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Gate-tunable Josephson junctions embedded in a microwave environment provide a promising
platform to in-situ engineer and optimize novel superconducting quantum circuits. The key quantity
for the circuit design is the phase-dependent complex admittance of the junction, which can be
probed by sensing an rf SQUID with a tank circuit. Here, we investigate a graphene-based Josephson
junction as a prototype gate-tunable element enclosed in a SQUID loop that is inductively coupled
to a superconducting resonator operating at 3 GHz. With a concise circuit model that describes
the dispersive and dissipative response of the coupled system, we extract the phase-dependent
junction admittance corrected for self-screening of the SQUID loop. We decompose the admittance
into the current-phase relation and the phase-dependent loss and as these quantities are dictated
by the spectrum and population dynamics of the supercurrent-carrying Andreev bound states, we
gain insight to the underlying microscopic transport mechanisms in the junction. We theoretically
reproduce the experimental results by considering a short, diffusive junction model that takes into
account the interaction between the Andreev spectrum and the electromagnetic environment, from
which we deduce a lifetime of ∼ 17 ps for non-equilibrium populations.

I. INTRODUCTION

For Josephson junctions (JJs), in which the super-
conducting electrodes are linked with a short normal-
conducting region, the coherent superconducting inter-
action is promoted by so-called Andreev bound states
(ABSs) [1]. The material and geometrical properties
of the weak link together with the superconducting
phase difference ϕ across the JJ define the energy of
the ABSs [2]. Their structure and occupation dynam-
ics determine the inductive and dissipative microwave
response, i.e. the admittance of the JJ [3, 4]. In partic-
ular, the inductive response relates to the time-averaged
dispersion of the populated ABSs and reflects the phase
dependence of the supercurrent Is(ϕ) across the junc-
tion [5, 6], which is known as the current-phase rela-
tion (CPR). On the other hand, the dissipative response
relates to the fluctuations in the ABS population re-
sulting in temporal changes of the supercurrent [7, 8].
The microscopic source for those dynamics are thermally
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activated or microwave induced short-lived ABS excita-
tions [9]. Conclusively, the junction admittance, which
is the key quantity to engineer high-frequency Josephson
circuits, is highly dependent on the underlying micro-
scopic processes.

The junction admittance can be probed as a function
of phase by embedding a JJ in an rf SQUID that couples
to a resonator [9–13]. The rf SQUID acts as a mag-
netic flux-tunable complex impedance in the circuit that
shifts and broadens the resonate behavior, from which
one can infer the phase-dependent inductive and dissipa-
tive response of the junction [14]. The strong demand for
in-situ controllable junctions in microwave applications
has raised the attention to JJs consisting of gate-tunable
weak links [15]. Here, we determine the full complex
admittance of a Josephson weak link made of graphene,
which is a two-dimensional (2D) material with a linear
band structure and excellent gating properties.

Although graphene JJs have already demonstrated
their compatibility in different superconducting high-
frequency circuits, such as bolometers [16, 17], trans-
mon qubits [18, 19] and tunable microwave cavities [20],
only few experiments have addressed the determination
of their phase-dependent admittance [13, 21]. While
Ref. [13] has been focusing on the phase-dependent dis-
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sipation of the junction under the influence of external
irradiation and Ref. [21] on the inductive behaviour, we
here investigate both the inductive and dissipative re-
sponse simultaneously by studying the inherent photonic
phase-dependent interplay between the sensing resonator
and the graphene JJ. We present a classical, compre-
hensive circuit model to infer the full complex junction
admittance from the reflective response of a graphene
rf SQUID coupled to a superconducting microwave res-
onator operating at ∼ 3 GHz. We further translate this
to the CPR and the phase-dependent dissipation as a
function of gate voltage, under consideration of the self-
screening effect that arises due to the finite inductance
of the SQUID loop. We describe our observations within
the framework of ABSs and find remarkable agreement
between the experimental results and the theoretically
predicted microwave response of a short, diffusive junc-
tion.

II. DEVICE

The device is presented in Fig. 1 and consists of
a graphene JJ embedded in a superconducting loop,
which inductively couples to a co-planar transmission
line (CTL) resonator. The resonant structure and sup-
ply lines are etched into NbTiN (80 nm) sputtered on an
intrinsic Si/SiOx (500µm/170 nm) substrate. The me-
andered CTL shown in Fig. 1(a) is shorted to ground
on one side, and interrupted by a coupling capacitor on
the other. Both of these terminations act as microwave
mirrors of the opposite type, and thereby form a super-
conducting λ/4-resonator with a fundamental bare reso-
nance frequency fbare = 3.098 GHz.

The graphene JJ, shown in Fig. 1(c), is made of a
van der Waals heterostructure consisting of a monolayer
graphene encapsulated in hexagonal boron nitride (hBN).
The lower hBN layer (47.5 nm) separates the graphene
flake from the bottom graphite gate. A thermally evap-
orated Ti/Al (5 nm/90 nm) lead contacts the graphene
from both sides [22] and encloses the junction in a loop,
thus forming a graphene rf SQUID, which is inductively
coupled to the current anti-node of the resonator as il-
lustrated in Fig. 1(b). The galvanic grounding of the
loop defines the reference potential for the gate volt-
age Vbg applied on the bottom graphite structure. The
DC current Iflux controls the magnetic flux Φ inside the
loop and therefore tunes the external phase difference
ϕext = 2πΦ/Φ0 across the rf SQUID, where Φ0 = h/2e
is the superconducting flux quantum with h being the
Planck constant and e the elementary charge. Consider
the Supplemental Material (SM) for details about the
device fabrication [23].

In the subsequent experiment we perform reflectance
measurements on the port denoted by Γ in Fig. 1(a) and
investigate the resonant circuit as a function of Vbg and
Iflux, from which we later infer the CPR and the phase-
dependent loss of the graphene JJ.
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FIG. 1. Graphene rf SQUID inductively coupled to a super-
conducting transmission line resonator. (a) Optical image of
the NbTiN λ/4-resonator consisting of a meandered co-planar
transmission line with the shorted end (current anti-node) on
top, seen also at the bottom of image (b), and the open end
(current node) at the bottom, shown in the zoom-in. (b) Op-
tical image of the monolayer graphene (G) Josephson junction
(JJ) embedded in an Al loop forming the rf SQUID. The DC
current Iflux creates a flux Φ inside the loop (blue line), which
allows to phase bias the junction. The inductive coupling to
the resonator induces a small oscillating probe flux δΦ (red
lines). The gate voltage Vbg applied on the bottom graphite
sheet tunes the charge carrier density in G. (c) Scanning elec-
tron micrograph and cross-sectional schematics of the hBN-
encapsulated G-JJ with Al side-contacts of width W = 1µm
and length L = 400 nm.

III. REFLECTOMERTY

The coupled microwave circuit is probed by reflectom-
etry in a dry dilution refrigerator, in which the device
is surrounded by a permalloy shield. With a vector net-
work analyzer we measure the complex reflection coeffi-
cient Γ as a function of probe frequency f and Iflux. We
ensure a quasi-equilibrium sensing by setting the probe
power to an averaged intra-cavity occupation of ∼ 100
photons, which corresponds to an oscillating probe flux
δΦ ≈ Φ0/100 inside the SQUID loop. Additionally, we
tune the charge carrier density in the graphene layer by
applying a gate voltage in the range Vbg = [−9, 9] V. The
conversion from Vbg to charge carrier density as well as
the measurement scheme and the calibration of the probe
power can be found in the SM [23].

The reflective response at Vbg = 6 V presented in Fig. 2
is exemplary for the whole measurement set. Clear pe-
riodic shifts of the resonance frequency f0 as a function
of Iflux can be observed in Fig. 2(a) and Fig. 2(b). We
encounter no phase jumps and relate the external phase
ϕext = noddπ (= nevenπ) to points of minimal (maximal)
resonance frequencies [10, 14]. Besides f0, the resonance
lineshape also changes as seen in Fig. 2(c) and Fig. 2(d)
when comparing line cuts at ϕext = −π and ϕext = 0. As
we will show, both the modulation in f0 and the altered
lineshape are the consequence of the phase-dependent
complex admittance of the graphene JJ.
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In order to characterize the JJ from the reflective re-
sponse, we fit |Γ| and arg (Γ) simultaneously for each
combination of Vbg and Iflux with the complex resonance
curve of a loaded λ/4-resonator expressed according to
Ref. [24] as:

Γ =

[
Γmin + 2jQ f−f0

f0

1 + 2jQ f−f0
f0

− 1

]
ejφ + 1. (1)

Thus, we can deduce f0 and assess the broadening of
the resonance curve. The latter is determined by the to-
tal quality factor Q = 1/(Q−1

load + Q−1
i + Q−1

c ), which
in turn, consists of three different dissipation sources: i)
The inverse load quality factor Q−1

load describes loss gen-
erated by the rf SQUID, ii) the inverse internal qual-
ity factor Q−1

i describes loss inherent to the properties
of the CTL and iii) the inverse coupling quality fac-
tor Q−1

c describes loss to the measurement environment.
Here, Q−1

load and Q−1
i are merged to an effective qual-

ity factor Qe = 1/(Q−1
load +Q−1

i ). Furthermore, we define
Γmin = (Qc −Qe)/(Qc +Qe) and introduce the angle φ,
which accounts for an asymmetric line shape.

The fits to Eq. 1 at ϕext = −π and ϕext = 0, shown
in Fig. 2(c) and Fig. 2(d) as solid lines, reveal an over-
all shift of 660 kHz in f0 and a drastic change in Qe,
while Qc and φ remain similar. At ϕext = −π, we ob-
tain Qe = 19 400 and Qc = 23 400; whereas at ϕext = 0,
we find Qe > 200 000 and Qc = 23 700. Consequently,
the resonator is undercoupled (Qe < Qc) at ϕext = −π,
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FIG. 2. Flux dependence of the reflection coefficient Γ at
Vbg = 6 V. (a)-(b) Colormaps of |Γ| and arg (Γ) as a func-
tion of probe frequency f and DC flux current Iflux. The
horizontal top axis represents the conversion to the external
phase ϕext across the rf SQUID. (c)-(d) |Γ| and arg (Γ) at
ϕext = [−π, 0] overlaid with fits to Eq. 1 (solid lines), from
which we obtain the resonance frequency f0, asymmetry an-
gle φ, coupling quality factor Qc and effective quality factor
Qe as listed below:

ϕext f0 φ Qc Qe
−π 3.09755 GHz 0.224 23 400 19 400
0 3.09821 GHz 0.235 23 700 > 200 000

but overcoupled (Qe > Qc) at ϕext = 0, which explains
the distinct resonance lineshapes [25]. Since Qi can be
treated as a constant with Qe being a lower bound, we
conclude that Qi > 200 000. This large value allows
us to treat the CTL as lossless (Q−1

i = 0) such that
Qe ≈ Qload. The SM provides further insights to the res-
onance curve fitting [23].

