}^{\prime} \cdot h_{j, k}^{\prime}=-h_{i, k} \cdot h_{j, k}
$$

Let w be a vertex of $K_{2 n}, w \notin\left\{u_{i}, v_{i}\right\}$ and $k \in[n]$, then $w \in\left\{u_{j}, v_{j}: j \in[n] \backslash\{j\}\right\}$. It follows that $u_{i} w \in E\left(G_{k}^{\prime}\right)$ if and only if $u_{i} w \notin E\left(G_{k}\right)$, which by Proposition 6.8 is equivalent to $v_{i} w \in E\left(G_{k}\right)$. Hence $k \in c^{\prime}\left(u_{i} w\right)$ if and only if $k \in c\left(v_{i} w\right)$, which implies $c^{\prime}\left(u_{i} w\right)=c\left(v_{i} w\right)$. Moreover, by Proposition 6.8,

$$
c^{\prime}\left(v_{i} w\right)=\left(c^{\prime}\left(u_{i} w\right)\right)^{C}=\left(c\left(v_{i} w\right)\right)^{C}=c\left(u_{i} w\right) .
$$

This completes the proof of Item (iii) and the proposition.

Table 4 summarizes the effect of 4 Hadamard equivalence operations on c_{H}. Let $i, j, k \in$ $[n], i \neq j$.

Hadamard equivalence	\mathcal{S}_{H}	c_{H}
Swap columns i, j	swap sets S_{i} and S_{j}	swap color graphs G_{i} and G_{j}
Swap rows i, j	swap i and j in all sets $S \subset$ \mathcal{S}_{H}	relabel (u_{i}, v_{i}) and (u_{j}, v_{j})
Negating column i	new set $S_{i}^{\prime}=[n] \backslash S_{i}$	coloring stays the same
Negating row i	new set $S_{k}^{\prime}=S_{k} \Delta\{i\}$ for all $k \in[n]$	swap u_{i} and v_{i}

Table 4: Hadamard equivalence applied on H and Hadamard coloring c_{H}

The symmetric difference $S_{k} \Delta\{i\}$ means $i \in S_{k}^{\prime}$ if and only if $i \notin S_{k}$.

Example 6.19. We consider again H_{0} and the induced Hadamard coloring. Let $H=$ H_{0} and $c_{H}=c_{H_{0}}$ be the Hadamard coloring of K_{8} induced by H with color graphs $G_{k}, k \in[4]$. We assume furthermore that H^{\prime} is an equivalent matrix to H and $c^{\prime}=c_{H^{\prime}}$ is the Hadamard coloring induced by H^{\prime} with color graphs $G_{k}^{\prime}, k \in[4]$. The structure of H^{\prime} is determined explicitly in each individual case below.
\(H_{0}=\left(\begin{array}{rrrr}1 \& 1 \& 1 \& 1

1 \& -1 \& -1 \& 1

1 \& -1 \& 1 \& -1

1 \& 1 \& -1 \& -1\end{array}\right) \quad\)| c | G_{1} | G_{2} | | G_{3} | | G_{4} | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L_{1} | R_{1} | L_{2} | R_{2} | L_{3} | R_{3} | L_{4} | R_{4} |
| u_{1} | v_{1} | u_{1} | v_{1} | u_{1} | v_{1} | u_{1} | v_{1} |
| u_{2} | v_{2} | v_{2} | u_{2} | v_{2} | u_{2} | u_{2} | v_{2} |
| u_{3} | v_{3} | v_{3} | u_{3} | u_{3} | v_{3} | v_{3} | u_{3} |
| u_{4} | v_{4} | u_{4} | v_{4} | v_{4} | u_{4} | v_{4} | u_{4} |

(i) Let $H^{\prime}=H_{1}$ be attained from H by swapping the first and second columns of H. Then the color graphs G_{1} and G_{2} are swapped, i.e. $G_{1}^{\prime}=G_{2}$ and $G_{2}^{\prime}=G_{1}$.

(ii) Let $H^{\prime}=H_{2}$ be obtained from H by swapping rows 1 and 2 .

$$
H_{2}=\left(\right) \quad
$$

In this particular case, the color graphs G_{1} and G_{4} do not change in c^{\prime}, since $h_{1,1}=h_{2,1}=1$ and $h_{1,4}=h_{2,4}=1$, columns $h_{1}^{\prime}=h_{1}, h_{4}^{\prime}=h_{4}$. Figure 13 illustrates the comparison between G_{2}, G_{3} and $G_{2}^{\prime}, G_{3}^{\prime}$.

Figure 13: Color graphs of c and $c_{H_{2}}$ in color 2 and 3

The elements of the partite sets L_{k} and L_{k}^{\prime} are circled for all $k \in[4]$. The second figure of G_{3}^{\prime} is created by swapping the positions of u_{1} and u_{2}, as well as v_{1} and v_{2}. The result is the same as G_{3}, with the swapping roles of $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$.

Moreover, we have in this case

$$
H_{2}=\left(\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right) \sim\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1
\end{array}\right)=: H_{2}^{\prime}
$$

and

$$
H_{2}^{\prime}=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1
\end{array}\right) \sim\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)=H
$$

We attain H_{2}^{\prime} from H_{2} by negating columns 2 and 3 of H_{2}. By Corollary 6.17, $c^{\prime}=c_{H_{2}}=c_{H_{2}^{\prime}}$. On the other hand, H_{2}^{\prime} can be attained from H by swapping the second and third columns of H. By Proposition 6.14, it means the color graphs G_{2} and G_{3} are swapped, we have $G_{2}^{\prime}=G_{3}$ and $G_{3}^{\prime}=G_{2}$. This effect is also reflected in Figure 13.
(iii) Let $H^{\prime}=H_{3}$ be attained from H by negating the second column of H.
\(H_{3}=\left(\begin{array}{rrrr}1 \& \mathbf{- 1} \& 1 \& 1

1 \& \mathbf{1} \& -1 \& 1

1 \& \mathbf{1} \& 1 \& -1

1 \& -\mathbf{1} \& -1 \& -1\end{array}\right) \quad\)	G_{1}^{\prime}	G_{2}^{\prime}		G_{3}^{\prime}			G_{4}^{\prime}	
L_{1}^{\prime}	R_{1}^{\prime}	L_{2}^{\prime}	R_{2}^{\prime}	L_{3}^{\prime}	R_{3}^{\prime}	L_{4}^{\prime}	R_{4}^{\prime}	
u_{1}	v_{1}	$\boldsymbol{v}_{\mathbf{1}}$	$\boldsymbol{u}_{\mathbf{1}}$	u_{1}	v_{1}	u_{1}	v_{1}	
u_{2}	v_{2}	$\boldsymbol{u}_{\mathbf{2}}$	$\boldsymbol{v}_{\mathbf{2}}$	v_{2}	u_{2}	u_{2}	v_{2}	
u_{3}	v_{3}	$\boldsymbol{u}_{\mathbf{3}}$	$\boldsymbol{v}_{\mathbf{3}}$	u_{3}	v_{3}	v_{3}	u_{3}	
u_{4}	v_{4}	$\boldsymbol{v}_{\mathbf{4}}$	$\boldsymbol{u}_{\mathbf{4}}$	v_{4}	u_{4}	v_{4}	u_{4}	

The only change are in G_{2}, the partite sets L_{2} and R_{2} are swapped, but the edges stay the same in G_{2} and in all other color graphs.
(iv) Let $H^{\prime}=H_{4}$ be attained from H by negating the second row of H.

$$
H_{4}=\left(\right) \quad
$$

In the coloring c^{\prime}, the roles of u_{2} and v_{2} are swapped. Figure 14 illustrates the color graphs of c and c^{\prime}, where vertices of L_{k} and L_{k}^{\prime} are circled for all $k \in[4]$. Let w be a vertex of K_{8} with $w \neq u_{2}, v_{2}$. By Propositions 6.8, for all $k \in[4]$,

- $u_{2} w \in E\left(G_{k}\right)$ if and only if $v_{2} w \in E\left(G_{k}^{\prime}\right)$,
- $v_{2} w \in E\left(G_{k}\right)$ if and only if $u_{2} w \in E\left(G_{k}^{\prime}\right)$,
- $c\left(u_{2} w\right)=c^{\prime}\left(v_{2} w\right)$ and $c\left(v_{2} w\right)=c^{\prime}\left(u_{2} w\right)$.

