
Effective electroweak Hamiltonian in the gradient-flow formalism

Robert V. Harlander 1,* and Fabian Lange 2,3,†

1Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,
52056 Aachen, Germany

2Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),
Wolfgang-Gaede-Straße 1, 76128 Karlsruhe, Germany

3Institut für Astroteilchenphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany

(Received 28 January 2022; accepted 1 April 2022; published 26 April 2022)

The effective electroweak Hamiltonian in the gradient-flow formalism is constructed for the current-
current operators through next-to-next-to-leading-order QCD. The results are presented for two common
choices of the operator basis. This allows for a consistent matching of perturbatively evaluated Wilson
coefficients and nonperturbative matrix elements evaluated by lattice simulations on the basis of the
gradient-flow formalism.
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I. INTRODUCTION

The gradient-flow formalism (GFF) [1] offers a prom-
ising solution to the matching of perturbative and non-
perturbative calculations. A potential application is flavor
physics, where nonperturbative matrix elements are
typically evaluated using lattice regularization, while
the Wilson coefficients are calculated perturbatively in
dimensional regularization. The idea is to express the
regular higher-dimensional operators of the effective
electroweak Hamiltonian in terms of ultraviolet (UV)-
finite flowed operators. The matching between the regular
and the flowed operators is perturbative and can be
absorbed into flow-time-dependent Wilson coefficients.
The application of this approach to the energy-momentum
tensor through next-to-next-to-leading-order (NNLO)
QCD [2–4] has already been shown to give competitive
results; see, e.g., Refs. [5–7]. More recently, the matching
matrix has also been calculated for the quark dipole
operators at next-to-leading-order (NLO) QCD [8,9]
and for the hadronic vacuum polarization through
NNLO QCD [10].
In Ref. [11], the matching matrix for the current-current

operators of the effective electroweak Hamiltonian has
been calculated at NLO QCD in the DR scheme. Here, we

present the NNLO expression for this quantity in the basis
defined in Ref. [12] which allows us to adopt the MS
scheme with a fully anticommuting γ5. We also provide the
results for the nonmixing basis, though. The perturbative
input for a consistent first-principles calculation of K- or
B-mixing parameters on the basis of the GFF is thus
available. Once the corresponding lattice input exists, it will
be interesting to see how the GFF approach applied to
flavor physics compares to results obtained with conven-
tional approaches (see Ref. [13] for an overview).

II. OPERATOR BASIS

The effective electroweak Hamiltonian can be written
schematically as

Heff ¼ −
4GFffiffiffi
2

p VCKM

X
n

CnOn; ð1Þ

where GF denotes the Fermi constant, VCKM comprises the
relevant elements of the Cabbibo-Kobayashi-Maskawa
(CKM) matrix, and Cn are the Wilson coefficients. In this
work, we focus on the current-current operators and choose

O1 ¼ −ðψ̄1γ
L
μTaψ2Þðψ̄3γ

L
μTaψ4Þ;

O2 ¼ ðψ̄1γ
L
μψ2Þðψ̄3γ

L
μψ4Þ ð2Þ

as our operator basis [12], where we adopt the Euclidean
metric and use the short-hand notation

γLμ ¼ γμ
1 − γ5
2

: ð3Þ

Our convention for the color generators is
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½Ta; Tb� ¼ fabcTc; TrðTaTbÞ ¼ −TRδ
ab; ð4Þ

with fabc real and totally antisymmetric. Working in
dimensional regularization with D ¼ 4 − 2ϵ, loop correc-
tions lead to contributions which are not proportional to the
operators in Eq. (2). They have to be attributed to so-called
evanescent operators which vanish for D ¼ 4 but mix with
the physical operators at higher orders in perturbation
theory [14]. Following Ref. [12], we choose

Oð1Þ
1 ¼−ðψ̄1γ

L
μνρTaψ2Þðψ̄3γ

L
μνρTaψ4Þ−16O1;

Oð1Þ
2 ¼ðψ̄1γ

L
μνρψ2Þðψ̄3γ

L
μνρψ4Þ−16O2;

Oð2Þ
1 ¼−ðψ̄1γ

L
μνρστTaψ2Þðψ̄3γ

L
μνρστTaψ4Þ−20Oð1Þ

1 −256O1;

Oð2Þ
2 ¼ðψ̄1γ

L
μνρστψ2Þðψ̄3γ

L
μνρστψ4Þ−20Oð1Þ

2 −256O2 ð5Þ

as evanescent operators, where γLρμ1…μn ≡ γLρ γμ1…γμn .
We will refer to the basis defined by Eqs. (2) and (5)
as the Chetyrkin-Misiak-Münz (CMM) basis in what
follows.

