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Zusammenfassung

Um zukünftig punktgenaue Vorhersagen und somit verlässliche Warnungen vor
wetterbedingten und potenziell gefährlichen lokalen Straßenbedingungen zu er-
stellen, werden zeitlich und räumlich hochaufgelöste meteorologische Daten
benötigt. Die vorliegende Arbeit prüft die Verwendbarkeit von fahrzeug-
basierten Messungen basierend auf der derzeit in Serie verbauten Sensorik.
Ziel dieser Arbeit ist es zu untersuchen, ob und inwiefern eine Korrektur der
fahrzeugbasierten Daten eine Steigerung des Potentials zur Verbesserung der
räumlichen und zeitlichen Auflösung von meteorologischen Daten aufweist.

Die Rohdaten der Fahrzeugmessungen unterliegen starken Abweichungen zu
den verwendeten Referenzdaten, hervorgerufen sowohl durch stationäre Ef-
fekte wie Messungenauigkeit und Verbauort des Sensors, als auch durch be-
wegungsbedingte Effekte, wie beispielsweise den Einfluss der Motorabwärme
bei geringen Geschwindigkeiten.

Um die genannten Einflüsse zu untersuchen, wird zunächst ein weltweit einzig-
artiger Datensatz mit parallelen Daten von Serienfahrzeugen und Referenzen
im Rahmen von Messkampagnen erstellt. Anschließend führt die vorliegende
Arbeit eine Qualitätskontrolle und Korrektur für die vier meteorologischen
Parameter Luftdruck, Lufttemperatur, relative Feuchte und Globalstrahlung
durch.

Die Rohdaten verfügen für meteorologische Anwendungen über eine zu geringe
Qualität. Die entwickelten und implementierten Korrekturverfahren, sowohl
physikalischer Natur als auch basierend auf Machine Learning, erreichen
sowohl für den Luftdruck als auch für die Lufttemperatur und die relative
Feuchte signifikante Verbesserungen der vorliegenden Daten. Für die Luft-
temperatur erreichen alle getesteten Modelle vergleichbar gute Ergebnisse,
wohingegen bei der relativen Feuchte die Machine Learning basierten Modelle
qualitativ hochwertigere Ergebnisse erzielen als das physikalische Modell. Die
Machine Learning Modelle erreichen für diesen Parameter einen Anteil von
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Zusammenfassung

über 95 % an Daten innerhalb der einfachen Messunsicherheit. Eine allgemein
gültige Aussage bezüglich der Übertragbarkeit und Wirksamkeit auf anderen
Fahrzeugen und anderen als den hier getesteten Szenarien kann auf Basis der
zur Verfügung stehenden Datengrundlage nicht getroffen werden.
Die Korrektur der Globalstrahlung erreicht in stationären Situationen bereits
eine signifikante Verbesserung der Qualität der Ergebnisse. Für die Korrektur
von mobilen Daten während der Fahrt ist das Potential der Qualitätssteigerung
noch nicht ausgereizt.

Die vorliegende Arbeit verdeutlicht die Notwendigkeit der Korrektur der
fahrzeugbasierten Rohdaten und zeigt das Potential der hiermit verbunde-
nen Qualitätssteigerung auf. Weitere Untersuchungen, vor allem bezüglich
der Übertragbarkeit auf Flottendaten, sowie eine größere Datengrundlage sind
notwendig, um eine allgemein gültige Aussage über die Qualitätssteigerung
treffen und die Korrekturen weiter in Richtung Serienreife entwickeln zu
können.
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Abstract

To provide pinpoint forecasts and thus reliable local warnings of weather-
related potentially hazardous road conditions, meteorological data with high
temporal and spatial resolution is required. The presented work examines the
usability of vehicle-based measurements based on the sensor system currently
installed in series production. The objective of this work is to investigate
whether and to what extent a correction of vehicle-based data increases the
potential to improve the spatial and temporal resolution of meteorological data.

The raw data of the vehicle measurements is subject to strong deviations
from the reference data used, caused both by stationary effects such as the
measurement uncertainty or mounting position of the sensor, and by driving-
related effects such as the influence of engine waste heat at low vehicle speeds.

Within the scope of measurement campaigns, a globally unique data set with
concurrent data from series production vehicles and references is created in
order to investigate the influences mentioned above. Subsequently, a quality
control and correction for the four meteorological parameters air pressure, air
temperature, relative humidity and global radiation is performed.

The quality of the raw data measured on board of a vehicle is too low to be
used for meteorological applications. The developed and implemented cor-
rection methods, both physical in nature and machine learning based, achieve
significant improvements of the available data for air pressure as well as air
temperature and relative humidity. For air temperature, all tested models
achieve comparably good results, whereas for relative humidity, the machine
learning based models achieve higher quality results than the physical model.
The machine learning models achieve over 95 % of data within the single mea-
surement uncertainty for this parameter. A generally valid statement regarding
the transferability and effectiveness to other vehicles and scenarios other than
those tested here cannot be made on the basis of the available data.
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Abstract

Correction of global radiation already achieves significant improvement in the
quality of results in stationary situations. For the correction of mobile data
while driving, the potential of quality improvement is not yet exhausted.

The presented thesis illustrates the necessity of correcting the vehicle-based raw
data and shows the potential of the associated quality improvement. Further
investigations, especially with regard to the transferability to fleet data, as
well as a larger data basis are necessary in order to allow for a generally valid
statement about the quality improvement and to further develop the corrections
to series maturity.
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Preface

This thesis has been developed within the framework of the research project
FloWKar. FloWKar is a project funded by the German Federal Ministry
of Infrastructure and Transport (BMVI). In the project, the AUDI AG and
the German Weather Service (DWD) are cooperating, with support from this
doctorate at the Karlsruhe Institute of Technology (KIT).

Recent extreme weather events, such as the heavy snowfall event in Febru-
ary 2021 and heavy rainfall in July 2021, show the increasing impact of
weather on the transportation sector and road traffic. In addition to extreme
weather events, even wintry weather conditions are enough to worsen road
conditions and thus trigger potentially dangerous situations on the road.

A precise forecast of local hazards such as aquaplaning, freezing wetness and
slippery conditions cannot be realized based on the currently available data
basis. To increase the temporal and spatial resolution of meteorological data,
vehicles are therefore being tested as "mobile weather stations" in this research
project.

This work focuses on the quality control of the vehicle-based measurements
and their corrections.
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1 Introduction

1.1 Motivation

Enabling safe automated driving functions requires precise information about
the surrounding of the vehicle with all its details. Since most research projects
focus on influences of objects [WFSF18] and interference with living beings in
traffic [RWLS18], environmental influences by weather phenomena are mostly
understudied in this field [WBASA20].
In a situation with snowdrifts on traffic lanes, the vehicle needs to adjust its
speed to ensure the safety of all passengers. This is only achievable if the
vehicle is aware of the snowdrifts. In addition, snowdrifts hide lane markings,
and therefore weaken lane keeping. Fog can be named as a second example
for the necessity to include meteorological data. In heavy and dense fog, the
camera systems of a vehicle are blind, and therefore the amount of information
about its surrounding are significantly reduced. In general, adverse weather
causes numerous accidents and delays around the world and is thus emphasizing
its impact on the road and transport sector [Com04,Com10].

Today, road weather forecasts are based on regional weather models. These
models use measurements from monitoring stations, including synoptical (in
the following: synop) stations and road weather stations, to collect their data
base. Figure 1a) gives an overview of available meteorological data from synop
stations and road weather stations in Germany. Zooming in reveals the poor
spatial coverage (cf. Figure 1b)). Besides a test segment in the lower part of the
map section, the spatial coverage, especially in rural areas, is down to tenths of
kilometers. The total of approx. 500 full-time and part-time ground measuring
stations of the DWD in Germany [Deu21] results in an average coverage of
715 km2 per station. The average distance between the individual stations is
therefore approx. 27 km. Based on this network, reliable pinpoint forecasts
are not feasible, and thereby operation of safe automated driving functions
cannot be guaranteed. The situation is similar in other countries. Exemplary,
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1 Introduction

Figure 1: Current database set up by synop stations (blue) and road weather stations (red) a)
Overview of currently available data base provided by national weather service of Ger-
many b) Zoom in to visualize test track in lower left region of map, but otherwise poor
spatial coverage.

in Canada the spatial coverage of road weather stations is not sufficient in all
areas for deriving reliable information for operative decision making [BKF18].

To increase the precision and reliability of forecast models, needed for enabling
safe automated driving functions, a denser network, both in time and space is
crucial. Basically, there are two different approaches for achieving a higher
resolving network, besides increasing model resolution. Either the amount
of stationary monitoring stations is increased by a significant amount or mo-
bile measuring devices are established. Increasing the number of stationary
monitoring stations is costly and still only partly expedient since stationary
measurements are limited to represent conditions at this specific location only.
Therefore, no statement about the spatial course of a measured signal is pos-
sible. Extending the network by mobile measuring methods, allowing for
measuring the spatial course of the signals and additionally increasing the den-
sity of measurements significantly, promises benefits [KNSM17]. By using
mobile measuring systems the measurements are not locally limited anymore,
but can perform measurements on the entire road network [BJ16]. The most
obvious while arguably cost-effective approach thereby is to incorporate the
environment sensors found onboard the millions of vehicles themselves.
However, since the sensor technology on board of production vehicles is not
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1.2 State of the art

intended for usage as a weather station, the quality of the data remains to be
tested. The reliability of individual sensor systems is strongly influenced by
adverse weather conditions such as rain, fog, and snow [YSYA19]. If the
quality is satisfactory, the vehicle-based data has the advantage of higher spa-
tial coverage compared to the stationary data, while particularly covering the
road network and thus the area of interest for autonomous driving functions.
Additionally, data collected by vehicles has a higher temporal resolution than
the currently established stationary measurement stations [Deu21].
This work focuses on the quality control of the vehicle-based data for the pur-
pose of a subsequent integration of vehicle data with established assimilation
prognosis methods of the national weather services.

1.2 State of the art

The idea of using mobile measuring stations to increase both the spatial and
temporal resolution of meteorological data is not new [MTS12, MDPO10,
MIO13]. Musiak, Tillotson and Spinelli refer to vehicles in a more general
term, focusing on ships and aircrafts. Cars are not explicitly mentioned. The
other two papers relate to passenger and fleet vehicles and list both the enor-
mous potential and the challenges resulting from this type of data. Mahoney
and O’Sullivan emphasize that vehicle-based meteorological data provides a
significant benefit to road weather accuracy but is tied to previously required
quality control. However, additional research is necessary to exploit the full
potential of vehicle-based data [MIO13]. In order to better title both the pos-
sibilities and the problems with fleet data, an experiment with 60 vehicles was
conducted in Rotterdam (NL) with a focus on travel times [THST00]. The
field test was mainly aimed at testing the communication and handling with
fleet data, no meteorological data was used.

State of the art - Projects
Similar projects prove the topicality and the importance of solving the un-
derlying problem of low coverage of meteorological data. One example is
the cooperation between the Koninklijk Nederlands Meteorologisch Instituut
Datalab (KNMI Datalab) and the Royal Netherlands Meteorological Institute.
The project is aware of the low coverage of Road Weather Stations (RWS),
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1 Introduction

especially beyond highways. Although the authors identify difficulties like
different CAN-bus standards, they see a significant potential of measuring
meteorological data with vehicles [KR17]. However, this project focuses ex-
clusively on the measured air temperature and precipitation information based
on the operation frequency of the wipers.
At the Finnish Meteorological Institute (FMI), another similar project is car-
ried out. A public bus is equipped with an additional road sensor [KN16] . The
additional optical instrument is based on spectral analysis and is capable of
measuring road surface temperature, friction and amount of water on the road
surface [HNN12]. The results of two runs of a weather model, one including
and one excluding measured values on board of the public bus, are compared.
Although the number of data points added is comparatively small, an increase
in prediction accuracy can be observed. The project solely uses additional data
from the calibrated road sensor mounted on the public bus. Any influence of
using vehicle's own instrumentation is still to be tested.
eHorizon.Weather is a French project to improve forecasts of road weather.
For this purpose, the company Continental cooperates with the public weather
service of France "Meteo France" [Met16] . The project uses selected sensor
signals, for example, air temperature, wiper frequency, and air pressure, of a
test fleet of about 200 vehicles. Using the on-board sensor data, they aim for
developing a road weather model forecasting a preview of the road situation
ahead and thereby increase safety for automated driving.
Already available on the market is a product of the start-up RoadCloud. The
product is based on vehicular data to balance the low density of RWS and
thereby decrease likelihood of misinterpretation of road conditions [TNK21].
All project have in common that they focus on air temperature or road con-
ditions. Furthermore, there are projects concentrating solely on precipitation,
exemplary mobileVIEW [Bra17] and a project at the University of Michi-
gan [BPZ+19]. Nevertheless, since this work does not focus on precipitation,
these projects are not further described in detail.
The FloWKar project, within the framework of which this work was devel-
oped, is co-funded by the Ministry of Transportation of the Federal Republic
of Germany and presents a cooperation project between the national weather
service of Germany (DWD) and the AUDI AG, a German car manufacturer.
The project FloWKar has two major points of differentiation compared to the
presented similar projects. First, it is the only project with an established
cooperation between a national weather service and a car manufacturer. This
is of great advantage, since direct information on the state of the vehicle, e.g.,
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1.2 State of the art

its speed and engine temperature, are known during data collection. Secondly,
FloWKar is the only project where a quality check comprising several stages is
conducted before the data is used for further applications. Therefore, suppos-
edly no falsified data is used in the models, which might otherwise lead to an
increase in the model error rather than mitigating the overall error and actually
improving the model.

State of the art - Air temperature
First and foremost for virtually all meteorological applications is temperature.
Besides currently ongoing research projects, publications regarding the correc-
tion of vehicle-based temperature measurements exist. However, no scientific
papers have been published, but numerous patents of well-known automobile
manufacturers or companies focusing on electronics can be found instead.
All considered patents focus on periods where the vehicle is either at a standstill
or accelerating after a recent standstill. During these periods, the measured
air temperature signal has a high chance to be affected by non-ambient heat
effects. The approaches of the published patents for determining an outside air
temperature (OAT) can be sorted into three different groups, distinguishable
by their approaches: constant, temporal and mathematical.

The first approach is the most basic. For periods with a high chance for a flawed
air temperature measurement, the previous OAT is kept constant. Thereby the
current fluctuation of the signal caused by motion or indirect effects of the
vehicle is filtered. However, this approach flattens out not only vehicle-induced
but also potential local effects. Nevertheless, the implementation is relatively
straightforward, and the results fulfill most requirements for many further
applications, for example displaying the OAT in the cockpit. Typically, this
approach is used for correcting the measured temperature signal for short stops
[KB09,COW10] or periods with an increase in the measured temperature signal
during congestions [KH09]. Super et al. keep the OAT constant, if the engine
workload exceeds a certain threshold [SAL05]. Also Poublon [Pou00] uses this
approach, but still differs significantly from the previous patents. The described
first approach of a constant OAT is applied for standstill. To determine the first
OAT before it is kept constant, is based on multiple signals, for example, the
engine coolant temperature and the induction system temperature, but excludes
the measured air temperature itself.

The second approach uses a temporal dependency [DBW04, Gao08]. Often
the constant approach is combined with the temporal approach. Based on the
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"idle counter" DeRonne decides whether the air temperature measurement is
still influenced by a previous standstill or whether the temperature determined
for steady run conditions is used as OAT [DBW04]. Gao proceeds in a similar
way by introducing a "heat build up", which diminishes to zero if the vehicle
is not situated in a heat soak mode and thereby it is not influenced by earlier
standstills [Gao08]. Beyond that, prior patents already make use of a temporal
dependency [RHDJ95,Wal98]. Rudzewicz calls it a time delay that is needed
for the measurement to be reliable after the vehicle accelerates again and its
speed exceeds a certain threshold [RHDJ95]. Wallrafen introduces a more
complex "damping time", which depends on the vehicle speed and the engine
temperature. The bigger the two affecting factors, the higher the damping
time during which the measured temperature is considered as not trustworthy
[Wal98].

The third group of patents contrasts with the previously introduced two ap-
proaches since it is based on mathematics and determines a best fit based on
the preceding measurements to calculate an OAT [KBB13, Mat14, Hub16].
Ford Global Technologies patent uses Newton's Cooling Law as the base of
his approach and creates a second-order polynomial function based on the
decreasing air temperature measurements after a standstill [KBB13]. Thereby
the theoretical final temperature value after a fully completed decline is de-
termined and used as OAT [KBB13]. Honda Motor Co. pursue a similar ap-
proach [Mat14]. Based on the measured air temperature signal a second-order
polynomial function is modeled. By comparing this function to previously
determined correlations between a second-order polynomial fit and the mea-
sured air temperature, the current OAT is determined. The downside of this
approach is the individual correlation between the second-order polynomial
and the air temperature, since this has to be established for every vehicle type
and air temperature prior to application of this correction method. Another
challenge is overcoming initial difficulties for curve fitting. Hence, Hubert in-
troduces an evolved curve fitting approach by employing trigonometry to a few
early data points before the signal becomes unstable, instead of all measured
values [Hub16]. Based on a mathematical model, the coefficients of the best
fit for the data are determined and used for estimating an OAT.

Besides these three groups of approaches, there are a some patents using
approaches not directly linked to the previously described strategies [Wue99,
MS03,HZ11]. Instead of a timer, Wurtenberger, calculates a “heat resistance”
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and uses it to decide whether the measured air temperature signal is falsified
and if so, by how much [Wue99]. The approach resembles the approach of
the temporal group without using a direct temporal dependency. Manakkal's
strategy, for example, is similar to the constant approach, since the new OAT
is based on the previous OAT but is adjusted depending on the duration of
the stop [MS03]. Yamada's approach uses well-known signals like vehicle
speed and water temperature, a representative of the engine temperature. An
implemented correction function uses these signals to determine the extent
of the deviation of the measured to the actual air temperature. The higher
the vehicle speed and the cooler the engine temperature, the smaller is the
correction function, which is explained by neglectable influences during steady
run conditions.
Further notable is the approach of Schürmanns [SKF18], which is the only
approach considering the global radiation as an influencing factor for the
measured air temperature signal. For short standstills with an increasing
measured air temperature signal, a filter for compensating heating effects of
the vehicle and the sun is applied. The filter uses a heat absorption coefficient
of the vehicle's surface as well as the measured global radiation and the increase
in the measured air temperature signal. Considering a further heating effect in
addition to the well-known waste heat of the engine is so far unique.
Nevertheless, all presented approaches aim for correcting the complete increase
in the measured air temperature signal, without considering local effects that
might also affect the temperature measurement. Especially the local effects
are of high interest for a detailed weather map with high spatial resolution. In
the end, local effects decide between critical or harmless situations for edge-
cases, wherefore the awareness of local effects is crucial. Therefore, none of
the presented approaches is satisfactorily. Furthermore, it is notable that all
presented approaches are based on physical and empirically found correlations,
no approach uses artificial intelligence for determining the OAT.

State of the art - Other quantities
For other meteorological quantities measured on board, such as air pressure
and relative humidity, no publications in the form of scientific papers or patents
are known. This is uncharted territory for research.

However, there is an implemented warning of local hazards at some OEMs
already. Since the vehicle-based signals considered for triggering warnings
have not been corrected beforehand, their trustworthiness is limited. Due to the
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quality of the installed sensors, the AUDI AG, for example, currently relies not
only on the measured sensor values, but also considers driver activity (wiper
frequency, rear fog light) to assess the situation and trigger a warning. Hence,
the warnings are only triggered when several vehicles confirm the situation
and, therefore, have already been in this hazardous situation. The goal is to
trigger this warning before the first vehicle enters this situation. This can
only be achieved by road weather forecasts with higher spatial and temporal
resolutions than the forecasts available today. Based on the currently available
data these types of predictive warnings are not feasible.

1.3 Contributions and structure

The previous section illustrates the need for research regarding vehicle-based
meteorological quantities to be used for further applications. Currently, only a
low-resolution measurement network is available, which makes it impossible
to make precise statements about road weather, especially in edge-cases with
regards to passenger safety. Therefore, additional data sources are needed,
ideally with a higher temporal and spatial resolution. In this work, the approach
of using vehicle-based data is investigated.
The advantage of vehicle-based data is the high spatial coverage that can
be achieved by using fleet vehicles. However, vehicle-based data has the
disadvantage that without verification and processing their data quality is lower
compared to stationary data (e.g., from synop stations). The present work
examines to what extent corrections of the vehicle-based data can increase the
quality in order to eliminate the disadvantage of this data source.

Since the air temperature is a prominent parameter displayed in the cockpit,
models for correction are available in the form of patents (cf. Chapter 1.2).
However, none of these patents test a correction via deep learning approaches.
Deep Learning offers the advantage that a wide range of possible influencing
parameters and their possible interdependencies can be considered.
For the other meteorological parameters, such as air pressure and relative
humidity, neither scientific papers nor patents are available. Instead, there
are multiple projects researching this topic. This illustrates the topicality and
the need for research in the processing of vehicle-based meteorological data.
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Many of the mentioned projects use raw data derived from the vehicles. This
work, however, investigates the quality improvement that can be achieved by a
quality check with subsequent correction of the vehicle-based signals, which
sets this work apart from previous research. Cooperating with an Original
equipment manufacturer (OEM) enables a holistic view of the situation which
is not given in the other projects.
Before the data is anonymized and provided to a service provider or weather
service, the quality of every raw signal used for meteorological applications,
must be assured. For raw signals with insufficient data quality, correction
methods need to be implemented and tested. This results in the first two
contributions that this work accomplishes.

1. The thesis introduces physical models for correcting vehicle-based
raw data and presents the limitations.

For every considered meteorological quantity, a model is developed, which
corrects effects induced by the motion of the vehicle while effects induced by
local influences remain unchanged. Therefore, physical correlations between
individual parameters are considered and used as the base for the model. To
what extent a physically based model can detect falsified measurements and
compensate them, is evaluated.

2. As an alternative approach, the work examines the use of machine
learning models to correct the raw vehicle-based data.

Based on identical data, this thesis elaborates different machine learning mod-
els. It needs to be established whether machine learning algorithms interpret
the context correctly and are hence able to generalize the correction methods
to subsequently apply it successfully to a different data set. The performance
of different machine learning approaches is analyzed and evaluated.

3. The thesis performs a comparative evaluation of the two different
approaches using physical and machine learning models.

First, the quality of the two previous approaches is examined. The strengths
and weaknesses of the respective approaches are elaborated on. It is veri-
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fied, whether all or how many of the processed and corrected meteorological
signals reach an adequate quality level to be used for further meteorological
applications. Subsequently, the results of both approaches for all considered
meteorological signals are compared to identify the best suited approach for
each signal in the available data set.

4. The thesis points out an application example of an improved warning
of local danger situations based on the corrected vehicle-based data.

Based on the corrected vehicle-based data, a local danger warning system is
exemplary implemented to warn the user of potential road weather hazards.
This includes warnings for fog, icy conditions, and snowfall. The improved
accuracy of the warnings when using corrected data compared to raw data is
elaborated.

Before outlining the listed contributions of the thesis, Chapter 2 briefly de-
scribes the basics necessary to provide content to this thesis in meteorological
terms and machine learning methods. Chapter 3 lists the sensor technology
used in today’s production vehicles, the project-specific technology carriers,
and potential reference stations. The methodological approach of the neces-
sary data acquisition, as well as the data generation itself, are also elaborated
in Chapter 3. Due to the degree of novelty of this work, no preexisting data
set can be used. Instead, an extensive data set is recorded within the scope
of the thesis in the form of targeted measurement campaigns with a focus on
real-world references to capture highly local effects that could otherwise not
be constructed in laboratory environments. Chapter 4 lists the various ap-
proaches for correcting the raw data and, therefore, forms the basis for the first
two contributions. Quantities considered in this thesis are air pressure, air tem-
perature, relative humidity and global radiation. In the following Chapter 5,
results of both approaches are presented, compared and quality statements are
made (Contribution 3). The application example of local danger warnings, and
thus Contribution 4, is found in Chapter 6. Finally, Chapter 7 summarizes the
findings of the thesis and gives an outlook on further research goals.
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This work combines thematically two different and less related areas, hence
a brief introduction is given to both. Chapter 2.1 introduces the basic me-
teorological quantities, which are helpful for understanding the following
elaborations. Chapter 2.2 first gives general information on data analysis us-
ing machine learning. Subsequently, the Subchapters 2.2.1 and 2.2.2 briefly
explain the individual methods of a neural net and a random forest.
The following descriptions and definitions of the fundamentals do not serve as
a complete elaboration of the respective topics but provide an insight into the
respective subject matter to provide the background knowledge necessary for
understanding the presented thesis.

2.1 Meteorological quantities

Atmospheric pressure
In general, meteorology distinguishes between hydrostatic and dynamic pres-
sure. The hydrostatic pressure is caused by gravity, whereas the dynamic
pressure is caused by the velocity of the air flow [LC79]. At the earth’s surface
the influence of the flow of air is insignificant, except for some exceptional
cases, wherefore the air pressure can be equated with the hydrostatic pressure
of the atmosphere [LC79]. Therefore, the air pressure 𝑝 at a given altitude is
defined as the weight of a vertical column of air with base area 1 𝑚2 extending
from the altitude under consideration up to the upper boundary of the atmo-
sphere. The weight of the air column is the force that the air column exerts on
the base due to gravity [LC79]. The unit of air pressure or atmospheric pres-
sure is Pascal. However, because of numerical values ranging above 1000 Pa
often, air pressure is usually expressed in hPa.
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Air temperature
The air temperature 𝑇 is the expression of the subordinate molecular motion
in the air [LC79]. The greater the mean kinetic energy of the air molecules
and thus their velocity, the greater the air temperature [Spe21]. To minimize
influences of the environment and thus make measured values comparable,
the air temperature is specified metrologically as a temperature of a radiation-
protected and ventilated thermometer. Radiation shielding reduces radiation
error due to solar radiation and radiation exchange with the atmosphere and
environment [LC79]. Ventilation contributes to heat exchange between the air
and the thermometer, preventing heat buildup on the thermometer.
In addition to the listed falsifying influences, local phenomena can also in-
fluence the air temperature measurement. However, these are not falsifying
influences since a representative measurement can only be made by taking
into account the local conditions and influences. Exemplary, local deviations
are caused by the relief of the landscape. One possible effect of this is the
formation of a reservoir for cold air in a depression or valley during the night
or in winter [LC79]. In addition, the air temperature is influenced by various
other parameters, such as advection and clouds [LC79].
Temperature differences between two values are specified in Kelvin [K] ac-
cording to DIN 1345, even if the temperature values themselves have the
unit °C [Deu93]. The step size of both units is identical.

Humidity parameters
Various humidity parameters are used in meteorology. In the following, the
three most important ones for the understanding of this work are briefly ex-
plained.
The best-known measure of humidity is relative humidity RH. It is typically
expressed in percent % and a measure to represent the degree of saturation of
the air. Thus, it is not a direct measure of the amount of water vapor in the
air. Mathematically, the relative humidity (RH) is described as the ratio of the
vapor pressure 𝑝𝑉 to the saturation vapor pressure 𝑝𝑉 ,𝑠𝑎𝑡 (𝑇) [WH06]:

𝑅𝐻 = 100 · 𝑝𝑉

𝑝𝑉 ,𝑠𝑎𝑡 (𝑇)
(1)

The vapor pressure 𝑝𝑉 is the partial pressure of the water vapor. If the
vapor pressure is less than the saturation vapor pressure 𝑝𝑣,𝑠𝑎𝑡 , the vapor, i.e.
the moist air, is not saturated and can absorb more water molecules. When
the vapor pressure 𝑝𝑉 is equal to the saturation vapor pressure 𝑝𝑉 ,𝑠𝑎𝑡 (𝑇),
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the number of molecules that condense and those that evaporate are equal,
therefore the air is saturated. Thus, the saturation vapor pressure describes a
state of equilibrium. Since the saturation vapor pressure increases with rising
temperature, the relative humidity is also temperature dependent. Warm air
can therefore hold more water molecules than cold air. As a result, two air
parcels A and B with temperatures 𝑇𝐴 and 𝑇𝐵, where 𝑇𝐴 > 𝑇𝐵, can have the
same relative humidity 𝑅𝐻𝐴 = 𝑅𝐻𝐵, although the amount of water contained
in A is greater than in B.
Closely related to relative humidity is the dew point temperature 𝑇𝑑 . The
dew point indicates the temperature to which the moist air parcel must be
cooled until it is saturated [LC79]. The relative humidity is therefore 100 %
at the dew point temperature. As it cools further, the contained moisture
condenses [Hau10].
The third moisture measure used in the further course is the specific humidity s.
If no water molecules are added or removed from an air parcel either by
condensation or by evaporation, the specific humidity 𝑠 is a constant humidity
measure [Wet19b]. This property is useful for the comparability of two air
parcels at different locations under the assumption that no humidity was added
or removed.

Global radiation
Global radiation 𝐺 is defined as the sum of direct and scattered or diffusely
reflected solar radiation [LC79]:

𝐺 = 𝐼 · 𝑠𝑖𝑛(ℎ) + 𝐷 (2)

With 𝐼 intensity of direct solar radiation (solar radiation energy per time and
unit area perpendicular to the direction of radiation), ℎ solar altitude and 𝐷
diffuse radiation from clouds and sky [LC79]. When the sky is overcast, the
global radiation𝐺 is reduced because the high reflectivity (albedo) of the cloud
cover reflects about 75 % of the incident radiation directly back into space, and
thus only 25 % of the original incident radiation penetrates the cloud cover.
An exception to the described scenario, are snow landscapes. The albedo of
snow is higher than 80 %, therefore radiation can be reflected several times
between clouds and snow [LC79]. The global radiation is given in𝑊/𝑚2.
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2.2 Machine learning

One speaks of machine learning (ML), if the machine learns certain skills by
itself, without being directly programmed by a user [ZN18]. Hence, the term
"machine learning" refers to multiple procedures that automatically identify
patterns in data and can subsequently apply these patterns to previously unseen
data to predict the outcome [Mur12].

2.2.1 Neural networks

A neural network or a neural net (NN) is just one of many possible applications
of machine learning. Since a NN depicts a certain type of nonlinear statistical
model or simply a nonlinear function 𝑓 : R𝑝 → R𝑟 , the relationship between a
pattern and a real-value can be quantitfied by it [HTF09,AB09,Run10]. Each
NN is specified by so-called weights 𝑤 of the individual values or connections
[Run10]. These are trained during a suitable learning procedure, e.g., with
input/output pairs 𝑍 = (𝑋,𝑌 ) ∈ R𝑝+𝑟 . Subsequently, the network is able to
approximately reproduce or predict an associated output vector 𝑦 ∈ 𝑌 for an
input vector 𝑥 ∈ 𝑋 , in a way that 𝑦 ≈ 𝑓 (𝑥) holds true [Run10].
To understand how a NN is constructed and to what extent it maps a nonlinear
function, a few basics are necessary first.

