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Abstract. Major events like natural catastrophes or the COVID-19 crisis have impact both
on the financial market and on claim arrival intensities and claim sizes of insurers. Thus, when
optimal investment and reinsurance strategies have to be determined it is important to consider
models which reflect this dependence. In this paper we make a proposal how to generate
dependence between the financial market and claim sizes in times of crisis and determine via a
stochastic control approach an optimal investment and reinsurance strategy which maximizes
the expected exponential utility of terminal wealth. Moreover, we also allow that the claim size
distribution may be learned in the model. We give comparisons and bounds on the optimal
strategy using simple models. What turns out to be very surprising is that numerical results
indicate that even a minimal dependence which is created in this model has a huge impact on
the control in the sense that the insurer is much more prudent then.
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1. Introduction

The COVID-19 pandemic has a significant impact on individuals, society and almost all sectors
of the economy. This also applies to the insurance industry as well as the financial market by
drop down of asset prices. The COVID-19 crisis is one example for an event with impact on
financial and insurance risks, which shows that it makes sense to add interdependencies between
both. This is also suggested by Wang et al. [24], who point out the following two reasons: First,
(re)insurance companies transfer their insurance risks to the capital market by using insurance-
linked securities, like catastrophe bonds, for instance. As a result, an insurer invested in the
financial market is exposed to the insurance risks exported by another insurance company to the
financial market, and there may be dependencies among these risks for example through natural
catastrophes. A second interconnectedness among financial and insurance risks is in insurance
contracts for financial guarantees, which can cause systemic risk.

Whereas it is common now in the actuarial literature to model dependencies between different
lines of business, the number of papers which connect the evolution of the financial market to
the occurrence of claims is sparse.

A widespread approach to obtain dependent business lines is by common shock models. In
general this means that there is an additional Poisson process which produces joint claims in all or
many business lines. Papers which have used this approach are among others [5, 15, 25, 10, 9, 7].
The first two papers in this list deal with modeling and computational aspects of performance
measures, whereas the last four use these models to solve stochastic control problems for optimal
reinsurance and investment for different criteria and for diffusion as well as jump models. The
advantage of modeling dependence in this way is that we obtain an immediate interpretation
for the interdependence. Since the papers [25, 10, 9, 7] consider a financial market which is
independent from the claim generation mechanism, the control problems for investment and
reinsurance decompose which makes it of course easier to obtain explicit solutions. Another
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popular approach to model dependence between business lines is to use Lévy copuals, see among
others [12, 4, 2] and [1] for an overview. This approach is elegant from a mathematical point of
view but its interpretation is less clear than for common shock models. Other approaches include
the construction of dependence via interacting intensities (see [6]) or a common subordinator
(see [22]).

The first contribution of this paper is to model a dependence between the financial market
and the insurance business for the joint problem of optimal investment and (proportional) rein-
surance. To keep the model simple we restrict here to one business line for the insurance risk,
but the model can be extended here in a straightforward way. A paper which connects financial
and insurance risk is [24] where a discrete-time risk model is considered. The authors there
assume a joint distribution for the claim size and the discount factor at each point in time and
are interested in the asymptotics for the finite-time ruin. They do not consider a control. The
second paper is the recent paper by [11] who create the dependence by a common factor process
which influences drift and volatility of the risky asset as well as size and risk fluctuations of
the insurance risk process. They consider a diffusion model and general utility function and
obtain explicit solutions in some special cases. In contrast to their approach we assume here
that in ’normal’ times we have independence and that dependence is created by major events
like catastrophes. More precisely, whenever the claim size exceeds a certain threshold we assume
that this corresponds to a catastrophe and implies at the same time a drop of the risky asset
by a random proportion. What turns out to be very surprising is the fact that creating only a
small dependence has a sincere effect on the optimal investment strategy.

Our second contribution is that we allow the claim size distribution to be learned. In most
articles, it is assumed that the insurer has complete knowledge of the model. However, in
reality, insurance companies operate in a setting with partial information. That is, with regard
to the net claim process, only the claim arrival times and magnitudes are directly observable.
Therefore we study the optimal investment and reinsurance problem in a partial information
framework. More precisely we consider a Bayesian approach and restrict here to the claim
size distribution which is allowed to be learned from a finite set of possible distributions (for
learning the intensity see e.g. [7]). A paper with learning in an actuarial context is [17] where
dividend payment is optimized and the drift of the risky asset has to be learned. The model
there is a diffusion model. [23, 18] are both Hidden-Markov models which means that a latent
hidden factor influences model parameters. In [23] again the dividend has to be maximized in a
diffusion setting with unobservable dirft. Based on the suggestion in [3, p. 165], the authors in
[18] consider the optimal investment and reinsurance problem for maximizing exponential utility
under the assumption that the claim intensity and loss distribution depend on the states of the
Hidden Markov chain.

The aim in our paper is to maximize the expected exponential utility of the insurer’s capital
at a fixed time point. Note that this is an interesting optimization criterion which interpolates
between a mean-variance criterion and a robust approach (for details see [7]). The control
consists of (proportional) reinsurance and investment into two assets. The baseline financial
market is given by a Black Scholes model and the insurance model is a Cramér-Lundberg model.
As explained before, as soon as the claim size exceeds a threshold the risky asset drops by a
random proportion. Using stochastic control methods we are able to characterize the optimal
investment and reinsurance strategy via the Hamilton-Jacobi-Bellman (HJB) equation. Since
the value function may not be differentiable everywhere we use the Clarke gradient as a general
gradient in our analysis. In the case of known model data we get explicit optimal investment and
reinsurance strategies and are able to discuss the influence of the threshold level which creates
the dependency.

The paper is organized as follows: In the next section we introduce our basic model which
consists of the claim arrival process, the financial market, the strategies and the optimization
problem. In Section 3 we state the model with learning and explain how we can transform
the model with unknown claim size distribution to a model with known data. The standard
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approach here is to include a filter process which keeps track of all relevant observations. Section
4 contains the solution. Being able to show that the value function possesses some Lipschitz
properties we can prove that it is a solution of a generalized HJB equation where we replace a
derivative by the generalized Clarke gradient. Thus, we are also able to characterize an optimal
pair of investment and reinsurance strategy. Due to the dependence between the financial market
and the claim process these strategies are now rather complicated. So we first manage in Section
5 to compare the optimal strategy to the optimal one where we have independence between the
financial market and claim occurrence. It will turn out that the insurance company will invest
less when dependence shows up. Indeed a numerical example will reveal the magnitude of the
impact of the threshold which creates the dependence. We can show that even large thresholds
which create a minimal dependence have a huge impact on the investment strategy. Second we
are able to compare the optimal investment strategy in our model to the optimal one in a model
with known data and where the jump size distribution exactly equals our expectation. We will
see that in the latter model the invested amount provides an upper bound to what is invested
in the more complicated model. In the appendix we summarize additional information on the
Clarke gradient and provide detailed calculations and proofs for our main theorems.

2. The Optimal Investment and Reinsurance Model

We consider an insurance company with the aim to maximize the expected utility of the
terminal surplus by choosing optimal investment and reinsurance strategies. The processes Ψ
and W below are defined on a common probability space (Ω,F ,P).

2.1. The aggregated claim amount process. In the following, let N = (Nt)t≥0 be a Poisson
process with intensity λ > 0. We interpret the jump times of N , denoted by (Tn)n∈N, as arrival
times of insurance claims. We assume that (Yn)n∈N is a sequence of positive random variables,
where Yn describes the claim size at Tn. The insurer faces uncertainty about the claim size
distribution. This is taken into account by a Bayesian approach. Let {Fϑ : ϑ ∈ Θ}, Θ ⊂ Rn,
be a family of distributions on (0,∞), where ϑ in unknown. We view ϑ as a random variable
taking values in Θ = {1, . . . ,m} for some m ∈ N and initial distribution πϑ(j), j = 1, . . . ,m.
Moreover, we suppose that Fj is absolutely continuous with density fj , where

Mj(z) :=

∫
(0,∞)

ezyfj(y)dy <∞, z ∈ R, j = 1, . . . ,m.

The sequence Y1, Y2, . . . is assumed to be conditional independent and identically distributed
according to Fϑ given ϑ as well as independent of (Tn)n∈N. The aggregated claim amount
process, denoted by (St)t≥0, is given by

St =

Nt∑
i=1

Yi =

∫ t

0
yΦ(dt, dy),

where Φ := (Tn, Yn) is the (0,∞)-Marked Point Process which carries the information about the
claim arrival time and amounts.

