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Abstract: With the increase in computational resources, parallel computation in neutron transport
codes is inherent since it allows simulations with high spatial-angular resolution. Among the different
methodologies available for the solution of the neutron transport equation, spherical harmonics
(PN) and discrete-ordinates (SN) approximations have been widely used, as they are established
classical methods for performing nuclear reactor calculations. This work focuses on describing
and verifying two parallel deterministic neutron transport codes under development. The first
one is the Parafish code that is based on the finite-element method and PN approximation. The
second one is the AZTRAN code, based on the RTN-0 nodal method and SN approximation. The
capabilities of these two codes have been tested on the TAKEDA benchmarks and the results obtained
show good behavior and accuracy compared to the Monte Carlo reference solutions. Additionally,
the speedup obtained by each code in the parallel execution is acceptable. In general, the results
encourage further improvement in the codes to be comparable to other well-validated deterministic
transport codes.

Keywords: Neutron transport equation; Spherical HARMONICS (PN); Finite Element Method;
Discrete Ordinates (SN); RTN-0 Nodal method

1. Introduction

Given the increase in computational resources, parallel computation has become a
powerful tool for numerical calculations since it takes an essential role in developing
neutron transport codes for nuclear reactor analysis, allowing for high-fidelity pin-by-
pin full core transport analysis in a reasonable computational time, instead of the com-
monly used neutron diffusion calculation. Currently, several methodologies provide
an excellent approximation to the neutron transport equation, each one with associated
strengths and weaknesses. Of all these, some of the most widely accepted and well-
established methodologies are the spherical harmonics (PN) [1] and the discrete ordinates
(SN) [2] methods.

The PN method expands the angular dependence of the neutron flux in terms of
spherical harmonics, which leads to an infinite set of coupled differential equations. This
set is reduced to a finite system by truncating the expansion at an arbitrarily high order
of accuracy N. The exact solution to the transport equation is reached for an order of
N → ∞. An advantage of this method is that it does not exhibit the so-called “ray effect” [3]
(unphysical oscillations in the scalar flux related to other formulations, like the case of SN).
However, the main drawback of the PN method is that, for a 3D geometry, the number of
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equations increases and becomes complicated to solve, with a consequent huge demand
of RAM memory. On the other hand, the SN method selects a set of angular directions
with their respective weights to approximate the angular neutron flux by replacing it with
a weighted sum. The SN approximation is characterized by its simplicity and versatility
but suffers from the “ray effect”, which can be smoothed by increasing the number of
discrete-ordinates. Although, sometimes, the “ray effect” tends to be persistent, some
techniques have been proposed to mitigate its impact [4].

In general, to approximate the steady-state neutron transport equation for problems
with multiplying media (1) in a deterministic way, it is required to discretize its independent
variables and use numerical and iterative methods to reach a solution.

Ω̂ · ~∇ψ(~r, E, Ω̂) + Σt(~r, E)ψ(~r, E, Ω̂) =
∞∫

0

dE´
∫

4π

Σs(~r, E´→ E, Ω̂´→ Ω̂)ψ(~r, E ,́ Ω̂´)dΩ̂´+

χ(~r, E)
ke f f

∞∫
0

dE´
∫

4π

υΣ f (~r, E´)ψ(~r, E ,́ Ω̂´)dΩ̂ ,́

(1)

where ψ(~r, E, Ω̂) is the angular neutron flux, χ(~r, E) is the fission neutron spectrum, ke f f is
the effective multiplication factor, υ is the average number of neutrons emitted per fission
and Σt, Σs, and Σ f are the corresponding total, scattering, and fission macroscopic cross-
sections. Additionally, the independent variables are energy (E), angle (Ω̂), and space
(~r). Thus, to discretize Equation (1), the following techniques are commonly used: multi-
group approximation (energy), PN/SN methods (angle), and finite element method/nodal
method/diamond-difference method (space). Several deterministic codes in the literature
approximate Equation (1). Some of the well-known codes based on the methods mentioned
above are VARIANT [5], EVENT [6], PARTISN [7], and TORT-TD [8].