The observed flux tunable microwave response in terms
of f0 and Qload is the direct manifestation of phase-
dependent microscopic processes in the graphene JJ [10],
which will be discussed in detail in Sec. VII and Sec. VIII
within the framework of ABSs. In the following section
we model the electrical properties of the graphene JJ with
lumped elements and explain their effect on the resonant
behavior with the circuit of a loaded λ/4-resonator.

IV. CIRCUIT MODEL

The inductively coupled rf SQUID acts as a variable
load impedance Zload attached to the resonator, which
tunes the reflective response. We express Zload according
to the circuit schematic depicted in Fig. 3. The rf SQUID
is modeled as a loop with self-inductance Lloop in series
with the JJ. The mutual inductance M quantifies the
coupling strength to the resonator, which is built from
a CTL with characteristic impedance Zr. The JJ itself
is represented by a variable Josephson inductance LJ in
parallel with a variable shunt resistance Rs. For this ar-
rangement the load impedance terminating the resonator
is detailed in the SM and reads [23]:

Zload =
ω2M2

jωLloop + (Gs + jBJ)
−1 , (2)

where ω = 2πf is the angular frequency, Gs = 1/Rs is
the shunt conductance and BJ = −1/(ωLJ) is the sus-
ceptance. Note that Y = Gs + jBJ is the complex ad-
mittance of the JJ.

The influence of Zload on the λ/4-resonator is twofold:
First, the imaginary part of Zload causes a shift of the
resonance frequency as derived in the SM [23]

δf0 = f0 − fbare = − 2

πZr
Im(Zload)fbare, (3)

with respect to the unloaded resonance frequency fbare.
Second, the real part of Zload gives rise to dissipation in
the resonant circuit, which can be expressed according to
the derivations presented in the SM as [23]

Qload =
πZr

4 Re(Zload)
. (4)

From Eq. 2 one recognizes, that the junction variables,
Gs and BJ affect both Re(Zload) and Im(Zload). Con-
sequently, δf0 and Qload would need to be considered
simultaneously to evaluate them. However, it turns out
that, due to the obtained relatively large Qload values,
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FIG. 3. Circuit schematic of a rf SQUID coupled to a λ/4
resonator. The resonator couples inductively to the rf SQUID
with strength M and connects to the reflectometry setup via
capacitance Cc. The rf SQUID is modeled as a loop with
self-inductance Lloop in series with the JJ, which in turn, is
modeled as a variable Josephson inductance LJ in parallel
with a variable shunt resistance Rs. This forms a variable
load impedance Zload, which tunes the reflective response Γ.

one is allowed to set Gs → 0 in Eq. 3, which simplifies
the relation as shown in the SM to [23]

δf0 ≈
8

π2

M2

Lp (LJ + Lloop)
fbare, (5)

where Lp is the parallel LC-equivalent inductance of the
λ/4-resonator. This means that the shift of the reso-
nance frequency mainly originates from the Josephson
inductance LJ , whereas the broadening of the resonance
originates from the dissipation in the JJ specified by the
shunt conductance Gs.

Since the inverse Josephson inductance is a measure of
the change in the supercurrent Is(ϕ) with respect to the
phase ϕ across the junction [6]

LJ(ϕ)−1 =
2π

Φ0

∂Is(ϕ)

∂ϕ
, (6)

we can express the resonance frequency shift and the be-
havior of LJ(ϕ) with the current-phase relation (CPR).

In order to quantify the CPR and Gs from the
resonator response, we perform finite-element simula-
tions [26] based on the device geometry, to acquire
Lloop = 211 pH and M = 30.83 pH. Moreover, we find
Zr = 69.5 Ω from the aspect ratios of the CTL [27] in
combination with the resonant behavior of the circuit
and deduce Lp = 4.55 nH. The evaluation of Zr and Lp
can be found in the SM [23].

V. CURRENT-PHASE RELATION

In this section we extract the CPR by fitting the pe-
riodic shift of the resonance frequency under considera-
tion of self-screening effects. The coupling strength be-
tween the superconducting leads is determined by the
Cooper pair transmission probability and defines the
shape of the CPR. For small coupling or low transmis-
sion probability the CPR is sinusoidal, whereas the CPR
becomes forward-skewed for increased coupling. Due to
the semiconducting properties in graphene JJs, the cou-
pling strength and therefore the CPR skewness can be

tuned with the gate voltage [20, 28–31]. To capture the
non-sinusoidal behavior, we express the CPR as Fourier
series [32]

Is(ϕ) =
∑
k

(−1)k−1Ak sin(kϕ), (7)

with k being the harmonic order and Ak the correspond-
ing amplitude.

To extract the CPR from the measured resonance fre-
quency modulations, we need to relate the external phase
ϕext to the phase difference ϕ across the JJ. This is not
straightforward, since if a supercurrent flows within the
rf SQUID, there is a phase drop over the loop inductance
Lloop in addition to the phase drop over the JJ, which
leads to a non-linear relation between the internal phase
ϕ and the external phase ϕext – known as the screening
effect [33]:

ϕ = ϕext −
2π

Φ0
LloopIs(ϕ). (8)

Here, we obtain the CPR for each gate voltage by solv-
ing the set of equations Eqs. 5-8 in a self-consistent way
by using an iterative fitting method. The basis for this
method is the resonance frequency shift as a function
of ϕext, which is presented for the entire gate range in
Fig. 4(a). At each fitting iteration we include Fourier am-
plitudes Ak up to the 10th-harmonic and allow for small
changes in fbare. Details about the method can be found
in the SM [23].

In Fig. 4(b) we illustrate the effect of screening by com-
paring δf0 as a function of ϕ and ϕext, respectively – for
the example at Vbg = 6 V. The corresponding CPRs, de-
duced from fitting the modulations in δf0 with respect
to phase, shown as solid lines in Fig. 4(b), are presented
in Fig. 4(c). The screening consideration causes a dis-
tortion of the phase around π as indicated by arrows.
Omitting this effect results in an apparent enhancement
of the skewness [34]. Even after correcting for screening,
we find a substantially forward-skewed CPR, visualized
by the comparison with a sinusoidal behavior. Although
screening effects are small in this case, we emphasize that
they can have a significant impact on the evaluated skew-
ness, especially for large Is and Lloop.

In Fig. 4(d) we map the extracted CPR as a func-
tion of Vbg. The smallest CPR amplitude is found at
Vbg = −0.44 V, which we attribute to the charge neutral-
ity point (CNP) of graphene. Here, resonance frequency
modulations of only ±10 kHz can still be clearly resolved
as seen in Fig. 4(e), which demonstrates the sensitivity of
the microwave circuit. The CPR at the CNP, shown in
Fig. 4(f), is slightly skewed and has a maximal supercur-
rent of Ic = 6.3 nA.

In the following, we quantify the CPR and its skewness
by two commonly used ways: i) by the skewness param-
eter S = (2ϕmax/π) − 1, where ϕmax is the phase maxi-
mizing the CPR to the critical current Ic [29], and ii) by
directly providing the set of Fourier amplitudes Ak [32].
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FIG. 4. Evaluation of the CPR. (a) Colormap of the resonance frequency shift δf0 = f0 − fbare with fbare = 3.098 GHz
as a function of gate voltage Vbg and external phase ϕext. (b) δf0 at Vbg = 6 V as a function of ϕ and ϕext, respectively
overlaid with the fits to Eq. 5 (solid lines), from which the CPR is deduced. (c) Presents the CPR at Vbg = 6 V, corrected
for the self-screening of the SQUID (blue) and uncorrected (dashed), in comparison with the sine function (dotted). In (b)-(c)
arrows illustrate the correction introduced by the non-linear mapping from ϕext to ϕ. (d) Corrected CPR inferred from (a) as
a function of Vbg. (e) δf0 at the charge neutrality point (Vbg = −0.44 V) as a function of ϕ overlaid with the fit and in (f) the
corresponding CPR.

The latter description is more precise, since it captures
the entire CPR lineshape, whereas the S-parameter to-
gether with Ic do not uniquely characterize the CPR, but
are more intuitive.

In Fig. 5 we employ both of these characterizations to
illustrate the gate dependence of the CPR. We observe
a rapid enhancement of Ic up to ∼ 200 nA for gating to-
wards positive voltages (n-doped), whereas towards nega-
tive voltages (p-doped) the increase is weaker and reaches
only ∼ 50 nA as seen in Fig. 5(a). Because A1 closely
follows Ic, the CPR is mainly determined by the 2π-
periodic sinusoidal contribution for all Vbg. However, the
small additions from higher harmonics lead to a forward-
skewed CPR. From Fig. 5(b) it appears that the skewness
saturates in both doping regimes with a slight reduction
around the CNP. For the n-doped side, the skewness sat-
urates around S ≈ 0.22, whereas on the p-doped side the
skewness is less pronounced, saturating around S ≈ 0.12.
The ratios Ak/A1 follow the same trend.

The asymmetric behavior in Ic and S with respect to
Vbg are attributed to the presence of n′-doped contact
regions inducing additional scattering potentials. The JJ
is therefore more transparent in the n′nn′-situation com-
pared to the n′p n′-case [29, 35]. We speculate that the
minimal skewness of S ≈ 0.05 close to the CNP origi-
nates from the formation of electron-hole puddles [36] in
the graphene flake, which further enhance the scattering
probability.

(a)

(b)
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FIG. 5. Characteristics of the CPR as function of gate volt-
age Vbg. The step size in Vbg is reduced close to the CNP
(Vbg = −0.44 V). (a) Critical current Ic and Fourier ampli-
tudes Ak. (b) Skewness parameter S and ratios Ak/A1. The
theoretical skewness value for a short, diffusive system under
ideal conditions S = 0.255 is illustrated with the pink mark.
(a)-(b) Systematic error bars in Ic and S are generated by
modifying M by ±3% and Lloop by ±5% in the CPR evalu-
ation. The amplitudes Ak for k ≥ 5 are negligibly small and
omitted in the figures.
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VI. PHASE-DEPENDENT LOSS

Having extracted the CPR from the resonance fre-
quency shift, we now deduce the phase-dependent dis-
sipative part of the graphene JJ; namely, the shunt con-
ductance Gs. We can infer Gs from Eq. 4, in which we
express the susceptance BJ with the CPR according to
Eq. 6 and make use of Qload obtained from the reflectance
curve analysis presented in Sec. III.

