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Abstract

The rapid increase in available surveillance imagery can be a great asset to law
enforcement and security services. However, manual analysis of such large
amounts of data becomes ever more infeasible. Intelligent surveillance sys-
tems are required to aid human operators in their task. The re-identification of
persons is a key functionality of such systems. Short-term re-identification of
people based on their full-body appearance enables online search tasks, such
as localizing the current position of a person of interest, even if their face is
not recognizable, due to the commonly low resolution of surveillance footage
or obstructing camera views. Person tracking approaches can similarly bene-
fit from support of re-identification methods to bridge gaps between cameras
or occlusions between people or by scene elements. By far the most estab-
lished application for person re-identification is, however, the offline retrieval
task. In offline retrieval, large amounts of images or video sequences have to
be searched in order to reconstruct the movements of one or more individ-
uals. For this, an automatic approach computes a feature representation of
person images and matches these representations in order to establish scores
for visual similarities between two person images. The result consists of a list
of images ranked according to the similarity to a query image. A successful
representation and matching approach must address a number of challenging
factors which affect a person’s visual appearance. This includes changes in il-
lumination, camera view, body pose, image noise, and heterogeneous sensor
characteristics.
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The aim of this thesis is to develop full-body person re-identification models
with high robustness to these challenges. A focus lies on aspects pertaining to
real-world deployment of re-identification systems. This includes the require-
ment for adaptability to new or changing camera networks, the application of
automatic person detectors and their resulting errors, the degree of semantic
information which makes the result interpretable to operating personnel, as
well as scalability with very large numbers of candidate person images that
are to be searched.

To this end, two approaches for different application scenarios are proposed:
i) a supervised method that can be used when training data is available to
adapt the model to a given target scenario and ii) a re-identificiation frame-
work which can automatically adapt to new scenarios without the need for
additional annotation or training data at all. For the supervised approach two
methods of explicitly modeling pose-related information into an initial Con-
volutional Neural Network (CNN) are proposed. Both, full-body pose in the
form of body joint key points, as well as coarse view information are included
and shown to be complementary. Furthermore, a second CNNmodel is devel-
oped which includes information from previously learned semantic attributes
and learns image features, which are complementary to the attribute infor-
mation. This adds a degree of interpretability to the results and attributes
can further help to strengthen robustness to illumination and sensor char-
acteristics. Aspects from both models are combined into a final supervised
model, which yields state-of-the-art accuracy on public datasets. The second
approach targets a deployment scenario in which no data is available for adap-
tation to the target scene. The approach learns a set of prototypical subsets in
a large amount of diverse training data. These subsets, termed prototype do-
mains, each represent a combination of typical scene and person characteris-
tics. A collection of models is trained, each specialized on one of the domains.
When new re-identification queries occur at test time, the model most closely
related to the query image is chosen for the task. Thus a query-adaptive ap-
proach is achieved which requires no more data than the query image itself.
Both approaches are additionally evaluated using more challenging settings
pertaining to real-world deployment, such as very large gallery sizes and use
of automatic person detectors.

ii



Kurzfassung

Die großenMengen verfügbarer Bild- undVideodaten aus Kameranetzwerken
können eine große Hilfe für Strafverfolgung und Sicherheitsdienste sein. Eine
manuelle Auswertung der wachsenden Datenmengen ist jedoch in vielen Fäl-
len bereits heute nicht mehr mit vertretbarem Aufwand zu leisten. Intelligen-
te Systeme zur automatischen Auswertung werden benötigt, um menschliche
Analysten zu unterstützen. Die automatische Wiedererkennung von Personen
über kurze Zeiträume hinweg ist eine zentrale Funktion solcher Systeme. Eine
automatische Wiedererkennung anhand von Ganzkörper-Merkmalen unter-
stützt beispielsweise Aufgaben wie die Echtzeitsuche, bei der die aktuelle Po-
sition einer Person innerhalb eines Kameranetzwerkes gefunden werden soll.
Insbesondere ist es hierbei auch möglich Personen zu finden, deren Gesicht
aufgrund von schlechter Bildqualität oder ungünstigem Kamerawinkel nicht
erkennbar ist. Ein weiteres Einsatzszenario ist die offline Suche, während der
große Datenmengen prozessiert werden müssen, um anschließend automa-
tisiert nach Personen durchsucht werden zu können. Hierzu berechnen und
vergleichen Verfahren zurWiedererkennung interne Merkmalsrepräsentatio-
nen von Personenbildern und erzeugen numerische Werte, welche die visuel-
le Ähnlichkeit zwischen Personen abbilden. Das Ergebnis der Wiedererken-
nung ist eine Liste von Personenbildern, die nach der visuellen Ähnlichkeit
zu einem Anfragebild sortiert ist. Die Verfahren müssen dabei eine Reihe von
Faktoren handhaben, welche die visuelle Erscheinung von Personen im Bild
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beeinflussen. Diese beinhalten Beleuchtungsunterschiede, variierende Kame-
rawinkel, Körperposen, Bildrauschen und Unterschiede zwischen den einge-
setzten Kamerasensoren.

Das Ziel dieser Arbeit ist die Entwicklung von Modellen zur Wiedererken-
nung von Personen, die diese Herausforderungen adressieren. Ein Schwer-
punkt ist hierbei die Betrachtung von Anforderungen, die beim Einsatz der
Modelle in realen Szenarien entstehen. Beispielsweise müssen sich die Model-
le ohne erheblichen manuellen Aufwand an neue und unbekannte Szenarien
anpassen können. Auch der Einsatz automatischer Verfahren zur Detektion
von Personen und der Fehler, die hierbei entstehen, wird betrachtet, sowie
die Interpretierbarkeit der Ergebnisse durch menschliche Benutzer und die
Skalierbarkeit mit großen Mengen von Personen.

Zwei Ansätze werden in dieser Arbeit verfolgt, die sich auf unterschiedliche
Szenarien spezialisieren. Ein Szenario, indem es anhand von annotierterten
Daten möglich ist Verfahren an die vorliegenden Charakteristiken der Daten
anzupassen, und ein Szenario, in dem keine solche Daten zur Verfügung ste-
hen.

Um den ersten Fall zu adressieren, werden zunächst zwei separate Modelle
vorgeschlagen. Das erste Modell bezieht semantische Attribute in den Prozess
derWiedererkennungmit ein und erhöht somit die Genauigkeit und Interpre-
tierbarkeit der Ergebnisse. Das zweite Modell kombiniert Informationen der
Körperpose und des Sichtwinkels der Kamera, um eineMerkmalsrepräsentati-
on zu erlernen, die robust gegenüber diesen Variationen ist. Die Erkenntnisse
beider Modelle fließen schließlich in ein kombiniertes Verfahren ein, das hohe
Genauigkeit auf mehreren öffentlichen Datensätzen erreicht.

Um das zweite Szenario zu adressieren, wird ein Verfahren bestehend aus ei-
ner Menge von Modellen vorgeschlagen. Jedes Modell wird hierbei auf ei-
ne bestimmte Ausprägung von typischen visuellen Charakteristiken speziali-
siert, welche automatisch anhand einer Datenmenge mit hoher visueller Viel-
falt identifiziert werden. Bei einer Suchanfrage in Daten mit unbekannten
Charakteristiken wird anhand des Anfragebildes ein geeignetes Modell aus
der verfügbaren Menge gewählt. Somit kann eine automatische Anpassung
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an die aktuelle Suchanfrage realisiert werden, die keinerlei zusätzliche Trai-
ningsdaten voraussetzt.

Beide Modelle erzielen Ergebnisse, die dem Stand der Forschung entsprechen
und werden zusätzlich auf ihre Kooperation mit automatischen Personende-
tektoren und die Erkennungsleistung bei sehr großen Personenmengen hin
untersucht.
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Chapter 1

Introduction

Person re-identification (re-id) is the problem of, given a query image of a spe-
cific person, finding further occurrences of that same person in large amounts
of image or video data based on the full-body appearance. The most common
application of person re-identification is intelligent video surveillance. Typi-
cal surveillance camera networks contain non-overlapping camera views, un-
calibrated cameras, and changes in the network’s topology. Tracing a specific
person’s path through the camera network thus requires time and a high de-
gree of attention, if attempted manually by security personnel. In most prac-
tical applications such manual analysis is not possible. For example, when a
suspicious item of left luggage has been detected in a public area, such as a
shopping mall, locating the current whereabouts of the person who left the
item can be a very time-sensitive issue. A second common usecase is offline
data analysis, such as review of Closed Circuit Television (CCTV) footage af-
ter a security incident with the goal of following the movements of suspects
in the aftermath. Such an offline scenario may not be as time-sensitive but a
manual analysis is nevertheless prohibitive due to the enormous amount of
video data that is generally available. Automated or semi-automated per-
son re-identification systems are thus a crucial component of modern intelli-
gent surveillance systems. A typical workflow requires the operator to select
an initial occurrence of a person of interest as query image and the system
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then returns a list of persons from the search database (often termed gallery)
ranked according to visual similarity to the query image. The operator can
then identify correct matches among the top-ranked results or may have the
option to provide feedback to the system to improve results in a next iteration
[Sch15c].

While surveillance scenarios are the most prominent real-world application
and themain focus of the research community, several other applications exist
which can be addressed supported by person re-identification. For example,
identification of actors can help to provide viewers of TV series ormovies with
interesting metadata. In such applications face matching is used to perform
actual identification and person re-identification can be applied to connect the
dots when faces are not visible [Bäu13]. A similar combination of approaches
can be applied for human-computer-interaction in smart home environments
or for patient monitoring in care facilities. The main focus of this thesis, how-
ever, lies on person re-identification in surveillance settings, due to the large
amount of available public datasets in this area.

Historically, matching of person identities across different images was first
addressed through face recognition in 1977 [Kan77]. In contrast, one of the
first works on full-body based person re-identification was proposed in 2005
[Zaj05]. There are several core differences between face-based and full-body
person re-identification which make them suitable for different types of appli-
cations but they also complement each other. Faces are often more discrimi-
native whereas full-body appearance is mostly determined by clothing, which
may appear very similar among different individuals, due to fashion trends or
work uniforms. On the other hand, full-body person re-identification is ap-
plicable when faces are not visible due to view angles or occlusions caused,
for example, by scarfs, hair, or sunglasses. Furthermore and most impor-
tantly, full-body person re-identification is applicable at much lower reso-
lutions when faces are no longer recognizable. This is often the case in sur-
veillance scenarios where low resolution cameras are prevalent due to cost
considerations. Finally, full-body re-identification is less invasive to per-
sonal privacy, because the internally used representations generally do not
allow for an actual identification of individuals. This aspect is of particular
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interest in countries with stronger restrictions to preserve privacy and data
protection, such as Germany.

Person re-identification approaches can rely on several types of image cues
and features. Arguably the most relevant type of information for re-id in RGB
images is color information. This is often combined with texture or contour
cues. Soft-biometric features or attributes (e.g. gender, hair color, clothing
descriptors) can add an additional level of semantics to the re-id task. Fur-
thermore, the automatic recognition of such attributes enables additional ap-
plications, such as re-id based purely on a witness description. When video is
available, gait information may be leveraged to support re-id and 3D sensor
data allows for integration of physical measurements, such as body type.

1.1 Challenges

Person re-identification approaches for camera networks must overcome sev-
eral challenges. These can be grouped into two main categories. Challenges
resulting from the scene or environment in which re-id is to be carried out and
challenges arising during the image capturing process in the sensors deployed
in the camera network.

Scene Challenges

• Illumination can vary strongly in different areas of the camera
network. This is particularly the case when indoor and outdoor areas
are part of the network. Low illumination can result in a reduced
signal-to-noise ratio while strong illuminations will result in strong
shadows. Both extremes of illumination will decrease contrast and
alter color intensities.

• Partial Occlusions between people or by scene elements, such as
low walls, poles, or trashcans can hide important aspects of the
visual appearance of a person. In the worst case, appearance aspects
of the occluding person may distort the feature representation of the
occluded person and result in faulty matchings.
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• Different Viewpoints of persons relative to the camera can have
the most significant impacts on visual appearance. For example, the
appearance of a person wearing a t-shirt and backpack will in frontal
view be dominated by the t-shirt while a view from the back will
rather be influenced by the appearance of the backpack. If a re-id
approach is unaware of differences in viewpoint while attempting to
compare person images, unwanted mismatches can occur.

• Different Body Poses of a person can alter the location of
important details within a person image. This is particularly the case
for legs of pedestrians which are generally moving. But also
upper-body pose, such as an arm crossing the torso or hanging to the
side can affect the overall appearance and location of relevant image
details.

• Small Details are often of key relevance for successful re-id . Due to
fashion trends or work uniforms, the region in the image that is
actually relevant for successful discrimination between two similar
looking people may be very small.

Sensor Challenges

• Resolution of images in typical surveillance networks is often low,
due to use of cost-efficient cameras. Furthermore, due to the
placement of surveillance cameras (at ceiling level, looking down
hallways, streets, or places), significant differences in resolution of
person images between foreground and background may occur. A
typical resolution of person images that allows for re-id at realistic
and practical distances is 64 × 128 pixels.

• Varying Sensor Characteristics, such as differing color sensitivity
resulting in color tints, can lead to differences in images even under
uniform illumination. Such effects may occur in heterogeneous
camera systems, for example when broken cameras are replaced by
different models over time.

• Image Noise resulting from low illumination, quantum noise,
measurement noise or quantization noise during the image capturing
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process may affect and distort important details of the visual
appearance.

• Blur caused by quick motion in the image, too long exposure times,
faulty focus settings, or smudges or dirt on the lense can similarly
destroy crucial details in the image.

• Compression Artifacts caused by image compression methods can
reduce image quality and level of detail. In order to transmit and
store the large amount of data acquired in surveillance camera
networks, compression is often unavoidable due to limitations in
bandwidth, write-speed, and overall storage capacity.

A number of these challenges are illustrated in Figure 1.1. To varying degree,
all of these challenges affect the visual appearance of persons and contribute
to the core issue that needs to be addressed by any re-id method: In image
space, a high degree of intra-class variance can exist while simultaneously
the degree of inter-class variance may be very low. Or, in other words, the
difference in visual appearance of the same person across multiple images
may be high, due to variation in view, illumination, and image noise, while
the difference in visual appearance of different people may be low, due to
similar clothing. The task of a re-id approach is then to invert this relation-
ship and thus allow for a clear separation between different individuals while
maintaining high similarities for images of the same individual. Generally
speaking, this can be achieved in one of two main ways. The person images
can be transformed into a feature space that provides the desired properties
when used with a standard distance metric to compare representations. Such
feature transformations can be handcrafted through careful selection and en-
coding of relevant image information or learned from large amounts of data
using machine learning methods. Alternatively, a suitable image feature can
be used with a well-engineered or learned distance metric which provides the
desired variance properties. The methods described in this work mainly focus
on the former alternative.
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Figure 1.1: Person images from the VIPeR [Gra08], Market-1501 [Zhe17b], and Duke MTMC-
reID [Zhe15b] datasets. The images illustrate visual variations caused by image qual-
ity, viewpoint, occlusions, and pose.

1.2 Recent Developments

The initial accuracy of re-id approaches was of limited use for practical sur-
veillance applications. However, over the last years research interest and
matching accuracy have increased significantly. This is illustrated, for exam-
ple, by the rise in state-of-the-art matching accuracy on the popular Market-
1501 dataset [Zhe15a]. At publication of the dataset in 2015 the rank-1 accu-
racy was 44.4%, i.e. 44.4% chance that the first rank in the result list would
contain a correct match to the query. In contrast, the accuracy achieved by
methods proposed in this work is 92.1%. Similarly high values are achieved by
several recent approaches. This high accuracy has significantly increased the
practical use of re-id and enabled the development and deployment of real-
world systems. However, the prospect of real-world application brings with
it a new set of challenges.

Challenges of real-world application

• Generalization or Adaptability - In real-world applications, re-id
systems are deployed in new scenarios which result in data different
to that on which the underlying models were trained. The
annotation of new data from the target scenario for retraining or
adaptation of the models is often prohibitively expensive. A core
challenge of such models is thus to achieve either good
generalization to a large range of possible target scenarios or to
adapt to target scenarios without the need for annotated data.
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• Scalability - Research datasets often feature comparatively small
galleries in which query persons must be found. Typical are
thousands to few ten thousands of gallery images. In many
real-world scenarios the number of people passing through the
camera network in any given day is much larger. Judging a model’s
accuracy for large gallery sizes of hundreds of thousands of images
gives important hints for their applicability in real-world scenarios.

• Interpretability - Trust is an important aspect for the application
and acceptance of any intelligent system. If operators do not trust a
system, they will avoid relying on it. A key component to
establishing such trust with operating personnel is to provide an
understanding of why the system arrives at certain results, especially
in case of faulty or unexpected results. Providing information for
decisions that is interpretable by non-expert users is thus an
important feature for real-world application.

• Person Detection & Search - Many research datasets provide
manually pre-cropped person images. In real-world applications,
however, re-id must be used in combination with an automatic
person detector in order to be efficient. Such a detector will generate
errors, such as mis-aligned bounding boxes, partial detections, or
false-positive detections which the re-id system should be able to
handle. The problem setting where query person images must be
found in whole camera images and both person detection and re-id
have to be carried out consecutively or jointly is generally referred to
as person search.

1.3 Contributions and Outline

The contributions of this thesis focus on developing approaches for person re-
identification that successfully address the previously discussed challenges.
To that end, two different models are proposed. The central element of the
thesis is a model which incorporates information from semantic attributes, as
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well as pose information into the re-id representation. The model is trained
in a supervised manner and evaluated in within-dataset settings. The sec-
ond proposed model is specifically designed for deployment to new scenar-
ios without the need for additional training data and is evaluated in a cross-
dataset setting. Both models are evaluated on public datasets and with re-
gard to real-world application. After a review of the literature related to the
proposed approaches in Chapter 2, the core motivations and concepts of the
developed models are outlined in Chapter 3.

The remainder of the thesis describes the proposed approaches based on the
following summarized contributions.

In CHAPTER 4: SEMANTIC ATTRIBUTES, a method for recognition of se-
mantic person attributes is formulated.

• The approach uses recent deep learning models and recognizes many
attributes with a single model. The proposed model combines local
and global person information and incorporates pose information in
order to better localize and focus on small image details which are
often crucial for successful recognition of more subtle attributes. The
approach achieves state-of-the-art accuracy on several public
datasets. Uniquely, the proposed approach demonstrates that pose
information can be a useful basis for attention mechanisms in the
context of attribute recognition. A precursor to this approach has
been published in [Sar17b].

In CHAPTER 5: ATTRIBUTE AND POSE SENSITIVE RE-IDENTIFICATION,
two novel re-id models are proposed, which incorporate attribute and pose
information, respectively.

• In order to incorporate the attribute cues generated by the model
described in Chapter 4, a novel variant of the triplet loss is proposed,
which allows for learning of re-id features that are complementary to
the information contained within attribute cues. The resulting
combination of attributes and complementary features is shown to
result in improved accuracy compared to established feature fusion
methods [Sch17b].
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• Viewpoint variation as well as unusual body poses are addressed by
a model which incorporates full-body pose information based on 14
body joint keypoints, as well as a view classification stage which
allows elements of the model to focus on one of three distinct views.
Both aspects are shown to have complementary benefits and result
in much improved matching accuracies [Sar18b].

• Finally, a joint re-id model is proposed, which incorporates attribute
and pose information. The model is shown to achieve a further
increase in re-id accuracy and is evaluated under several real-world
aspects, including very large person databases, application with
automatic person detectors, and video-based re-id. In combination
with re-ranking methods, this model achieves state-of-the-art
accuracies on several public datasets.

In CHAPTER 6: DOMAIN PROTOTYPE LEARNING, the real-world challenge
of deploying a model in scenarios with new and unknown characteristics and
biases is addressed. To that end

• a strategy is proposed to identify groupings with similar scene or
person characteristics in large amounts of highly diverse person
imagery. These groupings can be identified as prototypical re-id
domains and each combines a certain set of visual and salient person
or scene attributes.

• The identified prototype domains are then used for development of a
flexible re-id framework which can adapt to new scenarios and even
individual queries through efficient selection of relevant
domain-specific re-id models for the best fitting prototype domain
[Sch17a]. The approach is the first to achieve a level of adaptation to
new data without requiring either supervised or unsupervised
re-training.

A summary of the main findings, as well as suggestions for promising future
research directions are given in Chapter 7.
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Chapter 2

Related Work

2.1 Person Re-Identification

The task of person re-identification has received a significant growth in atten-
tion from the research community, as well as industry in recent years. This
section will first review the large corpus of existing literature, most of which
focuses on methods based on CNNs. An overview of landmark and recent
datasets will be given, which offer a variety of different evaluation settings
for re-id methods. Finally, the established metrics to quantitatively compare
results of different re-id methods will be reviewed.

2.1.1 Existing Methods

The current re-id literature can be grouped into several categories. This re-
view will first discuss methods based on conventional, hand-crafted and in
some cases learned person feature descriptors. Then, metric learning tech-
niques will be discussed, followed by a review of deep learning methods,
which make up the majority of ongoing research directions. The inclusion
of additional information, such as semantic attributes and pose information,
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as employed in the approaches proposed in this thesis, will be addressed sepa-
rately. Finally, recent methods for re-ranking, a popular post-processing step,
will be reviewed.

2.1.1.1 Person Descriptors

One of the earliest approaches to re-id was the manual design of suitable fea-
ture descriptors, which encode information relevant to robustly match per-
sons across cameras. Given a well crafted feature, matching is then usually
carried out through a standard distance measure, such as euclidean or cosine
distance. Hand-crafted person feature descriptors focus primarily on color
and in some instances on gradient or texture information.