In their original form, artificial NN (ANN) form a simplified model of the
biological NN [AB09]. This means that each ANN has neurons or units (com-
parable to biological neurons), which are structured in layers and partially
connected with each other.
Each neural network has an input layer with 𝑛 input variables, also called fea-
tures, inputs, or predictors [HTF09], and an output layer with 𝑚 outputs, also
called responses [HTF09]. Both 𝑛 and𝑚 are integers and represent the number
of levels of the input and output vector 𝑥 and 𝑦, respectively. There can be
any number of hidden layers between the input layer and the output layer. The
larger the number of layers, the higher the complexity and the computational
effort for the model. If the number of hidden layers is too low, the model can-
not capture the nonlinearities in the data due to missing flexibility [HTF09].
Nevertheless, there are use cases where so-called shallow [Wer21] or tradi-
tional [Mat21] networks are used. They are characterized by only having one
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hidden layer and thus a total of three layers. Networks with a higher number of
hidden layers are called deep neural networks (DNN). The greater the number
of layers, the deeper is the NN. The NNs in this work are in the shallow region
of DNNs, as they contain a maximum of six layers.
The exchange of information between the individual layers and neurons takes
place, both in biological and artificial networks, via the connections between
them. Between which neurons a connection exists is decided by the network
topology. In the following, only the topology of a fully connected NN will
be explained since alternative approaches such as recurrent NN do not find
application in this work. A NN is fully connected when all neurons of the
intermediate and output layers are connected to all neurons of the previous
layer [Wer21]. However, direct feedbacks between neurons, i.e., the connec-
tion of a neuron with itself, or recurrent connections are excluded in fully
connected NNs [Kri07].
What information is exchanged across the existing connections, in both a bio-
logical and an artificial neuron, depends on the activation state of the neuron.
A biological neuron starts firing when the intensity of activation exceeds a
threshold value. In an ANN, each neuron processes information based on
its activation function and its previous activation state into new information,
which is emitted to the following neuron [Kri07]. The activation function is
normally identical for all neurons, partly except for the output layer. Depend-
ing on the underlying task, there are both stepwise and derivable activation
functions.
Figure 2 illustrates the structure and possible connections of a flat fully con-
nected DNN example, comparable to the NNs implemented for this work.

In their further structure, realization and implementation of different ANN
types differ fundamentally. First, networks can be divided into the following
two groups based on their problem definition: Classification and Regression.
Classification networks are those that have a qualitative output, whereas re-
gression networks refer to quantitative outputs [HTF09]. More specifically,
regression networks estimate the correlation of different features [Run10] and
output a continuous response, rather than a class or a binary response as it is
the case with classification networks [Böh09]. All networks considered in this
work are based on regression models, since a continuous instead of a stepwise
or classified output is wanted.
Another fundamental difference between different networks is their learning
strategy. Generally speaking, a learning strategy is an algorithm that evolves
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Figure 2: Structure of an exemplary neural network with connections for a fully connected NN
shown only for first neuron of hidden layer and first, in this case also only, output neuron
𝑚1. In this example the NN can be described by an input vector 𝑥 with n = 3 levels, one
hidden layer and an output vector 𝑦 with m = 1 level.

the NN and thereby trains the model to refine the approximated output for a
given input [Kri07]. The two best-known learning methods are supervised
and unsupervised learning. In case of unsupervised learning, the network only
receives input vectors and must use them to identify and classify similar pat-
terns on its own [Kri07]. It does not receive feedback on the accuracy of the
model throughout the learning process. In case of supervised learning, how-
ever, the model is provided with the correct output vectors in addition to the
input vectors. Thereby, the model obtains information about the true relation-
ship between input and output vector [AB09]. This process can also be called
"learning by example" [HTF09]. First, the features are fed into the current state
of the NN. In response, the model produces outputs. These generated outputs
can be compared to target results and thereby a deviation of the current model
outputs can be expressed. During its training phase, the NN continuously
adjusts its model and thus its weights of the individual connections based on
the deviations in order to achieve a gradually smaller deviation and thus create
a more accurate network function 𝑓 [HTF09]. After completion of the training
phase, the artificial outputs of the NN should be close enough to the target
results so that the NN can be applied to further, unknown input data while
providing reliable results [HTF09]. Murphy summarizes this as: "The goal is
to learn a mapping from inputs to outputs." [Mur12]. In this work, supervised
learning is used exclusively.
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2.2.2 Random forests

To understand how a random forest (RF) algorithm works, which, as the name
suggests, is a random collection of individual trees, the concept of a single
tree, a decision tree, is necessary.

A decision tree resembles a natural tree in its structure and architecture, which
gives rise to the naming. The branches in a decision tree are created by
distinguishing the data based on their properties [LL20]. Rules are used to
assign the data to their respective classes. Each rule implements a new decision
level and thus another branch in the tree.
A RF is defined as an extensive collection of these independent trees [HTF09].
All trees in the forest are initialized and trained independently [Seg04] and
randomly [LL20]. The size of each tree is given by the RF algorithm or the
user, but the selection of the properties or decision criteria of each decision tree
and level are based on randomness and therefore differ from tree to tree [LL20].
The overall result of the RF is determined based on the set of individual
decisions or results of the individual decision trees [LL20]. For regression
applications the results of the trees are averaged unweighted [Seg04,HTF09].

By initializing and combining many different independent result trees with ran-
dom variances of each, a RF can achieve a better result than a single tree and
increase its approximation accuracy [LL20]. By the RF method, at each deci-
sion level of each tree, only a random subsection of features or characteristics
is provided to the algorithm for decision making. The subset is recomposed at
each decision in each tree [Fro20]. By using random sets of input variables for
growing the individual trees, the accuracy can be improved [Bre01]. Therefore,
a RF algorithm is successful due to its additional randomization compared to
other machine learning approaches [HTF09].

To adapt a RF to the respective use case, the user has various tuning parameters
at his disposal, whereby, for example, the way of creating trees can be changed
[LL20]. The maximum depths of each decision tree is one example: In
general, the deeper a tree is, that is, the more decision levels it has, the lower its
bias [Seg04]. However, the variance behaves in the opposite way, since with
increasing depth the instability of the tree increases, which becomes visible in
a decreasing approximation quality of the RF [Seg04]. Therefore, the depth of
the trees should be limited by a tuning parameter. In order not to specify the
maximum depth of the trees directly, a minimum number of cases at a decision

17



2 Foundations

point can be specified instead [Seg04]. If this number is reached, the tree does
not divide further, so that no new branch or decision level is created. This
indirectly limits the maximum depth of a tree.
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Since the quality of the underlying data set determines the overall quality of
the results, great care is taken with regard to data selection. In addition to
investigated vehicle-based data, measurements for reference purposes are re-
quired. Without reference data, no conclusion regarding the quality of the
vehicle-based signals can be made.
This chapter categorizes the sensors and station types available to the project.
First, sensors relevant to meteorological applications installed on board of pro-
duction vehicles are described in Chapter 3.1. The second subchapter discusses
external sources and measurement equipment that can potentially be used as
reference. The different types are described including the available signals
promising for the project (cf. Chapter 3.2). The established requirements for
reference data, as well as the selection of a suitable reference are listed in
Chapter 3.3.
As of writing, no known, pre-existing data set meets the basic requirement
of a continuous reference with the same temporal resolution as the vehicle
data. Anderson et al. follow an approach where vehicle data is compared to
a stationary reference, while the vehicles are in motion. In addition, the data
has a low temporal and spatial resolution since it is averaged over 5 min and
1.6 km [ACD+12], respectively. In another publication, a different data set with
mobile vehicle-based data is recorded with the limitation that data is collected
only with vehicle external auxiliary sensors rather than on-board sensors. For
evaluation no reference is used, instead the relative change of the measurement
data due to change of location of the vehicle is considered [KKS+19].
Therefore, in this thesis measurement campaigns (cf. Chapter 3.4 and 3.5)
are designed and conducted to generate a first-hand data set that enables eval-
uations and statements on the quality of the vehicle-based data by ensuring
almost identical environmental conditions for both vehicle and reference. Be-
sides complete vehicular data, including CAN traces and additional on-board
sensors, a suitable ground truth is recorded alongside the vehicular data set.
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None of the conducted measurement campaigns take place in a laboratory.
Instead, all measurement campaigns are real-world measurements, since mul-
tiple influences that cannot be recreated in a laboratory have an impact on the
measurements. An example is the influence of the changing altitude on the
temperature measurement or the influence of the sun on the global radiation
measurement. In addition, influences that are unknown or unquantified cannot
be represented in a laboratory. Measurements in a laboratory would therefore
not provide representative data, so real-world measurements are required.
Due to current regulations regarding data privacy (GDPR, [Ger18]), no field
data from customer vehicles can be used for this work. Instead, two company
owned vehicles (in the following technical carriers, TCs) are available for data
collection.

3.1 Sensors on board of production vehicles

On board of current production vehicles, a variety of different sensors for a
range of different requirements and purposes exist. Most of these sensors
ensure flawless operation of the vehicle itself as well as for passenger comfort.
The second biggest group of sensors monitors the environment of the vehicle.
Well known functions driven by these sensors are for example the adaptive
cruise control, which processes data of detected objects in the surrounding.
Although less exposed, modern vehicles are equipped with a wide range of
environmental sensors by default which promise potential for meteorological
applications and are the focus of this work. Due to economic constraints and
purely unit-driven business cases any sensors other than to meet the minimum
requirements to operate a vehicle as advertised have hardly been considered
in the past. To enter series production with an additional set of sensors for
purposes and use cases that exceed the basic operation of a vehicle involves
both technical and entrepreneurial risks. Without well-established business
cases it is unlikely for major OEMs to fit auxiliary or specialized sensors
to vehicles for applications beyond this in the near future. Therefore, the
currently available sensor set on board of production vehicles forms the scope
for generating a real-time weather map based on fleet data. Custom fitted
sensors are solely used for reference purposes and are unavailable once the
project possibly enters series production. Hence, in the end, the whole process
of determining ambient conditions must solely be based on these established
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Figure 3: Overview of sensors on board of production vehicles relevant for meteorological appli-
cations.

sensors.
A major objective of this work, therefore, is to investigate how well exclusively
sensors on board of production vehicles are suitable to generate a real-time
weather map based on fleet data. Figure 3 gives an overview of sensors on
board of production vehicles that are relevant in a meteorological context.

The foremost sensor providing data is a far-infrared nightvision camera. This
camera can potentially detect the road surface temperature. However, this
requires the development of a new analysis program. Up to date, the sensor
is used for pedestrian and object recognition exclusively and no information
about road conditions is gained.
In the front end of every vehicle, several sensors interesting for meteorological
applications are located. Two air temperature sensors operating independently
are mounted in different positions (cf. Figure 4). The front sensor is mounted
directly behind the radiator grill in a height of approximately 0.32 m and is
referred to as BCM1 sensor in the following. Its measurement uncertainty
amounts to ±0.3 K (at a temperature value of 25 °C) with a system-restricted
resolution of 0.5 K (cf. Appendix A.1). The second sensor that measures tem-
perature among other parameters is located further downstream, closer to the
engine block (cf. Figure 4) at the air intake for the cabin at a height of 0.80 m.
In the following, this multifunctional sensor is referred to as MuFu sensor.
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Figure 4: Two different temperature sensors located in front end of vehicle: BCM1 sensor and
MuFu sensor.

For a temperature of 25 °C its measurement uncertainty likewise amounts to
±0.5 K. The measurement uncertainty for both temperature sensors increases
for temperatures diverting from 25 °C. The resolution of the temperature signal
of the MuFu sensor amounts to 0.5 K (cf. Appendix A.1).
The MuFu temperature sensor is a multifunctional sensor, which also measures
relative humidity and dew point temperature. The relative humidity signal has
a measurement uncertainty of ±3 %rH and a resolution of 1 %rH. For the dew
point temperature signal neither a measurement uncertainty nor a resolution
is specified, since it is an indirect signal calculated based on the measured air
temperature and relative humidity.
The engine control unit itself provides the air pressure signal (measurement
uncertainty: ±10 hPa, resolution: 7.9 hPa) as well as information in conjunc-
tion with the combustion process, including the engine temperature.
Another important sensor for meteorological applications is the sensor combi-
nation "Rain and Sun" (shortform: R+S), which is installed in the center of the
windshield at a height of 1.38 m, in the socket of the rear mirror. The sensor
has two fields of activity. Primarily, it detects precipitation and controls the
wipers. In the course of the FloWKar research project the unit of the precip-
itation intensity was changed from an arbitrary intensity with units in % to a
scale in ml/s/m2. This development allows for initially usage the precipitation
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intensity signal for meteorological purposes, which was previously unfeasible.
Due to very limited number of data points during rain events and only tem-
porarily available reference during these events, the rain signal is not further
considered in the scope of this work. In addition to rain intensity, the sensor
registers two signals for light intensity, directed to the front left and front right.
The conversion to global radiation values is performed as a standard using a
model from a subsidiary of the AUDI AG. The global radiation values have a
measurement uncertainty of ±3-5 %.
A crucial prerequisite for integration and comparison of the sensor signals with
a meteorological context is the ability to pinpoint the observations geograph-
ically as well as temporal. Therefore, the antenna module is essential since it
provides the system with Global Navigation Satellite System (GNSS) coordi-
nates (cf. Figure 3). The GPS signal is too inaccurate to control automated
driving functions via this alone but is perfectly adequate for meteorological
applications.
All sensors and signals relevant for answering the research questions of this
thesis are listed in Table 21 in Appendix A.1 in detail. Other signals of interest
in a meteorological context, such as spray indication, are available on board
of production vehicles. However, they do not find any application in this work
and are therefore not detailed further.

3.2 Sensor technology for reference purposes

Besides the presented sensors on board of production vehicles, multiple oppor-
tunities for collecting meteorological data are made use of during the project
phase. Especially for reference purpose, additional external data sources are
indispensable.
Table 1 gives an overview of the available additional external data sources.
Characteristics describing the individual data sources, for example, mobility
possibilities, are listed. In Table 2 an extract of measured signals for the
respective data sources relevant for this work is illustrated. All data sources
measure air pressure, air temperature and relative humidity, whereas, for exam-
ple, global radiation is not included for all data sources. Detailed information,
such as measurement uncertainty for each data source, are listed in Table 22 in
Appendix A.1.
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Synop stations are weather stations operated by the national weather service
that provide meteorological data used for the numerical weather models (cf.
column “Synop” in Table 1). These stations are located in largely unaffected
environments. This excludes for example locations in a residential area, since
buildings and objects influence the air flow and thereby the measurements
might by distorted. Instead, locations amid fields are preferred. Beyond this
the ground beneath the measurement equipment is standardized, too. Mowed
lawn is required, any other materials, for example asphalt, are prohibited.
Thereby data from different synop stations can be compared due to sufficiently
identical environmental conditions. The set up often includes multiple different
sensors from different manufacturers and is stationary in its nature. The
individual stations are typically separated by several kilometers up to tenth
of kilometers. Besides the relatively coarse spatial resolution, the temporal
resolution is also relatively low. By design of the national weather service
the meteorological measurement equipment of the synop stations provides one
value for each quantity every 10-15 minutes. The data set contains a variety
of meteorological signals. However, only the following will be considered
for reference: Air pressure, air temperature, relative humidity, dew point
temperature, precipitation intensity and global radiation. Air temperature is
measured at two different heights of 0.05 m and 2 m simultaneously. Since the
vehicle-based air temperature measurement is conducted in a height of 0.3 m
above ground, neither of the two synop station temperature measurements
matches perfectly. Nevertheless, the vehicle-based measurement is conducted
in a height similar to the lower of the two synop station measurements. The

Table 1: Overview of different station types available for recording reference data with character-
istics of each station type
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Table 2: Extract of signals measurable by individual external data sources relevant for this work.
Height information are included if invariable. Note, that all data sources measure ad-
ditional meteorological parameters. Since these are not relevant to this work, they are
therefore not listed.

relative humidity and the dew point temperature are both measured in a height
of 2 m above ground. Neither the air pressure, nor the precipitation, nor
the global radiation are somehow influenced by height, wherefore no heights
are specified. Noteworthy is that the applicability of the global radiation
measurements as a reference is limited to only a subset of synop stations as not
all stations are equipped with a pyranometer.

The second station type considered for reference purpose are RWS (cf. column
“RWS” in Table 1). As the name already implies, these stations are located
next to roads, mainly next to highways and rural roads. As a result, the
measured signals might be influenced by characteristics of the road and traffic.
The proximity to the road explains that the ground beneath the measurement
equipment is the road itself or the roadbed respectively. Thereby these stations
can reflect the conditions on the road well but are not directly comparable
to measurements from synop stations. Another downside of these stations
is the commonly poor condition of the stations. Unlike with synop stations,
no periodic maintenance is done after installation which results in falsifying
effects due to for example shadows of the growing trees and bushes in the
surrounding. Maintenance of RWS would increase costs and is therefore
frequently reduced to a minimum or cut completely. Most often the stations
are used for distinguishing between hazardous and safe driving conditions by
road authorities though. Since RWSs are the only stations with information
on road water film thickness, as well as road temperature and salinity, this
unique feature provides decision support for road weather warnings. Typically,
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RWS transmit data every 10 minutes. Exclusively for this project, seven RWS
are adjusted to transmit data every minute. Beside meteorological sensors
for air pressure, air temperature, relative humidity, dew point temperature and
information about precipitation, a RWS is additionally equipped with sensors
measuring road surface temperature and road surface conditions.

The mobile weather station (in the following: MWS) is a partly mobile station,
which is a benefit in comparison to the two previously described station types
(cf. column “MWS” in Table 1). Since the power is supplied by a car battery,
this station can be set up at any desired location. For the duration of the
measurement the MWS is stationary though. Due to the flexible choice of site,
the ground beneath the measurement can vary. Independently of location, the
MWS transmits data from meteorological sensors every second. The extent
of the transmitted data is listed in Table 2. Although it is limited to five
meteorological signals, all crucial parameters are covered.

The fourth type of potential reference station is the so-called Weather Box (in
the following: WB). The respective information are displayed in column “WB”
in Table 1. In the WB, production sensors, normally mounted in a vehicle, are
installed in an industrial enclosure which results in measurements independent
of the otherwise adjacent components of a vehicle. Both characterisics, "mo-
bility" and "ground beneath measurement" are identical to the MWS, since
the WB can be set up at any desired location whereby the ground beneath
the measurement can change. The height of the WB is adjustable for each
measurement campaign. The temporal resolution of one second is identical,
too. Even the extent of the measured signals does not differ significantly (cf.
Table 2). The main difference is the already mentioned use of vehicle sensors
in the WB, instead of meteorological sensors for the MWS.

The last available data source is listed in the column "MMU" in Table 1. The
mobile measuring unit of the national weather service (in the following: MMU)
is a data source being mobile continuously. This is achieved by mounting
meteorological measurement equipment on a metal structure in front of a
vehicle. Thereby, the sensors are located upwind of the vehicle and distorting
influences of the dynamics of the vehicle are reduced to a minimum. In general,
the MMU combines the benefits of the previously presented four station types.
The meteorological equipment is mobile and can thereby continuously measure
close to the TCs. Hence, the spatial representativeness of the data set in
comparison to data from the TCs is guaranteed. Additionally, the high temporal
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resolution of one second is advantageous. Driving at a speed of 10 km/h results
in a measurement location every 2.5 m, a vehicle speed of 100 km/h yield a
measurement every 28 m. Finally, it is worth mentioning that this is the only
station type that is calibrated frequently and on a regular basis. Regarding
the measured signals most meteorological quantities are represented, except
precipitation. The two signals air temperature and wet bulb temperature are
even measured at two different heights, with the lower of the two (0.7 m) being
close to the height of the production vehicle-based temperature measurements
of 0.3 m.

In summary, each station type has its benefits regarding serving as reference
for vehicle-based measurements. Being stationary or only partly mobile is yet
a strong limitation, since the spatial representativeness is reduced significantly.
Only data measured at timestamps when the TC was close enough to the station,
can be used for referencing purposes. As a consequence, the available amount
of data is reduced drastically. The composed information already implies that
the MMU is most suitable for serving as a reference station. Nevertheless, due
to its uniqueness, the MMU is not continuously available. Furthermore, the
MMU reaches its limitations regarding precipitation. Therefore, a combina-
tion of different station types is most preferable to function as ground truth data.

3.3 Selecting a suitable reference

For varying measurement scenarios, reference data needs to meet different
quality requirements. For a stationary measurement campaign, for instance,
the source of reference data can be stationary, too. But for a mobile measure-
ment campaign, the same data source would only provide reference data with
insufficient quality since the data have a strongly limited local representative-
ness. In case of the TC being in the immediate vicinity of a stationary data
source and being affected by the same environmental conditions (ground, air
flow, irradiation, altitude, etc.), this data can be used as appropriate ground
truth. For periods with some distances between the TC and the second data
source, different surfaces on the ground or further factors occur, causing vary-
ing environmental conditions to both data sources. Hence, a direct comparison
of both stations is not expedient. Therefore, a different data source should be
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used as reference for the vehicular data, ideally a data source that can move
along with the TC without measurements being disturbed by its dynamical
effects. It becomes apparent that different data sources should be used for
reference, depending on the measurement scenario.

In a stationary scenario, the MWS (cf. Chapter 3.2) could serve as a suit-
able source for ground truth data. Calibrated and off the shelf measurement
equipment, as well as cost-effective purchase and flexibility regarding the in-
stallation site are benefits of this data source. Moreover, a second reference
station useable in a stationary scenario is the WB (cf. Chapter 3.2). Neverthe-
less, the WB should not be used as the only reference, since the same sensor
technology is used here as in the vehicles and thus measurement errors caused
by the sensors cannot be identified. Using the WB as an additional reference
station in combination with the MWS instead, is of great added value, as this
allows a multi-level correction, divided into measurement uncertainties due to
equipment and measurement uncertainties due to the way of installation in the
vehicle.

Assuming the TC is moving, neither the MWS nor the WB are an appropriate
source of reference data any longer, since data of both stationary measurement
systems is not no longer continuously representative for the environment the
TC is driving in. For this scenario the MMU (cf. Chapter 3.2) is the method of
choice for recording reference data. Comparable to the MWS, the measuring
equipment is also calibrated. Additionally, the MMU can accompany the TC
continuously, whereby the representativeness through time and space of the
mobile reference data is ensured.

The three reference options mentioned (MWS, WB, MMU) have the advantage
over the stationary RWS and synop stations that their temporal resolution is
equal to the temporal resolution of vehicular measurements, which is one
second. Both RWS and synop stations have a significantly lower temporal
resolution, varying between one and ten minutes depending on the station.
Due to the low frequency of reference data of these two station types, this data
is only sporadically accessed for evaluation.

The uniqueness of the data set generated as part of the project is based on
combining different data sources, which results in a data set not only containing
vehicular data from the TCs and stationary reference data from the MWS, but
also including stationary reference data from the WB and mobile reference data
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from the MMU. The described data set is of considerable value for all analysis
in a meteorological context and thereby builds the base for the project and this
work. It is a unique characteristic of the project, and thereby a strength, and a
hurdle alike, since at the start of the project this data set, or a comparable one,
were not existent. Therefore, a lot of time was spent on the design and setup
of the experiments as well as the eventual data acquisition itself.

For generating the previously described data set including vehicular data and
reference data multiple measurement campaigns with different characterizing
features were necessary. The most obviously varying feature is mobility during
the campaign, resulting in stationary and mobile measurement campaigns.

3.4 Stationary measurement campaigns

Stationary measurement campaigns have the purpose of determining the basic
accuracy of the sensors mounted in vehicles, whose measured signals have
to be quality assured for further applications. As mentioned in the previous
subchapter, mainly two different reference stations are used. Firstly, the MWS
(cf. Chapter 3.2) and secondly the WB (cf. Chapter 3.2). Combining the three
data sources, namely both reference stations and a vehicle, gives information
about the basic accuracy of the mounted vehicle sensors and the influence of
the position of the sensor in the vehicle. Hereby, the measurement uncertainty
in stationary situations can be evaluated.

During the project, two stationary measurement campaigns are executed, one
in November 2020, the other one in January/ February 2021. During these
stationary campaigns both TCs were located on the north side of the factory
plant of the AUDI AG in Ingolstadt. The windshields were active and contin-
uously facing north-east. Both TCs were powered off with all systems active,
except the engine. Therefore, none of both TCs was moved. Southwest of the
vehicles is a multi-story building of AUDI AG. The reference stations (MWS
and WB) were set up directly behind the two vehicles at a distance of 1 to 2 m
on a small grass strip. Due to the close spatial arrangement of the measurement
campaign, the environmental conditions can be assumed to be the same, and
the data can be compared directly.
The first stationary measurement campaign in November 2020 lasted more
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than 3 days and thereby recorded 294431 data points for both TCs, the MWS
and the WB simultaneously. The measurement has taken place during a slight
cold snap, as the maximum temperature values drop daily. The maximum air
temperature was about 9 °C on the first day of measurement and decreased by
about 7 K in the following days. The minimum temperatures also decrease
over this time period and is below 0 °C in three out of five days. On the last
measuring day, the temperature values increased again.
For the second stationary measurement campaign in January/ February 2021,
the measurement lasted about 7 days, resulting in 605427 data points with
concurrent data for both TCs, the MWS and the WB. During this measure-
ment campaign, milder weather prevailed than in November. The maximum
temperature was about 10 °C. The minimum daytime temperature fell only oc-
casionally to just below 0 °C. Air temperatures were therefore above freezing
most of the time, but often below an artificially set mark at 5 °C. To avoid
freezing of the windscreen and damage to technical equipment, a software
changeover took place in the TC between the two stationary measurement
campaigns. The auxiliary heater is automatically switched once the measured
air temperature falls below 5 °C. The influence of the auxiliary heating on
the measurements, especially on the temperature and relative humidity mea-
surement, must be specifically investigated and evaluated before corrections
compensating for measurement uncertainties induced by stationary situations
can be derived based on this data.

Since the MWS suffered from sensor failures in the global radiation signal, an-
other stationary measurement campaign was conducted. For this measurement
campaign, a TC was positioned in Dürnast next to the synop station "Weihen-
stephan" for 4.5 days. This synop station is one of the few stations in Germany,
where the global radiation is recorded by a pyranometer and has a temporal
resolution of 1 minute. Due to the lower resolution compared to other reference
stations, this stationary measurement campaign provides only 613 concurrent
data points of the reference station and the TC, despite a duration of more than
4 days.
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3.5 Mobile measurement campaigns

Mobile measurement campaigns contribute the remaining data to the data set.
Their purpose is to identify the influence of the dynamics of the vehicle on the
measured signals. For these campaigns the TC participates in traffic as a normal
road user to generate data under real-world conditions. Thus, the vehicle is
moving most of the time. During these campaigns data was collected for as
many different scenarios as possible. This includes for example varying vehicle
speeds, in scenarios downtown, out-of-town and highway of up to 100 km/h, as
well as different weather situations, for example warm and sunny weather, but
also rain and snowstorm. For periods, where the vehicle comes to a stop, for
example due to traffic lights or stop and go traffic, the data recording continues
unchanged. Out of this, a variety of scenarios is recorded during these project
specific mobile measurement campaigns, covering the range of everyday usage
of a vehicle. Each measurement campaign has been accompanied by the MMU
providing full coverage with reference data.

The disadvantage of mobile measurement campaigns compared to station-
ary measurement campaigns (cf. Chapter 3.4) is the influence of extraneous
traffic on the measurements, such as spray, turbulence, or shadows. These
influences cannot be excluded during measurement campaigns in real road
traffic. In addition, mobile measurement campaigns are only possible during
working hours and with the availability of the participants, whereas stationary
measurement campaigns can record data permanently. However, mobile mea-
surement campaigns are the only possibility to collect data while driving and
during real-world traffic. This database is mandatory to develop corrections
for effects induced by the vehicle motion of the own vehicle.

During the project phase three multi-day mobile measurement campaigns were
conducted, focusing on collecting data during winter season, since for this
season road weather is most critical for applications related to vehicle and
traffic safety.

The first measurement campaign took place from January 20𝑡ℎ to 24𝑡ℎ , 2020.
During these 5 measurement days, a total of 92849 data points with concurrent
measurements for the primary TC and the reference of the MMU was recorded.
During this measurement campaign, data was mostly collected while driving
(country road and highway), which explains the 1405 km covered (cf. Fig-
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ure 5a). In addition, data was recorded at the mountain "Hohenpeißenberg"
in southern Germany. Here, significant changes in altitude occur within a
few kilometers, whereby a vertical profile of meteorological variables can be
approximated. Since most meteorological variables show significant and fast
changes with a change in altitude, this can provide an indication of the inertia
of the vehicle-based measurements. In addition, data was also recorded in
Bergisch Gladbach, at the test site of the German Federal Highway Research
Institute (BASt) during the January measurement campaign. Although long
distances were covered during this measurement campaign, the weather sit-
uation has been comparatively uniform. In southern Germany, temperatures
were mostly below the freezing point for the first three days of the measure-
ment campaign. The last two days, which took place mainly in Offenbach and
Mönchengladbach, recorded slightly warmer temperatures, with the maximum
daily values above the freezing point. At night, temperatures have fallen below
0 °C for the entire period. Since the measurement campaigns took place during
the day, the temperatures here were slightly higher, but still frequently below
0 °C. No precipitation occurred during the entire measurement campaign,
neither in liquid nor in solid form.

The second measurement campaign was conducted from February 10𝑡ℎ to 12𝑡ℎ ,
2020 (3 days). A total of 54310 data points with concurrent measurements of
the primary TC and MMU was recorded. The geographical focus of the mea-
surement campaign was Offenbach (cf. Figure 5b) for logistical reasons. From
there, the synop station "Wetterpark" usable as another reference possibility,

Figure 5: Reference air temperature measured by MMU plotted for all measurement campaigns to
visualize route of all campaigns, a) January 2020 b) February 2020 c) September 2020
campaign.
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as well as the northeast located "Wasserkuppe" due to its elevated altitude and
the city of Frankfurt with dense rush hour traffic for stop and go scenarios
were chosen as targets. The weather situation during these three February
days was mixed, but especially on the second day characterized by blizzard
conditions and heavy snowfall. Temperatures were near the freezing point,
so the falling precipitation frequently alternated between rain, snow, sleet and
hail. Therefore, the road situation was also variable, fluctuating between dry,
wet and snow-covered roads.

From August 31𝑠𝑡 to September 2𝑛𝑑 , 2020, the third measurement campaign
took place starting in Ingolstadt. In the three measurement days 83246 data
points could be collected for which measurement data of the primary TC as
well as the MMU is both available. In order to have a reference measurement
for precipitation available for individual passing summer thunderstorms, the
synop station "Hohenpeißenberg" in southern Germany was approached. At
the same time, vertical profiles for all meteorological quantities could be
recorded by trips up and down the mountain "Hohenpeißenberg". Due to the,
apart from individual precipitation events, sunny weather situation, the synop
station "Weihenstephan" was approached as a secondary destination, in order
to cover another possibility of reference data for global radiation on the basis
of this station. The weather during the three days was mostly friendly and
summery with maximum daily temperature values above 17 °C. On the second
day very isolated summer thunderstorms occurred.

During the three mobile measurement campaigns described above, a total of
230405 data points were collected covering 2765 km. All data recorded within
the scope of these mobile measurement campaigns is characterized by con-
current measurements for the primary TC with the reference of the MMU at
different weather situations, in different seasons with different driving scenar-
ios. Additional observations for reference purposes are available for individual
time periods from the synop stations mentioned above. The time window to be
used depends on the distance of the TC to the station: For distances exceeding
500 m, identical environmental conditions can no longer be assumed, whereby
the measurements are not suitable as a reference and are therefore not con-
sidered. Due to technical problems during all three measurement campaigns,
concurrent data of the secondary TC is not continuously available. The basis
for the evaluations and analyses are therefore the data from the primary TC.
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measured values

Chapter 4 outlines the methodology used for quality control and correction of
the individual measured meteorological quantities. Theoretically, all meteo-
rological quantities should be tested and corrected following the same scheme
(cf. Figure 6). First a input filter, including identification and elimination of
logical error as well as additional outliers is conducted. Secondly and thirdly,
sensor uncertainties in static situations and sensor uncertainties induced by ve-
hicle motion are compensated. The measurement campaigns described above
serve to separate and thus detail these working steps.