III. FLOWED OPERATORS

In the GFF, one defines flowed gluon and quark fields
Ba
μ ¼ Ba

μðtÞ and χ ¼ χðtÞ as solutions of the flow equations
[1,15]

∂tBa
μ ¼ Dab

ν Gb
νμ þ κDab

μ ∂νBb
ν ;

∂tχ ¼ Δχ − κ∂μBa
μTaχ;

∂tχ̄ ¼ χ̄ Δ⃖þκχ̄∂μBa
μTa; ð6Þ

with the initial conditions

Ba
μðt ¼ 0Þ ¼ Aa

μ; χðt ¼ 0Þ ¼ ψ ; ð7Þ

where Aa
μ and ψ are the regular gluon and quark fields,

respectively, and

Dab
μ ¼ δab∂μ − fabcBc

μ; Δ ¼ ð∂μ þ Ba
μTaÞ2;

Ga
μν ¼ ∂μBa

ν − ∂νBa
μ þ fabcBb

μBc
ν: ð8Þ

The parameter κ is arbitrary and drops out of physical
quantities; we will set κ ¼ 1 in our calculation, because this
choice reduces the size of the intermediate algebraic
expressions.
Our practical implementation of the GFF in perturbation

theory follows the strategy developed in Ref. [16] and
further detailed in Ref. [17]. On the one hand, it amounts to
generalizing the regular QCD Feynman rules by adding
flow-time-dependent exponentials to the propagators.
The flow equations [Eq. (6)] are taken into account with
the help of Lagrange multiplier fields which are represented
by so-called “flow lines” in the Feynman diagrams.

They couple to the (flowed) quark and gluon fields at
“flowed vertices,” which involve integrations over flow-
time parameters.
While the flowed gluon field Ba

μ does not require
renormalization [1,16], the flowed quark fields χ have to
be renormalized [15]. The nonminimal renormalization

constant Z
∘
χ for the flowed quark fields χ is defined by

the all-order condition [3]

Z
∘
χhχ̄=D

↔
χi0

���
m¼0

≡ −
2nc

ð4πtÞ2 ;

D
↔

μ ¼ ∂μ − ∂⃖μ þ 2Ba
μTa; ð9Þ

where h·i0 denotes the vacuum expectation value. The

NNLO result for Z
∘
χ can be found in Ref. [17].

The flowed operators are then defined by replacing the

spinors ψ i by renormalized flowed spinors Z
∘ 1=2
χ χi in the

regular operators, i.e.,

Õ1 ¼ −Z
∘ 2
χðχ̄1γLμTaχ2Þðχ̄3γLμTaχ4Þ;

Õ2 ¼ Z
∘ 2
χðχ̄1γLμχ2Þðχ̄3γLμχ4Þ; ð10Þ

and analogously for the evanescent operators. Because of
the damping character of the flow time t > 0, matrix
elements of the flowed operators are UV finite after
renormalization of the strong coupling and the quark
masses. One can, thus, treat them in four space-time
dimensions, which also means that flowed evanescent
operators can be neglected. However, we prefer to keep
them in our formalism, because it makes the equations
more symmetric. Furthermore, the fact that they have to
vanish provides a welcome consistency check on our
results. The regular evanescent operators are still needed
in our calculation, which will be described below.