This work is focused on the verification of the predictive capabilities of two parallel
deterministic codes currently under development (one based on PN and the other one on SN)
by means of the TAKEDA Benchmark. Numerical results from these codes are compared
against the results obtained with a Monte Carlo reference code. First, the descriptions of
the parallel PN and SN neutron transport codes that are under development are given in
Section 2, followed by the description of the TAKEDA Benchmarks in Section 3. Then, in
Section 4, their respective results are analyzed; subsequently, the parallel numerical results
obtained are given in Section 5. Finally, conclusions and future work are summarized in
Section 6.

2. Parallel Neutron Transport Codes under Development
2.1. Parafish

The Parafish code [9] (Parallel finite element spherical harmonic) is a parallel neutron
transport solver written in C++ and developed at the Karlsruhe Institute for Technology
(KIT). Parafish solves the 2D/3D (cartesian) steady-state neutron transport equation for
multiplying media via the following techniques: multigroup approximation for energy dis-
cretization, the PN method to treat the angular direction applying the so-called even parity
formulation, from which the even component of the angular dependence is calculated, and,
finally, for the spatial discretization that uses non-conforming finite elements (FEs) [10].

The iterative process used in Parafish can be divided into the outer (to obtain the ke f f )
and inner (to approximate the angular neutron flux) iterations. For the outer iterations,
the Davidson method [11] is employed. This method is an alternative algorithm to the
well-known Power method [12] and computes a few of the extremal eigenvalues and
the corresponding eigenvectors of a large sparse real matrix. This method is based on a
projection on a dedicated subspace, built iteratively. Regarding inner iterations, the coupled
energy–space–angle system is solved in two parts. First, using the Gauss–Seidel method
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for the energy level. Then, the GMRES method [13] with block-diagonal preconditioning
(incomplete Cholesky method) for the spatial-angular level.

Concerning the Parafish parallelization, a non-overlapping spatial domain decom-
position scheme is applied, in agreement with modified Schwarz methods [14] with the
duplication of the interface finite element nodes. The message passing interface (MPI)
was selected to perform this implementation. A more detailed description is found in the
following reference [9].

In the Parafish calculation scheme [11]: first, an energy–space–angle matrix is built as
a tensor product of the variables. Then, this linear system is solved using the Gauss–Seidel
method. At each Gauss–Seidel iteration (energy level), the diagonal block of the matrix
within a given energy group corresponds to a space–angle matrix obtained by the spatial
domain decomposition in which each block is symmetric. Consequently, the blocks can
be treated individually by different processors. Hence, the space–angular matrices can
be solved using the GMRES method with block-diagonal preconditioning (IC). Since the
domains are spread over the available processors, these “local solves” are performed in
parallel. Figure 1 illustrates the calculation scheme described.

Figure 1. Parafish calculation scheme.

2.2. AZTRAN

One of the main objectives of the Mexican AZTLAN platform project [15] is the devel-
opment of in-house software for the analysis of nuclear reactors. One of the tools under
development is the AZTRAN code [16] (AZtlan neutron Transport for Reactor ANaly-
sis), which solves the steady-state neutron transport equation in 3D cartesian geometry,
specifically for problems in multiplicative media.

AZTRAN is written in Fortran 90, and to approximate the neutron transport equation,
the independent variables are discretized: by using multigroup approximation (energy),
the SN method (angle), and a polynomial nodal method RTN-0 [17] (space). Applying
these approximations in Equation (1), a linear system of equations is obtained, and iterative
methods are required for its solution. In this case, the angular neutron flux approximation
(inner iterations) is obtained using the source iteration method [2] (serial solution). How-
ever, when solving a steady-state problem with multiplicative media, the equation becomes
an eigenvalue problem (outer iterations), so the classical Power method is applied.