However, since the individual implementation of each of the three steps varies
depending on the meteorological quantity investigated, this chapter is split
by the meteorological quantities rather than the three steps. Subchapter 4.1
explains the working steps for correcting the air pressure, Subchapter 4.2 for
air temperature, Subchapter 4.3 for relative humidty and Subchapter 4.4 for
global radiation.

Figure 6: Schematic flowchart to test and correct meteorological quantities in the scope of this
thesis.
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4.1 Air pressure

The stages of filtering and correcting the air pressure signal are shown in
Figure 7.

Figure 7: Flowchart for testing and correcting the air pressure signal, consisting of an input filter
and compensating for sensor uncertainty in static situations.

4.1.1 Input filter

First, the measured air pressure signal 𝑃𝑚𝑒𝑎𝑠 is subjected to an input filter.
This stage consists of two working steps:

1. Ensuring all measured values are within the measurement range.
In this step single raw measurements outside the physical limitations
are modified. For the air pressure the only physical limitation is 0 hPa
since no negative air pressures are plausible. If a measured value falls
below the physical limitation, the duration of this state is checked. If
it lasted shorter than a preset threshold of 5 s, the measurement of this
timestep is corrected by holding the previous, plausible measurement.
If the reading falls below the physical limitations for longer than the
threshold allows, the erroneous measurement is excluded and replaced
with a logical gap, since a failure of the measuring system is likely.

2. Ensuring no outliers are present in the data.
This working step checks for sudden changes, which exceed a preset
threshold of 15 hPa. This threshold seems reasonable since the air
pressure is a rather inert, slowly changing quantity. Sudden changes
exceeding twice the measurement resolution within 1 s can therefore
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be identified as a falsified measurement. Once the outlier detection is
triggered, the previously measured value is hold for no longer than 5 s.

4.1.2 Sensor uncertainty induced in static situations

The next stage addresses the measurement uncertainty of the vehicular sensor
becoming apparent in static situations. To identify this uncertainty, static
measurement campaigns as described in Chapter 3.4 were conducted. An
offset between vehicle-based sensor and reference measurement is likely due
to two aspects. First, due to an offset induced by different sensors for the
reference station and the vehicle and secondly due to an offset induced by
the mounting location of the sensor. The setup of the static measurement
campaigns with two different reference stations (MWS and WB) enables the
consideration of both offsets independently.
The first offset, induced by different sensors, can be determined by comparing
the signal of the WB with the signal of the MWS, as illustrated by the upper
grey arrow in Figure 8. Since the MWS uses a calibrated sensor, it is assumed
to be the ground truth. The WB uses the same sensor mounted in the vehicle,
whereby the difference between the WB signal and the MWS signal represents
the offset induced by the sensor itself.
The second offset, induced by different locations of the same sensor, can be
identified by comparing the WB signal with the vehicle-based signal (cf. lower
grey arrow in Figure 8). The sensors in the WB and in the vehicle are the same
model and only differ by their mounting position. The sensor in the WB
measures in an undisturbed environment, whereas the vehicle-based sensor
measures within the engine block of the vehicle.

Ideally, the total sensor uncertainty in static situations 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 (deviation
between the MWS and the vehicle-based measurement) can be described as
the sum of the uncertainty based on the sensor technology 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦
(difference between MWS and WB) and the uncertainty caused by the location
of the sensor in the vehicle 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (difference between WB and vehicle)
and can thereby be written as:

𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 + 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (3)
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Figure 8: Compare measurements from Mobile Weather Station (MWS), Weather Box (WB) and
Vehicle in two steps to identify the two offsets that build the sensor uncertainty in static
situations.

If Equation 3 holds true, it can be assumed that no additional influencing factors
are involved during campaigns in a static situation or are negligible. Hence,
the transfer of vehicular data to stationary reference data can be modelled by
the previously described two-stage correction method.
It is notable that the third stage, compensating for sensor uncertainty induced
by vehicle motion, is omitted. The vehicle-based air pressure measurement
represents a signal, which is independent of the motion of the vehicle. Accord-
ing to the ideal gas law [LC79], a change in pressure is expected when one of
the factors affecting the pressure 𝑝 changes.

𝑝 · 𝑉 =
𝑚

𝑀
· 𝑅𝑚 · 𝑇 (4)

Since neither the volume 𝑉 , the mass 𝑚, the molar mass 𝑀 , nor the universal
gas constant 𝑅𝑚 change as a function of vehicle velocity, only a change in
temperature 𝑇 can lead to a change in pressure. According to the manufacturer
[Rob12], the pressure value output by the sensor is already corrected for
fluctuations in temperature and therefore does not exhibit any further effects
induced by vehicle motion. Therefore, the deviations between the vehicle-
based measurement and the respective reference data are almost exclusively
due to the sensor uncertainty of the production sensor system. Thus, the
previously described two stages are sufficient to obtain representative data for
ambient air pressure.
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4.2 Air temperature

Figure 9: Flowchart for testing and correcting the air temperature signal, consisting of an input
filter, compensating for sensor uncertainty in stationary situations and correcting for
sensor uncertainty induced by vehicle motion. Note, that three different approaches for
the third stage are implemented.

Figure 9 displays the procedure of filtering and correcting the air temperature
readings to derive a representative value from the on-board measured signal.
The first two stages are similar to the approach for correcting the air pres-
sure signal, wherefore only the differences regarding these two stages will be
described here.

4.2.1 Input filter

For the input filter of the measured air temperature signal𝑇𝑚𝑒𝑎𝑠 the two working
steps are fundamentally identical to the air pressure approach. Both approaches
only differ by the thresholds set for physical boundaries and outliers:

1 Ensuring all measured values are within the measurement range.
The physical limits for the air temperature signal are set to -40 ◦C
as the minimum permissible temperature value and to 80 ◦C as the
maximum permissible temperature value. The lower limit of the physical
limitations is defined by the operating range for the thermometer installed
in the vehicle. According to the sensor’s data sheet, the upper physical
limit is 155 ◦C [Amp15]. However, since the sensor is only indirectly
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exposed to the engine block or any other heat source, the upper plausible
physical limit is lowered to 80 ◦C. The threshold regarding the accepted
duration of the measured value being outside the physical boundaries is
set to 5 s, identical to the approach for the air pressure.

2 Ensuring no outliers are present in the data.
The pre-set threshold for accepted extents of sudden changes in the tem-
perature value amounts to 5 K. Therefore, it is ten times the measure-
ment resolution. Since the air temperature is a quickly, both temporal
and locally, changing meteorological quantity, a proportionally higher
threshold seems reasonable. The temporal threshold of 5 s is identical
to the approach regarding the air pressure.

4.2.2 Sensor uncertainty induced in static situations

The working steps of stage two, to determine the sensor uncertainty of the
vehicular sensor becoming apparent in static situations, fully align with the
steps for the air pressure signal. Therefore, the static measurement campaigns
are likewise used to determine the respective offsets for this meteorological
quantity.
Note, that effects introduced by the motion of the vehicle cannot be specified
at this time, since the vehicle remains in standstill for the whole campaign
without running engine. Solely, the influence of the sensor model and the
location of the sensor can be determined.

The determination of the total sensor uncertainty in static situations 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙
refers to the difference between the MWS and the vehicle-based measurement
and can be calculated by Equation 3. For the statement to hold true, it is
assumed that no other influences affect a measurement in a static environment.

4.2.3 Sensor uncertainty induced by vehicle motion

After compensating for sensor uncertainties in static situations, effects induced
by the motion of the vehicle need to be corrected to get a representative air
temperature signal. However, it must be taken into account that only the effects
induced by the vehicle’s motion and no local effects may be compensated.
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Changes caused by local effects need to be identified in order to preserve
them and thus obtain representative values after the correction. A prominent
example of a local effect is the decrease of air temperature with an increase in
altitude and vice versa [LC79]. This effect is measurable with vehicle-based
sensors (positioning module) and thus represents an important local effect that
must not be falsely compensated. Therefore, the physical model needs to
identify the reason for a change in the measured air temperature signal first,
before a correction is executed either way. If the temperature change is due to
a change in altitude, the measured value is retained.

The greatest effect, which occurs due to motion of the vehicle, is caused by
the engine waste heat in combination with the vehicle speed [HAVP+20]. This
effect is noticeable at low speeds or during stops. Specifically, the measured
air temperature increases. Even after the vehicle accelerates or starts again,
the effect initially persists.
At low vehicle speeds or when the vehicle is stationary after the engine has
been running, the air flow under the hood is reduced. Thus, the air heated
by the engine is not replaced by fresh air, but instead remains under the hood
and continues to build up as it is continuously irradiated by the engine waste
heat. The measured air temperature therefore rises with increasing duration of
standstill.
Immediately after the vehicle builds up speed again or continues after a stop,
the measured air temperature is still distorted by the influence of the previous
stop. This effect decreases with increased flow under the hood and time, until
a measurement unaffected by the engine waste heat can be detected again.
This effect occurs especially in stop-and-go scenarios or in rush-hour traffic.
It leads to excessively high air temperature values by the production sensor
system.

To compensate for this sensor uncertainty induced by vehicle motion three
different approaches are developed, implemented, and tested. The explanation
for the effects of vehicle motion on the measured temperature are decisive
only for the development of the physical model. However, for the data-based
models, they help to select suitable features for training the models.
In the following, all three implemented models, namely the physical model,
the neural network and the random forest, are described in detail.
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Correction with physical model

The first approach tested is a model based on physical connections and empir-
ically determined thresholds. First attempts using this approach can be found
in [HNK+19].

To decide whether the engine waste heat has an influence on the measured air
temperature signal, the physical model introduces an "Engine Impact Timer"
(EIT). The EIT is calculated based on the vehicle speed, the change in temper-
ature since the vehicle stopped, and indirectly on the duration of the stop.
For determining the EIT at each time step a decision tree with three levels is
implemented (cf. Figure 10).

Figure 10: Flowchart for the Engine Impact Timer (EIT), referring to current timestep i and
previous timestep 𝑖 − 1, vehicle speed v, threshold for vehicle speed 𝜏𝑣 = 5 km/h, first
threshold for EIT 𝜏𝐸𝐼𝑇 1 = 600, and second threshold for EIT 𝜏𝐸𝐼𝑇 2 = 60, first rate of
decline 𝑟𝐸𝐼𝑇 1 = 2, and second rate of decline 𝑟𝐸𝐼𝑇 2 = 2

3 , air temperature measured at
starting point of EIT rising above zero 𝑇𝐸𝐼𝑇 _𝑠𝑡𝑎𝑟𝑡 .

The EIT is triggered as soon as the speed of the vehicle falls below a predefined
threshold 𝜏𝑣 , which is empirically determined to be 5 km/h. As long as the
speed of the vehicle remains below this threshold, the EIT continues to increase
in a strictly monotonic manner.
For a vehicle speed above the threshold, a predefined decreasing rate (𝑟𝐸𝐼𝑇 1
or 𝑟𝐸𝐼𝑇 2) is applied until the currently measured temperature 𝑇 𝑖𝑚𝑒𝑎𝑠 is smaller
than the temperature at the beginning of triggering the EIT 𝑇𝐸𝐼𝑇 _𝑠𝑡𝑎𝑟𝑡 or until
the EIT has decreased to zero. Subsequently, an influence of the previous stop
by the waste heat of the engine can be neglected.
The value of the synthetic EIT signal builds the starting point for the physical
model PHY used for correcting the air temperature signal. The whole model
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is built as a decision tree with seven levels. The detailed illustration of the
decision tree is shown in Figure 11.

Figure 11: Flowchart of the physical model for correcting the vehicle-based air temperature signal.
The corrected temperature value for the considered time step𝑇𝑐𝑜𝑟𝑟,𝑃𝐻𝑌 is abbreviated
by 𝑇𝑐 . 𝑇 𝑖−1

𝑐 represents the corrected temperature value for the previous time step,
𝑇𝑚𝑒𝑎𝑠 the measured temperature. A detailed explanation for all quantities can be
found in Table 23 in Appendix A.2. If no time-related reference is given as superscript,
the value refers to the current time step i.

As long as the EIT equals zero, an influence of waste heat of the engine can
be neglected and the measured temperature signal is used as the corrected air
temperature value (𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 = 𝑇𝑚𝑒𝑎𝑠). If the EIT is greater than zero, a
possible influence of the engine waste heat has to be verified and if necessary
corrected. Since the vehicle speed represents the clearest indication of a
possible influence, it is used as the next decision criterion. Basically, the PHY
model distinguishes between four different scenarios regarding the vehicle
speed:

1. The vehicle is at standstill.

2. The vehicle travels slowly, at maximum speed of 5 km/h
(v ≤ 𝜏𝑣 = 5 km/h).

3. The vehicle travels at speeds above the speed threshold of 5 km/h
(v > 𝜏𝑣 = 5 km/h).
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4. No statement can be made about the speed of the vehicle, since no speed
values are available.

The individual decision-making progresses for each enumerated scenario can
be traced in the decision tree (cf. Figure 11). Signals used for decision-making
are the engine state (on/off), the time passed as well as the distance and altitude
covered since the EIT is triggered, and multiple temperature comparisons.

For the first scenario with the vehicle being at a standstill, the change in tem-
perature since the EIT was first triggered (ΔT) is considered. If the currently
measured value did not increase by more than 1 measurement resolution step
of 0.5 K, an influence by the engine heat can be excluded and the measured
temperature signal is adopted as a representative ambient air temperature value
(𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 = 𝑇𝑚𝑒𝑎𝑠). However, if the measured value increases by more than
1 measurement resolution step, the state of the engine is checked (on/off).
If the engine is currently running, the time (t) passed since the last stop is
taken into account. If it is below a predefined threshold (𝜏𝑡 ) dependent on the
engine temperature, the corrected temperature signal from the previous time
step is retained (𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 = 𝑇 𝑖−1

𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌
). Otherwise, a correction factor F1

is determined, depending on the change in temperature since the stop and the
value of EIT. Correction of the measured value 𝑇𝑚𝑒𝑎𝑠 by F1 is only applied for
durations of stop longer than the threshold 𝜏𝑡 since keeping the temperature
values constant for the first time after the vehicle stops leads to more robust
results.
If the engine is currently turned off and has been in this state for less than
a pre-defined threshold of 𝜏𝐸𝑛𝑔𝑂 𝑓 𝑓 , the temperature signal is kept constant
𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 = 𝑇 𝑖−1

𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌
. This threshold is set to 5 minutes since temperature

changes due to local effects can be neglected for short time periods at one spe-
cific location (given since vehicle speed is zero). If the engine has been turned
off longer than 𝜏𝐸𝑛𝑔𝑂 𝑓 𝑓 local effects must not be neglected and therefore the
output of the model becomes a missing value to avoid misleading information
(𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 = missing value).

For the second scenario with low speeds, instead of a complete standstill, the
model proceeds similarly. The only significant difference is the consideration
of the altitude and distance covered since the EIT was triggered (Δ𝐴𝑙𝑡 and
Δ𝐷𝑖𝑠𝑡). If the vehicle is stationary as in the previous scenario, it cannot
change its position. However, in this scenario it is moving and thereby a
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certain change in temperature can also be caused by a change in altitude or
distance. Therefore, these changes are considered for low speeds here.

The third enumerated scenario refers to a situation where the vehicle is moving
with a speed above the threshold, but it might still be influenced by the previous
stop, since the EIT is greater than zero. If Δ𝑇𝑎𝑣𝑒 (= 𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 − 𝑇𝑚𝑒𝑎𝑠 with
averaging referring to 20 s) is smaller or equal to zero, a measured temperature
value lower or equal to the corrected temperature value is implied. Since such
a reducing effect on the measured temperature value induced by vehicle mo-
tion is not known, the currently measured temperature is used as the corrected
temperature (𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 = 𝑇𝑚𝑒𝑎𝑠). If Δ𝑇𝑎𝑣𝑒 is positive, but still small (≤ 1 K)
the measured temperature is only slightly higher than the previously corrected
temperature. After further queries of temperature differences a variation of
the previously corrected 𝑇 𝑖−1

𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌
or the measured 𝑇𝑚𝑒𝑎𝑠 value is used as a

representative ambient air temperature.
For Δ𝑇𝑎𝑣𝑒 greater than 1 K, the measured temperature signal has to be influ-
enced significantly by the waste heat of the engine as there is no other probable
explanation. Therefore, the currently measured temperature value is not con-
sidered for determining the corrected temperature value. Instead, the previ-
ously corrected temperature value is retained (𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 = 𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 [𝑖 − 1]).
However, for a decrease in altitude, this local effect can also cause the temper-
ature value to grow, which is considered and accepted.

The fourth scenario applies, if no values for the vehicle speed are available. If
only the vehicle speed value is not reported for any reason, but the temperature
value is present, a technical error of short duration is assumed and therefore
the previous corrected value is retained (𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 = 𝑇𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 [𝑖 − 1]).

Based on this decision tree (cf. Figure 11) the influence induced by waste heat
of the engine block is corrected. The correction takes effect as soon as the
vehicle stops, drives slowly or is still influenced by the previous stop and a
temperature increase above one measurement resolution step is present. The
local effect of temperature change due to altitude is also considered.
Compensating for effects induced by global radiation is not put into practice
here, although an effect is expected, especially during summer season. How-
ever, since the data basis is not sufficient to quantify this effect and additionally
the exact mathematical relationship is unknown, this effect can currently not
be integrated into the physical model.
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Correction with neural network

The second approach tested is data driven, using a NN to correct the measured
temperature values.

Network architecture and training

Since the problem at hand does not aim to perform a division into categories, but
to output a continuous decimal number as the result, it is a regression problem.
A fully-connected net with the softplus function as the activation function to
ensure uniform activation and to prevent stepwise activation is applied. A
stepwise activation decides between 0 and 1 and is therefore unsuitable for
regression problems. An exception is the output layer of the network under
study. Here, a linear activation function is applied, to avoid steps in the output
data and thereby ensure a continuous mapping of the output data.
The Adam Optimizer (Adaptive moment estimation) [KB15] is used as the
optimization algorithm using Keras in Python. Since no or only little tuning of
the hyperparameters is necessary when using Adam in order to achieve robust
results [KB15], it is well suited for this application.
The starting weights of the net are initialized randomly gaussian distributed.
Crucial for the network is the selection of the loss function, i.e., the quantity
to be minimized during the training of the network in order to reduce the error
of the network. For the present use case, the mean squared error is chosen as
the loss function [SW11]:

𝑀𝑆𝐸 =
1
𝑛
·
∑︁𝑛

𝑖=1
(𝑦𝑖 − _(𝑥)𝑖)2 (5)

with n being the number of all available instances in the data set, 𝑦𝑖 the value
that is ammused to be true (measured by the MMU), and _(𝑥)𝑖 the predicted
value. An advantage of squaring the deviation is that large deviations result in
larger errors than small deviations. This penalizes the model more for large
errors.

The training of the net is implemented to stop on convergence. Convergence is
assumed when the MSE does not improve within 20 epochs on the validation
set. A maximum of 100 epochs are granted to the net to find the best option.
Training of the net is therefore terminated either by reaching the 100 epochs
or by no further improvement of the net after 20 epochs. A higher number of
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epochs was never necessary for this net, since the history of the training of the
nets shows that the net is rarely retrained 100 times, but instead the convergence
criterion is usually triggered beforehand, which leads to the termination of the
training. This is partly due to the relatively small amount of data available for
training the net.

The investigation of the features to be used takes place with a network structure
of 2 hidden layers and 8 units, as well as the default value of 10−4 for the learning
rate. After defining the ground truth and feature, the network structure is
examined for its optimum for the given problem. Therefore, nets with 6, 8 and
10 units and 1-4 layers are trained. When examining the learning rate, values
over 4 orders of magnitude [10−2,10−5] were tested.

In order to check whether the results of the network are reproducible, and
the network thus has a high ability to generalize the underlying data set, the
repeatability of the network is tested. For this purpose, 10 nets are trained
with exactly the same basic conditions, i.e., ground truth, features, number of
hidden layers and units, learning rate, and underlying data set are identical in
all 10 nets. For this test the final network as described on the next pages is
used.

Input data and features

First, all time steps at which one of the quantities has a missing value are filtered
from the data, reducing the number of available data points from 210209 to
207345.
Subsequently, the data is divided into three fractions. The largest fraction
contains 2

3 of the data and is used for training the network. The remainder
is divided equally between a validation and a test data set, each containing 1

6
of the data. Since the available data comes from three different measurement
campaigns at different weather conditions and times of the year, it is important
that the network receives data from all three measurement campaigns for
training. The first 2

3 of each measurement campaign is used for training, the
following 1

6 for validation and the last 1
6 for testing. This ensures that the

three data sets train, valid, test each contain data from all three measurement
campaigns.
After splitting the data, the input data of the network is scaled using the
MinMaxScalar [Sci20] scaling them to the range of [0,1]. This is necessary
because the input parameters have numerical values in different dimensions.
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The speed of the vehicle, for example, may read up to a value of 160 km/h,
whereas the measured temperature is often close to the freezing point (0 °C).
Without scaling, the speed would be assigned a higher weighting based only on
its numerical values, limiting the learning process of the network. By scaling
the input variables, all values are in the same order of magnitude and the
network chooses the weighting depending on the influence of the respective
feature.

The determination of the features and the ground truth is decisive for the qual-
ity of the NN. For the present problem, various feature combinations are tested
(cf. Figure 25 in Appendix A.3). A feature selection limited to the quantities
measured directly by the vehicle and corrected by stage one and two only is not
appropriate. The network would lack temporal correlations and other quan-
tities to be able to train a reliable model. Therefore, additional features are
provided to the network, which are not directly measured by the vehicle-based
sensors but represent processed signals.
The network is provided with the already known EIT, which has been imple-
mented and explained in detail for the physical network (cf. Chapter 4.2.3).
Further the net is provided with the temperature change since the EIT was
triggered (Δ𝑇) and the duration of the triggered EIT (𝐷𝐸𝐼𝑇 ). Δ𝑇 provides the
network with a measure of the impact of changing vehicle operating conditions,
in this case stopping or slow speeds. For each point in time when the EIT is
greater than zero and therefore a falsification of the measurement data due to
the vehicle dynamics is likely, the difference between the currently measured
temperature and the temperature measured at the beginning of triggering the
EIT, is calculated and stored as Δ𝑇 . The larger Δ𝑇 is, the more the current
measurement signal is distorted and the stronger the correction of the measure-
ment signal must be. The second synthetic signal is the 𝐷𝐸𝐼𝑇 , which refers to
the duration the EIT has been active. This signal indirectly gives the network
the possibility to cover temporal information.
In total, nets varying from 3-6 features, based on 7 different features are trained
and tested (cf. Figure 24 in Appendix A.3).

Ground truth

Besides a suitable feature selection, the ground truth also decides about the
quality of the network and the corrected values.
When selecting the ground truth, the measured reference value of the MMU is
used first. However, it becomes apparent that using real measured temperatures
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as ground truth weakens the generalization ability of the network. For each
possible temperature value, there is an insufficient number of training examples
for the network to successfully train and generalize. Since the majority of
the data was collected in winter, the network learns decisively for the cold
temperature spectrum. If the network is subsequently confronted with data
from the summer campaign at warmer temperatures, it can be expected that
the net is hardly able to correct these. To successfully train a network for
this problem, while using measured temperature values as ground truth, a
larger data base covering all weather conditions equally is required. However,
building a data set of this size is practically out of the scope of the project’s
resources.
Nevertheless, in order to train a network that is more robust against seasonal
temperature variations, no explicitly measured temperature value is used as
ground truth. Instead, the difference between the reference value and the
vehicle-based value is used:

𝐺𝑇 = 𝑇𝑟𝑒 𝑓 − 𝑇𝑣𝑒ℎ (6)

This makes the network independent of the absolute numerical value of the
temperature. Instead, situations in which both signals differ more strongly, i.e.,
situations in which the vehicle-based signal is more distorted, are emphasized.
This procedure allows the network to be trained independently of the seasons
and weather situations for which the data was collected. However, it should
be noted that the output of the network is therefore an offset and not a final
temperature value. Based on this offset, the corrected temperature can be
calculated in a final step.

Final network

Since the NN implemented is compared to other approaches correcting the air
temperature, the best NN structure is determined in this chapter. The detailed
results of the investigations described for the neural network approach can be
found in Appendix A.3.

The feature combination that results in the lowest MSE is the composite of the
following 6 features, sorted by impact on MSE (cf. Figure 25 and Figure 26 in
Appendix A.3):

1. Δ𝑇
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2. v

3. 𝐷𝐸𝐼𝑇

4. 𝐸𝑛𝑔𝐼 /0 - Binary status whether engine is running (1) or is turned off (0)

5. Measured air temperature after stage two correction

6. EIT

It may be surprising at first that the influence of the temperature, i.e., the
parameter that is to be corrected, on the network is in fifth and thus penultimate
position. This can be explained by the fact that the difference instead of
the absolute measured temperature values serve as ground truth. The front
positions of the two synthetic parameters Δ𝑇 and 𝐷𝐸𝐼𝑇 underline, how crucial
the influence of these quantities and the associated temporal influence on the
net is.
It should be noted that altitude, which is an indication of local effects, is
not considered in the network since it does not improve the results for the
underlying data set.

Figure 12: Overview of the implemented neural network (NN) used for correcting the vehicle-
based air temperature measurement.

50



4.2 Air temperature

Testing different numbers of units and layers gives the knowledge, that a deeper
(more hidden layers) and more complex (more units) network structure does not
improve the results (cf. Figure 27 in Appendix A.3). Instead, reducing the size
of the net can reduce the MSE and thus improve the results. The investigations
show that the optimal structure for the network is a single hidden layer and
6 units. The final structure of the network including the used features is shown
in Figure 12.
The MSE becomes the lowest for a learning rate of 10−4 (cf. Figure 28 in
Appendix A.3). The learning curve of the network over the epochs is shown
in Figure 34 in Appendix A.3.

During testing the reproducibility of the net, the MSE of the training data
is identical for all 10 networks to two decimal places (cf. Figure 29 in Ap-
pendix A.3). The MSE of the validation data and the test data fluctuate by
1.94 % and 1.87 % around the MSE averaged over all 10 networks (standard
deviation in percent). These small deviations of the 10 networks among each
other show a high reproducibility and thus generalization ability of the network.

Correction with random forest

Lastly, a random forest (RF) is presented as another data driven approach.
There are no known applications where a random forest has been trained
on vehicle-based data or a similar problem (cf. Chapter 1.2). The idea
to implement a random forest for the underlying problem is based on the
structure of the physical model, which resembles a decision tree. Using a
random forest (RF) being composed of multiple decision trees generated by
training is therefore tested for its performance in comparison to the PHY model,
which also uses a decision tree, and the NN.

Forest architecture and training

The random Forest is implemented in Python with the sklearn module. Since
the underlying application is identical to the NN, it is also a regression problem.
The Mean Squared Error (MSE) is employed as the criterion to be minimized.

In the training phase, the model trains a fixed number of trees each independent
of each other. Each of these trees is split to a predetermined maximum
depth. Fanning the tree too deeply can potentially compromise the tree’s

51



4 Quality control and correction of measured values

ability to generalize, comparable to overfitting for the neural network. Different
combinations of number of trees and maximum depth are tested, ranging from
8-100 trees with a respective depth of 4-14 levels.
The repeatability of the RF results is tested by training the model with identical
boundary conditions 10 times independently.

Input data and features

Before the actual RF can be implemented and trained, the data must be prepared
for use. The preparation of the potential input data is identical to the procedure
of data preparation for the NN. For the data all times at which missing values
are present are deleted (cf. Chapter 4.2.3).
Similar to the NN, the RF is a supervised learning model. Since the RF already
uses the ground truth data when developing the model and dividing the data
accordingly to build the branches of the individual trees, the RF does not need
validation data to adjust the model afterwards. Therefore, the RF is based
purely on training and test data. The available data from all three measurement
campaigns is divided into two data subsets. The training set includes the first
5
6 of each measurement campaign and is thus equal to the sum on the training
and validation data set of the NN model. The test data set is identical for both
machine learning applications and therefore also includes the last 1

6 of each
measurement campaign for the RF. The split of the data is intentionally very
similar to the split for the NN to be able to better compare the results of the
two data-based approaches. For the RF no scaling of the data is necessary.

When selecting features, first, a random forest is trained with the same input
variables as the physical model. Subsequently, the model is provided with two
more input variables, thus a total of 9 features (cf. model A in Table 30 in
Appendix A.4). To identify the individual influence of each of the 9 features,
different models are trained with only 8 of the 9 features at a time. By
comparing the obtained MSE to the MSE of the model using all 9 features, the
influence of the respective feature not taken into account can be determined.

Ground truth

The random forest uses the same ground truth as the neural network since the
task is identical. The difference between the vehicle-based air temperature
signal after completion of the stage two correction process and the measured
value of the MMU is used as ground truth (cf. Equation 6).
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Final forest

The best RF structure is determined in this chapter since the results of the RF
are compared to the other implemented approaches correcting air temperature.
A detailed overview of the different RFs tested and their structures can be
found in Appendix A.4.

Figure 30 in Appendix A.4 list the different models tested and their respective
MSE for the test data set. Omitting the feature "Duration of current stop"
(𝐷𝑠𝑡𝑜𝑝) leads to an improvement of the result (cf. model F to model A) and is
therefore excluded. The feature "Maximum EIT of current period" (𝐸𝐼𝑇𝑚𝑎𝑥)
has the lowest impact (cf. model I) and is therefore also neglected. The
7 remaining features that contribute most to the reduction of MSE are listed
below according to their influence (cf. model K in Figure 30).

1. Δ𝑇

2. v

3. Measured air temperature after stage two

4. Δ𝐴𝑙𝑡 - Change in altitude since the vehicle triggered the EIT for the first
time

5. 𝐸𝑛𝑔𝐼 /0 - Binary status whether engine is running (I) or is turned off (0)

6. 𝐷𝐸𝑛𝑔𝑂 𝑓 𝑓 - Duration the engine has been turned off

7. EIT

Selecting features is made with 8 trees with a maximum depth of 10 levels
each. However, the MSE of the test data set varies relatively little due to the
variations (cf. Table 31 in Appendix A.4). The RF with the smallest MSE of
the test data set has 15 trees, each with a maximum depth of 10 levels. Due to
the relatively small amount of data, no deeper or more complex forest has to
be used.

The results for testing the RF for its reproducibility are displayed in Table 32 in
Appendix A.4. The 10 MSE values of the test data have a percentage standard
deviation of 1.71 %. The model therefore exhibits high repeatability and thus
good ability to generalize the underlying data.
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4.3 Relative humidity

Correcting the relative humidity signal using the principle of input filter, cor-
rection of sensor uncertainty in static situations and correction of sensor un-
certainty induced by vehicle motion is not appropriate in this form due to the
mounting position directly next to the engine block (cf. position of MuFu sen-
sor in Figure 4) as well as the measuring method of the vehicle-based sensor.
For relative humidity, four individual correction models (PHY-A, PHY-B, NN
and RF) are developed, which are shown in Figure 13.