From Fig. 6(a), we observe that around the 0-points
(ϕ = nevenπ) the dissipation in the microwave circuit
stemming from the rf SQUID is minor (Qload > 200 000)
for all Vbg. However, at the π-points (ϕ = noddπ), the
dissipation becomes significantly larger and gate depen-
dent with a minimal quality factor of Qload ≈ 9800.

This behavior is reflected in Gs, which is mapped in
Fig. 6(b) as a function of Vbg and ϕ. Around the 0-points,
we deduce low conductance valuesGs ≤ 0.1 mΩ−1, which
refers to weak dissipation according to the parallel junc-
tion circuit model used here. In contrast, at the π-points,
a pronounced Lorentzian-shaped dissipation peak devel-
ops, as seen in Fig. 6(c). The dissipation onsets are lo-
cated symmetrically around the π-points and are weakly
gate dependent. On the other hand, the peak heights are
strongly influenced by Vbg and reach a maximal value of
Gs ≈ 10 mΩ−1 at large n-doping. Although the ampli-
tude of the peak appears to fluctuate as a function of Vbg,
the height replicates for the three different π-points mea-
sured here, as illustrated in Fig. 6(d). This demonstrates
the stability of the gate-tunable potential landscape in
graphene. In order to explain the dissipative response of
the JJ, the underlying phase-dependent transport pro-
cesses need to be consider, which are discussed in the
next section.

VII. THEORY OF ANDREEV BOUND STATES

In the following we relate the CPR and the phase-
dependent dissipation to the microscopic concept of An-
dreev bound states (ABSs) formed within the JJ.

Coherent Andreev reflections of quasiparticles at the
graphene-superconductor interfaces lead to the formation
of ABSs [37]. These quasiparticle states transfer Cooper
pairs across the junction in form of counter propagating
electron-hole pairs [38]. Due to the electron-hole symme-
try, the ABSs come in pairs; one state has negative energy
E−n ≤ 0 and the other has positive energy E+

n = −E−n ,
where n denotes a specific transport channel. The spec-
tral gap δE quantifies the minimal transition energy be-
tween states with negative and states with positive ener-
gies. Each occupied state carries current proportional to
the derivative of its energy with respect to phase. The
sum over the set of all channels defines the total super-
current [39], which can be expressed as

Is(ϕ) =
2π

Φ0

∑
n

f(E±n )
∂E±n
∂ϕ

, (9)
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FIG. 6. Evaluation of the shunt conductance Gs. (a) The
load quality factor Qload in logarithmic scale as a function
of Vbg and ϕ, deduced from resonance curve fittings. (b) Gs
in logarithmic scale obtained by using Eq. 4 with Qload and
the CPR results. (c) Phase dependence of Gs for different
gate voltages. (d) Gate dependence of Gs for phase biasing
conditions ϕ = noddπ.

where f(E±n ) is a functional describing the occupation
probability of the nth ABS. In equilibrium the functional
is given by the Fermi-Dirac distribution.

At zero temperature and in the absence of photons, all
ABSs with negative energies are occupied (f(E−n ) = 1),
whereas all ABSs with positive energies are empty
(f(E+

n ) = 0). In this situation the system is in the
ground state and the occupation of the ABS spectrum
is constant. Therefore the supercurrent Is is free of any
fluctuations. By virtue of the fluctuation-dissipation the-
orem, [40] there is no dissipation and the effective junc-
tion shunt conductance assumes Gs → 0.

When finite electronic temperatures T and/or the ab-
sorption of photons from the electromagnetic environ-
ment are considered, the situation becomes different;
thermal activation and/or microwave-induced transitions
will drive the system out of the ground state. The
excitation-relaxation dynamics give rise to fluctuations
in the ABS population, and correspondingly, in the su-
percurrent as well. Consequently, there is dissipation and
a finite shunt conductance Gs appears [8]. When the
spectral gap closes (δE → 0) already small temperatures
T and small photon energies hf will trigger fluctuations.
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We note that the fluctuations are determined by the tem-
perature, the photon absorption and emission rates and
as well by the relaxation time τrel of a non-thermal dis-
tribution towards a thermal one, which we express in the
following as the energy γ = ~/(2τrel). In conclusion, this
means that in general, both the inductive and dissipa-
tive part of a JJ depend on the ABS spectrum and the
population dynamics within this spectrum.

Inherent to wide junctions – like the graphene JJ inves-
tigated here – is that there are various possible transport
channels leading to many ABSs and hence to a dense
ABS spectrum [41]. The phase dependence of the ABS
spectrum is determined by the geometry of the JJ and
its material properties, i.e. the superconducting gap ∆
in the leads and the inverse transport time in the normal
region that relates to the Thouless energy ET . An impor-
tant characteristic of JJs is whether they are in the ‘short’
or ‘long’ junction limit. The former case is realized when
ET � ∆, while the latter holds in the opposite limit.
The condition for the short junction limit can also be ex-
pressed as the coherence length ξ being longer than the
junction length L. Since this quantity for similar devices
is reported to be ξ ≈ 500 nm [41, 42] and the junction un-
der investigation has a length L = 400 nm, the condition
for the short junction limit seems reasonably valid.

For JJs in the short junction limit the ABS ener-

gies are given by E±n (ϕ) = ±∆
√

1− τn sin2(ϕ/2), where
τn is the transmission probability of the nth channel.
Thus, the ABS spectrum strongly depends on the trans-
parency distribution, which further defines the transport
regime. For diffusive transport the transmission coeffi-
cients are continuously distributed following Dorokhov’s
bimodal distribution [43], which describes that there are
many channels with low transmission (τn → 0), but also
many with high transmission probabilities (τn → 1).
Consequently, a dense ABS spectrum emerges as illus-
trated in Fig. 7(a) with a spectral gap δE = 2∆| cos(ϕ/2)|
that closes (δE → 0) towards the π-points and maxi-
mally opens (δE = 2∆) towards the 0-points. In the
following we assume predominant diffusive transport in
the graphene JJ investigated here, which is supported
by multiple observations: i) the small discrepancy be-
tween the experimentally determined skewness at large
n-doping (S ≈ 0.22) and the one predicted theoretically
(S = 0.255) [44], ii) the lack of Fabry-Pérot oscillations
in the gate dependence of the CPR presented in Fig. 5
indicates suppressed ballistic transport [29], and iii) the
randomly evolving shunt conductance Gs seen in Fig. 6
hints at universal conductance fluctuations, which are
expected for diffusive systems. We believe that here the
diffusive character of the device is stemming from scat-
ting processes at the graphene edges, which are signifi-
cant due to a small width to length ratio (W/L ≈ 2), and
hence reduce the amount of ballistic channels.

In order to evaluate the dynamics of the ABS spectrum
described above and translate it to lumped element quan-
tities, we make use of theoretical works that predict the
phase-dependent linear microwave response in terms of
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FIG. 7. ABS spectrum and theoretical microwave response
for a short, diffusive JJ. (a) Spectrum of a short JJ with
multiple channels of different transparencies. (b) Microwave-
induced transitions between states triggered by the absorption
of a photon with energy hf . (c) The finite lifetime of states
described by the relaxation rate γ causes a spectral broaden-
ing of the ABS energies and hence blurs the transition con-
dition. (d) Theoretically predicted dissipative and inductive
response: Gs (blue, left axis) and BJ (red, right axis) nor-
malized by the conductance value at ϕ = π as function ϕ for
different γ/ET ratios. The normalization values for increas-
ing γ/ET read: Gs(π)/GN = 45, 11, 8.6, 7, 5.9, 5, 4.4,where
GN is the normal state conductance. Here: ∆/ET = 0.1,
hf/ET = 0.01 and kT/ET = 0.008.

the susceptance BJ and the shunt conductance Gs [3, 4].
For the theoretical analysis we consider a diffusive multi-
channel JJ in the short junction limit at finite temper-
ature coupled to a photonic environment of energy hf .
Note that in the experiment the photonic environment is
provided by the driven microwave resonator.

First we consider the case of long-lived excitations
(γ → 0), for which we find a sharp onset in Gs(ϕ) as seen
by the solid gray line in Fig. 7(d). The dissipation oc-
curs in the phase range, where the spectral gap becomes
smaller than the excitation energy δE ≤ hf , thus allow-
ing microwave-induced cross-gap transitions. The width
and the height of the dissipation peak depends on char-
acteristic energy scales, which are denoted in the figure
caption. It is worth mentioning that not only transitions
across the gap lead to dissipation; all possible absorption
processes, including intra-band excitations E+

n → E+
m,

contribute to it, whereas the transition probability scales
according to Fermi′s Golden rule with the available den-
sity of states [13]. Fig. 7(b) depicts a microwave-induced
transition of a quasiparticle from an arbitrary initial state
to an available final state. The fact that the ABSs have
a finite lifetime causes a spectral broadening of the ener-
gies. This results in a blurring of the transition condition
(δE ≤ hf) as sketched in Fig. 7(c). Therefore, increasing
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γ, i.e., shortening the lifetime, broadens the dissipation
peak as seen by the blue lines in Fig. 7(d). Importantly,
the lifetime broadening also affects the susceptance, in
particular the phase conditions for BJ = 0 shift away
from the π-point, which is equivalent to a reduction of
the CPR skewness. Note that BJ for γ → 0 shown in
dashed gray appears different, because it is rescaled with
a large conductance value Gs(π). A representation of
Fig. 7(d) without normalization is shown in the SM [23].

The influence of temperature on the microwave re-
sponse is theoretically discussed, and together with ex-
perimental results, presented in the SM [23].

In short, environmental perturbations, namely, tem-
perature and electromagnetic irradiation, cause dynam-
ical variations in the population of ABS spectra on
the timescale of the non-equilibrium occupation lifetime,
which influence the susceptance BJ likewise the CPR and
give rise to dissipation captured by the shunt conduc-
tance Gs.

VIII. COMPARISON WITH THEORY

Finally, we compare the experimental results of the
graphene junction with theoretical predictions based on
the assumption of a short, diffusive multi-channel JJ.

One theoretical prediction, which was not explicitly
pointed out above, is that the inductive and dissipative
response (BJ ,Gs) scale linearly with the normal state
conductance GN [3, 4], which is tunable with the gate
voltage in our experiment. From Fig. 8(a) one can verify
this relation, since the relation between the experimen-
tally deduced values of the susceptance BJ and conduc-
tance Gs obtained at ϕ = π for all different Vbg – clearly
follows a linear trend. Furthermore, the ratio BJ/Gs
is the inverse loss tangent describing the quality of the
Josephson inductance [14], where a larger ratio implies a
more ideal behavior of the inductance. We attribute the
cone-shaped spread in Fig. 8(a) around the mean ratio
(〈BJ(π)/Gs(π)〉 ≈ 7) to altered ABS spectra and modi-
fied relaxation dynamics at different gate voltages.