For the parallel implementation, a spatial domain decomposition [18] with non-
overlapping domains is employed in AZTRAN [16]. The message passing interface (MPI)
library is used and provides the intrinsic functions for creating a virtual cartesian topology.
In the beginning, the MPI_CART_CREATE function generates a 3D cartesian topology,
creating a new communicator in which topology information has been attached. Next, the
MPI_CART_COORDS function is used to calculate the corresponding coordinates associ-
ated with each MPI process. After that, the MPI_CART_SHIFT function is applied to get
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the id of the neighborhood for a specific processor. Finally, the spatial subdomains are
built and then assigned to the processors from these functions. Thus, each processor is
considered to solve an “independent problem”; therefore, they are solved simultaneously.
Figure 2 shows the 3D-Domain decomposition employed by AZTRAN.

Figure 2. Spatial domain decomposition spreads into eight processors.

In the case of AZTRAN, the following solution scheme is followed [16]: Since the
domain is splitting into non-overlapping multiple subdomains allocated to the processors,
it allows the simultaneous solution of the angular neutron fluxes in each subdomain. Nev-
ertheless, the subdomains are associated through the angular neutron flux from adjacent
subdomain interfaces. Therefore, at the end of the parallel solutions, the angular neutron
fluxes in the subdomain boundaries are exchanged. Consequently, the MPI_SENDRECV
feature has been used to send and receive successive blocking communication data. This
iterative process occurs until the solution converges in agreement with the specific conver-
gence criteria selected by the user. A simplified flowchart of this procedure is shown in
Figure 3.

Figure 3. Flowchart of parallel AZTRAN scheme.

The iterative procedure here is not the classic Source Iteration method (iterating value
on the scattering source). In this case, it also iterates on the interface fluxes between
each subdomain [18], which implies increasing inner iterations to converge, leading to
asynchronous parallelism. The reason is that updating the subdomain boundaries produces
an iteration penalty, since it requires extra iterations to propagate the angular neutron fluxes
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information through the whole domain, unlike the sequential method that only requires
one iteration. Although increasing subdomains increases inner iterations, and this can
degrade parallel performance, good acceleration can be achieved and was demonstrated
in [16].

3. TAKEDA Benchmarks Description

Three 3D TAKEDA benchmark problems were selected for the present study, compiled
by Takeda and Ikeda in the reference [19]. These problems are used to test the accuracy
and verify the Parafish and AZTRAN codes. The full specification (detailed geometry, and
materials with their corresponding neutron cross-sections) for all problems is provided
from [19] and modeled in cartesian coordinates. A brief description of the three problems
is presented below.

3.1. Model 1 (Small LWR Core)

The first model consists of a small model of a Light Water Reactor, based on the Kyoto
University Critical Assembly (KUCA) modeled with two energy groups with the following
energy cutoff g1 = (10 MeV to 0.682 eV), and g2 = (0.682 eV to 0.1 µeV) [19]. The
geometry is shown in Figure 4 as one-eighth of geometry due to the reactor symmetry, and
consists of a 25 cm × 25 cm × 25 cm cube reactor. It comprises a core fuel region with
15 cm × 15 cm × 15 cm. Neighboring to the core is a 5 cm × 5 cm × 25 cm control rod
region, and all these regions are surrounded by reflector material. The specification of the
problem provides two different configurations. The first one corresponds to the case where
the control rod is wholly removed, filling it with an empty region. In the second case, the
control rod is now completely inserted.

Figure 4. Core configuration of small LWR core.

3.2. Model 2 (Small FBR Core)

The second model is based on a small core of a fast breeder reactor (FBR) and is
modeled with four energy groups with the corresponding energy cutoff g1 = (10 MeV
to 1.353 MeV), g2 = (1.353 MeV to 87.517 KeV), g3 = (87.517 KeV to 0.961 KeV),
and g4 = (0.961 KeV to 0.1 µeV) [19]. The geometry model is shown in Figure 5 as a
symmetric one-quarter reactor, and presents 70 cm × 70 cm × 150 cm dimensions. The
model comprises a core region, radial and axial blanket, and control rod material. Similar
to the previous model, two cases are presented. The first case consists of withdrawing the
control rod entirely, and the region is filled with sodium (Na). In the second case, now just
a half is filled with sodium (Na), and the other half of the control rod is inserted.



Energies 2022, 15, 2476 6 of 16

Figure 5. Core configuration of Small FBR core.