2.2. The financial market. The surplus will be invested by the insurer into a financial market,
where it is assumed that there exists one risk-free asset and one risky asset. The price process
of the risk-free asset, denoted by B = (Bt)t≥0, is given by

dBt = rBtdt, B0 = 1,

with risk-free interest rate r ∈ R. That is, Bt = ert for all t ≥ 0. The price of the risky asset
drops down by a random value at the claim arrival time Tn, if the corresponding insurance claim
Yn exceed a fixed threshold L > 1. We assume that (Zn)n∈N is a sequence of independent and
identically distributed random variables taking values in (0, 1) with distributionQ. It is supposed
that (Zn)n∈N is independent of (Tn)n∈N and (Yn)n∈N. The random variable Zn describes the
relative jump height downwards of the risky asset at time Tn, if Yn > L. From now on, we set
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Ψ := (Tn, (Yn, Zn))n∈N and let E := (0,∞) × (0, 1). That is, Ψ is the E-Marked Point Process
which contains the information of the claim arrival times, claim sizes and potential relative
jumps downwards of the risky asset. The filtration generated by Ψ is denoted by FΨ = (FΨ

t )t≥0.
The price process of the risky asset evolves according to a geometric Brownian motion between
the jumps. That is, the price process of the risky asset, denoted by P = (Pt)t≥0, is characterized
by

dPt = Pt−

(
µdt+ σdWt −

∫
E
z1(L,∞)(y)Ψ(dt, d(y, z))

)
, P0 = 1,

where µ ∈ R and σ > 0 are constants describing the drift and volatility of the risky asset,
respectively, and (Wt)t≥0 is a standard Brownian motion which is independent of (Tn)n∈N,
(Yn)n∈N and (Zn)n∈N. Since the price process of the risky asset is observable, the filtration
generated by P , denoted by FP = (FPt )t≥0, is known by the insurer. Throughout this work,
G = (Gt)t≥0 denotes the observable filtration of the insurer which is given by

Gt = FPt ∨ FΨ
t , t ≥ 0.

2.3. The strategies. We assume that the wealth of the insurance company is invested into the
previously described financial market.

Definition 2.1. An investment strategy, denoted by ξ = (ξt)t≥0, is an R-valued, càdlàg and
G-predictable process such that |ξt| ≤ K for some 0 < K < ∞. ξt is the amount of money
invested at time t.

The restriction |ξt| ≤ K is only a technical tool. We will make K sufficiently large later, s.t.
the optimal ξ?t is the same as in the unrestricted problem.

We further assume that the first-line insurer has the possibility to take a proportional rein-
surance. Therefore, the part of the insurance claims paid by the insurer, denoted by h(b, y),
satisfies

h(b, y) = b · y
with retention level b ∈ [0, 1] and insurance claim y ∈ (0,∞). Here we suppose that the insurer
is allowed to reinsure a fraction of her/his claims with retention level bt ∈ [0, 1] at every time t.

Definition 2.2. A reinsurance strategy, denoted by b = (bt)t≥0, is a [0, 1]-valued, càdlàg and
G-predictable process.

We denote by U [t, T ] the set of all admissible strategies (ξ, b) on [t, T ]. We assume that the
policyholder’s payments to the insurance company are modelled by a fixed premium (income)
rate c = (1+η)κ with safety loading η > 0 and fixed constant κ > 0, which means that premiums
are calculated by the expected value principle. If the insurer chooses retention levels less than
one, then the insurer has to pay premiums to the reinsurer. The part of the premium rate left
to the insurance company at retention level b ∈ [0, 1], denoted by c(b), is c(b) = c− δ(b), where
δ(b) denotes the reinsurance premium rate. We say c(b) is the net income rate. Moreover, the
net income rate c(b) should increase in b, which is fulfilled by setting δ(b) := (1− b)(1+θ)κ with
θ > η which represents the safety loading of the reinsurer. Therefore

c(b) = (1 + η)κ− (1− b)(1 + θ)κ = (η − θ)κ+ (1 + θ)κ b. (2.1)

This reinsurance premium model is used e.g. in [26]. The surplus process (Xξ,b
t )t≥0 under an

admissible investment-reinsurance strategy (ξ, b) ∈ U [0, T ] is given by

dXξ,b
t = (Xξ,b

t − ξt)rdt+ ξt

(
µdt+ σdWt −

∫
E
z1(L,∞)(y)Ψ(dt, d(y, z))

)
+ c(bt)dt− btdSt

=
(
rXξ,b

t + (µ− r)ξt + c(bt)
)
dt+ ξtσdWt −

∫
E

(
bty + ξtz1(L,∞)(y)

)
Ψ(dt, d(y, z)).

We suppose that Xξ,b
0 = x0 > 0 is the initial capital of the insurance company.



OPTIMAL INVESTMENT AND REINSURANCE PROBLEMS 5

2.4. The optimization problem. Clearly, the insurance company is interested in an optimal
investment-reinsurance strategy. But there are various optimality criteria to specify optimization
of proportional reinsurance and investment strategies. We consider the expected utility of wealth
at the terminal time T > 0 as criterion with exponential utility function U : R→ R

U(x) = −e−αx, (2.2)

where the parameter α > 0 measures the degree of risk aversion. The exponential utility function
is useful since by choosing α we can interpolate between a risk-sensitive criterion and a robust
point of view as explained in [7]. The case of small α can be seen as maximizing the expectation
with a bound on the variance and the case of large α can be seen as a robust optimization.

Next, we are going to formulate the dynamic optimization problem. We define the value
functions, for any (t, x) ∈ [0, T ]× R and (ξ, b) ∈ U [t, T ], by

V ξ,b(t, x) := Et,x
[
U(Xξ,b

T )
]
,

V (t, x) := sup
(ξ,b)∈U [t,T ]

V ξ,b(t, x).
(2.3)

The expectation E is taken w.r.t. the probability measure πϑ⊗P and Et,x denotes the conditional

expectation given Xξ,b
t = x.

3. A Model with Learning

The task is to reduce the control problem (2.3) with partial information within the introduced
framework to one with complete information, taken the observations into account.

3.1. Filtering. By the Bayes rule, the posterior probability mass function of ϑ given the obser-
vation Ȳn = ȳn with Ȳn := (Y1, . . . , Yn) and ȳn := (y1, . . . , yn) is

P(ϑ = j|Ȳn = ȳn) =
πϑ(j)

∏n
i=1 fj(yi)∑m

k=1 πϑ(k)
∏n
i=1 fk(yi)

, j = 1, . . . ,m. (3.1)

However, the solution method requires a dynamic representation of this posterior probability
distribution given the information up to any time t. To achieve this, let us introduce the following
notation. Throughout this paper, we write

pj(t) = P(ϑ = j|FΨ
t ), t ≥ 0, j = 1, . . . ,m.

Moreover, let (pt)t≥0 denote the m-dimensional process defined by

pt := (p1(t), . . . , pm(t)), t ≥ 0.

We obtain the following representation of the process (pt)t≥0 from (3.1):

pj(t) = πϑ(j) +

∫ t

0

∫
(0,∞)

(
pj(s−) fj(y)∑m
k=1 pk(s−) fk(y)

− pj(s−)

)
Φ(ds, dy), j = 1, . . . ,m. (3.2)

Note that (pt)t≥0 is a pure jump process and the new state of (pt) at the jump time Tn with
jump sizes Yn is

pTn = J
(
pTn−, Yn

)
, n ∈ N,

where

J(p, y) :=

(
f1(y) p1∑m
k=1 fk(y) pk

, . . . ,
fm(y) pm∑m
k=1 fk(y) pk

)
,

for p = (p1, . . . , pm) ∈ ∆m := {x ∈ Rm+ :
∑m

k=1 xi = 1} and y ∈ (0,∞).

Proposition 3.1. The G-intensity kernel of Ψ = (Tn, (Yn, Zn)), denoted by ν̂(t, d(y, z)), is given
by

ν̂(t, d(y, z)) = λ
m∑
k=1

pk(t)fk(y)dyQ(dz), t ≥ 0.
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Proof. First note that ν̂ is a transition kernel. The G-intensity is derived from the G ∨ σ(ϑ)-
intensity kernel λfϑ(y)dyQ(dz) by conditioning on Gt (see [13]). Note here in particular that
the posterior predictive distribution of the claim sizes given the observed claims up to time t is∑m

k=1 pk(t)fk(y)dy. �

We denote by Ψ̂(dt, d(y, z)) the compensated random measure given by

Ψ̂(dt, d(y, z)) := Ψ(dt, d(y, z))− ν̂(t, d(y, z))dt, (3.3)

where ν̂ is defined as in Proposition 3.1. Thus, we obtain the following indistinguishable repre-

sentation of the surplus process (Xξ,b
t )t≥0:

dXξ,b
t =

(
rXξ,b

t + (µ− r)ξt + c(bt)− λ
m∑
k=1

pk(t)
(
btµk + ξtF̄k(L)E[Z]

))
dt

+ ξtσdWt −
∫
E

(
bty + ξtz1(L,∞)(y)

)
Ψ̂(dt, d(y, z)), t ≥ 0,

(3.4)

where µj :=
∫

(0,∞) yfj(y)dy, F̄j denotes the survival function of Fj , j = 1, . . . ,m, and Z is a

random variable with Z ∼ Z1. Note that all processes here are G-adapted. This dynamic will
be one part of the reduced control model discussed in the next section.