IV. SMALL-FLOW-TIME EXPANSION

In the limit t → 0, the flowed operators behave as [16]

�
ÕðtÞ
ẼðtÞ

�
≍ ζBðtÞ

�
O

E

�
; ð11Þ

where we use the notation

O ¼ ðO1;O2ÞT ≡ ðOð0Þ
1 ;Oð0Þ

2 ÞT;
E ¼ ðOð1Þ

1 ;Oð1Þ
2 ;Oð2Þ

1 ;Oð2Þ
2 ÞT; ð12Þ

and analogously for the flowed operators. Here and in what
follows, the superscript “B” marks a “bare” quantity which
will undergo renormalization. The symbol ≍ is used to
indicate that terms of OðtÞ are neglected. It will be
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convenient to adopt the block notation of Eq. (11) also for
matrices. For example, for the renormalized matching
matrix, we write

ζðtÞ ¼
�
ζOOðtÞ ζOEðtÞ
ζEOðtÞ ζEEðtÞ

�
; ð13Þ

where the 2 × 2 submatrix ζOO concerns only the physical
operators.
Since matrix elements of the bare operators are diver-

gent, while those of flowed operators are finite, the bare
matching matrix ζBðtÞ is divergent asD → 4. However, one
may define renormalized operators whose matrix elements
are finite:

�
O

E

�R

¼ Z

�
O

E

�
≡

�
ZOO ZOE

ZEO ZEE

��
O

E

�
; ð14Þ

where Z is the corresponding renormalization matrix. It is
common to define all its entries in the MS scheme, except
for the submatrix ZEO, whose finite part is chosen such that
physical matrix elements h·i of evanescent operators vanish
to all orders in perturbation theory [14,18,19]:

hERi ¼ ZEOhOi þ ZEEhEi ¼! OðϵÞ: ð15Þ

Inserting Eq. (14) into Eq. (11), it follows that

ζðtÞ ¼ ζBðtÞZ−1 ¼
�
ζOOðtÞ ζOEðtÞ
ζEOðtÞ ζEEðtÞ

�
ð16Þ

is finite at D ¼ 4. Since hẼðtÞi ¼ OðϵÞ, the renormaliza-
tion condition in Eq. (15) is equivalent to

ζEOðtÞ ¼ OðϵÞ: ð17Þ

V. CALCULATION OF THE MATCHING
MATRIX

For the calculation of the matching matrix ζðtÞ, we use
the method of projectors [20,21]. This means that we define
a set of matrix elements

PðiÞ
j ½X� ¼ h0jXji; ji

���
p¼m¼0

; ð18Þ

with i ∈ f0; 1; 2g and j ∈ f1; 2g, such that

PðiÞ
j

h
Oði0Þ

j0

i
¼ δii0δjj0 ; ð19Þ

where we remind the reader of the unified notation for
physical and evanescent operators defined in Eq. (12). In
general, the projectors could also involve derivatives with
respect to masses and/or external momenta, but this is not

the case for the set of operators considered here. Since all
external mass scales are set to zero in Eq. (18), it is
sufficient to satisfy Eq. (19) at tree level, because all
higher perturbative orders on the lhs vanish in dimensional
regularization.
The external states ji; ji are understood to project onto

left-handed spinors only. Adopting an anticommuting γ5
thus eliminates all γ5’s from the traces at any order in the
calculation [12].
The bare matching matrix is obtained by applying the

projectors to Eq. (11):

ζB;ðii
0Þ

jj0 ðtÞ ¼ Pði0Þ
j0

h
ÕðiÞ

j ðtÞ
i
; ð20Þ

where the index notation should be self-explanatory.1

Because of the fact that we restrict ourselves to the case
where all four quark flavors in the operator are different, the
Feynman diagrams contributing to the rhs of this equation
are obtained by dressing the generic tree-level diagram in
Fig. 1(a) by virtual gluons and closed quark loops. Sample
diagrams are shown in Figs. 1(b) and 1(c).
For the actual evaluation of the diagrams, we adopt

the setup based on q2e/exp [23,24] described in Ref. [17].
Specifically, we generate the Feynman diagrams with
QGRAF [25,26], apply the projectors, perform the traces,
and simplify the algebraic expressions within FORM

[27–29], and reduce the resulting Feynman integrals to
master integrals with the help of Kira+FireFly [30–33]. The
master integrals are the same as those found in Ref. [4].