An early descriptor by Gheissari et al. [Ghe06] applies a segmentation ap-
proach to detect temporally stable regions. In such regions, color and edge
histograms are then computed. A more complex feature including 8 color
channels (RGB, HS, and YCbCr) and 21 texture filters is proposed in [Gra08].
The authors also propose to split the person image into horizontal stripes
to better maintain spatial information. The technique of horizontal strip-
ing is used in a number of re-id approaches, including recent ones based on
deep learning. A further instance of a stripe-based descriptor is proposed by
Mignon et al. [Mig12] and contains several color channels, as well as his-
tograms of local binary patterns (LBP). One of the most well-known hand-
crafted re-id descriptors is the Symmetry Driven Accumulation of Local Fea-
tures (SDALF) descriptor by Farenza et al. [Far10]. The SDALF feature is based
on a weighted color histogram (WH), maximally stable color regions (MSCR),
and recurrent high-structured patches (RHSP), which is a texture descriptor.
An 11-dim color names descriptor is proposed in [Van09]. The descriptor is
computed on local patches and combined into a single vector through a Bag-
of-Words (BoW) approach. Pedagadi et al. [Ped13] extract color histograms
and color moments from the HSV and YUV spaces and apply Principal Com-
ponent Analysis (PCA) for dimensionality reduction. The idea of horizontal
striping to include local information is further expanded in [Zha13] where
small local patches are extracted and LAB color histograms as well as SIFT
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features are computed. An adjacency search is carried out to find local patch
matches within horizontal directions [She15]. Another landmark re-id fea-
ture is proposed by Liao et al. in [Lia15a]. The Local Maximal Occurrence
feature descriptor (LOMO) consists of color and SILTP histograms. Max pool-
ing is applied to group feature elements into bins across horizontal stripes. A
pyramid approach is applied to include information at multiple scales. With
the onset of deep learning methods for the re-id task, development of further
hand-crafted descriptors has received little attention in recent years.

2.1.1.2 Metric Learning

While hand-crafted descriptors often rely on standard distance metrics for
matching, these might not always be the optimal choice. Particularly for
high-dimensional features, a better adapted distance metric may lead to sig-
nificantly increased matching accuracies. The task of metric learning aims at
learning a suitable distance metric from data. Usually this requires pairs of
person images showing either the same person or different persons. The aim
of the metric learning process is then to modify the metric in such a way that
descriptor vectors for images with the same person ID result in smaller dis-
tances and descriptor vectors for images of different persons result in larger
distances. The most frequently used metric learning methods are based on
the Mahalanobis distance. The Mahalanobis distance is a generalization of
the euclidean distance and can be written as follows𝑑(x𝑖 ,x𝑗) = (x𝑖 − x𝑗)TM(x𝑖 − x𝑗), (2.1)

for two feature vectors x𝑖 and x𝑗 and a positive semidefinite matrix M.

An early metric learning method for re-id is proposed by Weinberger et al.
[Wei09]. The large-margin nearest-neighbor learning (LMNN) defines a ra-
dius for positive person ID matches and penalizes negative matches that fall
within less than a margin of this radius. The method is later improved by
Davis et al. [Dav07] to increase robustness against overfitting. The most
widely usedmetric learningmethod for re-id is the KISSME approach [Koe12].
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It is based on Mahalanobis distance metric learning and formulates a likeli-
hood ratio test, whether a pair of feature vectors is similar or not. The au-
thors show that the Mahalanobis distance metric can be derived from the log-
likelihood ratio test. PCA is applied to the data points to eliminate dimension
correlations.

A reduced computational cost was achieved by Hirzer et al. [Hir12] through
relaxing the positivity constraint. In [Lia15b], Liao et al. apply different
weighting of positive and negative samples. Yang et al. [Yan16c] take into
account differences and similarities between image pairs and show that the
covariance matrices of negative pairs can be computed from covariance ma-
trices of positive pairs. This process allows the metric learning approach to
scale to larger datasets. In combination with the LOMO feature descriptor,
Liao et al. [Lia15a] propose to learn a projection to a low-dimensional sub-
space with cross-view data, as well as learning a metric on that subspace. The
approach is similar to linear discriminant analysis (LDA) [Mik99].

2.1.1.3 Deep Learning

Deep learning-based approaches to re-id can be split into two main types of
network models: classification models, which apply a classification loss func-
tion, and ranking models, which rely on a ranking loss that compares images
of two or more persons.

Classification Models

Classification-based re-id models are the first type of deep learning models
used (see Figure 2.1). The general approach to using classification models for
re-id is to train them for person ID classification, i.e. using a final layer in the
network of dimension equal to the number of person IDs in the training data.
Standard methods and losses from the wider image classification literature
can then be employed to train the model. For matching of previously unseen
persons at test time, the final ID layer is discarded and the prior layer is used
as a feature vector. Person images are then ranked according to this feature
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vector and a standard distance measure, such as euclidean or cosine distance.

Figure 2.1: Standard classification model for re-id. The model is trained to classify numerical
person IDs represented as a binary vector with a one-hot encoding. The last layer
before the ID classification typically serves as a feature embedding for re-id and can
have an arbitrary dimension. Loss and ID layer are not used at test time.

A key requirement for use of classification models in any task is the availabil-
ity of sufficient training samples for each class. In re-id early datasets often
only contain two images per person. Thus, early works on re-id using deep
learning do not use direct classification of person IDs but rather rely on ar-
chitectures with siamese elements, which require two images to be processed
jointly (see Figure 2.2). The classification layer is then set up to learn whether
these two images depict the same person or different persons.

In one of the first of such approaches, Li et al. [Li14] describe a filter pair-
ing network to model translation, occlusion and background clutter inside
the network’s architecture. The final loss function is a softmax cross-entropy
loss with only two classes, i.e. same and different. This strategy of relying
on pairs of images during training allows for the creation of many more sam-
ples per class. Ahmend et al. [Ahm15] introduce a neighborhood matching
layer as fusion component, which computes distances between the features
resulting from both branches by taking local neighborhoods into account and
relying on the smallest found distance. This introduces a degree of robustness
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Figure 2.2: Early similarity classification model for re-id. The model requires image pairs. Both
images are processed in two siamese branches with usually shared weights. The
resulting features are merged by a fusion component and finally, the classification
loss learns the binary decision whether the two images depict the same person or
not.

to translation and pose change. This neighborhood matching layer is also ap-
plied by Wu et al. [Wu16a] to train an end-to-end re-id net which directly
outputs a (dis-)similarity decisionwithout relying on a separate distance func-
tion. Finally, Varior et al. [Var16a] use a similarity classifier in combination
with gating function after each convolutional block. While these methods can
be trained on data where the amount of images per ID is limited, they pos-
sess the strong drawback that for a comparison between a query image and a
gallery database, the query image has to be passed through the network with
every gallery image, because the matching and (dis-)similarity decision hap-
pens within the layers of the network. This requirement leads to a significant
reduction in runtime, as no features can be pre-computed.

With increasing size of datasets and specifically an increase of the number
of images per person classification losses can now be used directly for ID
classification. Wu et al. [Wu16b] propose a feature fusion deep neural net-
work in which they combine hand-crafted features with learned CNN fea-
tures. Therefore, the hand-crafted feature vectors are transformed through a
fully-connected layer andmergedwith the fully-connected feature layer of the
main CNN branch. A softmax classification loss is used to train the joint net-
work. A classification approach involving training across several datasets and
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a large number of IDs is described by Xiao et al. [Xia16a]. Dataset-specific
dropout is used on the fully-connected layers near the back of the network
in order to allow certain neurons in the layers to adapt specifically to cer-
tain datasets. The network is trained with a joint classification loss across all
datasets but different elements of the final layers are activated only depend-
ing on the dataset each image belongs to. Su et al. [Su17a] combine a global
and several local network paths by using a joint classification loss, as well
as two separate classification losses on each of the branches. Multiple im-
age scales for cross-resolution re-id are used in [Che17]. Each branch has its
own classification loss and a combined loss fuses the information of separate
branches. Multiple losses are also used by Li et al. [Li17e]. Local information
is extracted in a separate network branch by horizontal splitting of a feature
map, learning specialized local features in separate branches and combining
these for a final local softmax cross-entropy loss. In addition to this a standard
global softmax cross-entropy loss is used. Similarly, Sun et al. [Sun18] apply
horizontal striping within a feature layer of the network but attach a separate
classification loss to each resulting stripe of the featuremap. Whilemost other
methods rely on initialization through ImageNet-pretrained models, Li et al.
[Li18b] propose an attention-based network architecture that can be trained
from scratch and thus requires much fewer parameters. Attention-based ap-
proaches rely on learning a weighting of feature maps with a limited weight
budget, usually induced through a softmax operator. Since not all weights can
be 1.0 under this limitation, the network is forced to assign higher weight, i.e.
pay attention, to the most relevant features.

Ranking Models

Similar to the early approach on classification models, ranking CNN models
require two or more images as input (see Figure 2.3). However, the loss func-
tion of the network does not aim to perform a similarity classification, but
rather computes a distance value and optimizes the distances between im-
ages showing the same person and images showing different persons. Thus,
these loss functions directly optimize a distance-based ranking between two
or more images. Importantly, such approaches only perform the matching
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operations in the loss function and do not contain any earlier layers, which
fuse information from the different branches. Thus, after training, the net-
work can be used to extract feature vectors of single images which can be
matched quickly at test time. Networks using such ranking losses based on
two and three images are typically referred to as siamese [Rad16] or triplet
[Sch15b] models.

Figure 2.3: Triplet loss rankingmodel for re-id. An anchor image, a positivematch to the anchor,
and a negative match to the anchor are provided at once. The loss function optimizes
the feature embedding so that the distance from positive to anchor is smaller than
the distance from negative to anchor. The weights of each branch are shared and the
structure of the model at test time is the same as that of a classification model.

The first work to rely on a distance computation loss is proposed by Yi et
al. [Yi14]. Person images are split into three body regions and three siamese
networks are used to learn features for each of them. The part features are
combined into a final feature through a fully connected layer and distances
are computed based on cosine distance. Liu et al. [Liu17a] use a soft attention
mechanism in a siamese network to focus on local parts for matching image
pairs.

Ding et al. [Din15] apply a triplet loss function involving three images. An
anchor image, a positive match to the anchor, and a negative match are passed
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through the network and the loss function aims to reduce the euclidean dis-
tance between the anchor and the positive match while increasing the eu-
clidean distance between the anchor and the negative match. An improved
triplet loss function, which additionally emphasizes small absolute distances
for matching image pairs is proposed by Cheng et al. [Che16]. An exten-
sive study of the triplet loss is provided in [Her17]. Hermans et al. propose
to generate image triplets automatically for each batch just prior to compu-
tation of the loss. Thus, the approach does not rely on a network structure
with multiple branches. A part-based method is introduced in [Zha17c]. The
method splits person images into multiple body parts and applies a triplet loss
function separately for each part. Yu et al. [Yu18] describe a generalization of
the triplet loss and compare not just single image pairs but instead an anchor
image to sets of positive and negative matches.

Several recent works combine classification losses and ranking losses [Son18,
Zhe18]. This can be achieved by attaching a separate classification loss to each
branch of the siamese or triplet architecture.

Other Models

Besides the most frequently used classification and ranking models described
in the previous sections, two other categories of models are used for more
specialized applications of re-id.

Recurrent Models apply Recurrent Neural Networks (RNNs) or Long-Short
TermMemory networks (LSTMs), which can capture dependencies and infor-
mation across time. Consequently, these models focus on the task of re-id in
videos. McLaughlin et al. [McL16] use RNNs to temporally pool information
from person tracklets and learn a sequence feature through a combined clas-
sification and siamese loss function. Similarly, in [Yan16a], LSTMs are used to
aggregate features over tracklets. Xu et al. [Xu17] use a siamese architecture
and RNNs to fuse temporal and spatial information. Temporal information
in both directions is captured by Zhang et al. [Zha18a]. Liu et al. [Liu18a]
apply specialized sub-networks to consecutive frames to directly extract mo-
tion information, which is then fused with spatial information through RNNs.
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In addition to extraction of appearance features, recurrent models addition-
ally have the potential to extract and use gait information for the matching
process [McL16, Liu18a]. In [Var16b], Varior et al. incorporate LSTM mod-
ules into a siamese network. Rather than using temporal information, this
approach focuses on sequentially processing different parts of a single image
for matching persons.

Generative Adversarial Models (GANs) are a type of CNN with the ability to
generate or modify images. They are becoming increasingly popular and have
been used for re-id for several different applications. Zheng et al. [Zhe17b]
propose the first approach to use GANs for re-id. They generate additional
unlabeled person images using a GAN and assign artificial labels with equal
value for each person identity. Although the visual quality of the gener-
ated samples is low, an improvement in re-id accuracy can nevertheless be
achieved. In [Wei18a], Wei et al. generate images of the same person in differ-
ent poses to enhance the amount of training data. Two recent works [Zho18,
Den18] show the potential of style transfer GANs to re-id for cross-domain
learning or unsupervised domain adaptation. Person images are projected
from a labeled source domain to a target domain in which no identity labels
exist. Supervised models for the target domain can then be trained on the
projected images using the labels from the source domain.

2.1.1.4 Use of Attributes

Attributes have been of interest in person re-id for some time, due to their
directly interpretable semantics and demonstrated complementary informa-
tion to conventional image features [Lay12a, Lay12b, Lay14, Zhu15, Su15,
Su17b]. Initial approaches rely on a combination of attributes with conven-
tional image features through application of a combined distance measure
[Lay12a, Zhu15], multi-task learning [Su15], learning of a latent attribute
space [Su17b], or pre-training of attribute representations of fashion data,
which can then be transferred to surveillance data for re-id [Shi15].

Several recent works focus specifically on combining attribute information
with CNNs. Khamis et al. [Kha14] use a triplet loss architecture for re-id
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in combination with an attribute loss and leverage multiple data sources. In
[Mat16], fine tune CNNs for attribute recognition and employ metric learning
for subsequent person re-id. Recently, Lin et al. [Lin17] used a combination
of re-id and attribute classification losses to learn a joint representation for
person re-id. In [Su18], a three-stage process is proposed where attributes are
first learned on separate data, then fine-tuning of attributes for re-id is per-
formed on a re-id dataset, and finally a combined fine-tuning stage of attribute
classification is carried out on the combined data. Wang et al. [Wan18b] learn
a joint attribute and identity feature space, which is transferable to new target
domains.

2.1.1.5 Use of Pose and View Information

Variation in a person’s body pose can significantly alter visual appearance
and change the location of important cues for re-id inside the image. Thus,
including body pose or at least view angle information in a re-id approach
can often significantly improve the resulting feature representations. Several
approaches use pose information to design or learn improved features for re-
id. The popular SDALF descriptor by Farenza et al. [Far10] uses two axes
dependent on the body’s pose to derive a feature description with a degree
of pose invariance. Cho et al. [Cho16] define four view angles (front, left,
right, back) and learn corresponding matching weights to emphasize match-
ing of same-view person images. A more fine-grained pose representation
based on Pictorial Structures was first used in [Che11] to focus on matching
between individual body parts. More recently, the success of deep learning
architectures in the context of re-id has lead to several works that include pose
information into a CNN-based matching. In [Zhe17a], Zheng et al. propose to
use a CNN-based external pose estimator to normalize person images based
on their pose. The original and normalized images are then used to train a
single deep re-id embedding. A similar approach is described by Su et al. in
[Su17a]. Here, a sub-network first estimates a pose map which is then used to
crop the localized body parts. A local and a global person representation are
then learned and fused. Pose variation has also been addressed by explicitly
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detecting body parts through detection frameworks [Zha17b] or through key-
point detection [Wei17]. Li et al. [Li17b] use Spatial Transformer Networks
(STN) to learn and localize body parts in a CNN, which are combined with a
global feature through concatenation. Less explicit approaches rely on visual
attention maps [Rah17], or body part specific attention modeling [Zha17c]. A
recent work by Zheng et al. [Zhe17b] uses GANs to generate images of the
same person in new poses. The approach allows to create a dataset with uni-
formly distributed poses. The authors show that a lack of bias towards specific
poses can lead to a notable improvement in re-id accuracy.

2.1.1.6 Re-Ranking

Re-ranking approaches are based on the initial ranking result achieved by
any re-id method and aim to improve on this initial ranking. For this pur-
pose, further information is gathered for each element in the ranked list and
new distance values are computed, which often lead to an improved ranking.
Re-ranking methods work fully automatically and do not require any user in-
teraction or feedback. Re-ranking can be applied to the entire rank list or just
to first ranks, depending on available resources and time.

A common strategy for re-ranking is to rely on the top-k nearest neighbors
(k-NN) of each entry in the initial ranked list as additional information. For
re-ranking, pairs of images are then compared according to the similarity
between their neighborhood rank lists. The type of information or features
based on which such nearest neighbors are determined can vary widely be-
tween approaches. Shen et al. [She12] proposed one of the first approaches
to use k-nearest neighbors and produce new rank lists based on these. Other
works propose to jointly learn direct image content and context information,
i.e. neighborhood relationships, to remove candidates in the top neighbors
[Gar15] or revise the initial ranking with a new similarity obtained from fu-
sion of content and contextual similarity [Len15]. Relative information of
common nearest neighbors is first used for re-ranking by Li et al. in [Li12a].
Ye et al. [Ye15] determine common nearest neighbors based on global and
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local features as new queries and revise the initial ranking list by aggregat-
ing these into new ranking lists. Finally, in [Ye16], the use of similarity and
dissimilarity cues from neighbors of different baseline methods is proposed.

In contrast to common neighbors, several recent works [Jeg07, Qin11,
Zho17a] use reciprocal neighbors, i.e. common neighbors that reciprocate
with each other in a k-neighborhood. Most recent state-of-the-art re-ranking
methods are based on computing these neighborhood list comparisons using
a generalized Jaccard distance. To overcome the associated complexity of
computing intersection and unions of underlying variable-length lists, Sparse
Contextual Activation (SCA) [Bai16] encodes the neighborhood set into a
sparse vector and then computes the distance. A popular recent method
by Zhong et al. [Zho17a] uses k-reciprocal lists and computes the Jaccard
distance using an SCA encoding. This distance is then fused with the dis-
tance from the original ranking to obtain the final re-ranking. A recent
approach by Sarfraz et al. [Sar18b] relies on an expanded neighbor set and
defines a new distance for image pairs based on such sets. This expanded
cross-neighborhood (ECN) re-ranking approach does not require expensive
re-computation of rank-lists for each pair of images.

In the context of this thesis, the recent state-of-the-art re-ranking methods k-
reciprocal neighbors [Zho17a] and ECN [Sar18b] are used to further improve
re-id accuracy based on the initial results achieved by the proposed models.

In summary, most recent re-id methods rely on CNN-based models. Clas-
sification models and ranking models represent the two largest groups and
are generally equally powerful, although ranking models often require a lit-
tle more care with sample selection in the training process. Recent develop-
ments include combination of loss functions, inclusion of pose or body part
localization, and the use of attention mechanisms. Attribute information is
occasionally used and adds a more explicitly semantic aspect to re-id. Re-
ranking methods are frequently used in addition, which can improve ranking
results independently of the actual re-id approach.
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2.1.2 Datasets

The number of available datasets for re-id is large. With the onset of deep
learning and an increased research interest in the subject, the number and
size of datasets has increased significantly in recent years. This section will
review only the most well known or largest datasets. An overview is given in
Table 2.1.

Early re-id datasets are usually small, containing few person IDs and often
only two images of each person, recorded by two different cameras. An exam-
ple for this is the classical and most well studied re-id dataset, the VIPeR data-
set. It contains 632 identities, and two images for each identity. The evaluation
protocol requires to define 10 random train-test splits with 316 identities in
each set. Performance is then averaged across all splits. While VIPeR consists
of outdoor data, other classical datasets cover a range of scenarios, including
subway stations (GRID), airports (iLIDS), university campuses (CUHK01), or
shopping malls (CAVIAR).

Table 2.1 shows significant growth of datasets in recent years, in terms of
person IDs, number of images, and number of cameras or available images
per person. This is a promising trend, which has enabled widespread use of
deep learning methods in the field. Evaluation protocols have shifted to a pre-
defined set of re-id queries and a fixed gallery in which further instances of
the query persons have to be found. The conventional 𝑛-fold random split
is not practical for evaluation of CNN models, as re-training 𝑛 times is time
consuming and the increased size of recent datasets allows for large test sets,
which provide a sufficiently strong basis for stable empirical results. Another
recent development is the inclusion of bounding boxes, which are automati-
cally generated by person detectors. Early datasets often contain hand-drawn
bounding boxes, which are much more accurate than can be expected in a
practical system. The inclusion of automatically generated bounding boxes,
often by application of the popular DPM detector, thus helps in training more
robust and practically applicable models.

The two datasets, which are currently most frequently used in research, are
the Market-1501 and DukeMTMC-reID datasets. The Market-1501 dataset
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contains images from 6 cameras placed on a university campus. In total, 1,501
persons are recorded and split equally between the training and test split. The
boxes are generated with the DPM detector and annotated manually for per-
son IDs. For testing, the dataset contains additional distractor images in the
gallery, which fit to none of the test queries. The distractors include actual
person detections, as well as body-part detections, and even false positive de-
tections. The DukeMTMC-reID dataset has similar properties as the Market-
1501 dataset. Example images from both datasets, including distractor images,
are depicted in Figure 2.4.

Market-1501 DukeMTMC-reID

Figure 2.4: Example images from the Market-1501 and DukeMTMC-reID datasets. Rows show
images of the same person. The final row shows distractor images from each dataset.
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Another recent development is the emergence of datasets that provide more
realistic, special scenarios for re-id. TheMarket-1501 dataset provides an addi-
tional set of 500,000 distractor images, which can be used to better evaluate the
robustness of re-id methods for very large gallery sizes. Several datasets offer
tracklets, which allow for the evaluation of re-id methods in videos, instead of
single images, see Figure 2.5. The most prominent candidates here are MARS,
which is based on the same data as theMarket-1501 dataset, and DukeMTMC-
VideoReID, which is based on the same data as the DukeMTMC-ReId dataset.
The PRW and CUHK-SYSU datasets offer full camera images, instead of pre-
cropped person patches. This enables the evaluation of combined approaches
for person detection and re-id. In these datasets, query images are provided
pre-cropped but gallery images are full camera images. For re-id, persons
first have to be detected in the gallery images and these detections are then
matched to the query images.

In this thesis, the popular Market-1501 and DukeMTMC-ReId dataset are used
for evaluation of the proposed methods. In order to judge accuracies under
conditions that more closely resemble practical application, the Market-500K,
MARS, PRW, and CUHK-SYSU datasets are further used.