3.2. The Reduced Control Problem. The process (pt)t≥0 in (3.2) carries all relevant infor-
mation about the unknown parameter ϑ contained in the observable filtration G of the insurer.
Therefore, the state process of the reduced control problem with complete observation is the
(m+ 1)-dimensional process

(Xξ,b
s , ps)s∈[t,T ],

where (Xξ,b
s ) is given by (3.4) and (ps) is given by (3.2) for some fixed initial time t ∈ [0, T )

and (ξ, b) ∈ U [t, T ]. We can now formulate the reduced control problem. For any (t, x, p) ∈
[0, T ]× R×∆m, the value functions are given by

V ξ,b(t, x, p) := Et,x,p
[
U(Xξ,b

T )
]
,

V (t, x, p) := sup
(ξ,b)∈U [t,T ]

V ξ,b(t, x, p),
(P)

where Et,x,p denotes the conditional expectation given (Xξ,b
t , pt) = (x, p). An investment-

reinsurance strategy (ξ?, b?) ∈ U [t, T ] is optimal if V (t, x, p) = V ξ?,b?(t, x, p). Note that by
classical filtering results we have that V (0, x, πϑ) = V (0, x) (see e.g. [8]).

4. The Solution

4.1. The HJB equation. In a first step we derive the HJB equation for the value function V
using standard methods and assuming full differentiability of V , which results in

0 = sup
(ξ,b)∈[−K,K]×[0,1]

{
Vt(t, x, p)− λV (t, x, p) + Vx(t, x, p)

(
rx+ (µ− r)ξ + c(b)

)
+

1

2
σ2Vxx(t, x, p)ξ2 + λ

m∑
k=1

pk

∫
E
V
(
t, x− (by + zξ1(L,∞)(y)), J(p, y)

)
fk(y)dyQ(dz)

}
,

(4.1)

For solving (4.1) we apply the usual separation approach: For any (t, x, p) ∈ [0, T ] × R ×∆m,
we assume

V (t, x, p) = −e−αxer(T−t)g(t, p) (4.2)
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with g ≥ 0. This implies that we conclude from (4.1)

0 = inf
(ξ,b)∈[−K,K]×[0,1]

{
gt(t, p)− λg(t, p)− αer(T−t)g(t, p)

(
(µ− r)ξ + c(b)− 1

2
ασ2er(T−t)ξ2

)
+ λ

m∑
k=1

pk

∫ ∞
0

g(t, J(p, y))eαbye
r(T−t)

∫
(0,1)

eαξz1(L,∞)(y)er(T−t)Q(dz)fk(y)dy

}
.

(4.3)
However, V is probably not differentiable w.r.t. t. Assuming t 7→ g(t, p) is Lipschitz on [0, T ]
for all p ∈ ∆m, we can replace the partial derivative of g w.r.t. t by Clarke’s generalized
subdifferential (see appendix). Throughout, we denote by L an operator acting on functions
g : [0, T ]×∆m → (0,∞) and (ξ, b) ∈ [−K,K]× [0, 1] which is defined by

Lg(t, p; ξ, b) := −λg(t, p) + αer(T−t)g(t, p)(θ − η)κ+ γ(t, p, ξ, b), (4.4)

where

γ(t, p, ξ, b) :=− αer(T−t)g(t, p)
(

(µ− r)ξ − 1

2
ασ2er(T−t)ξ2 + (1 + θ)κb

)
+ λ

m∑
k=1

pk

∫ ∞
0

g(t, J(p, y))eαbye
r(T−t)

∫
(0,1)

eαξz1(L,∞)(y)er(T−t)Q(dz)fk(y)dy.
(4.5)

Using this operator and replacing the partial derivative of g w.r.t. t, in (4.3) by Clarke’s gener-
alized subdifferential, we get the generalized HJB equation for g:

0 = inf
(ξ,b)∈[−K,K]×[0,1]

{
Lg(t, p; ξ, b)

}
+ inf
ϕ∈∂Cgp(t)

{ϕ} (4.6)

for all (t, p) ∈ [0, T )×∆m with boundary condition

g(T, p) = 1, p ∈ ∆m. (4.7)

Note that we set ∂Cgp(t) = {g′p(t)} at the points t where the subdifferential exists. The notation
gp(t) indicates that the derivative is w.r.t. t for fixed p.

4.2. Candidate for an optimal strategy. To obtain candidates for an optimal strategy, we
have to minimize the function γ given in (4.5) w.r.t. (ξ, b) for fixed (t, p). For this purpose we
introduce the following notation:

MZ(u) := E
[
euZ
]
, u ∈ R.

Notice that M ′Z(u) = E
[
ZeuZ

]
and M ′′Z(u) = E

[
Z2euZ

]
whenever they exist.

Lemma 4.1. For any (t, p) ∈ [0, T ] × ∆m, the function R2 3 (ξ, b) 7→ γ(t, p, ξ, b) is strictly
convex and

∂

∂ξ
γ(t, p, ξ, b) = −αer(T−t)g(t, p)

(
(µ− r)− ασ2er(T−t)ξ

)
+ λα er(T−t)

m∑
k=1

pk

∫ ∞
L

g(t, J(p, y))eαbye
r(T−t)

fk(y)dyM ′Z(α er(T−t)ξ),

∂

∂b
γ(t, p, ξ, b) = −α er(T−t)g(t, p) (1 + θ)κ

+ λαer(T−t)
m∑
k=1

pk

∫ ∞
0
yg(t, J(p, y))eαbye

r(T−t)
∫

(0,1)
eαξz1(L,∞)(y)er(T−t)Q(dz)fk(y)dy.
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Proof. A straightforward calculation yields the announced partial derivatives and

∂2γ(t, p, ξ, b)

∂ξ2
= α2σ2e2r(T−t)g(t, p)

+ λα2e2r(T−t)
m∑
k=1

pk

∫ ∞
L
g(t, J(p, y))eαbye

r(T−t)
fk(y)dyM ′′Z(αer(T−t)ξ),

∂2γ(t, p, ξ, b)

∂b2
= λα2e2r(T−t)

m∑
k=1

pk

(∫ L

0
y2g(t, J(p, y))eαbye

r(T−t)
fk(y)dy

+

∫ ∞
L

y2g(t, J(p, y))eαbye
r(T−t)

fk(y)dyMZ(αer(T−t)ξ)

)
,

∂2γ(t, p, ξ, b)

∂b∂ξ
= λα2e2r(T−t)

m∑
k=1

pk

∫ ∞
L

yg(t, J(p, y))eαbye
r(T−t)

fk(y)dyM ′Z(αer(T−t)ξ).

Therefore, the Hessian matrix Hγ of γ w.r.t. (ξ, b) is given by

Hγ = α2e2r(T−t)
(
A+ λ

m∑
k=1

pkBk

)
with

A :=

(
σ2g(t, p) 0

0 λ
∑m

k=1 pk
∫ L

0 y2g(t, J(p, y))eαbye
r(T−t)

fk(y)dy

)
and

Bk :=

(
ak bk

bk ck

)
with

ak :=

∫ ∞
L

g(t, J(p, y))eαbye
r(T−t)

fk(y)dyM ′′Z(αer(T−t)ξ),

bk :=

∫ ∞
L

yg(t, J(p, y))eαbye
r(T−t)

fk(y)dyM ′Z(αer(T−t)ξ),

ck :=

∫ ∞
L

y2g(t, J(p, y))eαbye
r(T−t)

fk(y)dyMZ(αer(T−t)ξ).

for k = 1, . . . ,m. To prove the convexity of (x, y) 7→ γ(t, p, ξ, b), it is sufficient to show that
Hγ is positive definite. Clearly, A is positive definite. Moreover, for any k ∈ {1, . . . ,m} and
x̄ = (x1, x2) ∈ R2 \ {0}, it holds (since L > 1 and (M ′Z)2 ≤ M ′′ZMZ by the Cauchy-Schwarz
inequality)

x̄Bkx̄
> = x2

1ak + 2x1x2bk + x2
2ck

≥
∫ ∞
L
g(t, J(p, y))eαbye

r(T−t)
fk(y)dy

(
x2

1M
′′
Z(αer(T−t)ξ)

+ x2
2MZ(αer(T−t)ξ) + 2x1x2M

′
Z(αer(T−t)ξ)

)
≥
∫ ∞
L
g(t, J(p, y))eαbye

r(T−t)
fk(y)dy

(
x2

1

(
M ′Z(αer(T−t)ξ)

)2
MZ(αer(T−t)ξ)

+ x2
2MZ(αer(T−t)ξ)

+ 2x1x2M
′
Z(αer(T−t)ξ)

)
=

∫ ∞
L
g(t, J(p, y))eαbye

r(T−t)
fk(y)dy

(
x1

M ′Z(αer(T−t)ξ)√
MZ(αer(T−t)ξ)

+ x2

√
MZ(αer(T−t)ξ)

)2

> 0.

Consequently, Hγ is positive definite. �
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Setting ∇γ to zero, we obtain the following first order condition for the candidate of an
optimal strategy in case g > 0:

v1(t, p, ξ, b) = µ− r,
v2(t, p, ξ, b) = (1 + θ)κ,

(4.8)

where

v1(t, p, ξ, b) := ασ2er(T−t)ξ + λ

m∑
k=1

pk

∫ ∞
L

g(t, J(p, y))

g(t, p)
eαbye

r(T−t)
fk(y)dyM ′Z(α er(T−t)ξ),

v2(t, p, ξ, b) := λ
m∑
k=1

pk

∫ ∞
0

y
g(t, J(p, y))

g(t, p)
eαbye

r(T−t)
∫

(0,1)
eαξz1(L,∞)(y)er(T−t)Q(dz)fk(y)dy.