It is noticeable that the correction of the RH follows a more complex pro-
cess. The modules "Input filter", "Compensating sensor uncertainty induced
in static situations" and "Compensating effects induced by vehicle motion",
which are known from the previous chapters, are varied in their order, and sup-
plemented by further modules. The new modules "Calculate air temperature
inside sensor" and " RH transfer to different location" are necessary due to the

Figure 13: Flowchart for testing and correcting the relative humidity signal in three different ways.
First, PHY- Version A, an approach based on physical relationships compensating for
effects induced by vehicle motion last. Secondly, PHY- Version B, an approach that is
built on the same physical relationships as PHY - Version A but compensates for effects
induced by vehicle motion first. Lastly, two models based on machine learning are used
to correct the vehicle-based raw data, namely a neuronal net (NN) and a random forest
(RF).
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Figure 14: Multifunctional sensor with origin of different signals shown. 1: Location outside
sensor to detect air temperature signal, 2: Location inside sensor case to detect relative
humidity signal.

architecture of the RH sensor (cf. Figure 14). The relative humidity is mea-
sured inside the sensor case (cf. position 2 in Figure 14), which has a higher air
temperature due to the waste heat generated by the sensor operation, compared
to an air temperature measurement outside the sensor case (cf. position 1 in
Figure 14). Since air temperature and relative humidity are directly coupled,
a higher air temperature inside the sensor case simultaneously means a lower
relative humidity. This explains the effect of relative humidities measured with
values too low. At the same time, it illustrates the need for sensor individual
correction models, since previously presented models do not take into account
effects arising from the architecture of the respective sensor.
The critical components from the PHY-A and PHY-B models in Figure 13
are the calculation of the temperature inside the sensor case and subsequently
the transfer of relative humidity from inside the sensor case (cf. position 2
in Figure 14) to any other position where the air temperature is known. The
following section derives the physical formulas for both calculations. Subse-
quently, the components "input filter" and "compensating effects induced by
vehicle motion" are explained. Lastly, the offset corrections as the final step
for both physical models are clarified.
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4.3.1 Air temperature inside a sensor case

To calculate the air temperature at any location, in the present case inside
the sensor case, the relative humidity and the dew point temperature must be
known for the approach derived here.
Both the relative humidity and the dew point temperature are determined based
on the air inside the sensor, whereas the extracted air temperature signal of
this sensor is measured outside the sensor. Therefore, the air temperature
representative for the air inside the sensor has to be calculated. This can be
done by using physical relationships exclusively.

Starting point is the water content 𝑥 of an air parcel, which is defined as the
mass of water 𝑚𝑊 in relation to the mass of dry air 𝑚𝐴 contained by the air
parcel and is therefore also called the mixing ratio [WH06]. As long as the air
parcel is not saturated, the mass of the water can also be described as the mass
of vapor 𝑚𝑉 since the water is in gaseous form.

𝑥 =
𝑚𝑊

𝑚𝐴
=
𝑚𝑉

𝑚𝐴
(7)

The second principle needed for the derivation is the definition of the total
pressure 𝑝. It consists of the partial pressures from the involved components.
In the case of having a humid air parcel the total pressure is the sum of the
partial pressure of the water vapor 𝑝𝑉 and the partial pressure of the dry air
𝑝𝐴, since according to Daltons law the total pressure is always built by the
sum of the individual partial pressures [Dal21].

𝑝 = 𝑝𝑉 + 𝑝𝐴 (8)

The ideal gas law describes the relationship between the following charac-
teristics of an air parcel of a hypothetical ideal gas: pressure 𝑝, volume 𝑉 ,
temperature 𝑇 and the amount of gas, presented by mass 𝑚 and molar mass
𝑀 . 𝑅𝑚 is the universal gas constant (cf. Equation 4).
Building the ratio of the partial pressures 𝑝𝑉 and 𝑝𝐴 by using the converted
ideal gas law yields the following equation:

𝑝𝑉

𝑝𝐴
=

𝑚𝑉

𝑀𝑉
· 𝑅𝑚 · 𝑇

𝑉

𝑚𝐴

𝑀𝐴
· 𝑅𝑚 · 𝑇

𝑉

(9)
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Since temperature𝑇 , volume𝑉 , and the universal gas constant 𝑅𝑚 are identical
for both components of the air parcel, they cancel each other out. Furthermore,
the ratio of the masses of the vapor and the dry air 𝑚𝑉

𝑚𝐴
can be replaced by

𝑥, compare equation 7. Solving for 𝑥 results in the first part of the following
equation. This can be further simplified by using the known molar masses for
water 𝑀𝑉 = 18.01528 𝑔

𝑚𝑜𝑙
and for dry air 𝑀𝐴 = 28.96 𝑔

𝑚𝑜𝑙
:

𝑥 =
𝑀𝑉

𝑀𝐴

· 𝑝𝑉
𝑝𝐴

= 0.622 · 𝑝𝑉
𝑝𝐴

(10)

Solving Equation 10 for the partial pressure of dry air 𝑝𝐴, substituting this into
equation 8 and solving it for the partial pressure of the vapor 𝑝𝑉 results in:

𝑝𝑉 =
𝑥

0.622 + 𝑥 · 𝑝 (11)

Combining Equations 11 and 1 (definition of relative humidity in Chapter 2.1)
by substituting the partial pressure of the vapor 𝑝𝑉 into the definition of the
relative humidity 𝑅𝐻, results in:

𝑅𝐻 =
𝑥

0.622 + 𝑥 · 𝑝(𝑇)
𝑝𝑉 ,𝑠𝑎𝑡 (𝑇)

(12)

For the next step making use of the dew point temperature 𝑇𝑑 is essential. For
the dew point temperature, the relative humidity 𝑅𝐻 is always 1. Therefore,
equation 12 equals 1, for the air temperature being equal to the dew point
temperature.

𝑅𝐻 =
𝑥

0.622 + 𝑥 · 𝑝(𝑇𝑑)
𝑝𝑉 ,𝑠𝑎𝑡 (𝑇𝑑)

= 1 (13)

Dividing equation 12 by equation 13 results in the following expression, which
can be simplified by assuming an identical pressure (𝑝(𝑇) = 𝑝(𝑇𝑑)). Since the
difference in air pressure that is caused by a change in air temperature is negligi-
ble in relation to the absolute value, the air pressure terms cancel each other out:

𝑅𝐻 =

𝑥
0.622+𝑥 ·

𝑝 (𝑇 )
𝑝𝑉 ,𝑠𝑎𝑡 (𝑇 )

𝑥
0.622+𝑥 ·

𝑝 (𝑇𝑑)
𝑝𝑉 ,𝑠𝑎𝑡 (𝑇𝑑)

=
𝑝𝑉 ,𝑠𝑎𝑡 (𝑇𝑑)
𝑝𝑉 ,𝑠𝑎𝑡 (𝑇)

(14)
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Solving this for the saturation vapor pressure 𝑝𝑉 ,𝑠𝑎𝑡 (𝑇𝑑) results in:

𝑝𝑉 ,𝑠𝑎𝑡 (𝑇𝑑) = 𝑅𝐻 · 𝑝𝑉 ,𝑠𝑎𝑡 (𝑇) (15)

The previously mentioned saturation vapor pressure 𝑝𝑉 ,𝑠𝑎𝑡 describes the state
where a system is in its state of equilibrium since the exchange of molecules
between different sates of aggregation is balanced. The saturation vapor pres-
sure can be described by the Magnus formula [Son90] which represents an
approximation and was derived by Heinrich G. Magnus in 1844 [Wet19a]. C1,
C2, and C3 represent empirically determined constants.

𝑝𝑉 ,𝑠𝑎𝑡 (𝑇) = 𝐶1 · 𝑒𝑥𝑝( 𝐶2 · 𝑇
𝐶3 + 𝑇 ) (16)

Substituting the Magnus formula into equation 15 results in:

𝐶1 · 𝑒𝑥𝑝( 𝐶2 · 𝑇𝑑
𝐶3 + 𝑇𝑑

) = 𝑅𝐻 · 𝐶1 · 𝑒𝑥𝑝( 𝐶2 · 𝑇
𝐶3 + 𝑇 ) (17)

Solving for temperature results in a formula by which the air temperature 𝑇
can be calculated based on the dew point temperature 𝑇𝑑 and the relative
humidity 𝑅𝐻, which are both determined by the multifunctional MuFu sensor
based in the vehicle. Here, the relative humidity is used as a number between
0 and 1.

𝑇 =
𝐶3 · (𝑙𝑜𝑔(1/𝑅𝐻) + 𝐶2·𝑇𝑑

𝐶3+𝑇𝑑 )

𝐶2 − (𝑙𝑜𝑔(1/𝑅𝐻) + 𝐶2·𝑇𝑑
𝐶3+𝑇𝑑 )

(18)

4.3.2 Transferring relative humidity

In the following, the needed equation to transfer relative humidity from inside
the sensor case to any location outside the sensor case is derived. The location
to which the relative humidity is to be transferred is freely selectable as long
as the air temperature at this location is known. Since the calculated relative
humidity should be representative for the ambient air, it is calculated for the
location of the BCM1 temperature sensor at the radiator grille (cf. Figure 4).
By correcting the measured temperature signal of the BCM1 sensor beforehand,
a representative temperature signal is assumed.
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The physical basis for the transfer is built by the specific humidity 𝑠, which is
defined as the ratio of vapor pressure 𝑝𝑉 to air pressure 𝑝, multiplied by the
ratio of the molar masses of the involved components [LC79]. Here, the molar
masses of interest are for water and dry air and their ratio results in 0.622,
compare equation 10.

𝑠 =
𝑝𝑉

𝑝
· 0.622 (19)

The main advantage of the specific humidity in comparison to other indices
of humidity is, that it remains constant for varying temperatures as long as
the water content is not changed. This can be assumed since no significant
amount of moisture is added or taken away from the air parcel while moving
from one sensor location to another. Note, that the relative humidity value
does not remain constant, this only applies to the specific humidity value.
Therefore, the specific humidity values are equal for the BCM1 sensor, which
is representative for the ambient air (AA) as well as for the multifunctional
MuFu sensor, which is located under the hood (UH) of the vehicle (cf. sensor
positions in Figure 4).

𝑠𝑈𝐻 = 𝑠𝐴𝐴 (20)

Substituting equation 19 in equation 20 and afterwards substituting the for
vapor pressure 𝑝𝑉 solved equation 1, yields the following:

𝑅𝐻𝑈𝐻 · 𝑝𝑉 ,𝑠𝑎𝑡,𝑈𝐻
𝑝𝑈𝐻

=
𝑅𝐻𝐴𝐴 · 𝑝𝑉 ,𝑠𝑎𝑡,𝐴𝐴

𝑝𝐴𝐴
(21)

By assuming a constant air pressure for both locations of the sensors (𝑝𝑈𝐻
= 𝑝𝐴𝐴), the air pressures cancel themselves out. Substituting the definition
for the saturated vapor pressure (equation 16) into the previous equation and
solving for the relative humidity of the ambient sensor, results in:

𝑅𝐻𝐴𝐴 = 𝑅𝐻𝑈𝐻 · 𝑒𝑥𝑝( 𝐶2 · 𝑇𝑈𝐻
𝐶3 + 𝑇𝑈𝐻

− 𝐶2 · 𝑇𝐴𝐴
𝐶3 + 𝑇𝐴𝐴

) (22)

By this, the relative humidity of the moving air mass can be calculated for
the position of the BCM1 sensor (= 𝐴𝐴), although it is only measured at the
location of the multifunctional MuFu sensor (=𝑈𝐻).
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4.3.3 Input filter

When correcting relative humidity, it is not the RH that is subject to an input fil-
ter, but instead the signals that are necessary for further calculation. Therefore,
the only quantities that are subject to an input filter for relative humidity are
two temperature values. One is the calculated temperature in the MuFu sensor,
the other is the measured temperature at the BCM1 sensor. The procedure for
the input filter for temperature values is already described in Chapter 4.2.1.
Since neither physical limit values nor the extent of acceptable jumps change
within a time step, the identical input filter can be applied as long as it concerns
air temperature values.

4.3.4 Sensor uncertainty induced by vehicle motion

The influences induced by vehicle motion have a similar effect on the relative
humidity as on the air temperature, only vice versa. In concrete terms, this
means that the relative humidity is also distorted in the same situations as
the air temperature, but to the opposite extent. This is due to the relationship
between air temperature and relative humidity. An air parcel which is subjected
to a temperature change without the addition or removal of water has a lower
relative humidity at higher air temperatures. This is due to the fact that warm
air can absorb more water particles until it is saturated. Therefore, the same
absolute water content at higher temperatures leads to a lower relative humidity.

Since the triggers and justifications for the influence on the relative humidity
are thus the same as those on the air temperature, only the individual situations
of importance with their direct effect on the relative humidity are listed below.
In situations with the vehicle traveling at low speeds or being stationary, an
increased temperature is measurable (cf. Chapter 4.2.3 for detailed explana-
tion). Simultaneously, the relative humidity drops. Since the amount of water
contained in the air trapped under the hood does not increase, the relative
humidity drops.
Following a previous stop, the air temperature measurement as well as the
relative humidity remain distorted due to the accumulated air under the hood.
With increasing time distance to the last stop, the effect vanishes, and the
relative humidity returns to higher values. For a situation, when the vehicle
decelerates under the set speed-related threshold again before the effect of the
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previous stop has disappeared, not only the measured air temperature increases
again, but also the relative humidity decreases.

The flowchart in Figure 13 shows that the compensation of the effects by
vehicle motion can take place both after the transfer of RH (PHY-A) and
before (PHY-B).
PHY-A corrects the effects induced by vehicle motion subsequently to the input
filter and the transfer of the relative humidity. Therefore, only one quantity,
the newly calculated RH has to be compensated for effects induced by vehicle
motion. If compensating these effects is based solely on one quantity, the effort
of the correction is less than for PHY-B but the result is more prone to errors,
since individual errors in the correction have a greater impact on the result.
Therefore, in addition to PHY-A, PHY-B is implemented, which follows a
different order of correction and thereby executes the correction of effects
induced by vehicle motion on several input variables.
The data used for the transfer calculation of the relative humidity, is also
falsified by the vehicle motion. Thus, computing the temperature inside the
sensor is performed knowing that it is based on wrong input values. Approach
PHY-B therefore corrects the sensor uncertainty induced by vehicle motion
first and subsequently calculates the transferred relative humidity.
Both approaches are described in more detail in the following subchapters.

Correction with physical model A

Comparable to the physical model of the temperature correction model (cf.
Chapter 4.2.3), this model is also based on the principle of an engine impact
timer (𝐸𝐼𝑇𝑅𝐻 ). This 𝐸𝐼𝑇𝑅𝐻 differs from the EIT for temperature in a way that
the threshold for speed 𝜏𝑣,𝑅𝐻 was increased so that the 𝐸𝐼𝑇𝑅𝐻 is triggered
earlier. This is necessary since the relative humidity reacts more sensitively
towards stops or slow speeds due to the mounting position of the two sensors.
The temperature sensor (cf. BCM1 sensor in Figure 4) is located at a greater
distance from the motor block than the RH sensor (cf. MuFu sensor in Figure 4).
Due to the small distance to the heat source, the MuFu sensor reacts faster to
a reduced air exchange under the hood. Apart from this, the procedure for
determining 𝐸𝐼𝑇𝑅𝐻 is identical to EIT (cf. Figure 10).
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Figure 15: Flowchart for compensating the effects induced by vehicle motion for the calculated
relative humidity in model PHY-A. 𝐸𝐼𝑇𝑅𝐻 being the Engine Impact Timer for the
relative humidity, 𝑅𝐻𝐸𝐼𝑇 the relative humidity in the second the vehicle falls below
the speed related threshold of 20 km/h und thereby triggers the EIT. The threshold
𝜏𝐸𝑛𝑔𝑖𝑛𝑒𝑡𝑒𝑚𝑝 is set to 100 °C. RH denotes the previously valid correction level of
the relative humidity, in this model therefore the transferred relative humidity. The
designation i as a superscript refers to the current time step, i−1 to the previous one.

Figure 15 illustrates the flow of the correction of effects induced by vehicle
motion.
First 𝐸𝐼𝑇𝑅𝐻 is checked. If 𝐸𝐼𝑇𝑅𝐻 is not triggered, meaning the vehicle is
traveling at speeds above 20 km/h and is no longer affected by the previous stop,
the current relative humidity value (𝑅𝐻𝑖) is stored as the new relative humidity
𝑅𝐻𝑁𝑒𝑤 . If the 𝐸𝐼𝑇𝑅𝐻 is greater than zero, the relative humidity is therefore
likely to be influenced by effects induced by vehicle motion. Therefore, the
relative humidity at the time when the 𝐸𝐼𝑇𝑅𝐻 was first triggered (𝑅𝐻𝐸𝐼𝑇 ) is
checked.

If 𝑅𝐻𝐸𝐼𝑇 is not set, i.e., there was no value of relative humidity in the second
the vehicle speed fell below the velocity threshold, the current value of relative
humidity is stored as the new relative humidity 𝑅𝐻𝑁𝑒𝑤 . However, if the
relative humidity at the time of the first triggering of 𝐸𝐼𝑇𝑅𝐻 is known, this
can be considered for the further correction.
In the next step, the engine temperature is considered. The following section
is used to define the two factors F1 and F2, which are used for weighting the
different available values of the relative humidity. The values of both factor F1
and F2 are empirically determined based on the underlying data set. For a cold
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engine the factors F1 and F2 are assigned 0.99 and 0.01 respectively. At warm
engine temperatures, the current value of the relative humidity is additionally
considered when F1 and F2 are defined. The more distinct the distortion of the
current relative humidity value 𝑅𝐻𝑖 is (RH values above 100 %), the greater
will be F1. F2 behaves the opposite way. Subsequently, the new relative
humidity 𝑅𝐻𝑁𝑒𝑤 is calculated by weighting the 𝑅𝐻𝐸𝐼𝑇 value with factor F1
and the current RH value with factor F2. It becomes apparent that the value at
the beginning of 𝐸𝐼𝑇𝑅𝐻 being triggered, is given greater importance, since it
(𝑅𝐻𝐸𝐼𝑇 ) is weighted with F1. This is due to the fact that the value is assumed
to be valid at this time. Therefore, the values for F1 are always at least 0.9
which corresponds to a weighting of 90 %. The current RH value (𝑅𝐻𝑖) is
considered with the factor F2 and is of the size of the remaining weight, at
maximum 10 %.

Correction with physical model B

Model PHY-B follows the approach of correcting the signals used to calculate
the transfer of relative humidity beforehand. Hereby, it can be assumed that
the transfer of the relative humidity takes place with input parameters which
are no longer falsified by effects induced by vehicle motion.
The two signals for which compensation of these effects is necessary are the rel-
ative humidity inside the sensor case and the measured dew point temperature
𝑇𝑑 (cf. Figure 16).

If the vehicle is traveling at speeds lower than 𝜏𝑣,𝑅𝐻 or is even stationary, the
values for both relative humidity and dew point temperature are kept constant.
However, if the current relative humidity value is higher than the previously
highest RH value, it will be adopted instead. For the dew point temperature,
the opposite interpretation applies. In case of current values smaller than
the previous minimum, the current value is accepted. This additional rule
ensures that a possibly falsified value is not held on to for too long, but that
the most reliable value, i.e., the highest relative humidity or lowest dew point
temperature value respectively, is used.
As soon as the vehicle travels faster than the set threshold, it reviews how
much time has passed since the last stop. If the last stop was more than a
pre-set threshold 𝜏𝑡 ago, the current measured value is used. Otherwise, a
timer is started at the time when the vehicle first drives faster than the limit
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value. The timer then decreases monotonously. As long as the timer is greater
than zero, the highest value for relative humidity or lowest value for dew point
temperature is stored as the current value. Once, the timer decreases down to
zero, the current value is accepted as the new value since an influence of the
previous stop that has been more than 𝜏𝑡 seconds ago, can be neglected due to
the ventilation under the hood induced by driving.

Offset for both PHY models

For both models PHY-A and PHY-B an offset correction takes place in addition
to all previously described steps. Regardless of the transfer (cf. Chapter 4.3.2),
the multifunctional MuFu sensor, which builds the basis for the relative humid-
ity correction, has a measurement uncertainty and deviation, both in dew point
temperature and relative humidity measurement [Sen14]. The determination
of the offset of the variables included in the calculations is not possible without
further ado due to the lack of reference values. Therefore, the offset is sub-
tracted from the converted relative humidity afterwards. Due to the different
approaches, different empirically determined offsets result for the two models.
The offset for model PHY-A is 10 %rH, for PHY-B it is 14 %rH. Both offsets

Figure 16: Flowchart for compensating the effects induced by vehicle motion for the calculated
relative humidity in model PHY-B. RH being relative humidity and 𝑇𝑑 dew point
temperature. 𝑡𝑝 is the time that has passed since the last stop, 𝜏𝑡 refers to a pre-
set threshold of 3 hours, which is determined as a rounded-up mean value from the
timer suggestions from three patents [RHDJ95,KB09,COW10]. The timer is started as
soon as the vehicle exceeds the speed-related limit 𝜏𝑣 for the first time and decreases
monotonously afterwards. The init value of the timer is determined empirically and set
to 500, which corresponds to approximately 8 min. The designation i as a superscript
refers to the current time step, i−1 to the previous one.
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are relatively large, which is due to the significant influence of slight temper-
ature and humidity changes, or measurement uncertainties, on the conversion
during the transfer of relative humidity.
Simultaneously, it is checked whether the new value corrected by the respective
offset (𝑅𝐻𝑁𝑒𝑤 - Offset) is above the maximum permissible relative humidity
of 100 %. If yes, the value is capped at 100. Otherwise, the respective previ-
ously determined value 𝑅𝐻𝑁𝑒𝑤 is reduced by the respective valid offset and
set as 𝑅𝐻𝑐𝑜𝑟𝑟 ,𝑃𝐻𝑌 .

Correction with neural network

For the relative humidity also a NN is applied. First attempts using this
approach are depicted in [HS20]. Most of the architecture related parameters
and hyperparameters are identical to those from the neural net of air temperature
(cf. Chapter 4.2.3). In the following, these properties are therefore listed, but
not further specified. Deviations to the previously described network for air
temperature are described in detail.

Network architecture and training

Identical to the temperature network, this is also a regression problem, which
is implemented using a fully-connected network.
Also, the activation function, namely the softplus function, is the same. Fur-
thermore, this network uses the Adam Optimizer of Keras in Python, which is
used in the temperature net likewise. The random initialization of the starting
weights of the relative humidity net is adopted from the temperature net. This
is also true for the loss function. Again, the MSE is chosen (cf. Equation 5).
Training parameters, such as the convergence criterion, are identical to the
temperature net.
Different architectural combinations are tested, ranging from 1-4 layers with
6-10 units. Additionally, the learning rate is varied [10−5, 2−2].

Lastly, the repeatability of the network is tested. First, the same net is trained
6 times on the identical train data set. Afterwards, the allocation of the data
is changed, resulting in a different train data set for each of the 6 additional
trainings.

Input data and features
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Also, for this network the data must first be preprocessed. However, no general
correction of the input variables takes place for this network. Instead, the
preprocessing refers solely to the filtering of missing values in the individual
quantities. In addition, values from the February campaign are neglected for
the data set to be evaluated due to the lack of robust reference data. Through
this preprocessing step, the number of available data points is reduced from
149705 to 146843, corresponding to a decrease of 1.9 %. It is noticeable, that
the amount of data points is almost 1

3 smaller compared to the application of
a neural net to the air temperature. The reason for this is the strongly limited
availability for reference data regarding the relative humidity due to measuring
difficulties during the February campaign.

The division of the data set into three sub data sets to train, validate and test
the model, is carried out in a different way compared to the temperature net.
Originally, the same proceeding of always using the first 2

3 of each measurement
campaign for training, the following 1

6 for validation and the last 1
6 for testing,

was implemented. However, a pattern in the data was noticed that can neither be
explained by the measurement environment nor the architecture of the network.
Nevertheless, the network is significantly affected. Regardless of the rest of
the network structure, it returns the lowest values of the loss function for the
test data set, rather than for the train or validation data set. To find the cause for
this behavior, the complete network structure was tested and varied to exclude
influences of the initialization and individual parameters or hyperparameters.
However, the explanation cannot be found in the network, but in the data. The
behavior of this network can only be justified by a data set that is easier to learn
for the model towards the end of each measurement campaign. The observed
pattern of the data cannot be explained by the measurement conditions or other
known environmental conditions.
To avoid this effect, the division into train, validate and test sections is done
randomly. Still 2

3 of the data is used for training, 1
6 of the data for validation

and 1
6 of the data for testing, but the selection of the data points used in each of

the three data subsets is not based on a temporal criterion. Each data point is
used exactly once, since the test data set would otherwise contain data points
that are already known to the network from the train and validation phase.
For scaling of the input variables this network also uses the MinMaxScalar to
obtain values from [0,1] (cf. Chapter 4.2.3).
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Limiting the features to signals directly measured by the vehicle, leads to a loss
function 9 times as high as the final setting. Therefore, different combinations,
also considering synthetic signals such as 𝐸𝐼𝑇𝑅𝐻 , different relative humidity
signals and the change in relative humidity since the last stop (Δ𝑅𝐻) are tested.
Overall, 9 features are tested for their influence on the net. The number of
features considered simultaneously ranges from 4 to 9.

Ground truth

Due to the experience regarding the ground truth of the temperature network,
the relative humidity net is applied and tested with the difference between the
reference value of the MMU and a vehicle-based value. Three different stages
of the vehicle-based relative humidity signal are considered for determining
the ground truth. Therefore, three different possibilities for the ground truth
arise. The difference between reference signal measured by MMU and:

1. vehicle-based raw signal of relative humidity (𝐺𝑇 = 𝑅𝐻𝑟𝑎𝑤 − 𝑅𝐻𝑟𝑒 𝑓 ),

2. vehicle-based relative humidity signal transferred from inside the sen-
sor case to BCM1 sensor without compensating for effects induced by
vehicle dynamics (𝐺𝑇 = 𝑅𝐻𝑡𝑟𝑎𝑛 − 𝑅𝐻𝑟𝑒 𝑓 ),

3. vehicle-based relative humidity signal corrected for effects induced by
vehicle motion without transferring it to a more representative location
(𝐺𝑇 = 𝑅𝐻𝑣𝑚 − 𝑅𝐻𝑟𝑒 𝑓 ).

Final network

Since the NN is implemented to enable a comparison between different ap-
proaches to correct the RH, the final setting of the network is described here.
Appendix A.5 lists the detailed test results of the network.

To determine the final feature and ground truth selection, different constella-
tions are tested and evaluated. The same selection of features yields signif-
icantly different results with a different ground truth. Three different possi-
bilities are tested as ground truth (cf. Figure 33 in Appendix A.5), each with
the same selection of features. Best results are yielded using the difference
between the MMU and the vehicle-based raw signal of the relative humidity
(cf. 1. in list above).
Subsequently, different constellations of features are tested (cf. Figure 34 in
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Appendix A.5). Since neither the vehicle speed v nor the duration of the stop
𝐷𝑠𝑡𝑜𝑝 have a significant influence on the MSE of train, validate and test data
(cf. model E and F in Figure 35 in Appendix A.5), they are not considered
in the final net. Best results are achieved with the following 7 features (cf.
model M):

1. 𝑅𝐻𝑡𝑟𝑎𝑛 - raw signal of relative humidity transferred to BCM1 sensor
without correcting for vehicle motion

2. Δ𝑅𝐻 - Change in relative humidity since the EIT is triggered

3. 𝑅𝐻𝑟𝑎𝑤 - raw signal of relative humidity

4. 𝑇𝑠𝑐 - Calculated temperature inside the sensor case corrected for effects
induced by vehicle motion

5. 𝑅𝐻𝑣𝑚 - raw signal of relative humidity corrected for effects induced by
vehicle motion (no transfer of signal)

6. 𝑇𝐸𝑛𝑔 - Engine temperature

7. 𝐸𝐼𝑇𝑅𝐻

The order of the listed features corresponds to their influence on the network.
Thus, the greatest influence is exerted by 𝑅𝐻𝑡𝑟𝑎𝑛𝑠 , followed by the synthetic
parameter Δ𝑅𝐻, the least by 𝐸𝐼𝑇𝑅𝐻 .

The decision which features to use, is made based on a network with 2 hidden
layers, 8 units and a learning rate of 10−4. Varying the number of hidden layers
and units can improve the MSE. Best results are achieved for 3 hidden layers
and 8 units (cf. Figure 36 in Appendix A.5), although the improvement of the
MSE was down to 0.3 %.
Changing the learning rate, had a significantly higher effect on the MSE. By
increasing it to 15−3, the MSE is almost halved (cf. Figure 37 in Appendix A.5).
Figure 35 in Appendix A.5 shows the development of training and validation
MSE for the final net.

Figure 17 displays the final structure of the network including the used features.
For the six networks, each trained on the same data set, the standard deviation
in percent for the train, validate, and test data set is 13.11 %, 13.34 %, and
13.42 %, respectively (cf. Figure 38a) in Appendix A.5). The standard
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deviation in percent of the 6 networks with a new data assignment for each
of the 6 nets, is 15.48 %, 15.29 %, and 16.10 % for the train, validate, and
test data sets, respectively (cf. Figure 38b) in Appendix A.5). The deviations
of the individual nets therefore deviate more strongly from each other than
in the case of the air temperature. The reproducibility of the tested network
for relative humidity can therefore not be assumed without performing further
tests.

Correction with random forest

A RF is implemented as a second data driven model. The structure of the
RF for relative humidity is strongly based on the structure of the RF for air
temperature since the underlying task is comparable. Therefore, the detailed
explanations in this chapter are reduced to structural decisions that differ from
those for the RF of temperature.

Forest architecture and training

For the initialization of the RF, as in Chapter 4.2.3, the sklearn module in
Python is used to execute the underlying regression task. The MSE is used as

Figure 17: Overview of the implemented neural network (NN) used for correcting the vehicle-
based relative humidity measurement.
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the parameter to be minimized (cf. Equation 5). Different combinations of
number of trees and maximum depth are tested, varying from 8-100 trees with
4-20 levels for each tree.

Lastly, the RF is tested for repeatability of results. First, 10 RFs are trained on
the identical data set, then 10 more on a newly compiled data set for each RF.

Input data and features

Comparable to the NN, the pre-processing is limited to the filtering of missing
values and excluding data from the February campaign since the reference
data is not reliable. Thus, the RF has an identical data base to the NN totaling
146843 s.

The division into train and test data occurs randomly also for the RF, which is
due to the structure of the data noticed in the context of the implementation of
the NN (cf. Chapter 4.3.4). 5

6 of the randomly chosen data is used for training
the RF, the remaining 1

6 for testing. To ensure comparability between the two
data driven approaches, the same random partitioning is used as for the NN
(cf. Chapter 4.3.4).

Different constellations are tested for the final feature selection. The starting
constellation is the feature selection for the NN comprising the 7 features listed
above. Afterwards, a different feature is neglected for every training phase to
elaborate the influence of this specific feature on the data.

Ground truth

The RF uses the same ground truth as the NN, namely the difference between
the reference data of the MMU and the raw data of the vehicle: 𝐺𝑇 = 𝑅𝐻𝑟𝑎𝑤 −
𝑅𝐻𝑟𝑒 𝑓 .

Final forest

In order to be able to access the final RF for the evaluation of the vehicle-based
data in the following chapter, the final structure is already presented in this
section. The detailed test results for the RF for relative humidity are given in
Appendix A.6.

The MSE of the test data is reduced by excluding the engine temperature 𝑇𝐸𝑛𝑔
as a feature. Neglecting any other of the tested features increased the MSE
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and thereby decreases the result of the RF (cf. Figure 39 in Appendix A.6).
Therefore, the feature selection for the RF is limited to the following six
features, which are listed here in descending order to their influence on the RF
(cf. model C):

1. 𝑅𝐻𝑡𝑟𝑎𝑛 - raw signal of relative humidity transferred to BCM1 sensor

2. 𝑅𝐻𝑟𝑎𝑤 - raw signal of relative humidity

3. 𝑇𝑠𝑐 - Calculated Temperature inside the sensor case corrected for effects
induced by vehicle motion

4. 𝐸𝐼𝑇𝑅𝐻

5. 𝑅𝐻𝑣𝑚 - raw signal of relative humidity corrected for effects induced by
vehicle motion

6. Δ𝑅𝐻 - Change in relative humidity since the EIT is triggered

The feature with the most significant influence is 𝑅𝐻𝑡𝑟𝑎𝑛, since a neglection
of it increases the MSE of the test data by a factor 3.9.