6 Hadamard construction and lower bounds for $R_{2 n, n}(3)$

Figure 14: Color graphs of $c=c_{H}$ and $c^{\prime}=c_{H_{4}}$

7 Upper bounds for $R_{s, t}(3)$

In Section 4, we proved that $R_{3,2}(3)=5$ and $R_{4,2}(3)=9$. In the previous section, we gained a lower bound for $R_{2 n, n}(3)>4 n$ from a Hadamard matrix of order $2 n$. In this section, we investigate upper bounds for Ramsey numbers of the form $R_{s, t}(3)$. We first consider upper bounds for general cases, then apply these bounds for some concrete cases.

7.1 General bounds

In Proposition 4.3, we use information about $R_{3,2}(3)$ to find an upper bound for $R_{4,2}(3)$. This idea can be generalized to find the relationship between $R_{s, t}(3)$ and $R_{s-1, t}(3)$.

Proposition 7.1. For all $s, t \in \mathbb{N}$ with $s \geq t \geq 2$,

$$
R_{s, t}(3) \leq\left\lfloor\frac{s \cdot R_{s-1, t}(3)}{t}-\frac{s}{t}\right\rfloor+2 .
$$

Proof. Let $n:=R_{s, t}(3)-1$ and c be an (s, t)-coloring of K_{n}. Note that c has no monochromatic triangle. Fix some vertex $u \in V\left(K_{n}\right)$. Note that u is incident to $n-1$ edges, each edge has t distinct colors. It follows that, there exist $m:=\left\lceil\frac{(n-1) \cdot t}{s}\right\rceil$ distinct vertices $v_{1}, \ldots, v_{m} \in V\left(K_{n}\right) \backslash\{u\}$ such that $u v_{1}, \ldots, u v_{m}$ have some color $i \in[s]$. In other words, $\left|N_{i}(u)\right| \geq m$ and $\left\{v_{i}: i \in[m]\right\} \subseteq N_{i}(u)$. Since c has no monochromatic K_{3}, it follows that the induced subgraph $K_{n}\left[\left\{v_{1}, \ldots, v_{m}\right\}\right]$ has no edge with color i. In particular, this graph is $(s-1, t)$-colored and avoids monochromatic K_{3}. By definition of $R_{s-1, t}(3)$ and using the fact that $n=R_{s, t}(3)-1$, we obtain:

$$
\begin{array}{rlrl}
& & {\left[\frac{\left(R_{s, t}(3)-2\right) \cdot t}{s}\right\rceil} & \leq R_{s-1, t}(3)-1 \\
& \Leftrightarrow & R_{s, t}(3)-2 & \leq\left\lfloor\left(R_{s-1, t}(3)-1\right) \cdot \frac{s}{t}\right\rfloor \\
\Leftrightarrow & R_{s, t}(3) & \leq\left\lfloor\frac{s \cdot R_{s-1, t}(3)}{t}-\frac{s}{t}\right\rfloor+2 .
\end{array}
$$

This completes the proof of the proposition.

In case $t=2, k=3$ we have

- $R_{2,2}(3)=3$,
- $R_{3,2}(3)=5$,
- $R_{4,2}(3) \leq 10$.

Applying Proposition 3.4 inductively, we can find a bound for $R_{s, 2}(3)$ with $s \geq 5$.
Theorem 7.2. For all positive integers $s \geq 5$,

$$
\begin{equation*}
R_{s, 2}(3) \leq \frac{5}{6} \cdot \frac{s!}{2^{s-3}}-s!\sum_{i=3}^{s-2} \frac{i-2}{(i+2)!2^{s-i-1}} \tag{7.1}
\end{equation*}
$$

Proof. We proceed with a proof by induction on s.
For $s=5$, by Proposition 7.1 we have

$$
R_{5,2}(3) \leq \frac{5 \cdot R_{4,2}(3)}{2}-\frac{5}{2}+2 \leq \frac{5 \cdot 10}{2}-\frac{1}{2}=25-\frac{1}{2}
$$

The right side of the inequality (7.1) is equal to

$$
\frac{5}{6} \cdot \frac{5!}{2^{2}}-\frac{5!}{5!2^{5-1-3}}=25-\frac{1}{2}
$$

Hence, the induction starts for $s=5$. For the induction step, we consider

$$
\begin{aligned}
R_{s+1,2}(3) & \leq \frac{(s+1) \cdot R_{s, 2}(3)}{2}-\frac{s+1}{2}+2 \\
& =\frac{(s+1) \cdot R_{s, 2}(3)}{2}-\frac{s-3}{2}
\end{aligned}
$$

By the induction hypothesis, we have

$$
\begin{aligned}
R_{s+1,2}(3) & \leq \frac{s+1}{2}\left(\frac{5}{6} \cdot \frac{s!}{2^{s-3}}-s!\sum_{i=3}^{s-2} \frac{i-2}{(i+2)!2^{s-i-1}}\right)-\frac{s-3}{2} \\
& =\frac{5}{6} \cdot \frac{(s+1)!}{2^{s-2}}-(s+1)!\sum_{i=3}^{s-2} \frac{i-2}{(i+2)!2^{s-i}}-\frac{s-3}{2} \\
& =\frac{5}{6} \cdot \frac{(s+1)!}{2^{s-2}}-(s+1)!\sum_{i=3}^{s-1} \frac{i-2}{(i+2)!2^{s-i}},
\end{aligned}
$$

which completes the induction and the proof of the theorem.

For Ramsey numbers of the form $R_{s, t}(3)$ where $t \geq 3$, we get a similar formula. First we consider the case $s=t+1$.

Proposition 7.3. For all integers $t \geq 3, R_{t+1, t}(3)=3$.
Proof. There are t colors on each edge, hence $3 t$ colors are needed to color K_{3}. From these only $(t+1)$ colors are distinct. The pigeonhole principle implies that, there exist one color $i \in[t+1]$ that appears on at least $\left\lceil\frac{3 t}{t+1}\right\rceil$ edges. We have that

$$
\left\lceil\frac{3 t}{t+1}\right\rceil=\left\lceil\frac{3 t+3-3}{t+1}\right\rceil=\left\lceil 3-\frac{3}{t+1}\right\rceil=3,
$$

since for all $t \geq 3,0<\frac{3}{t+1}<1$, hence $3>3-\frac{3}{t+1}>2$. That means, there is a monochromatic triangle in color i, showing $R_{t+1, t}(3) \leq 3$. Clearly $R_{t+1, t}(3) \geq 3$, which proves the proposition.