The next proposition states that this system of equations is solvable.

Proposition 4.2. For any (t, p) ∈ [0, T ]×∆m, (4.8) has a unique root w.r.t. (ξ, b), denoted by
r(t, p) := (r1(t, p), r2(t, p)), where r2(t, p) is increasing w.r.t. the safety loading parameter θ of
the reinsurer. Moreover, it holds,

(a) r2(t, p) ≤ 0 if (1 + θ)κ ≤ A(t, p),
(b) 0 < r2(t, p) < 1 if A(t, p) < (1 + θ)κ < B(t, p),
(c) r2(t, p) ≥ 1 if (1 + θ)κ ≥ B(t, p),
(d) r1(t, p) is decreasing with r2(t, p),

with

A(t, p) := v2(t, p, r1(t, p), 0),

B(t, p) := v2(t, p, r1(t, p), 1).

Proof. Due to the strict convexity of γ according to Lemma 4.1 and

lim
ξ→−∞

γ(t, p, ξ, b) = lim
ξ→+∞

γ(t, p, ξ, b) = lim
b→−∞

γ(t, p, ξ, b) = lim
b→+∞

γ(t, p, ξ, b) =∞,

there exists a unique minimizer of the function γ w.r.t. (ξ, b) for fixed (t, p), i.e. (4.8) has a
unique root denoted by r(t, p) := (r1(t, p), r2(t, p)). Note that R 3 b 7→ v2(t, p, ξ, b) is strictly
increasing and thus A(t, p) < B(t, p). Then statements (a), (b) and (c) follow from considering
the zeros of (4.8) in θ when b = 0 and when b = 1. For (d) note that ξ, b 7→ v1(t, p, ξ, b) are both
increasing. �

The proposition above provides the candidate for an optimal investment-reinsurance strategy.
Let K be large s.t. |r1(t, p)| ≤ K for all t ∈ [0, T ], p ∈ ∆m. For any (t, p) ∈ [0, T ]×∆m, we set

b(t, p) :=


0, θ ≤ A(t, p)/κ− 1,

1, θ ≥ B(t, p)/κ− 1,

r2(t, p), otherwise.

Then the candidate for an optimal investment-reinsurance strategy (ξ?, b?) = (ξ?t , b
?
t )t≥[0,T ] is

given by

b?t := b(t, pt−) and ξ?t := r1(t, pt−),

the latter equation only holds if A(t, pt−) < (1 + θ)κ < B(t, pt−). If b?t = 0 or b?t = 1, then we
have to find the minimum point of γ on (−∞,∞) × [0, 1]. In the case b?t = 0, ξ?t may deviate
from r1(t, pt−). We have to solve v1(t, p, ξ, 0) = µ− r here, which unique root w.r.t. ξ is denoted
by a0(t, p). Similarly, we denote by a1(t, p) the unique root w.r.t. ξ of v1(t, p, ξ, 1) = µ − r.
Setting

z(t, p) :=


(a0(t, p), 0), θ ≤ A(t, p)/κ− 1,

(a1(t, p), 1), θ ≥ B(t, p)/κ− 1,

r(t, p), otherwise,
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we obtain the following representation of the candidate for an optimal investment-reinsurance
strategy (ξ?, b?) = (ξ?t , b

?
t )t∈[0,T ]:

(ξ?t , b
?
t ) := z(t, pt−), t ∈ [0, T ]. (4.9)

Notice that the strategy (ξ?, b?) can only jump at the claim arrival times due to the dependency
on the filter process (pt)t≥0.

4.3. Verification. This section is devoted to a verification theorem to ensure that the solution
of the stated generalized HJB equation yields the value function (see Theorem 4.3). We also
demonstrate an existence theorem of the solution of the HJB equation (see Theorem 4.5). Both
proofs can be found in the appendix.

Theorem 4.3. Suppose there exists a bounded function h : [0, T ] × ∆m → (0,∞) such that
t 7→ h(t, p) is Lipschitz on [0, T ] for all p ∈ ∆m, p 7→ h(t, p) is continuous on ∆m for all
t ∈ [0, T ] and h satisfies the generalized HJB equation (4.6) for all (t, p) ∈ [0, T ) × ∆m with
boundary condition

h(T, p) = 1, p ∈ ∆m. (4.10)

Then

V (t, x, p) = −e−αxer(T−t)h(t, p), (t, x, p) ∈ [0, T ]× R×∆m,

and (ξ?, b?) = (ξ?s , b
?
s)s∈[t,T ] with (ξ?s , b

?
s) given by (4.9) (with g replaced by h in A(s, p) and

B(s, p)) is an optimal feedback strategy for the given optimization problem (P), i.e. V (t, x, p) =
V ξ?,b?(t, x, p).

4.4. Existence result for the value function. We now show that there exists a function
h : [0, T ]×∆m → (0,∞) satisfying the conditions stated in Theorem 4.3. For this purpose let

g(t, p) := inf
(ξ,b)∈U [t,T ]

gξ,b(t, p), (4.11)

with

gξ,b(t, p) := Et,p
[

exp

{
−
∫ T

t
αer(T−s)

(
(µ− r) ξs + c(bs)

)
ds−

∫ T

t
ασer(T−s)ξsdWs

+

∫ T

t

∫
E
α
(
bsy + ξsz1(L,∞)(y)

)
er(T−s)Ψ(ds, d(y, z))

}]
,

(4.12)

where Et,p denotes the conditional expectation given (pt, qt) = (p, q). The next lemma summa-
rizes useful properties of g. A proof can be found in the appendix.

Lemma 4.4. The function g defined by (4.11) has the following properties:

(a) g is bounded on [0, T ]×∆m by a constant 0 < K1 <∞ and g > 0.
(b) gξ,b(t, p) =

∑m
j=1 pjg

ξ,b(t, ej) for all (t, p) ∈ [0, T ]×∆m and (ξ, b) ∈ U [t, T ].

(c) gξ,b(t, J(p, y)) =
∑m

j=1
fj(y)pj∑m
k=1 fk(y)pk

gξ,b(t, ej) for all (t, p) ∈ [0, T ]×∆m and (ξ, b) ∈ U [t, T ].

(d) ∆m 3 p 7→ g(t, p) is concave for all t ∈ [0, T ].
(e) [0, T ] 3 t 7→ g(t, p) is Lipschitz on [0, T ] for all p ∈ ∆m.

Notice that ej denotes the jth unit vector. We are now in the position to show the following
existence result of a solution of the generalized HJB equation.

Theorem 4.5. The value function of problem (P) is given by

V (t, x, p) = −e−αxer(T−t)g(t, p), (t, x, p) ∈ [0, T ]× R×∆m,

where g is defined by (4.11) and satisfies the generalized HJB equation (4.6) for all (t, p) ∈
[0, T ) × ∆m with boundary condition g(T, p) = 1 for all p ∈ ∆m. Furthermore, (ξ?, b?) =
(ξ?s , b

?
s)s∈[t,T ] with (ξ?s , b

?
s) given by (4.9) is the optimal investment and reinsurance strategy of

the optimization problem (P).
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5. Comparison results

5.1. Case of independent financial and insurance risks. In this section we present a
comparison result of the optimal strategy given in Theorem 4.5 and the one in the case of
independent financial and insurance risks. In this case the price process of the risky asset has
no jumps if an insurance claim exceed the threshold L, i.e. the price process of the risky asset
evolves according to a geometric Brownian motion. Throughout this section, we suppose that
K is large. We write (ξ̃?, b̃?) for the optimal investment and reinsurance strategy in the case of
no interdependencies between the financial and insurance market as describe above. We obtain
the special solution (cp. [16, Ch. 6])

ξ̃?t =
µ− r
σ2

1

α
e−r(T−t),

b̃?t = b̃(t, pt−),

where

b̃(t, p) :=


0, θ ≤ Ã(t, p)/κ− 1,

1, θ ≥ B̃(t, p)/κ− 1,

r̃(t, p), otherwise,

with

γ̃(t, p, b) := λ
m∑
k=1

pk

∫ ∞
0

y
g(t, J(p, y))

g(t, p)
eαbye

r(T−t)
fk(y)dy,

Ã(t, p) := γ̃(t, p, 0),

B̃(t, p) := γ̃(t, p, 1),

and r̃(t, p) is the unique root of γ̃(t, p, b) = (1 + θ)κ w.r.t. b. The next theorem provides a

comparison of the optimal investment strategies ξ? and ξ̃?.

Theorem 5.1. For any t ∈ [0, T ] it holds ξ?t ≤ ξ̃?t .

Proof. Fix t ∈ [0, T ]. Note that the first order condition of ξ̃? is

ασ2er(T−t)ξ = µ− r,

where the left-hand side is always less than v1(t, p, ξ, b) from (4.8) and crosses µ− r from below.