In the next step, we search for the best match be-
tween the theoretically predicted and the experimentally
deduced phase-dependent microwave response by con-
sidering both the inductive and the dissipative proper-
ties of the JJ. To this end, we numerically generate sets
of BJ and Gs with different characteristic parameters.
In particular, we vary the ratios kT/ET and γ/ET to
account for a finite electronic temperature and to cap-
ture the effect of lifetime broadening. We have fixed the
Thouless energy to ET = 10∆ and the photon energy to
hf = ∆/10: the first condition ensures the short junc-
tion limit, whereas the second one compares favourably
well to the expected experimental relation between the
photon energy of the resonator and the superconducting
gap of the contact material.

In Fig. 8(b) we compare the normalized theoretical and
experimental values for Vbg = −6 V, whereas in Fig. 8(c)
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FIG. 8. Experimental observations in comparison with the-
oretical predictions for a short, diffusive JJ. (a) Experimen-
tally obtained susceptance BJ versus shunt conductance Gs
at ϕ = π follows a mean ratio of∼ 7 indicated with the dashed
line. (b)-(c) Normalized measured Gs (dotted blue, left axis)
and BJ (dotted red, right axis) overlaid with the normalized
theoretical predictions for Gs (solid) and BJ (dashed), for
which ∆/ET = 0.1 and hf/ET = 0.01 are fixed, but kT/ET
and γ/ET are variable. The best fitting parameter ratios
are indicated. For Vbg = −6 V (6 V) the normalizations read
〈Gs(π)〉 = 0.98 mΩ−1 (5.23 mΩ−1) for the experimental traces
and for the theoretical traces Gs(π)/GN = 4.4 (7).

we perform the comparison for Vbg = 6 V. The experi-
mental values Gs (blue dots) and BJ (red dots) are nor-
malized with the shunt conductance at ϕ = π, denoted
by 〈Gs(π)〉 [45]. Close overlap between theory and exper-
iment can be found for both gate voltages with the same
temperature (kT/ET = 0.008), but distinct relaxation
rates γ.

At Vbg = −6 V we observe differences between the
model and the experimental data even with the best
match (γ/ET = 0.03). This is especially evident at the
flanks of the dissipation peak and the susceptance at the
π-point. We attribute this mismatch to an inappropri-
ate choice of transport regime for this gate voltage, be-
cause here the additional pn′-junctions at the interfaces
effectively elongate the quasiparticle trajectories. Con-
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sequently, the JJ tends to be in the long-junction limit
causing a compression of the ABS spectrum.

On the other hand, we stress that we observe strik-
ing agreements between the theoretical predictions with
γ/ET = 0.015 and the experimental data at Vbg = 6 V.
Apparently, the model of a short, diffusive junction re-
produces simultaneously the inductive and dissipative re-
sponse of the graphene JJ for this doping configuration.
By evaluating the best fitting ratios kT/hf = 0.8 and
γ/hf = 1.5 with the resonance frequency f = 3.098 GHz,
we deduce an electronic temperature T = 120 mK and
obtain a relaxation time τrel = 17 ps. A similar equili-
bration time (τrel = 7 ps) is reported for an equivalent
short, diffusive Al-graphene JJ probed at mK tempera-
tures and large n-dopings [46]. We stress that the ABS
spectrum of a short, diffusive junction might not be the
only spectrum, which in a similar theoretical model could
reproduce the experimentally observed response. In par-
ticular, in a wide JJ the ABS spectrum can be built from
quasiparticles with long and short trajectories leading to
more complex ABS structures than discussed above [41].

IX. CONCLUSION

We have measured the reflective response of a mi-
crowave resonator inductively coupled to a graphene-
based rf SQUID as a function of flux-bias and charge
carrier density. We developed a concise circuit model to
infer the CPR and the phase-dependent dissipation of the
graphene JJ from the changes in the resonance frequency
and broadening. We hereby obtain the full complex ad-
mittance of the junction, which is the key parameter to
design Josephson microwave circuits.

Our comprehensive investigation demonstrates the im-
pact of the environment on the performance of JJs in
terms of finite temperature and microwave photons. If
the environment provides energies larger than the spec-
tral gap, short-lived excitations appear in the ABS spec-
trum, which induce fluctuations in the supercurrent lead-
ing to dissipation. The comparison between the ex-
perimentally deduced microwave response at high elec-
tron density and the one predicted by theory for a
short and diffusive junction model, yields striking agree-
ment, from which we deduce a relaxation time of 17 ps.
This fast thermal relaxation makes graphene-based JJs
unique candidates for highly sensitive and fast bolo- and
calorimeters [16, 17, 47].

Furthermore, the device architecture and measurement

protocols presented in this work are well-suited to ex-
plore the fundamental properties of other JJs, such as
junctions made of 2D/3D topological insulators or Dirac
and Weyl semimetals [48]. Particularly, the topological
nature of these JJs can be probed, because it is predicted
that they host ABS states that cross at the π-points
but possess opposite parities, meaning that microwave-
induced transitions across the gap are prohibited [49]. As
a consequence, it is expected that the dissipative char-
acter of topological JJs is distinctly different from trivial
ones [50–52].
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Vidal, Thermal noise in superconducting quantum point
contacts, Phys. Rev. B 53, R8891 (1996).

[9] B. Dassonneville, A. Murani, M. Ferrier, S. Guéron, and
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[42] C. Li, S. Guéron, A. Chepelianskii, and H. Bouchiat,
Full range of proximity effect probed with supercon-
ductor/graphene/superconductor junctions, Phys. Rev.
B 94, 115405 (2016).

[43] O. Dorokhov, On the coexistence of localized and ex-
tended electronic states in the metallic phase, Solid State
Commun. 51, 381 (1984).

[44] The CPR of a short, diffusive junction in equilibrium
can be expressed analytically, from which one obtains a
skewness S = 0.255 at T = 0 [4, 53] as indicated by the
pink mark in Fig. 5. The reduced skewness in the p-doped
regime (S ≈ 0.12) we assign to an overall suppression of
the transmission probability due to the formation of pn′-
junctions at the graphene-superconductor interfaces.

[45] We average the three shunt conductance values closest to
ϕ = π to accommodate for scattering of the data.

[46] J. Voutilainen, A. Fay, P. Häkkinen, J. K. Viljas,
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Supplementary Material:
Phase-dependent microwave response of a graphene Josephson junction

SI. FABRICATION

A. NbTiN sputtering

The NbTiN film (80 nm) is sputtered on an undoped Si/SiO2 wafer (500µm/170 nm) in a AJA© ATC Orion 8
sputtering machine using a NbTi-target (70/30 at%, 99.995% purity) and N2 added to the Ar sputtering gas. Before
deposition, following wafer cleaning steps are performed:

• 10 min sonication in deconex© 12 basic/DI-water solution → flush with DI-water

• 10 min sonication in DI-water → blow-dry

• 5 min baking at 120 ◦C

• 10 min sonication in acetone

• 10 min sonication in IPA → blow-dry

• 5 min UV-ozone in UVO-Cleaner© Model 42-220

After inserting the wafer into the sputtering machine typical base pressures of ∼ 8 × 10−9 Torr are achieved. We
position the wafer as close as possible to the NbTi target to minimize particle scattering. Before depositing on the
wafer substrate – the chamber and the NbTi-target are conditioned. During the conditioning steps a substrate shutter
protects the wafer from material deposition. We pre-sputter Ti (35 sccm of Ar at 4 mTorr with (DC) 100 W for 20 min)
to remove oxygen residuals in the chamber. After terminating the Ti pre-sputtering, we pump on the chamber until
pressures < 1 × 10−9 Torr are reached, which typically takes ∼ 20 min. Then we sputter NbTi+N2 (50 sccm of Ar,
3.5 sccm of N2 at 2 mTorr with (DC) 275 W). After 4 min of sputtering time, we open the substrate shutter to allow
for deposition on the wafer – for totally 375 s, which results in a film thickness of ∼ 80 nm. The N2-flow was optimized
separately to achieve a stoichiometric compound of NbTiN.

B. Resonator and graphene Josephson junction

After the sputter deposition of NbTiN – the resonator is defined, then the separately prepared van der Waals
heterostructure is placed and contacted as explained in the following:

Resonator patterning: The resonant structure and supply lines in NbTiN are patterned by using positive e-beam
lithography (EBL) followed by an Ar/Cl2 reactive-ion etching-step. The meandered co-planar transmission line (TL)
is designed with a central conductor width of 12 µm, a clearance of 6 µm to the surrounding ground plane and a
total length of l = 7.54 mm. The TL is shorted to ground on one side and interrupted by a coupling capacitance on
the other, which forms the λ/4-resonator. The dimensions of the finger capacitor are aimed for providing a coupling
capacitance of ∼ 4 fF. From the measurement and calculations presented below we deduce for this configuration a
resonance frequency f0 ≈ 3.098 GHz, a characteristic impedance Zr = 69.5 Ω and a coupling capacitance Cc = 4.7 fF.
The supply lines for the gate, flux, and pump are designed on purpose with different aspect ratios to provoke an
impedance mismatch for minimizing loss channels for the resonator. For this experiment we do not make use of the
pump line (upper right in Fig. 1(a) of the maintext). The fabrication details are listed below.

• Resist: AR-P© 671.05 (positive PMMA resist, 950k, 5% diluted in chlorobenzene)

• Coating: Spin with 6000 rpm for 40 s (ramp 4 s) → thickness 600 nm.

• Bake: 5 min on the hot plate at 180 ◦C

• EBL with Zeiss© Supra 40: 20 kV acceleration voltage, aperture of 60µm in high current mode and a dose of
275µC/cm2

• Resist development: MIBK/IPA 1:3 at room temperature for 60 s. The development is followed by 10 s in IPA
→ blow-dry

• O2-plasma in Oxford© Plasmalab 80 Plus: 2 min with 30 W and 16 sccm of O2-flow at 250 mTorr
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• NbTiN etching in Sentech© SI500: 1 Pa, ICP power 100 W, RF power 125 W with 40 sccm of Cl2 and 25 sccm
of Ar for 40 s; etch rate ∼ 3 nm/s

• Lift-off: 1 h in acetone at 50 ◦C followed by sonication and rising with IPA → blow-dry

Preparation of the graphene van der Waals heterostructure: The graphene Josephson junction (JJ) is
made from a van der Waals heterostructure, which consists from bottom to top out of a thick graphite sheet, a
bottom hexagonal boron nitride (hBN) with thickness d = 47.5 nm, a monolayer graphene and a top hBN (21 nm).
We separately prepare the stack by standard polycarbonate-assisted pick-up technique [S1] and place it next to the
current anti-node of the resonator. Details about the stacking routine is provided in the SI of Ref. [S2]. In the end
of this process the whole device is placed for 1 h in dichlormethane to dissolve polycarbonate residuals to prepare the
stacks surface for the following fabrications steps.