Figure 2.5: Example tracklets from the video-based MARS dataset.
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2.1.3 Metrics

The accuracy of a re-id approach is evaluated by the quality of the resulting
ranked lists. Specifically the rank positions of correct matches are assessed.
The most well known metric for this is the Cumulative Matching Character-
istic (CMC). Across a number of queries, the CMC reports the average prob-
ability of having encountered a correct match at each rank.

CMC(k) = 1𝑁 𝑁∑𝑖=1 1∑𝑘𝑗=1 𝑟𝑖𝑗≥1 (2.2)

where 𝑁 is the number of queries used for evaluation and 𝑟𝑖𝑗 is equal to 1, if
the rank list for query 𝑖 contains a correct match at rank 𝑗, and otherwise 0.
The CMC can be visualized as a curve over all ranks 𝑘 starting from the aver-
age frequency of encountering a correct match at rank 1 to a maximum value
of 1, which is achieved at the final rank 𝐾 or earlier. Due to the often small
differences between results of different methods and the redundant informa-
tion in exhaustively plotting CMC for all ranks, in practice rank accuracies
are often reported in tables. A frequent choice are rank accuracies at ranks
1, 5, 10, and 20. A rank-k accuracy corresponds to the average frequency of
queries, which contain at least one correct match between ranks 1 and k, and
is thus equivalent to 𝐶𝑀𝐶(𝑘).
While rank accuracies or CMC give a reasonable and easily interpretable im-
pression of the accuracy of a re-id approach, theywere originallymotivated by
use in ranking tasks, where only one correct result was present in the ranking.
Thus, for rankings with several correct results, they do not take into account
the distribution of additional correct matches after the first one. Furthermore,
rank accuracies and CMC do not represent a single, unified measure by which
to compare approaches. The mean average precision (mAP) is thus often used
in addition to rank accuracies. It is defined as

mAP = 1𝑁 𝑁∑𝑖=1𝐴𝑃𝑖, 𝐴𝑃𝑖 = 1∑𝐾𝑗=1 𝑟𝑖𝑗 𝐾∑𝑗=1 𝑟𝑖𝑗 ∑𝑗𝑙=1 𝑟𝑖𝑙𝑗 (2.3)
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where again 𝑟𝑖𝑗 is 1, if the rank list of query 𝑖 contains a correct match at rank𝑗, and otherwise 0. 𝐾 represents the length of a ranked list, i.e. the number
of samples in the gallery. The average precision (AP) takes multiple correct
matches into account by computing a precision value at each position in a
ranked list, where a correct match is encountered, and normalizing the sum
of these precision values by the overall number of correct matches within
the given ranked list. Thus, if all correct matches are consecutively at the
first positions of the ranked list, i.e. an ideal result is achieved, the precision
at each position is 1 and the AP is also 1. If this is achieved for all queries
considered during evaluation, the mAP has a maximum possible value of 1.
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2 Related Work

2.2 Attribute Recognition

Attribute recognition is a less popular computer vision task compared to re-id.
Nevertheless, in recent years a growing number of approaches and datasets
focus specifically on the topic. Since attributes are often only discernible by
small visual details, the challenges faced by attribute recognition approaches
are similar to those of re-id methods. An added challenge is posed by the
strong imbalances in the data. While re-id datasets often contain a similar
number of images for each person ID, attribute recognition datasets often
have very strong imbalances between the number of positive samples for the
different attribute classes. Furthermore, each attribute generally has a much
larger number of images where the attribute is absent, i.e. negative samples,
than images where the attribute is present, i.e. positive samples. This sec-
tion first gives an overview of the related literature on the subject of attribute
recognition and then describes existing datasets, as well as metrics used for
evaluation of approaches.

2.2.1 Existing Methods

Attribute classification is a multi-label classification task. A straightforward
way to address this is by relying on the extensive single-label classification
literature and training a separate classifier for each attribute. Several early
works follow this direction. Sharma et al. [Sha11] apply this approach by us-
ing spatial histogram features in conjunction with a maximum margin opti-
mization to learn each of the attribute classes. Similarly, Layne et al. [Lay12a]
and Deng et al. [Den15] use Support Vector Machines (SVMs) and a set of
color and texture features to classify each attribute. Due to the independent
classification of attributes, such approaches cannot directly leverage seman-
tic relations between attributes. Thus, in [Bou11] an additional layer of SVM
classifiers is employed to take these relationships into account. Following
the same motivation, Chen et al. [Che12] refine initial attribute predictions
through a Markov Random Field (MRF), which models attribute relationships.
However, classification of attributes by individual classifiers does not scale
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well for larger amounts of attributes. More recent approaches thus often rely
on a single model to recognize all attributes. The majority of these are based
on deep learning methods and can be grouped into several categories.

Global methods focus on directly processing the entire person image. Ini-
tial models rely on features extracted by CNNs, such as AlexNet, and classify
attributes by using one loss function for each attribute [Sud15]. While this
approach allows for better scalability, it does not directly solve the issue of at-
tribute relationships. To address this, the MTCNN model [Abd15] introduces
a shared layer before the separate loss functions, which helps to propagate
information between the different attribute branches. A joint loss function
for an entire set of attributes was first applied in [Li15]. The sigmoid cross-
entropy loss is used and specifically modified to address the strong imbal-
ances between different attributes. This joint loss is shown to result in better
accuracies than individual loss functions. A similarly adapted loss function is
employed in [Yu16]. Additionally, the authors use a multi-scale feature rep-
resentation by relying on side-branches from different depths in the network.
The accuracies achieved by global methods suffer from the fact that attributes
are often located in small image regions, which may not be well represented
in the internal feature space of a global CNN.

Part-based methods address this issue by including local parts into the classifi-
cation model. This can be achieved by relying on external body part detectors
and learning an attribute classifier for each body part [Zha14] or by diving
the image into a fixed grid of patches [Zhu15]. In contrast to this, the AAWP
model proposed by Gkioxari et al. [Gki15] trains both a part detector and an
attribute classifier model. Similarly, in [Dib16] discriminative image patches
are mined based on clustering and attribute classifiers are trained on the re-
sulting patches. While these models are trained for patch localization and
attribute classification on the same data, the two steps are not trained jointly.
The first jointly trained end-to-end model for part-based attribute recognition
is proposed in [Yan16b] and consists of a part-bounding-box generator and a
set of separate softmax classification losses for the attributes. A very simi-
lar end-to-end approach is proposed in [Li18a], where parts are detected in
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part of the network and attribute classification is carried out on a concate-
nated feature representation of all patches using a multi-class cross entropy
loss. Besides local parts, scene context information is additionally included in
model proposed by Li et al. [Li16b]. Local part information, global informa-
tion, and scene information are fused by addition in a single network and used
for attribute recognition through a single multi-class loss function. While all
of these methods rely on local parts for attribute recognition, most of them
contain a global network branch or a part that represents the whole image.
Thus, the combination of local and global information is an important aspect
of robust attribute recognition methods.

Attention-based methods follow a similar motivation as part-based methods.
Attention mechanisms provide a convenient option to force a network to fo-
cus on certain important local areas. In contrast to part-based approaches,
an attention mechanism can be more flexible in that it has more freedom in
learning which areas are relevant for a given task. Furthermore, attention
mechanisms do not require the hard and potentially error-prone decision of
cropping image regions, which is required in patch-based approaches. Only
a few approaches thus far employ attention mechanisms for attribute recog-
nition. The HydraPlus-Net [Liu17b] applies an attention mechanism at three
different levels in the network, which represent different levels of semantic
information. A similar approach is proposed in [Sar18a]. Here, an attention
mechanism is applied at two different locations within the network. In con-
trast to the HydraPlus-Net, attention is applied directly on the feature map
based on which it was computed. In [Guo17] the attention mechanism is sep-
arated into a sub-network. Attention is computed based on the final layer of
the main attribute branch. Due to the low spatial information in that final
layer, a refinement of the attention map is applied and a specialized loss func-
tion measures the suitability of the resulting attention map. In all of these
cases, self-attention is applied, i.e. the attention mask is computed directly
from layers of attribute recognition network. Similar to part-based methods,
all attention approaches combine the attention mechanism with a global fea-
ture branch.
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Recurrent methods employ sequential CNN models, such as RNNs or LSTMs.
The use of such models often aims at better capturing relationships, such as
co-occurrences, between different attributes by either applying a recurrent
network for all attributes globally [Wan16] or an individual recurrent ele-
ment for different body regions [Wan17, Zha18b]. However, the latter two
approaches rely on predetermined separations of body regions, which, simi-
lar to the previously described patch-based methods, can have a negative im-
pact on performance. Thus, in [Liu18b] a joint approach is proposed, which
combines an attention model with recurrent network elements. Amain draw-
back of recurrent models for attribute recognition is their runtime, due to the
staged attribute prediction.

A number of further methods exist, which consist of more unique approaches
and do not easily fit into the larger categories. This includes the PatchIt ap-
proach [Sud16], which improves pre-training of networks by cropping person
images into patches and pre-training the network to determine the original
location of patches within the person image. In [Lu17b] a method is proposed
which gradually splits network elements during multi-task attribute recog-
nition, so that attributes with high synergies remain in the same layers and
attributes without synergies get split into different network branches. The
methods described in [Don17, Sar17a] employ curriculum learning, which fo-
cuses on learning easy tasks first and gradually add to the difficulty. Gener-
ative Adversarial Networks (GANs) have recently been applied for attribute
recognition in order to increase image resolution and de-occlude body parts
[Fab17].

In summary, attribute recognition approaches have moved from purely global
approaches which address each attribute separately to methods, which com-
bine global and local information and address relationships between attributes
by either sharing elements of the model between all attributes or jointly pre-
dicting all attributes. Attention mechanisms are a promising direction, since
they avoid hard decisions of cropping out image regions, which may lead to
missed visual details.
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2.2.2 Datasets

A growing number of computer vision datasets focus specifically on person or
pedestrian attribute recognition. An overview is given in Table 2.2 The num-
ber of annotated person images, as well as the number of annotated attributes,
has increased significantly over time. While initial datasets contained only a
few thousand images and tens of attributes, more recent datasets approach
100,000 images with more than 60 annotated attributes.

Most attributes are annotated as binary values, i.e. present or not present.
Examples for such attributes are male, long-hair, hat, sunglasses, pullover,
jeans. Some dataset additionally offer multi-valued (multi-class) attributes.
These most frequently include colors, textures, or in some cases the orien-
tation of the person towards the camera (view angle). Attributes from the
existing datasets can be grouped into several categories:

• Soft-Biometrics refer to weak biometric cues that describe a
person’s identity. These are attributes that are directly associated
with the person and not easily changed. Examples include gender,
hair color, hair style, skin color.

• Clothing Attributes are by far the largest category of attributes and
describe a person’s clothing types, colors, textures, or accessories.
Examples include hat, sneakers, jeans, pullover, upper-body-color,
lower-body-color, hand-bag, suitcase.

• Activity Attributes Some datasets, such as RAP, additionally
provide attributes relating to a person’s acitivity. Examples include
talking, carrying, or telephoning.

• Situational Attributes refer to additional properties specific to the
current recording conditions. Primarily, this includes the view angle
of the person or annotation of occluded areas.

Besides their semantic differences, these categories also reflect the temporal
persistence of the different types of attributes, which is important for their
application in re-id . Soft biometrics can be expected to remain the same dur-
ing the timeframe relevant for most re-id applications. Clothing attributes are
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more easily altered but often remain stable. Activity attributes may change
frequently and situational attributes are almost certain to change between
different recordings.

Several attribute recognition datasets are at least partly created from re-id
datasets. This includes the PETA, Market-1501, and Duke-MTMC datasets.
This constellation allows for training of joint attribute and re-id models on the
same dataset. However, such models learn to expect an unusually high accu-
racy in attribute predictions and thus do not transfer well to other datasets.
Furthermore, in practical applications, attribute annotations are not readily
available and very costly to annotate. Thus, an attribute recognition model
will have to be trained on separate data and when used for re-id, the re-id
approach will require a mechanism to handle potential errors in the attribute
predictions.

An important issue with binary annotated attributes is annotation uncer-
tainty. As attributes can often be difficult to make out in low resolution
surveillance imagery, annotators are often unsure, if an attribute is actually
present. In several cases wrongly cropped person images, viewpoints, or oc-
clusions can lead to attributes not actually being visible in the image. Most
datasets nevertheless require a binary choice, which leads to noisy annota-
tions. Exceptions to this are the PARSE27K, APiS, BAP, and CAD datasets,
which contain a third possible attribute value to mark uncertainty or non-
visibility. In cases where person IDs are available in the data, e.g. Market-
1501 or Duke-MTMC, attributes are often annotated at ID-level. It may, how-
ever, be the case, that different recordings of the same person show different
attributes, as not all attributes are persistent over time. Thus, annotation qual-
ity of attribute datasets is often lower than that of re-id datasets.

In the context of this thesis, the PETA, RAP,WIDER, and PA-100k datasets are
chosen for training and evaluation of the proposed methods. These choices
are motivated primarily by the large number of available attributes (PETA,
RAP) or the amount of available images (PA-100K). The majority of datasets
focuses on surveillance data and is thus biased towards the typical upright
body pose of pedestrians. The WIDER dataset is additionally chosen because
it contains a wider range of body poses and thus allows for a better impression
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of the proposed method’s accuracy under this additional challenge. Several
example images of these datasets are depicted in Figure 2.6.

Figure 2.6: Example images for some of the attributes of the PETA, RAP, and WIDER datasets.

2.2.3 Metrics

One of the most widely used metrics to evaluate the accuracy of attribute
recognition methods is the mean accuracy (mA). Due to the imbalances in
positive and negative values for most attributes, these are considered sepa-
rately:

mA = 12𝐶 𝐶∑𝑖=1(𝑇𝑃𝑖𝑃𝑖 + 𝑇𝑁𝑖𝑁𝑖 ) (2.4)

where C corresponds to the number of attributes and TPi and TNi are the
number of correctly predicted positive and negative examples, respectively.
Pi and Ni refer to the total number of positive and negative examples in the
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data. Considering accuracy of negative and positive values separately penal-
izes models, which are biased to predict only the more frequently occurring
of the two values. Due to the strong imbalance between the values, a constant
negative prediction would otherwise result in a high accuracy. In addition to
mA, a corresponding version of mAP can be applied for attribute retrieval as
well:

mAP = 1𝐶 𝐶∑𝑖=1𝐴𝑃𝑖, 𝐴𝑃𝑖 = 𝑇𝑃𝑖𝑃𝑃𝑖 (2.5)

where 𝑃𝑃𝑖 is the number of positive predictions for attribute 𝑖.
However, these metrics regard attributes independently of each other and
do not take correlations or relationships between attributes into account. A
method with high mean accuracy may thus still generate attribute descrip-
tions of people that contain strong inconsistencies. To address this issue, Li
et al. [Li16a] introduced several new metrics, which aim at better represent-
ing the semantic consistence of attributes for an average sample image. Since
these new metrics focus on correctness of the attribute description for en-
tire images, they are termed example-based metrics, while measures treating
attributes independently are called label-based. The example-based metrics
adapted in [Li16a] are well known from other computer vision tasks, such as
object detection, and include accuracy, precision, recall and F1 score:

Acc = 1𝑁 𝑁∑𝑖=1 |𝑌+𝑖 ∩ 𝑓+𝑎𝑡𝑡(𝑥𝑖)||𝑌+𝑖 ∪ 𝑓+𝑎𝑡𝑡(𝑥𝑖)| (2.6)

Prec = 1𝑁 𝑁∑𝑖=1 |𝑌+𝑖 ∩ 𝑓+𝑎𝑡𝑡(𝑥𝑖)||𝑓+𝑎𝑡𝑡(𝑥𝑖)| (2.7)

Rec = 1𝑁 𝑁∑𝑖=1 |𝑌+𝑖 ∩ 𝑓+𝑎𝑡𝑡(𝑥𝑖)||𝑌+𝑖 | (2.8)
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F1 = 2 ∗ 𝑃𝑟𝑒𝑐 ∗ 𝑅𝑒𝑐𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐 (2.9)

where 𝑁 represents the number of images, 𝑌+𝑖 the positive labels of the 𝑖-th
image, and 𝑓+𝑎𝑡𝑡(𝑥𝑖) the predicted positive attributes for this image. |⋅| denotes
the set cardinality.

2.3 Deep Learning

Neural networks have been used in computer vision and related search areas
for a long time. They have progressed through several evolutionary stages
over the years and their most recent form is often termed Deep Learning
[Sch15a], due to the large number of network layers that have become possi-
ble with the advancement of the required hardware. Themost popular variant
of neural network currently applied to many computer vision task is the Con-
volutional Neural Network (CNN). The widespread use of CNNs started with
the AlexNet model [Kri12], which, in 2012, achieved significantly improved
accuracy in the ImageNet classification challenge [Den09]. The challenge re-
quires the classification of images into one of 1000 classes of diverse objects.
The success of AlexNet in this task was an initial indicator for the ability of
CNNs to capture a large and diverse number of image contents and thus ad-
dress a wide variety of computer vision tasks.

2.3.1 The Multi Layer Perceptron

Themost common basic unit in a neural network is the perceptron [Ros58]. A
perceptron accepts an arbitrary number of 𝑛 input values, generally provided
as an 𝑛-dimensional vector x ∈ ℝ𝑛. The scalar output 𝑦 of the perceptron is
defined as a weighted sum, passed through an activation function:𝑦 = Φ(w𝑇x + 𝑏) (2.10)
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with weight vector w ∈ ℝ𝑛, optional bias term 𝑏, and activation function Φ.
The set of weightsw and the bias value 𝑏 are the free parameters learned dur-
ing training neural networks. The purpose of the activation function Φ is to
introduce a non-linearity, as even a combination of many perceptrons would
otherwise only be capable of learning purely linear decision functions. Typical
choices for the non-linearity Φ are the sigmoid function, the hyperbolic tan-
gent, or, most frequently, the Rectified Linear Unit (ReLU), Φ(𝑥) = 𝑚𝑎𝑥(0,𝑥)
[Kri12].

Σ
xn wn

x1 w1

...

b

Φ y

Figure 2.7: A single perceptron with input vector x, parameters w,𝑏, and output 𝑦.
While a single perceptron is limited in its ability to approximate a decision
function, the combination of many such units as sequential layers, called
a Multi Layer Perceptron (MPL), can accurately approximate very complex
functions. Within an MLP sets of perceptrons form layers, with the inputs of
each perceptron in layer 𝑖 connected to the outputs of all perceptrons in the
previous layer 𝑖 − 1. Thus, these layers are often referred to as fully connected
layers. The output of a fully connected layer 𝑖 is defined as:

h𝑖 = Φ(W𝑖h𝑖−1 + b𝑖) (2.11)

where h0 would be the input to the network, e.g. an image or feature vector,
and h𝑁 for final layer 𝑁 would be the output of the MLP. Note that the num-
ber of trainable weights in each layer corresponds to the product of outputs
from the previous layer and the number of elements in the given layer. Fully
connected layers can thus significantly increase the number of parameters of
a neural network.
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Figure 2.8: A multi layer perceptron (MLP) with two input neurons, two intermediate layers
with three neurons each, and a single output neuron.

2.3.2 Convolutional Neural Networks

Convolutional network layers aim to reduce the number of parameters re-
sulting from high-dimensional inputs, such as images. This is achieved by
setting two important restrictions on the numbers and values of weights in
the convolutional layer (see Figure 2.9). First, a neuron in the layer 𝑖 is only
connected to a local neighborhood of neurons in the previous layer. The size
of this neighborhood is a design parameter of the convolutional layer. Fur-
thermore, the weights of all neurons in the convolutional layer is forced to be
the same. These two restrictions lead to a notably reduced number of weights
in convolutional layers. Essentially, a convolutional layer describes a filter
kernel with a size corresponding to the local neighborhood, which is applied
at each location of the output of the previous layer. The local neighborhood is
often referred to as the receptive field. Convolutional layers are well suited to
process 2-dimensional representations, such as images, since they maintain
the spatial structure. Often, a single convolutional operation does not cap-
ture sufficient information from the previous layer. In order to address this, a
convolutional layer can consist of multiple channels. Each channel is free to
learn a different set of weights, and thus a different convolutional operation.
Due to its spatial nature, the output of a convolutional layer can be referred
to as a feature map where the map spans across the spatial dimensions and at
each location contains a feature vector with a dimension equal to the number
of channels in the layer.
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Figure 2.9: Comparison of connections, i.e. weights, of a fully connected layer (left) and a con-
volutional layer with a receptive field of size 3 (right). The number of weights is
significantly reduced in the convolutional layer. Edge colors of the convolutional
layer indicate matching weights. In practice, padding elements (light blue) corre-
sponding to half the size of the receptive field are introduced to prevent a decrease
in the output dimension of convolutional layers.

CNNs are networks comprised of one or more convolutional layers. In such
networks, convolutional layers are often followed by non-linearity layers,
such as ReLU, to better approximate complex objective functions. Further-
more, pooling operations, which aggregate outputs within patches across spa-
tial dimensions are used to decrease the number of overall parameters in net-
works with several layers. Typically, a pooling layer is parameterized to com-
bine a 2 × 2 local neighborhood into a single output value by either max- or
average-pooling.

2.3.3 Loss Functions and Optimization

For training a CNN model, an objective function, or loss function, is required.
The loss function compares the predicted values of the network to the ground-
truth and computes an error measure. The aim of the training process is
to minimize this error by use of the gradient of the loss function, which is
back-propagated through all layers of the network and used to update the
weights in a corresponding direction. A typical optimization method for this
is stochastic gradient descent (SGD). In SGD, a small, randomly chosen, part
of the training data, called a batch, is used to calculate an approximation of
the real gradient of the objective function with respect to the current net-
work parameters. In each iteration of the training process, a different batch is
chosen and a small modification is applied to the parameters of the network,
depending on the value of the approximated gradient. The learning rate of
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the training process specifies how large this step is in relation to the gradient.
In this way, the resulting values of all parameters in the network ultimately
depend on the gradient of the loss function. The choice of a proper loss func-
tion can thus have a significant impact on the outcome of the training and the
properties of the learned representations in the network.

Within the context of person re-identification two types of loss functions are
frequently employed.