Testing the architecture of the RF reveals a decrease in the MSE of the test
data the more trees with a higher maximum depth are used (cf. Figure 40 in
Appendix A.6). The MSE is reduced by at least 30 % every time another two
levels are added to each of the 15 trees. Afterwards the decrease amounts to
less than 25 %, wherefore this is set as an artificial boundary and 14 is chosen
as a maximum depth for the forest. The number of trees is identical to the RF
of temperature (15), but the number of maximum depths allowed for RH (14)
is higher than for temperature (10). This indicates the higher complexity of
correcting RH compared to temperature.

All 10 RFs trained on the identical data base have a percentage standard
deviation from the obtained MSE to the averaged MSE of 2.41 % and of
4.91 % for a newly compiled data set for each RF (cf. Figure 41a) and b)
and in Appendix A.6). The standard deviation therefore varies more when
the RF is trained on different data sets, but the mean MSE is almost identical
for both scenarios. The repeatability of the RF results is thus high, ensuring
a good ability to generalize the underlying data through the developed RF. It
is noticeable that the mean MSE test of the RF is about 10 percentage points
lower than for the NN.
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4.4 Global radiation

The differentiation into the individual components of direct and diffuse radia-
tion (cf. Chapter 2.1) is not possible based on the sensors installed as standard
on board of a production vehicle. Therefore, the global radiation G is consid-
ered as a whole taking into account the two vehicle-based signals. Both signals
are output by the light and rain sensor in the windshield. The two values differ
in their orientation and therefore their range for which they are representative.
One signal covers the front left, the other the front right.

Figure 18 shows the flowchart for the global radiation correction. First, both
vehicle-based raw signals 𝐺_𝑙𝑒𝑚𝑒𝑎𝑠 and 𝐺_𝑟𝑖𝑚𝑒𝑎𝑠 are subjected to the input
filter (cf. Chapter 4.4.1).
In addition to the two raw signals of global radiation, the position (latitude and
longitude), as well as date, time and heading of the vehicle are required. This
information is used to establish the relationship between the solar position and
the vehicle-based measurements (cf. Chapter 4.4.2). First the current position
of the sun is calculated. With the addition of the orientation of the vehicle
(heading), the horizontal angle of incidence of the sun in relation to the vehi-

Figure 18: Flowchart for correcting the vehicle-based global radiation signals and merging them
into one final signal. Note, besides the vehicle-based raw signals, also the position,
date and time and heading of the vehicle need to be known.
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cle is determined. Based on this angle of incidence, a weighting of the two
vehicle-based global radiation signals is developed.
Chapter 4.4.2 describes the calculation of a merged global radiation signal
based on the input filtered global radiation signals and the weighting of the sig-
nals developed in Chapter 4.4.2. First, a factor correction of the vehicle-based
signals is performed. Second, based on the previously developed weighting,
a merged global radiation signal is calculated from both individual signals.
Third, this is subjected to a final correction to compensate for the varying
effects between morning and afternoon.

The methodology for global radiation is developed on the basis of the stationary
measurement campaign of TC2 next to the synop station "Weihenstephan".
Since the vehicle was stationary during the entire campaign, the influences on
the measurement can be limited to the sun and the direct environment.

4.4.1 Input filter

The input filter of both measured global radiations signals is content-related
identical to the air pressure as well as the air temperature approach. Only the
individual thresholds are chosen differently.

1. Ensuring all measured values are within measurement range.
The only physical boundary for global radiation is a lower limit, which
is set to zero. The value of the global radiation can only decrease to zero
during nighttime. Any negative values indicate false values.

2. Ensuring no outliers are present in the data.
Since the global radiation is strongly dependent on cloud cover and
shading due to trees, it can change rapidly. Therefore, changes in the
data of up to 200 Watt each timestep are accepted without being changed.
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4.4.2 Relationship between position of sun and vehicle

Calculation of position of the sun

To establish a relationship between solar position and the vehicle-based mea-
surements, the solar position is first calculated. Here, a distinction must be
made between two different angles of sun incidence: The vertical and the
horizontal angle of incidence.
The calculation of the vertical sun angle is given in Appendix A.7.
The azimuth angle or the horizontal angle of incidence of the sun 𝐴𝑜𝑆 is
calculated as specified in equation 23 [Gie20]:

𝐴𝑜𝑆 =
𝑎𝑐𝑜𝑠(𝑦) · 180

𝜋
(23)

where y is defined as:

𝑦 = −
𝑠𝑖𝑛( 𝜋

180 · 𝑙) · 𝑠𝑖𝑛( 𝜋
180 · 𝑆) − 𝑠𝑖𝑛( 𝜋

180 · 𝑑)
𝑐𝑜𝑠( 𝜋

180 · 𝑙) · 𝑠𝑖𝑛(𝑎𝑐𝑜𝑠(𝑠𝑖𝑛( 𝜋
180 · 𝑆))) (24)

where 𝑙 is the latitude of the vehicle and 𝑆 is the sunheight (cf. Equation 32).
The parameter 𝑑 represents the declination and is based on the time. Equa-
tion 35 in Appendix A.7 displays the detailed calculation path.

Calculation of incidence angle on windshield

In addition to the calculation of the sun height, Appendix A.7 also contains
the calculation of the vertical angle of incidence of the sun on the windshield
of the vehicle.
The horizontal angle of incidence of the sun on the vehicle 𝛼 includes the
previously calculated azimuth angle of the sun AoS and the direction of travel
of the vehicle H for Heading and is defined as follows:

𝛼 = 𝐴𝑜𝑆 − 𝐻 + 90◦ (25)

Since the horizontal angle of incidence on the vehicle is not related to the
orientation of the vehicle, but to the orientation of the windshield where the
sensor is mounted, 90◦ is added to the difference between the azimuth angle
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of the sun AoS and the orientation of the vehicle H. This results in an angle of
incidence of 90◦ and thus a perpendicular incidence on the windshield and the
sensor when the vehicle is driving exactly towards the sun.

Weighting of signals

Since both vehicle-based signals have their own assigned range, which partially
overlaps with the range of the neighboring signal, a weighting of the individual
signals depending on the angle of incidence of the sun on the vehicle seems
reasonable.

First, effects induced by the horizontal angle of incidence of the sun are
considered. For this, the full circle of possible horizontal angles of incidence
on a vehicle is considered. The angles of incidence are divided into nine
sectors depending on their value, as shown graphically in Figure 19.

Figure 19: Schematic representation of the sector division for weighting the global radiation based
on the horizontal angle of incidence of the sun on the vehicle. The car is shown
as a white box, windshield facing up towards 90°. The small red circle represents
the available sensor, the red arrows represent the viewing direction of the two global
radiation signals from this sensor. Note, the angle of incidence of the sun on the vehicle
is defined as zero when the sun shines on the vehicle from the left side. Sun shining
exactly from ahead thus means an angle of incidence of 90°.
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4 Quality control and correction of measured values

Two weights are defined for each of these sectors, one for each signal. "a"
represents the sensor oriented to the front left and "b" the sensor aligned to the
front right. An overview of this is provided by Table 3.

The steeper the sun shines on the respective sensor, the higher is the weighting
of the respective signal. The signal, from which side the sun shines on the
vehicle, makes up the main part of the weighting in each case. For example, if
the sun falls on the vehicle from the left side with a horizontal incidence angle
of 40°, signal "a" of the front sensor is weighted with 75 %, and signal "b" is
weighted with 25 %. At an angle of incidence of 90°, which corresponds to a
direct irradiation from the front, both signals "a" and "b" are equally weighted
with 50 % each.

The shown weighting of the two signals with respect to the horizontal angle
of incidence of the sun represents a highly simplified version. Instead, an
arbitrarily more complex version can be defined, which assigns continuous
activation to the signals instead of step-by-step activation.

Since the vehicle is at standstill for the whole campaign, the combination of
horizontal and vertical incidence angle on the vehicle is almost identical for
every day of the campaign. The influence of both angles of incidence can
therefore not be evaluated simultaneously. To investigate the influence of the
vertical angle of incidence, another measurement campaign is necessary, in
which the vehicle is next to the same reference but has different vertical angles
of inclination on the different days. This artificially varies the vertical angle of

Table 3: Overview of weighting for two sensors a and b depending on horizontal sun incidence
angle on the vehicle.
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incidence and thus separates its influence as far as possible, whereby it can be
determined.

The known effects, which exert an influence on the global radiation, are all
visible in stationary situations, so that no further correction for effects induced
by vehicle motion has to be made. Nevertheless, the correction of the global
radiation is not completely finished yet, because the influence of the vertical
incidence angle cannot be quantified due to the data basis. The weighting of
the two signals of the global radiation sensor is therefore based exclusively on
the horizontal angle of incidence of the sun on the vehicle.

4.4.3 Sensor uncertainty induced in stationary situations

Factor correction

After the input filter, both vehicle-based signals are subjected to a factor cor-
rection. Based on the available data, the factor 𝐹𝑆𝑈 is empirically determined
to be 0.7. The same factor 𝐹𝑆𝑈 applies to both signals, since they are mea-
sured by the identical sensor and differ only in their alignment, but not in the
measuring principle or sensor.

The factor correction only affects the times when the measured value is greater
than zero. At night, when the global radiation is zero, the values therefore
remain unchanged. During the day, at global radiation values greater than
zero, the values are reduced by 30 %.

The factor 𝐹𝑆𝑈 is set to 0.7 empirically based on the available data and therefore
does not take into account any physical relationships. This factor correction is
comparable to the offset correction for the effects induced by sensor technology
for the air pressure and the air temperature. However, no offset but a factor is
used for the global radiation.

Both vehicle-based signals corrected by a factor of 0.7 are then merged into
one global radiation signal using the weighting from Chapter 4.4.2.
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Compensation of varying effects during daily course

Since the calculated global radiation signal, which is based on the two corrected
individual signals as well as the weighting of these signals, shows anomalies
that are dependent on the time of the day, a further correction is required.

In the morning, the calculated global radiation signal shows values too high
compared to the reference. In the afternoon, the trend reverses and the vehicle-
based values are too low compared to the reference.
The cause of this is not the time of day itself, but the angle of incidence of
the sun on the vehicle, which changes during the course of the day. However,
whether the deviations are due to the vertical or horizontal angle of incidence,
cannot be determined from the present data set.

To compensate this effect, a linear function of the correction factor 𝑀𝐴 for
Morning/Afternoon is determined empirically. For very flat incidence angles in
the morning, the global radiation value is corrected by the factor 𝑀𝐴 = 0.8 and
thus reduced, whereas the factor 𝑀𝐴 for flat incidence angles in the afternoon
is 1.2 and thus increases the global radiation value. Using these two factors,
a linear function is created that continuously covers the range of horizontal
incidence angle from 0 to 180°. The linear equation of the factor 𝑀𝐴 is:

𝑀𝐴 =
1

450
· 𝛼 + 0.8 (26)

with 𝛼 being the horizontal angle of incidence of the sun on the windshield
of the vehicle. For the determination of the factor of the respective time,
the horizontal, instead of the vertical, angle of incidence of the sun is used.
Due to the stationary vehicle, the ratio between the horizontal and vertical
incidence angle is almost identical over time every day in the present data of
the stationary measurement campaign lasting one week. Therefore, the vertical
incidence angle is also indirectly taken into account in this correction step.
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Since not all potential reference data can be assumed to be valid throughout,
Chapter 5.1 discusses the limitations of the references used. Chapter 5.2
explains the quality parameters that are used in the following for evaluation
and assessment. The following chapters contain the results and evaluations
of the four meteorological quantities studied: Air pressure (Chapter 5.3), air
temperature (Chapter 5.4), relative humidity (Chapter 5.5), and global radiation
(Chapter 5.6).

5.1 Quality limitations of used references

During the measurement campaigns, anomalies occurred at the reference sta-
tions, which partially limit the suitability as a reference for individual quantities.
In the following, the limitations of the MWS and the MMU are listed parameter-
wise. For the MWS difficulties have been encountered for the following two
parameters global radiation and air temperature. The project vehicle TC1 as
well as the MMU show occasional difficulties with the relative humidity.

The signal of the global radiation measured by the MWS has attracted negative
attention over the course of the project. No total failure occurred, instead a
successive decrease of the measured quantity occurred. At night, the global
radiation correctly continued to drop to zero. However, during the day, the
amplitude continued to decrease daily, regardless of coverage or position of
the sun. Therefore, the MWS was sent to the manufacturer for inspection and
was no longer used as reference. As an alternative reference for the global
radiation, the synop station "Weihenstephan" was subsequently used within
the framework of an additional stationary measurement campaign. Since the
global radiation is not only influenced by the position of the sun, but is also
influenced by clouds, the low temporal resolution of 1 min of the synop station
poses a challenge using this data as reference. For comparing vehicle-based
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data to synop station data, the vehicle-based data must be averaged over 1 min
to create an identical time basis for the evaluation. Statements about the quality
of the second-by-second data based on the synop station is not possible.
The measuring device, which is mounted on the MMU to measure the global
radiation, was originally not planned as a reference. The sensor is able to
reproduce the changes of the global radiation, but the output absolute value
must first be corrected by an offset before it is representative. This offset is
determined as part of a comparison measurement next to the "Weihenstephan"
synop station. After the offset correction, the values of the MMU averaged
over 1 min agree well with those of the synop station. Therefore, it is assumed
that the second-by-second data of the MMU is suitable as a reference.

The air temperature signal of the MWS has some deficiencies, too. As men-
tioned above, the MWS was returned to the manufacturer for inspection. Dur-
ing the repair, the manufacturer, according to his own information, used a
soldering spray on the circuit board. It was not considered that the solder used
has the property of becoming conductive if there is a high relative humidity
over a longer period. This in turn has an influence on the measured signal and
therefore probably causes a decaying temperature signal. This becomes clear
in the second stationary measurement campaign in January/February 2021,
where the air temperature of the MWS records opposite temperature trends to
all other sensors for high relative humidities (cf. Figure 36 in Appendix A.8).
The signal of the air temperature of the MWS is therefore not trustworthy for
the period of the second stationary measurement campaign and is thus not used
as a reference.

Additionally, the auxiliary heater of the TC1 was temporarily switched on
during the second stationary measurement campaign to protect the additional
electronics on board of the vehicle from damage caused by the cold. However,
the parking heater, which is positioned next to the engine block, exerts a
significant influence on the adjacent relative humidity measurement. The RH
signal is therefore strongly distorted, which is not due to effects induced in
static situations but only to the auxiliary heater. Thus, this data is not suitable
for determining the sensor uncertainty induced in static situations. Hence,
only the data from the first measurement campaign, in which no parking heater
was active, is used for the evaluating the relative humidity signal during static
measurement campaigns.
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Normally, the MMU is used in high-pressure weather conditions to measure
heat effects in urban areas. The use in bad weather or precipitation is a
premiere for the measurement vehicle. Problems occurred during the mobile
measurement campaign in February 2020, as the measuring instruments for
relative humidity temporarily froze due to the persistent cold combined with
multiple precipitation and snowfall events. This can be recognized by a strongly
jagged and unnatural course of the measurement signal. However, an exact
start and end time is difficult to define, since the freezing and thawing of the
measuring instrument is a gradual process. For this reason, none of the MMU
measurements of relative humidity for the February campaign can be used for
reference purposes.

5.2 Quality parameters used for evaluation

Various quality parameters are used to evaluate the results, such as the MSE,
data portion within single measurement uncertainty (PD1MU) and data portion
within twice the measurement uncertainty (PD2MU).

The most common of the three quality control measures for forecasting and
correction models is the MSE. It indicates the squared difference between
estimated and true value. The estimated value is the corrected vehicle-based
signal. The true value is the associated reference, either the measured value of
a stationary reference (MWS or synop station) or the mobile reference (MMU).

The other two measures of quality refer to the proportion of the corrected data
that can be assumed to be valid. This quality measure is strongly dependent
on how large the maximum permissible deviation is defined, up to which
a measurement is considered valid. The greater the maximum permissible
difference between the corrected and the true value is set, the higher the
proportion of data that is assumed to be valid. However, this does not increase
the quality of the data, even if the percentage increases. Since the proportion
automatically grows to 100 % if the maximum deviation is large enough, it is
necessary to define a suitable and meaningful maximum allowable deviation.
In this work, the single measurement uncertainty is defined as the limit for the
maximum permissible deviation between the corrected vehicle-based and the
reference value. Corrected values that deviate from the reference value by less
than the single measurement uncertainty are therefore assumed to be valid. A
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lower limit would incorrectly exclude correct values, since the deviation may
be caused by the measurement inaccuracy of the sensor, rather than a real
deviation. Since the measurement uncertainty is different for each evaluated
signal, the limit value for the respective maximum permissible deviation also
varies.

The measurement uncertainties for the respective meteorological quantity con-
sidered are composed of the measurement uncertainties for the reference and
the vehicle-based sensor. Table 4 lists the measurement uncertainties for all
sensors used sorted by meteorological quantity.

Exemplary, the measurement uncertainty for the air pressure during a stationary
measurement campaign is 10.8 hPa, consisting of 10.0 hPa for the vehicle-based
sensor and 0.8 hPa for the reference sensor.

The third quality measure is directly connected to the previous one. Instead
of the single measurement uncertainty, twice the measurement uncertainty is
defined as the permissible maximum difference between the corrected and the
reference value. The proportion of the data determined in this way cannot be
assumed to be valid. Rather, it is considered to be a measure of the spread of
the corrected values around the reference value. The larger the proportion of
data within twice the measurement uncertainty, the fewer outliers, equivalent
to unambiguous false values, are present after correction.

Table 4: Measurement uncertainty of all sensors (vehicle-based and reference) relevant for evalu-
ation.
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If not stated differently the following plots all have the same color scheme.
Light blue represents the vehicle-based raw signal, dark blue the PHY-corrected
signal, red the NN-corrected signal, yellow the RF-corrected signal and grey
the reference signal provided by either the MWS and the WB for stationary
campaigns or the MMU for mobile campaigns.

5.3 Air pressure

5.3.1 Stationary measurement campaigns

A total of 887674 s of data (approx. 10 days) are available for the determination
of the sensor uncertainty induced in static situations for atmospheric pressure.
They are divided into 288946 s (32.6 %) obtained during the first stationary
measurement campaign in November 2020 and 598728 s (67.4 %) during the
second stationary measurement campaign in January/ February 2021.

However, before determining the offset necessary to compensate for the effects
induced in stationary situations, an input filtering to detect and filter outliers
is performed. Regarding the air pressure, values less than or equal to zero are
outside the measurement range and are therefore defined as outliers. This is
done by keeping the value from the previous time step constant. The outlier
correction is performed for a maximum of five continuous seconds, to avoid
introducing a new error (cf. Chapter 4.1.1).

Step 2 and step 3 focus on determining the sensor uncertainty induced in
static situations, divided into the uncertainty caused by the sensor inaccuracy
𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 and the uncertainty caused by mounting the sensor in a
vehicular environment instead of an undisturbed environment 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛.

Table 5 lists the determined uncertainties induced in static situations. The
𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 represented by the difference between the raw signal of
the WB and the reference signal of the MWS is almost identical for the first
and the second stationary measurement campaign. The weighted average is
2.20 hPa and thus amounts to 22 % of the measurement uncertainty. The
temporal course for the WB signal corrected for the 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 is
displayed in Figure 37 in Appendix A.9.
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The 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is built by comparing the vehicle-based raw signal corrected by
the previously determined 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 to the WB signal also corrected
by the 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 . 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛varies by less than 9 % comparing
both stationary measurement campaigns. The weighted average for the static
𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 amounts to 6.47 hPa. Therefore, 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is also smaller than
the measurement uncertainty. Figure 38 in Appendix A.9 shows the temporal
course for the vehicle-based signal corrected for both static 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦
and static 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 in comparison to the corrected WB signal.

As described in Chapter 4.1.2, the sum of both sensor uncertainties induced by
sensor technology and location, sums up to the total static error 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙
if no further influencing static factors are involved. Therefore, the total sen-
sor uncertainty induced in static situations amounts to 8.67 hPa for combin-
ing all data from both static measurement campaigns. Note, that combining
𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 and 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 still results in a value smaller than the
measurement uncertainty.

To control, whether additional influencing static factors affect the vehicle-
based measurement, the deviation between the vehicle-based signal corrected
by 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 and the reference signal of the MWS is determined for each
time step. The temporal course for the air pressure signal of TC1 corrected for
the 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 is displayed in Figure 39 in Appendix A.9.

Without correcting the vehicle-based data, the averaged deviation amounts
to 8.66 hPa, with a maximum deviation of -13.05 hPa. After correcting the
vehicle-based signal, the averaged deviation is decreased to 0.01 hPa. Since
the measurement uncertainty of the air pressure is 10.8 hPa (cf. Table 4), the
averaged deviation of 0.01 hPa lies within this uncertainty. The manufacturers’
specifications can thus be confirmed, and no significant uncertainties caused

Table 5: Sensor uncertainty induced in stationary situations for air pressure based on two static
measurement campaigns.
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by 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 or 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 occur.
Since the correction of sensor uncertainties induced in static situation is a pure
offset correction, the distribution of the deviations is not changed.

However, since the maximum deviation after correction accounts to 4.46 hPa
and is thereby smaller than the measurement uncertainty of the vehicle-based
sensor, all corrected vehicle-based measurements of the air pressure are within
the measurement uncertainty for both stationary measurement campaigns.
Therefore, PD1MU as well as PD2MU, both amount to 100 %.

5.3.2 Mobile measurement campaigns

Since the air pressure is largely independent of the state of the vehicle (cf.
Chapter 4.1.2), no complex correction for effects induced by vehicle motion
is needed. Therefore, the combination of input filter and correction of sensor
uncertainties induced in stationary situations represents the total correction for
the vehicle-based air pressure signal.

During the three mobile measurement campaigns, 207013 s of concurrent air
pressure data of the TC1 and the reference (MMU) are collected. In Figure 20
(upper plot) the temporal course of the vehicle-based corrected air pressure

Figure 20: Time course of corrected vehicle-based air pressure signal of TC1 in comparison to
reference signal (MMU) for mobile measurement campaigns.
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signal in comparison with the reference for mobile campaigns (MMU) is
shown. Additionally, the deviations between the corrected vehicle-based and
the reference signal are shown in the lower plot.

Using the 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 offset correction the averaged deviation of the vehicle-
based signal to the reference signal from the MMU can be reduced by almost
81 % down to 1.40 hPa (cf. Table 6). The average deviation amounts to less
than 1

6 of the measurement uncertainty, which indicates a correction specific
to this one vehicle, but does not prove it. In the next chapter, the correction
developed on TC1, is transferred to TC2. This can be used to verify whether
the correction is specific in a way that it provides reliable results only on TC1
or whether the empirically determined offset values are also valid on TC2.
Table 6 highlights the good agreement between the corrected and reference
data, which is at least 99 % for each of the measurement campaigns (PD1MU).
The PD2MU values of 100 % throughout show that there are no outliers
in the available vehicle-based data. Therefore, all data are within twice the
measurement uncertainty. The deviations distribute evenly with a standard
deviation of 2.63 hPa (cf. Figure 40 in Appendix A.9 and Table 6).

Based on the available data of the three mobile measurement campaigns, no
difference caused by the seasons can be detected. All results regarding the
deviations between the signals are comparable.

Table 6: Overview of the results for raw data (Raw) and corrected data (Corr) of TC1 for the
mobile measurement campaigns.
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5.3.3 Transferability of models

The results presented above refer exclusively to the analysis of data from TC1.
To test whether the determined correction 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 is also valid on another
vehicle, the identical correction developed on TC1 is applied to TC2.

Since TC2 experienced intermittent technical difficulties during the measure-
ment campaigns, the amount of data from TC2 is less than from TC1 and
totals 103274 s for the air pressure signal of all three mobile measurement
campaigns. Thus, the data basis of TC2 amounts to slightly less than half of
the existing data of TC1.

The use of the 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 , which was developed on TC1, also gives solid
results on TC2. The time course of the TC2 signal, as well as the deviations
from the reference, are shown in Figure 21. Due to measurement failures, TC2
does not show data for all time points. The tabular overview of the results
of the individual mobile measurement campaigns is shown in Table 42 in
Appendix A.9.

Figure 21: Time course of corrected vehicle-based air pressure signal of TC2 in comparison to
reference signal (MMU) for mobile measurement campaigns. Correction applied to
TC2 was developed on TC1 and therefore, appears to be vehicle non-specific. Due to
technical difficulties, there are data gaps in TC2.
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For the data of the three mobile measurement campaigns, the correction to
TC2 achieves 98.81 % of the data within the simple measurement uncertainty
(cf. Table 42) and is thus only slightly smaller than for TC1 with 99.95 %.

For TC2 data no clear influence of the individual measuring campaigns, and
thus of the seasons is recognizable.

It is noticeable that the correction developed on the TC1 slightly overcorrects
the TC2 data. The mean deviation of the vehicle-based data from the reference
of the MMU, is changed from -4.88 hPa for the raw data to 3.79 hPa for the
corrected data. An offset correction of lesser extent would give even better
results on TC2, but would also represent a more specific solution. Nevertheless,
it is clear that the correction of the TC1 also takes effect on the TC2 and
improves the results compared to the raw data.
On the basis of the available data for TC2, the air pressure correction seems
to be a generally valid solution that is not only limited to TC1 as previously
assumed (cf. Chapter 5.3.2).

5.4 Air temperature

5.4.1 Stationary measurement campaigns

For the determination of the offset, which is necessary to correct the sensor
uncertainty induced in stationary situations, data from both stationary measure-
ment campaigns in November 2020 and January/February 2021 is available.
However, as already explained in Chapter 5.1, the temperature measurement
of the MWS in the second measurement campaign is unsuitable as a reference.
Therefore, only data from the stationary November measurement campaign is
considered for the following evaluation. This reduces the amount of data to
294431 s, which is about 1

3 of the data of the original data set.

Before the sensor uncertainty induced in stationary situations can be deter-
mined, an input filter as described in Chapter 4.2.1 is executed to filter for
outliers and values outside physical boundaries.

As described in Chapter 4.2.2, a multilevel evaluation is performed to determine
the offset, which is visible in stationary situations. This offset is due to sensor
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uncertainty induced by sensor technology on one hand and location of the
sensor on the other hand.

In the first step, the mean deviation between the WB and the MWS is deter-
mined to isolate the uncertainty induced by sensor technology. The average
deviation, and thus 𝑆𝑈𝑠𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 is 0.91 K. Since 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 is
greater than the measurement uncertainty of 0.8 K for the temperature com-
parison between the WB and the MWS, there is a discrepancy between the two
sensors that is not exclusive to the measurement uncertainties of both sensors.
Therefore, under the assumption that the MWS measures the true temperature
value, the WB sensor shows an anomaly.
Both, the WB data, as well as the data of the TC1, is corrected by this offset
since both measurement systems are affected by this influence as they both use
identical sensors.
In the second step, the mean deviation between TC1 and the WB is calculated.
For this purpose, the used signals of both data sources, TC1 and WB, have al-
ready been corrected for the 𝑆𝑈𝑠𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 . The subsequently determined
mean deviation between TC1 and WB is -0.1 K (𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = -0.1 K).

The offset caused by the location of the sensor, 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, thus counteracts
the offset for compensating the inaccuracy caused by the sensor technology
and dampens this offset. This results in a total sensor uncertainty induced in
stationary situations of 0.81 K:

𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 + 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛
= 0.91𝐾 − 0.1𝐾
= 0.81𝐾

(27)

Finally, the previously determined offset of 0.81 K is directly verified by com-
paring the corrected TC1 based temperature signal and the reference value of
the MWS. If both signals are identical, no further influences disturb the sta-
tionary temperature measurement. The temporal course of the air temperature
values for the stationary measurement campaign is shown in the upper plot in
Figure 43 in Appendix A.10, the resulting deviations are displayed in the plot
below. Table 43 in Appendix A.10 lists the associated quality parameters.

The mean deviation of 0.00 K confirms the successful correction of effects
induced in stationary situations. The offset correction of 0.81 K is 0.01 K
higher than the measurement uncertainty of the temperature for stationary
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campaigns of 0.8 K. Assuming that the MWS measures the real temperature,
the vehicle-based temperature in the uncorrected state therefore deviates by
slightly more than the measurement uncertainty. Without the offset correction,
the vehicle sensor therefore exhibits anomalies to the real temperature measured
by the MWS.
By correcting for the offset 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 , the proportion of data within the
single measurement uncertainty (PD1MU) can be improved by 36 percentage
points. Reasons for deviations greater than twice the measurement uncertainty
can be influences by other factors, such as global radiation. To compensate for
these influences, a more complex correction of the effects induced in stationary
situations might be necessary, which, however, is not tested within the scope
of this work.

5.4.2 Mobile measurement campaigns

When applying the previously determined 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 to the data of the mobile
measurement campaigns (207347 s), the offset reduction of the raw values by
𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 of 0.81 K, has reduced both the average deviation and the max-
imum deviation. However, an unexpected result occurred as additionally the
proportion of data that can be assumed to be valid (PD1MU) has worsened
instead of improved by approximately 11 percentage points. The detailed listed
numerical values are deposited in Table 44 in Appendix A.10. A decrease in
the proportion of the data that has a deviation equal or less than the single
measurement uncertainty to the reference (PD1MU) indicates that the previ-
ously determined offset overcompensates for the sensor uncertainty induced in
stationary situations for the data of the mobile measurement campaigns.

Therefore, on the present data basis of the mobile measurement campaigns
with the MMU as reference, another offset is determined empirically, which
counteracts the previously determined 𝑆𝑈𝑠𝑡𝑎𝑡 ,𝑡𝑜𝑡𝑎𝑙 and thus attenuates it. The
necessary damping is 0.48 K. Therefore, the total offset is reduced to 0.33 K.
This raises the PD1MU from 53.11 % for the raw data to 58.46 %, instead of
lowering it to 41.90 % (cf. Table 44 in Appendix A.10).

The reason for the necessity of a modification of the offset correction can
be found in the different reference stations for the stationary and the mobile
measurement campaigns. The data indicate that the reference stations MWS
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and MMU have an offset of approximately 0.5 K among themselves. The mea-
surement uncertainty for the comparison between MWS and MMU accounts
to 0.4 K, meaning the offset between both stations is outside the acceptable
range. Due to the given measuring conditions for both measuring stations, the
exact offset cannot be verified by a parallel long-term measurement.
Assuming that the MWS and the MMU have an offset among themselves, the
vehicle-based data of the TC1 can never match both reference stations at the
same time. This illustrates the problem and at the same time emphasizes the
importance of choosing a suitable reference for comparative measurements.
The question arises whether either the MWS or the MMU represents a valid
value of the air temperature. It is highly probable that neither of the two stations
consistently measures the exact temperature value. However, it is not possible
to determine a valid temperature value more precisely than with the present
reference equipment during this project. Since the MWS has already attracted
negative attention regarding the quality of its temperature measurement and
the further evaluation takes place within the scope of the mobile measurement
campaigns, the MMU is assumed to be true.

5.4.3 Physical model

An improvement of the results by applying the physical model (PHY) is clearly
shown in Figure 22 as well as in Table 7.

In Figure 22, the x-axis represents the time and thus the available data points,
the y-axis represents the air temperature in °C. The three plots present one
mobile measurement campaign each. The vertical subdivisions in light gray
mark the breaks between individual days during each measurement campaign.