Consequently, ξ?t ≤ µ−r
σ2

1
αe
−r(T−t). �

The theorem says that it is always optimal to invest more money into the risky asset in
the absence of interdependencies between financial and insurance risks than in the presence of
dependencies. This is not surprising since the interdependency in our model may only imply
some downward jumps of the risky asset. A negative investment into the financial market can
be used to hedge against claims.

5.2. Case of complete information. First note that the case with complete information is
always a special case of our general model. We obtain this case when the prior is concentrated
on a single value. In order to state the optimal strategy in the complete information case, we
define for any t ∈ [0, T ] and (ξ, b) ∈ R2

vF1 (t, ξ, b) := ασ2er(T−t)ξ + λ

∫ ∞
L

eαbye
r(T−t)

F (dy)M ′Z
(
αer(T−t)ξ

)
,

vF2 (t, ξ, b) := λ

∫ ∞
0

yeαbye
r(T−t)

∫
(0,1)

eαξz1(L,∞)(y)er(T−t)Q(dz)F (dy),
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for some distribution F on (0,∞). Furthermore, we denote by rF (t) = (rF1 (t), rF2 (t)) the unique
root w.r.t. (ξ, b) of

vF1 (t, ξ, b) = µ− r
vF2 (t, ξ, b) = (1 + θ)κ,

(5.1)

which exists, and we define

AF (t) := vF2 (t, rF1 (t), 0), BF (t) := vF2 (t, rF1 (t), 1).

Moreover, aF0 (t) denotes the unique root w.r.t. ξ of vF1 (t, ξ, 0) = µ− r and aF1 (t) the unique root
w.r.t. ξ of vF1 (t, ξ, 1) = µ − r. By the same line of arguments as in Proposition 4.2, we obtain
under the notation above that the optimal reinsurance strategy (ξ?F , b

?
F ) = (ξ?F (t), b?F (t))t∈[0,T ]

in the case of complete information is given by

(ξ?F (t), b?F (t)) :=


(aF0 (t), 0), θ ≤ AF (t)/κ− 1,

(aF1 (t), 1), θ ≥ BF (t)/κ− 1,

rF (t), otherwise.

(5.2)

Note that rF1 (t), rF2 (t), aF0 (t), aF1 (t), AF (t) and BF (t) are continuous in t. Consequently, the
optimal strategies ξ?F and b?F is continuous. Moreover, (ξ?F , b

?
F ) is deterministic and can be

calculated easily.
We will now compare the strategies. In order to do so, we assume throughout this section

that
F1(x) ≥ F2(x) ≥ . . . ≥ Fm(x)

for all x ∈ R. That is, the claim sizes are ordered stochastically as follows:

Y |ϑ = 1 �st Y |ϑ = 2 �st . . . �st Y |ϑ = m,

where �st denotes the usual stochastic order. This assertion is equivalent to∫ ∞
0

g(y)f1(y)dy ≤
∫ ∞

0
g(y)f2(y)dy ≤ . . . ≤

∫ ∞
0

g(y)fm(y)dy

for all increasing functions g, for which the expectations exist, compare Theorem 1.2.8 in [20].
First of all we derive bounds for the optimal strategy which can be calculated apriori, i.e.

independent of the filter process (pt)t≥0. For this determination, we introduce the following
terms. For any t ∈ [0, T ] and (ξ, b) ∈ R2, we set

vmin
1 (t, ξ, b) := ασ2er(T−t)ξ + λ

∫ ∞
L

eαbye
r(T−t)

f1(y)dyM ′Z
(
αξer(T−t)

)
,

vmax
1 (t, ξ, b) := ασ2er(T−t)ξ + λ

∫ ∞
L

eαbye
r(T−t)

fm(y)dyM ′Z
(
αξer(T−t)

)
,

For some fixed t ∈ [0, T ], we denote by rmin
1 (t) the unique root of vmin

1 (t, ξ, b) = µ − r and by
rmax

1 (t) the unique root of vmax
1 (t, ξ, b) = µ − r, which exist by the same line of arguments as

in Proposition 4.2. The announced a-priori-bounds are a direct consequence of the following
result.

Proposition 5.2. For any (t, p) ∈ [0, T ]×∆m, we have for v1 from (4.8)

vmin
1 (t, ξ, b) ≤ v1(t, p, ξ, b) ≤ vmax

1 (t, ξ, b) for all (ξ, b) ∈ R× R+.

Proof. Choose some (t, p) ∈ [0, T ] × ∆m and (ξ̄, b̄) ∈ R × R+. For any (ξ, b) ∈ U [t, T ], an
application of Lemma 4.4 (b) and (c) yields

m∑
k=1

pk

∫ ∞
L

gξ,b(t, J(p, y))eαb̄ye
r(T−t)

fk(y)dy

=
m∑
j=1

pjg
ξ,b(t, ej)

∫ ∞
L

∑m
k=1 pkfk(y)∑m
`=1 p`f`(y)

eαb̄ye
r(T−t)

fj(y)dy ≤ gξ,b(t, p)
∫ ∞
L

eαb̄ye
r(T−t)

fm(y)dy,
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which yields v1(t, p, ξ̄, b̄) ≤ vmax
1 (t, ξ̄, b̄) by dividing by gξ,b, multiplying both sides by

λM ′Z(αξ̄er(T−t)) and by adding ασ2er(T−t)ξ̄. The inequality vmin
1 (t, ξ̄, b̄) ≤ v1(t, p, ξ̄, b̄) is ob-

tained in the same way. �

The proposition directly implies the following corollary:

Corollary 5.3. The optimal investment strategy ξ? from Theorem 4.5 has the following bounds
for t ∈ [0, T ]:

rmax
1 (t) ≤ ξ?t if b?F1

(t) = b?t ,

ξ?t ≤ rmin
1 (t) if b?Fm(t) = b?t .

The next theorem is now the main statement of this section. It provides a comparison of
the optimal investment strategy to the optimal one in the case of complete information, where
the unknown claim size distribution is replaced by their expectation. It turns out that in the
latter case the amount which is invested is higher if the retention is the same. In this sense the
complete information case provides upper bounds.

Theorem 5.4. Let (ξ?F , b
?
F ) be the function given in (5.2) and suppose the insurance company

does invest into the financial market, i.e. ξ?t > 0 for all t ∈ [0, T ]. Then if b?t = b?
F̄pt−

we obtain

for t ∈ [0, T ]

ξ?t ≤ ξ?F̄pt− (t), with F̄p(dy) :=
m∑
k=1

pkfk(y)dy.

Proof. Let us fix (t, p) ∈ [0, T ] and (ξ̄, b̄) ∈ R×R+. From the proof of Proposition 5.2, we know
already that

m∑
k=1

pk

∫ ∞
L

gξ,b(t, J(p, y))eαb̄ye
r(T−t)

fk(y)dy =

m∑
j=1

pjg
ξ,b(t, ej)

∫ ∞
L

eαb̄ye
r(T−t)

fj(y)dy

for all (ξ, b) ∈ Ũ [t, T ], where Ũ [t, T ] denotes the set of all admissible strategies U [t, T ] restricted
to positive investment strategies. The integrand of

gξ,b(t, p) = Et,p
[

exp

{
−
∫ T

t
αer(T−s)

(
(µ− r)ξs + c(bs)

)
ds−

∫ T

t
αer(T−s)ξsdWs

+

NT−t∑
n=1

α
(
bTnYn + ξTnZn1(L,∞)(Yn)

)
er(T−Tn)

}]
is increasing in Yn (due to the positivity of ξt for all t ∈ [0, T ]) and hence gξ,b(t, e1) ≤ . . . ≤
gξ,b(t, em). Therefore, by Lemma 4.4 (b) as well as Lemma 6.8, we get

m∑
j=1

pjg
ξ,b(t, ej)

∫ ∞
L

eαb̄ye
r(T−t)

fj(y)dy ≥ gξ,b(t, p)
∫ ∞
L

eαb̄ye
r(T−t)

m∑
j=1

pjfj(y)dy.

In summary, we have

m∑
k=1

pk

∫ ∞
L

gξ,b(t, J(p, y))eαb̄ye
r(T−t)

fk(y)dy ≥ gξ,b(t, p)
∫ ∞
L

eαb̄ye
r(T−t)

F̄p(dy),

for all (ξ, b) ∈ Ũ [t, T ], which yields v1(t, p, ξ̄, b̄) ≥ v
F̄p
1 (t, ξ̄, b̄) by the same argumentation as in

the proof of Proposition 5.2. Therefore, we get ξ?t ≤ ξ?F̄pt− (t) under the assumptions ξ?t > 0. �
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Figure 1. Optimal strategy in the case of complete observation as a function of
L with logaritmically scaled x-axis.

5.3. Numerical results. We have seen in the last subsection that it is easy to compute the
optimal strategy in the case of full information and that this yields in some cases a bound on
the optimal strategy in the case of incomplete information. In particular when we set r = 0
then the strategy obtained through (5.2) is a constant and does not depend on time, only on
the final time horizon.