Theorem 7.4. For all integers $t \geq 3, n \geq 2$,

$$
\begin{equation*}
R_{t+n, t}(3) \leq \frac{3(t+n)!}{(t+1)!t^{n-1}}+(t+n)!\sum_{i=2}^{n} \frac{t-i}{(t+i)!t^{n+1-i}} \tag{7.2}
\end{equation*}
$$

Let $s:=t+n \geq t+2$, then we can rewrite (7.2):

$$
R_{s, t}(3) \leq \frac{3 \cdot s!}{(t+1)!t^{s-t-1}}+s!\sum_{i=2}^{s-t} \frac{t-i}{(t+i)!t^{s-t+1-i}}
$$

Proof. We fix t and apply induction on n. For $n=2$, by Proposition 7.1,

$$
\begin{aligned}
R_{t+2, t}(3) & \leq \frac{(t+2) R_{t+1, t}(3)}{t}-\frac{t+2}{t}+2 \\
& =\frac{(t+2) R_{t+1, t}(3)}{t}+\frac{t-2}{t}
\end{aligned}
$$

Since $t \geq 3, R_{t+1, t}(3)=3$ by Proposition 7.3,

$$
R_{t+2, t}(3) \leq \frac{3(t+2)}{t}+\frac{t-2}{2}
$$

On the other hand, the right side of (7.2) is equal to

$$
\frac{3(t+2)!}{(t+1)!t}+\frac{(t+2)!(t-2)}{(t+2)!t^{2+1-2}}=\frac{3(t+2)}{t}+\frac{t-2}{t}
$$

Therefore, the theorem holds for $n=2$.
We now consider the induction step. By Proposition 7.1,

$$
\begin{aligned}
R_{t+n+1, t}(3) & \leq \frac{(t+n+1) R_{t+n, t}(3)}{t}-\frac{t+n+1}{t}+2 \\
& =\frac{(t+n+1) R_{t+n, t}(3)}{t}+\frac{t-n-1}{t}
\end{aligned}
$$

The induction hypothesis implies that

$$
\begin{aligned}
R_{t+n+1, t}(3) & \leq \frac{t+n+1}{t}\left[\frac{3(t+n)!}{(t+1)!t^{n-1}}+(t+n)!\sum_{i=2}^{n} \frac{t-i}{(t+i)!t^{n+1-i}}\right]+\frac{t-n-1}{t} \\
& =\frac{3(t+n+1)!}{(t+1)!t^{n}}+(t+n+1)!\sum_{i=2}^{n} \frac{t-i}{(t+i)!t^{n+2-i}}+\frac{t-n-1}{t} \\
& =\frac{3(t+n+1)!}{(t+1)!t^{n}}+(t+n+1)!\sum_{i=2}^{n+1} \frac{t-i}{(t+i)!t^{n+2-i}},
\end{aligned}
$$

which completes the proof of the theorem.

We use Stirling's formula to approximate this upper bound. For $n \in \mathbb{N}$,

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}, \quad n \rightarrow \infty
$$

Theorem 7.5. Let $k \geq 2$ be fixed. Then for all $n \geq 3$,

$$
R_{k n, n}(3) \leq[1+o(1)] \sqrt{k}(k n-n+2) e^{n}\left(\frac{k}{e}\right)^{k n}
$$

Proof. By Theorem 7.4 we have

$$
R_{k n, n}(3) \leq \underbrace{\frac{3 \cdot(k n)!}{(n+1)!n^{k n-n-1}}}_{=: A}+\sum_{i=2}^{k n-n} \underbrace{\frac{(k n)!(n-i)}{(n+i)!n^{k n-n+1-i}}}_{=: B_{i}} .
$$

We first approximate the term A.

$$
\begin{aligned}
A & \sim \frac{3 \sqrt{2 k \pi n}\left(\frac{k n}{e}\right)^{k n}}{\sqrt{2 \pi(n+1)}\left(\frac{n+1}{e}\right)^{n+1} n^{k n-n-1}} \\
& =\underbrace{\sqrt{\frac{n}{n+1}}}_{\sim 1} \frac{3 \sqrt{k}(k n)^{k n} e^{n+1-k n}}{(n+1)^{n+1} n^{k n-n-1}} \\
& \sim 3 \sqrt{k} e^{n+1-k n} \frac{k^{k n} n^{k n}}{(n+1)^{n+1} n^{k n-n-1}} \\
& =3 \sqrt{k} e^{n+1-k n} k^{k n} \frac{n^{n+1} n^{k n-n-1}}{(n+1)^{n+1} n^{k n-n-1}} \\
& =3 \sqrt{k} e^{n+1-k n} k^{k n} \underbrace{\left(\frac{n}{n+1}\right)^{n+1}}_{\sim e^{-1}} \underbrace{\left(\frac{n}{n}\right)^{k n-n-1}}_{=1} \\
& \sim 3 \sqrt{k} e^{n-k n} k^{k n} \\
& =3 \sqrt{k} e^{n}\left(\frac{k}{e}\right)^{k n} .
\end{aligned}
$$

For $i \in[2, k n-n]$ we approximate B_{i}.

$$
\begin{aligned}
B_{i} & \sim \frac{\sqrt{2 \pi k n}\left(\frac{k n}{e}\right)^{k n}(n-i)}{\sqrt{2 \pi(n+i)}\left(\frac{n+i}{e}\right)^{n+i} n^{k n-n+1-i}} \\
& =\underbrace{\sqrt{\frac{n}{n+i}}}_{\sim 1} \sqrt{k} k^{k n} e^{n+i-k n}(n-i) \frac{n^{k n}}{(n+i)^{n+i} n^{k n-n+1-i}} \\
& \sim \sqrt{k} k^{k n} e^{n+i-k n}(n-i) \frac{n^{n+i} n^{k n-n-i}}{(n+i)^{n+i} n^{k n-n-i}} \\
& =\sqrt{k} k^{k n} e^{n+i-k n} \underbrace{\frac{n-i}{n}}_{\sim 1} \underbrace{\left(\frac{n}{n+i}\right)^{n+i}}_{\sim e^{-i}} \underbrace{\left(\frac{n}{n}\right)^{k n-n-i}}_{=1} \\
& \sim \sqrt{k} k^{k n} e^{n-k n} \\
& =\sqrt{k} e^{n}\left(\frac{k}{e}\right)^{k n} .
\end{aligned}
$$

Altogether we obtain

$$
\begin{aligned}
R_{k n, n}(3) & \leq A+\sum_{i=2}^{k n-n} B_{i} \\
& \sim 3 \sqrt{k} e^{n}\left(\frac{k}{e}\right)^{k n}+\sum_{i=2}^{k n-n} \sqrt{k} e^{n}\left(\frac{k}{e}\right)^{k n} \\
& \sim \sqrt{k} e^{n}\left(\frac{k}{e}\right)^{k n}[3+(k n-n-1)] \\
& \sim \sqrt{k}(k n-n+2) e^{n}\left(\frac{k}{e}\right)^{k n}
\end{aligned}
$$

This completes the proof of the theorem.
In case $k=2$, Theorem 7.5 implies the following.
Corollary 7.6. For all positive integers $n \geq 3$,

$$
R_{2 n, n}(3) \leq[1+o(1)] \sqrt{2}(n+2)\left(\frac{4}{e}\right)^{n}
$$

Remark 7.7. Together with results from the previous section about the Hadamard construction, by Theorem 6.5, if there exists a Hadamard matrix of order $2 n$ for $n \in \mathbb{N}$, then

$$
4 n<R_{2 n, n}(3) \leq[1+o(1)] \sqrt{2}(n+2)\left(\frac{4}{e}\right)^{n}
$$

In case $n=2$, the lower bound resulted from Hadamard colorings is tight. We have $R_{4,2}(3)>8$ and $R_{4,2}(3)=9$. However, for general cases, it stays unclear how close the lower bound by a Hadamard coloring ($4 n$) is to the actual value of $R_{2 n, n}(3)$. At this point, there is a great gap between the linear bound $4 n$ and the exponential bound above.