• Classification Loss: Classification loss functions are the established
choice for many computer vision problems. In this case, the final
layer of the network is designed to have as many output neurons as
there are classes to be recognized. In case of the ImageNet challenge
this would correspond to a 1000-dimensional final layer. For re-id the
number of different persons in the training data is chosen. The
standard choice for a classification loss function is the softmax cross
entropy loss [Dud12].

• Ranking Loss: Ranking losses require more than one image as
input during training of the network. Ranking losses optimize
distances between feature representation of object class images. This
is generally achieved my forcing the feature distances between
images of the same class to be small and distances between images of
different classes to be large. A typical representative of this class is
the triplet loss [Wei09].

2.3.4 CNN Training Practices

The training of CNNs is a complex process which requires many design
choices in order to achieve a stable convergence and high accuracies in the
targeted computer vision task.

A proper initialization of network weights at the beginning of the training
process is often very important. This is particularly the case, when only lim-
ited amounts of training data are available and the used network architecture
contains many parameters. The weights of models trained for the ImageNet
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challenge or on related very large datasets are a popular choice for initializa-
tion. The diverse set of classes in the ImageNet challenge results in models
which can be adapted to a large variety of tasks. Random initialization of
weights and training from scratch offers more flexibility in the design of new
network architectures but often leads to less optimal results, due to conver-
gence to local minima or unstable training caused by vanishing or exploding
gradients.

Besides stochastic gradient descent with a fixed learning rate, several other
optimization methods exist, which aim at providing an adaptive learning rate.
A simple and frequently used addition is momentum, where a fraction of the
previous update of a network parameter is added in the next update step.
Thus, in case of consistent gradient slope over several iterations, the size of
the steps taken in the direction of the gradient become increasingly larger
or, in other words, gain momentum. Besides SGD with momentum, several
othermethods for dynamically adapting the learning rate have been proposed,
including AdaDelta [Zei12], RMSprop, and Adam [Kin14]. Particularly the
latter, Adam, often leads to good results in practice and avoids time consum-
ing training of several networks with vanilla SGD and various learning rate
schedules.

Due to their large number of parameters, overfitting, i.e. an over-adaptation to
the observed training samples, is a common problem with CNNs. To address
this, regularization methods can be employed. A frequently used method to
prevent overfitting is weight decay. Weight decay introduces a gradual decay
to each weight by reducing it by a small fraction of its current value. This
prevents overly large weight values, which otherwise dominate the output of
the network. Another popular option to regularize neural networks is dropout
[Sri14]. Here, neurons of certain layers are deactivated during training with
a specified probability. This prevents forming of critical paths through the
network and induces the network to learn redundant representations for the
given task. Dropout is best suited for application in network regions where
most of the parameters are located, i.e. usually in fully connected layers near
the end of the network.
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With increasing depth of a network, the gradient signal can become less sta-
ble, leading to vanishingly small or exploding gradient values. To prevent this
and achieve a more stable training of deeper and more expressive networks,
batch normalization has been proposed [Iof15]. Layer outputs are normalized
through the learned parameters 𝛼 and 𝛽:

h𝑖 = 𝛼𝑖h𝑖 + 𝛽𝑖. (2.12)

These parameters are learned in such a way that the resulting output feature
map has zeromean and unit variance. When initialized as𝛼 = 1 and 𝛽 = 0 the
above equation corresponds to the identity. For application during test time,
the parameters computed across the entire training population are used.

Data augmentation is a popular method to further aid in the training of CNNs.
With the onset of deep learning many computer vision subject areas suffered
from a lack of large datasets to successfully train CNNs. Augmenting training
data by applying small transformations to the input images during training
can be an efficient way to avoid overfitting to small datasets. Common data
augmentation transformations, which were used in the ImageNet challenge
[Kri12, Sim14], include small image translations, horizontal image flipping,
or introduction of color shifts. Data augmentation does not only improve
generalization capabilities of the resulting models but can also be introduced
to specifically develop robustness towards the applied transformations in the
resulting model. For example, artificial introduction of Gaussian noise can
increase the model’s ability to handle noisy surveillance data.

2.3.5 CNN Architectures

Since the development of early CNN models, such as AlexNet, several land-
mark architectures and design choices have been proposed. Often these meth-
ods have been the winning entries in the ImageNet classification challenge
[Den09] and have subsequently been fine-tuned and adapted to a number of
other tasks.
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• After the initial success of the AlexNet architecture [Kri12], the VGG
networks [Sim14] were the first to rely strongly on smaller
convolutional filters (see Figure 2.10 (a)). A sequence of 3×3
convolutions can result in the same receptive field as a single larger
convolution while also saving parameters. For example two 3×3
convolutions have the same receptive field as a single 5×5
convolution and use fewer parameters. The VGG architectures apply
many such 3×3 sequences resulting in a single-path network with a
very large number of parameters. While the VGG architecture
achieved better results than previous approaches, the resulting
models have large numbers of parameters which make a successful
training on smaller datasets for fine-grained classification
challenging.

• A Residual Network [He16], shortened ResNet, is a neural network
architecture which solves the problem of vanishing gradients by
providing elements of the network with an identity shortcut, which
helps to robustly backpropagate the gradient signal (see Figure 2.10
(b)). These shortcuts also help to simplify the learning task, because
the residual element only has to learn an offset to its input, due to
the addition operation at the end, and no longer a full feature
transformation. The shortcuts thus allow for a successful and robust
training of much deeper architectures than previously possible.
Convolutions of size 1×1 can be applied to reduce the number of
channels inside a network element which allows for training of even
deeper networks with a reasonable number of parameters. Such 1×1
convolutions are often called bottleneck layers.

• Following the idea of identity shortcuts for a more robust training,
Dense Networks or DenseNets [Hua17] connect every layer to
every other layer inside a block. The element-wise addition used in
ResNets is replaced by a concatenation operation which maintains
the individual information of both the input and the skipped layers
(see Figure 2.10 (c)). In this way, there is always a direct route for the
information backwards through the network. Similar to other
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state-of-the-art architectures, DenseNets use 1×1 convolutions as
bottlenecks before each 3×3 convolution to reduce the number of
input channels and to improve computational efficiency.

• The inception module was first applied in the GoogLeNet model
[Sze15] and follows ideas by Lin et al. [Lin13]. Rather than relying
on the traditional approach of single-path networks which stack
convolutional and pooling layers in a sequential structure without
branching, GoogleNet uses a more complex deep network element,
termed inception module. The inception module consists of parallel
paths of 1×1, 3×3, and 5×5 convolutional filters, which are combined
through concatenation (as depicted in Figure 2.11 (a)). Each branch
results in a different receptive field. This multi-scale view on the
input of the module allows the model to recover both local features
via smaller convolutions and features with more context through
larger convolutions. Bottleneck layers are used to reduce the number
of channels before more complex convolutions. Later approaches
combined the inception module with residual connections [Sze17] or
studied variations of the inception architecture by making it deeper
and wider, increasing the number of inception modules and
simplifying the architecture. These modifications are combined into
the Inception-v4 architecture [Sze17]. Similar to previous versions,
this latest inception architecture does not use convolutions larger
than 3×3, and uses factorization to replace large 7×7 filters with a
pair of 1×7 and 7×1 convolutional layers.
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(a) (b) (c)

Figure 2.10: Basic building blocks of (a) the VGG architecture [Sim14], (b) the ResNet architec-
ture [He16], and (c) the DenseNet architecture [Hua17].

(a) (b)

Figure 2.11: (a) An inception block as used in the GoogLeNet architecture [Sze15] and (b) a
building block of the Inception-ResNet architecture [Sze17].
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Chapter 3

Concept

A several stage long pipeline is required to enable person re-identification in
surveillance camera footage (Figure 3.1).

Based on raw video footage, persons first have to be detected within image
frames of individual cameras. Then, a tracking approach can be used to con-
nect detections over time. The resulting person tracks are transformed into
feature representations, which are finally matched to determine the visual
similarity of the depicted persons. Typically, only the latter two stages are
referred to as the actual re-identification (i.e. the black-dashed part in Figure
3.1). This thesis focuses primarily on those stages although the effects and po-
tential errors, which occur in the detection and tracking stages, are addressed
as well.

Two research directions are explored in this work in order to develop robust
re-id models that are able to cope with errors from previous stages of the
pipeline:

• The explicit inclusion of added information into the learning process
for a re-id feature representation can help to guide and improve the
learning process. In the context of this thesis, semantic attribute
information, as well as person pose information have been identified
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Figure 3.1: Full re-id pipeline in a practical setting. In surveillance cameras persons have to be
detected and potentially tracked across time. Re-id features can then be extracted and
stored. This process can happen offline, i.e. before any re-id query is made. Such a
re-id query is provided in form of a person image or track. The feature representation
for the query is computed and then matched against the stored database of features.
The result is a list of persons ranked by similarity to the query image.

as highly useful additional information, which can increase
robustness to many of the challenges discussed in Chapter 1.

• Achieving a degree of online adaptation of re-id methods to new
scenes or cameras can greatly ease deployment of a re-id system in
real world scenarios.

Figure 3.2 depicts how these research directions fit into the concept and struc-
ture of this thesis, resulting in two final models for within-dataset and cross-
dataset re-id.
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Figure 3.2: Concept and structure of the thesis. The green re-id models are developed and evalu-
ated for a within-dataset setting, while the blue model specifically addresses the case
of model deployment on data with new and unknown characteristics. The attribute
model, which provides attributes or related information for re-id, is marked in red.

3.1 Semantic Attributes

Semantic attributes, often simply referred to as attributes, are a popular de-
scriptor of a person’s appearance (see Section 2.2) and several advantages
make attributes a popular addition in re-id. They add a valuable semantic
component to the feature representation, which is directly interpretable by
humans. Thus, they can help to increase the interpretability of a re-id result,
e.g., by providing insight into why a certain person image was ranked higher
than others in the resulting ranked list of a given query. Attributes can further
capture information, which may not be contained in conventional re-id fea-
tures, because they often describe small details of persons that are only visible
in localized areas of the image. Given an accurate attribute classification, the
robustness of a re-id method to illumination and varying sensor characteristics
can also be improved by relying on attributes.

In order to include attributes into a CNN-based re-id approach, this thesis first
proposes a new model for automatic attribute recognition, which achieves
state-of-the-art accuracies. The model consists of a CNN architecture which
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relies on a combination of global and local information to recognize even those
attributes that are only visible in very small areas of the image. The result-
ing attribute descriptions are then introduced into the learning process of a
re-id CNN through a modified version of the triplet loss. The proposed loss
function uses the attributes to guide the learning process of a re-id feature in
such a way that information complementary to that already contained in the
attributes is emphasized. The resulting combination of attributes and comple-
mentary features shows a clear improvement over direct re-id representation
learning with CNNs, as well as conventional feature fusion methods.

3.2 Pose and View

A person’s body pose can be efficiently described by a set of keypoints corre-
sponding to the body joints in the image. Pose information provides a more
precise localization of the person in an image, compared to bounding box de-
tections. Explicit inclusion of pose information into a re-id system can help to
improve robustness to variation in body pose. A detailed pose description can
also contain information on the camera view relative to the person, i.e., if a
person is depicted from the front or back. Partial occlusions by other people or
scene elements can be recognized as missing keypoints in the pose represen-
tation and small details on limbs may be better located in the feature learning
process. Explicit pose estimation in the re-id stage further helps to identify
and to some extend mitigate errors caused by the previous stages of person
detection or tracking.

Person pose estimation based on keypoints is a problem which is well ad-
dressed in existing literature. This thesis thus relies on established pose esti-
mation models [Cao17, Ins16]. However, in addition to a keypoint based pose
representation, a CNN model for estimation of a person’s view relative to the
camera is developed. Both types of pose information are included into a re-id
CNN model to help guide the learning process. View and pose are shown to
be complementary and can improve re-id accuracy significantly. The combi-
nation of pose- and attribute-based information into a final model improves
accuracy even further and performs well on several realistic settings, such
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as video-based re-id, large gallery sizes, and application in conjunction with
person detectors.

3.3 Adaptive Re-Id

The ability to adapt to new characteristics of unseen scenes or changes within
existing camera networks can significantly reduce the deployment effort for a
real-world re-id system. The typical approach to this is unsupervised domain
adaptation, where a model is adapted to new scenes by use of unannotated
images, which are often readily available. However, the adaptation process
may still take a lot of time and suffer from biases in the data used for the adap-
tation. Furthermore, frequent changes in camera positions, camera replace-
ments, addition of new cameras, or changes in fashion trends may require
renewed adaptation.

Thus, in this work an approach is proposed, which does not require any new
training data and adapts itself dynamically at query level. This is achieved by
selecting one of several models, which are each adapted to a specialized set of
scene and person characteristics, so-called prototype domains. The adaptation
requires only a matching of the query image to the model candidates and does
not result in significant delays in runtime. Besides amore convenient practical
use, adaptation at the level of each individual query may even improve the
scalability to a larger number of persons in the gallery. The proposed approach
is evaluated in a cross-dataset setting, which simulates deployment in new and
previously unseen surroundings.
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Chapter 4

Attribute Recognition

Theautomatic recognition of person attributes, such as gender-male, wearing-
backpack, wearing-scarf, suitcase, etc., in surveillance footage is a challenging
problem. As depicted in Figure 4.1, the relevant visual cues required to decide
on the presence of an attribute are often only observed within small regions of
the person image. The low resolution and image quality of surveillance data
pose challenges. Furthermore, changes in viewpoint, a person’s pose, and
possible alignment errors resulting from a previous person detection stage
can lead to strong variations in attribute appearance and location. This chap-
ter describes a CNN architecture, which addresses these problems through
a pose-guided attention mechanism and shows robust attribute recognition
results on several public datasets.
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Figure 4.1: Challenges of attribute recognition include low image quality, occlusions, high visual
variation, and different location and appearance of attributes depending on view and
person pose.

4.1 Pose-Attention for Attribute Recognition

Visual attention mechanisms have recently been used for several computer
vision tasks, particularly those involving small image details, such as fine-
grained classification, re-id, or attribute recognition. An attention mecha-
nism is usually implemented as learning a map of weights, which are then
multiplied to the main feature maps of a network. The weights range from 0
to 1 and can thus emphasize certain areas in the feature map while reducing
the influence of others. Existing approaches typically employ self-attention,
which relies on computing the attention map directly from the feature map it
is then applied to. In contrast to this, the proposed approach relies on deriv-
ing the attention map from external information, namely from a body pose
estimation result. In a practical application, such information may be readily
available, if the detection stage prior to the attribute recognition model re-
lies on a body pose detector, instead of a bounding-box based detector. The
motivation for this pose-attention approach lies in the observation, that the
location of most attributes does not strongly depend on the visual appear-
ance of a person, but rather their body pose. The hypothesis is thus, that
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Figure 4.2: The proposed pose-attention attribute recognition architecture. As an example, the
ResNet-50 CNN is used as a backbone model. The pose attention module is depicted
in detail in Figure 4.3.

pose information is sufficient for attribute localization and may actually be
better suited than self-attention to aid in attribute recognition. A high-level
overview of the proposed attribute recognition architecture is given in Figure
4.2.

Let I denote an input person imagewith ground-truth labels y = [𝑦1, 𝑦2, … ,𝑦𝐶]𝑇
and P a suitable spatial representation of the person’s pose. 𝐶 corresponds
to the number of attributes in the given dataset and 𝑦𝑖 is a binary label with
value 1, if the attribute is present in the image and value 0 otherwise. If the
attention mechanism is to be applied to a backbone CNN after layer 𝐾, then

X𝐾 = 𝑓𝐾(I; 𝜃𝐾), X𝐾 ∈ ℝ𝑛×𝑛×𝑗
X𝑝𝑜𝑠𝑒 = 𝑓𝑝𝑜𝑠𝑒(P; 𝜃𝑝𝑜𝑠𝑒), X𝑝𝑜𝑠𝑒 ∈ ℝ𝑛×𝑛×𝑙 (4.1)

where X𝐾 represents the feature map output at layer 𝐾 and X𝑝𝑜𝑠𝑒 denotes
a feature derived from the pose information through a separate branch of
equal spatial dimension 𝑛 × 𝑛. 𝜃𝐾 and 𝜃𝑝𝑜𝑠𝑒 represent the parameters of the
backbone architecture until layer 𝐾 and the pose branch, respectively. Two
separate 1 × 1 convolutional layers are then applied to normalize the number
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Figure 4.3: Pose-based attention block used in the attribute recognition architecture. The oper-
ator ∘ denotes element-wise multiplication.

of channels in each branch:

X𝐾+1 = 𝑐𝑜𝑛𝑣1×1,𝐶(X𝐾, 𝜃𝐾+1), X𝐾+1 ∈ ℝ𝑛×𝑛×𝐶
X𝑎𝑡𝑡 = 𝑐𝑜𝑛𝑣1×1,𝐶(X𝑝𝑜𝑠𝑒; 𝜃𝑎𝑡𝑡), X𝑎𝑡𝑡 ∈ ℝ𝑛×𝑛×𝐶. (4.2)

The resulting number of channels corresponds to the number of attributes.
Thus, each channel in the backbone network represents a feature relating to
one of the attributes and each channel in the pose branch represents the raw
attention values for that attribute feature map. The attention values must still
be normalized using a spatial softmax at each channel 𝑐 by

X𝑛𝑎𝑡𝑡(𝑖,𝑗,𝑐) = exp(X𝑎𝑡𝑡(𝑖,𝑗,𝑐))∑𝑛ℎ=1 ∑𝑛𝑤=1 exp(X𝑎𝑡𝑡(ℎ,𝑤,𝑐)) , (4.3)

and are then applied through element-wise multiplication to the backbone
feature maps:

X𝐾+2 = X𝐾+1 ∘ X𝑛𝑎𝑡𝑡, X𝐾+2 ∈ ℝ𝑛×𝑛×𝐶 (4.4)

The spatial softmax operation normalizes each channel’s values to sum up to
1 and thus limits the budget of attention that can be paid across the spatial
dimensions. The attention module is schematically depicted in Figure 4.3. The
resulting feature maps are then connected to an attribute classification layer.
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The attention-based attribute classifications are combined with a global at-
tribute classifier.

4.2 Choice of Loss Function

Attribute recognition is a multi-label recognition task. In contrast to conven-
tional classification tasks, more than one class label can be true for the same
image. Thus conventional loss functions, such as softmax could only be ap-
plied separately for each attribute. This approach does not scale well when
the number of attributes is large. Thus, a cross-entropy loss is usually applied.
However, additional problems are the large imbalances for attribute labels in
common datasets. In most cases, any given attribute 𝑐 has far fewer images in
which it is present, i.e. 𝑦𝑐 = 1, than images in which it is absent, i.e. 𝑦𝑐 = 0.
To handle such imbalances in the data, following [Li15], a modified weighted
cross-entropy loss is applied at the final layer:

𝐿𝑎𝑡𝑡𝑟 = − 1𝑁 𝑁∑𝑖=1
𝐶∑𝑐=1𝑤𝑐(𝑦𝑖𝑐)𝑙𝑜𝑔( ̂𝑦𝑖𝑐) + (1 − 𝑦𝑖𝑐)𝑙𝑜𝑔(1 − ̂𝑦𝑖𝑐) (4.5)

where 𝑤𝑐 = 𝑒𝑥𝑝(−𝑎𝑐) is the weight for 𝑐-th attribute and 𝑁 the number of
images. 𝑎𝑐 is the frequency with which the 𝑐-th attribute appears in the train-
ing set. ̂𝑦𝑖𝑐 is the predicted probability for the 𝑐-th attribute of the image I.
Through this modification, the loss function assigns a high weights to cases
when the image contains an attribute, which is very rare in the data. The net-
work is thus more strongly penalized, if it fails to correctly classify these rare
cases. Class imbalances are typically addressed through data augmentation
of under-represented classes. However, this is not possible in the case of at-
tributes, as balancing one attribute will introduce new imbalances on others.
The weighting of individual attributes in the loss function is a prevent this.
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4.3 Implementation Details

The pose information used to extract the pose-attention is based on the Deep-
erCut pose estimator [Ins16]. Rather than relying on the final pose output,
the previous layer’s pose probability maps are used, as they provide a more
accurate picture of possible joint locations and estimation certainty. The pose
information is provided to the pose branch as a 14-channel input map, one
channel for each available joint location. The pose branch itself consists of
a lightweight sequence of convolutional layers with ReLU activations and
BatchNorm, paired with an equal number of pooling layers as in the back-
bone network.

To prevent overfitting and achieve a more robust attribute recognition, data
augmentation is applied during training. Input images are first normalized to
zero-mean and resized to 10% above the network’s expected input size. For
batch creation we then randomly crop the images down to the required size
and apply random horizontal flipping. The pose branch’s input undergoes
the same transformations. All network’s weights are initialized from a pre-
trained ImageNet model and fine-tuned with an initial learning rate of 0.001
using the Adam solver with a batch size of at least 32, depending on the size
of the network in memory. All added elements of the network, i.e. the pose
branch and the classification layers, use a learning rate that is by factor 10
higher than the rest of the network.

4.4 The VeSPA Model

Prior to the proposed pose-guided attention model, a view-sensitive pedes-
trian attribute recognition approach (VeSPA) [Sar17b] was developed in joint
and equally contributed work with Saquib Sarfraz. This model relies on global
view information, i.e. frontal, side, back, and integrated it into an attribute
recognition CNN. While the model was originally developed for attribute

60



4.5 Evaluation

recognition, it showed greater promise in application to re-id and is thus de-
scribed in more detail in Section 5.2.1. The two models have the use of addi-
tional information in common, i.e. pose or view, but they differ significantly
in the way this information is used. The VeSPA model applies view infor-
mation to globally weight entire feature maps, independently of individual
attributes. In contrast, the pose-guided attention model learns separate in-
formation for each attribute and applies it locally to specific spatial regions
within feature maps. The latter approach better incorporates the observed
trend of combining local and global information for accurate attribute recog-
nition, see Section 2.2.1. Furthermore, while the VeSPA model learns spe-
cialized feature representations for different views, the proposed pose-guided
attention model learns specialized feature representations for each attribute,
which aligns more directly with the underlying task.

4.5 Evaluation

In this section, the proposed Pose-guided Attribute Attention model (PGA)
will be evaluated on several public datasets. A comparison to state-of-the-
art methods will be carried out and a dataset suitable for pre-training the at-
tribute model prior to use in re-id will be identified. Finally, several ablation
experiments are performed to gain insight into the impacts of backbone ar-
chitecture, weighted attribute loss, and attention mechanism on the attribute
recognition accuracy. Unless otherwise specified, ResNet-50 is used as the
backbone architecture.