VI. RESULTS

A. CMM basis

Performing the calculation and renormalization as
described in the previous sections, we find for the physical
components of the renormalized matching matrix through
NNLO in QCD

(a) (b) (c)

FIG. 1. Sample diagrams contributing to the determination of
the matching matrix ζðtÞ at LO, NLO, and NNLO QCD. The
circles denote flowed vertices, lines with an arrow next to them
denote flow lines, and the label next to the arrow is a flow-time
integration variable (see Ref. [17] for details). The diagrams were
produced with FeynGame [22].

1For the sake of clarity, let us point out that ζð00Þjj0 ≡ ðζOOÞjj0 .
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ðζ−1Þ11ðtÞ ¼ 1þ as

�
4.212þ 1

2
Lμt

�
þ a2s

�
22.72 − 0.7218nf þ Lμtð16.45 − 0.7576nfÞ þ L2

μt

�
17

16
−

1

24
nf

��
;

ðζ−1Þ12ðtÞ ¼ as

�
−
5

6
−
1

3
Lμt

�
þ a2s

�
−4.531þ 0.1576nf þ Lμt

�
−3.133þ 5

54
nf

�
þ L2

μt

�
−
13

24
þ 1

36
nf

��
;

ðζ−1Þ21ðtÞ ¼ as

�
−
15

4
−
3

2
Lμt

�
þ a2s

�
−23.20þ 0.7091nf þ Lμt

�
−15.22þ 5

12
nf

�
þ L2

μt

�
−
39

16
þ 1

8
nf

��
;

ðζ−1Þ22ðtÞ ¼ 1þ 3.712as þ a2s

�
19.47 − 0.4334nf þ Lμtð11.75 − 0.6187nfÞ þ

1

4
L2
μt

�
; ð21Þ

with as ¼ αsðμÞ=π and Lμt ¼ ln 2μ2tþ γE, where αs is the
strong coupling renormalized in the MS scheme with nf
quark flavors, μ the renormalization scale, and γE ¼
0.577… Euler’s constant. For the sake of compactness,
we set nc ¼ 3 and TR ¼ 1

2
and replaced transcendental

coefficients by floating-point numbers. Analytical coeffi-
cients for a general SU(nc) gauge group are included in the
Supplemental Material [34].
Several observations support the correctness of this

result. First of all, the literature expression for the
renormalization matrix Z defined through Eqs. (14) and
(15) [12,35,36] not only eliminates all UV divergences
from the matching matrix, but also nullifies its EO
component; see Eq. (17). Furthermore, we performed
the calculation in Rξ gauge and found the result to be
independent of the gauge parameter ξ. Yet another check
concerns the switch to a different basis as described in the
following.

B. Nonmixing basis

It may be useful in physical applications to transform
our result into the so-called nonmixing basis, defined such

that the anomalous dimension matrix for the operators is
diagonal. The physical operators in that basis read

O� ¼ 1

2

h
ðψ̄α

1γ
L
μψ

α
2Þðψ̄β

3γ
L
μψ

β
4Þ � ðψ̄α

1γ
L
μψ

β
2Þðψ̄β

3γ
L
μψ

α
4Þ
i

ð22Þ

with the color indices α and β. The definition of the
evanescent operators as well as the transformation matrices
with respect to the CMM basis are provided in Ref. [37]
through NNLO.2 We can easily evaluate the results in that
basis by applying the corresponding transformation to the
bare results for the projections obtained through Eq. (18)
and then performing the renormalization in complete
analogy to the calculation for the CMM basis.
Alternatively, the transformation can be done at the level
of the renormalized results by taking into account the
required finite renormalization given in Ref. [37] to restore
the renormalization scheme in the new operator basis [12].
The fact that both ways lead to the same result and that the
physical matching matrix ζðtÞ between the MS renormal-
ized and the flowed operators turns out to be diagonal in
this basis is another strong check on our results. We find

ζ−1þþðtÞ ¼ 1þ as

�
2.796 −

1

2
Lμt

�
þ a2s

�
14.15 − 0.1739nf þ Lμtð6.509 − 0.4798nfÞ þ L2

μt

�
−

9

16
þ 1

24
nf

��
;

ζ−1−−ðtÞ ¼ 1þ asð5.546þ LμtÞ þ a2s

�
32.01 − 0.9524nf þ Lμtð21.23 − 0.8965nfÞ þ L2

μt

�
15

8
−

1

12
nf

��
; ð23Þ

where the same notation as in Eq. (21) is adopted.3

Again, analytical results are provided in the Supplemental
Material [34].4

We note in passing that the matching matrix also
determines the small-t behavior of the flowed operators
through the equation [10]

t∂tÕðtÞ ¼ γ̃ðtÞÕðtÞ; γ̃ðtÞ ¼ ðt∂tζðtÞÞζ−1ðtÞ: ð24Þ

These equations hold in any basis, of course.