7.2 Application

We will apply the results above to compute some concrete (s, t) Ramsey numbers of the form $R_{s, t}(3)$.
Proposition 7.8. We have $R_{5,3}(3)=5$.
Proof. Figure 15 shows a $(5,3)$-coloring of K_{4} without monochromatic triangle. We identify color 5 with purple. This proves the lower bound $R_{5,3}(4)>4$.

$$
\begin{aligned}
& c\left(u_{1} u_{2}\right)=\{1,2,3\} \\
& c\left(u_{1} u_{3}\right)=\{1,2,4\} \\
& c\left(u_{1} u_{4}\right)=\{3,4,5\} \\
& c\left(u_{2} u_{3}\right)=\{3,4,5\} \\
& c\left(u_{2} u_{4}\right)=\{1,2,4\} \\
& c\left(u_{3} u_{4}\right)=\{1,2,3\}
\end{aligned}
$$

Figure 15: Witness coloring to the lower bound $R_{5,3}(3)>4$

On the other hand, by Proposition 7.3, $R_{4,3}(3)=3$, and by Proposition 7.1,

$$
\begin{aligned}
R_{5,3}(3) & \leq\left\lfloor\frac{5\left(R_{4,3}(3)-1\right)}{3}\right\rfloor+2 \\
& =\left\lfloor\frac{5 \cdot(3-1)}{3}\right\rfloor+2 \\
& =5
\end{aligned}
$$

which proves the upper bound and hence $R_{5,3}(3)=5$.
Now we consider $R_{6,3}(3)$. First note that by Propositions 7.1 and 7.8,

$$
\begin{aligned}
R_{6,3}(3) & \leq\left\lfloor\frac{6 \cdot\left(R_{5,3}(3)-1\right)}{3}\right\rfloor+2 \\
& =\left\lfloor\frac{6 \cdot 4}{3}\right\rfloor+2=10
\end{aligned}
$$

Next we prove $R_{6,3}(9)<10$.

Proposition 7.9. We have $R_{6,3}(3)=9$.
Proof. For the lower bound, we recall that $R_{7,4}(3)=9$ by Proposition 5.23. It follows from Proposition 3.4 (ii) that

$$
R_{6,3}(3) \geq R_{7,4}(3)=9
$$

We now prove the upper bound. In order to show that $R_{6,3}(3) \leq 9$, we proceed with a similar proof as the alternative proof of Theorem 4.4 that $R_{4,2}(3) \leq 9$. For the sake of contradiction, we assume that c is a $(6,3)$-coloring of K_{9} without monochromatic triangle. Let $V\left(K_{9}\right)=\left\{u_{1}, \ldots, u_{9}\right\}$. Fix some vertex of K_{9}, say u_{1}. There are 8 edges at u_{1}, which have in total $8 \cdot 3=24$ colors. By the pigeonhole principle, there are some color $i \in[6]$, say color 1 , that appears at least $\left\lceil\frac{24}{6}\right\rceil=4$ times on all edges at u_{1}, i.e. $\left|N_{1}\left(u_{1}\right)\right| \geq 4$. For any edge $u v$ with $u, v \in N_{1}\left(u_{1}\right)$, if $1 \in c(u v)$ then $u v, u_{1} u, u_{1} v$ will form a monochromatic triangle in color 1. By the assumption that c has no monochromatic triangle, $1 \notin c(u v)$ for all $u, v \in N_{1}\left(u_{1}\right)$. Hence in $K_{9}\left[N_{1}\left(u_{1}\right)\right]$ we have a $(5,3)$-coloring. Since $R_{5,3}(3)=5$ by Proposition 7.8, it must follow that $\left|N_{1}\left(u_{1}\right)\right| \leq 4$. Altogether we have $\left|N_{1}\left(u_{1}\right)\right|=4$.

There are now 20 colors left on all edges at u_{1}. Again there is some color $i \in[6] \backslash\{1\}$ that appears at least $\left\lceil\frac{20}{5}\right\rceil=4$ times on those edges. By the same argument as for $N_{1}\left(u_{1}\right)$, we have $\left|N_{i}\left(u_{j}\right)\right|=4$ for all colors $i \in[6]$ and all vertices $u_{j} \in V\left(K_{9}\right)$. Therefore, each color graph G_{i} of $c, i \in[6]$, is a triangle-free 4 -regular graph on 9 vertices. Such a graph does not exists (see Figure 6 and [18]), which proves that there is no (6,3)-coloring of K_{9} without monochromatic triangle. This completes the proof of the proposition.

8 Off-diagonal (s, t) Ramsey numbers

In this section we introduce the off-diagonal version of Ramsey numbers for set-colorings.
Definition 8.1. For positive integers $s \geq t$, and $k_{1}, k_{2}, \ldots, k_{s} \geq 2$, we define $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)$ to be the least positive integer n such that for any (s, t)-coloring of K_{n}, there is a monochromatic $K_{k_{i}}$ in color i for at least one $i \in[s]$.

Remark 8.2. We note some special cases of t, s and $k_{i}, i \in[s]$.

- By definition $R_{s, t}(k, \ldots, k)=R_{s, t}(k)$.
- In case $t=1$, we have the classical off-diagonal Ramsey number $R_{s, 1}\left(k_{1}, k_{2}, \ldots, k_{s}\right)=$ $R\left(k_{1}, k_{2}, \ldots, k_{s}\right)$, which denotes the least positive integer n such that any s-coloring of K_{n} has a monochromatic $K_{k_{i}}$ in color i for some $i \in[s]$.
- $R_{s, s}\left(k_{1}, \ldots, k_{s}\right)=\min \left\{k_{i}: i \in[s]\right\}$.
- $R_{s, t}\left(2, k_{2}, \ldots, k_{s}\right)=R_{s-1, t}\left(k_{2}, \ldots, k_{s}\right)$.
- $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)$ is invariant under the reordering of k_{1}, \ldots, k_{s}.

For the classical off-diagonal Ramsey numbers, there is an implicit upper bound (see Greenwood and Gleason [12]):

$$
R\left(k_{1}, \ldots, k_{s}\right) \leq 2-s+\sum_{i=1}^{s} R\left(k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{s}\right)
$$

In case $s=2$ this bound reduces to

$$
R_{2,1}\left(k_{1}, k_{2}\right)=R\left(k_{1}, k_{2}\right) \leq R\left(k_{1}-1, k_{2}\right)+R\left(k_{1}, k_{2}-1\right) .
$$

We prove a similar formulation for $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)$.
Proposition 8.3. For all positive integers $s, t, s \geq t$ and $k_{1}, \ldots, k_{s} \geq 2$, we have

$$
R_{s, t}\left(k_{1}, k_{2}, \ldots, k_{s}\right) \leq 2-\frac{s}{t}+\frac{1}{t} \sum_{i=1}^{s} R_{s, t}\left(k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{s}\right)
$$

Proof. Let $n=R_{s, t}\left(k_{1}, k_{2}, \ldots, k_{s}\right)-1$ and let c be an (s, t)-coloring of K_{n} without monochromatic $K_{k_{i}}$ for all $i \in[s]$. Fix some vertex $u \in V\left(K_{n}\right)$, then u is incident to $(n-1)$ edges. For $i \in[s]$, let $V_{i}:=N_{i}(u)=\left\{v \in V\left(K_{n}\right): i \in c(u v)\right\}$, i.e. V_{i} contains all neighbors of u that are connected to u by an edge with color i. Since c is an (s, t)-coloring, we have

$$
\left|V_{1}\right|+\left|V_{2}\right|+\cdots+\left|V_{s}\right|=(n-1) \cdot t
$$

which implies

$$
n=1+\frac{1}{t} \sum_{i=1}^{s}\left|V_{i}\right| .
$$

On the other hand, $V_{k_{i}}$ contains no monochromatic $K_{k_{i}-1}$ in color i, otherwise together with u, V_{i} would form a $K_{k_{i}}$ in color i. Furthermore, V_{i} contains no monochromatic $K_{k_{j}}$ in color j for all $j \in[s], j \neq i$. Altogether,

$$
\left|V_{i}\right| \leq R_{s, t}\left(k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{s}\right)-1
$$

for all $i \in[s]$. Since $n=1+\frac{1}{t} \sum_{i=1}^{s}\left|V_{i}\right|$ and $n=R_{s, t}\left(k_{1}, \ldots, k_{s}\right)-1$, we have

$$
\begin{aligned}
R_{s, t}\left(k_{1}, \ldots, k_{s}\right) & =1+n \\
& =2+\frac{1}{t} \sum_{i=1}^{s}\left|V_{i}\right| \\
& \leq 2+\frac{1}{t}\left(\sum_{i=1}^{s} R_{s, t}\left(k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{s}\right)-s\right)
\end{aligned}
$$

which completes the proof of the proposition.