3.3. Model 3 (Axially Heterogeneous FBR Core)

Finally, the third model represents an axially heterogeneous FBR core also modeled
with four energy groups like the previous model. Figure 6 shows the one-eighth symmetric
part of the reactor with 160 cm × 160 × 90 cm of dimensions. The model is constituted by
a core region, in addition to blanket regions (radial, axial and internal), a reflector region
(radial and axial), and finally by an empty matrix and control rod regions, which makes it a
very heterogeneous configuration. For this model, three different cases were calculated. In
the first case, control rods are fully inserted (both center and off-center); in the second case,
all control rods are entirely removed, and the regions are filled with sodium (Na). Finally,
the control rods and sodium (Na) are replaced by blanket/core/reflector regions for the
third case.

Figure 6. Core configuration of axially heterogeneous FBR core.
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4. Numerical Results

Parafish and AZTRAN solutions to ke f f value and the averaged scalar flux per region
are presented and analyzed against the average Monte-Carlo calculation provided by [20].
To compare the discrepancy in ke f f and region-averaged fluxes, the pcm relative error
Equation (2), and relative difference Equation (3) are used, respectively.

εpcm =

∣∣∣(kRe f
e f f − kCode

e f f )
∣∣∣

kRe f
e f f

× 105 (2)

ε% =

∣∣∣(φRe f
region − φ

Code
region)

∣∣∣
φ

Re f
region

× 100 (3)

In addition, it is also considered that all the scalar fluxes φ have been normalized as
Equation (4) and the control rod worth is calculated with Equation (5).

G

∑
g=1

∫
V

υΣ fg(~r)φg(~r)d~r = 1 (4)

CRworth =
1

kin
e f f
− 1

kout
e f f

(5)

Finally, the convergence criteria applied for both codes are 10−6 for the neutron
flux and 10−5 for ke f f . All cases were executed at the highest accuracy allowed by the
workstation capabilities (Intel® Xeon® Processor E5-2697 v2 @2.70 GHz and 100 GB RAM).

4.1. Small LWR Core

This calculation was modeled with a reference mesh size of 1 cm × 1 cm × 1 cm.
Table 1 provides ke f f values for both cases and the control rod reactivity worth. As can be
observed, the results agree very well with the reference values, with differences of 22 pcm
and 37 pcm errors for AZTRAN, while in the case of Parafish, the errors are 96 pcm and
9 pcm.

Table 1. Comparison of ke f f and control rod worth for small LWR core.

Code Case 1 Case 2 CR-Worth

Monte-Carlo 0.97780 0.96240 1.64× 10−2

Parafish (P11) 0.97686 0.96249 1.52× 10−2

[96 pcm] [9 pcm] [7.3%]
AZTRAN (S16) 0.97758 0.96276 1.57× 10−2

[22 pcm] [37 pcm] [4.2%]

In Figures 7 and 8, Parafish results are presented for the region-averaged flux per each
energy group. The higher difference is found in the void/control rod region (1.03%/1.18%)
associated with the thermal energy group. Regarding the other regions, the values are
below 0.79% for case 1 and 0.31% for case 2. Figures 9 and 10 correspond to the same results
using AZTRAN code. In this case, better precision is shown with errors less than 0.86%
for the control rod/void region. In the other regions, the errors are less than 0.76% for
case 1 and 0.12% for case 2. Both codes presented satisfactory results and similar behavior
since the most important differences are found in the control rod/void region, due to the
two group formulation and the strong difference in the nuclear properties of the materials
in the control rod/void region.



Energies 2022, 15, 2476 8 of 16

Figure 7. Comparison of region-averaged flux from reference and Parafish Model 1 Case 1.

Figure 8. Comparison of region-averaged flux from reference and Parafish Model 1 Case 2.

Figure 9. Comparison of region-averaged flux from reference and AZTRAN Model 1 Case 1.
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Figure 10. Comparison of region-averaged flux from reference and AZTRAN Model 1 Case 2.