We have computed the optimal strategy in the case of full information for the following data:
The volatility of the financial market is σ = 0.4, the drift µ = 0.3 and the interest rate r = 0.
The claim arrival intensity is λ = 10 and the claim sizes are exponentially distributed with
parameter % = 0.1, i.e. Y ∼ Exp(0.1). Note that the moment generating function of the
exponential distribution does exist only for α ∈ (0, %). Thus, for all integrals to exist we have
to make sure that α < %. Hence, we choose α = 0.05 which means that we are close to the
risk-sensitive case. For Z we choose a uniform distribution on (0, 1). The expected amount of
claims per year in this model is EN1EY = 100, so we should choose (1 + θ)κ > 100. Indeed
since the premium income itself is below (1 + θ)κ we set (1 + θ)κ = 350. We compute now the
optimal investment and reinsurance strategy for different level L. Note that the expected claim
size is 10. The larger L, the smaller will be the constructed dependency between the markets.
For L→∞ we obtain independence. Figure 1 and shows the results.

So what we obviously see here is that with increasing L the investment is increasing. This may
be expected since there will be less drop downs in the financial market when L is large. However,
what is surprising is the following observation: In the independent case the optimal investment
with these parameters is ξ? = µ

ασ2 = 37.5 and for L→∞ we can see a convergence. But even if
L = 100 which means that the threshold which produces the correlation is 10 times as high as an
expected claim, i.e. very unlikely to occur (the probability indeed is 4.5−5) the investment in the
risky asset is only 25.19 compared to 37.5. Thus, the insurance company is very conservative.
Of course we have a risk-sensitive criterion here, but nevertheless the impact of the dependency
is amazing. For L below 64.35 there is a negative investment into the financial market. The
insurance company then uses the dependence to hedge against claims by shortselling stocks. In
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the case of L → 0, the optimal investment converges to −86.57. For smaller L there is indeed
no reinsurance. For L→∞ the value stabilizes around b? = 0.93, i.e. only 7 % of the claims are
covered by reinsurance.

In total, the conclusion that we draw here is that in this simple model introducing only a
small correlation between claim sizes and behavior of the financial market has already a severe
impact on the optimal investment strategy.

6. Appendix

6.1. Clarke’s generalized subdifferential. The following definition and results are taken
from Section 2.1 in [14], where we restrict ourself to some univariate function by f : R → R,
which is sufficient for this paper.

Definition 6.1 ([14], p. 25). Let x ∈ R be a given point and let v ∈ R. Moreover, let f be
Lipschitz near x. Then the generalized directional derivative of f at x in the direction v, denoted
by f◦(x; v), is defined by

f◦(x; v) = lim sup
y→x,h↓0

f(y + h v)− f(y)

h
.

Definition 6.2 ([14], p. 27). Let f be Lipschitz near x. Then Clarke’s generalized subdifferential
of f at x, denoted by ∂Cf(x), is given by

∂Cf(x) :=
{
ξ ∈ R : f◦(x; v) ≥ ξv for all v ∈ R

}
.

Proposition 6.3 ([14], Prop. 2.2.4). If f is strictly differentiable at x, then f is Lipschitz near
x and ∂Cf(x) = {f ′(x)}. Conversely, if f is Lipschitz near x and ∂Cf(x) reduces to a singleton
{ζ}, then f is strictly differentiable at x and f ′(x) = ζ.

Theorem 6.4 ([14], Thm. 2.5.1). Let f be Lipschitz near x and let S be an arbitrary set of
Lebesgue-measure 0 in R. Moreover, the set of points, at which the function f is not differen-
tiable, is denoted by Ωf . Then

∂Cf(x) = co
{

lim
n→∞

f ′(xn) : xn → x, xn /∈ S, xn /∈ Ωf

}
.

6.2. Auxiliary Results. From now on, we denote by f : [0, T ]× R→ R the function which is
defined by

f(t, x) := −e−αxer(T−t) . (6.1)

Lemma 6.5. Let t ∈ [0, T ] and let (ξ, b) ∈ U [0, T ] be an arbitrary admissible strategy. We set

Lξ,bt := exp

{
−
∫ t

0
ασer(T−s)ξsdWs −

1

2

∫ t

0
α2σ2e2r(T−s)ξ2

sds

+

∫ t

0

∫
E
α(bsy + ξsz1(L,∞)(y))er(T−s)Ψ(ds, d(y, z)) + λt

−
∫ t

0
λ

m∑
k=1

pk(s)

∫ ∞
0

eαbsye
r(T−s)

∫
(0,1)

eαξsz1(L,∞)(y)er(T−s)Q(dz)fk(y)dyds

}
.

(6.2)

Then, a possibly substochastic measure on (Ω,Gt) is defined by Qξ,b
t (A) :=

∫
A L

ξ,b
t dP, A ∈ Gt,

for every t ∈ [0, T ], i.e.
dQξ,bt
dP := Lξ,bt . The measures Qξ,b

t and P are equivalent.

Proof. First, we show that (Lξ,bt )t≥0 is the Doléans-Dade exponential of the martingale (Zt)t≥0

defined by

Zt := −
∫ t

0
ασer(T−s)ξsdWs +

∫ t

0

∫
E

(
eα(bsy+ξsz1(L,∞)(y))er(T−s) − 1

)
Ψ̂(ds, d(y, z)).
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That is,

Lξ,bt = E(Zt) = eZt−
1
2

∫ t
0 α

2σ2e2r(T−s)ξ2sds
∏

0<s≤t
(1 + ∆Zs)e

−∆Zs ,

where∏
0<s≤t

(1+∆Zs)e
−∆Zs = exp

{∫ t

0

∫
E
α(bsy + ξsz1(L,∞)(y))er(T−s)Ψ(ds, d(y, z))

}

×exp

{
−
∫ t

0

∫
E

(
exp

{
α(bsy + ξsz1(L,∞)(y))er(T−s)

}
−1
)

Ψ(ds, d(y, z))

}
.

This implies the announced representation (6.2) of (Lξ,bt )t≥0 since Ψ̂−Ψ = ν̂. As (Lξ,bt )t≥0 is a

non-negative local martingale, it is a supermartingale and hence ELξ,bt ≤ 1 for all t ≥ 0. �

Lemma 6.6. Let (ξ, b) ∈ U [0, T ] and let Lξ,b = (Lξ,bt )t∈[0,T ] be the density process given by (6.2).
Then there exists a constant 0 < K2 <∞ such that∣∣f(t,Xξ,b

t )
∣∣

Lξ,bt
≤ K2 P-a.s.

for all t ∈ [0, T ].

Proof. Fix t ∈ [0, T ] and (ξ, b) ∈ U [0, t]. Using Theorem V.52 in [21], the unique solution of
(3.4) is

Xξ,b
t = x0e

rt +

∫ t

0
er(t−s)

(
(µ− r)ξs + c(bs)

)
ds+

∫ t

0
σer(t−s)ξsdWs

+

∫ t

0

∫
E
er(t−s)

(
bsy + ξsz1(L,∞)(y)

)
Ψ(ds, d(y, z))

Hence∣∣f(t,Xξ,b
t )
∣∣

Lξ,bt
= exp

{
− αx0e

rT −
∫ t

0
αer(T−s)

(
(µ− r)ξs + c(bs)−

1

2
ασ2er(T−s)ξ2

s

)
ds

+

∫ t

0
λ

m∑
k=1

pk(s)

∫ ∞
0

eαbsye
r(T−s)

∫
(0,1)

eαξsz1(L,∞)(y)er(T−s)Q(dz)fk(y)dyds− λt
}

≤ exp

{(
αe|r|T

(
|µ− r|K + (2 + η + θ)κ

)
+

1

2
α2 σ2 e2|r|TK2

+ λ
m∑
k=1

Mk

(
αe|r|T

)
MZ

(
αKe|r|T

))
T

}
=: K2,

where 0 < K2 <∞ is independent of t ∈ [0, T ] as well as (ξ, b). �

For convenience we define

Hh(t, p; ξ, b) := Lh(t, p; ξ, b) + ht(t, p) (6.3)

for all functions h : [0, T ] × ∆m → (0,∞) and (ξ, b) ∈ R × [0, 1], where the right-hand side is
well-defined. Using this notation, the generalized HJB equation (4.6) can be written as

0 = inf
(ξ,b)∈[−K,K]×[0,1]

{Hg(t, p; ξ, b)} (6.4)

at those points (t, p) with existing gt(t, p).

Lemma 6.7. Suppose that (ξ, b) ∈ U [0, T ] is an arbitrary strategy and h : [0, T ]×∆m → (0,∞)
is a bounded function such that t 7→ h(t, p) is absolutely continuous on [0, T ] for all p ∈ ∆m and
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p 7→ h(t, p) is continuous on ∆m for all t ∈ [0, T ]. Then, the function G : [0, T ]× R×∆m → R
defined by

G(t, x, p) := −e−αxer(T−t)h(t, p)

satisfies

dG(t,Xξ,b
t , pt) = −e−αXξ,b

t er(T−t)Hh(t, pt; ξt, bt)dt+ dηξ,bt , t ∈ [0, T ],

where (ηξ,bt )t∈[0,T ] is a martingale w.r.t. G and we set Hh(t, p; ξ, b) zero at those points (t, p)
where ht does not exist.