Datasets: The PGAmodel is evaluated on the PETA, RAP,WIDER, RAP2, and
PA-100k datasets, which feature different sets of attributes.

The PETA dataset consists of 10 small, publicly available surveillance datasets
from the fields of person re-id, detection, or tracking. The dataset consists
of 19,000 images, each annotated with 61 binary and 4 multi-class attributes.
PETA it is randomly partitioned into 9,500 for training, 1,900 for verification
and 7,600 for testing. Following the established protocol, 35 attributes for
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which the ratio of positive examples is higher than 1% are chosen for evalua-
tion. Nevertheless, the data imbalance is so severe that the positive ratios of
attributes vary from the lowest 1.2% of V-neck, to the highest 86.1% of attribute
causal lower body clothes. Due to its 10 data sources, the PETA dataset cover
a good range of visual variation and should be well suited to train models,
which generalize well to new data.

The RAP dataset is collected from real indoor surveillance scenarios and 26
cameras are selected to acquire images, it contains 41,585 samples with res-
olution ranging from 36×92 to 344×554, Specifically, there are 33,268 images
for training and the remains for testing. 72 fine-grained attributes (69 binary
attribute and 3 multi-class attribute) are assigned to each image of this data-
set. Following established protocol, 51 binary attributes are selected whose
positive ratio is higher than 1% or if they are of great importance to practi-
cal surveillance systems. The RAP dataset is the only dataset that provides
viewpoint labels for each image.

The RAP-2.0 dataset is an extended version of the RAP dataset. It contains
84,928 images of 2589 different persons with resolutions ranging from 33 ×
81 to 415 × 583. The attribute annotations are the same as on the RAP dataset
and person identities are additionally annotated. 50,957 image are set aside
for training, 16,986 for validation, and 16,985 for testing.

The PA-100K dataset consists of image captured by 598 outdoor surveillance
cameras. It contains 100,000 person images with resolutions ranging from 50× 100 to 758 × 454. The dataset is annotated with 26 binary attributes. It is
randomly split into at a ratio of 8:1:1 into training, validation, and test data.

The WIDER dataset comes from the 50,574 images that usually contain many
people and a lot of visual variation. A total of 13,789 images were selected.
Each person is labeled with 14 distinct attributes, for the 57,524 bounding
boxes. resulting in a total of 805,336 labels. This dataset was split into 5,509
training, 1,362 validation and 6,918 test images. Following the established
evaluation protocol, all the 14 annotated human attributes are used. All the
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person bounding boxes are cropped out, which results in 28,340 person im-
ages for training and validation and 29,177 images for testing. The un- spec-
ified labels of the WIDER dataset are treated as negative during training and
excluded from evaluation.

Comparison to State-of-the-Art: A comparison of attribute recognition ac-
curacies across several datasets is given in Table 4.1. The PGAmodel achieves
state-of-the-art results on two datasets (PETA, PA-100K) and very competitive
scores on all other datasets. Interestingly, on the WIDER dataset, which con-
tains a wide variety of body poses, the proposed pose-attention method is
narrowly outperformed by a self-attention model. On the PETA surveillance
dataset with less pose variation, however, PGA achieves the better result. Ta-
ble 4.2 shows the full set of label-based and example-based metrics on the
PETA dataset. The proposed approach outperforms related works primarily
on the example-basedmetrics. Since these metrics measure the overall consis-
tency of a person’s semantic description, this is a promising basis for use in a
re-id system. Similar results can be observed on the RAP dataset, see Table 4.3.
On this dataset the overall accuracies are significantly lower than on PETA,
owing to the larger number of attributes and several more complex attribute
types, such as actions. The PGA model performs strongly on most metrics,
outperforms VeSPA consistently and outperforms all other approaches in the
aggregate F1 measure.

Ablation Studies: Variations on the proposed attention architecture are eval-
uated in Table 4.4. Among single backbone models with just a weighted cross
entropy loss, the ResNet-50 model performs best. The weighted loss improves
recognition accuracy by about 1%. When the attention mechanism is exclu-
sively applied, it results in a drop in accuracy, indicating that purely local
attention information is not sufficient in all cases for robust attribute recog-
nition. However, when combined with a global feature branch as originally
proposed, the F-score increases significantly by almost 2%.

Individual Attributes: Table 4.5 shows the individual attribute scores by
the PGA model on the PETA dataset. In addition, the positive-ratio for each
attribute is shown to give an impression of the degree of imbalance for the
learning task. For example, attributes like Age16-30 are almost balanced in

63



4 Attribute Recognition

Table 4.1: Comparison of the PGA model to the state-of-the-art across several public datasets
using F1 score.

Method PA-100K RAP2 RAP WIDER PETA
ACN [Sud15] 82.64
DeepMAR [Li15] 83.41
GoogleNet [Sze15] 84.37
WPAL-FSPP [Yu16] 43.40 83.40
WPAL-GMP [Yu16] 66.12 84.90
SRN [Zhu17, Sar18a] 85.1 84.92
HydraPlus[Liu17b] 82.53 78.05 84.07
DIL[Sar18a] 86.4 86.46
RAP2 [Li19] 78.26
VeSPA [Sar17b] 79.59 82.4 85.49
PGA 86.95 78.15 79.95 86.2 86.75

Table 4.2: Additional metrics on the PETA dataset. The proposed PGAmodel outperforms recent
approaches on all example-based metrics.

Method mA Acc Prec Rec F1
ACN [Sud15] 81.15 73.66 84.06 81.26 82.64
DeepMAR [Li15] 82.89 75.07 83.68 83.14 83.41
GoogleNet [Sze15] 81.98 76.06 84.78 83.97 84.37
WPAL-FSPP [Yu16] 84.16 74.62 82.66 85.16 83.40
WPAL-GMP [Yu16] 85.50 76.98 84.07 85.78 84.90
SRN [Zhu17, Sar18a] 82.36 75.69 85.25 84.59 84.92
DIL[Sar18a] 84.59 78.56 86.79 86.12 86.46
VeSPA [Sar17b] 82.15 77.21 86.82 83.82 85.49
PGA 84.15 79.31 87.80 85.73 86.75

their relative frequency, while other attributes, such as Sandals occur only
very rarely. However, the overall accuracy across all attributes is quite stable
with very few outliers.

In summary, the proposed pose-guided attribute attention network achieves
robust attribute reduction scores across several datasets. While the attention
branch on its own does not achieve a stable result, the common combination
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Table 4.3: Additional metrics on the RAP dataset. The proposed PGA model outperforms recent
approaches on most example-based metrics. VeSPA is outperformed consistently.

Method mA Acc Prec Rec F1
ACN [Sud15] 69.66 62.61 80.12 72.26 75.98
DeepMAR [Li15] 73.79 62.02 74.92 76.21 75.56
WPAL-FSPP [Yu16] 79.48 53.30 60.82 78.80 68.65
WPAL-GMP [Yu16] 81.25 50.30 57.17 78.39 66.12
VeSPA [Sar17b] 77.70 67.35 79.51 79.67 79.59
PGA 79.12 68.15 79.73 80.17 79.95

Table 4.4: Ablation studies for the different components of PGA on the PETA dataset. The
ResNet-50 backbone with weighted loss, attention branch, and global information
achieves best results.

Backbone Weighted Loss Attention Att.+Global F1
ResNet-50 ✓ 84.91

DenseNet-121 ✓ 83.23
ResNet-101 ✓ 84.86
ResNet-50 84.07
ResNet-50 ✓ ✓ 83.73
ResNet-50 ✓ ✓ ✓ 86.75

with global features leads to an accuracy that is state-of-the-art on several
datasets. Due to its diversity and the high achieved attribute scores, the PETA
dataset was identified as a source for attributes that are included in subsequent
re-id methods.
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Table 4.5: Average accuracy of the proposed model on the PETA dataset for each of the 35 con-
sidered attributes. Additionally, the positive-ratio for each attribute is shown.

Attribute Pos. Ratio Accuracy
Age16-30 0.502 88.1
Age31-45 0.328 83.9
Age46-60 0.102 82.1
AgeAbove61 0.060 94.2
Backpack 0.199 88.6
CarryingOther 0.201 79.5
Causual lower 0.864 86.1
Casual upper 0.856 83.9
Formal lower 0.134 86.1
Formal upper 0.130 88.1
Hat 0.101 92.3
Jacket 0.069 77.3
Jeans 0.314 88.5
Leather shoes 0.293 89.3
Logo 0.04 73.4
Long hair 0.235 94.2
Male 0.547 93.7
MessengerBag 0.297 86.8
Muffler 0.085 95.3
No accessory 0.752 87.3
No carrying 0.272 86.8
Plaid 0.028 87.3
Plastic bag 0.075 89.0
Sandals 0.019 67.2
Shoes 0.363 81.7
Shorts 0.036 84.7
ShortSleeve 0.143 89.1
Skirt 0.045 84.8
Sneaker 0.220 82.4
Stripes 0.018 70.7
Sunglasses 0.029 69.9
Trousers 0.513 87.2
Tshirt 0.084 84.0
UpperOther 0.461 87.1
V-Neck 0.012 60.9
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Chapter 5

Attribute and Pose Sensitive
Re-Identification

One of the two main ideas of this thesis, as outlined in Chapter 3, is the inclu-
sion of auxiliary information into the re-id models in order to either improve
robustness and accuracy of the resulting embeddings or provide additional in-
formation to the user of a practical re-id system. In this chapter, methods to
include attribute information and pose information are proposed. Initially, in
Sections 5.1 and 5.2 two options for including either type of information into
a CNN re-id model will be described. Then, in Section 5.3, a joint architecture,
which leverages pose as well as attribute information, is proposed.

5.1 Learning Attribute-Complementary
Information

Attributes represent a high level semantic description of a person. If they can
be detected correctly, they describe important local details, which are often
relevant to a person’s identity. Attributes also provide a degree of invariance
to many influences, such as pose and camera angles, which strongly influence
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     Boots
Short Pants

Gender
  Hair

  Jacket
Handbag

    Age
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   Cap
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Figure 5.1: Examples of persons with very similar global appearance but different attributes.
Attribute information can be a decisive clue to distinguish people in such cases.

conventional re-id features. Due to the localized nature of many attributes
within person images, an attribute description often contains information that
is missed by re-id features that focus on global appearance. Several example
cases in which attribute information can help distinguish between persons
whose overall visual appearance is otherwise very similar are depicted in Fig-
ure 5.1. Finally, and uniquely, compared to all other types of re-id features,
attributes can also be directly communicated to human operators of a prac-
tical system. This allows for a broader range of applications and workflows,
such as text based re-id queries or improved understanding of the resulting
ranked lists.
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5.1.1 Attribute-Complementary Triplet Loss

There are several challenges involved when using automatically detected at-
tributes for re-id, which must be addressed:

• Attribute disciminativeness for the re-id task can vary strongly. For
example, attributes, which are present for all persons in the data, do
not add any meaningful information, based on which the re-id
method can match or distinguish between persons.

• Attribute consistency among images of the same person recorded at
different times is similarly important for re-id. If an attribute can
frequently change over time and is thus not consistent across
different images of the same person, it has a negative influence on
the re-id result.

• Attribute recognition accuracy is the most important aspect. Since
attribute recognition models require data with extensive attribute
annotations for training, they must generally be trained on separate,
specially prepared datasets. When transferring these models to new
data for use in re-id, a drop in recognition accuracy will occur.
Incorrectly assigned attributes will then disturb the re-id process
further.

All these factors make attributes an unstable feature for re-id. Direct fusion of
attributes and other re-id features can often lead to only very little or no im-
provement in re-id accuracy. To address these issues, this section describes a
deep learning re-id approach, which includes such attribute information into
the learning process of a CNN. The approach is designed with two goals in
mind. Inclusion of attribute information in the training process allows the
learned feature embedding to adapt to the characteristics of the attribute de-
scriptions. It is thus possible to decrease the influence of attributes, which
consistently provide unreliable information and furthermore, the embedding
can focus its learning process on those cases, in which the attribute descrip-
tion is insufficient for re-id. The approach described in this section was pre-
viously published in [Sch17b].
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The triplet loss is chosen as an objective function for the approach, since
it directly models the difference between person images and thus allows for
a more convenient way to incorporate added information into the distance
computation than a softmax classification loss. Training samples are served
to the network in sets of three: one anchor image, one match to the anchor
(positive) and one mismatch (negative). The standard triplet loss is computed
as

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 1𝑁 𝑁∑𝑖=1 𝑑𝑓𝑝𝑖 − 𝑑𝑓𝑛𝑖 + 𝑚
𝑑𝑓𝑝𝑖 = ‖‖𝑓𝑎𝑖 − 𝑓𝑝𝑖 ‖‖22 (5.1)𝑑𝑓𝑛𝑖 = ‖‖𝑓𝑎𝑖 − 𝑓𝑛𝑖 ‖‖22 .

Here, 𝑓 represents the current projection from image space to embedding
space as learned by the network. 𝑑𝑓𝑝𝑖 denotes the distance from the anchor
to the positive in the learned embedding space and 𝑑𝑓𝑛𝑖 the distance from
the anchor to the negative. Minimization of this loss encourages the feature
distances between images of different persons to be large and distances for
matching persons to be small. The margin 𝑚 controls the strength by which
these distances are separated.

Due to the direct distance computation in the loss function, an attribute vector
can be integrated into the triplet training process at loss level. This is achieved
by adding the attribute distances of the anchor sample to the positive and
negative samples in an analogous manner. This Attribute-Complementary
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Re-Id (ACR)) loss is then given as

𝐿𝐴𝐶𝑅 = 1𝑁 𝑁∑𝑖=1 𝑑𝑓𝑝𝑖 − 𝑑𝑓𝑛𝑖 + 𝑚 + 𝛾(𝑑𝑎𝑡𝑡𝑝𝑖 − 𝑑𝑎𝑡𝑡𝑛𝑖 )
𝑑𝑎𝑡𝑡𝑝𝑖 = ‖‖𝑎𝑡𝑡𝑎𝑖 − 𝑎𝑡𝑡𝑝𝑖 ‖‖22 (5.2)𝑑𝑎𝑡𝑡𝑛𝑖 = ‖‖𝑎𝑡𝑡𝑎𝑖 − 𝑎𝑡𝑡𝑛𝑖 ‖‖22

where 𝑑𝑎𝑡𝑡𝑝𝑖 and 𝑑𝑎𝑡𝑡𝑛𝑖 mark the distances of the samples in triplet 𝑖 based on
their attribute representations. The addition of this attribute information has
no direct impact on the triplet losses’ gradient formulas. Take, for example,
the gradient for the positive sample in the triplet:𝜕𝐿𝑖𝜕𝑓𝑝𝑖 = {2(𝑓𝑎𝑖 − 𝑓𝑝𝑖 ), 𝑖𝑓 𝑑𝑓𝑛𝑖 − 𝑑𝑓𝑝𝑖 ≤ �̃�0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5.3)

�̃� = 𝑚 + 𝛾(𝑑𝑎𝑖𝑝 − 𝑑𝑎𝑖𝑛 ).
Instead, the attribute distance can be interpreted as a dynamic modification
of the margin𝑚 on a triplet-to-triplet basis. Since only triplets, which violate
the margin between the two distances are actually used for back-propagation
through the network, this modification of the margin directly influences the
cases in which the gradient is passed through the main network. If, for exam-
ple, the attribute representation fails to produce a distance 𝑑𝑎𝑡𝑡𝑝𝑖 < 𝑑𝑎𝑡𝑡𝑛𝑖 ,
then the attribute part of the loss adds to the margin, the loss becomes
more strict, and the gradient is more likely to be non-zero for this sample.
Conversely, if the attribute information already achieves a good separation𝑑𝑎𝑡𝑡𝑝𝑖 < 𝑑𝑎𝑡𝑡𝑛𝑖 , then the gradient for the learned embedding is more likely to
be zero. This allows the CNN to focus on cases where the attribute informa-
tion does not suffice for a successful re-id. In a sense the net learns to re-rank
a basic ranking generated by the attributes. The approach is motivated by
the assumption that this might be a simpler task than re-id without attribute
information. A parameter 𝛾 is used to control the degree of influence of the
attribute information on the loss.
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While the described approach allows the network to learn a feature embed-
ding that is complementary to the pre-existing attribute feature, it may still be
influenced negatively by unreliable attribute information. Thus, an additional
layer for weighting the attributes during training is introduced. The weight
layer simply performs an elementwise multiplication of the attributes with a
learned global weight vector.

At test time, attribute information is first used to compute an initial attribute
distance between person images. The complementary CNN feature distance
is then combined with the weighted attribute just as during training.

Figure 5.2: Configuration of the proposed triplet loss architecture. For visual clarity only the
anchor branch of the network is displayed.

5.1.2 Evaluation

The proposed ACR triplet loss for learning attribute-complementary infor-
mation is evaluated using attribute scores provided by the pose-attention at-
tribute model described in Chapter 4. Attributes are learned on the PETA
dataset, as this dataset provides the largest degree of visual variation and the
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resulting attributes are thus more likely to generalize to the re-id datasets
used for this evaluation. The evaluation will focus on the degree to which
ACR can leverage attribute information in relation to standard feature fusion
techniques and other baselines. Then, the learned attribute weights are an-
alyzed in order to gain insight into which attributes are useful to re-id and
which are not. Finally, an alternative method of leveraging information from
the attribute recognition network is evaluated.

Datasets: The ACR model will be evaluated on the two most popular re-
id datasets, Market-1501 and DukeMTMC-reID. The Market-1501 dataset
[Zhe15b] provides 32,668 cropped images of 1,501 persons, which were
generated by automatic person detection in 6 cameras. 751 persons are used
for training. For testing, a set of 3,368 query images is available. The gallery
size of the Market-1501 dataset is 19,734 and contains 2,793 distractors. The
DukeMTMC-reID dataset [Zhe17b] consists of persons cropped from the
DukeMTMC tracking dataset [Ris16], which is recorded by 8 cameras. The
dataset consists of 1,812 different persons of which 1,404 appear in more than
one camera. 702 persons are set aside for the training set and the remaining
1,110 are used for testing. This results in a training set of 16,522 images, a
probe set of 2,228 images and a gallery set of 17,661 images. The performance
will be evaluated based on mAP and Rank-1, -5, -10 and -20 accuracies to give
an impression of the CMC. On both Market-1501 and DukeMTMC-reID the
provided evaluation code is used.

Baselines: Four simple baseline methods are defined to compare the pro-
posed ACR model to:

• ReIdCNN: This baseline trains a plain CNN model of the same
architecture as the ACR model but without any attribute
information. A standard triplet loss and the same training settings as
for ACR are used.

• Attributes: For this baseline, the direct performance of the attribute
scores generated by the attribute net is evaluated on the target re-id
dataset. No learning on the target data is involved in this method.
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• Attributes-KISSME: This baseline applies KISSME metric learning
[Koe12] using the attribute predictions on the target data. This
baseline indicates the potential for re-id contained in the attribute
predictions.

• ReIdCNN+Attributes: In order to show the complementary nature
of the information learned by the ACR model, this baseline performs
a simple score fusion between the ReIdCNN and Attributes-KISSME
baselines. Similar to ACR, attributes scores are weighted with 0.5
(the value of 𝛾 in ACR).

The results of our baselines are given in Tables 5.1 and 5.2 forMarket-1501, and
DukeMTMC-reID, respectively. All models use the ResNet-50 architecture as
a backbone. On both datasets similar trends can be observed. The ReIdCNN
baseline performs strongly while pure attribute information can only achieve
a very low person re-id accuracy. The main reasons for this are the compar-
atively low dimensionality of the attribute information and their presumably
limited reliability due to varying performance of the attribute classifier. How-
ever, the application of KISSMEmetric learning to the attribute predictions on
the target dataset shows that a higher potential for re-id is contained in the
predictions. This indicates that certain attributes are helpful for re-id while
others distort the result without metric learning. Finally, the combination of
the ReIdCNN with attribute information yields the best baseline performance
but the result is dominated by the CNN and the overall improvement through
attributes is very slight.

Table 5.1: Results of the ACR approach on the Market-1501 dataset.

Method mAP r1 r5 r10 r20
ReIdCNN 59.75 79.67 90.25 93.10 96.43
Attributes 8.39 14.61 25.72 46.11 59.98
Attributes-KISSME 17.91 26.24 43.18 53.27 61.77
ReIdCNN+Attributes 60.45 80.13 91.56 94.23 96.51
ACR 61.25 79.17 92.43 95.39 97.01
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Table 5.2: Results of the ACR approach on the DukeMTMC-reID dataset.

Method mAP r1 r5 r10 r20
ReIdNet 48.76 66.78 79.15 85.46 88.52
Attributes 7.45 11.98 23.12 31.67 42.45
Attributes+KISSME 13.04 20.56 45.03 53.21 65.71
ReIdCNN+Attributes 50.41 69.34 80.28 87.13 90.78
ACR 51.38 71.14 83.68 89.44 90.00

ACRResults: When combining the attribute information with CNN features
through the proposed ACR triplet loss, another significant boost in re-id ac-
curacy is achieved. Compared to the ReIdCNN baseline, the use of attribute
information in ACR can improve the resulting performance by 1.50% mAP
on Market-1501 and 2.62% mAP on DukeMTMC-reID. Compared to the ReId-
CNN+Attributes baseline score fusion, the attribute information is much bet-
ter exploited. The ACR CNN did not have to learn the information, which is
already contained in the attributes and thus could use more of its parameters
for learning to compensate in failure cases. The ReIdCNN+Attributes baseline
in contrary contains redundant information in the CNN, which leads to a re-
duced benefit of attributes. Qualitative results of the ACR model are depicted
in Figure 5.3.

However, due to their low dimensionality attribute vectors carry only a lim-
ited amount of discriminative information. In order to evaluate the potential
of using other components of the attribute recognition network, the earlier
pool-5 layer in the network is used as a feature extractor. The extracted em-
bedding’s performance for re-id on the Market-1501 dataset, as well as its
impact on ACR is evaluated in Table 5.3. It can be seen that the embedding
achieves a much higher standalone accuracy and also has a beneficial im-
pact on ACR.Thus, using earlier information with less explicit semantics from
within an attribute network can provide more relevant information for re-id.