A significant improvement of the signal due to the physical correction becomes
visible. Time sections with strong deviations between the raw signal and the
reference, such as at about 68000 and 98000 s, are modified by the physi-
cal model in a way that they are subsequently in good approximation to the
reference signal. However, time sections where the physical model overcom-
pensates for the uncertainty induced by vehicle motion (e.g., at about 48000 s)
can also be identified. Furthermore, it is noticeable that the deviations between
the corrected PHY signal and the MMU signal are more pronounced for the
third mobile measurement campaign than for the two previous measurement
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campaigns. The fact that this behavior cannot be observed in the two previous
measurement campaigns indicates to another effect influencing the temperature
measurement, which is not yet considered in the physical model.

Table 7 confirms the previously described results, becoming apparent in Fig-
ure 22. The mean deviation for all data of the mobile measurement campaigns
(207347 s) is reduced by a total of 94 %, with the first 19 % achieved by the
offset correction performed to compensate for effects induced in stationary sit-
uations. The remaining 75 % of the improvement are obtained by the physical
model. Hereby, the mean deviation decreases by 94 %.

Likewise, the maximum deviation is significantly reduced by the physical
model. The offset correction reduces it by only about 1 %, whereas the
physical model applied afterwards reduces it by another 59 %. The magnitude
of the maximum deviation is reduced by the correction, but outliers are still
present in the data. The remaining outliers are isolated errors, as shown by
Figure 22 and confirmed by a low standard deviation (cf. Table 7).

The standard deviation of the corrected data decreases by more than 2
3 of its

original value. The corrected values are therefore less widely scattered around

Figure 22: Time course of three air temperature signals (darkgrey: MMU, lightgrey: TC1 raw,
blue: TC1 corrected based on physical model) for all three mobile measurement
campaigns in January, February and September 2020 spread over three plots. Vertical
gray subdivisions mark a change of day during each measurement campaign.
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the mean deviation, which is shown in Figure 44 in Appendix A.10. Instead,
more data points are located within a short distance from the mean deviation.
Therefore, the corrected data concentrates stronger around their mean deviation
of 0.1 K. For the raw data (cf. Figure 44a)), the distribution is stretched to the
right, which indicates the majority of the vehicle anomalies being greater than
zero. The physical model can reduce the disproportionately frequent positive
anomalies, resulting nearly in a Gaussian distribution (cf. Figure 44b)).

Considering all data from the mobile measurement campaigns, the PD1MU
increases by more than 1

4 . It should be noted that the PD1MU of the raw data
of the February and September campaign is also significantly lower than for
the January campaign. The percent increase in PD1MU due to the physical
model is similar for the September and January campaign and largest for the
February campaign. The nevertheless lower PD1MU is due to different am-
bient conditions compared to the January campaign. These deviating ambient
conditions exert an influence on the measured temperature signal, which is not
sufficiently corrected by PHY model.

One influence to be mentioned here is the global radiation. It is responsible for
the long-lasting pronounced deviations between the raw data and the reference
data in September (cf. Figure 22). Since the number of data where the global
radiation shows significant differences from the January campaign is limited to
the September campaign, the data basis is insufficient to modify the physical
model in such a way that it also provides reliable results in situations with
strong global radiation.

Table 7: Overview of the correction results of TC1 for the physical model (PHY) for the mobile
measurement campaigns.

93



5 Experimental evaluation

The winter weather (snowstorm) that occurred during the mobile measurement
campaign in February 2020 explains the lower quality of the data from this
measurement campaign. Although the February data has the highest relative
improvement in PD1MU by 50 %, the achieved PD1MU remains the lowest
compared to the other campaigns due to the lowest PD1MU for the raw data. A
further modification of the physical model to increase the PD1MU in scenarios
with heavy snowfall, as occurred during the February campaign, is necessary.
However, due to the very limited data basis in these extreme weather situations,
in combination with the unknown exact influence on the temperature measure-
ment, the development of a suitable modification of the physical model is not
feasible based on the available data set.

The PD2MU behaves similar to the PD1MU. By the physical model, an increase
of 1

4 of the PD2MU to 85.50 % is obtained for data of all mobile measurement
campaigns.

5.4.4 Neural network

The evaluation of the results obtained by the correction using the neural network
(NN) is limited to 34422 s (cf. Table 8). This represents 16.6 % of the
total amount of available data collected during all three mobile measurement
campaigns. As listed in Chapter 4.2.3, the remaining 5

6 of the data is needed
to train and validate the network.

Figure 23 represents the data of the mobile measurement campaigns. The x-
axis corresponds to the available data points, the y-axis to the air temperature.
As described in Chapter 4.2.3, the last sixth of each of the three mobile
measurement campaigns is used to test the network. Hence, results of the net
are only available for these three sections (cf. red signals path in Figure 23). For
the first two mobile measurement campaigns the NN results look trustworthy.
For the third measurement campaign larger differences between the NN results
and the reference signal of the MMU are noticeable.
Table 8 confirms the lower quality results for the third measurement campaign
in September, which were already visually evident from Figure 23.

The mean deviation between the vehicle-based temperature values and the
MMU reference are reduced on average over all three mobile measurement
campaigns by almost 80 % by the NN. The mean deviation of all data is thereby
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Figure 23: Temporal air temperature course of the reference signal (MMU, gray) and the vehicle-
based raw signal of TC1 (lightblue). The temporarily available results of the NN for
the last sixths of each mobile measurement campaign is plotted in red. The vertical
lines mark a change between measurement campaigns.

in the same magnitude as the measurement uncertainty. To test whether this
good agreement with the reference is due to a highly specified net or whether
the net can identify the influencing correlations, the transferability of the net to
a different data set is conducted in Chapter 5.4.7. Since the mean deviation for
the raw data of the February and September campaign is comparable, but the
mean deviation of the NN corrected values is more than twice as high for the
September campaign than for the February campaign, this suggests that there
are other effects affecting the data in September not included as features in the
network.

The maximum deviation for all three mobile measurement campaigns is re-
duced by 75 % by the NN. For the September data the maximum deviation
after NN correction is about twice as large (6.24 K) compared to the corrected

Table 8: Tabular overview of the correction result of TC1 for the neural network (NN) for the
mobile measurement campaigns.
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February data (3.11 K). Thus, the September measurement campaign also pro-
vides the largest maximum deviation, comparable to the results for the mean
deviation.

The NN reduces the standard deviation by 74 %, from 4.03 K to 1.03 K. The
largest improvement in standard deviation is seen in the February campaign,
which reduces its standard deviation by 87 % from 4.70 K to 0.61 K. For
the September campaign, the standard deviation of the raw data is slightly
smaller than that for the February data. Nevertheless, the standard deviation
after the NN correction is more than twice as large (1.40 K) as the one of the
February campaign (0.61 K). The data of the September campaign is therefore
in comparison more widely scattered around their mean deviation, which
reinforces the thesis of further influencing parameters during the September
campaign. However, an insufficient amount of data is available, especially for
summer environmental conditions (comparable to the September campaign),
which emphasizes an overall risk of applying the trained network to data
with unknown environmental conditions or environmental conditions rarely
occuring in the training data.

This is confirmed by the proportion of data lying within a single measure-
ment uncertainty to the reference value (PD1MU). The September campaign
achieves the lowest PD1MU after NN correction, although the PD1MU of the
raw data of the February campaign is significantly lower than for the September
campaign. Considering all data (34422 s), an increase of PD1MU by almost
30 % is achieved by the network. For the raw data 50.71 % of the data can be
assumed to be valid, the NN increases the proportion to 65.46 %.

For the data within twice the measurement uncertainty (PD2MU), an increase
of one third from 59.69 % to 79.66 % is achieved by the network. Regarding
the PD2MU of the January campaign, it is noticeable that the PD2MU of the
raw data is already above 90 %. Nevertheless, the value for this campaign
can be raised further to 97.50 %. The largest percental increase in PD2MU is
present for the February campaign, where the proportion increases by 85 % in
relation to the raw values. The visualization for the February campaign (second
section in Figure 23) depicts the reason for the significant increase in PD1MU
by a factor of 3.4 and PD2MU by 90 %. In the considered time interval, the
vehicle-based raw signal has multiple peaks lasting several seconds to minutes,
which are well corrected by the network.
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5.4.5 Random forest

Likewise for this machine learning-based approach, only 16.6 % of the data
collected within the three mobile measurement campaigns are available for
evaluation, as the remaining data is used to build the random forest model
(RF).

Figure 24 represents the temperature signals over the time course of the col-
lected data. Visually, there is good agreement between the RF results and
the reference data for the January campaign. For the February campaign, the
RF results show stronger fluctuations compared to the reference signal. In
September, the course of the reference signal is well reproduced by the RF
results, but the corrected signal contains multiple peaks over several seconds.

Considering all data available for evaluation (34423 s), the RF reduces the mean
deviation by 94 % to -0.16 K. The reduction in mean deviation is smaller for
the September than for the February campaign, which results in a higher mean
deviation in absolute terms for the September campaign. This indicates that
the RF cannot compensate for the influence of at least one foreign parameter
on the data during this campaign.

In terms of maximum deviation, the RF reduces the value to less than a quarter,
from 25.20 K for raw data to 5.40 K for RF-corrected data. In both the January
and the February campaign, the maximum deviation is reduced by over 85 %
by the RF. For the September campaign the reduction amounts to 70 %.

Figure 24: Temporal air temperature course of the reference signal (MMU, gray) and the vehicle-
based raw signal of TC1 (lightblue). The temporarily available results of the RF for
the last sixths of each mobile measurement campaign is plotted in yellow. The vertical
lines mark a change between measurement campaigns.
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Table 9: Overview of the correction results of TC1 for the random forest (RF) for the mobile
measurement campaigns.

The RF correction reduces the standard deviation of the vehicle-based data
over all mobile measurement campaigns by three quarters to 0.97 K. The
largest percentage reduction in standard deviation is obtained for the February
campaign (85 %), followed by the January campaign (81 %). The September
campaign shows the least improvement with 69 % and has the largest standard
deviation of the three mobile measurement campaigns with a value of 1.37 K.
This strengthens the assumption that further influencing parameters are present
during the September campaign.

The proportion of data that can be assumed to be valid (PD1MU) increases by
30 % to 65.94 %. For the January campaign, the PD1MU achieves 91.32 %,
whereas for the September campaign only 37.82 % of the data are within the
range of single measurement uncertainty around the reference value. However,
for the September campaign, the PD1MU is smaller, but the increase in terms
of raw data is larger (30 % increase compared to 6 % increase for January).
Therefore, the RF achieves a smaller increase in quality for the data of the
January campaign than for the data of the September campaign. The biggest
increase in quality of the corrected data is achieved for the February campaign,
where the PD1MU is risen by a factor of 3.4.

In terms of PD2MU the September campaign performs worst with a value
of 63.02 % of the RF corrected data. Conversely, the January and February
campaigns achieve a PD2MU over 90 %. The most frequent deviations, despite
RF correction, are therefore present during data of the September campaign.
Overall, the PD2MU can be increased by 44 % to 85.79 % due to the RF
correction.
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5.4.6 Comparing different model results

Figure 45 in Appendix A.10 shows the time periods of the three mobile mea-
surement campaigns in January, February and September, where results are
available for all three models. The top plot shows January data (14841 s),
the middle plot February data (8952 s) and the bottom plot September data
(10629 s).

The anomalies between each of the mentioned four signals to the reference of
the MMU are shown in Figure 25. Each subplot includes all data points where
values for all four signals are available. The horizontal gray lines mark the
range of single measurement uncertainty. If the anomalies remain within this
range, the associated data points can be assumed to be valid. Note the different
scales of the y-axis. The y-axis of the anomalies of the raw data covers a
larger range than for the corrected data and therefore makes the anomalies look

Figure 25: Time course of anomalies of vehicle-based temperature signals. Four vehicle-based
temperature signals are considered: TC1 raw in lightblue, TC1 corrected based on
physical model (PHY) in darkblue, TC1 corrected based on neural network (NN) in
red, TC1 corrected based on random forest (RF) in yellow. Anomalies are shown for
all three mobile measurement campaigns in January, February, and September 2020,
separated by vertical black lines. Note, the y-axis section varies for anomalies of raw
data (30 K) and corrected data (13 K). Therefore, the deviations of the raw data appear
smaller than they would be if mapped at the same scale as the corrected data.

99



5 Experimental evaluation

smaller. However, the deviations of the raw signal from the reference signal
are several times larger than those of the corrected data.

Compared to the reference signal of the MMU, the temporarily significant
deviations between raw signal and reference become clear (cf. Figure 45 and
Figure 25a)). In January, the raw signals deviate by up to 12 K for a period
lasting about 1000 s (approx. 15 min). In the February campaign, both the
frequency and the magnitude of the deviation increase. During the September
campaign, deviations occur mainly in the first half of the period considered.

It is noticeable that all three developed correction models (PHY, NN, and RF)
apply a correction at times with large deviations between the raw signal and
the reference (cf. Figure 45). Therefore, all three models react to the given
situation and do not perform a constant offset correction. Nevertheless, all
models show different patterns of behavior and therefore different anomalies
during correction (cf. Figure 25).

For the January and February campaign all three models achieve comparably
good results. Nevertheless, both ML models differ from the PHY model in the
section from about 21000-23000 s during the February campaign. Here the
PHY model shows almost constant and too low temperature values. Both, the
NN and the RF, can correct this scenario better.

For the September campaign the results of the PHY and the NN approach
resemble each other. Especially, this can be seen between 24000-28000 s
where both models correct individual peaks in the raw signal and can represent
the time course well but have an offset to the reference signal. This offset
results in negative anomalies (cf. Figure 25b) and c)) and temperature values
too high (cf. Figure 45). As discussed in Chapter 5.4.3, the influence of
global radiation is a potential explanation for the observed offset. Wang et al.
confirm the effect of the sun on temperature measurements and suggest training
a neural network to compensate for it [WGMY17]. Since the global radiation is
weaker during the winter campaigns (January and February) and is additionally
reduced by the prevailing weather situations (e.g., snowstorm), this effect is
not visible in the January and February campaign. Since neither the NN nor
the PHY consider global radiation, it is a potential explanation for the observed
offset. The behavior of the RF corrected data deviates significantly from the
other two model results in the September campaign (especially between 24000-
28000 s). The RF data is on average closer to the reference signal than the other
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two models but shows stronger fluctuations (cf. Figure 25d)). The RF data
provides intermittent reliable results for the September campaign but appears
unstable compared to the other two models due to frequent and comparatively
strong fluctuations. Nevertheless, the results do not show any offset, although
the RF, just like PHY and NN, does not consider global radiation. The lack
of information affects PHY and NN in an offset where RF is affected by more
fluctuating results.

In addition to the visual representation, Table 10 and 45 in Appendix A.10
are used to compare the different model results. The numerical values listed
for the raw signal and the PHY results differ from the results in Table 7 since
Table 10 and Table 9 only consider data points for the evaluation at which
results are available for all three models. The amount of data considered is
therefore significantly lower.

All models improve the mean deviation of the raw data by at least 78 %.
Considering all 34421 s, the mean absolute deviation for the random forest is
lowest (-0.16 K), which is not surprising since the RF achieves the lowest mean
deviation for all of the mobile campaigns considered individually. Considering
all campaigns, the PHY model performs better (mean deviation = 0.45 K) than
the NN model (mean deviation = 0.58 K).

The RF results also show the best value for the absolute maximum deviation
for all mobile measurement campaigns. Nevertheless, the PHY model has
the lowest maximum deviation for the January data. In terms of percentage
improvement, the RF achieves the highest reduction of the maximum deviation
(by 79 %), followed by the NN (by 75 %) and the PHY model (by 72 %).

Table 10: Tabular overview of the correction results of TC1 for all three models physical (PHY),
neural network (NN) and random forest (RF) for the mobile measurement campaigns
combined.
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The highest standard deviation (1.23 K) and simultaneously the lowest re-
duction of 69 %, is found for the PHY model. The machine-learning based
models, NN and RF, achieve a reduction of 74 and 76 %, respectively. For
the February and September campaigns, the picture emerging over all mobile
measurement campaigns is confirmed and the PHY results show the highest
standard deviation. Conversely, for the January campaign data the deviations
of the PHY results from the reference value show the smallest scatter around
their mean deviation (Std dev = 0.29 K).

For the 34421 s considered, 50.71 % of the raw data is within the range of
single measurement uncertainty around the reference value. All three models
raise the PD1MU to at least 64 %. All models therefore show a significant
improvement in data quality. The RF has the largest percentage of valid data
(65.94 %), followed by the NN (65.46 %) and the PHY model (64.53 %). The
deviations of 1 percentage point, show the comparable quality regarding the
amount of valid data generated by the three models. Regarding the individual
campaigns, it is noticeable that for both the January and September campaigns,
the PHY model has the highest PD1MU. For both campaigns, the values of
both machine-learning based approaches are at most 4.8 and 0.8 percentage
points lower, respectively.
The proportion of the data that is within twice the measurement uncertainty
(PD2MU) after correction is at least 75 % for all models. Three-quarters of
the data corrected in the time interval under consideration is thus in the range
of +/- 1.2 K around the reference value. The RF results, already highest for
PD1MU, are as well highest for PD2MU with 85.79 %.

The comparable results of all three models are illustrated by the distribution of
anomalies. Figure 46 in Appendix A.10 shows the histograms for the raw data,
the PHY-corrected data, the NN-corrected data, and the RF-corrected data. The
negative anomalies of the raw data, which are synonymous with excessively
deviating temperature values, are striking. The strongly deviating raw data has
already become clear in Figure 45 and Figure 25a) and is emphasized again
by the histogram. The range of deviations can be significantly reduced by all
three models. However, for better comparison of the histograms, the scales of
the axes are retained. Due to the reduced range of anomalies, the proportion of
data with lower anomalies increases, causing the histograms of the corrected
data to become more concentrated. In addition, the strong leftward bias in the
distribution of the raw data anomalies is reduced by all three models. However,
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by the PHY model, there is an accumulation of anomalies in the positive region
around 2 K. The NN results in the most compact distribution of anomalies,
which is slightly skewed toward negative anomalies, but does not represent
further accumulations in the positive range. The RF reduces the negative
anomalies most effectively but shows more positive anomalies than the other
two models.

Overall, the assessment for the best model is thus campaign dependent. For the
January campaign, the PHY model has the best result with 96.16 % valid values
and a PD2MU of 99.82 %. On the following two campaigns external influences
were present, whose effect has not been clearly formulated so far, which is why
the influences are not considered in the PHY model. This decreases the quality
of the results, but still reaches an average deviation of maximum 1.27 K.
For the February and September campaign, the RF achieves the highest data
quality data. However, the number-based results of the two machine-learning
approaches (NN and RF) hardly differ from each other. Nevertheless, the RF
is rated as the better model as it corrects the data of the September campaign
the best of all three models. However, significant deviations from the reference
signal can also be observed with this model, especially in the last approx.
3000 s. Still, the RF reaches the highest PD2MU for both the February and
September campaigns. In addition, both the mean and maximum deviation
values, as well as the standard deviation, are lowest for the RF results. The
additional unknown influence of global radiation results in stronger variations
in the RF results, but the results remain on average in the correct order of
magnitude and do not deviate by an offset, as both the PHY model and the NN
do.

Whether the good results of all three models are attributed to a very specific
model solution in each case is examined in the following chapter by means of
a transfer to another data set of another vehicle.

The detailed tracking for the differences between the PHY model and the
machine learning models is limited since machine learning models have the
property of a black box. Therefore, the individual decisions of the machine
learning models are not or only very limited traceable for a developer. Never-
theless, the overall very similar results for all three models can be attributed
to the similar input variables considered in the models (cf. Table 46 in Ap-
pendix A.10). The five parameters "DeltaTemp", "Vehicle speed", "Engine
on", "Temperature corrected for effects induced in stationary situations" and
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"EIT" are used in all three models. The weighting of the influences is identical
for the two machine learning models for the first two input variables and is
largest in each case.
The NN considers the smallest set of parameters with six input variables and
is the only model that uses the "Duration EIT". However, no significant im-
provements due to this parameter can be seen in the results compared to the
PHY model and the RF. In this context, it is noticeable that the NN does not
consider local effects. The influence of the change of altitude on the model
result improves the result minimally with the available data. Hence, this input
variable is neglected in order not to generate overfitting of the network (cf.
Chapter 4.2.3). However, since both the PHY model and the RF consider the
same signal of change in altitude, the better results of the RF in September
cannot be explained by this signal. Since the RF does not consider a single
signal that is neglected in the PHY model, the differences between the two
models cannot be explained by the input data but only by the processing of the
data and thus to the model itself.
However, since the differences are of small magnitude and the PD1MU of
all three models differs by less than 2 percentage points, the first five input
variables are the most important influencing variables for the present data set.
Nevertheless, local effects should be considered to allow for a change in the
measured temperature signal due to local effects instead of changing them. In
the available training data, the NN does not detect a direct correlation between
a temperature change and a change in altitude. Still, the evaluation of the input
variables to be considered may be different on other data sets, wherefore an
extension of the considered input parameters by local effects is useful.
In addition, the data shows an influence due to global radiation. The influ-
ence by the global radiation is additionally dependent on the paint color of
the respective vehicle. Due to a lower albedo and higher immissions for black
surfaces, exemplary the effect will be stronger for vehicles with black paint
than for vehicles with white paint. However, due to the limited data available,
the exact influence of global radiation cannot be quantified, wherefore it cannot
be considered in the PHY model. For both machine learning models, the data
basis is also too small to determine and consider a clear influence by global
radiation.
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5.4.7 Transferability of models

To test the transferability of the three models, all models, which are originally
developed using TC1 data, are transferred to TC2. Neither an adjustment, nor
a new training on the TC2 data takes place.

Figure 26 illustrates the results of the transferability test of the models to
TC2. The y-axis of each of the three subplots represents the same section
of air temperature in °C. Furthermore, all subplots share the same x-axis and
therefore show the identical data basis, composed of all available data for
TC2 recorded during the mobile measurement campaigns. Note that there are
94944 s and thus 2.7 times as much data as in Chapter 5.4.6 for the evaluation
of TC1. Since all data from TC2 can be used for evaluation and no data is
needed for training or validation of the models, the amount of data is larger for
TC2 than for TC1, although TC2 had intermittent failures during the mobile
measurement campaigns.

The raw signal shows significant deviations from the reference signal of the
MMU in multiple time periods. The deviation which lasts the longest is

Figure 26: Time course of different model results for all data collected with TC2 during mobile
measurement campaigns. All three subplots show the identical data basis with the raw
signal of TC2 in light blue and reference data of MMU in dark grey. Additionally,
results of the physical model (PHY) are plotted in a), results of the neural network
(NN) in b) and results of the random forest (RF) in c).
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recorded in September (from approx. 75000-90000 s). The previously occur-
ring deviations are of shorter duration, but comparable magnitude.

The physical model (cf. Figure 26a)) compensates well for most deviations be-
tween the vehicle-based raw signal and the reference and runs in good approxi-
mation to the reference signal. However, isolated peaks, such as at about 10000
and 20000 s, are not sufficiently compensated by the PHY model. Towards the
end of the data recording (approx. 75000-90000 s) the physically corrected
signal shows stronger fluctuations than the reference signal. Nevertheless,
apart from individual fluctuations, this data is also in good approximation to
the reference signal.

The neural network results (cf. Figure 26b)) strongly resemble those of the
physical model. This model also reproduces well both the time course and the
magnitude of the reference signal, but like the PHY model exhibits difficulties
at the peaks around 10000 and 2000 s. In addition, the NN provides temperature
values too high for a sudden temperature rise at approx. 7000 s. In contrast
to the PHY model, the NN compensates the fluctuations at the end of the
data recording (approx. 75000-90000 s) with less fluctuations in the corrected
signal but has a slight offset to the reference signal.

The random forest (cf. Figure 26c)) is also able to correct the raw TC2 data
and provide results comparable to those of the other two models. Like the
other two models the RF is not able to compensate the peaks at 10000 and
20000 s. The RF can reproduce the sudden temperature rise at approx. 7000 s
comparable to the PHY without outputting excessive temperature values like
the NN. Especially, the last conspicuous time interval (approx. 75000-90000 s)
is best corrected by the RF. The RF corrected signal shows stronger fluctuations
than the NN corrected signal but has no offset to the reference signal. However,
in the subsequent final seconds the RF results show insufficient temperature
values, as it overcompensates for the increase in the raw data.

Table 11 confirms the statements made on the basis of Figure 26. All three
models reduce the mean deviation between the vehicle-based signal and the
reference signal of the MMU by at least 88 %. The mean deviations achieved for
TC2 are even lower than the ones for TC1 and therefore also significantly lower
than the measurement uncertainty. In terms of maximum deviation, the results
for all three models differ by only 0.79 K but are higher than the maximum
deviations for TC1. The percentage reduction of the standard deviation by the
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Table 11: Tabular overview of the correction results of TC2 for all three models physical (PHY),
neural network (NN) and random forest (RF), that are developed on TC1 and transferred
to TC2 for the mobile measurement campaigns combined.

models is lower for TC2 than for TC1.
The lower average deviation of the raw data of TC2 to the reference signal
compared to the raw data of TC1, already indicates that the data of TC2 are
closer to the reference signal. This is confirmed by the proportion of valid
data (PD1MU), which is 53.28 % for TC2 (PD1MU of TC1 = 50.71 %). The
proportions of valid data of the corrected signals for all models are also higher
for TC2 than for TC1. The percentage increase in PD1MU comparing the
corrected and raw data differs by a maximum of 2 % for TC2 from TC1 values.
Thereby, all models achieve a comparable increase in quality on TC2 as on
TC1.
The PD2MU is higher for the TC2 data than for the TC1 for all three models,
but the percentage increase compared to the raw data is up to 8 % less than for
the TC1. Thus, more of the TC2 data is in the range of twice the measurement
uncertainty than for TC1, but the proportion of raw data for TC2 was already
11 percentage points higher.

In summary, the models developed on TC1 can be transferred to TC2 without
a loss of quality. No adjustments to the models are necessary. The results
indicate that none of the three models developed on TC1 are that specific that
they cannot be applied for a different vehicle. However, in order to make this
statement generally valid, a sufficient data basis is missing in this work. Both
considered vehicles TC1 and TC2 are station wagons, but they differ in exterior
paint color and in the installed engine. The different engines installed influence
the performance of the vehicle, but more relevant for the correction are the
influences on the temperature measurement due to the different waste heat
and the different cooling system. In addition, the data basis for both vehicles
was recorded during the same measurement campaigns. For a generally valid
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statement about the transferability of the models, they must be tested on further
data, on different vehicles with different engine constellations and paint colors
and on further measurement campaigns.

5.5 Relative humidity

5.5.1 Stationary measurement campaigns

To correct the vehicle-based relative humidity data, only the data from the
first stationary measurement campaign in November 2020 (288789 s) are used
(cf. Chapter 5.1). During the second stationary measurement campaign, the
parking heater of the TC1 was temporarily switched on to protect the additional
electronics on board of the vehicle from damage by the cold. However, the
parking heater, which is positioned next to the engine block, exerts a significant
influence on the adjacent relative humidity measurement. The RH signal is
therefore strongly distorted, which is not due to effects induced in stationary
situations but only to the parking heater. Thus, this data is not suitable for
determining the sensor uncertainty induced in stationary situations.

Chapter 4.3 already explains that a pure offset correction of the relative humid-
ity to compensate for the effects induced in stationary situations is not useful
due to the design of the sensor. The approach chosen instead to transfer the
relative humidity is explained in detail in Chapter 4.3.1 and 4.3.2. To illustrate
the difference between the two approaches, Figure 47 and Table 47, both in
Appendix A.11, show results for these approaches.

The offset used for the pure offset correction (version I) accounts to 29.93 %rH,
and thereby covers almost 1

3 of the range of values accepted for the relative
humidity. The second approach (version II) transfers the raw RH value by
using equation 22 and then corrects it by an offset of 1.52 %rH.

The difference between both correction versions is significant. A pure offset
correction (version I) cannot reproduce the course of the reference signal and
thus does not provide representative results.

The transferred RH signal (version II) runs in good approximation to the refer-
ence signal and only shows deviations temporarily. Since these are individual
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time windows, the deviations are not continuous and thus cannot be clearly
attributed to effects induced by sensor technology or location of the vehicle-
based sensor. Instead, the deviations are caused by other, external influencing
parameters.

In addition to Figure 47, Table 47 reinforces the recommendation to use the
approach of version II rather than version I to correct for effects induced
in stationary situations. The data portion outside twice the measurement
uncertainty to the reference (13 %) is due to the previously described deviations
caused by external influences.

As described above, the correction of the raw signal can be separated into
two steps. Table 47 in Appendix A.11 illustrates that the first correction step
causes most of the quality improvement. This allows the proportion of valid
data to be raised from 0.00 % to 53.44 %, while the mean deviation is reduced.
The following offset correction by the mean deviation of 1.52 %rH further
increases the PD1MU to 69.96 %.

5.5.2 Mobile measurement campaigns

Overall, less data is available for the relative humidity evaluation than for
temperature, which is due to the limited use of the reference instrument at tem-
peratures below freezing and during snowstorms (cf. Chapter 5.1). Excluding
the February campaign and the first day of the January campaign, there are
147897 s available, which corresponds to a reduction of about 28 %.

Figure 27 displays only the section of the data generated during the mobile mea-
surement campaigns where the reference values of the MMU are trustworthy
and concurrent data for TC1 and the reference MMU is available (147897 s).
On the y-axis the relative humidity is shown in %. The horizontal red line
corresponds to an RH value of 100 % and thus indicates saturation of the air.
RH values above 100 % are only achievable under laboratory conditions, since
the water particles in the real atmosphere condense at a saturation of 100 %,
which prevents the relative humidity from increasing further.

Temporarily, the transferred signal shows significant deviations from the refer-
ence signal of the MMU and increases to values above 175 %rH. Since values
above 100 % correspond to supersaturated air and are not found to this extent
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Figure 27: Time course of three different relative humidity (rH) signals. Reference signal of MMU
in grey, vehicle-based raw signal of TC1 in light blue and transfer with additional offset
correction in blue. Data basis built by sections of January campaign and all data from
September campaign.

in the real atmosphere, both the high RH values and the significant deviations
from the reference illustrate the influence of effects induced by vehicle motion.
Since the transfer is developed on the data of the stationary measurement cam-
paign, neither the calculated relative humidity, nor the input parameters are
corrected for effects induced by vehicle motion. The input parameters for the
transfer, the BCM1 temperature, the RH measured inside the MuFu sensor, and
the dew point temperature measured inside the MuFu sensor, are each filtered
only for peaks and measurement range. Therefore, the previously performed
correction must be extended by a correction of the effects induced by vehicle
motion.

To correct effects induced by vehicle motion, four different approaches are
implemented and tested. Chapter 5.5.3 shows results of two different physical
models, Chapter 5.5.4 of a neural network, and Chapter 5.5.5 of a random
forest.

5.5.3 Physical model A and B

The main difference between the two physical models PHY-A and PHY-B is
the order of the performed corrections. PHY-A first performs the transfer
of the raw signal (cf. "TC1 transferred" in Figure 27) and then corrects the
transferred RH signal for effects induced by vehicle motion. Conversely, PHY-
B first corrects the input variables air temperature at BCM1 sensor as well as
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Figure 28: Time course of different relative humidity (RH) signals for data of January and Septem-
ber campaign. Reference signal of MMU in grey, vehicle-based raw signal of TC1 in
light blue. Change between campaigns and days during a campaign are marked as
vertical lines. Upper plot: Result of physical model PHY-A plotted (blue). Lower plot:
Result of physical model PHY-B plotted (dark blue).

RH and dew point temperature measured inside the MuFu sensor for effects
induced by vehicle motion and subsequently transfers the RH based on the
corrected signals.