We want to find an upper bound on $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)$. For $s=2$, Erdős and Szekeres [9] proved in 1935 that

$$
R_{2,1}\left(k_{1}, k_{2}\right)=R\left(k_{1}, k_{2}\right) \leq\binom{ k_{1}+k_{2}-2}{k_{1}-1} .
$$

We attempt below to find an equivalent formula for general s. We first consider a special case, where $k_{i}=2$ in at least $(s-t+1)$ positions of k_{i}.
Lemma 8.4. For all $s, t \in \mathbb{N}, s>t$ and $\sum_{i=1}^{s} k_{i} \leq 2 s+t-1$, we have

$$
R_{s, t}\left(k_{1}, \ldots, k_{s}\right)=2
$$

Proof. Since $k_{i} \geq 2$ for all $i \in[s]$, we have $\sum_{i=1}^{s} k_{i} \geq 2 s$. Then the assumption $\sum_{i=1}^{s} k_{i} \leq$ $2 s+t-1$ implies that there are at most $(t-1)$ positions of k_{i} such that $k_{i}>2$, in other words, there are at least $(s-t+1)$ positions of k_{i} with $k_{i}=2$. Without loss of generality, let $k_{i}=k_{2}=\cdots=k_{s-t+1}=2$. It follows that

$$
\begin{aligned}
R_{s, t}\left(k_{1}, \ldots, k_{s}\right) & =R_{s, t}\left(k_{1}=2, k_{2}=2, \ldots, k_{s-t+1}=2, k_{s-t+2}, \ldots, k_{s}\right) \\
& =R_{s-1, t}\left(k_{2}=2, \ldots, k_{s-t+1}=2, k_{s-t+2}, \ldots, k_{s}\right) \\
& =\ldots \\
& =R_{t, t}\left(k_{s-t+1}=2, k_{s-t+2}, \ldots, k_{s}\right) \\
& =\min \left\{2, k_{s-t+2}, \ldots, k_{s}\right\} \\
& =2,
\end{aligned}
$$

which proves the lemma.

Example 8.5. For $s=5, t=3$ and $\sum_{i=1}^{5} k_{i}=2 s+t-1=12$, there are only two possible ways to arrange $\left(k_{1}, \ldots, k_{5}\right)$ up to permutation of k_{i}. In the first case we have

$$
\begin{aligned}
R_{5,3}(2,3,2,2,3) & =R_{5,3}(2,2,2,3,3) \\
& =R_{4,3}(2,2,3,3) \\
& =R_{3,3}(2,3,3) \\
& =\min \{2,3,3\}=2 .
\end{aligned}
$$

In the other case we have $R_{5,3}(2,2,2,2,4)=R_{4,3}(2,2,2,4)=2$.

We now prove an upper bound for $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)$.
Theorem 8.6. For all $s, t, k_{1}, \ldots, k_{s} \in \mathbb{N}$ such that $s>t$ and $k_{i} \geq 2, i \in[s]$, let $K=\sum_{i=1}^{s} k_{i}$. Then

$$
\begin{equation*}
R_{s, t}\left(k_{1}, \ldots, k_{s}\right) \leq 2-\frac{s}{s-t}+\frac{C}{t^{K}}\binom{K-s}{k_{1}-1, \ldots, k_{s}-1}, \tag{8.1}
\end{equation*}
$$

where $C=\frac{s}{s-t} \cdot \frac{t!}{s!} \cdot t^{2 s+t-1}$.
Proof. Let M be the right side of the inequality (8.1),

$$
M=2-\frac{s}{s-t}+\frac{C}{t^{K}}\binom{K-s}{k_{1}-1, \ldots, k_{s}-1} .
$$

We proceed with a proof by induction on K. First we proof the base case when $K \leq$ $2 s+t-1$. Then there are at least $(s-t+1)$ positions of k_{i} with $k_{i}=2$. Without loss of generality, let $k_{1}=\cdots=k_{s-t+1}=2$. Then

$$
\begin{aligned}
\sum_{i=s-t+2}^{s} k_{i} & \leq 2 s+t-1-2(s-t+1) \\
& =3 t-3
\end{aligned}
$$

By Lemma 8.4, $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)=2$. Further consider

$$
\begin{aligned}
\binom{K-s}{k_{1}-1, \ldots, k_{s}-1} & =\binom{K-s}{1, \ldots, 1, k_{s-t+2}-1, \ldots, k_{s}-1} \\
& =\frac{(K-s)!}{\left(k_{s-t+2}-1\right)!\ldots\left(k_{s}-1\right)!} .
\end{aligned}
$$

Since $k_{i} \geq 2$ for all $i \in[s], K \geq 2 s$ and $K-s \geq s$. Moreover, since $\sum_{i=s-t+2}^{s} k_{i} \leq 3 t-3$,

$$
\begin{aligned}
\left(k_{s-t+2}-1\right)!\ldots\left(k_{s}-1\right)! & \leq \underbrace{(2-1)!\ldots(2-1)!}_{(t-2) \text { times }} \cdot(3 t-3-2(t-2)-1))! \\
& =t!.
\end{aligned}
$$

It follows that

$$
\binom{K-s}{k_{1}-1, \ldots, k_{s}-1} \geq \frac{s!}{t!} .
$$

Further, since $K \leq 2 s+t-1$, we have $t^{K} \leq t^{2 s+t-1}$, thus

$$
\frac{1}{t^{K}} \geq \frac{1}{t^{2 s+t-1}}
$$

Altogether we have

$$
\begin{aligned}
M & \geq 2-\frac{s}{s-t}+\frac{s}{s-t} \cdot \frac{t!}{s!} \cdot \frac{t^{2 s+t-1}}{t^{2 s+t-1}} \cdot \frac{s!}{t!} \\
& =2 \\
& =R_{s, t}\left(k_{1}, \ldots, k_{s}\right)
\end{aligned}
$$

which proves the base case. For the induction step, let $K>2 s+t-1$. By Proposition 8.3 and the induction hypothesis,

$$
\begin{aligned}
& R_{s, t}\left(k_{1}, \ldots, k_{s}\right) \leq 2-\frac{s}{t}+\frac{1}{t} \sum_{i=1}^{s} R_{s, t}\left(k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{s}\right) \\
& \leq 2-\frac{s}{t}+\frac{1}{t} \sum_{i=1}^{s}\left[2-\frac{s}{s-t}+\frac{C}{t^{K-1}}\binom{\sum_{i=1}^{s} k_{i}-1-s}{k_{1}-1, \ldots, k_{1}-1, \ldots, k_{s}-1}\right] \\
&=2-\frac{s}{t}+\frac{s}{t}\left(2-\frac{s}{s-t}\right)+\frac{C}{t^{K}} \sum_{i=1}^{s}\binom{K-s-1}{k_{1}-1, \ldots, k_{i}-2, \ldots, k_{s}-1} \\
&=2+\frac{s}{t}\left(1-\frac{s}{s-t}\right)+\frac{C}{t^{K}}\binom{K-s}{k_{1}-1, \ldots, k_{s}-1} \\
&=2+\frac{s}{t} \cdot \frac{s-t-s}{s-t}+\frac{C}{t^{K}}\binom{K-s}{k_{1}-1, \ldots, k_{s}-1} \\
& K-s \\
&=2-\frac{s}{s-t}+\frac{C}{t^{K}}\left(\begin{array}{c}
\\
k_{1}-1, \ldots, k_{s}-1
\end{array}\right) .
\end{aligned}
$$

This completes the proof of the theorem.