Attribute Weighting: Table 5.4 shows the attributes that are most and least
strongly weighted by the approach on the Market-1501 dataset. There is a
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Table 5.3: ACR results when based on attributes or an embedding vector from the attribute net
on the Market-1501 dataset.

Method mAP r1 r5 r10 r20
Attributes 8.39 14.61 25.72 46.11 59.98
Embedding 19.40 41.29 62.28 70.19 78.41
ACR (Attributes) 61.25 79.17 92.43 95.10 97.01
ACR (pool-5) 65.19 83.61 94.27 95.53 97.62

clear correlation between the attribute weighting and their original accuracy
on the source dataset. Many of the highly rated attributes are common in the
Market-1501. Furthermore, many of them focus on larger parts of a person,
such as upper or lower body, which is less difficult to locate than attributes
with very small spatial occurrence. Unsurprisingly, the attributes rated lowest
by ACR include those that occur rarely and are very specific. Unfortunately,
it is exactly such rarely occurring attributes which are most discriminative for
re-id of those individuals that have them.

Table 5.4: Attributes from the PETA dataset that were considered most and least relevant for
re-id on the Market-1501 dataset.

Most relevant Least relevant
upperBodyLongSleeve accessoryKerchief

accessoryNothing footwearPurple
hairShort accessoryFaceMask
hairBlack accessoryShawl

footwearBlack lowerBodyPink
personalLess30 hairPurple
lowerBodyBlack lowerBodyLogo

lowerBodyTrousers hairRed
upperBodyBlack hairGreen
personalFemale hairOrange
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It can generally be observed that attributes which are visible only in very small
portions of a person image are determined to be of less help for re-id by ACR.
Similarly, attributes which are presumably very rare or not at all present on
the target dataset, receive a low weight (e.g. orange hair).

In summary, the proposed ACR model better exploits attribute information
than other established feature fusion methods. ACR additionally provides in-
sight into which attributes are relevant to re-id and which are not. Overall,
however, the resulting accuracy is dominated by the learned feature as at-
tributes provide only a small increase in accuracy. A promising alternative
is the extraction of further information from earlier in the attribute network.
While semantics are not explicit here, a finer degree of information is avail-
able and potentially misclassified attributes have no negative impact.
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Figure 5.3: Qualitative results of the ACR approach for challenging queries on the Market-1501
dataset. The query images are displayed on the left and the top 12 results are shown.
Correct matches are highlighted green and false matches in red. Note that false
results are often semantically and visually similar to the query.
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5.2 A Pose-Sensitive Embedding

One of the main factors determining the visual appearance of a person in sur-
veillance images and video is their body pose and relative orientation to the
camera. Furthermore, across cameras in a camera network, pose and view
are usually much more strongly influencing the variation in appearance of
the same person than other factors, such as image quality. Thus, explicitly in-
cluding this information into the learning process of a re-id model is expected
to be beneficial to the resulting re-id accuracy.

A number of works already exist that follows this general motivation, see
Section 2.1.1.5. However, such works have relied on either fine-grained pose
information (e.g., joint keypoints) or coarse information (e.g., orientation to
the camera). In contrast, this section describes a proposed model, which in-
cludes both these levels of granularity into a Pose-Sensitive Embedding (PSE).
Coarse view is used to learn a set of embeddings specialized on a coarse set
of views. This can help the network to better address the variation in ap-
pearance between different view angles (see also Figure 5.4). Finer-grained
pose information in the form of keypoints is included at the beginning of the
network to aid the network in localizing relevant body regions and possibly
even identify and compensate for errors resulting from a previous detection
stage (see Figure 5.5). The models described in this section were developed
in joint previously published works and with equal contribution of Saquib
Sarfraz [Sar17b, Sar18b]

5.2.1 View Information

For encoding a coarse view information indicating a person’s orientation rel-
ative to the camera, the quantization [‘front’, ‘back’, ‘side’] is used. This view
information is then included into the re-id network through a view predic-
tion side-branch. The branch is based on a common trunk with the main re-id
stream of the network and learns to recognize the view of the person depicted
in the image through a 3-class softmax cross-entropy loss (see Figure 5.6). The
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Figure 5.4: Different views or orientations of the same person. Depending on the angle, the
visual appearance can vary significantly. In the given example, the black backpack
can have a strong influence on the upper body color depending on the orientation.

Figure 5.5: Person detections and corresponding estimates of joint locations. The pose informa-
tion indicates the different locations of the same body parts between images. Pose
information can also help in indicating detection error (i.e. mis-aligned bounding
box in the lower right example).

prediction scores are then used in the main re-id network to train three fea-
ture embeddings, each of which is specialized to encode information specific
to one of the views. For this, the main architecture is branched into three
separate units, whose output feature embedding is multiplied with the pre-
diction score of one of the three views. This weighting of embeddings with
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Figure 5.6: View-prediction branch and view units. Multiplication of the unit’s output embed-
ding with the corresponding view prediction score leads to the unit specializing in
encoding information from that specific view. The view branch is pre-trained on
separate data.

the corresponding view modulates the gradient flowing through the units.
For example, a training sample with a strong ‘front’-view prediction will re-
sult in a large weight for the embedding multiplied with the front-score and
very small weights for the two other embeddings. As the weight persists in
the gradient of the multiplication layer, the gradient reaching the two other
embeddings will be low, while the front-embedding will receive an almost
undiminished gradient and learn to adapt further based on the current frontal
image. This procedure allows each unit to learn a feature map specialized for
one of the three views.

An important requirement of the approach is the availability of suitable view
annotations to train the view prediction branch. It cannot generally be as-
sumed that view annotations are available on the re-id dataset on which the
embeddings are trained. Thus, pretraining of the view classifier is carried
out on the separate RAP [Li16a] pedestrian attribute dataset, which provides
such annotations. The resulting classifier is then directly transferred to the
re-id model. On the re-id dataset training of the main re-id model takes place
while the weights of the view prediction branch remain fixed. The common
trunk is fine-tuned at low learning rate. Due to the low-level nature of the fea-
ture representations, the output of the view branch is not strongly impacted
by this.
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Figure 5.7: Pose information can be included into a re-id CNN by adding additional channels –
one for each body joint location. If the network is initialized with standard ImageNet
weights, the first layer of the network will have to be adapted for the new input size.

5.2.2 Full Body Pose

Person pose estimationmethods typically provide a list of body joint locations
in the image as their output. For example, the off-the-shelf DeeperCut model
[Ins16] provides 14 such keypoints. While such pose information has been
used for re-id previously, it is typically used to either normalize the input im-
age or define a set of local regions that are used to integrate local information
into the re-id embedding (Section 2.1.1.5). In contrast to this, the proposed
method of integrating the joint location information is to add a new input
channel for each of the 14 keypoints (see Figure 5.7). Each channel then rep-
resents a location probability map for that given body joint. The intention
behind providing pose information in this way as part of the input is twofold:

• On a global scale, the set of joint locations provide a rough
segmentation of the person depicted in the image. This information
can be used by the network to prevent background information from
diluting the resulting re-id embedding.

• At a local level, individual keypoints or pairs of keypoints provide
the location of body parts, which can help the network to better
learn a pose independent feature embedding.

The body joint channels thus serve as a simple attention mechanism at the
earliest possible stage. It is left to the network to learn how to best apply
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Figure 5.8: The combined pose-sensitive embedding (PSE) model. Body keypoint information
is provided as part of the input and a view prediction branch helps to learn three
specialized embeddings, which are combined into a final, pose-sensitive embedding
of re-id.

the body joint information into the resulting embedding. This flexibility can
be further increased by not providing the final joint location decisions of the
pose estimator, but rather the internal probability map based on which the
locations were determined. This allows the re-id network to take into account
the certainty with which a certain joint point is located. It may even help
identify cases where high uncertainty may have led to a faulty pose estimate,
which should not be relied upon for re-id.

5.2.3 Full PSE Model & Staged Training

The two described methods for including view and pose information do not
only target different granularities but are intentionally integrated at very dif-
ferent locations of the re-id network. They are thus easy to combine into a
joint model, which is depicted in Figure 5.8.

Depending on the type of pose information included, the training procedure
of the model requires different stages. For training each model, the back-
bone CNN is initialized with weights pretrained for ImageNet classification.
In order to train a model with view information, the view-predictor branch is
first fine-tuned on the RAP dataset [Li16a]. Then, only the specialized view
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units and the final person identity classification layer are trained on the tar-
get re-id dataset, as these layers are initialized with random weights. When
training an embedding including body keypoint input, the ImageNet weights
do not match the size of the increased number of input channels. To adapt
the network for the larger input, the initial convolutional layer and the fi-
nal ID classification layers are thus trained from scratch while the remaining
weights stay fixed. Once these two layers are adapted to the remainder of
the network, the full network can be fine-tuned for re-id. When the joint PSE
model is trained, the pose information is first provided so that the view pre-
dictor branch can already benefit from it while it is fine-tuned on the RAP
dataset in conjunction with the common trunk segment of the main network.

All described CNN embeddings are trained using the same protocol. The input
images are normalized to channel-wise zero-mean and a standard variation
of 1. Data augmentation is performed by resizing images to 105% width and
110% height and randomly cropping the training sample, as well as randomly
flipping it horizontally. Training is performed using the Adam optimizer at
default parameters with an initial learning rate of 0.0001 and a decay of 0.96
every epoch.

5.2.4 Evaluation

The proposed pose-sensitive embedding (PSE) will be evaluated on the
Market-1501 and DukeMTMC-reID datasets, as well. Similar to ACR, the
primary backbone architecture will be ResNet-50, unless otherwise stated.
Evaluation is carried out using the mAP and rank accuracy metrics and the
official evaluation code is used. The evaluation will first focus on the influ-
ence of the different types of pose information on the re-id embeddings. Two
different baseline architectures are investigated and the semantic content of
the proposed view branch on the target dataset will be analyzed qualitatively.

Type of Pose Information: The impact of the different types of pose in-
formation on the re-id embedding is summarized in Table 5.5. Experiments
are carried out across both datasets and using two types of backbone archi-
tectures to demonstrate the stability of the results. When the view predictor
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is used, it is branched off the main network after the Reduction-A block for
the Inception-v4 architecture and view units are added by replicating the final
Inception-C block three times. In case of the ResNet-50, the branch-off occurs
after convolutional block 2 and replication is applied for convolutional block
5.

Table 5.5: Impact of different types of pose information (i.e. view and keypoint body pose) on
the re-id embedding across two datasets and network architectures.

CNN Method Market-1501 DukeMTMC-reID
mAP r1 r5 r10 r50 mAP r1 r5 r10 r50

Inception-v4 Baseline 51.9 75.9 89.8 92.5 97.3 36.6 61.8 74.8 79.8 89.4
Views only 61.9 81.5 92.3 94.9 98.1 40.3 62.7 76.6 81.1 90.3
Pose only 60.9 81.7 91.8 94.4 97.9 48.2 70.5 81.9 86.1 92.7
PSE 64.9 84.4 93.1 95.2 98.4 50.4 71.7 83.5 87.1 93.1

ResNet-50 Baseline 59.8 82.6 92.4 94.9 98.2 50.3 71.5 83.1 87.0 94.1
Views only 66.9 88.2 95.4 97.2 98.9 56.7 76.9 87.3 90.7 95.7
Pose only 61.6 82.8 93.1 95.5 98.3 53.1 73.4 84.5 88.1 94.3
PSE 69.0 87.7 94.5 96.8 99.0 62.0 79.8 89.7 92.2 96.3

It can be seen that inclusion of either view or fine-grained pose information
leads to significant improvements in accuracy of re-id. The Inception-v4 ar-
chitecture achieves the overall smaller accuracy but receives a larger abso-
lute improvement by including pose information. Inclusion of views into the
ResNet-50 model provides consistent improvements of 7.1% mAP and 5.6%
rank-1 on Market as well as 6.4% mAP and 5.4% rank-1 for Duke. The aver-
age improvement resulting from the inclusion of pose is a little smaller, 2-3%
in mAP.

Interestingly, a combination of both types of information leads to a clear fur-
ther improvement in accuracy. For ResNet-50, mAP is increased by 2.1% on
Market and 5.3% on Duke in reference to the best result of either views or
pose. A similar observation can be made for the Inception-v4 model. This
further increase in accuracy clearly suggests some degree of complementary
information between the two options. However, since the joint locations do
implicitly contain view information as well, it stands to reason that the way
in which the information is integrated is equally important as the potentially
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complementary nature. In this case, it is likely that the inclusion of pose infor-
mation at such different positions in the network, and thus different degrees
of spatial resolution and semantic content, has an equally large impact on the
observed increase in accuracy.

Analysis of the ViewBranch: Since view annotations are not readily avail-
able on either Market-1501 or DukeMTMC-reID, the view branch was pre-
trained on the RAP dataset for all experiments. On RAP the branch achieves
robust accuracies of 82.2%, 86.9% and 81.9% after training for front, back, and
side view, respectively. How much this accuracy degrades when the branch
is applied on the two target re-id datasets cannot be quantitatively assessed,
due to lack of labels. However, a qualitative insight into the average predic-
tion accuracy can be gained by performing a view prediction on the entire
target dataset test splits and averaging the images for each of the three view
prediction values. Such mean images for all three datasets, i.e. Market-1501,
DukeMTMC-reID, and RAP, are depicted in Figure 5.10.

On all three datasets some clear differences are visible between the front and
back mean images. Particularly in the front mean image a clear face region
as indicated by a lighter, skin-colored blob can be made out. Conversely, the
back view does not have such a region. The side view is less clear. The less
distinct area of the legs results from the much larger variety in leg positions
in side view images. Furthermore, the left and right side are modeled as one
class and thus lead to an additionally stronger blurring when combined in the
mean image. And lastly, the view annotations on the RAP dataset assign a
fairly narrow angle range for frontal and back view while everything else is
considered side view. Thus, this class is expected to result in stronger blur just
by the annotation strategy alone.

A clearer impression of the view prediction quality can be gained when the
RAP mean images based on predicted values are compared to mean images
based on annotations in Figure 5.11. The images look almost identical, and
particularly the side image shows similar effects in both cases. The overall
comparison of the RAP mean images to the mean images of the other two
datasets give a positive qualitative indication of view predictor accuracy on
the target datasets.
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Comparison to Explicit Pose Use: In a recent publication, the Pose In-
variant Embedding (PIE) [Zhe17a] was proposed as a more explicit way of
including pose into a CNN-based re-id model. In contrast to the PSE method,
PIE uses the estimated pose information to explicitly align body parts by gen-
erating a PoseBox image. The re-id network is then provided with the original
image, the PoseBox image and the pose estimator’s confidence score. While
PSE leaves it to the network to learn how exactly to use the pose informa-
tion in its feature map, providing such pose-normalized data is an interesting
alternative.

Table 5.6 gives a comparison between PIE and PSE on the Market-1501 data-
set, using the same ResNet-50 backbone architecture. The PSE model clearly
outperforms the PIE model by 15.1% in mAP and 9.0% in rank-1. Part of this
is the better trained PSE baseline model but even when the absolute increase
over the baseline model is considered, the increase of PSE over its baseline is
significantly larger.

Table 5.6: Comparison between explicit use of pose in the Pose Invariant Embedding (PIE)
[Zhe17a] and the proposed Pose Sensitive Embedding (PSE).

Method mAP R-1 R-5 R-10

PI
E

Baseline1 (R,Pool5) 47.6 73.0 87.4 91.2
PIE (R,Pool5) 53.9 78.7 90.3 93.6
Difference to Baseline 6.3 5.7 2.9 2.4

PS
E

Baseline (Resnet-50) 59.8 82.6 92.4 94.9
PSE (Resnet-50) 69.0 87.7 94.5 96.8
Difference to Baseline 9.2 5.1 2.1 1.9

In summary, the proposed pose-sensitive embedding achieves a strong in-
crease in re-id accuracy. Both components contribute strongly and further
increase accuracy, when combined with each other. Besides potential com-
plementary information, a main reason for the increased accuracy of the com-
bined architecture is likely the different positions and levels of semantics at
which each information is included.
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Figure 5.9: Qualitative results on theMarket-1501 dataset. Two results are shown for each query.
The upper result corresponds to the model without inclusion of pose information.
The lower result is obtained by inclusion of pose information.
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Figure 5.10: View prediction mean images of Market-1501 (left), DukeMTMC-reID (middle) and
RAP (right)

Figure 5.11: Comparison of mean view images from RAP, which were generated by relying on
the view predictions (left) and ground truth view annotations (right).
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5.3 A Pose-Sensitive Attribute-Attention
Model

During development of the models described in the previous two sections,
several observations were made:

• While attribute information can be of help in re-id, its benefit is
mitigated by the fact, that attribute prediction vectors have a low
dimensionality and thus contain only a limited degree of
information. Furthermore, if an attribute prediction is wrong, the
entire information (i.e. dimension) is of little use and may actually be
counter-productive to re-id. On the other hand, results have shown
that feature embedding from previous stages in the attribute
recognition network can be of notably more help in re-id.

• Pose and view information were shown to both boost re-id accuracy
when used within the same network. However, the seemingly
complementary nature of the two types of information is mitigated
by the fact that pose keypoints do in fact already contain an
encoding of the depicted view. For example, the relative position
between left and right shoulder joint gives a strong clue towards the
person’s orientation to the camera. Thus, it seems likely that the
method by which and particularly the different locations at which
the two types of information were integrated into the network
played a key role in improving accuracy.

Building on these observations, a new joint model is proposed, which includes
information from the described attribute network, as well as pose information.
Note that the view branch is already a method of including a single attribute,
i.e. view, into the pose-sensitive re-id model. However, this technique can not
easily be extended to further attributes, as the number of required specialized
units would be very high and add many parameters to the network. Further-
more, few other attributes are suited to this type of integration, as they are
highly unbalanced and oftenmuchmore localized in the image than the visual
cues based on which the view can be estimated. Thus, the attribute branch is
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Figure 5.12: The proposed final model for combination of pose information as input channels
and attribute-guided attention maps computed from a pose representation. The
upper pose branch and the pose-guided attribute attention maps are directly taken
from the PGAmodel, see Figure 4.2, and remain fixed during training of this model.

removed in the joint model and replaced with the pose-guided attribute atten-
tion branch learned in the attribute recognition network. This modification
has several advantages:

• Compared to direct use of attributes, the attribute attention maps
guide the re-id network to focus on certain spatial regions, but leave
the network free to learn the type of information that will be
extracted at that location. Thus, the attention maps for all attributes
can be included and no mechanism is required to filter out
misleading information, such as wrongly predicted attributes.

• In comparison to the view prediction branch, the attribute attention
maps do not require many added parameters and scale better, if the
number of attributes increases.

• Lastly, the attribute attention masks are learned directly from pose
information. As pose is an intermediate level of semantics, the
attribute masks are likely to transfer better to different datasets. As
long as the pose estimator functions reliably, the attention maps will
not be impacted by changing characteristics in the images.

The final model is depicted in Figure 5.12. The training process is similar
to that of the previously described PSE embedding, except that no common
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network trunk between the re-id model and the attention branch complicate
the training procedure. The attention branch, i.e. the pose branch and the
attribute attention maps, is pre-trained on an attribute dataset and remains
fixed during training of the re-id model. Thus, the gradient of the re-id soft-
max cross-entropy loss flows through the attribute-guided embedding and the
corresponding attention maps into the main backbone network where it com-
bines with the gradient of the global branch of the architecture. In this way,
the pose-guided attribute attention shows the re-id network where to look
spatially, as determined by the various attributes, but leaves the network free
to learn which type of information to extract at the specified spatial position.
In contrast to the rigid attribute information employed in Section 5.1 this re-
maining degree of freedom has two advantages. Firstly, no counterproductive
information, such as mis-classified attributes, need to be compensated by the
resulting re-id network. Secondly, attributes are often very localized and the
resulting attention maps force the re-id network to extract information from
spatial regions which it otherwise might not have relied on. This prevents
an overly strong focus on salient image regions, which can have a negative
impact on re-id accuracy.

5.3.1 Evaluation

In this section the performance of the combined Pose-Sensitive Attribute Em-
bedding (PSAE) will be analyzed in detail. To that end, the model will first be
compared to the default PSE model, as well as recent state-of-the-art methods
on the Market-1501 and DukeMTMC-reID datasets. PSAE will also be com-
pared to PSE under several evaluation settings with more practical relevance,
including video-based re-id on the MARS dataset, scalability with increased
numbers of distractors on the Market-500K dataset, and its ability to work in
conjunction with person detectors on the PRW dataset.

Comparison to PSE and State-of-the-Art: In Table 5.7, the attribute atten-
tion mechanism’s inclusion into a re-id embedding is compared to the two
types of pose information. The attribute attention outperforms both pose and
view clearly and consistently across most ranks and both datasets. When the
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view branch is replaced with the attention branch, as proposed in Section 5.3,
the overall accuracy of the resulting PSAE network surpasses that of PSE by
4.2% and 1.2% in mAP on Market and Duke, respectively. Thus, the pose-
attention branch is a more powerful addition than the view branch of the PSE
model.

Table 5.7: Comparison of the attention branch to pose and view information across two datasets
and network architectures.

CNN Method Market-1501 DukeMTMC-reID
mAP R-1 R-5 R-10 R-50 mAP R-1 R-5 R-10 R-50

ResNet-50 Baseline 59.8 82.6 92.4 94.9 98.2 50.3 71.5 83.1 87.0 94.1
Views only 66.9 88.2 95.4 97.2 98.9 56.7 76.9 87.3 90.7 95.7
Pose only 61.6 82.8 93.1 95.5 98.3 53.1 73.4 84.5 88.1 94.3
Attn only 67.3 89.3 96.1 97.7 98.8 57.9 75.1 84.9 89.3 96.0
PSE 69.0 87.7 94.5 96.8 99.0 62.0 79.8 89.7 92.2 96.3
PSAE 73.2 90.1 96.3 97.9 99.2 63.2 80.6 91.2 92.9 97.1

In Table 5.8 the state-of-the-art is compared with the performance of the pro-
posed PSAE and PSE embeddings on the three datasets Market-1501, Duke,
and, additionally, MARS. Since the PSEmodel often achieves a lower accuracy
compared to PSAE, the discussion of results will focus on PSAE.