4.2. Small FBR Core

The problem is modeled with a reference mesh of 5 cm × 5 cm × 5 cm due to its
large size. Table 2 supplies the ke f f values obtained for each case, including the associated
control rod worth. It can be seen that the values are in good agreement with the refer-
ence ones; the difference is lower than 263 pcm and 197 pcm when using Parafish and
AZTRAN, respectively.

Table 2. Comparison of ke f f and control rod worth for Small FBR core.

Code Case 1 Case 2 CR-Worth

Monte-Carlo 0.97310 0.95890 1.48× 10−2

Parafish (P11) 0.97511 0.96143 1.45× 10−2

[206 pcm] [263 pcm] [2.0%]
AZTRAN (S16) 0.97460 0.96079 1.47× 10−2

[154 pcm] [197 pcm] [0.6%]

Figures 11 and 12 show significant errors in the relative differences obtained by
Parafish (around 15%), especially in the sodium and control rod regions. Regarding the
other regions, the radial blanket also presents a significant difference (8.75% case 1 and
11.91% case 2); however, the core and axial blanket results are quite good. One behavior
that can be noticed is that the highest errors in the sodium and control rod regions are
found in the fast group. In the case of the radial blanket, it is located in the thermal
group. These considerable differences are far from the desired results; nevertheless, in the
reference [19], Fletcher’s results with MARK-PN code [21] presents similar phenomena,
even with major differences. Therefore, it will be deepened if it is required to use a greater
spatial-angular resolution or some technique to reduce these differences. On the other
hand, Figures 13 and 14 provide the differences in region-averaged scalar fluxes achieved
by AZTRAN. It can be observed that the relative differences are quite low for case 1, with
higher values in sodium (0.85%) and axial blanket (0.79%), the differences in the other
regions remain less than 0.3%. On the other hand, in case 2, a significant difference is found
in the thermal group in the sodium (1.80%) and control rod (1.45%) regions. Despite that,
the differences in the other regions are less than 0.55%. Overall, the agreement between
AZTRAN calculation and reference values is satisfactory.
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Figure 11. Comparison of region-averaged flux from reference and Parafish Model 2 Case 1.

Figure 12. Comparison of region-averaged flux from reference and Parafish Model 2 Case 2.

Figure 13. Comparison of region-averaged flux from reference and AZTRAN Model 2 Case 1.
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Figure 14. Comparison of region-averaged flux from reference and AZTRAN Model 2 Case 2.

4.3. Axially Heterogeneous FBR Core

The cases were modeled with a reference mesh size of 5 cm × 5 cm × 5 cm. Due to
lack of memory, Parafish had to use a more minor angular approximation than previously
used (P5). Table 3 lists ke f f values for all obtained cases and their respective control rod
worth. The Parafish results are in accordance with the reference ones, with differences
being less than 267 pcm.

Concerning AZTRAN, cases 1 and 2 have a very good agreement with reference values
within 179 pcm. However, a slightly larger difference of 393 pcm is found for case 3. In any
case, these results indicate that Parafish and AZTRAN have acceptable accuracy in critical
calculations for heterogeneous models.

Table 3. Comparison of ke f f and control rod worth for Axially heterogeneous FBR core.

Code Case 1 Case 2 Case 3 CR-Worth CRP-Worth

Monte-Carlo 0.97080 1.00050 1.02140 3.06× 10−2 2.03× 10−2

Parafish (P5) 0.97340 1.00230 1.02290 2.96× 10−2 2.01× 10−2

[267 pcm] [179 pcm] [146 pcm] [3.2%] [0.9%]
AZTRAN (S16) 0.97254 1.00175 1.01738 3.00× 10−2 1.53× 10−2

[179 pcm] [124 pcm] [393 pcm] [1.9%] [24.6%]

As far as the relative differences obtained by Parafish, Figures 15–17 show, once again,
significant differences concerning the reference as the previous model, especially in Case 3,
which is the most heterogeneous. Regarding the difference in regions, the sodium region is
about 22.54% of case 1 and 19.73% of case 2; the other region with a notable difference is the
radial blanket with errors around 8.3% case 1, 7.0% case 2, and 10.27% case 3, respectively.
Regarding the different regions, results are below 2%, except for the internal blanket in case
3, which reaches a difference of up to 6.96%.