Contacting and Shaping: The graphene is contacted and enclosed by a thermally evaporated Ti/Al (5/90 nm)
lead, which forms the rf SQUID. Access regions for the self-aligned side contacts [S3] are structured with positive
e-beam lithography in combination with CHF3/O2 etching. The contacts to the graphene and the loop are fabricated
simultaneously, which was done at the Institute of Nanotechology of the Karlruhe Institute of Technology (KIT).
Rainer Kraft from KIT guided the fabrication, for which we made use of following recipe [S4]:

• Resist: AR-P© 672.045 (positive PMMA resist, 950k, 4.5% diluted in anisole)

• Coating: Spin with 300 rpm for 2 s (ramp 1.5 s) followed by 6000 rpm for 60 s (ramp 1.5 s) → thickness 280 nm

• EBL: 30 kV acceleration voltage and a dose of 360µC/cm2. The 20µm (120µm) aperture was used for small
(large) structures.

• Resist development: MIBK/IPA 1:3 at room temperature for 20s. The development is followed by 2 s in IPA →
blow-dry

• Opening hBN windows for edge-contact: Plasma etching in Oxford© Plasmalab 80 Plus: CHF3/O2

40 sscm/4 sccm with 60 W at 60 mTorr. The etch time is adjusted to the thickness of the top hBN with calibrated
etch rate of 0.55 nm/s.

• Thermal evaporation of Ti/Al contacts in Bestec using the same mask:

– Ti: Tsource = 1640 ◦C; ramp rate 25 ◦C/min; pressure 7.8× 10−9 mbar;
evaporation rate 0.5 nm/min; film thickness 5 nm, Tstage = −130◦C

– Al: Tsource = 1200 ◦C; ramp rate 25 ◦C/min; pressure 3.5× 10−9 mbar;
evaporation rate 6 nm/min; film thickness 90 nm, Tstage − 130◦C

– The Bestec at KIT has a specially large ratio between source-diameter and source-sample-distance, which
is providing substantial undercut deposition.

• Lift-off: 2 h in acetone at room temperature, afterwards rinsed with IPA and blow dried with N2

After contacting, the graphene stack is shaped to a width W = 1µm using a positive PMMA resist mask in
combination with CHF3/O2 etching step. This process step is equivalent to the one described above.
Design of the rf SQUID: For the loop material it is desirable to chose a material with low kinetic inductance,

because this adds beside the geometric inductance to the total self-inductance of the loop Lloop. If LloopIc > Φ0/(2π),
where Φ0 is the flux quantum and Ic is the critical current of a sinusoidal current-phase relation, then the phase ϕ
across the junction becomes hysteretic as a function of external flux due to screening effects, such that the phase
condition ϕ = π cannot be reached. Therefore we chose Al, which has a low kinetic inductance and a relatively small
superconducting gap ∆Al = 180µeV advantageous for keeping the critical current low. The elongated shape of the
loop and the varying lead width (see Fig. 1 (b) in maintext) builds a compromise between maximizing the coupling
to the resonator and minimizing screening effects. For this specific geometry we find a self-inductance Lloop = 211 pH
from finite-element simulations performed in Sonnet [S5], in which we assume a kinetic sheet inductance of 0.2 pH/�
for the 90 nm Al film calculated from the value presented in Ref. [S6]. Simultaneously, we obtain the mutual inductance
M = 30.83 pH between the resonator and the SQUID loop. For both of these results the exact geometry of the device
deduced by scanning electron microscope imaging was considered.

The loop surrounds an area A ≈ 4 000µm2 implying that already ∼ 1 µT generates a flux quantum inside or in
other words provides one full phase biasing period. This small magnetic field is governed by the DC current Iflux

flowing close by the loop.
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C. Bonding

After gluing the sample with silver paste onto the copper backplane of the PCB holder, we connect the rf and
DC lines from the PCB with Al bond wires to the once of the device. We ensure a homogeneous ground plane by
adding many grounding bonds around the resonant structure. Additionally, we place bond-bridges across the TL and
between the areas surrounding the rf SQUID. Fig. S1 presents the bond arrangement used for this devices. Note that
this pictures is taken after removing the sample from the PCB holder after the measurements and some bonds broke
off.

1 mm

FIG. S1. Optical picture for illustrating the bonding of the device.

SII. SET-UP OVERVIEW

The measurements are carried out in a BlueFors© BF-LD400 cryogen-free dilution refrigerator, in which the mixing
chamber plate is modified with an additional mounting stage for high frequency components. A detailed overview
of the high frequency and DC set-up is provided in Fig. S2. The device is surrounded by a permalloy shield to
screen external magnetic field fluctuations. We probe the resonant structure with a vector network analyser (VNA)
in a standard reflectometry configuration. The probe signal reaches the sample via an attenuated input line and a
directional coupler. The reflected signal travels back to the VNA through the amplification chain consisting of a room
temperature amplifier and 4 K-HEMT amplifier, which are isolated towards the device by two circulators located at
the mixing chamber plate. The supply lines for the gate and bias voltages of the 4 K-HEMT amplifier are filtered
with home-built LC-lowpass filters (cut-off ∼ 150 kHz). The DC lines for tuning the gate voltage on the graphene
and the flux inside the rf SQUID are heavily filtered at room and base temperatures. The Ecosorb© lowpass-filter in
the high frequency line does have a cut-off frequency around 13 GHz and the silver-epoxy lowpass-filters in the DC
lines do have a cut-off around 6 MHz.
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FIG. S2. Detailed overview of the measurement set-up.

SIII. READ-OUT

The read-out power has a substantial influence on the response of the coupled resonator rf SQUID circuit. In
Fig. S3 we present the reflectance coefficient Γ as a function of probe frequency f and probe power VNAout. Here, the
graphene JJ is gated with Vbg = 4.5 V (electron doped) and tuned to ϕ = π (spectral gap is smallest). We observe that
for increasing the probe power the resonance frequency shifts to higher values and the resonance lineshape alters. We
attribute this to non-linear effects caused by over driving the resonator or saturating the ABS spectrum. It could also
be that the stray field of the resonator induces large phase biasing oscillations, which smears out the phase-dependent
features of the JJ. Additionally, irradiating JJs affect their current-phase relation [S7] and the IV -characteristics
develops Shapiro steps [S8]. Both of the effects will influence the reflective response.

If the read-out power is below -25 dBm, there are no more changes in the resonance frequency nor in the resonance
lineshape. All subsequent measurements are carried out with VNAout = −30 dBm and a bandwidth VNABW =500 Hz.
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FIG. S3. Reflection coefficient Γ at Vbg = 4.5 V and ϕ = π as a function of probe frequency f and probe power VNAout

obtained with a bandwidth VNABW =50 Hz. (a) Amplitude and in (b) argument of Γ. All subsequent measurements are
carried out with VNAout = −30 dBm (indicated with the arrows.)
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A. Conversion to photon number

The averaged photon number in the resonator can be estimated with following expression [S9]

〈n〉 =
2

~ω2
0

Z0

Zr

Q2

Qc
Papp, (S1)

where ~ is the reduced Planck constant, Z0 is the environmental impedance, Zr is the characteristic impedance of the
co-planar transmission line, Q is the total quality factor of the resonant structure, Qc is the coupling quality factor
and Papp is the applied microwave power. With ω0 = 2π · 3.1 GHz, Z0 = 50 Ω, Zr = 69.5 Ω, Q = 24 000, Qc = 24 000
and Papp = −130 dBm(= 10−16 W) we obtain an intra cavity photon occupation 〈n〉 ≈ 90. However this value can
deviate from the actual photon number, since Papp is only estimated via the total attenuation measured at room
temperature in combination with the output power of the VNA.

B. Probe flux δΦ

In order to estimate the probe flux δΦ we first evaluate the current at the end of the transmission line (TL) and
then translate the current to the magnetic field strength. From TL theory [S10] we can derive a formula, which is
expressing the current at the shorted end of a lossless TL capacitively coupled to a generator

ITL(f) =
Vgen

sin(βl)

tan(βl)

jZr tan(βl) + Z0 + (j2πfCc)−1
, (S2)

where Vgen = 10
Papp[dBm]−10

10 [V] is the generator voltage, Zr is the characteristic impedance of the TL, Z0 is the input

impedance of the generator, β = 2πf
√
εeff
c is the wavenumber of the TL,

√
εeff is the effective refractive index, l is

the length of the TL and Cc is the coupling capacitance. By maximizing the absolute value of this expression for the
frequency, one obtains the maximal current in the TL provided at resonance. With Papp = −130 dBm, εeff = 10.24,
Z0 = 50 Ω, Zr = 69.5 Ω, l = 7.54 mm and Cc = 4.7 fF we obtain |ITL|max = 310 nA at 3.094 GHz. The Biot-Savart
law expresses the magnetic field magnitude B at distance r apart from a long, thin wire, carrying a steady current in
free space

B =
µ0

2π

I

r
, (S3)

where µ0 = 4π · 10−7 N/A−2 is the vacuum permeability. By substituting values I = 310 nA and r = 1 µm one gets
B = 62 nT. Furthermore, we are interested in the flux created by this current within a rectangular loop, which can
be expressed by

δΦ =
µ0I

2π
· d · ln

(
s+ w

s

)
, (S4)

where d is the length of the loop, w is the width of the loop and s describes the spacing from the wire to the closer
loop edge see Fig. S4. With I = 310 nA, d = 80µm, w = 40µm and s = 1µm, which roughly mimics the dimensions
of the rf SQUID, we obtain δΦ ≈ 0.01 Φ0, where Φ0 ≈ 2× 10−15 Wb is the magnetic flux quantum.