Results of both PHY models are shown in Figure 28.

The results of the PHY-B model (cf. Figure 28, lower plot) show a higher
number of peaks and events of saturation (RH=100 %) over the complete data
course. This is especially observable during the January campaign. The PHY-
A model (cf. Figure 28, upper plot) reproduces the reference signal slightly
better during the January campaign. Nevertheless, the PHY-A model shows
weaknesses at significant changes of the RH signal in short timeframes, e.g.,
at approx. 35000 s and at the beginning of the third mapped measurement day
of the January campaign. Here, the PHY-A model does not reflect the change
strong enough or not at all. The PHY-B model tends to handle these situations
better.
For the September campaign, the time course of the PHY-B signal is closer
to the reference than the PHY-A signal. PHY-A has excessive RH values,
especially on the first day of the September campaign, while PHY-B is a
good approximation of the reference. Another weakness of the PHY-A model
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Table 12: Tabular overview of the two different physical models to correct the relative humidity
signal during mobile measurement campaigns.

can be observed for the data of the last day of the September campaign.
Here, the RH values of the PHY-A model remain almost constant while the
reference values decrease continuously. The PHY-B model also has difficulties
in accurately reproducing the trend and temporarily shows insufficient RH
values, but reproduces the decreasing trend significantly better.

Table 12 lists the numerical values of the evaluation of the data of the January
and the September campaign, as well as both campaigns together. Considering
both campaigns (147897 s), it can be observed that the results of the PHY-B
model provide higher quality than those of the PHY-A model.

The mean deviation is significantly reduced for the 147897 s by both PHY
models. For the individual consideration of the two measurement campaigns,
the respective percentage decreases are in the same order of magnitude. Only
the results for PHY-A of the September campaign show smaller improvements
due to the deviations on the last day.
The maximum deviation of all 147897 s is reduced by 58 % and 60 % for the
PHY-A and PHY-B model, respectively. The reduction in maximum deviation
clearly shows an increase in quality of both physical models, but outliers are
still present in the corrected data. The overall standard deviation of both
models is reduced by 33 % and 43 % for PHY-A and PHY-B, respectively.
Particularly notable is the increase in quality by both physical models regarding
the proportion of data that can be assumed to be valid (PD1MU). The PD1MU
shows a significant difference between both PHY models with a difference of
almost 21 percentage points. The PD2MU is also higher for PHY-B.
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Overall, the PHY-B model provides better results than PHY-A. For the further
evaluations and the comparison to the machine learning approaches as well as
in the transferability test of the models, the PHY-B model is therefore used as
the physical model.

Reasons for the better results of PHY-B are due to the two different approaches
of the models. The results of correcting the input variables for the effects
induced by vehicle motion (PHY-B) are more representative than correcting
the calculated RH value (PHY-A). The errors that occur during the correction
of the input values have a smaller consequence than the errors that occur during
the correction of the output value of the RH. For more complex corrections of
both input and output values, PHY-A might give better results. Based on the
simplified corrections used here, the PHY-B approach is more expedient.

5.5.4 Neural network

In contrast to the neural network for temperature, the data for training, valida-
tion, and testing is randomly selected for the relative humidity neural network
due to the underlying pattern identified in Chapter 4.3.4. Therefore, the results
of the NN for relative humidity are distributed as single second values over
the whole data basis of the January and September campaign. The results are
shown in Figure 29.

Figure 29: Time course of different relative humidity (RH) signals for data of January and Septem-
ber campaign. Reference signal of MMU in grey, vehicle-based raw signal of TC1 in
light blue and vehicle-based signal corrected by neural network (NN) in red. Change
between campaigns and days are marked as vertical lines.
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Table 13: Tabular overview of the neural network results (NN) to correct the relative humidity
signal during mobile measurement campaigns.

Most of the NN corrected data points are in close approximation to the reference
signal and reproduce well both the course and the magnitude of the reference
signal. Sudden changes in RH values can be well reflected by the NN, as well
as the last day of the September campaign.

The good results of the NN are confirmed by the low mean deviation as well
as the low standard deviation (cf. Table 13). The mean deviation between
vehicle-based and reference signal can be reduced by 99.7 % to -0.13 %rH.
Since the measurement uncertainty accounts to 5.5 %rH, the mean deviation is
significantly lower, which indicates a quite specific solution to the underlying
task. In Chapter 5.5.7 the transferability of the net is tested and thereby it is
evaluated whether the solution is specific to TC1.
No significant differences occur between the results of TC1 for the two cam-
paigns considered.
The standard deviation over all 24474 s is reduced by 70 %. The percental
decrease in standard deviation differs by 8 percentage points between the two
measurement campaigns (80 % for January, 72 % for September).
After correction based on the NN, 89.36 % of the data can be accepted as valid,
whereas before the PD1MU is 0.00 %. The percentage of data within twice the
uncertainty increases significantly, too. The behavior is comparable for both
campaigns, with the PD1MU slightly higher for the January data than for the
September data (7 percentage points difference).

The correction of the relative humidity using the trained neural network thus
provides a significant increase in quality compared to the raw data.
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5.5.5 Random forest

Comparable to the neural network (NN), the data selection for the random
forest (RF) for the relative humidity also takes place randomly. Figure 30
shows three relative humidity signals. The very good agreement between the
RF corrected and the reference signal is noticeable. The RF results cover
sudden changes in the reference signal as well as the data from the last day of
the September campaign. No significant deviations from the reference signal
can be detected at any time in the present data.

Table 14 lists the RF results both subdivided by measurement campaigns and
both campaigns combined, confirming the results from Figure 30.

Before correction, the mean deviation takes about half of the range of val-
ues for relative humidity (-49.08 %rH). When considering the measurement
campaigns individually, the average deviation does not increase to more than
0.01 %rH. The low mean deviation of RF corrected data implies a RF specific
to the underlying data set. To test this, the transferability of the model is
evaluated in Chapter 5.5.7.
The maximum deviation is reduced from above 82 %rH to below 9 %rH by
the RF.
Averaged over all available 24474 s, the standard deviation is reduced by 91 %.
A significant difference between the campaigns cannot be identified.
The high quality of the RF results is confirmed by the PD1MU and PD2MU.
The RF raises the percentage of valid data from 0.00 % to 99.86 %. The

Figure 30: Time course of different relative humidity (RH) signals for data of January and Septem-
ber campaign. Reference signal of MMU in grey, vehicle-based raw signal of TC1 in
light blue and vehicle-based signal corrected by random forest (RF) in yellow. Change
between campaigns and days during a campaign are marked as vertical lines.
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Table 14: Tabular overview of the random forest results (RF) to correct the relative humidity signal
during mobile measurement campaigns.

PD2MU is 100 %, both for all data together and for both campaigns consid-
ered separately.

The RF successfully corrects the data of the TC1 and thus leads to a significant
increase in quality.

5.5.6 Comparing different model results

To compare the three implemented models, all three models are evaluated on
the same data set. The total number of data points at which results for all three
models are available is 24474 s. For the physical model, results are available
at 147897 s, but only the 24474 s that are concurrent with the NN and RF data
points are considered for the following evaluation.

Figure 48 in Appendix A.11 shows the results of all three models (PHY, NN,
RF), as well as the vehicle-based raw data and the reference signal. Figure 31
plots the deviations of the respective signals to the reference. Note the different
scales of the y-axis for a) and the other three subplots.

All three models achieve a significant improvement of the raw signal (cf.
Figure 48) and thereby a significant reduction of anomalies. Nevertheless,
differences between the three models and their deviations can be identified (cf.
Figure 31).
The physical model (blue) shows the most pronounced deviations from the
reference signal. In both January and September, the PHY signal is temporarily
constantly 100 %, although the reference signal does not reach saturation. On

116



5.5 Relative humidity

Figure 31: Time course of anomalies of vehicle-based relative humidity signals. Four vehicle-
based relative humidity (RH) signals are considered: TC1 raw in lightblue, TC1
corrected based on physical model (PHY) in darkblue, TC1 corrected based on neural
network (NN) in red, TC1 corrected based on random forest (RF) in yellow. Anomalies
are shown for all three mobile measurement campaigns in January, February, and
September 2020. Note, the y-axis section varies for anomalies of raw data (90 %rH)
and corrected data (60 %rH). Therefore, the deviations of the raw data appear smaller
than they would be if mapped at the same scale as the corrected data.

the last day of the September campaign, the PHY signal additionally shows
significant deviations lower than the reference signal.
Both machine-learning models, the NN as well as the RF, reproduce the course
of the reference signal better than the physical model. However, the reliability
of the NN is reduced in time periods where the reference shows short-term
and strong fluctuations. The RF is the only model that reproduces each of
the mapped variations of the reference signal and does not show significant
deviations from the reference at any point in time.

It is noticeable that the anomalies of the PHY model (Figure 31b)) are both
larger and more frequent compared to the machine-learning models (Fig-
ure 31c) and d)). RF anomalies are consistently the smallest.

Table 15 confirms the preliminary results of both Figures. All models, consid-
ering all 24474 s, reduce the mean deviation between vehicle-based data and
reference data by at least 97 %. The maximum deviation is also reduced by
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the correction of all three models. However, noticeable differences do occur.
In addition to the lowest mean deviation, the RF also has the lowest maximum
deviation of the three models.
The same order of the model results for the consideration of the standard de-
viation. The PHY model reduces the standard deviation by 43 %, the NN by
70 %, and the RF by 91 %. If the two measurement campaigns are considered
separately, the result is the same: The RF achieves the strongest reduction of
the standard deviation.

The differences between the three models become particularly clear when
evaluating the portion of valid data. The PHY model raises the PD1MU by
66.40 percentage points, the NN by another 22.96 percentage points (89.36 %).
Still, with 99.86 % the RF achieves the highest percentage of valid data. The
RF is the only one of the three models to achieve a PD1MU of constantly more
than 99 % for both measurement campaigns. Conversely, the proportion for
the PHY and NN models differs by 15 and 7 percentage points respectively in
the comparison between the January and September campaign.
The PD2MU reconfirms the best quality of the RF results. For the RF corrected
data, 100 % of all data is within twice the measurement uncertainty around the
reference. Therefore, no outliers are present in the RF corrected data.

The strong concentration of the RF anomalies around 0 %rH and the small
scattering of the anomalies is clearly shown in Figure 49 (yellow) in Ap-

Table 15: Tabular overview of the results of the raw data and all three tested models in comparison.
The data basis is built by points of time with results available for all three models:
physical model (PHY), neural network (NN) and random forest (RF).
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pendix A.11. This explains the associated high PD2MU of the RF model from
Table 15. Since the scales of the axes are identical for all four subplots in
Figure 49, the narrow distribution of the anomalies of the RF is particularly
striking. The anomalies of the NN (cf. Figure 49 red) are also distributed
around 0, but over a wider span than the RF anomalies. This explains the lower
PD2MU for the NN compared to the RF. The histogram of the anomalies of
the PHY model (cf. Figure 49 blue) shows not only a wider range of scatter
but also an asymmetric behavior of the positive and negative anomalies.

In summary, the RF represents the best of the three implemented relative
humidity correction models. It is noticeable that both machine learning models
give significantly better results for this meteorological parameter than the
physical model. This is due to the multiple unknowns that are approximated and
assumed for the physical model or are completely disregarded. For the machine
learning models, the physically explainable correlations of the influencing
effects are irrelevant. However, there are also significant differences between
these two approaches, making the RF the model with the greatest impact and
the highest quality result for relative humidity correction.

The explanation of the qualitatively different results between NN and RF is
due to the different structure of the models. The features considered by both
models are identical except for one input variable. The only difference is the
signal of the engine temperature. The NN considers this signal, whereas the
RF does not. When neglecting the engine temperature in the NN, the results
become worse (cf. Chapter 4.3.4). The better results of the RF are therefore
not due to the omission of this signal. Additionally, since both models are
trained on the identical data set, the data set cannot be the explanation for the
different results.
For the present use case, a correction based on decision trees is therefore more
powerful than a correction based on multiple layers and weighted activations.
It is likely that the result would also be similar for a much larger data set.
However, this is not guaranteed, since the performance of the models depends
on the underlying data. However, it cannot be excluded that the result changes
when the data set grows by several orders of magnitude.

For the PHY model, multiple assumptions are made, such as identical pressure
and no change in the water content of the air parcel, without being able to verify
them. In addition, the influence of vehicle motion and times with low velocities
on the RH measurement is not precisely quantified, wherefore a simplified
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correction of these influences takes place. A more detailed correction based
on quantified correlations would increase the quality of the PHY results, but is
not feasible within the scope of this work.

5.5.7 Transferability of models

To test the transferability of the three models, they are deployed to the data of
technology carrier TC2 without any modifications. Since no data is needed for
a new training or validation of the models, all 65864 s at which concurrent data
for the TC2 and the reference is available, can be used for evaluation. Data
of the February campaign is also not considered here, the explanation being
identical to TC1.

The results of all three models after application to the TC2 data are shown in
Figure 32.

The physical model (cf. Figure 32a)) does not give satisfactory results for
the correction of the relative humidity of the TC2. Up to approx. 20000 s,
the signal, apart from individual outliers at the beginning of the data, runs in

Figure 32: Time course of different model results for all data collected with TC2 during mobile
measurement campaigns. All three subplots show the identical data basis with the raw
signal of TC2 in light blue and reference data of MMU in dark grey. Additionally,
results of the physical model (PHY) are plotted in a), results of the neural network
(NN) in b) and results of the random forest (RF) in c).
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good approximation to the reference. Subsequently, the PHY signal fluctuates
strongly back and forth between the raw signal and the reference value. In
between, the amplitudes become smaller, but increase again towards the end
of the present data (from approx. 48000 s). Occasionally, the PHY signal
is in good approximation to the reference, but the majority of the data shows
significant fluctuations and deviations from the reference.

The neural network (cf. Figure 32b)) provides better results compared to the
PHY model. The fluctuations and deviations of the NN signal are significantly
lower. Nevertheless, the NN model also exhibits fluctuations at the beginning of
the data. In the further course, the NN model cannot reproduce all fluctuations
and tendencies of the reference but shows significant deviations from the
reference only temporarily. In the section between approx. 48000 and 60000 s
an offset of several %rH between the NN signal and the reference signal can
be seen.

The RF results (cf. Figure 32c)) behave similarly to the NN results. At the
beginning, the RF results also show isolated deviations from the reference, just
like the NN. The entire course of the RF signal is close to the reference signal
but fluctuates more than the NN signal. In addition, similar to the NN, the RF
results deviate significantly from the reference signal occasionally, especially
in the range between approx. 48000 and 60000 s. For this section, an offset
between the RF signal and the reference can be observed.

Table 16 reinforces the results described earlier. It is notiveable that the mean
deviation is reduced by all three models. The NN achieves the lowest mean
deviation, with 5.23 %rH this is almost equal to the measurement uncertainty

Table 16: Tabular overview of the correction results of TC2 for all three models physical (PHY),
neural network (NN) and random forest (RF), that are developed on TC1 and transferred
to TC2 for the mobile measurement campaigns combined.
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of 5.5 %rH. The highest mean deviation is present for the PHY results but is
still only 2.4 times the measurement uncertainty.
In terms of maximum deviations, the NN results also reach the lowest values.
In contrast to both ML models, the PHY model can reduce the maximum
deviation by less than 10 percentage points.
The standard deviation illustrates the difference between the models. On one
hand, the PHY model increases the standard deviation by almost 82 %. This
worsening of the results is due to the strong fluctuations within the PHY signal
(cf. Figure 32a)). The machine-learning based models on the other hand,
achieve a reduction of 34 % and 33 % for the NN and RF, respectively.
Nevertheless, all three models show the ability to increase the proportion of
valid data. The highest increase however, is achieved by the NN, for which
over half of the corrected data of TC2 is valid.
For data within twice the measurement uncertainty, the ranking of the three
models is the same. The NN has the most data within twice the measurement
uncertainty, followed by the RF.

Overall, both machine learning models achieve better results than the physical
model even after transfer to another vehicle. In comparison, the NN is more
reliable for TC2 than the RF. In contrary, for TC1, the RF achieves the best
results. Noteworthy, the quality of the results is significantly reduced by the
transfer to the TC2 compared to the TC1. For TC1, the best model achieves a
PD1MU of 99.86 %, whereas the best model for TC2 achieves only 54.54 %.
On one hand, this can be caused by the underlying data set for TC2 being
harder to correct for the models. On the other hand, the decreased quality of
the results can also be caused by additional parameters influencing the RH of
the TC2, which have not been considered for the TC1.

However, without modification and adaptation of the tested models, a transfer
for relative humidity is not possible without loss of quality. Nevertheless,
especially both ML models increase the quality of the raw data significantly.
Even better results can be achieved for adjusting the models to this vehicle.

122



5.6 Global radiation

5.6 Global radiation

5.6.1 Stationary measurement campaigns

The basis for the evaluation of the stationary data is the measurement campaign
of TC2 next to the synop station "Weihenstephan". Due to the temporal
resolution of 1 min for the data of the synop station used as reference, a direct
comparison between the second-by-second vehicle data and the reference data
is not reasonable. A direct comparison would assign too much importance
to individual peaks in the vehicle-based signal. Therefore, the vehicle data
are averaged over 1 min in order to achieve an, albeit artificial, nevertheless
identical temporal resolution. Therefore, 6130 min of data for the concurrent
values of the synop station and the TC2 are available for the evaluation.

Figure 33 represents the time course of the different global radiation signals.
The measured values are too high (cf. Figure 33a)) and are particularly notice-
able in combination with the associated anomalies outside the measurement
uncertainty (cf. Figure 33b)). By correcting the vehicle-based signal using the

Figure 33: Time course of a) different global radiation signals for all data collected with TC2
during stationary measurement campaign next to synop station "Weihenstephan" and
b) the corresponding anomalies of the vehicle-based signals to the reference. The raw
signal is plotted in light blue, the corrected signal in blue and the reference in grey in
a). The respective anomalies are shown in light grey for raw signal and dark grey for
corrected signal in b).
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Table 17: Tabular overview of results for raw data and corrected data of TC2 for the global radiation
signal. The table distinguishes between all data ("All") and only data measured during the
day ("Day only"), since the global radiation decreases to zero at night and thus pretends
better agreement of the vehicle-based data to the reference if all data is considered.

steps described in Chapter 4.4, it can be approximated to the reference signal
and the deviations reduced accordingly. The results of the intermediate steps
from Chapter 4.4 are shown in Figure 50 in Appendix A.12.

For evaluating the data, it must be distinguished whether all measured data
(6130 min) or only data on which the values of the synop station are greater
than zero and are thus measured during the day (3309 min) are taken into
account (cf. Table 17). The significant difference between the results of the
two data bases is due to the fact that the global radiation drops to zero at
night and thus both signals are identical. This simulates a result that is not
representative for general vehicle measurements, since these take place almost
exclusively during the day. Representative results are therefore only obtained
if measurements during the night are excluded. The statement based on vehicle
data that global radiation drops to zero at night does not provide any added
value.

The "Day only" data from Table 17 illustrate the difference between the raw
data and the corrected data, which is already visible in Figure 33. For example,
the average deviation between the vehicle-based signal and the reference signal
can be reduced by almost 93 % to 9𝑊/𝑚2.
It is important to emphasize the proportion of valid data, which is 5 % of
the "Day only" data before the correction and is raised to 52.88 % by the
correction. A likewise significant improvement is found for data within twice
the measurement uncertainty (PD2MU), where an increase by a factor of 6.4
is achieved.
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Although the vertical angle of incidence of the sun on the sensors is not
considered in the tested correction procedure and a simplified weighting of
the two sensors is implemented, the data is subjected to a significant quality
improvement. Further potential for improvement lies in the two points already
mentioned regarding the vertical angle of incidence and weighting.

5.6.2 Mobile measurement campaigns

Calibration of reference

When transferring the developed correction to the data of the mobile mea-
surement campaigns, the measurement technique of the MMU to be used as a
reference must first be calibrated with respect to the measured absolute value
of the global radiation. For this purpose, a time section of the mobile mea-
surement campaign in September is used, during which the MMU was located
next to the synop station "Weihenstephan", which is used as a reference for
the stationary measurement campaigns, for about 30 min. During this time
the engine of the MMU is turned off most of the time and the distance to the
station is less than 500 m. Therefore, identical environmental conditions can
be assumed for both measurements.
Since the synop station outputs data with minute-by-minute resolution, the
second-by-second data from the MMU are averaged over one minute to ensure
comparability of the two stations.
Empirically, this database yields a factor correction of 0.76 for the MMU data.
The results of the calibrated MMU measurements in comparison to the mea-
surements of the synop station "Weihenstephan" are shown in Figure 51 in
Appendix A.12.
The only deviations between the calibrated MMU and the synop data, which
are larger than the measurement uncertainty, are at the beginning and end of
the measurement period (cf. Figure 51b)). In these time periods, the second-
by-second values of the MMU fluctuate strongly, which is not observable for
the rest of the considered period. At these time points, the MMU was not
at standstill, whereby the local effect of shade on the moving measurement
equipment causes the fluctuations. Therefore, contrary to the original assump-
tion, the environmental conditions of both measurements for the first and last
minutes are not identical, which limits the comparability.
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By calibrating the MMU values, the accuracy of the values can be increased to
such an extent that they are within the measurement uncertainty and can thus
be used as a reference for further measurements.

Vehicle-based measurements

Since the global radiation correction was developed on stationary data of the
TC2, the TC2 data is also used for the evaluation of the mobile campaigns. The
parameter global radiation is of particular interest in the summer months, both
because of its influence on other vehicle-based parameters, which is stronger in
summer, and for cross-industry applications to forecast the generated power of
solar fields. Therefore, only the data from the mobile summer campaign will
be considered initially. An overview of all summer campaign data is provided
in Figure 53 in Appendix A.12.

It is noticeable that both the reference and the vehicle-based signal fluctuate
strongly, especially when compared to the data from the stationary measure-
ment campaign (cf. Figure 50). The large variations are due to the influence
of the local effect of shade, for example, by roadside trees and other road
users. Due to the shading of the sensor, the measured value drops by several
orders of magnitude, only to rise again abruptly when it is directly exposed to
the sun. Since the TC2 and the MMU keep a safe distance of several meters
from each other during the mobile campaign, a direct comparison between the
second-by-second values is not expedient, since these are strongly influenced
by shade. In the case of the previously considered parameters air pressure, air
temperature and relative humidity, the effect caused by shade is not decisive.
Therefore, a comparison of the values every second does not have a falsifying
influence on the result.

In addition to the fluctuations, it is noticeable that the vehicle-based signal is
significantly below the reference signal in sections (cf. section around 86000 s
in Figure 53a)). In comparison to Figure 53b) it becomes apparent that the
significant deviations always occur when the sun shines on the vehicle from
behind. This can be explained by the fact that the sensor signals taken into
account are aligned forward. As soon as the sun shines on the vehicle from
behind, the sensor in the windshield is in the shade of the vehicle itself and
therefore measures values too low. For the following evaluation, therefore,
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only time periods are considered in which the sun falls on the vehicle from the
front (0°≤ angle of incidence ≤ 180°).

It can be deduced from both conspicuities observed that a comparison of the
second-by-second values is only meaningful if both the TC2 and the MMU
are exposed to the identical shade/sun conditions. This cannot be guaranteed
while driving. For the September measurement campaign, three stops took
place where both vehicles were exposed to identical light conditions (direct
sun). Despite a measurement failure of the TC2 during one of these stops,
there are 4043 s of concurrent data for the TC2 and the MMU. Comparing
these second-by-second values, the mean deviation between the two signals is
27.45 𝑊/𝑚2 with a PD1MU of 27.23 % (cf. Table 48). The percentage of
valid data is very low for the fact that the conditions of the evaluated 4043 s are
comparable to those of the stationary measurement campaign (cf. Table 17 in
Chapter 5.6.1). One explanation could be the different seasons in which both
campaigns took place and the associated vertical angle of incidence of the sun
on the windshield. Since the sun is lower in February, the vertical angle of
incidence on the sensor is also lower than in September.

In addition to the analysis of the second-by-second data during the three stops,
data averaged over 1 min from TC2 and MMU is compared. The interval is
set to 1 min, since this is the temporal resolution of the synop station and a
vehicle with an average speed of 50 km/h covers a distance of about 800 m
within 1 min, so that influences of individual shades are compensated for. By
averaging the data, the influence of peaks is distributed over the entire period
of 1 min and does not occur selectively. This creates comparability between
the vehicle-based and the MMU data during driving. The disadvantage of this
method is that the minute-averaged values do not represent real global radiation
values, since there are lower values in the shade and higher values in the sun.
For the September campaign, after averaging over 1 min, 366 min values are
available for situation where the sun is shining on the vehicle from the front.
The mean deviation increases to 70.12 𝑊/𝑚2 and the proportion of valid
data decreases compared to the second-by-second data during standstill (cf.
Figure 53c) and Table 48). Figure 53c) shows that the behavior of both minute
values is comparable, but the absolute numerical values temporarily have a
significant offset from each other.

As an alternative to the values averaged over 1 min, the respective maximum
(cf. Figure 53e)) and minimum (cf. Figure 53d)) global radiation values are
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determined for time intervals of 1 min. The advantage of this method is that
both values are representative, the max value for the section in the sun and the
min value for the section in the shade. From this it can also be concluded that
the closer the Min value is to the Max value, the less shading was present in
the minute under consideration.
For both max and min values, the vehicle-based signal is temporarily in good
approximation to the reference signal, for example between approx. 77000
and 80000 s. Before that, however, between 74000 and 76000 s, both the
min and max values deviate strongly from the respective reference data. The
agreement of the Min data is lower than for the Max data (cf. Table 48). One
explanation for this could be the different mounting positions of the sensor on
the TC2 and the MMU. In order to shadow the TC2 sensor mounted in the
windshield, even smaller vehicles of the surrounding traffic can be sufficient,
whereas shadowing of the sensor mounted on the roof of the MMU only occurs,
for example, through large trees. The frequency of shading of the TC2 sensor
is thus higher and it records shades that are not noticed by the MMU sensor,
whereby the Min values differ.

Of the three synthetic 1 min data, the Max values are in best agreement with
the reference with 15.03 % valid data, but there are strong deviations in sec-
tions, too. Since there is no continuous offset, it can be assumed that there is
at least one other variable parameter which has a significant influence on the
measurement. An influence of the vertical angle of incidence of the sun could
explain, for example, why the correction of the data of the mobile campaign
in September results in a significantly worse outcome than the data of the
stationary campaign in February.
The fact that sunlight from behind the vehicle has a significant influence on
the measurement is already mentioned at the beginning of this chapter. On the
available data basis of the stationary campaign in February, no correction can
be developed for this scenario since the sun was continuously shining from the
front onto the vehicle. Further data is therefore necessary.
In addition, it would be helpful to perform targeted mobile measurement cam-
paigns in which there is temporarily only sunshine and then only shade to
minimize the fluctuations of the signal. However, due to time constraints, no
further measurement campaigns and investigations are carried out within the
scope of the present work.
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6.1 Preparation for local danger warning
information

So far, only meteorological variables that are directly measured by the vehicle-
based sensor technology have been considered. In addition, however, further
parameters and thus information can be generated that are based on the mea-
surements but cannot be measured directly by the vehicle. The parameters
described below are only partially used in classical weather forecasting but are
essential for road weather conditions and thus especially for safe automated
driving functions. Examples of composed road weather relevant events, which
are determined based on measured signals, include occurrence of fog, slippery
road warnings, snowfall warnings and the likelihood of aquaplaning.

6.1.1 Fog detection

Fog is a potential hazard for road traffic due to the usually associated limita-
tion of visibility. Drivers cannot command their vehicle safely and assistant
functions fail due to sensors failing to operate, particularly cameras and laser
scanners.
Based on the corrected vehicle measurements, warnings of fog can be gen-
erated. By networking the vehicles with each other, these warnings can be
exchanged exemplary to allow for informing vehicles without necessary mea-
surement equipment about potentially dangerous situations. This can reduce
the number of vehicles at risk. For automated driving functions, an early
warning can be triggered in a way that either the driver takes over or the route
or the driving parameters are adapted to the situation by the system.
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For the stationary determination of visibility restrictions and thus presence of
fog, there are meteorological measurement principles based on the attenuation
of an optical signal. However, since a visibility sensor is not installed by
default, a detection principle based on meteorological correlations is being
developed for the appearance of fog.

The appearance of fog means that the air can no longer hold the water it
contains, resulting in condensation. The condensed water forms fine droplets,
which hang in the air as fog. Since the droplets are too light, their weight force
is not sufficient to let them fall to the ground. Instead, they are in a float-like
state.
To cause this condition, the air under consideration must have a high moisture
content and temperatures below the dew point temperature (cf. Chapter 2.1).
Mathematically, this can be summarized in two conditions:

𝑅𝐻 > 𝑅𝐻𝐹𝑜𝑔 (28)

and
𝑇 ≤ 𝑇𝑑 . (29)

For practical application, the second condition is extended to 𝑇 ≤ 𝑇𝑑 + Δ𝑇𝐹𝑜𝑔
to prevent inaccuracies in the calculation of the dew point temperature.

Once both criteria are met, it is recommended to trigger a warning for potential
fog and an associated visibility restriction. This approach does not distinguish
between low clouds and fog, as this is irrelevant for road users and only the
visibility restriction is decisive.

Depending on the selected limit values (e.g. 𝑅𝐻𝐹𝑜𝑔 = 80 % instead of 90 %
for RH) and safety factors (e.g. Δ𝑇𝐹𝑜𝑔 = +4 K instead of +2 K for the dew
point temperature), the time of triggering a warning signal can be changed
significantly. It is conceivable to introduce an additional parameter in addition
to the actual fog warning with the values listed above, which triggers earlier.
This would allow the automated driving systems or an active driver respectively
to get an advanced warning whereby they are not surprised by the actual fog
that might follow.
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6.1.2 Slippery road warning

The approach currently used operationally by the German Weather Service
to release slipperiness warnings, is triggered when the surface temperature is
below the dew point temperature and the air temperature falls below the 0 °C
limit simultaneously [Kra21a]. However, since the road surface temperature,
which must be known for this approach, is currently still being developed and is
not installed by default in every production vehicle, it is not possible to generate
area-wide information about the slippery conditions of the road network using
this approach.

Nevertheless, to predict slippery roads and trigger a warning, an approach
based purely on information that each vehicle can generate independently
based purely on its own measurements is necessary. To accomplish this, it is
crucial to implement the wet bulb temperature, which represents a composed
signal, first.
The wet bulb temperature 𝑇𝑊𝐵 is measured with a damp textile cloth wrapped
around a thermometer. The enclosed thermometer is then moved to accelerate
the evaporation process of the moisture contained in the textile. The drier the
air, the more water can evaporate, which means that more energy is extracted
from the thermometer and thereby, it cools down. The wet bulb temperature
displayed on the thermometer is therefore lower than the "normally" measured
air temperature. The greater the difference between the wet bulb temperature
and the dry bulb temperature (equivalent to the air temperature), the drier
the air. If the air is saturated, no moisture can evaporate, resulting in equal
wet bulb temperature and air temperature. Instead of measuring the wet bulb
temperature using the complex measuring principle described above, which is
not integrated as standard in the vehicles, it can alternatively be derived. The
following approximation formula was established for this purpose [Stu11]:

𝑇𝑊𝐵 =𝑇 · 𝑎𝑟𝑐𝑡𝑎𝑛(𝐴 · (𝑅𝐻 + 𝐵)0.5)
+ 𝑎𝑟𝑐𝑡𝑎𝑛(𝑇 + 𝑅𝐻) − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑅𝐻 − 𝐶)
+ 𝐷 · 𝑅𝐻1.5 · 𝑎𝑟𝑐𝑡𝑎𝑛(𝐸 · 𝑅𝐻) − 𝐹

(30)

with 𝐴 = 0.151977, 𝐵 = 8.313659, 𝐶 = 1.676331, 𝐷 = 0.00391838, 𝐸 =
0.023101 and 𝐹 = 4.686035.
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Based on the wet bulb temperature, a decision support for slippery road warn-
ings can be implemented. If the wet bulb temperature falls below 0.5 °C,
a slippery road warning should be triggered [Kra21b]. Since this approach
is based purely on vehicle-based measurements that are already integrated as
standard, it is conceivable that this approach could be used to generate area-
wide information regarding slippery condition of the roads using fleet data.