Proof. Let (ξ, b) ∈ U [0, T ] and h : [0, T ]×∆m → (0,∞) be some function satisfying the conditions
stated in the lemma and bounded with constant 0 < K0 < ∞. Applying the product rule to

G
(
t,Xξ,b

t , pt
)

= f
(
t,Xξ,b

t

)
h(t, pt), we get

dG
(
t,Xξ,b

t , pt
)

= h(t, pt−)df
(
t,Xξ,b

t

)
+ f

(
t,Xξ,b

t−
)
dh(t, pt) + d

[
f
(
·, Xξ,b
·
)
, h(·, p·)

]
t

and hence

dG
(
t,Xξ,b

t , pt
)

= f
(
t,Xξ,b

t

)
h(t, pt)

(
αer(T−t)

(1

2
ασ2er(T−t)ξ2

t − (µ− r)ξt − c(bt)
)

+ λ

m∑
k=1

pk(t)

∫ ∞
0

eαbtye
r(T−t)

∫
(0,1)

eαξtz1(L,∞)(y)er(T−t)Q(dz)fk(y)dy − λ
)
dt

− f
(
t,Xξ,b

t−
)
h(t, pt−)ασer(T−t)ξtdWt

+

∫ ∞
0

f
(
s,Xξ,b

t−
)
h(t, pt−)

(
eαbtye

r(T−t)
eαξtz1(L,∞)(y)er(T−t) − 1

)
Ψ̂(dt, d(y, z))

+ f
(
t,Xξ,b

t

)(
ht(t, pt)− λh(t, pt) + λ

m∑
k=1

pk(t)

∫ ∞
0

h(t, J(pt, y))fk(y)dy

)
dt

+

∫ ∞
0

f
(
t,Xξ,b

t−
)(
h(t, J(pt−, y))− h(t, pt−)

)
Ψ̂(dt, dy, (0, 1))

+ d
[
f
(
·, Xξ,b
·
)
, h(·, p·)

]
t
.

(6.5)

Using the introduced compensated random measure Ψ̂ the variation becomes

d
[
f
(
·, Xξ,b
·
)
, h(·, p·)

]
t

=

∫
E
f
(
t,Xξ,b

t−
)(
h(t, J(pt−, y))− h(t, pt−)

)(
eαbtye

r(T−t)
eαξtz1(L,∞)(y)er(T−t) − 1

)
Ψ̂(dt, d(y, z))

+ λf
(
t,Xξ,b

t

) m∑
k=1

pk(t)

∫ ∞
0

h(t, J(pt, y))eαbtye
r(T−t)

∫
(0,1)

eαξtz1(L,∞)(y)er(T−t)Q(dz)fk(y)dydt

− λf
(
t,Xξ,b

t

)
h(t, pt)

m∑
k=1

pk(t)

∫ ∞
0

eαbtye
r(T−t)

∫
(0,1)

eαξtz1(L,∞)(y)er(T−t)Q(dz)fk(y)dydt

− λf
(
t,Xξ,b

t

) m∑
k=1

pk(t)

∫ ∞
0

h(t, J(pt, y))fk(y)dydt+ λf
(
t,Xξ,b

t

)
h(t, pt)dt.
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Substituting this into (6.5), we obtain

dG
(
t,Xξ,b

t , pt
)

= f
(
t,Xξ,b

t

)(
− α er(T−t)h(t, pt)

(
(µ− r)ξt + c(bt)−

1

2
ασ2er(T−t)ξ2

t

)
+ λf

(
t,Xξ,b

t

) m∑
k=1

pk(t)

∫ ∞
0

h(t, J(pt, y))eαbtye
r(T−t)

∫
(0,1)

eαξtz1(L,∞)(y)er(T−t)Q(dz)fk(y)dy

− λh(t, pt) + ht(t, pt)

)
dt− f

(
t,Xξ,b

t−
)
h(t, pt−)ασer(T−t)ξtdWt − f

(
t,Xξ,b

t−
)
h(t, pt−)Ψ̂(dt, E)

+

∫
E
f
(
t,Xξ,b

t−
)(
h(t, J(pt−, y))− h(t, pt−)

)
eαbtye

r(T−t)
eαξtz1(L,∞)(y)er(T−t)Ψ̂(dt, d(y, z)),

Therefore, by definition of the operator H given in (6.3), we have

dG
(
t,Xξ,b

t , pt
)

= f
(
t,Xξ,b

t

)
Hh(t, pt; ξt, bt)dt+ dηξ,bt ,

where ηξ,bt := η̄ξ,bt − η̂ξ,bt − η̃ξ,bt with

η̄ξ,bt :=

∫ t

0

∫
E
f
(
s,Xξ,b

s−
)(
h(s, J(ps−, y))− h(s, ps−)

)
eαbsye

r(T−s)
eαξsz1(L,∞)(y)er(T−s)Ψ̂(dt, d(y, z)),

η̂ξ,bt :=

∫ t

0
f
(
s,Xξ,b

s−
)
h(s, ps−)Ψ̂(ds,E),

η̃ξ,bt :=

∫ t

0
f
(
s,Xξ,b

s−
)
h(s, ps−)ασer(T−s)ξsdWs.

To complete the proof we need to show that the introduced processes are martingales w.r.t. G

on [0, T ]. According to Corollary VIII.C4 in [13], the process (η̃ξ,bt )t≥0 is a martingale w.r.t. G if

E
[ ∫ t

0

∫
E

∣∣∣f(s,Xξ,b
s

)(
h(s, J(ps, y))− h(s, ps)

)
eαbsye

r(T−s)
eαξsz1(L,∞)(y)er(T−s)

∣∣∣ν̂(ds, d(y, z))

]
<∞.

Using the boundedness of h with constant K0, we obtain that the expectation above is less or
equal to

λ2K0MZ

(
αKe|r|T

) m∑
k=1

Mk

(
αe|r|T

) ∫ t

0
E
[∣∣f(s,Xξ,b

s

)∣∣]ds,
where, by Lemma 6.6,

E
[∣∣f(s,Xξ,b

s

)∣∣] = EQξ,bs

[∣∣f(s,Xξ,b
s

)∣∣
Lξ,bs

]
≤ K2,

which yields the desired finiteness. Similarly the martingale property of (η̂ξ,bt )t≥0 can be seen.
Moreover, by the boundedness of h and ξ as well as Lemma 6.6, it follows

E
[(
f
(
s,Xξ,b

s−
)
h(s, ps−)ασer(T−s)ξs

)2]
<∞,

which implies the martingale property of (η̃ξ,bt )t≥0. �

The following result can be found in [19].

Lemma 6.8. Let α1 ≤ . . . ≤ αn and β1 ≤ . . . ≤ βn be real numbers and (p1, . . . , pn) ∈ ∆n.
Then

n∑
j=1

pjαjβj ≥
n∑
j=1

pjαj

n∑
k=1

pkβk.
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6.3. Proofs. Recall the function f : [0, T ]× R→ R defined by (6.1) and the operator H given
by (6.3).

Proof of Theorem 4.3. Let h : [0, T ] × ∆m → (0,∞) be a function satisfying the conditions
stated in the theorem. Note that every Lipschitz function is also absolutely continuous. We set

G(t, x, p) := f(t, x)h(t, p), (t, x, p) ∈ [0, T ]× R×∆m.

Let us fix t ∈ [0, T ] and (ξ, b) ∈ U [t, T ]. From Lemma 6.7, it follows

G(T,Xξ,b
T , pT ) = G(t,Xξ,b

t , pt) +

∫ T

t
f(s,Xξ,b

s )Hh(s, ps; ξs, bs)ds+ ηξ,bT − η
ξ,b
t , (6.6)

where (ηξ,bt )t∈[0,T ] is a martingale w.r.t. G and we set Hh(s, ps; ξ, b) to zero at those points
s ∈ [t, T ] where ht does not exist. Note that h is partially differentiable w.r.t. t almost everywhere
in the sense of the Lebesgue measure according to the absolute continuity of t 7→ h(t, p) for all
p ∈ ∆m. The generalized HJB equation (6.4) implies

Hh(s, ps; ξs, bs) ≥ 0 s ∈ [t, T ].

As a consequence ∫ T

t
f(s,Xξ,b

s )Hh(s, ps; ξs, bs)ds ≤ 0,

due to the negativity of f . Thus, by (6.6), we get

G(T,Xξ,b
T , pT ) ≤ G(t,Xξ,b

t , pt) + ηξ,bT − η
ξ,b
t . (6.7)

Using the boundary condition (4.10), we obtain

G(T, x, p) = f(T, x)h(T, p) = f(T, x) = −e−αx = U(x).

Now, we take the conditional expectation in (6.7) given (Xξ,b
t , pt) = (x, p) on both sides of the

inequality, which yields

Et,x,p
[
U(Xξ,b

T )
]
≤ G(t, x, p).