I

w
s

d

Φδ

FIG. S4. Rectangular loop next to straight current-carrying wire.
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SIV. RESONANCE CURVE FITTING

Changing the flux biasing (Iflux = [−100, 75] µA) in the graphene rf SQUID coupled to the λ/4-resonator influences
the resonant behavior of the circuit as seen in the reflectance curve maps (Vbg = 5 V) presented in Fig. S5(a) and
Fig. S5(b). We implement a fitting routing, which is taking into account both the amplitude and the argument of Γ at
once to insure a highly robust fitting procedure. An other advantage of the method is the clear distinction between the
coupling quality factor Qc and the effective quality factor Qe. In the following we consider the resonance curve obtained
at Iflux = −74 µA. From Fig. S5(c) we observe that |Γ| has a shallow asymmetric lineshape and from Fig. S5(d) we
observe that arg(Γ) develops a 2π-jump. In the IQ-plane, where I = Re(|Γ|ej arg (Γ)) and Q = Im(|Γ|ej arg (Γ)), the
resonance curve generates here a circle surrounding the IQ-point=(0,0) as shown in Fig. S5(e). We fit both |Γ| and
arg (Γ) simultaneously with a least-square method with following combination of formulas

Γ =

[
Γmin + 2jQ f−f0

f0

1 + 2jQ f−f0
f0

− 1

]
ejφ + 1, (S5)

where Γmin = Qc−Qe

Qc+Qi
is the minimal reflection coefficient in the symmetric case (φ = 0), Q = (Q−1

c + Q−1
e )−1 is the

total quality factor, Qe = (Q−1
i + Q−1

load)−1 is the effective quality factor, in which Qload is the quality factor of the
load, f is the probe frequency, f0 is the resonance frequency and φ is the asymmetry angle, which causes a rotation
of the resonance circle in the IQ-plane around the off-resonance point. In order to account for an offset and a slope
in |Γ| as well as in arg (Γ), we make use of following expression, which together with Eq. S5 provides the complete
fitting formula:

Γfit = |Γ| · [aoff + aslope(f − f0)] · ej[arg (Γ)+poff+pslope(f−f0)], (S6)

where aoff describes an offset in the amplitude, aslope describes a slope in the amplitude, poff describes an offset in
the argument and pslope describes a slope in the argument. In Fig. S5 the fit result (solid red) is overlain with the
measurement data (blue crosses) and the complete set of fitting parameters is listed.
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FIG. S5. Flux dependence of the reflection coefficient Γ at Vbg = 5 V. (a)-(b) Colormaps of |Γ| and arg(Γ) as a function of
probe frequency f and DC flux current Iflux. (c)-(d) Resonance curve in |Γ| and arg(Γ) at Iflux = −74µA. (e) Resonance curve
in the IQ-plane. (c)-(e) The measured data is shown as blue crosses, while the fit result is presented as solid red line. Following
parameters are deduced from fitting:

f0 φ Qc Qe aoff aslope poff pslope

3.0981 GHz 0.25 rad 23 800 669 800 4.3× 10−3 5.1× 10−11/Hz 0.16 rad −4.7× 10−7 rad/Hz
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SV. LOADED RESONATOR

The performance of a resonator is depending on the load impedance Zload attached to it. In order to relate the
resonance frequency f0 and the quality factor Q of the resonator to properties of Zload, one can compare the input
impedance of the specific circuit with the one of a known circuit. Here, we will compare a loaded λ/4-resonator with
a parallel RLC-circuit.

A. Loaded λ/4-resonator

In the following we consider a λ/4-resonator, in which the normally shorted end is replaced by a load impedance
Zload as shown in Fig. S6(a). In general, the input impedance of a transmission line (TL) of length l and characteristic
impedance Zr shunted by Zload is given by

Zin,TL = Zr
Zload + Zr tanh(γl)

Zr + Zload tanh(γl)
. (S7)

Since the complex propagation constant γ can be expressed as γ = α + jβ, where the real part α is the attenuation
constant in TL and, the imaginary part β the wavenumber of the TL, we can rewrite

tanh(γl) =
1− j tanh(αl) cot(βl)

tanh(αl)− j cot(βl)
. (S8)

With β = ω/vp, where vp is the phase velocity of the TL and by introducing the relative frequency δω = ω−ω0 with
respect to the resonance frequency ω0, the argument of the cot-term becomes

βl =
ω0l

vp
+
δωl

vp
. (S9)

The phase velocity at resonance for a quarterwave resonator (λ = 4l) reads vp = λf0 = 2lω0

π and therefore

βl =
π

2
+
πδω

2ω0
. (S10)

Assuming δω being small, we can approximate

cot(βl) = cot

(
π

2
+
πδω

2ω0

)
= − tan

(
πδω

2ω0

)
≈ −πδω

2ω0
. (S11)

Assuming that the λ/4-resonator is lossless (α = 0) we can simplify the input impedance to

Z
λ/4
in = Zr

Zload − jZr 2ω0

πδω

Zr − jZload
2ω0

πδω

. (S12)

In the case of Zr � πδω
2ω0

Zload, we can write

Z
λ/4
in =

1
Zload

Z2
r

+ j πδω
2ω0Zr

. (S13)

In general the load impedance is complex valued and can be decomposed into its real and imaginary part, such that
Zload = Re(Zload) + jIm(Zload), which leads to

Z
λ/4
in =

1
Re(Zload)

Z2
r

+ j
Zr

[
πδω
2ω0

+ Im(Zload)
Zr

] . (S14)

pRpLpC

in
RLCZ

loadZ

in
4λ/

Z

4λ/=l

= 0, αrZ

(a) (b)

FIG. S6. (a) Loaded quarterwave transmission line. (b) Parallel RLC-circuit.
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B. Input impedance of parallel RLC-circuit

We compare this now to a parallel RLC resonant circuit shown in Fig. S6(b). The input impedance of this circuit
simply reads

ZRLCin =

(
1

Rp
+

1

jωLp
+ jωCp

)−1

(S15)

and its resonance frequency is ω0 = 1/
√
LpCp. Making again use of the relative frequency shift and analysing the

circuit near resonance allows us to rewrite the former equation to

ZRLCin ≈ 1

1/Rp + 2jδωCp
(S16)

or alternatively as

ZRLCin ≈ 1

1/Rp + 2j
√

Cp

Lp

(
δω
ω0

) (S17)

Additionally, the internal quality factor of the parallel resonant circuit can be expressed as

QRLC = ω0RpCp. (S18)

C. Unloaded λ/4-resonator

We can describe the special case of an unloaded quarterwave resonance circuit by evaluating Eq. S13 for Zload = 0:

Z
λ/4
in =

1

j π
2Zr

(
δω
ω0

) . (S19)

By directly comparing Eq. S19 with Eq. S17 for Rp →∞ one finds

π

2Zr
= 2

√
Cp
Lp
. (S20)

One can now determine the capacitance of the equivalent parallel RLC circuit with ω0 = 1/
√
LpCp as

Cp =
π

4ω0Zr
(S21)

and the inductance of the equivalent circuit as

Lp =
4Zr
πω0

. (S22)

In a real experimental scenario the characteristic impedance Zr is often not known precisely, since besides geometric
ingredients – in particular, the capacitance per unit length Cr and the self-inductance per unit length Ls – there is also
a contribution from material properties, which gives rise to the kinetic inductance per unit length Lk. Consequently,
the characteristic impedance reads Zr =

√
Lr/Cr, where Lr = Ls + Lk. Both Cr and Ls can be computed with

conformal mapping techniques to very high accuracy, whereas Lk needs to be determined experimentally. Lk can be
measured in a temperature dependence or estimated via the low temperature normal sheet resistance [S11]. In order
to circumvent this inconvenience, we can make use of the wavelength λ, which in the case of a lossless transmission
line is given by

λ =
2π

β
=

2π

ω0

√LrCr
. (S23)
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By rearranging this expression at the quarterwave resonance condition and multiplying both sides with Cr, we find

ω0Cr =
2π

4l
√LrCr 1

Cr
. (S24)

Substituting Zr =
√
Lr/Cr into the previous equation and solve for Zr leads to

Zr =
2π

4lω0Cr
. (S25)

This is now a description for Zr by just geometrical means (l and Cr) in combination with the resonance frequency
ω0. Here, we do assume an ideal resonator without any coupling to the environment - however those corrections will
be small for large coupling quality factors Qc. Now inserting Eq. S25 into the expressions for the equivalent circuit
(Eq. S21 and S22), we find in agreement with Ref. [S12]

Cp =
Crl
2
, (S26)

Lp =
2

lω2
0Cr

. (S27)

D. Evaluating Zr and Lp

In order to evaluate characteristic properties of the resonant circuit, we make use of conformal mapping techniques
derived in Ref. [S13] to express the capacitance per unit length. The effective dielectric constant of a two-layered
substrate is found to be

ε̃eff = 1 +
εr1 − εr2

2
· K(k1)K(k′0)

K(k′1)K(k0)
+
εr2 − 1

2
· K(k2)K(k′0)

K(k′2)K(k0)
(S28)

and the corresponding capacitance per unit length reads

Cr = 4ε0ε̃eff
K(k0)

K(k′0)
. (S29)

The functions K are the complete elliptical integrals of the first kind, in which

k0 =
s

s+ 2w

k1 =
sinh

(
πs
4h1

)
sinh

(
π(s+2w)

4h1

)
k2 =

sinh
(

πs
4(h1+h2)

)
sinh

(
π(s+2w)
4(h1+h2)

)
k′i =

√
1− k2

i with i = 0, 1, 2,

where s is the central conductor width, w is the spacing to the ground plane, h1 is the thickness of the top dielectric
with relative permittivity εr1 and h2 is the thickness of the bottom dielectric with relative permittivity εr2 see Fig. S7.

With s = 12.1µm, w = 6.1µm, SiO2 thickness h1 = 170 nm, Si thickness h2 = 500µm, SiO2 permittivity εr1 = 3.9,
Si permittivity εr2 = 11.8 and the vacuum permititvity ε0 = 8.854 × 10−12 F/m we find Cr = 153.9 pF/m. With
this and the length of the TL l = 7.54 mm in combination with the resonance frequency f0 ≈ 3.098029 GHz we can
now evaluate Zr = 69.54 Ω with Eq. S25, Cp = 580 fF with Eq. S26 and Lp = 4.548 nH with Eq. S27. Note that ε̃eff

describes purely the dielectric properties of the TL, whereas εeff also contains properties of the kinetic inductance.
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FIG. S7. Cross-section of a transmission line on a layered substrate.