If information about spray or wiper activity is available, this can additionally
be used to determine the current binary wetness status of the road. This can
be taken into account for the slippery road warning by exemplary, adding a
likelihood for a slippery road if the warning is triggered.

6.1.3 Snow line and snow warning

The snow line (SL) indicates the height above N.N. above which precipitation
is expected to fall in solid form. If the vehicle is located below the snow
line, it can be assumed that the detected precipitation will fall in the form of
rain. However, as soon as the vehicle is located above the snow line, potential
precipitation will fall as snow or sleet and thus exerts a significant influence on
road traffic. This parameter is of particular interest during winter and in edge
cases with cold temperatures and potential precipitation events.

The calculation of the snow line is based on the wet bulb temperature [Ste83]:

𝑆𝐿 = 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 +
𝑇𝑊𝐵 − 1

0.006
(31)

Based on equation 31 the snow line SL can be calculated, using the current
height of the vehicle (𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑉 𝑒ℎ𝑖𝑐𝑙𝑒) and the wet bulb temperature (𝑇𝑊𝐵).
In addition to the SL, information about the current precipitation status (precip-
itation or no precipitation) is crucial to trigger a reliable warning of snowfall.
If there is no precipitation, it cannot snow, regardless of the altitude at which
the vehicle is located.
Based on the combination of the SL and the precipitation status, a distinction
between three different scenarios can be made:

1. No precipitation (independent of 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑉 𝑒ℎ𝑖𝑐𝑙𝑒)

2. Liquid precipitation (Precipitation + 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 < SL)
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3. Solid precipitation (Precipitation + 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑉 𝑒ℎ𝑖𝑐𝑙𝑒 ≥ SL)

Based on this distinction, specific warnings, e.g., for snowfall in scenario three
can be triggered.

6.2 Evaluation of application to local danger
warning information

All following evaluations are based on temperature and RH values of TC1.
The physically corrected values are used to calculate the wetbulb temperature
and snow line. No data from the machine learning models is used because
the number of data points for which contemporaneous results are available for
both corrected temperature and corrected relative humidity is smaller. Since
the triggering of a warning often occurs only for a short period of time, the
representativeness of the results of the application increases significantly as
the data basis grows. Therefore, the physically corrected data is used for which
the largest common database of corrected temperature and relative humidity
data is available (146843 s).

6.2.1 Fog detection

When evaluating fog detection and warning, it must be considered that no
reference is available to confirm the presence or absence of fog. It can only be
investigated whether the values of the MMU that are assumed to be true, trigger
warnings of fog at the same time. This does not verify that the mathematical
approach based on Equation 28 and 29 in Chapter 6.1.1 is appropriate to detect
fog.

The graphical representation of the calculated warning signals can be found in
Figure 54 in Appendix A.13. When a warning is triggered, the signal has the
numerical value 1. A 0 therefore represents conditions for which no warning
is triggered.
Table 18 lists the comparison between the MMU reference and the respective
TC1 signal for all 146843 s.
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6 Application to local danger warning

Table 18: Overview of three different portions of data for the vehicle-based raw data and the
physically corrected data of TC1 for fog warning.

Without a correction of the vehicle-based data, the status regarding warning/no
warning is identical for the MME and the TC1 in 80.31 % of the time. The high
percentage for the raw data can be explained by the fact that few fog events
occurred during the mobile measurement campaigns and the raw data does
not trigger a single fog warning (cf. upper plot in Figure 54). By physically
correcting the vehicle-based data, the percentage of data with identical status
of TC1 and MME can be increased to 85.71 %.

Since the raw TC1 data do not trigger a warning at any point in the data set
under consideration, the proportion of data for which the TC1 data incorrectly
triggered a warning is zero. The percentage of erroneously triggered warnings
increases to 12.02 % for the corrected TC1 data. Approximately every 8𝑡ℎ
warning is therefore triggered, although according to the MMU data, no fog is
present.

The raw TC1 data misses triggering a warning 19.69 % of the time and therefore
underestimates the situation. By correcting the TC1 data, the proportion is
reduced to 2.23 %.

The corrected TC1 data therefore overestimate the situation more often than
they underestimate it. The latter poses the greater risk to the vehicle and its
occupants. Therefore, reducing the proportion of underestimated situations is
crucial. The corrections can reduce this proportion by 17 percentage points.

The fog warnings triggered based on the corrected vehicle data are in good
approximation to the warnings triggered by the MMU data. However, the
extent to which these warnings are representative of the occurrence of fog
cannot be quantified due to the lack of a suitable reference for this purpose.
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6.2.2 Slippery road warning

Figure 55 in Appendix A.13 shows the results for the triggered warnings
regarding slippery roads. 1 means a triggered warning for this point in time,
while 0 means no slippery road conditions. It is noticeable that the signal
based on the raw data fluctuates more than the signals based on the corrected
vehicle data and the MMU. In addition, the raw signals trigger warnings of
slippery roads even during the September campaign.
The two signals based on the corrected vehicle data and the MMU data show
a similar course. Both data sources almost consistently trigger a warning for
slippery roads during the January campaign.

The significant improvement of the warning signal for slippery roads is con-
firmed by Table 19. In 64.66 % of the time the warning/no warning status
matches between the raw data and the MMU. This percentage can be raised to
98.79 % by correcting the vehicle data.
Due to the triggering of warnings of slippery roads during the September cam-
paign, the raw data shows a proportion of almost one third (29.31 %) where
a warning is triggered superfluously. The corrected vehicle-based data reduce
this fraction to 1.17 %, which corresponds to an improvement of 96 %.
A reduction in the proportion of data which does not trigger a warning, even
though the road is slippery according to the MMU data, is also achieved by the
corrected vehicle-based data. The percentage of 6.03 % for the raw data, can
be reduced by 99 % to 0.04 %.

For the present data, a significant increase in the representativeness of vehicle-
based road-slippery warning takes place. Potentially dangerous situations
can be detected significantly more often based on the corrected vehicle data.
At the same time, the proportion of warnings triggered unnecessarily is also

Table 19: Overview of three different portions of data for the vehicle-based raw data and the
physically corrected data of TC1 for slippery road warning.
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decreasing. This effect is expected to strengthen as more vehicles measure
independently of each other and thereby validate each other’s measurements
and warnings automatically.
However, it should be noted that in the available data, explicit road conditions
are present almost throughout. A higher proportion of situations at the edge of
slippery to non-slippery roads could reduce the proportion of times with the
same warning status for vehicle-based and MMU based data.

6.2.3 Potential for snow fall

For a snowfall warning, the precipitation status must also be known in addition
to the current altitude of the vehicle and the SL. Since the precipitation signal
is not evaluated in this work, warnings of snowfall are not determined, but
the potential for snowfall is determined. If the vehicle is above the calculated
snowline, the potential for snowfall is set to 1, otherwise it is 0.

Figure 56 in Appendix A.13 shows the course of the potential for snowfall.
The upper plot shows the calculated potential based on raw TC1 values, the
middle and lower plots represent the signals for the corrected TC1 and MMU
data, respectively.
Similar to the warnings for slippery roads (cf. Chapter 6.2.2), the raw TC1
data results in multiple triggers of snowfall potential during the September
campaign. The courses of the snowfall potentials determined based on the
corrected TC1 data and the MMU data are very similar. During the January
campaign the possibility of snow with isolated exceptions is almost continu-
ously present. The TC1 does not map all the exceptions.

Table 20: Overview of three different portions of data for the vehicle-based raw data and the
physically corrected data of TC1 for snow potential.
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Table 20 shows the proportions of the data for the three groups of identical
status, the vehicle being over-sensitive, and the vehicle being under-sensitive
for the available 146843 s.
64.91 % of the time, the potential based on the raw data of the TC1 agrees with
the one based on the MMU data. By correcting the vehicle-based TC1 data,
the percentage is raised to 99.17 %.
Additionally, the percentage of data in which the vehicle-based data falsely
triggers is significantly reduced. For the raw data, almost 1

3 of the triggered
possibilities for snowfall are incorrect. For the corrected TC1 data, this fraction
is reduced by 97 % and amounts to 0.82 %.
Comparable results are available for the data portion indicating the missed
triggers based on the TC1. Without correction, the TC1 does not indicate a
potential for snowfall 5.04 % of the time, although according to the MMU data
the possibility is present. The correction reduces this percentage to 0.02 %.

The representativeness of the calculated potential for snowfall is significantly
increased by correcting the vehicle-based data. Comparable to the warning of
slippery roads, explicit weather conditions are present in the evaluated data.
To what extent the results can be confirmed on data in which the vehicle stays
around the calculated snowline cannot be evaluated on the existing data basis.
Since there are neither tested vehicle-based precipitation signals nor reference
signals of precipitation, a snowfall warning resulting from the potential cannot
be tested.
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7 Conclusion and Outlook

The objective of this work is the quality evaluation and correction of vehicle-
based meteorologically relevant signals to allow for a beneficial use in further
applications, such as weather models.

The data set generated and analyzed in this thesis with representative reference
data for meteorological parameters in moving vehicle measurements, is unique
worldwide. The results of this thesis emphasize that the raw vehicle-based
data are of poorer quality than the stationary data currently used by DWD.
Therefore, the correction of the vehicle-based data is essential for the use in a
meteorological context.

Based on the collected data, different correction models are developed. The
first contribution enhances physical models for the four considered quantities.
Data-based machine learning models are developed for two of the considered
quantities (Contribution 2). The corrections developed and implemented,
through both physical and data-based models, can significantly improve the
quality in a way that high-quality and high-resolution vehicle-based data are
available for the majority of time (Contribution 3).

The results of the four considered quantities are briefly summarized hereafter.
For the air pressure a physical model is implemented in this dissertation. The
relatively inert quantity is corrected by the physical model to such an extent
that 99 % of the available data from the mobile measurement campaigns can
be assumed to be valid. Hence, there is currently no need for a data-driven
approach.
In this thesis, both physical and machine learning models are implemented for
air temperature. Each movement of the vehicle generates various influences
falsifying the measurement. Comparable results regarding the proportion of
valid data are achieved by the models. The machine learning models (NN and
RF), however, provide better results with respect to the data portion within
twice the measurement uncertainty and with respect to the mean deviation.
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For the relative humidity both physical and machine learning models are devel-
oped in this work. Due to falsifying effects adding to the vehicular motion by
the measurement taking place inside the sensor box, the relative humidity is a
more complex parameter than the air temperature. In this context, differences
between the physical and machine learning models become apparent. The
physical model is not able to achieve the same quality as both machine learn-
ing models (NN and RF) and the data-based random forest model generates
the best results.
For global radiation, a physical model has been implemented in this thesis,
but it does not provide satisfactory results for mobile data. Only when sta-
tionary data is considered, the model can achieve good results. However, the
transfer to mobile data is complicated due to rapidly changing environmental
conditions, such as shading, and their large impact on global radiation, which
is complicating the comparability to the reference data.

The difficulty of physical models in general is the direct dependence of how
well all involved processes are known on the quality of the model. The more
processes exert an influence on the measurement, the more complex the issue
becomes and the more difficult it is to develop an all-encompassing physical
model. This is the advantage of machine learning models, since the exact
relationships do not have to be known, but the model itself searches in the data
for connections and correlations. In the present application, however, the model
also requires synthetic parameters in addition to the measured signals, since the
situation can otherwise not be generalized. Commonly, any machine learning
model relies on a representative and large data set to develop robustness. Due
to the confined amount of data available, this is a limitation of the machine
learning models in the context of this work. This effect is less present in the
physical models, since physical relationships are independent of the data set’s
size.

The fourth contribution is the subsequent application of the corrected data to
produce local hazard information. The increase in reliability of the warnings
based on corrected vehicle data compared to the raw data is elaborated. The
corrected vehicle-based data therefore offers the potential to significantly im-
prove warnings of local hazards. As a product of the process, alerts distributed
to all fleet vehicles close the loop from data collection, through data correction
and processing.
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The work reveals that the supply of stable, reliable data as input parameters for
forecast models produced by the DWD is within reach. Nevertheless, there is
a need for further research, for example to examine the transferability of the
models to fleet data. This has not been possible within the scope of the present
thesis, as no fleet data is available due to the currently applicable GDPR.
Additionally, further data under other weather conditions need to be obtained
and evaluated to address the weakness of the data-based models caused by their
small data base. At the same time, this is necessary to enable the correction
of the vehicle-based data in further scenarios and thus enable autonomous
driving in the long term. In addition to the four quantities evaluated here,
vehicle-based data shows potential for deriving further meteorological and
road weather related quantities, such as precipitation intensity, precipitation
type, and road surface temperature.

The application example of local hazard warning shows that the goal of in-
creasing safety by improving the temporal and spatial resolution of the data
basis is possible. This can support existing automated driving functions to
further increase occupant safety, even in weather-related challenging situa-
tions. However, this is only one possible real-life application example and the
high-resolution meteorological data shows cross-industry potential.
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A.1 Sensors

Table 21: Tabular overview of the standard sensors which promise potential for meteorological
applications on board of production vehicles.
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Table 22: Tabular overview of the sensors of external data sources. Note, not all data sources
mentioned in Chapter 3.2 are listed. The table is limited to data sources used as
reference in Chapter 5.

A.2 Physical model for air temperature

Table 23: Tabular overview including explanations of all signals and quantities mentioned in
Figure 11 in Chapter 4.2.3 for the physical model to correct the air temperature signal.
Left column: Abbreviations, right column: Definitions and explanations.
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A.3 Neural net for air temperature

Table 24: Overview of features used for neural network models A-F and total number of features
of.

Table 25: Train, validate and test MSE for neural network models A-F. All models use same data
base.

Table 26: Test MSE for model F modified by one feature each time. Features listed according to
their impact on test MSE with "Δ Temp Stop" having the biggest influence. Feature
"Altitude", which is not considered in model F, does not change the Test MSE if it
is considered. The reason for this is probably that there are too few situations in the
training data in which a temperature change occurs during a change in altitude since it
is a strongly local effect. Since there is no improvement when this feature is taken into
account, it is not considered in model F.
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Table 27: Train, validate and test MSE for model F for different combinations of number of hidden
layers and number of units. Increasing complexity of the network (more hidden layers
and more units) does not improve the results. Smallest network with 1 hidden layer and
6 units produces best result.

Table 28: Train, validate and test MSE for model F for different learning rates. Learning rate of
0.001, which is set as default, results in lowest test MSE.
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A.3 Neural net for air temperature

Figure 34: Training and validation loss (=MSE) of model F (best model) trained with 1 hidden
layer (HL), 6 units (U) and a learning rate (LR) of 0.001. The best model is marked
with the red lines at 12 epochs.

Table 29: Train, validate and test MSE for model F with 1 hidden layer, 6 units and a learning rate
of 0.001 for ten different models (runs). All 10 models are trained with same boundary
conditions to test reproducibility of results.
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A.4 Random forest for air temperature

Table 30: Varying features for random forest for correcting temperature measurement. Start with
model A with 9 features, model B-J represent variations of model A excluding a different
feature for each model. Excluding feature "Duration Stop" (5) improves results, Feature
"Max EIT Stop" (8) has lowest impact on results. Both features are therefore neglected
for final model K, which is used for further evaluation. Tests conducted with 8 trees,
each a maximum depth of 10 layers.

Table 31: MSE Test for different structures of random forest. Starting with 8 trees, each a maximum
depth of 10 layers. First, only number of trees is increased (up to 100), while maximum
depth is kept constant. Second, for forest with lowest MSE test, the maximum depth is
varied. Lowest overall MSE test is achieved for a random forest with 15 trees, each a
maximum depth of 10 layers.
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A.5 Neural net for relative humidity

Table 32: Training 10 different RF models with same boundary conditions (Model K, 15 trees,
each max. 10 layers deep, same data base) to test reproducibility of model.

A.5 Neural net for relative humidity

Table 33: Train, validate and test MSE for three models A, B and C varying in their used ground
truth. All other parameters are identical for all three models.
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Table 34: Overview of different feature constellations tested for neural net for relative humidity.

Table 35: Train, validate and test MSE for models D-M, all using different feature constellations.

Table 36: Train, validate and test MSE for model M for different combinations of number of hidden
layers and units.
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A.5 Neural net for relative humidity

Table 37: Train, validate and test MSE for model M with 3 hidden layers and 8 units for different
learning rates.

Figure 35: Training and validation loss (=MSE) of model M (best model) trained with 3 hidden
layers (HL), 8 units (U) and a learning rate (LR) of 0.015. The best model is marked
with the red lines.
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Table 38: Train, validate and test MSE for six models with same boundary conditions (Model M,
3 hidden layers, 8 units) and a) identical data base for each of the 6 models M-1 to M-6
or b) newly mixed data base for all 6 models M-7 to M-12 to evaluate reproducibility of
model.
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A.6 Random forest for relative humidity

Table 39: Varying features for random forest for correcting relative humidity measurement. Start
with model A with 7 features (identical to final NN constellation), model B-H represent
variations of model A excluding a different feature for each model. Excluding feature
"Engine temperature" (6) improves results. Additionally excluding feature "Delta RH"
(2) does not improve results further (model I). Therefore, only feature (6) is neglected
for final model C, which is used for further evaluation. Tests conducted with 8 trees,
each a maximum depth of 10 layers.
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Table 40: MSE Test for different structures of random forest. Starting with 8 trees, each a max-
imum depth of 10 layers. First, only number of trees is increased (up to 100), while
maximum depth is kept constant. Second, for the forest with lowest MSE test (50 trees),
the maximum depth is varied. The shallower each tree, the higher the MSE test. Ad-
ditionally, the maximum depth is varied for a forest with 15 trees, since the MSE test
is comparable and computational effort is significantly lower. Same Behavior as for
50 trees is visible. The deeper each tree can grow, the lower the MSE test. By increasing
the maximum depth allowed for each tree by 2 in each run achieves a decrease in MSE
test by 30 % for up to a maximum depth of 14. Further increasing in maximum layers
allowed for each tree only reduces MSE test by less than 25 %. Therefore, a random
forest with 15 trees and a maximum depth of 14 layes is chosen for further evaluation.

Table 41: Training 10 different RF models with same boundary conditions (Model C, 15 trees,
each max. 14 layers deep) a) with identical data base for each of the 10 models C-1
to C-10 or b) with newly mixed data base for all 10 models C-11 to C-20 to evaluate
reproducibility of model.
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A.7 Vertical sun incidence angle on vehicle

To calculate the position of the sun, the date, and the position of the vehicle
are necessary. The date including a timestamp every second and the latitudinal
(𝑙) and longitudinal (𝑙𝑜) position of the vehicle are available in the data set
and can be used for further calculation. [Gie20] uses the following formulas to
calculate the sun height 𝑆:

𝑆 =
𝑎𝑠𝑖𝑛(𝑥) · 180

𝜋
(32)

with 𝑥 being defined by the following formula:

𝑥 =𝑠𝑖𝑛( 𝜋

180
· 𝑙) · 𝑠𝑖𝑛( 𝜋

180
· 𝑑)

+ 𝑐𝑜𝑠( 𝜋

180
· 𝑙) · 𝑐𝑜𝑠( 𝜋

180
· 𝑑) · 𝑐𝑜𝑠( 𝜋

180
· ℎ𝑎)

(33)

Both parameters declination (𝑑) and hour angle (ℎ𝑎) are calculated based on
the time specification of the vehicle. The corresponding formulas are given in
the next four equations.

The day count (𝑑𝑐) builds the basis for both parameters and is defined as:

𝑑𝑐 = (𝑚𝑜𝑛𝑡ℎ − 1) · 30.3 + 𝑑𝑎𝑦 (34)

Based on Equation 34, the declination (𝑑𝑒𝑐𝑙) can be calculated:

𝑑 = −23.45 · 𝑐𝑜𝑠(
𝜋

180 · 360 · (𝑑𝑐 + 10)
365

) (35)

To calculate the hour angle (ℎ𝑎), the definition for the equation of time (𝑒𝑜𝑡)
is needed, which is based on equation 34:

𝑒𝑜𝑡 = 60· [−0.171·𝑠𝑖𝑛(0.0337·𝑑𝑐+0.465)−0.1299·𝑠𝑖𝑛(0.01787·𝑑𝑐−0.168)]
(36)

Using the equation of time (𝑒𝑜𝑡), the hour angle (ℎ𝑎) can be calculated as
follows:

ℎ𝑎 = 15 · (ℎ𝑜𝑢𝑟 + 𝑚𝑖𝑛𝑢𝑡𝑒
60

− 15 − 𝑙𝑜
15

− 12 + 𝑒𝑜𝑡
60

) (37)
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Based on the previous calculations, the slope of the windshield and the pitch
angle of the vehicle, the vertical angle of incidence of the sun on the vehicle 𝛾
is defined as follows:

𝛾 = 𝑠𝑙 + 𝑆 − 𝑃 (38)

With 𝑠𝑙 being the slope of the windshield, 𝑆 the sun height and 𝑃 the pitch
angle of the vehicle. Depending on the vehicle type the parameter S varies.
The slope of the windshield of the project-internal test vehicles TC1 and TC2,
is 42 °. The inclination or pitch angle P of the vehicle is output by the vehicle
and is thus included in the collected data set. The pitch angle is given in °.
Using equation 38 the elevation angle 𝛾 of the sun on the vehicle can be
calculated for each time point of the data set, as long as the time as well as
position of the vehicle and the corresponding window slope is known.

A.8 Additional results of quality limitations of
used references

Figure 36: Time course of different temperature signals (darkgrey: MWS, lightgrey: WB, blue:
TC1) for both stationary measurement campaigns in November 2020 and January/
February 2021. Temperature signal of MWS during second measurement campaign
reveals the corruption of the signal and thus the impracticability as a reference signal.
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A.9 Additional results of the air pressure
correction

Figure 37: 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 : Time course of air pressure signal for both static measurement
campaigns separated by black vertical line. Upper plot: Air pressure measured by MWS
used as reference to determine 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 for vehicle sensors mounted in
WB, only corrected signal for WB shown. Lower plot: Deviation between corrected
WB signal and MWS.

Table 42: Tabular overview of the results for raw data (Raw) and corrected data (Corr) of TC2 for
the mobile measurement campaigns.

157



A Appendix

Figure 38: 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛: Time course of air pressure signal for both static measurement campaigns
separated by black vertical line. Upper plot: Corrected air pressure of WB used as
reference to determine 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 for vehicle-based measurement of TC1, both raw
and corrected signal for TC1 shown. Lower plot: Deviation between corrected TC1
signal and corrected WB signal.

Figure 39: 𝑆𝑈𝑠𝑡𝑎𝑡,𝑡𝑜𝑡𝑎𝑙 : Time course of air pressure signal for both static measurement cam-
paigns separated by black vertical line. Upper plot: Corrected vehicle-based air pressure
signal of TC1 compared to MWS signal to control the total sensor uncertainty induced in
static situations 𝑆𝑈𝑠𝑡𝑎𝑡,𝑡𝑜𝑡𝑎𝑙 composed of 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 and 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛.
Lower plot: Deviation between corrected TC1 signal and MWS reference signal.
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Figure 40: Histogramm of deviations between corrected vehcile-based air pressure of TC1 and
MMU reference signal.

A.10 Additional results of the air temperature
correction

Figure 41: 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 : Time course of air temperature signal for stationary measure-
ment campaign in November 2020. Upper plot: Air temperature measured by MWS
used as reference to determine 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 for vehicle sensors mounted in
WB, only corrected signal for WB shown. Lower plot: Deviation between corrected
WB signal and MWS.
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Figure 42: 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛: Time course of air temperature signal for stationary measurement cam-
paign in November 2020. Upper plot: Corrected air pressure of WB used as reference
to determine 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 for vehicle-based measurement of TC1, both raw and cor-
rected signal for TC1 shown. Lower plot: Deviation between corrected TC1 signal and
corrected WB signal.

Figure 43: 𝑆𝑈𝑠𝑡𝑎𝑡,𝑡𝑜𝑡𝑎𝑙 : Time course of air temperature signal for stationary measurement cam-
paign in November 2020. Upper plot: Corrected vehicle-based air temperature signal
of TC1 compared to MWS signal to control the total sensor uncertainty induced in
static situations 𝑆𝑈𝑠𝑡𝑎𝑡,𝑡𝑜𝑡𝑎𝑙 composed of 𝑆𝑈𝑆𝑒𝑛𝑠𝑜𝑟𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 and 𝑆𝑈𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛.
Lower plot: Deviation between corrected TC1 signal and MWS reference signal.
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Table 43: Tabular overview of quality parameters determined for raw data and corrected data of
stationary measurement campaign in November 2020.

Table 44: Tabular overview to clarify the need for adjustment of the offset correction 𝑆𝑈𝑠𝑡𝑎𝑡,𝑡𝑜𝑡𝑎𝑙 .
For all measurement campaigns individually, as well as for the entire data basis of the
three mobile measurement campaigns, the results for the raw data (offset = 0 K), the data
which were corrected using the previously determined 𝑆𝑈𝑠𝑡𝑎𝑡,𝑡𝑜𝑡𝑎𝑙 (offset = -0.81 K),
and the data which were corrected using the attenuated offset (offset = -0.33 K) are
listed.

Figure 44: Histogram of deviation between reference (MMU) and vehicle-based a) raw data of
TC1 and b) physically corrected data of TC1. Frequency for both histograms in absolute
terms. In addition, the mean deviation (black) and the standard deviation (gray) are
marked.
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Figure 45: Time course of three five temperature signals (darkgrey: MMU, lightgrey: TC1 raw,
blue: TC1 corrected based on physical model, red: TC1 corrected based on neural net-
work, yellow: TC1 corrected based on random forest) for all three mobile measurement
campaigns in January, February, and September 2020 spread over three plots. Each
plot represents one measurement campaign. Note, the time axis (x-axis) is skewed
differently for each plot due to the different amount of data available. For each plot, the
y-axis maps air temperatures in °C over a span of 26 K. The respective section varies,
however, as it is adapted to the respective air temperature values of the corresponding
measurement campaign.

Table 45: Tabular overview of the quality parameters for the raw data and the results of all three
models of the TC1 for all three mobile measurement campaigns.
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Figure 46: Histograms of anomalies of vehicle-based temperature signals: TC1 raw in lightblue,
TC1 corrected based on physical model (PHY) in darkblue, TC1 corrected based on
neural network (NN) in red, TC1 corrected based on random forest (RF) in yellow.
Histograms show anomalies of all three mobile measurement campaigns in January,
February, and September 2020 combined.

Table 46: Tabular overview of the correction results of TC1 for the random forest (RF) for the
mobile measurement campaigns.
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A.11 Additional results of the relative humidity
correction

Figure 47: Time course of four different relative humidity (RH) signals. Reference signal of MWS
in grey, vehicle-based raw signal of TC1 in light blue, pure offset correction (Version I)
in green and transfer with additional offset correction (Version II) in blue. The x-axis
contains all recorded data from the first stationary measurement campaign and thus
corresponds to a temporal axis.

Table 47: Tabular overview of the correction results of TC1 to compensate for effects induced in
stationary situations. Version I executing a pure offset correction by 29.93 %rH. Version
II is composed of a transfer or the raw signal and a subsequent offset correction by
1.52 %rH.
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Figure 48: Time course of different relative humidity (RH) signals for data of January (upper plot)
and September (lower plot) campaign. Reference signal of MMU in grey, vehicle-based
raw signal of TC1 in light blue and vehicle-based signal corrected by random forest
(RF) in yellow. Change between days during a campaign are marked as vertical lines.
Due to the different amount of available data for each campaign the x-axis is skewed
differently for the upper and lower plot.
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A Appendix

Figure 49: Histograms of anomalies of vehicle-based relative humidity signals: TC1 raw in light-
blue, TC1 corrected based on physical model (PHY) in darkblue, TC1 corrected based
on neural network (NN) in red, TC1 corrected based on random forest (RF) in yellow.
Histograms show anomalies of all three mobile measurement campaigns in January,
February, and September 2020 combined.
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A.12 Additional results of global radiation

A.12 Additional results of global radiation

Figure 50: Overview of different stages of correction of global radiation values. Reference values
of Synop station always shown in grey, vehicle-based values of TC2 in blue. a) Raw
signal of TC2, b) TC2 signal corrected by a factor of 0.7 (step 1), c) combined TC2
signal based on weighting individual signals (step 2), d) final TC2 signal based on
step 2 with correction by factor MA (step 3).

Table 48: Tabular overview of the correction results of TC2 for different data sections. The results
of "second-by-second" data only consider data during standstill of TC2 and sun shining
from the front onto the vehicle. For the other three categories either the average ("1
minute average"), the maximum ("1 minute max") or the minimum ("1 minute Min") of
an interval of 60 seconds is considered for situations with the sun shining from the front
onto the vehicle.
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A Appendix

Figure 51: Comparison between global radiation measurement by Synop station "Weihenstephan"
and MMU. a) shows minute data by Synop station in blue, which are weakened in color
if the MMU is at a distance of more than 500 m to the Synop station. The measurements
of the MMU are displayed in red; second-by-second data is weakened in color, data
averaged over one minute is marked as red dots. The time interval with measurements
of the Synop station drawn in dark blue, marks the range used for calibration of the
MMU signal. b) shows the anomalies of minute data of the MMU to the Synop station
in purple, the respective measurement uncertainty is marked in grey for the considered
time interval.

Figure 52: Different global radiation signals. Two vehicle-based raw signals in lighter blue,
combined and corrected vehicle-based signal in dark blue and reference signal of
MMU in grey.
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A.12 Additional results of global radiation

Figure 53: Different signals related to global radiation for a section of the September campaign.
a) shows reference signal of MMU in grey, corrected vehicle-based signal in dark blue
and one of the two vehicle-based raw signals in lightblue. b) shows the azimuth angle
of incidence on the vehicle in brown. In addition, angles that mark an incidence of
sunlight from the front (0-180°)on the vehicle are highlighted in yellow. c), d) and e)
show different synthetic signals, where the time resolution of the reference signal as
well as the vehicle-based signal is reduced to 1 min by averaging (c)), maximum value
determination (d)) and minimum value determination (e)). Note, the vehicle-based
signals in c)-e) are only displayed if sun shines from the front on the windshield.
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A Appendix

A.13 Additional results of the application to local
danger warning

Figure 54: Status of fog warning: 1 represents triggered warning, 0 no warning for available data
of mobile measurement campaigns. Upper plot: warnings based on vehicle-based
raw signal, middle plot: warnings based on physically corrected values, lower plot:
warnings based on MMU.
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A.13 Additional results of the application to local danger warning

Figure 55: Status of slippery road warning: 1 represents triggered warning, 0 no warning for
available data of mobile measurement campaigns. Upper plot: warnings based on
vehicle-based raw signal, middle plot: warnings based on physically corrected values,
lower plot: warnings based on MMU.

Figure 56: Status of warning of possible snowfall: 1 represents triggered warning, 0 no warning
for available data of mobile measurement campaigns. Upper plot: warnings based on
vehicle-based raw signal, middle plot: warnings based on physically corrected values,
lower plot: warnings based on MMU.
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