Figures 18–20 illustrate the relative differences related to AZTRAN. Most of the differ-
ences are below 1%, except in the control rod region that reaches 2% in the thermal group.
Additionally, in case 3, the axial blanket has errors around 1.26–1.54%. Still, the results are
satisfactory for this axially heterogeneous FBR and agree well with the reference values.

In both cases, differences are expected to be decreased by mesh refinement and angular
approximation increased. Further investigations must be done in more robust workstations
or clusters with enough memory.
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Figure 15. Comparison of region-averaged flux from reference and Parafish Model 3 Case 1.

Figure 16. Comparison of region-averaged flux from reference and Parafish Model 3 Case 2.

Figure 17. Comparison of region-averaged flux from reference and Parafish Model 3 Case 3.
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Figure 18. Comparison of region-averaged flux from reference and AZTRAN Model 3 Case 1.

Figure 19. Comparison of region-averaged flux from reference and AZTRAN Model 3 Case 2.

Figure 20. Comparison of region-averaged flux from reference and AZTRAN Model 3 Case 3.
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5. Parallel Scaling

The TAKEDA Benchmark small FBR core was used to study the parallel performance
reached by Parafish and AZTRAN. The speedup is defined as a sequential (ts) and parallel
(tp) execution time function to quantify the parallel computation Equation (6).

speedup =
ts

tp
(6)

The parallel speedup is shown in Figure 21. As shown, an acceptable speedup is
reached by both codes, this being almost linear when using three processors. When further
increasing the number of processors, a decrease in the speedup can be noticed due to
the increase in the number of subdomains, which increases the communication between
processors. It is notorious that Parafish has a drop in parallel scaling, and this may be since
the increase in the subdomains leads to an increased duplication in the interface. In any case,
a speedup factor of about five with eight processors is accomplished. AZTRAN’s decrease
is not so prominent, even though the inner iterations increase by increasing the subdomains.
In this case, AZTRAN achieves a speedup of nearly seven with eight processors, which is
an excellent scaling.

Figure 21. Speedup achieved by Parafish and AZTRAN for the small FBR core.

6. Conclusions and Outlook

The purpose of this work was to demonstrate the capabilities of Parafish and AZTRAN
to solve 3D critical steady-state calculations. The well-known Takeda Benchmarks were
used to test the codes under development and compare the results obtained against Monte
Carlo reference solutions. In general, the two codes were found to provide ke f f values
within a good agreement concerning the reference ones.

Parafish has shown an excellent agreement only in the Model 1 cases as far as the
region-averaged scalar fluxes. In contrast, some relatively significant differences can be
highlighted for the other benchmark test cases, especially in cases where sodium is found.
Therefore, more research needs to be done to mitigate these differences, such as increasing
spatial and angular refinement on a more robust workstation. On the other hand, AZTRAN
results are in excellent agreement with the reference ones since the discrepancies for all test
cases are within 2%. As far as parallel scaling is concerned, both codes can be considered
quite satisfactory. However, in the case of Parafish, the drop in parallel scaling as the
number of processors increases is more noticeable than AZTRAN.
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Given all these results, it could be said that AZTRAN has an advantage against
Parafish; however, the development of AZTRAN is relatively new and is in constant de-
velopment. Instead, Parafish is a development that has not been updated for ten years,
and recently there has been an interest in improving the code. With the results obtained
by this work, it was possible to recognize the deficiencies of the code to improve it in
the immediate future. As for future work in AZTRAN, it has been identified that imple-
menting the Diffusion Synthetic Acceleration (DSA) will reduce the inner iterations and
improve the parallel scaling. In addition, a version with hybrid MPI (spatial) and OpenMP
(energy) domain decomposition is under development, which will allow the exploitation
of a greater amount of computational resources. In the Parafish case, the code requires
several improvements with which it is intended to solve detailed problems in a reasonable
computing time. Thus, the major update will be implementing an efficient parallel solver
and probably considering an SPN approximation.
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