We apply Theorem 8.6 for $s=2 t$.
Corollary 8.7. For all positive integers t and $k_{1}, \ldots, k_{2 t} \geq 2$, let $K=\sum_{i=1}^{2 t} k_{i}$. Then

$$
R_{2 t, t}\left(k_{1}, \ldots, k_{s}\right) \leq \frac{2 \cdot t!}{s!} \cdot \frac{t^{5 t-1}}{t^{K}}\binom{K-2 t}{k_{1}-1, \ldots, k_{2 t}-1}
$$

Remark 8.8. For $t=1, s=2$ and positive integers $k_{1}, k_{2} \geq 2$, Theorem 8.6 reduces to the well-known formula:

$$
R_{2,1}\left(k_{1}, k_{2}\right)=R\left(k_{1}, k_{2}\right) \leq\binom{ k_{1}+k_{2}-2}{k_{1}-1, k_{2}-1}=\binom{k_{1}+k_{2}-1}{k_{1}-1} .
$$

For $s=2 t$ and $k_{1}=\cdots=k_{s}=k$, we have $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)=R_{2 t, t}(k)$ and the following result.

Corollary 8.9. For positive integers t, k such that $k \geq 2$, there exists a positive number C_{t} such that

$$
R_{2 t, t}(k) \leq C_{t} \cdot 2^{2 k t} .
$$

Proof. By Corollary 8.7, for $k_{1}=\cdots=k_{2 t}=k$,

$$
R_{2 t, t}\left(k_{1}, \ldots, k_{2 t}\right)=R_{2 t, t}(k) \leq \frac{2 \cdot t!}{s!} \cdot \frac{t^{5 t-1}}{t^{2 k t}}\binom{2 k t-2 t}{k-1, \ldots, k-1} .
$$

Note that

$$
\binom{2 k t-2 t}{k-1, \ldots, k-1} \leq(2 t)^{2 k t-2 t}
$$

therefore,

$$
\begin{aligned}
R_{2 t, t}(k) & \leq \frac{2 \cdot t!}{s!} \cdot \frac{t^{5 t-1}}{t^{2 k t}} \cdot 2^{2 k t-2 t} \cdot t^{2 k t-2 t} \\
& =\frac{t!}{s!} \cdot t^{3 t-1} \cdot 2^{1-2 t} \cdot 2^{2 k t} .
\end{aligned}
$$

The corollary follows from setting $C:=\frac{t!}{s!} \cdot t^{3 t-1} \cdot 2^{1-2 t}$.

Alternatively we can prove an upper bound on $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)$ without using multinomial coefficients.

Theorem 8.10. For all $s, t, k_{1}, \ldots, k_{s} \in \mathbb{N}$ such that $s>t$ and $k_{i} \geq 2, i \in[s]$, let $K=\sum_{i=1}^{s} k_{i}$. Then

$$
\begin{equation*}
R_{s, t}\left(k_{1}, \ldots, k_{s}\right) \leq 2-\frac{s}{s-t}+C_{s, t}\left(\frac{s}{t}\right)^{K} \tag{8.2}
\end{equation*}
$$

where $C_{s, t}=\frac{s}{s-t}\left(\frac{t}{s}\right)^{2 s}$.
Proof. Similarly to proving Theorem 8.6, we apply induction on K.
For the base case, let $K \leq 2 s+t-1$. By Lemma 8.4, we have $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)=2$. Since $K \geq 2 s$, consider the right side of 8.2 :

$$
\begin{aligned}
2-\frac{s}{s-t}+C_{s, t}\left(\frac{s}{t}\right)^{\sum_{i=1}^{s} k_{i}} & \geq 2-\frac{s}{s-t}+\frac{s}{s-t}\left(\frac{t}{s}\right)^{2 s}\left(\frac{s}{t}\right)^{2 s} \\
& =2 \\
& =R_{s, t}\left(k_{1}, \ldots, k_{s}\right) .
\end{aligned}
$$

For the induction step, let $\sum_{i=1}^{s} k_{i}>2 s+t-1$. Proposition 8.3 implies that

$$
R_{s, t}\left(k_{1}, \ldots, k_{s}\right) \leq 2-\frac{s}{t}+\frac{1}{t} \sum_{i=1}^{s} R_{s, t}\left(k_{1}, \ldots, k_{i-1}, k_{i}-1, k_{i+1}, \ldots, k_{s}\right) .
$$

By the induction hypothesis,

$$
\begin{aligned}
R_{s, t}\left(k_{1}, \ldots, k_{s}\right) & \leq 2-\frac{s}{t}+\frac{1}{t} \sum_{i=1}^{s}\left[2-\frac{s}{t}+C_{s, t}\left(\frac{s}{t}\right)^{K-1}\right] \\
& =\underbrace{2-\frac{s}{t}+s \cdot \frac{1}{t}\left(2-\frac{s}{s-t}\right)}_{=2-\frac{s}{s-t}}+\underbrace{\frac{s}{t} \cdot C_{s, t}\left(\frac{s}{t}\right)^{K-1}}_{=C_{s, t}\left(\frac{s}{t}\right)^{K}} \\
& =2-\frac{s}{s-t}+C_{s, t}\left(\frac{s}{t}\right)^{K} .
\end{aligned}
$$

This completes the proof of the theorem.

Remark 8.11. The induction step of the proof follows from the induction hypothesis no matter what value $C_{s, t}$ has. The term $C_{s, t}$ was determined merely for the sake of the base case.

We apply Theorem 8.10 for $s=2 t$.
Corollary 8.12. For all positive integers t and $k_{i} \geq 2, i \in[2 t]$,

$$
R_{2 t, t}\left(k_{1}, \ldots, k_{2 t}\right) \leq C \cdot 2^{\sum_{i=1}^{s} k_{i}}
$$

where $C:=2^{1-4 t}$. If $k_{i}=k$ for all $i \in[2 t]$ then

$$
R_{2 t, t}(k) \leq C \cdot 2^{2 k t} .
$$

Remark 8.13. At this point, we have several bounds for general $R_{2 t, t}(k)$.

$$
\begin{array}{lr}
R_{2 t, t}(k) \leq(t+1)^{k(t+1)} & (\text { Corollary 3.7) } \tag{Corollary3.7}\\
R_{2 t, t}(k) \leq \frac{t!}{s!} \cdot t^{3 t-1} \cdot 2^{1-2 t} \cdot 2^{2 k t} & (\text { Corollary 8.9) } \\
R_{2 t, t}(k) \leq 2^{1-4 t} 2^{2 k t} & \text { (Corollary 8.12). }
\end{array}
$$

The second and third bounds have the same growth and both are an improvement for the bound in Corollary 3.7.

9 Conclusion

We first summarize the main results from the previous sections.

9.1 Main results

The classical Ramsey number $R(k)$ can be seen as a special case of the (s, t) Ramsey number $R_{s, t}(k)$ with $s=2, t=1$. The off-diagonal Ramsey number $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)$ is again a generalization of the (s, t)-Ramsey number. Computing upper bounds for $R_{s, t}(k)$ as a special case of $R_{s, t}\left(k_{1}, \ldots, k_{s}\right)$ where $k_{i}=k$ for all $i \in[s]$ gives a better upper bound as we have seen in Remark 8.13. In general, for all $s, t, k \in \mathbb{N}$ such that $s>t, k \geq 3$, we have

$$
\left\lceil\frac{k}{e} \cdot s^{-\frac{1}{k}} \cdot\left(\frac{s}{t}\right)^{\frac{k-1}{2}}\right\rceil \leq R_{s, t}(k) \leq 2-\frac{s}{s-t}+C_{s, t} \cdot\left(\frac{s}{t}\right)^{s k}
$$

where $C_{s, t}:=\frac{s}{s-t}\left(\frac{t}{s}\right)^{2 s}$.
Some exact values of Ramsey numbers of the form $R_{s, t}(3)$ were determined and are listed below.