VII. THE EFFECTIVE HAMILTONIAN IN THE
GRADIENT-FLOW FORMALISM

Inverting the small-flow-time expansion in Eq. (11), one
can write the Hamiltonian as

4Since the nonmixing basis in Ref. [37] was constructed for
nc ¼ 3,wealso insert thisvalue forζ−1þþ andζ−1−− in theSupplemental
Material [34] and, in addition, set TR ¼ 1

2
. A nonmixing basis for

general nc could be easily constructed from our results, though.

3An immediate comparison of this result to the NLO expres-
sion of Ref. [11] is not possible, because the latter is obtained in
the DR scheme.

2Note that the entry 8032
75

in the matrix V̂ in Eq. (B.5) of
Ref. [37] [Eq. (A.8) in the arXiv version] should read 8032

25
.
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Heff ≍ −
4GFffiffiffi
2

p VCKM

X
n

C̃nðtÞÕnðtÞ; ð25Þ

where the flowed Wilson coefficients are given by

C̃nðtÞ ¼
X
m

CR
mζ

−1
mnðtÞ; ð26Þ

with ζðtÞ≡ ζOOðtÞ the physical part of the matching matrix
and CR

n ¼ P
m CmðZ−1Þmn the renormalized regular Wilson

coefficients. It is important to evaluate CR and ζ−1ðtÞ in the
same renormalization scheme, including the treatment of γ5
and the choice of (regular) evanescent operators. The
flowed coefficients C̃ðtÞ, on the other hand, are scheme
and renormalization scale independent (up to higher orders
in perturbation theory). Since also the flowed operators
ÕðtÞ are scheme and renormalization scale independent,
Eq. (25) allows one to combine perturbatively calculated
Wilson coefficients with nonperturbative matrix elements
without scheme transformation.
In order to avoid large logarithms, after matching the

CR
m ¼ CR

mðMW; μÞ to the Standard Model (SM) at μ ∼MW ,
they should be evolved down to μ ∼

ffiffiffiffiffiffiffi
1=t

p
using the

standard renormalization group equation [36,38], where t
is sufficiently large to warrant small uncertainties in the
lattice calculation. Alternatively, one may choose to per-
form the evolution to large t at the level of the flowed
coefficients, using

t∂tC̃mðtÞ ¼ −
X
n

C̃nðtÞγ̃nmðtÞ ð27Þ

with γ̃ðtÞ defined in Eq. (24). The compatibility of both
approaches is left for future investigation.
For jΔFj ¼ 1 processes, the Wilson coefficients CR

m in
the CMM basis for the SM can be found in Refs. [36,39]

through NNLO. Thus, when neglecting penguin contribu-
tions, reexpanding the rhs of Eq. (26) through NNLO using
the results for ζ−1ðtÞ above, directly gives the flowed
Wilson coefficients to the same order. For jΔFj ¼ 2
processes, the physical basis reduces to just one operator
due to a Fierz identity. In this case, the SM Wilson
coefficient is known through NLO [38], with two contri-
butions for kaon mixing known through NNLO [40,41].

VIII. CONCLUSIONS AND OUTLOOK

We calculated the matching matrix of the current-current
operators in the electroweak effective Hamiltonian to their
flowed counterparts through NNLO QCD. We presented
the results in the CMM and the nonmixing bases and
performed a number of checks on their correctness. Our
results can directly be applied toK- or B-meson mixing, for
example. Their generalization, in particular, the inclusion
of penguin operators, is work in progress. It remains to be
seen how the GFF approach to flavor physics compares to
conventional calculations.
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