TheMARS dataset [Zhe16a] is based on the same raw data as the Market-1501
dataset. In contrast to Market-1501, MARS is providing tracklets of persons
instead of single images. Therefore MARS is well suited to evaluate the per-
formance of re-id approaches in video. The dataset consists of 8,298 tracklets
for training and 12,180 tracklets for testing with 509,914 and 681,089 images
respectively. In order to apply PSE and PSAE to MARS, for each tracklet, the
mean descriptor across all images in the tracklet is computed. This straight-
forward extension of a single-image embedding to videos does not include
any actual temporal information but is well suited to stabilize the resulting
feature vector across the track and usually results in competitive accuracy.

Across all three datasets, a consistent improvement by PSAE over the ResNet-
50 Baseline model and the PSE embedding is observed. Particularly on the
Market-1501 dataset, a significant additional boost by 4.2% mAP and 2.4%
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Table 5.8: Comparison of the proposed PSE and PSAE approaches with the published state-of-
the-art. In the top section of the table, the PSE embedding is compared to state-of-the-
art methods not using re-ranking. In the lower part, re-ranked results are reported
using either k-reciprocal [Zho17a] or ECN re-ranking [Saq18].

Method Market-1501 Duke MARS
mAP R-1 mAP R-1 mAP R-1

GAN[Zhe17b] ICCV17 56.2 78.1 47.1 67.7 - -
Latent Parts [Li17a] CVPR17 57.5 80.3 - - 56.1 71.8
ResNet+OIM [Xia17] CVPR17 - 82.1 - 68.1 - -
ACRN[Sch17c] CVPR17-W 62.6 83.6 52.0 72.6 - -
SVD [Sun17] ICCV17 62.1 82.3 56.8 76.7 - -
Part Aligned [Zha17c] ICCV17 63.4 81.0 - - - -
PDC [Su17a] ICCV17 63.4 84.1 - - - -
JLML [Li17d] IJCAI17 65.5 85.1 - - - -
Forest [Zho17b] CVPR17 - - - - 50.7 70.6
DGM+IDE [Ye17] ICCV17 - - - - 46.8 65.2
QMA [Liu17c] CVPR17 - - - - 51.7 73.7
MGCAM[Son18] CVPR18 74.3 83.8 - - 61.3 75.7
HA-CNN [Li18b] CVPR18 76.7 91.2 63.8 80.5 - -
Mancs[Wan18a] ECCV18 82.3 93.1 71.8 84.9 - -
ResNet-50 Baseline 59.8 82.6 50.3 71.5 49.5 64.5
PSE 69.0 87.7 62.0 79.8 56.9 72.1
PSAE 73.2 90.1 63.2 80.6 58.9 74.3
PSE + k-reciprocal 83.5 90.2 78.9 84.4 70.7 74.9
PSE + ECN (rank-dist) 84.0 90.3 79.8 85.2 71.8 76.7
PSAE + k-reciprocal 84.6 91.9 81.0 86.1 71.7 77.1
PSAE + ECN (rank-dist) 84.8 92.1 81.2 86.9 72.5 78.1

rank-1 accuracy is achieved. On all three datasets, the proposed embeddings
achieve very high scores and are only outperformed by very recent new pub-
lications.

The bottom part of Table 5.8 additionally provides re-ranked results using
either the k-reciprocal embedding [Zho17a] or the expanded cross neighbor-
hood (ECN) re-ranking. On all datasets re-ranked PSAE results achieve top
accuracies with ECN being slightly better than k-reciprocal re-ranking. The
re-ranked embedding results surpass the state-of-the-art on Market by 2.5%
in mAP, on Duke by 9.4% in mAP, and on MARS by 11.2% in mAP.
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Large Gallery Sizes: For evaluation of the robustness of the proposed
models in real-world deployments with very large gallery sizes, the Market-
1501+500k (Market500k) dataset is used. This dataset is an extension to the
Market-1501 dataset and offers an additional 500,000 distractor images that
can be added to the gallery to evaluate the impact of increasing gallery size.
The established protocol is to evaluate a model by stepwise adding 100k,
200k, 300k, 400k, and finally all 500k distractor images to the Market-1501
gallery. The distactors from the Market500k set are chosen randomly.

Table 5.9: Evaluation of performance drop of the proposed embeddings and related works on
the Market-1501+500k distractors dataset.

Method mAP by #Distractors R-1 by #Distractors
0 100k 200k 500k 0 100k 200k 500k

I+V [Zhe18] 59.9 -12.7% -18.0% -24.5% 79.5 -7.2% -10.1% -14.1%
APR [Lin17] 62.8 -10.0% -14.7% -20,7% 84.0 -4.9% -6.9% -10.2%
TriNet [Her17] 69.1 -10.4% -15.1% -22.4% 84.9 -6.1% -8.5% -12.0%
ResNet-50 Baseline 59.8 -8.7% -13.4% -20.6% 82.6 -5.9% -8.4% -11.4%
PSE 69.0 -8.1% -11.9% -18.1% 87.7 -4.1% -5.8% -7.9%
PSAE 73.2 -7.7% -10.2% -17.8% 90.1 -4.0% -6.0% -8.3%

The performance of the proposed models under such growing gallery sizes
is given in Table 5.9 and compared to the limited number of approaches that
have published results on the dataset. For 0 added distractors the absolution
mAP value of all models is reported. With every addition of distractors, the
table then reports the relative change in mAP to indicate how well the model
copes with the larger gallery. A clear difference between the proposed models
and related work becomes visible. Whereas the best related method (TriNet
[Her17]) is decreasing by 22.4% in mAP and 12.0% in rank-1 accuracy when
adding 500k distractors, the PSAE approach only loses 17.8%mAP and 8.3% in
rank-1. The PSE model shows a similar trend, with stronger drop in mAP but
smaller drop in rank-1. This indicates that the PSAE model is slightly better
able to find further correct matches after the first one. The strong differences
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to related approaches also indicate that pose information and attribute atten-
tion help to better maintain the model’s accuracy with a growing number of
distractors.

Person Detection & Re-Id: Re-id approaches typically rely on pre-cropped
person images provided in the dataset. Thus, if the images were not cropped
by an automatic detector, the re-id approach will become biased towards more
precise hand-cropped boxes. Even if a person detector was used, no flexibility
in detector choice is possible. The Person Re-Identification in the Wild (PRW)
dataset offers full camera images in which persons have to be found. Ap-
proaches can rely on their own solution to person detection or alternatively
on automatic detections created by a DPM detector, wich are provided along-
side with the dataset. Like MARS, PRW is based on the same video material as
the Market-1501 dataset and provides 13,126 training, 140,469 test and 2,057
query images cut out from video streams of six cameras. While the videos
used to create the dataset are the same as for Market, person identities are
not consistent and there are only 482 IDs in the training and 450 IDs in the
test set. Since the PRW datasets unfiltered DPM detections, false detections
and misaligned images are included. Figure 5.13 shows examples of detection
errors contained in the data.

Figure 5.13: Example images of the PRW test set showing false and mis-aligned person detec-
tions.

Confidence scores are provided with the detection and for re-id, a threshold
has to be chosen on which detections will be used for the re-id process and
which are discarded. Higher threshold values will result in cleaner detections
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but also in cases where the query person is wrongfully discarded and the re-
id method cannot recover this type of error. The PRW evaluation protocol
specifies calculation of mAP and rank accuracies under different confidence
thresholds. For this, the threshold is defined by the average number of person
detections remaining in each image.

Table 5.10 compares the state-of-the-art of the PRW dataset with results of
the proposed approaches for 3, 5, 10, and 20 average detections per frame.

In comparison to the state-of-the-art, both proposed approaches achieve im-
provements with the final PSAE embedding having a 8.2% higher mAP and4.5% higher rank-1 score. Furthermore, both models show a very low reduc-
tion in rank-1 with increasing numbers of detections per frame, i.e., with an
increasing number of false detections and badly aligned images being pro-
cessed. The mAP actually increases, indicating that the model is well able to
sort out false detections and reliably identify the added correct detections that
occur when additional detections per image are taken into account.

In summary, the proposed combined model achieves very competitive accura-
cies across a number of challenging evaluation setups with real-world aspects.
The PSE embedding is outperformed in most cases by the PSAE model, indi-
cating that the attribute attention maps are a better addition to the network
than a view classification branch. This is particularly notable, since the view
branch and the corresponding view units increase the number of parameters
in the network, which the attention maps do not.

Runtime Considerations: Runtime is an important aspect during practical
use of any re-id system. While the methods described in this thesis are not

Table 5.10: Comparison of the proposed models with the state-of-the-art on the PRW dataset.

Detector Method #detections=3 #detections=5 #detections=10 #detections=20
mAP R-1 R-20 mAP R-1 R-20 mAP R-1 R-20 mAP R-1 R-20

DPM IDE𝑑𝑒𝑡[Zhe16b] 17.2 45.9 77.9 18.8 45.9 77.4 19.2 45.7 76.0
DPM-Alex IDE𝑑𝑒𝑡 [Zhe16b] 20.2 48.2 78.1 20.3 47.4 77.1 19.9 47.2 76.4
DPM-Alex IDE𝑑𝑒𝑡+CWS [Zhe16b] 20.0 48.2 78.8 20.5 48.3 78.8 20.5 48.3 78.8
IAN (Resnet-101) [Xia19] 23.0 61.9
DPM PSE 29.3 65.1 88.3 31.7 65.0 88.2 32.4 64.5 87.5 32.6 63.9 87.0
DPM PSAE 31.2 66.4 89.1 34.1 66.3 89.0 34.8 65.9 88.6 34.8 65.7 87.9
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Table 5.11: Comparison of inference speed (in ms) for multiple CNN backbone architectures in
dependence of batchsize. The Inception* architecture corresponds to the model used
in Chapter 6.

Architecture 1 2 4 8 16
Inception* 4.54 2.44 1.65 1.06 0.86
Inception-V4 18.96 10.61 6.53 4.85 4.10
ResNet-50 5.10 2.87 1.99 1.65 1.49
ResNet-100 8.90 5.16 3.32 2.69 2.42

specifically designed for fast inference, an analysis of their runtime is provided
to better judge constraints in real-world settings.

As depicted in Figure 3.1, a re-id approach consists of an offline and an online
component, as well as possible person detection and tracking stages earlier in
the pipeline. For the purposes of this analysis, detections in the form of pose
information are presumed to be available. During the offline stage, features
must be computed for all person images or tracks in a database. This process
can happen prior to any actual re-id query and is thus less time-sensitive.
However, real-time processing of the video streams originating from a camera
network is often desirable. Table 5.11 shows average inference times of the
proposed combined re-id model per person image. Experiments were carried
out on an NVIDIA Titan X(P) GPU and inference speed was averaged over
100 forward passes after a warmup period of 20 passes.

While the runtime of the offline stage of a re-id system depends largely on the
network architecture and amount of network parameters, the online stage is
most strongly impacted by the dimensionality of the feature embedding. Ta-
ble 5.12 gives an overview of matching speeds, i.e. distance computation, of
a query to different database sizes and different feature dimensions. Exper-
iments were carried out on a server with a Xeon E5-2650 2.20GHz CPU and
256GB of memory and averaged across 50 runs. Only a single core was used
for distance computation. The online stage further requires a single forward-
pass to compute the feature embedding of the query image but for realistically
sized databases, this is often a negligible aspect.
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Table 5.12: Comparison of runtime (in ms) for matching a query feature against a database of
varying size and different embedding dimensions.

Feature Dim. 1k 10k 100k 1M 10M
128 0.2 1.2 39.4 393.7 3.98s
256 0.3 3.4 64.6 643.3 6.49s
1024 0.9 25.9 256.3 2.11s 18.09s

The results show that online matching speed is not a major factor. Single core
speeds are already fast and distance computation is trivially parallelized across
multiple cores ormachines. In a real-world system, data access timewill likely
be the dominating factor, not matching speed. Inference time during the of-
fline stage is a more important factor. For example, not taking into account
previous detection or tracking stages, processing 1 million person detections
during the offline stage with even the fastest reported network architecture
would require approximately 17 minutes, while the resulting feature database
could be searched in at most a few seconds.
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Chapter 6

Domain Prototype Learning

Many re-id approaches, particularly those which automatically learn feature
representations from data, are well adapted to the characteristics which are
included in their training data. However, data with previously unseen or un-
derrepresented characteristics can result in arbitrary outcomes. In practice,
this situation can occur frequently. Examples for this are the deployment of
re-id methods to new scenes or simply changes within existing camera sys-
tems, such as addition of new cameras, repositioning, or updates to newer
models.

A popular strategy to address these concerns is the application of unsuper-
vised learning [Rad16, Pen16]. Here, unannotated data from the target or
changed scenario is used to adapt an existing model to new characteristics.
However, model adaptation can take time, may require specialized or more
powerful hardware, and may also require expert guidance for parameter set-
tings. These requirements can often not be fulfilled in day-to-day use of a
practical system. Particularly, if characteristics of the camera network data
change frequently, this becomes a costly task with reduced practical useful-
ness.

In this chapter a two-stage framework for re-id is proposed to automatically
discover visual domains in large amounts of diverse data and use them to learn
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6 Domain Prototype Learning

feature embeddings for re-id. This here described framework was previously
published in [Sch17a].

• In the first stage, data from many diverse re-id datasets is pooled to
capture a large degree of visual variation. Then, clustering based on
feature learning in CNNs is applied to automatically discover
dominant sets of visual characteristics, termed prototype domains.

• In the second stage of the approach, CNNs are used to learn feature
embeddings for each of the prototype domains. A separate
embedding is learned for each domain. At test time, a
domain-sensitive selection process matches the query image to its
closest visual domain and chooses the feature embedding learned on
that domain to perform re-id.

The motivation behind this idea is to allow the domain embeddings to focus
on specific details, which are important for this individual prototype domain,
while ignoring those of other domains. For example, an embedding learned
for a domain, which predominantly contains people with dark clothes, does
not need to encode information relevant to distinguishing a person dressed
in light blue colors from a person dressed in light green clothes. By focusing
on a specialized domain, the domain perceptive embedding can then focus
on learning more subtle discriminative characteristics among similar visual
appearances.

6.1 Divergent Data Sampling

A key requirement for a meaningful domain discovery is divergent data sam-
pling which aims to provide a large range of realistic visual variation. In order
to achieve such a high degree of variation, a number of publicly available re-
id datasets are pooled into a new, large dataset for domain discovery. Ten
datasets are combined, which together contain images of 4,786 different per-
sons with a total of 41,380 bounding boxes from 54 different camera views.
Of these bounding boxes 27,283 were manually annotated and 14,097 are ob-
tained by a person detector. Table 6.1 shows the sources used to construct
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the proposed domain discovery dataset. All bounding boxes are resized to a
uniform size of 160×80 pixels. This divergent data sampling provides a good
basis to discover characteristic domains, which cover a large and diverse spec-
trum of possible variation in visual appearance of persons.

Table 6.1: Ten sources for the re-id domain discovery dataset. The data consists of manually la-
beled bounding boxes (M-BBoxes) as well as automatic person detections (A-BBoxes).

Persons Cameras M-BBoxes A-BBoxes
HDA [Fig14] 85 13 850 -
GRID [Loy10] 250 8 500 -
3DPeS [Bal11a] 200 8 1,012 -
CAVIAR4REID [Che11] 72 2 1,221 -
i-LIDS [Bra06] 119 2 476 -
PRID [Hir11] 200 2 400 -
VIPeR [Gra08] 632 2 1,264 -
SARC3D [Bal11b] 50 1 200 -
CUHK2 [Li13] 1,816 10 7,264 -
CUHK3 [Li14] 1,360 6 14,096 14,097
Total 4,786 54 27,283 14,097

6.2 Prototype Domain Discovery

Deep learning based clustering is used to discover prototype domains from
the multi-source pooled dataset. The method is based on the concept of un-
supervised deep embedding space learning proposed in [Xie16] and adapted
to utilise the available person ID labels from the re-id datasets. The self-
supervised deep learning clustering model alternates between two steps:

1. Applying conventional clustering, such as k-means, within the
feature space of a CNN embedding to identify clusters.

103



6 Domain Prototype Learning

2. Training of the underlying CNN to further adapt the feature
embedding based on the cluster assignment.

These two iteratively performed steps enable the model to discover meaning-
ful partitions in the data by not just clustering but also refining the underlying
feature space simultaneously.

6.2.1 Initialization

In the absence of annotations, prior to the iterative clustering approach, the
CNN could be initialized through training as an auto-encoder (AE), as is pro-
posed in [Xie16]. However, this is likely to result in the domain discovery
process focusing on global visual differences between the various datasets,
rather than more subtle cues directly relating to the visual appearance of the
depicted persons. Thus, an alternative initialization method is proposed. The
model is trained for re-id using all of the person ID labels available in the
data. The last, fully connected layer of the network is set to 4,786 dimensions
and the network is trained using person ID labels in a one-hot encoding and
a softmax cross-entropy loss for person ID classification. Two options are
considered for the architecture of the model:

• The ResNet-50 architecure which has proven to provide a very strong
baseline for re-id.

• A proposed custom Inception-based architecture, which contains
fewer parameter than the ResNet-50 model, can be trained more
quickly, and has a lower dimensional embedding. More details of this
architecture are given in Table 6.2 and Section 6.3.1.

The multi-source dataset ensures that the influence of any particular dataset’s
bias on the initial feature embedding before clustering is reduced. Moreover,
data augmentation is applied by cropping and flipping the images, and also en-
suring unbiased sampling by selecting images from different original datasets
with equal frequency. Image cropping is performed by resizing an image to30 × 10 pixels larger than the network requires and randomly cropping the
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image down to the expected size. Through data augmentation, the hypotheti-
cal data pool size is increased by a factor of 600. Uniform sampling from each
of the original datasets results in more data augmentation on the smaller data
sources, in order to prevent the resulting domains from being dominated by
the larger datasets.

6.2.2 Iterative Domain Discovery

After this initial training, meaningful weights, which extract person informa-
tion across the pooled dataset, have been obtained. For the domain discovery
process, the person ID softmax cross-entropy loss layer of the CNN is then
replaced by a softmax cross-entropy loss, which corresponds to the desired
number of clusters or prototype domains. As the number of domains will have
a direct impact on training times and offline processing speed, small numbers
of clusters are preferable. After a supervised initialization, the domain dis-
covery now continues in a self-supervised manner. An initial clustering is
performed based on the learned re-id feature representation. The assigned
cluster IDs are then used as image labels for the softmax cross-entropy loss.
Further training of the CNN adapts the underlying feature space to better
separate the clusters. The iterative process terminates when only few person
images change their cluster assignment and stable domain borders have been
established. This joint process of cluster assignment and learning of the un-
derlying representation space gives the model a high flexibility in identifying
meaningful subsets in the pooled data.

The initialization of weights through training of a re-id network is crucial to
the success of the prototype domain discovery. The re-id training ensures
that the initial model does not react strongly to the dataset biases present in
the feature pool. This prevents the clustering from simply discovering triv-
ial dataset boundaries as prototype domain boundaries and instead lets the
model focus more on the content of each person bounding box. This is illus-
trated in Figure 6.2, which shows different learned prototype domains (i.e.,
clusters in the embedding feature space) with their corresponding images for
initialization by auto-encoder or the proposed re-id initialization.
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Figure 6.1: Overview of the proposed domain discovery process. An iterative process of clus-
tering and CNN feature learning guides the discovery of meaningful subsets in the
pooled data. Re-id models specific to the data characteristics in these subsets can
then be trained.

6.2.3 Training Details

For training of the deep clustering model a low initial learning rate in the
order of 10−4 is important. This ensures that the cluster embedding does not
deviate too quickly from its re-id label sensitive initialization. Given the initial
embedding, 25 runs of k-means clustering are performed in the embedding
space. The result with the best separated and compact clusters is selected for
the next refinement of the embedding. This ensures stability of the iterative
training process. The refinement (fine-tuning) of the embedding CNN is then
performed for a further 10,000 training iterations. The learning rate of the
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6.2 Prototype Domain Discovery

Figure 6.2: Example domains discovered by the approach using the proposed initializationwith a
re-id net (top 3 rows, supervised initialization) and initialization by weights learned
through autoencoding (AE) (bottom 3 rows, unsupervised initialization). The re-
id initialization leads to more semantically meaningful domains (e.g., light-colored,
yellow and blue clothing). The AE initialization is strongly influenced by dataset bias
and learns domains corresponding to datasets (e.g., CAVIAR4REID, 3DPeS, PRID).

embedding is lowered by a factor of 0.1 every two iterations of the discovery
process. This iterative process is repeated until less than 1% of images change
their cluster assignments.

107



6 Domain Prototype Learning

6.3 Domain Perceptive Re-Id Models

The second stage of the proposed re-id framework consists of training a
domain-sensitive re-id model for each prototype domain. For this, one fea-
ture embedding for each of the discovered clusters is to be trained with all
person IDs present in the data subset. First, a common generic baseline re-id
model is trained on all available data without consideration of the domains.
The individual domain models are then created by fine-tuning this baseline
model.

6.3.1 Baseline Re-Id Model

Rather than relying on established large ImageNet-pretrained models, a more
lightweight architecture is proposed, which is trained from scratch. The ar-
chitecture is detailed in Table 6.2 and trained on all available training data to
learn a generic feature embedding without domain specific adaptation. The
architecture is inspired by that described in [Xia16a]. However, the model
was improved by adding a fourth convolutional layer to enhance the feature
representation at the beginning of the network and an increase in the final
feature dimension results in more nuanced features, which lead to improved
accuracy. Due to its reduced size, the baseline model is trained for just 60,000
iterations. The initial learning rate is set to 0.1 and divided by 10 after every
20,000 iterations. The 512 dimensional layer (fc feat in Table 6.2) just before
the loss is used as feature embedding for person re-id. The resulting features
are compared using cosine distance. The same baseline model is also used as
initialization for the domain discovery approach described in Section 6.2.