Taking the supremum over all investment and reinsurance strategies (ξ, b) ∈ U [t, T ], we obtain

V (t, x, p) ≤ G(t, x, p). (6.8)

To show equality, note that (ξ?s , b
?
s) given by (4.9) (with g replaced by h in A(s, p) and B(s, p))

are the unique minimizer of the HJB equation (4.6). Therefore,

Lh(s, ps; ξ
?
s , b

?
s) + inf

ϕ∈∂Chp(t)
{ϕ} = 0.

So we can deduce that
Hh(s, ps; ξ

?
s , b

?
s) = 0, s ∈ [t, T ].

This implies ∫ T

t
f(s,Xξ?,b?

s )Hh(s, ps; ξ
?
s , b

?
s)ds = 0.

Consequently,

U(Xξ?,b?

T ) = G(T,Xξ?,b?

T , pT ) = G(t,Xξ?,b?

t , pt) + ηξ
?,b?

T − ηξ?,b?t .

Again, taking the conditional expectation given (Xξ?,b?

t , pt) = (x, p) on both sides then yields

Et,x,p
[
U(Xξ?,b?

T )
]

= G(t, x, p) = −e−αxer(T−t)h(t, p)

and the proof is complete. �

Proof of Lemma 4.4. (a) The boundedness and positivity is proven by the same line of ar-
guments as in [7, Lemma 4.4 (a)].

(b) Follows by conditioning.
(c) Follows again by conditioning.
(d) The concavity is proven in much the same way as in [7, Lemma 4.4 (c)].
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(e) The Lipschitz condition is proven in much the same way as in [8, Lemma 6.1 (d)]. �

Proof of Theorem 4.5. Fix t ∈ [0, T ) and (ξ, b) ∈ U [t, T ]. Let τ be the first jump time of Xξ,b

after t and t′ ∈ (t, T ]. It follows from Lemma 4.4 and Lemma 6.7 that

V (τ ∧ t′, Xξ,b
τ∧t′ , pτ∧t′) = V (t,Xξ,b

t , pt) +

∫ τ∧t′

t
f(s,Xξ,b

s )Hg(s, ps; ξs, bs)ds+ ηξ,bτ∧t′ − η
ξ,b
t , (6.9)

where (ηξ,bt )t∈[0,T ] is a martingale w.r.t. G and we set Hg(s, ps; ξs, bs) to zero at those s ∈ [t, T ]
where gt(s, ps) does not exist. For any ε > 0 we can construct a strategy (ξε, bε) ∈ U [t, T ] with
(ξεs , b

ε
s) = (ξs, bs) for all s ∈ [t, τ ∧ t′] from the continuity of V such that

Et,x,p
[
V (τ ∧ t′, Xξ,b

τ∧t′ , pτ∧t′)
]
≤ Et,x,p

[
Eτ∧t

′,Xξ,b

τ∧t′ ,pτ∧t′
[
U(Xξε,bε

T )
]]

+ ε ≤ Et,x,p
[
U(Xξε,bε

T )
]

+ ε

≤ V (t, x, p) + ε.

From the arbitrariness of ε > 0 we conclude

V (t, x, p) ≥ Et,x,p
[
V (τ ∧ t′, Xξ,b

τ∧t′ , pτ∧t′)
]
.

Using this statement and (6.9) we obtain

0 ≥ lim
t′↓t

Et,x,p
[

1

t′ − t

∫ t′

t
f(s,Xξ,b

s )Hg(s, ps; ξs, bs)ds
∣∣t′ < τ

]
Pt,x,p(t′ < τ)

+ lim
t′↓t

Et,x,p
[

1

t′ − t

∫ τ

t
f(s,Xξ,b

s )Hg(s, ps; ξs, bs)ds
∣∣t′ ≥ τ]Pt,x,p(t′ ≥ τ),

where

lim
t′↓t

Pt,x,p(τ ≤ t′) = 1− lim
t′↓t

e−λ(t′−t) = 0.

Consequently,

0 ≥ lim
t′↓t

Et,x,p
[

1

t′ − t

∫ t′

t
f(s,Xξ,b

s )Hg(s, ps; ξs, bs)ds1{t′<τ}

]
.

By the dominated convergence theorem, we can interchange the limit and the expectation and
we obtain by the fundamental theorem of Lebesgue calculus and 1{t′<τ} → 1 P-a.s. for t′ ↓ t,

0 ≥ Et,x,p
[
f(t,Xξ,b

t )Hg(t, pt; ξt, bt)

]
.

From now on, let (ξ, b) ∈ [−K,K]× [0, 1] and ε > 0 as well as (ξ̄, b̄) ∈ U [t, T ] be a fixed strategy
with (ξ̄s, b̄s) ≡ (ξ, b) for s ∈ [t, t+ ε). Then

0 ≥ Et,x,p
[
f(t,X ξ̄,b̄

t )Hg(t, pt; ξ̄t, b̄t)

]
= f(t, x)Hg(t, p; ξ, b)

at those points (t, p) where gt(t, p) exists. Due to the negativity of f , we get

0 ≤ Hg(t, p; ξ, b).

We show next the inequality above if gt does not exist. For this purpose, we denote byMp ⊂ [0, T ]
the set of points at which g′p(t) exists for any p ∈ ∆m. On the basis of Theorem 6.4, we have,
for any p ∈ ∆m,

∂Cgp(t) = co
{

lim
n→∞

g′p(tn) : tn → t, tn ∈Mp

}
.

That is, for every ϕ ∈ ∂Cgp(t) ⊂ [0, T ], there exists u ∈ N and (β1, . . . , βu) ∈ ∆u such that
ϕ =

∑u
i=1 βi ϕ

i, where ϕi = limn→∞ gp(t
i
n) for sequences (tin)n∈N with limn→∞ t

i
n = t along

existing g′p. From what has already been proved, it can be concluded that, for any i = 1, . . . , u

0 ≤ Lg(tin, p; ξ, b) + gt(t
i
n, p).
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Thus, by the continuity of t 7→ g(t, p), p 7→ g(t, p) and p 7→ J(p, y), we get for i = 1, . . . , u

0 ≤ βiLg(t, p; ξ, b) + βi lim
n→∞

gt(t
i
n, p),

which yields

0 ≤ Lg(t, p; ξ, b) +
u∑
i=1

βi lim
n→∞

gt(t
i
n, p) = Lg(t, p; ξ, b) + ϕ.

Due to the arbitrariness of ϕ ∈ ∂Cgp(t) and (ξ, b) ∈ [−K,K]× [0, 1], we obtain

0 ≤ inf
(ξ,b)∈[−K,K]×[0,1]

Lg(t, p; ξ, b) + inf
ϕ∈∂Cgp(t)

{ϕ}.

Our next objective is to establish the reverse inequality. For any ε > 0 and 0 ≤ t < t′ ≤ T ,
there exists a strategy (ξε,t

′
, bε,t

′
) ∈ U [t, T ] such that

V (t, x, p)− ε(t′ − t) ≤ Et,x,p
[
U
(
Xξε,t

′
,bε,t
′

T

)]
≤ Et,x,p

[
V
(
τ ∧ t′, Xξε,t

′
,bε,t
′

τ∧t′ , pτ∧t′
)]
.

Using Lemma 6.7 it follows

−ε(t′ − t) ≤ Et,x,p
[ ∫ τ∧t′

t
f
(
s,Xξε,t

′
,bε,t
′

s

)
Hg
(
s, ps; ξ

ε,t′
s , bε,t

′
s

)
ds

]
.

In the same way as before, we get

−ε ≤ lim
t′↓t

Et,x,p
[

1

t′ − t

∫ t′

t
f
(
s,Xξε,t

′
,bε,t
′

s

)
Hg
(
s, ps; ξ

ε,t′
s , bε,t

′
s

)
ds1{t′<τ}

]
≤ lim

t′↓t
Et,x,p

[
1

t′ − t

∫ t′

t
f
(
s,Xξε,t

′
,bε,t
′

s

)
inf

(ξ,b)∈[−K,K]×[0,1]
Hg
(
s, ps; ξ, b

)
ds1{t′<τ}

]
.

We can again interchange the limit and the infimum by the dominated convergence theorem
which yields

−ε ≤ Et,x,p
[

lim
t′↓t

1

t′ − t

∫ t′

t
f
(
s,Xξε,t

′
,bε,t
′

s

)
inf

(ξ,b)∈[−K,K]×[0,1]
Hg
(
s, ps; ξ, b

)
ds1{t′<τ}

]
.

Thus the same conclusion can be draw as above, i.e.

−ε ≤ f(t, x) inf
(ξ,b)∈[−K,K]×[0,1]

Hg(t, p; ξ, b)

at those point where gt(s, p) exists. According to the negativity of f and the arbitrariness of
ε > 0, we get, by ε ↓ 0,

0 ≥ inf
(ξ,b)∈[−K,K]×[0,1]

Hg(t, p; ξ, b)

at those point where gt(s, p) exists. By the same way as before, we obtain in the case of no
differentiability of g w.r.t. t, that

0 ≥ inf
(ξ,b)∈[−K,K]×[0,1]

Lg(t, p; ξ, b) + inf
ϕ∈∂Cgp(t)

{ϕ}.

Summarizing, we have equality in the previous expression. The optimality of (ξ?, b?) follows as
in the proof of Theorem 4.3. �
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