- $R_{3,2}(3)=5$
- $R_{4,2}(3)=9$
- $R_{5,3}(3)=5$
- $R_{7,4}(3)=9$
- $R_{6,3}(3)=9$
- $R_{t+1, t}(3)=3$ for all $t \in \mathbb{N}, t \geq 3$.

For $R_{3,2}(4)$ we have the estimation $10 \leq R_{3,2}(4) \leq 14$.
In some cases, the study on small Ramsey numbers $R_{s, t}(k)$ can be generalized. For example, a witness coloring to the lower bound $R_{4,2}(3)>8$ was generalized to Hadamard colorings. In addition, the concept of design colorings arises from the witness coloring to the lower bound $R_{4,3}(4)>9$.

For all $n \in \mathbb{N}$, n, if there exists a Hadamard matrix of order $2 n$, then

$$
4 n<R_{2 n, n}(3) \leq[1+o(1)] \sqrt{2}(n+2)\left(\frac{4}{e}\right)^{n}
$$

The lower bound for $R_{2 n, n}(3)$ given by a Hadamard matrix of order $2 n$ is better than by the probabilistic method. However, it remains an open question how close the lower bound by the Hadamard construction is to the exact value of $R_{2 n, n}(3)$. An advantage is
that we can construct a $\left(2 n, n^{+}\right)$-coloring of $K_{4 n}$ without monochromatic triangle with Hadamard colorings, in contrast to the non-constructive probabilistic method.

A resolvable design gives the exact value of some Ramsey numbers. For all $v, k, \lambda \in \mathbb{N}$ such that $v>k \geq 2$, if there exists a resolvable (v, k, λ) design, then for $s=\frac{\lambda(v-1)}{k-1}$,

$$
R_{s, s-\lambda}\left(\frac{v}{k}+1\right)=v+1
$$

A disadvantage of the design construction, similar to the Hadamard construction, is that it is only applicable in specific cases.

9.2 A new definition

To end this thesis, we introduce a new direction for further study. We first recall that for graphs $G, H, R(G, H)$ denotes the least positive integer n such that any 2-coloring of $E\left(K_{n}\right)$ contains a red G or a blue H.

For any positive integers s, t with $s \geq t$ and graph G, we denote by $R_{s, t}(G)$ the least positive integer n such that any (s, t)-coloring of K_{n} contains a monochromatic copy of G. We also call $R_{s, t}(G)$ the graph Ramsey number for set-coloring. A prospective study is to find lower and upper bounds for $R_{s, t}(G)$ with various kinds of graphs G such as cycles, stars, paths, etc.

For motivation, we give a small example by determining $R_{3,2}\left(C_{4}\right)$. Note that by the same arguments as in Proposition 3.4, the following holds. For all graphs G and $s, t \in \mathbb{N}$ with $s \geq t \geq 2$,

$$
R_{s, t}(G) \leq R_{s-1, t-1}(G)
$$

It was proved by Chvátal and Harary [5] that $R\left(C_{4}\right)=6$. Hence, $R_{3,2}\left(C_{4}\right) \leq 6$.
Theorem 9.1. We have that $R_{3,2}\left(C_{4}\right)=5$. Moreover, up to relabeling of colors and vertices, the only $(3,2)$-coloring of K_{4} without monochromatic C_{4} is given in Figure 16.

Figure 16: $(3,2)$-coloring of K_{4} without monochromatic C_{4}

9 Conclusion

Proof. The coloring in Figure 16 proves the lower bound $R_{3,2}\left(C_{4}\right)>4$. We will prove that it is unique up to the permutation of vertices and colors. Let $V\left(K_{4}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and c be a $(3,2)$-coloring of K_{4} without monochromatic C_{4}. An edge e of K_{4} can have color set $\{1,2\},\{1,3\}$ or $\{2,3\}$. In the following let i, j, k be arbitrary elements of $\{1,2,3\}$ and pairwise distinct. We first prove the following claims for the coloring c.
(i) For any spanning cycle C of $K_{4}, c(C)=\{\{1,2\},\{1,3\},\{2,3\}\}$, i.e. all 3 color combinations must appear on edges of C.
(ii) For any vertex $u \in V\left(K_{4}\right)$, there are at most two edges at u with the same color set.
(iii) Any two edges of K_{4} that are not adjacent have distinct color sets.

For Item (i), if C has at most two color sets, $c(C)=\{\{i, j\},\{i, k\}\}$ or $c(C)=\{\{i, j\}\}$, then C is monochromatic in color i, which is a contradiction. This proves Item (i). Note that Item (i) also means that there are at most two edges of C have the same color set.

For Item (ii), for the sake of contradiction, assume without loss of generality that $c\left(u_{1} u_{2}\right)=c\left(u_{1} u_{3}\right)=c\left(u_{1} u_{4}\right)=\{i, j\}$. We apply Item (i) for 3 spanning cycles of K_{4}. For cycle $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{1}\right)$, Item (i) implies $\left\{c\left(u_{2} u_{3}\right), c\left(u_{3} u_{4}\right)\right\}=\{\{i, k\},\{j, k\}\}$. Without loss of generality, let $c\left(u_{2} u_{3}\right)=\{i, k\}$ and $c\left(u_{3} u_{4}\right)=\{j, k\}$. For cycle $\left(u_{1}, u_{2}, u_{4}, u_{3}\right)$, we have $c\left(u_{2} u_{4}\right)=\{i, k\}$. It follows that cycle $\left(u_{1}, u_{4}, u_{2}, u_{3}, u_{1}\right)$ is monochromatic in color i, which is a contradiction and thus proves Item (ii).

For Item (iii), we now assume without loss of generality that $u_{1} u_{2}, u_{3} u_{4}$ are not adjacent and $c\left(u_{1} u_{2}\right)=c\left(u_{3} u_{4}\right)=\{i, j\}$. We prove Item (iii) again by applying Item (i) for spanning cycles of K_{4}. For cycle $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{1}\right)$, without loss of generality, $c\left(u_{2} u_{3}\right)=\{i, k\}, c\left(u_{1} u_{4}\right)=\{j, k\}$. For cycle $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{1}\right)$, Item (i) implies that $c\left(u_{2} u_{4}\right)=\{1,2\}$ or $c\left(u_{1} u_{3}\right)=\{1,2\}$. On the other hand, Item (i) applied for cycle $\left(u_{1}, u_{2}, u_{4}, u_{3}, u_{1}\right)$ yields $\left\{c\left(u_{1}, u_{3}\right), c\left(u_{2} u_{4}\right)\right\}=\{\{1,3\},\{2,3\}\}$. In particular, $\{1,2\} \notin$ $\left\{c\left(u_{1} u_{3}\right), c\left(u_{2} u_{4}\right)\right\}$, which is a contradiction. This proves Item (iii).