6.3.2 Domain Embeddings Training

In order to learn feature embeddings focused on each of the domains, suit-
able domain-specific training data needs to be created. For any person ID
in a given domain all of that person’s images are selected and added to the
training data for the domain. This happens regardless of whether all images

108



6.3 Domain Perceptive Re-Id Models

Table 6.2: The lightweight model architecture for prototype domain discovery and baseline re-id
model.

name patch size,
stride output dim # filters

input 3 × 160 × 64
conv 1-4 3 × 3, 1 32 × 160 × 64
pool 2 × 2, 2 32 × 80 × 32
inception 1a 256 × 80 × 32 64
inception 1b stride 2 384 × 40 × 16 64
inception 2a 512 × 40 × 16 128
inception 2b stride 2 768 × 20 × 8 128
inception 3a 1024× 20 × 8 128
inception 3b stride 2 1536× 10 × 4 128
fc feat 512
fc loss #person ids

of that person were originally assigned to this domain by the domain discov-
ery process. Thus, person images may be assigned to several domains and
the training data of different domains can partially overlap. The addition of
all person images for a given ID is necessary, in order to provide the CNNs
with sufficient visual variation within each person class. The partial overlap
between training sets is not a drawback and may even help compensate error
cases, when the wrong embedding is chosen for a new query. This data sam-
pling method allows the domain models to specialize and focus particularly
on the visual cues relevant to persons from their domain while not having to
also learn how to distinguish persons from different domains.

Starting from the re-id baseline model, the networks are trained individually
for each domain relying only on the corresponding data pool. The dimension
of the final softmax layers is adapted accordingly. For each domain training
continues for 30,000 iterations at an initial learning rate of 10−3. The input
images are resized to a size of 210 × 70 pixels. Data augmentation is then
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performed by randomly flipping images and randomly cropping them to a
final input size of 180×60 pixels. Similar to [Wu16b] hard negative mining is
applied by selecting misclassified training images and fine-tuning each net on
these difficult cases for a further 10,000 iterations at a reduced learning rate
of 10−5.
6.3.3 Automatic Domain Selection

The combination of domain classifier model and domain specific re-id models
allows for a flexible query-adaptive deployment strategy. During model de-
ployment, a probe person image is first matched to its closest domain. This
can be done using the deep clustering model (Section 6.2) which generates
probability values for cluster assignment. The corresponding domain’s re-id
model is then used to rank the gallery images by computing the 512 dimen-
sional embedding and using cosine distance for matching the query image.
An overview of this query-based selection process is given in Figure 6.3. This
model selection process achieves an adaptation of the framework at query
level. It requires only a single additional inference pass of the clustering CNN
model and can thus be performed without significant delay for the operator.

Note that this approach is purely inductive when applied in a cross-domain
setting. It does not require any training data (labelled or unlabelled) from the
target domain, and is yet able to adapt based on the presented query images.
The described method thus requires less data than unsupervised learning ap-
proaches and can be integrated into a practical system without requiring spe-
cialized knowledge from operating personnel or specialized hardware for fur-
ther training. The approach is particularly well suited to scenarios in which
no fixed set of camera views is available (i.e. no fixed domain borders are
specified).
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Figure 6.3: Test-time use of the proposed re-id framework. The query image is matched to the
most closely related prototype domain by use of the clustering CNN. After this, the
specialized re-id model of that domain is applied to perform the ranking task.

6.4 Evaluation

The proposed model was developed with practical application in mind. Thus,
for evaluation two datasets are chosen, which allow for a range of different
evaluation settings that closely mirror a real-world re-id scenario.

Datasets: The CUHK-SYSU [Xia16b] and PRW [Zhe16b] are both indepen-
dent/unseen from the tenmulti-source data pool used to construct the domain
discovery training dataset. Both datasets contain a large number of viewing
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angles. CUHK-SYSU consists of pedestrian images collected by handheld cam-
eras as well as scenes from movies and TV series. The PRW dataset was col-
lected with six fixed cameras on a campus environment. The datasets contain
8,432 and 932 person IDs and 99,809 and 34,304 bounding boxes, respectively.
Importantly, both datasets provide full camera images. Thus, a combination
of person detector and re-id model will have to be applied and the re-id stage
will be subject to occlusion, bounding box misalignment and large changes in
person resolution. Example images of both datasets are depicted in Figure 6.4.
The high diversity and challenging nature of the two datasets are a well suited
measure for the generalization capability of the proposed approach, as well
as its ability to handle large amounts of varying views, indoor and outdoor
scenes, and possible detection errors.

Figure 6.4: Dataset used in the evaluation of the domain selection re-id model. The top row
shows fixed camera images from the PRW dataset and the bottom rowmobile camera
images and TV scenes from the CUHK-SYSU dataset.
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Evaluation protocol: A central objective of the proposed approach is not to
require any training data on the target domain for the re-id task. To that end,
in the experiments we only used the test part of both datasets. The CUHK-
SYSU dataset contains a fixed set of 2,900 query persons and gallery sets of
multiple sizes (at most 6,978 full images). The PRW dataset contains a fixed
query set of 2,057 bounding boxes and a gallery size of 6,112 test images. In
both datasets each gallery image contains multiple persons and an automatic
person detector may generate additional false positive bounding boxes. The
original evaluation protocols from [Xia16b] and [Zhe16b] are applied, respec-
tively, and existing evaluation code is used where available. Both datasets
contain many persons without an ID in the galleries, i.e., the re-id tasks in
these datasets have a large but unspecified number of distractors to handle.
mAP and rank-1 accuracy are used as evaluation metrics.

Domain analysis: In Table 6.3 the influence of the number of chosen do-
mains on the accuracy of the domain selection approach is evaluated. The
setting for a single domain (k=1) corresponds to a straightforward baseline
model, which uses the entire pooled data for training of a re-id embedding.
For few domains (k=2) the resulting re-id models perform less accurate than
the baseline. This is likely due to the low degree of specialization in the do-
mains, which leads to the resulting models merely being weaker versions of
the baseline model. Given an increasing number of domains, the advantage of
the domain selection becomes greater until it saturates around eight domains.
The overall trend is similar for both backbone architectures. The ResNet-50
model is more strongly impacted by using two clusters, compared to the base-
line. Accuracy only gradually improves and is not as high as that of the In-
ception model. The ResNet-50 has more than five times more parameters than
the Inception model. A reason for its weaker performance may lie in the
smaller amounts of training data available for each domain, which can lead to
overfitting in large models. For further experiments, the proposed inception
architecture and eight domains are chosen.

Table 6.4 shows how often the domain selection process succeeds in choosing
the correct domain embedding. For this, each domain embedding was evalu-
ated for each query of the CUHK-SYSU dataset at the gallery 100 setting. The
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Table 6.3: Effect of prototype-domain numbers (k) on re-id rate, using CUHK-SYSU with the
gallery 100 setting.

Architecture k=1 k=2 k=4 k=6 k=8
Inception mAP 68.4 67.1 71.4 72.6 74.0

rank-1 70.3 68.7 73.3 75.1 76.7
ResNet-50 mAP 69.9 66.5 67.5 70.8 72.9

rank-1 71.0 64.3 67.7 72.1 75.9

Table 6.4: Relative number of cases in which each of the domain embeddings is the optimal
choice, compared to the number of cases in which it is automatically chosen. The
experiment was performed on CUHK-SYSU with the gallery 100 setting

1 2 3 4 5 6 7 8
Correct 0.12 0.43 0.01 0.00 0.05 0.31 0.04 0.04
Chosen 0.10 0.45 0.03 0.00 0.02 0.29 0.05 0.06

optimal embedding was determined and compared to the automatic choice
made by the domain classifier. The table shows a high correlation between
the classifier’s choice and the optimal choice.

Table 6.5: DLDP re-id performance comparison against both supervised (KISSME, IDNet, Person
Search) and unsupervised (Euclidean, BoW) methods on the CUHK-SYSU dataset.

mAP rank-1

GT

Euclidean [Xia16b] 41.1 45.9
KISSME [Koe12] 56.2 61.9
BoW [Zhe15b] 62.5 67.2
IDNet [Xia16b] 66.5 71.1
Baseline Model 68.4 70.3
DLDP 74.0 76.7

D
et
ec

tio
ns

Person Search [Xia16b] 55.7 62.7
Person Search rerun 55.79 62.17
DLDP (SSD VOC300) 49.53 57.48
DLDP (SSD VOC500) 57.76 64.59
DLDP ([Xia16b] detections) 66.76 71.93
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Table 6.6: Domain-adaptive re-id performance on the PRW dataset in comparison to state-of-
the-art. All results are obtained by considering 5 bounding boxes per image. Note
that all approaches except ours were trained (supervised) on the PRW dataset.

mAP rank-1
D
PM

IDE [Zhe16b] 13.7 38.0
IDE𝑑𝑒𝑡 [Zhe16b] 18.8 47.7
BoW + XQDA [Zhe16b] 12.1 36.2
Baseline Model 12.9 36.5
DLDP 15.9 45.4

SS
D

BoW + XQDA (SSD VOC300) 6.8 26.6
DLDP (SSD VOC300) 10.1 35.3
DLDP (SSD VOC500) 11.8 37.8

Comparison with the state-of-the-art: To demonstrate the effectiveness
of the approach, it is compared directly to the state-of-the-art reported in
[Xia16b] and [Zhe16b], using both manually labeled person bounding boxes
(i.e. ground truth) and automatically detected bounding boxes. Since the ap-
proach relies on deep learning domain prototypes, it is abbreviated DLDP in
the tables. Results on the CUHK-SYSU dataset for gallery sizes of 100 images
are given in Table 6.5. The baseline re-id model givenmanually labeled person
bounding boxes as input outperforms not only [Xia16b] using conventional
image features but also the deep IDNet model, which has the advantage of
being trained on the CUHK-SYSU dataset, at rank-1 by 1.9%. The reason is
likely a combination of the deeper 10 layer network architecture, the use of
inception layers and batch normalization. The domain adaptive model, given
manually labeled person bounding boxes, outperforms [Xia16b] by 7.5% and
5.6% in mAP and rank-1, respectively, which is a further improvement of 6%
in both mAP and rank-1 over the baseline model. This indicates that the do-
main selection model for prototype-domain adaptive re-id is more effective
than a direct model transfer.

For automatic detection of person bounding boxes, the SSD VOC500 person
detector [Liu16] is applied. For re-id given these automatic detections, the
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domain-adaptive model outperforms the state-of-the-art person search deep
model [Xia16b] by 2.06% and 1.89% on mAP and rank-1, respectively. This
is achieved despite the critical difference that the person search CNN model
[Xia16b] was trained jointly for person detection and re-id using part of the
CUHK-SYSU dataset. In contrast, the proposed model does not benefit from
training detectors in the target domain, nor fine-tuning the re-id model on
the target domain. If the domain-adaptive model is applied to the detections
of the person search model, performance is further increased to 66.76% mAP
and 71.93% rank-1 accuracy.

For the evaluation on the PRW benchmark, the domain-adaptive approach
is compared to a baseline using BoW features and XQDA metric learning
[Lia15a] and two deep feature embeddings IDE and IDE𝑑𝑒𝑡 from [Zhe16b],
which are based on the AlexNet [Kri12] architecture, trained on ImageNet and
fine-tuned for re-id on PRW. For person detection, both the DPM person de-
tector [Fel10] trained on the INRIA dataset [Dal05] provided by [Zhe16b] and
the SSD detector are used for a fair comparison. The results are shown in Table
6.6. All reported results were obtained by considering five bounding boxes per
gallery image, which is the value at which the methods reported in [Zhe16b]
perform best. It is evident that the SSD detectors decrease re-id performance
for all models. This is at first a surprising observation. However, the annota-
tions of the PRW dataset were created semi-automatically with the help of the
DPM detector. Thus, the DMP detector has an uncommonly high accuracy on
this dataset. The domain-adaptive model outperforms both the BOW+XQDA
baseline and the deep IDE feature embedding reported in [Zhe16b], when an
identical DPM person detector was used, by 2.2% and 7.4% in mAP and rank-
1, respectively. The improved deep IDE𝑑𝑒𝑡 embedding of [Zhe16b] is trained
by fine-tuning the AlexNet first for person and background classification, fol-
lowed by further fine-tuning for re-id. It outperforms the domain-adaptive
approach by 2.9% and 2.3% in mAP and rank-1 accuracy, respectively. How-
ever, the performance of the adaptive model remains competitive while nei-
ther requiring target-domain training, nor person-background classification.

The CUHK-SYSU dataset provides several gallery sets of varying size. Thus,
the influence of larger numbers of distractors on the re-id accuracy can be
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Table 6.7: Comparison of the domain-adaptive to [Xia16b] for different gallery sizes on CUHK-
SYSU. Results of [Xia16b] were obtained using the provided code.

50 100 500 1000 2000 4000 all (6978)
Person Search [Xia16b] 58.72 55.79 47.38 43.41 39.14 35.70 32.69
DLDP (SSD VOC500) 60.8 57.7 49.2 45.2 41.4 38.1 35.2
Person Search [Xia16b] 64.83 62.17 53.76 49.86 45.21 41.86 38.69
DLDP (SSD VOC500) 67.6 64.6 57.0 52.9 49.2 46.1 43.1

Table 6.8: Comparisons on the CUHK-SYSU occlusion and low resolution tests.

Deep+Kissme [Xia16b] ACF+BOW [Xia16b] Person Search [Xia16b] DLDP (SSD VOC500)
mAP top-1 mAP top-1 mAP top-1 mAP top-1

Whole 39.1 44.9 42.4 48.4 55.7 62.7 57.7 64.6
Occlusion 18.2 17.7 29.1 32.1 39.7 43.3 38.9 39.0
LowRes 43.8 42.8 44.9 53.8 35.7 42.1 41.9 49.0

evaluated. Table 6.7 shows results of the DLDP model in comparison to the
end-to-end person search CNN [Xia16b]. Overall, the DLDP model consis-
tently outperforms the end-to-end person search model by a constant value
of 2% in mAP regardless of gallery size. The DPDP model performs 3% bet-
ter in rank-1 accuracy for low gallery sizes of 50 images (corresponding to
256 bounding boxes) and this margin increases up to 5.4% in rank-1 for the
largest possible gallery of all 6978 images (i.e. 36,984 bounding boxes). This
suggests that the proposed model is less sensitive to increase in gallery size,
even without benefiting from learning on the target data.

Lastly, the DLDP model is evaluated for the effects of occlusion and low-
resolution probe images. The CUHK-SYSU dataset contains subsets for this
purpose, which were created by sampling heavily occluded probe images and
those 10% probe images with the lowest resolutions, respectively. The gallery
size for this evaluation is fixed at 100 images. Table 6.8 gives results using
the SSD VOC500 detector, which are again compared th the person search
model. It can be noted that an occluded probe image causes more difficulty
for re-id than that of low-resolution imagery. This result is expected, as the
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complete occlusion of potentially discriminative information is harder to com-
pensate for than the gradual overall degradation of details caused by lower
image resolutions. At low-resolutions, the DLDP model suffers only a 15%
loss in mAP and rank-1, compared to a 20% decrease of the end-to-end person
search model. For occlusions, the reported results of the end-to-end person
search model are reduced by 16.0% mAP and 19.4% rank-1 and thus less af-
fected than the DLDP model whose performance is reduced by 18.8% in mAP
and 25.6% in rank-1.

In summary, the domain-adaptive model performs significantly stronger than
a direct model transfer and outperforms several state-of-the-art re-id meth-
ods on both the CUHK-SYSU and the PRW benchmark datasets. Even some
methods, which benefit from supervised training on the target domain, are
outperformed. In challenging situations, such as increasing gallery size, low
resolutions, or occluded query images, the model performs close to or even
better than existing models, which were adapted to the data’s characteristics.
Qualitative examples on the CUHK-SYSU and PRW datasets are shown in Fig-
ures 6.5 and 6.6, respectively. Note that the incorrect results for all queries
have a color composition or clothing configuration that is reasonably similar
to the query image. In particular, the approach understandably ranks near-
identically looking people (PRW, row 2) very high. In the failure case on PRW
the model appears to focus on the structural pattern created by the bikes in
combination with white-dressed persons.
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Figure 6.5: The top 8 re-id matches by the domain-adaptive model on the CUHK-SYSU test data
for a set of five randomly chosen queries from the 100 image gallery setting. The
bottom example shows failure cases when the model failed to find a match in the top
8 ranks.
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Figure 6.6: Five randomly chosen queries on the PRW test data. Note, rank-2 and rank-3 in the
“yellow T-shirt” example in are false matches even though they look very similar.
The bottom example shows failure cases when the model failed to find a match in
the top 8 ranks and likely focused on the structure of the bikes.
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Chapter 7

Conclusion and Outlook

7.1 Conclusions

In this thesis two strategies for person re-identification using CNN models
have been proposed. The first strategy relies on explicit modeling and inclu-
sion of auxiliary information into the learning process of a re-id CNN. Seman-
tic attributes and person pose information have been identified as promising
candidates for this approach.

An attribute recognition CNN model was developed in order to provide the
required attribute information. The experiments showed that a combination
of local and global image information within the model can lead to notable
improvements in the attribute recognition accuracy. Furthermore, pose in-
formation has proven to be a viable source as input for an attribute attention
mechanism, which extracts the local information.

The attribute information was then used for re-id through training of a CNN-
based feature representation, which learns complementary information to
that contained in the attributes. This was achieved by a proposed modifi-
cation of the triplet loss. The resulting feature combination showed a clear
improvement in accuracy compared to conventionally trained CNN features

121



7 Conclusion and Outlook

as well as common methods of fusing re-id features with attributes. However,
the overall potential is limited by the low dimensionality of the attribute rep-
resentation and the unavoidable degradation of accuracies though transfer to
another dataset. Thus other elements of the attribute CNN were identified as
more promising candidates for transfer.

For the use of pose information, the generated detections of body joint loca-
tions were encoded as additional input channels and provided to a re-id CNN.
In addition to this, a classifier branch that determines coarse view information
was added to the network in order to let later layers of the CNN specialize on
the predicted view angles. The modeling of pose and view was shown to be
complementary and was able to significantly increase re-id accuracy.

Both types of information were combined in a joint model and the results
demonstrate that each element contributes to a further improved overall ac-
curacy. The joint model also performs well on challenging evaluation settings,
which mirror real-world requirements of modern re-id systems. This includes
the ability to cope with errors from a previous person detection stage, scala-
bility with increased numbers of persons in the gallery set, and video-based
re-id.

The second strategy pursued in this work aimed at enabling a re-id system to
adapt to new or changed target scenarios without the need for extensive and
time consuming re-training. A re-id framework was proposed that consists
of a set of CNN models. Each model is adapted to the specific characteristic
of a prototype domain. These domains were automatically constructed from
a large and diverse person dataset. Through selection of the closest matching
model during test time, a degree of adaptation to each individual query was
achieved. The resulting re-id accuracy was markedly improved compared to
standard transfer of CNN models. Several existing baselines for unsupervised
re-id approaches were outperformed and it could be shown that the correct
specialized re-id model is chosen from the set with very high likelihood.
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7.2 Outlook

7.2 Outlook

Thepresentedmethods achieve a high degree of accuracy and addressmany of
the core challenges involved with the development of a practical re-id system.
However, several future research directions have been identified for further
improvement of the proposed re-id methods.

• A more integrated end-to-end model could help combine and better
adjust the different types of information used in this thesis. For
example, the pose estimation stage could be trained as part of the
re-id model. The gradient information from the re-id loss might then
be able to influence the pose estimation segment in order to better
avoid pose errors, which are damaging to the resulting re-id feature
representation. In addition to exploiting such possible synergies
during the learning process, an end-to-end model also has the
potential to reduce computation time for the offline stage of the
approach.

• Better use of temporal information is a promising direction, which is
currently not addressed by the described models. While evaluations
on video data were carried out, each image in a person track is
treated separately and fusion across time is carried out by a simple
averaging of the extracted features. A more explicit use of temporal
information through, for example, recurrent networks can be
expected to yield improved results. Particularly the auxiliary pose
and attribute information could become a much more reliable
support to the re-id model, when stabilized across the temporal
context through pose-tracking or verification of temporal
consistency of attributes.

• The combination with face-based re-identification as an additional
source of auxiliary information may further improve accuracy and
particularly robustness to changes in data characteristics. Face
matching in the typical surveillance scenarios depicted in re-id
datasets used to be unpromising, due to the low resolution, which
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did not allow for face detection or matching. However, recently
developed face detectors [Hu17] are able to detect even tiny faces
with impressive accuracy. Furthermore, a first dataset for
development of ultra low-resolution face matching methods has
recently been published [Che18]. While the face-based
representation can not be assumed to achieve such high confidences
as are known from higher-resolution data, the added cue may be a
valuable addition to re-id approaches. For example, confident
individual face-based matches may be used to enhance the query set
of a conventional re-id approach.

From a more global perspective, the accuracy of re-id approaches has im-
proved significantly over recent years. Many current models achieve rank-
1 accuracies upwards of 90% [Li18b, Zha17a], which can in some cases be
considered better than human accuracy [Zha17a]. The same trend could be
observed in the field of face recognition where many models now outperform
human accuracy [Lu17a, Sch15b]. Consequently, future re-id research will
likely begin to focus on more specialized tasks.

• Most current re-id datasets and evaluation protocols implicitly
assume that for each query there is at least one correct match in the
gallery. In contrast to this closed world assumption, open world re-id
is a much more challenging problem. Here, re-id systems need to
either find correct matches to a query image or decide, if no correct
match is present. This is a much more difficult decision to make and
accuracies of the few existing approaches [Lia14, Zhe16c, Zhu18] are
consequently much lower.

• Re-id of persons across larger domain gaps will be an interesting
direction of future research. An example use case for this is the
matching of people between visual and infrared cameras. Night time
outdoor surveillance systems often rely on infrared imagery and an
automated system for matching between day and night or indoor
and outdoor areas will have to bridge this gap. Some first datasets
[Wu17, Ngu17] and approaches [Ye18, Dai18] for this specialized
re-id use case already exist.
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7.2 Outlook

• The rising accuracy in attribute recognition in combination with
more detailed sets of attributes allow for a purely text-based re-id
query. This problem may occur when only a witness description of a
person of interest is available. Such cross-modal text-to-image
matching has already been applied for fashion applications where
datasets [Liu12] are of higher resolution and more nuanced
description of clothing attributes exist [Lae17, Li17c]. However, first
works aim at employing similar methods for the task of person
re-identification [Yin17].
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