SVI. INFLUENCE OF Zload ON f0 AND Qload

The resonance condition for a loaded λ/4-resonator is fulfilled, when Im[Z
λ/4
in ] = 0, which leads to πδω

2ω0
+ Im[Zload]

Zr
= 0

deduced from Eq. S14. With the load – the new resonance frequency is called ω0(= 2πf0), while the resonance
frequency of the unloaded resonator is called ωbare(= 2πfbare), hence δω = ω0 − ωbare. In the limit, f0 ≈ fbare, we
can express the resonance frequency shift influenced by the load impedance as

δf0 = f0 − fbare = − 2

πZr
Im(Zload)fbare. (S30)

In order to express the quality factor Qload of a loaded quarterwave resonator, we assume that Im[Zload]
Zr

� 1, such
that we obtain from Eq. S14

Z
λ/4
in ≈ 1

Re(Zload)
Z2

r
+ j

Zr

(
πδω
2ω0

) . (S31)

By comparing this expression with Eq. S17, we can conclude that Rp =
Z2

r

Re(Zload) . Combining this finding with Eq.

S18 and Eq. S21, we can express the load quality factor as

Qload =
πZr

4Re(Zload)
. (S32)

SVII. LOAD IMPEDANCE Zload

Until now we have conducted all derivations for a general load impedance terminating the CTL. In the following
we derive an expression to describe the impedance provoked by a loop that is inductively coupled to the shorted end
of the CTL. First we consider a transformer configuration with a primary part – the left side in Fig. S8(a) – that
consists of an inductor L1 across which the current I1 flows and the voltage V1 develops. The secondary part – the
right side in Fig. S8(a) – describes the mutually coupled loop, which is modelled as an inductance L2 shunted by an
impedance Z. The mutual inductance M quantifies the coupling strength between the primary and secondary circuit.
In the latter the current I2 flows and the voltage V2 appears across L2 and Z, respectively. The voltages in the two
circuits can be described by the transformer equations:

V1 = jωL1I1 + jωMI2, (S33a)

V2 = −jωL2I2 − jωMI1 = ZI2. (S33b)

By rearranging the second equality of Eq. S33b to

I2 = − jωM

jωL2 + Z
I1 (S34)

one can express the current in the secondary circuit as a function of the current in the primary. The load impedance
seen on the side of the primary or resonator, respectively, can be found by inserting Eq. S34 into Eq. S33a and divide
both sides by I1 [S14]:

Z∗load =
V1

I1
= jωL1 +

ω2M2

jωL2 + Z
. (S35)

Since the frequency shift is determined by the imaginary part of the load impedance (see Eq. S30) and L1 is constant,
the coupling inductance of the primary circuit only provokes an off-set frequency shift. And because the resonance
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FIG. S8. (a) Transformer with the secondary circuit loaded by impedance Z. (b) Circuit schematic of the inductively coupled
rf SQUID, in which the Josephson junction is modelled as variable Josephson inductance LJ in parallel with a variable shunt
resistance Rs.

broadening is given by the real part of the load impedance (see Eq. S32), L1 does not influence the load quality
factor. Therefore we neglect L1 and absorb its contribution in the bare resonance frequency. With this we obtain
a simplified expression for the load impedance: Zload = ω2M2/ (jωL2 + Z). In the experimental scenario L2 is the
inductance of the SQUID loop Lloop and the shunt impedance Z describes the Josephson junction. Here, we model the

junction as a tunable Josephson inductance LJ in parallel with a tunable resistor Rs, hence Z = [1/Rs + 1/(jωLJ)]
−1

.
Consequently, the load impedance in our circuit, as shown in Fig. S8(b), reads

Zload =
ω2M2

jωLloop +
(

1
Rs

+ 1
jωLJ

)−1 . (S36)

With the load impedance given in Eq. S36 substituted into Eq. S32, we obtain for the load quality factor

Qload =
π

4
· Zr
RsM2

[
L2

loop +
(LJ + Lloop)2R2

s

ω2L2
J

]
. (S37)

Hence, we found a formalism to convert the load quality factor into an effective lumped element model describing the
Josephson junction. In the case of LJ � Lloop and Rs

ωLloop
� 1, we can make the approximation:

Qload ≈
π

4
· Zr
ω2M2

·Rs. (S38)

Assuming Rs →∞ in Eq. S36 and making use of Eq. S22, we can approximate Eq. S30 as

δf0 ≈
8

π2

M2

Lp(LJ + Lloop)
fbare, (S39)

which describes the frequency shift as a function of the Josephson inductance LJ , which, in turn, is directly related
to the current-phase relation (CPR). In general, this last approximation is not need, but reduces the computational
effort tremendously, especially when the iterative screening correction procedure is conducted.

SVIII. COMPARE THE ANALYTICAL EXPRESSIONS WITH NUMERICAL RESULTS

In the following we prove the validity of the analytic formulas for δf0 and Qload (Eq. S39 and Eq. S37) by comparing
their solutions with the numerically evaluated full model. In particular, we generate reflection curve maps and extract
from those, the resonance frequency f full

0 and the load quality factor Qfull
load by fitting as explained in Sec. SIV. In

general, the reflection coefficient reads

Γ =
Zfull

in − Z0

Zfull
in + Z0

, (S40)

where Z0 = 50 Ω is the environmental impedance. The coupling capacitance Cc between the measurement set-up and
the TL leads to an impedance Zc = 1/(j2πfCc) in series with the input impedance of the loaded TL, Zin,TL, such
that

Zfull
in = Zc + Zin,TL. (S41)

Hence, by combining Eq. S7 and Eq. S36 in Eq. S40 with the use of Eq. S41, we can express Γ as a function of Zload

with properties of the TL.
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First, we provide a consistency proof for the expression of the frequency shift. In Fig. S9, we keep the shunt
resistance Rs = 100 MΩ constant and sweep the Josephson inductance LJ . From the artificial Γ-maps shown in
Fig. S9(a)-(b) a clear change in f full

0 is observed as a function of LJ , while the lineshape is not affected. Details
about the parameters used here are listed in the figure caption. In Fig. S9(c) we overlay the fit results for resonance
frequency f full

0 of the artificial data (blue circles) with the prediction from the analytic formalism (red, Eq. S39). From
Fig. S9(d), which shows the difference ∆f0 between the resonance frequency of the artificial data and the one obtained
from the analytic formalism, we observe only slight discrepancies on the order of Hz. Consequently, Eq. S39 describes
the resonance frequency as function of LJ to a very high accuracy.
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FIG. S9. Parameters for artificial data: Cc = 4.6 fF, α = 0.001 m−1, β = 2πf
√
εeff
c

, where εeff = 11.225 and c is the speed of

light, l = 7.1 mm, Zr = 64.5 Ω, Lloop = 200 pH, M = 32 pH, Rs = 100 MΩ, sinusoidal CPR → LJ = 2π
Φ0Ic cos(ϕ)

, here the sweep

range corresponds to the phase biasing condition ϕ = π and the critical current is tuned Ic = 10→ 180 nA (larger Ic produces
more shift). (a)-(b) Colormaps of the artificial data |Γ| and arg(Γ) as a function of Josephson inductance LJ . (c) The resonance
frequency f full

0 (blue circles) obtained by fitting the artificial resonance curves. The analytically predicted resonance frequency
(red lines) deduced from Eq. S39 with the same parameters as listed above and fbare = 3.12028 GHz obtained from minimizing
|Γ| for LJ →∞ in the full model. (d) Difference between f full

0 and the analytically obtained resonance frequency.

Second, we provide a consistency proof for the expression of the load quality factor. In Fig. S10, we keep the
Josephson inductance LJ = −3.2 nH (sinusoidal CPR with Ic = 100 nA at ϕ = π) constant and sweep the shunt
resistance Rs. For simplicity we set α = 0, such that the effective quality factor is determined by the load. From the
artificial Γ-maps shown in Fig. S10(a)-(b) a clear change the lineshape of the resonance curve as a function of Rs is
observed. Details about the parameters used here are listed in the figure caption. The dark region in Fig. S10(a),
where |Γ| = 0 corresponds to full matching, where Qc = Qload. For small Rs values the resonator becomes overcoupled
(Qc > Qload) and arg(Γ) evolves smoothly, whereas for large Rs values the resonator becomes undercoupled (Qc <
Qload) and arg(Γ) undergoes a 2π-leap. The coupling quality factor can be expressed as Qc = π

4ω2Z0ZrC2
c

, for which

we find Qc = 29 950 with the model parameters Cc = 4.6 fF, Zr = 64.5 Ω and ω ≈ 2π · 3.12 GHz. In Fig. S10(c) we
overlay the fit results for Qload of the artificial data (blue circles) and the prediction from the analytic formalism (red,
Eq. S37). From Fig. S10(d), which presents the difference ∆Qload between the artificial data and the predications,
we observe very small discrepancies. Since, Rs is naturally present in Im(Zload), changing the resistance causes in
addition a small shift of the resonance frequency. By the comparison between the resonance frequency of the artificial
data and the one obtained analytically (assumption Rs →∞, such that Eq. S39 becomes valid) shown in Fig. S10(e),
we observe a discrepancy of ∼ 6 kHz for the smallest Rs value. On a first glance this seems a lot, one should however
relate this number with the overall shift of the resonance frequency coming from LJ = −3.2 nH, which is about
200 kHz. Hence, the error induced by neglecting Rs, is on the order of a few % as long as Rs ≥ 100 Ω, which is the
case for our measurement.
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FIG. S10. Parameters for artificial data: Cc = 4.6 fF, α = 0, β = 2πf
√
εeff
c

, where εeff = 11.225 and c is the speed of light,
l = 7.1 mm, Zr = 64.5 Ω, Lloop = 200 pH, M = 32 pH, Ic = 100 nA, LJ = −Φ0/(2πIc) = −3.183 nH. (a)-(b) Colormaps of
the artificial data |Γ| and arg(Γ) as a function of shunt resistance Rs. (c) The load quality factor Qfull

load (blue circles) obtained
by fitting the artificial resonance curves as a function of Rs. The analytically predicted load quality factor (red lines) deduced
from Eq. S37 with the same parameters as listed above and fbare = 3.12028 GHz obtained from minimizing |Γ| for LJ → ∞
and Rs → ∞ in the full model. (d) Difference between Qfull

load and the analytically obtained load quality factor. (e) The
resonance frequency f full

0 (blue circles) obtained by fitting the artificial resonance curves and predicted resonance frequency
for LJ = −3.2 nH. (f) Relative error between the actual resonance frequency shift and the predicted resonance frequency shift
fan.

0 ; ∆f0(%) = (f full
0 − fan.

0 )/(fbare − fan.
0 ).
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SIX. CURVE FITTING WITH SCREENING CORRECTION

Using Eqs. 5, 6 and 7 from the maintext, we express the shifted resonance frequency f0 as a function of the junction
phase ϕ,

f0(ϕ) =

 8

π2

M2

Lp

((
2π
Φ0

∑kmax

k=1 (−1)k−1Akk cos(kϕ)
)−1

+ Lloop

) + 1

 fbare. (S42)

We fix the values of M = 30.83 pH, Lloop = 211 pH and Lp = 4.546 nH obtained from simulations, and treat Ak and
fbare as free fitting parameters.