With Items (i), (ii), (iii), we can prove the uniqueness of c. By Items (i), without loss of generality, $c\left(u_{1} u_{2}\right)=\{1,2\}, c\left(u_{2} u_{3}\right)=\{1,3\}, c\left(u_{3} u_{4}\right)=\{2,3\}$. By Item (iii), $c\left(u_{1} u_{4}\right) \neq c\left(u_{2} u_{3}\right)=\{1,3\}$, without loss of generality, $c\left(u_{1} u_{4}\right)=\{1,2\}$. There are now 2 edges at u_{1} with the same color set: $c\left(u_{1} u_{2}\right)=c\left(u_{1} u_{4}\right)=\{1,2\}$. By Item (ii), $c\left(u_{1} u_{3}\right) \neq\{1,2\}$, without loss of generality, let $c\left(u_{1} u_{3}\right)=\{1,3\}$. By Item (i) for cycle $\left(u_{1}, u_{4}, u_{2}, u_{3}, u_{1}\right), c\left(u_{2} u_{4}\right)=\{2,3\}$. Therefore, the witness coloring to the lower bound $R_{3,2}\left(C_{4}\right)>4$ is given in Figure 16.

For the upper bound, let c be any $(3,2)$-coloring of K_{5}. We prove that c contains a monochromatic C_{4}. For the sake of contradiction, we assume that c has no monochromatic C_{4}. Due to the uniqueness of the (3,2)-coloring of K_{4} without monochromatic C_{4}

9 Conclusion

up to relabeling of colors and vertices, we can assume without loss of generality that c is as in Figure 17. We have

$$
\begin{aligned}
& c\left(u_{1} u_{2}\right)=c\left(u_{1} u_{4}\right)=\{1,2\}, \\
& c\left(u_{2} u_{3}\right)=c\left(u_{1} u_{3}\right)=\{1,3\}, \\
& c\left(u_{2} u_{4}\right)=c\left(u_{3} u_{4}\right)=\{2,3\} .
\end{aligned}
$$

Figure 17: Assumption: $(3,2)$-coloring of K_{5} without monochromatic C_{4}

Observe that in the cycle $\left(u_{2}, u_{4}, u_{3}, u_{5}, u_{2}\right)$, there are two edges with the same color set: $c\left(u_{2} u_{4}\right)=c\left(u_{3} u_{4}\right)=\{2,3\}$. Then by Item (i), $c\left(u_{2} u_{5}\right) \neq\{2,3\}$. Similarly, for cycle $\left(u_{1}, u_{3}, u_{2}, u_{5}, u_{1}\right)$, two edges have the same color set: $c\left(u_{1} u_{3}\right)=c\left(u_{2} u_{3}\right)=\{1,3\}$, hence $c\left(u_{2} u_{5}\right) \neq\{1,3\}$. Consequently, $c\left(u_{2} u_{5}\right)=\{1,2\}$. Then cycle $\left(u_{1}, u_{2}, u_{5}, u_{4}, u_{1}\right)$ has 3 edges with the same color set: $c\left(u_{4} u_{1}\right)=c\left(u_{1} u_{2}\right)=c\left(u_{2} u_{5}\right)=\{1,2\}$. Item (i) implies that $K_{5}\left[\left\{u_{1}, u_{2}, u_{4}, u_{5}\right\}\right]$ has a monochromatic C_{4}, which is a contradiction to the assumption of c. This completes the proof of the theorem.

References

[1] Noga Alon. Paul Erdős and probabilistic reasoning. In Erdốs centennial, volume 25 of Bolyai Soc. Math. Stud., pages 11-33. János Bolyai Math. Soc., Budapest, 2013. doi:10.1007/978-3-642-39286-3_1.
[2] Noga Alon, Matija Bucić, Tom Kalvari, Eden Kuperwasser, and Tibor Szabó. List Ramsey numbers. J. Graph Theory, 96(1):109-128, 2021. doi:10.1002/jgt.22610.
[3] Leonard Baumert, Solomon W. Golomb, and Marshall Hall. Discovery of an Hadamard matrix of order 92. Bulletin of the American Mathematical Society, 68(3):237-238, 1962. doi:10.1090/s0002-9904-1962-10761-7.
[4] Thomas Beth, Dieter Jungnickel, and Hanfried Lenz. Design theory. Vol. I, volume 69 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 1999. doi:10.1017/CBO9780511549533.
[5] Václav Chvátal and Frank Harary. Generalized Ramsey theory for graphs. II. Small diagonal numbers. Proc. Amer. Math. Soc., 32:389-394, 1972. doi:10.2307/2037824.
[6] Charles J. Colbourn and Jeffrey H. Dinitz, editors. Handbook of combinatorial designs. Discrete Mathematics and its Applications (Boca Raton). Chapman \& Hall/CRC, Boca Raton, FL, second edition, 2007.
[7] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin, fifth edition, 2018.
[8] Paul Erdős. Some remarks on the theory of graphs. Bull. Amer. Math. Soc., 53:292-294, 1947. doi:10.1090/S0002-9904-1947-08785-1.
[9] Paul Erdôs and George Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463-470, 1935. URL http://www.numdam.org/item?id=CM_1935__2__463_0.
[10] Stefan Glock, Daniela Kühn, Allan Lo, and Deryk Osthus. The existence of designs via iterative absorption: hypergraph F-designs for arbitrary F. Memoirs of the American Mathematical Society, accepted, 2016. doi:10.48550/ARXIV.1611.06827.
[11] Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey theory. WileyInterscience Series in Discrete Mathematics. John Wiley \& Sons, Inc., New York, 1980.
[12] Robert E. Greenwood and Andrew M. Gleason. Combinatorial relations and chromatic graphs. Canadian J. Math., 7:1-7, 1955. doi:10.4153/CJM-1955-001-4.
[13] Haim Hanani, Dijen K. Ray-Chaudhuri, and Richard M. Wilson. On resolvable designs. Discrete Math., 3:343-357, 1972. doi:10.1016/0012-365X(72)90091-X.
[14] Michael Jacobson, Gregory M. Levin, and Edward R. Scheinerman. On fractional Ramsey numbers. Discrete Math., 176(1-3):159-175, 1997. doi:10.1016/S0012-365X(96)00293-2.
[15] Peter Keevash. The existence of designs, 2014, arXiv:1401.3665.
[16] Peter Keevash. The existence of designs II, 2018, arXiv:1802.05900.
[17] Charles C. Lindner and Christopher A. Rodger. Design theory. (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2009.
[18] Markus Meringer. Erzeugung regulärer Graphen, January 1996. URL https://mathe2. uni-bayreuth.de/markus/pdf/pub/ErzRegGraphUniBT.pdf.
[19] Raymond E. A. C. Paley. On Orthogonal Matrices. Journal of Mathematics and Physics, 12(1-4):311-320, April 1933. doi:10.1002/sapm1933121311.
[20] Stanisław P. Radziszowski. Small Ramsey numbers. Electron. J. Combin., 1:Dynamic Survey 1, 30, 1994. URL http://www.combinatorics.org/Surveys/index.html.
[21] Dijen K. Ray-Chaudhuri and Richard M. Wilson. Solution of Kirkman's schoolgirl problem. In Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), pages 187-203, 1971.
[22] Edward R. Scheinerman and Daniel H. Ullman. Fractional graph theory. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley \& Sons, Inc., New York, 1997. A rational approach to the theory of graphs, With a foreword by Claude Berge, A Wiley-Interscience Publication.
[23] Joel Spencer. Ramsey's theorem - a new lower bound. J. Combinatorial Theory Ser. A, 18:108-115, 1975. doi:10.1016/0097-3165(75)90071-0.
[24] Douglas R. Stinson. Combinatorial designs. Springer-Verlag, New York, 2004. Constructions and analysis, With a foreword by Charles J. Colbourn.
[25] Torsten Ueckerdt. Personal communication, January 2022.
[26] Richard M. Wilson. An existence theory for pairwise balanced designs. III. Proof of the existence conjectures. J. Combinatorial Theory Ser. A, 18:71-79, 1975. doi:10.1016/0097-3165(75)90067-9.
[27] Robin Wilson. The early history of block designs. Rend. Sem. Mat. Messina Ser. II, 9(25):267-276 (2004), 2003.

Erklärung

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde, sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.

Karlsruhe, 04.04.2022

Yen Hoang Le