In the absence of current in the rf SQUID loop, the junction phase ϕ is solely determined by the external magnetic
flux Φ in the loop, ϕ = ϕext = 2πΦ/Φ0. Taking into account the flux created by the circulating DC supercurrent
yields

ϕ = ϕext −
2π

Φ0
LloopIs(ϕ). (S43)

This means, that the junction phase ϕ depends on the external flux and the CPR to-be-determined as well.
In the experiment the resonance frequency f0 is measured as a function of the current in the flux line. Using the

periodicity of the signal, we convert the flux current to the external phase ϕext by applying a linear transformation.
Next, to determine the CPR from the (f0, ϕext) data while taking into account the flux contribution of the supercurrent,
we find the self-consistent solution of Eqs. S42 and S43 with an iterative method. The scheme is presented with the
pseudocode in Algorithm 1. Essentially, it combines fixed-point iteration with Eq. S43 and least-square fits to Eq. S42.
The procedure realizes the non-linear transformation of ϕext to ϕ, and outputs the harmonic coefficients Ak and the
bare resonance frequency fbare.

Algorithm 1 Iterative procedure for curve fitting with screening correction

function fitWithScreening(f0, ϕext;M,Lp, Lloop, niter = 30, α = 0.2 . . . 0.4, kmax = 10)
ϕ = ϕext . Initialization
for niter repetitions do

Ak, fbare ← least-square fit of (f0, ϕ) data points to Eq.(S42)

Is(ϕ) =
∑kmax
k=1 (−1)k−1Ak sin(kϕ) . Substitution of Ak into Eq. 7

ϕnew = ϕext − 2π/Φ0 · LloopIs(ϕ) . Substitution of Is into Eq. S43
ϕ = αϕnew + (1− α)ϕ . Smooth update

end for
return Ak, fbare, ϕ

end function

In the following we illustrate the fitting routine with the experimental data obtained at Vbg = 6 V. In Fig. S11 the
initialization is shown, whereas the iteration and the outcome of the algorithm is illustrated in Figs. S12-S13. The
convergence of the procedure has been checked manually for each gate voltage. Depending on the values of M and
Lloop, manual tuning of the smoothing parameter α was necessary.

Figs. S12(c) and S13(c) show that neglecting the flux contribution of the supercurrent, and using the approxi-
mation ϕ = ϕext leads to overestimating the skewness of the CPR. While the apparent skewness parameter in this
approximation is Sext = 0.2434, the self-consistent solution yields S = 0.2168. Similarly, the harmonic coefficient
ratio reduces from A2/A1 ≈ 0.185 to A2/A1 ≈ 0.165 as the iteration converges.
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- 0 2 3 4

-100
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FIG. S11. (a) Extracted resonance frequency f0 (blue circles) as a function of external phase ϕext at Vbg = 6 V. From the fit
(solid red, Eq. S42) one obtains the supercurrent Is(ϕext) as a function of external phase shown in (b).
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FIG. S12. Convergence of the iterative curve fitting method (Vg = 6 V, α = 0.4). (a) The magnitude of the phase update,
ϕupdate = 〈|ϕnew−ϕ|〉avg converges to zero as the iteration progresses. (b-c) Convergence of the bare resonance frequency fbare

and the harmonic coefficient ratio A2/A1.
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FIG. S13. Outcome of the iterative curve fitting method (Vbg = 6 V) (a-b) Junction phase ϕ as a function of the external
phase ϕext = 2πΦ/Φ0. The self-consistent solution of the equation set (continuous, blue) deviates from the ϕ = ϕext line
(dashed black). (c) Harmonic coefficients Ak at different stages of the iteration: initial solution (corresponding to the ϕ = ϕext

approximation), solution at niter = 3 and niter = 30 (converged).

SX. CHARGE CARRIER DENSITY:

To convert the applied back gate voltage (Vbg) to charge carrier density (ng) we used a plate capacitor model
including the quantum capacitance of graphene [S15], which results in

e(Vbg + Voff) =
e2ngd

ε0εr
+ sgn(ng)~vF

√
π|ng|, (S44)

where Voff = 0.44 V is the offset voltage of the charge neutrality point with respect to 0 V, e is the electron charge,
d = 47.5 nm the thickness of the gate dielectric, ε0 = 8.854 × 10−12 F/m the vacuum permittivity, εr = 3.8 the
dielectric constant of hBN [S16], ~ the reduced Planck constant, and vF = 106 m/s the Fermi velocity of graphene.
The quantum capacitance corresponding to the second term on the right hand side of Eq. S44 leads to minor deviations
of the linear behavior on ng with respect to Vbg around charge neutrality, as shown in Fig. S14 (a). By using Eq. S44
the previously extracted critical current Ic(Vbg) is plotted as a function of ng in Fig. S14 (b). In previous works
oscillations of Ic(ng) were observed for negative densities for high mobility and ballistic graphene Josephson junctions
[S17, S18]. They arise due to quantum interference of the electrons moving in a Fabry-Pérot cavity [S19] , which is
formed by potential steps in the graphene. Namely, the graphene is n′-doped with electrons close to the contacts
given by the work function mismatch of the graphene and the Al boundary, while the bulk of graphene is p-doped
with holes due to the negative applied Vbg. The oscillations show their mth maxima at

√
ng = m

√
π/L, where L

corresponds to the length of the cavity. Nevertheless, no such oscillations were observed in our measurement of Ic(ng),
which indicates that the electron transport is diffusive in our sample.
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FIG. S14. (a) Charge carrier density ng determined with Eq. S44 as function of gate voltage Vbg. (b) Critical current Ic as
function of ng.

SXI. TEMPERATURE DEPENDENCE:

A. Theoretical description

We numerical solve the time-dependent Usadel equation [S20, S21], from which we infer the inductive BJ and
dissipative Gs microwave response of a short diffusive Josephson junction. The theoretical predictions are based on
characteristic energy scales: The electronic temperature T , the photonic energy hf irradiating on the junction, the
relaxation rate γ, the superconducting gap ∆ and the Thouless energy ET .

In Fig. S15, we fix ∆/ET = 0.1 and hf/ET = 0.01. On the left axis the dissipative response normalized with the
normal state conductance Gs/GN is plotted (solid blue lines) and on the right axis the inductive response normalized
with the normal state conductance BJ/GN is plotted (dashed red lines).

In Fig. S15(a) we fix γ/ET = 0.02, while we sweep the temperature ratio kT/ET . The wide onset of the dissipation
peak even at low temperatures is mainly due to the non-vanishing relaxation ratio γ/ET causing lifetime broadening
of the ABS spectrum. With increasing temperature the conductance peak shrinks and becomes wider. A plateau
like feature turning into a double wall can be recognized at ϕ = π due to the dynamics of the thermally populated
E+
n -states. From the susceptance we observe that the conditions for BJ/GN = 0 are moving away from ϕ = π for

increasing temperature and the absolute values of BJ/GN at ϕ = π and ϕ = 0, 2π approach each other, which means
that the CPR is becoming more sinusoidal.
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FIG. S15. Numerical simulations of the shunt conductance Gs/GN and junction susceptance BJ/GN both normalized with
the normal state conductance GN . Fixed parameters ∆/ET = 0.1 and hf/ET = 0.01. (a) Dissipative (left) and inductive
(right) microwave response for different temperatures but fixed relaxation rate. (b) Dissipative (left) and inductive (right)
microwave response for different relaxation rates but fixed temperature.

For comparison we present in Fig. S15(b) the numerical results for fixing kT/ET = 0.008, while sweeping the relax-
ation ratio γ/ET . We recognize a less evident change of the dissipation peak center as compared to the temperature
sweep. Overall the conductance peak broadens accompanied with a shrinking of the height. Importantly, here the sus-
ceptance reveals as well a reduction of the CPR skewness. Note, that this plot is the same as Fig. 7(d) in the maintext,
but globally normalized with GN . Since the temperature effect seem to evolve differently from the relaxation rate
dependence – both of this parameters should be accessible by comparing theoretical predications with experimental
data.
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B. Experimental results

From theory it is predicted that for increasing the temperature T the current-phase relation (CPR) becomes
more and more sinusoidal, which is due to the balancing between E+

n - and E−n -states described by the Fermi-Dirac
distribution. The population of E+

n -states further affects the absorbency of the ABS spectrum, because transition
from E−n → E+

n are prohibited if the final state is already occupied. As a consequence the dissipation peak becomes
smaller.

In the following we probe the microwave response of the graphene JJ in terms of the CPR and the phase-dependent
dissipation at Vbg = 12 V for different temperatures. We deduce the CPR and the shunt conductance with the
same methods described above and in the maintext. In Fig. S16(a) we illustrate the self-consistent CPR solution for
different base temperatures adjusted by heating the mixing chamber plate. We observe a clearly skewed CPR for
temperatures far below the critical temperature of Al (Tc ≈ 1.2 K), while for T → Tc the skewness as well as the
critical current Ic decreases as present separately in Figs. S16(b)-(c). These effects are attributed to: i) the washing
out of the energetically low lying states (close to E = 0), which are responsible for the skewness due to their high
transparency and ii) the closing of the superconducting gap. Measurements for T > 900 mK were suffering from
strong temperature fluctuations.

As postulated by theory we obtain a counter-intuitive decreasing of the dissipation peaks for increasing temperatures
as seen in Fig. S16(d). Not only the height is influenced by the temperature, but also the width, which is also a
result from the theoretical predictions. We fit the different dissipation peaks with a Lorentzian function of the form

L = a(b/2)2

(ϕ−c)2+(b/2)2
+ d, where a is a scaler for the peak height, b is the full-width-half-maximum (FWHM), c is a

translation on the phase-axis and d describes a vertical offset. We find that the averaged FWHM of the two peaks
measured at the same temperature is increasing 〈FWHM〉 ≈ 0.2π → π for temperatures T = 20→ 600 mK, while the
peak height shrinks by a factor of ∼ 3.

In contrast to the low temperature results presented in the maintext (Fig. 8) we did not find combinations of
kT/ET and γ/ET , which simultaneously reproduce the inductive and dissipative response. We attribute this to the
granularity of parameter space used in the simulation. In order to describe the microwave behavior of the JJ at high
temperatures – effects like highly enhanced relaxation rates, modifications in junction length limit and the gap closing
would need to be considered.
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different T . The peaks are fitted with Lorentzian functions, which reveals a clear spreading of the width for increasing T .
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